WO2014041812A1 - Patterning method using ink jet coating composition and method for producing led devices - Google Patents

Patterning method using ink jet coating composition and method for producing led devices Download PDF

Info

Publication number
WO2014041812A1
WO2014041812A1 PCT/JP2013/005425 JP2013005425W WO2014041812A1 WO 2014041812 A1 WO2014041812 A1 WO 2014041812A1 JP 2013005425 W JP2013005425 W JP 2013005425W WO 2014041812 A1 WO2014041812 A1 WO 2014041812A1
Authority
WO
WIPO (PCT)
Prior art keywords
containing liquid
ceramic precursor
phosphor
led chip
convex portion
Prior art date
Application number
PCT/JP2013/005425
Other languages
French (fr)
Japanese (ja)
Inventor
正好 山内
仲島 厚志
禄人 田口
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014535383A priority Critical patent/JP6237631B2/en
Publication of WO2014041812A1 publication Critical patent/WO2014041812A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0082Digital printing on bodies of particular shapes
    • B41M5/0088Digital printing on bodies of particular shapes by ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a patterning method using an inkjet coating composition and a method for manufacturing an LED device.
  • the fine portion of the member is, for example, the upper surface of the convex portion of the member having the convex portion, and more specifically, the upper surface of the LED chip of the LED device.
  • a transfer method has been used as a method for patterning the surface of a member.
  • a transfer member having a circular shape or an uneven structure is used.
  • the circular transfer member has, for example, a circular roller and a release layer on the surface thereof (see Patent Document 1).
  • transfer member of an uneven structure has a metal mold
  • the release layer is a layer that assists the transfer material applied on the release layer to be uniformly separated from the transfer member and transferred to the transfer member, such as silicone rubber.
  • the transfer material may be any material as long as it can be patterned on the member to be transferred, such as a functional material. The transfer material can be patterned on the transferred member by pressing the transfer member to the transferred member.
  • a transfer method it is conceivable to pattern a functional material on a fine portion such as the upper surface of a convex portion of a member having a convex portion.
  • a functional material is patterned only on the upper surface of the convex portion using a circular transfer member, it is necessary to use a mask in order to prevent the functional material from being applied to other than the upper surface of the convex portion. For this reason, the functional material is also applied to the mask, and the functional material is lost.
  • the method using a transfer member having a concavo-convex structure has low versatility because it is necessary to prepare a transfer member that matches the shape and size of the upper surface of the convex portion.
  • an inkjet method is used as a method of applying a necessary amount of droplets to a desired site.
  • the ink jet method is a method of forming a coating pattern having a predetermined shape by discharging droplets from a fine nozzle of an ink jet head filled with ink and landing on a member.
  • this method it is possible to change the relative position between the nozzle that discharges the droplet and the member, and discharge the droplet to a desired location.
  • the thickness of the coating film to be formed can be adjusted by the relative relationship of the nozzle diameter, the droplet discharge amount, and the moving speed of the nozzle and the member to be patterned. For this reason, a required amount of droplets can be applied to a desired location (see Patent Document 3).
  • the loss of the functional material can be reduced by applying an ink jet coating composition containing the functional material by a necessary amount to a desired place using the ink jet method.
  • the versatility is high.
  • the first of the present invention relates to a patterning method shown below.
  • a patterning method for selectively forming a functional layer on an upper surface of a convex portion of a member having a convex portion A step of preparing a member provided with a convex portion, and a step of forming a functional layer on the upper surface of the convex portion by applying an inkjet coating composition containing a functional material by inkjet.
  • the patterning method of the said inkjet coating composition being a contact angle with respect to the upper surface of the said convex part of 10 degrees or less, and a contact angle with respect to the side surface of the said convex part being 20 degrees or more.
  • [2] A step of reducing a contact angle of the upper surface of the convex portion with respect to the inkjet coating composition or a step of reducing a contact angle of the side surface of the convex portion with respect to the inkjet coating composition before the functional layer forming step.
  • a method for manufacturing an LED device comprising: a convex LED chip mounted on a substrate; and a wavelength conversion layer containing phosphor particles formed only on the upper surface of the LED chip, A step of preparing a convex LED chip mounted on a substrate and having a phosphor particle layer including phosphor particles disposed on an upper surface thereof, and a phosphor particle layer disposed on the upper surface of the LED chip by a ceramic by an inkjet method A step of applying a precursor-containing liquid, and a step of curing the ceramic precursor to make the phosphor particle layer a wavelength conversion layer, The method for manufacturing an LED device, wherein a contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is 10 ° or less and a contact angle with the LED chip is 20 ° or more.
  • an inkjet coating composition containing a functional material can be applied only to the upper surface of the convex portion of a member having a convex portion, and loss of the functional material can be reduced. Moreover, it can suppress that the inkjet coating composition apply
  • FIG. 1 It is a schematic sectional drawing which shows an example of the LED apparatus manufactured by the patterning method of this invention. It is a figure which shows a mode that a fluorescent substance containing liquid is spray-coated on the upper surface of a LED chip. It is a figure which shows a mode that a ceramic precursor containing liquid is apply
  • the present invention is a patterning method for selectively forming a functional layer on the upper surface of a convex portion of a member having a convex portion, and a step of preparing a member having a convex portion; Forming a functional layer by applying an inkjet coating composition from the inkjet head to the upper surface of the part.
  • the member provided with the convex part means the to-be-coated object provided with the fine convex part.
  • the minute projections is preferably an area of the upper surface is 1,000,000Myuemu 2 or less, preferably 100,000Myuemu 2 or less, may be 50,000 2 or less.
  • the convex portion is characterized in that the surface physical properties of the upper surface and the surface physical properties of the side surfaces are different. Specifically, the wettability of the upper surface of the convex portion is different from the wettability of the side surface. Moreover, the substance which comprises an upper surface, and the substance which comprises a side surface may differ from a convex part, and the surface shape (surface roughness etc.) of an upper surface may differ from the surface shape of a side surface. In any case, the top surface of the convex portion is so that the contact angle of the coating applied to the top surface of the convex portion is 10 ° or less with respect to the top surface of the convex portion; It is sufficient that the wettability and the side wettability are adjusted.
  • Such a convex part may be obtained by performing a process for increasing wettability on the upper surface, or may be obtained by performing a process for reducing wettability on the side surface.
  • the treatment include, but are not limited to, formation of a metal film, formation of a non-metal film, surface treatment with a chemical conversion solution, chemical polishing, laminating, infrared irradiation, plasma irradiation, corona treatment, and the like.
  • the wettability of the upper surface of the convex part is to form a layer of OO, XX on the upper surface of the convex part by CVD, or to irradiate only the upper surface of the convex part with infrared rays or plasma, or to corona-treat. It is easy to increase.
  • a void layer containing a plurality of particles may be formed on the upper surface of the convex portion.
  • the coated material easily penetrates into the void layer on the upper surface of the convex portion. Therefore, it becomes easy to apply the coating material only to the upper surface of the convex portion.
  • the functional layer is formed by applying an ink jet coating composition containing a functional material to the upper surface of the convex portion of the member having such a convex portion by applying an ink jet head. After coating, the solvent contained in the coating composition may be removed, or the functional material contained in the coating composition may be heat-cured or photocured.
  • the inkjet head for applying the inkjet coating composition may be a drop-on-demand system or a continuous system.
  • the drop-on-demand method is an electro-mechanical conversion method (for example, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), electro-thermal conversion method (for example, thermal ink jet) Type, bubble jet (registered trademark) type), electrostatic attraction type (for example, electric field control type, slit jet type, etc.) and discharge type (for example, spark jet type).
  • electro-mechanical conversion method for example, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.
  • electro-thermal conversion method for example, thermal ink jet
  • electrostatic attraction type for example, electric field control type, slit jet type, etc.
  • discharge type for example, spark jet type
  • the amount of droplets ejected from the inkjet head may be 0.5 to 60 pl.
  • the droplet amount can be adjusted by the nozzle diameter of the inkjet head, the magnitude of the voltage applied to the inkjet head, and the pattern.
  • a commercially available apparatus may be used as the inkjet apparatus, and an inkjet apparatus manufactured by Konica Minolta IJ may be used.
  • the ink jet coating composition contains a functional material.
  • the functional material is a material that mainly exhibits functions such as heat, light, chemistry, electricity, or mechanics.
  • Examples of the functional material include, but are not limited to, a photosensitive polymer material, an adhesive, an adhesive material, and an optical material.
  • the ink jet coating composition preferably contains a solvent.
  • the wettability with respect to the upper surface of the convex portion, which is an object to be coated, and the wettability with respect to the side surface can be adjusted appropriately.
  • the ink jet coating composition preferably has a viscosity at 25 ° C. of 1 to 40 mPa ⁇ s, more preferably 5 to 40 mPa ⁇ s, and further preferably 5 to 20 mPa ⁇ s from the viewpoint of injection properties. preferable.
  • the viscosity of the inkjet coating composition can be adjusted by a solvent.
  • the functional layer can be formed only on the upper surface of the convex portion by applying the functional material to the upper surface of the member having the convex portion by inkjet. For this reason, it is not necessary to apply a functional material other than the upper surface of the convex portion, and thus loss of the functional material to be used can be reduced. Further, the patterning method of the present invention is highly versatile because it is not necessary to prepare a dedicated transfer member according to patterning.
  • FIG. 1 is a cross-sectional view showing an example of an LED device manufactured using the patterning method of the present invention.
  • the LED device 100 includes a substrate 110 having a concave portion, a metal portion (metal wiring) 120, an LED light emitting portion 160 disposed on the bottom surface of the concave portion of the substrate 110, and a protrusion that connects the metal portion 120 and the LED light emitting portion 160.
  • An electrode 140 is referred to as a flip chip type.
  • the substrate 110 is, for example, a liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulating properties and heat resistance.
  • the LED light emitting unit 160 disposed on the bottom surface of the concave portion of the substrate 110 includes an LED chip 130 and a wavelength conversion layer 150 that covers only the upper surface of the LED chip 130.
  • the LED chip 130 is, for example, a blue LED.
  • a blue LED has an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer) stacked on a sapphire substrate.
  • a laminate with a transparent electrode layer is stacked on a sapphire substrate.
  • the LED chip 130 has an upper surface of, for example, 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, and the height of the LED chip 130 is 50 to 200 ⁇ m.
  • the wavelength conversion layer 150 is a ceramic layer in which phosphor particles are bound with ceramic as a binder.
  • the wavelength conversion layer 150 may further contain a layered silicate compound such as tabular particles, fine oxide particles, and aluminum silicate (imogolite).
  • the thickness of the wavelength conversion layer 150 is preferably 5 to 200 ⁇ m, more preferably 10 to 200 ⁇ m, and even more preferably 10 to 100 ⁇ m. As shown in FIG. 1, the wavelength conversion layer 150 selectively covers only the upper surface of the LED chip 130.
  • the wavelength conversion layer 150 is a layer that receives light (excitation light) emitted from the LED chip 130 and emits fluorescence. By mixing the excitation light and the fluorescence, light of a desired color is emitted from the LED device 100. For example, if the light from the LED chip 130 is blue and the fluorescence from the wavelength conversion layer 150 is yellow, the LED device 100 can be a white LED light-emitting device.
  • one LED light emitting unit 160 is disposed in the recess of the substrate 110; however, a plurality of LED light emitting units 160 may be disposed in the recess of the LED substrate 110. .
  • the LED device manufacturing method of the present invention includes a convex LED chip mounted on a substrate, and a wavelength conversion layer including phosphor particles formed only on the upper surface of the LED chip. Including at least the following steps 1) to 3) and further including step 4). 1) Step of preparing a convex LED chip mounted on a substrate and having a phosphor particle layer containing phosphor particles disposed on the upper surface 2) Ink jet method only on the phosphor particle layer disposed on the upper surface of the LED chip The step of applying the ceramic precursor-containing liquid 3) The step of curing the ceramic precursor to make the phosphor particle layer a wavelength conversion layer 4) The step of sealing the top of the wavelength conversion layer with a silicone resin
  • a convex LED chip is mounted on the substrate on which the metal part is disposed, and a phosphor particle layer is formed only on the upper surface of the LED chip.
  • An LED chip is typically a stack of compound semiconductor layers. The mounting of the LED chip refers to fixing the LED chip to the substrate and connecting the wiring of the substrate and the LED chip.
  • a phosphor-containing liquid containing phosphor particles may be selectively applied to the upper surface of the LED chip.
  • the phosphor-containing liquid may be applied using, for example, a spray or a dispenser.
  • the phosphor-containing liquid is applied to the upper surface of the LED chip while masking other than the upper surface of the LED chip.
  • FIG. 2 is a diagram showing a state in which the phosphor-containing liquid is spray-applied on the upper surface of the LED chip using a spray device that contains the phosphor-containing liquid.
  • the coating apparatus 200 includes a coating liquid tank 210, a connecting pipe 230, a head 240, and a nozzle 250.
  • the coating liquid tank 210 is not particularly limited as long as it can hold the phosphor-containing liquid 220, but preferably has a stirring mechanism for the phosphor-containing liquid 220. By always stirring the phosphor-containing liquid 220 before coating, the sedimentation of the phosphor particles can be suppressed.
  • Specific examples of the coating liquid tank 210 include PC-51 manufactured by Anest Iwata.
  • the head 240 and the nozzle 250 are movable in an arbitrary direction.
  • the hole diameter at the tip of the nozzle 250 is not particularly limited as long as the phosphor-containing liquid 220 can be uniformly discharged, but is preferably 20 ⁇ m to 2 mm, more preferably 0.1 to 1.5 mm.
  • Specific examples of the nozzle 250 include a spray gun W-101-142BPG manufactured by Anest Iwata.
  • a substrate 310, an LED chip 320, and a mask 330 are installed on the lower surface of the nozzle 250.
  • the mask 330 may be disposed so as to cover other than the upper surface of the LED chip 320, for example.
  • the phosphor-containing liquid 220 in the coating liquid tank 210 in the coating apparatus 200 is supplied with pressure to the head 240 through the connecting pipe 230.
  • the phosphor-containing liquid 220 supplied to the head 240 is discharged from the nozzle 250.
  • the discharged phosphor-containing liquid 220 is applied to the mask 330 and the upper surface of the LED chip 320.
  • the mask 330 is removed. Thereafter, the phosphor-containing liquid 220 applied only to the upper surface of the LED chip 320 is dried to form a phosphor particle layer. It is preferable to dry the solvent contained in the phosphor-containing liquid 220 by drying the phosphor-containing liquid 220.
  • the temperature at which the solvent contained in the phosphor-containing liquid 220 is dried is usually 20 to 200 ° C., preferably 25 to 150 ° C. If it is lower than 20 ° C., it is difficult to sufficiently dry the solvent. On the other hand, when it exceeds 200 ° C., the LED chip tends to deteriorate.
  • the drying time is usually 0.1 to 30 minutes, preferably 0.1 to 15 minutes, from the viewpoint of production efficiency.
  • the thickness of the phosphor particle layer is not particularly limited, but is 5 to 200 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 10 to 100 ⁇ m from the viewpoint of light emission intensity and film strength.
  • the phosphor-containing liquid preferably contains at least phosphor particles and a solvent, and further contains a layered silicate mineral or inorganic particles.
  • the solvent can be, for example, water or an organic solvent.
  • the phosphor particles may be any particles that are excited by the wavelength of the light emitted from the LED chip (excitation wavelength) and emit fluorescence having a wavelength different from the excitation wavelength.
  • excitation wavelength the wavelength of the light emitted from the LED chip
  • YAG yttrium, aluminum, garnet
  • phosphor particles that emit yellow fluorescence upon receiving blue excitation light.
  • the YAG phosphor emits yellow (wavelength 550 nm to 650 nm) fluorescence using blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip as excitation light.
  • the phosphor particles are, for example, 1) an appropriate amount of a fluoride such as ammonium fluoride is mixed and pressed into a mixed raw material having a predetermined composition to obtain a molded body, and 2) the obtained molded body is put into a crucible. It can be produced by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • a fluoride such as ammonium fluoride
  • the mixed raw material having a predetermined composition can be obtained by sufficiently mixing oxides of Y, Gd, Ce, Sm, Al, La, Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio.
  • the mixed raw material having a predetermined composition includes a coprecipitation oxide obtained by coprecipitation with oxalic acid in a solution in which a rare earth element of Y, Gd, Ce, and Sm is dissolved in acid at a stoichiometric ratio, and aluminum oxide. It is obtained by mixing gallium oxide.
  • the kind of the phosphor particles is not limited to the YAG phosphor, and may be other phosphor particles such as a non-garnet phosphor not containing Ce.
  • the average primary particle diameter of the phosphor particles is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the larger the particle size of the phosphor particles the higher the light emission efficiency (wavelength conversion efficiency).
  • the particle diameter of the phosphor particles is too large, the adhesion between the phosphor particles and the ceramic in the wavelength conversion layer is lowered, and the strength of the wavelength conversion layer is lowered.
  • the average primary particle diameter of the phosphor particles can be measured by, for example, a Coulter counter method.
  • the amount of the phosphor particles contained in the phosphor-containing liquid is preferably 10 to 99% by mass, and more preferably 20 to 97% by mass with respect to the total solid content of the phosphor-containing liquid.
  • concentration of the phosphor particles is within the above range, the phosphor particles are easily dispersed uniformly in the phosphor-containing liquid.
  • Examples of the solvent include water, an organic solvent having excellent compatibility with water, or an organic solvent having low compatibility with water.
  • the later-described layered silicate mineral When water is contained in the solvent, the later-described layered silicate mineral can be swollen. For example, when water is contained together with the hydrophilic layered silicate mineral, the water enters between the layers of the layered silicate mineral. Thereby, the viscosity of the phosphor-containing liquid is increased, and sedimentation of the phosphor particles can be suppressed. However, when impurities are contained in water, there is a risk of inhibiting the swelling of the layered silicate mineral. Therefore, when the layered silicate mineral is swollen, the added water is pure water.
  • the organic solvent is used for improving the wettability of the phosphor-containing liquid and adjusting the viscosity.
  • alcohols such as methanol, ethanol, propanol, and butanol, which have excellent compatibility with water, as the organic solvent. Since the viscosity is increased by adding water, it is preferable to use an organic solvent excellent in compatibility with water.
  • the layered silicate mineral used in the present invention is preferably a swellable clay mineral having a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a swellable clay mineral having a smectite structure rich in swelling properties. Since the layered silicate mineral forms a card house structure in the phosphor-containing liquid, the viscosity of the phosphor-containing liquid is increased with a small amount. Further, since the layered silicate mineral has a flat plate shape, the strength of the phosphor particle layer is also increased.
  • layered silicate minerals that can be clay minerals include natural or synthetic hectorite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite, and other smectite clay minerals; Na-type tetralithic fluorine Swelling mica genus clay minerals such as mica, Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite; Mica clay minerals; vermiculite; kaolinite; or mixtures thereof.
  • the clay mineral may have a surface modified with an ammonium salt or the like (surface treatment). If a clay mineral modified with an ammonium salt or the like is included, the compatibility between the clay mineral and the solvent increases.
  • the amount of the layered silicate mineral contained in the phosphor-containing liquid is preferably 0.5 to 20% by mass, and preferably 0.5 to 10% by mass with respect to the total solid content of the phosphor-containing liquid. Is more preferable.
  • the content of the layered silicate mineral is less than 0.5% by mass, the viscosity of the phosphor-containing liquid is not sufficiently increased.
  • the content of the layered silicate mineral exceeds 20% by mass, the amount of the phosphor particles is relatively reduced, and sufficient fluorescence is not emitted from the phosphor particle layer.
  • the inorganic particles have a filling effect of filling a gap generated at the interface between the phosphor and the layered silicate mineral, and an effect of increasing the viscosity of the phosphor-containing liquid.
  • the strength of the phosphor particle layer is increased.
  • inorganic particles include fine oxide particles such as silicon oxide, titanium oxide, zinc oxide, aluminum oxide, and zirconium oxide.
  • the surface of the inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. The surface treatment increases the adhesion between the inorganic particles and the ceramic binder.
  • the inorganic particles can be porous inorganic particles having a large specific surface area.
  • the particle size distribution of inorganic particles is not particularly limited. It may be distributed over a wide range or may be distributed over a relatively narrow range.
  • the particle size of an inorganic particle it is preferable that the center particle size of a primary particle size is 0.001 micrometer or more and 50 micrometers or less, and it is more preferable that it is smaller than the primary particle diameter of fluorescent substance.
  • the particle size of the inorganic particles is set to be smaller than the thickness of the phosphor dry film. This is for enhancing the surface smoothness of the phosphor dry film.
  • the average particle diameter of the inorganic particles is measured by, for example, a Coulter counter method.
  • the amount of inorganic particles contained in the phosphor-containing liquid is preferably 0.5 to 70% by mass, more preferably 0.5 to 65% by mass, and still more preferably based on the total solid content of the phosphor-containing liquid. 1.0 to 60% by mass.
  • the content of the inorganic particles is less than 0.5% by mass, the amount of phosphor particles and the like is relatively increased, and the dispersibility of the phosphor particles may be lowered.
  • coating of a fluorescent substance containing liquid deteriorates.
  • the content of the inorganic particles exceeds 70% by mass the amount of the phosphor particles is relatively reduced and sufficient fluorescence cannot be obtained. Furthermore, light is easily scattered by the inorganic particles, and the light extraction efficiency from the LED device is reduced.
  • the viscosity of the phosphor-containing liquid is usually 10 to 1000 mPa ⁇ s, preferably 12 to 500 mPa ⁇ s, more preferably 20 to 400 mPa ⁇ s, and 200 to 400 mPa ⁇ s. Further preferred. If the viscosity is too low, the phosphor particles tend to settle in the phosphor-containing liquid. On the other hand, when the viscosity is too high, it becomes difficult to apply the phosphor-containing liquid, particularly by spraying.
  • the phosphor-containing liquid can be prepared by mixing phosphor particles in a solvent and adding layered silicate minerals and inorganic particles to the mixture as necessary.
  • ⁇ About step 2> A ceramic precursor-containing liquid is applied by an inkjet method to the phosphor particle layer disposed on the upper surface of the LED chip prepared in step 1).
  • the ceramic precursor-containing liquid may be applied in an amount necessary to bind the phosphor particles, and is adjusted according to the thickness of the phosphor particle layer. If the coating amount of the ceramic precursor-containing liquid is excessive, cracks are likely to occur in the formed wavelength conversion layer. On the other hand, if the amount of the ceramic precursor-containing liquid is too small, the voids in the phosphor particle layer cannot be filled, and a large number of voids tend to remain.
  • FIG. 3 is a diagram showing a state in which a ceramic precursor-containing liquid is applied to the phosphor particle layer disposed on the upper surface of the LED chip.
  • the substrate 310 and the LED chip 320 may be those prepared in the step 1).
  • a convex LED chip 320 having a phosphor particle layer 340 containing phosphor particles on the upper surface is mounted on a substrate 310 (FIG. 3A).
  • droplets 360 of the ceramic precursor-containing liquid are ejected from the inkjet head 350 filled with the ceramic precursor-containing liquid toward the phosphor particle layer 340 (FIG. 3B).
  • the ink jet method can suppress the wind pressure at the time of applying the ceramic precursor-containing liquid as compared with the spray method or the like. Therefore, damage to the phosphor particle layer 340 can be reduced, and the phosphor particles can be prevented from peeling from the LED chip 320.
  • the liquid droplets do not easily penetrate into the voids in the phosphor particle layer.
  • the droplet diameter can be suppressed to about several tens of ⁇ m, and the ceramic precursor-containing liquid can easily penetrate into the voids of the phosphor particle layer. Therefore, the hardness of the wavelength conversion layer formed by curing the ceramic precursor can be increased.
  • the ceramic precursor-containing phosphor particle layer 370 can be formed only on the upper surface of the LED chip 320 by applying the ceramic precursor-containing liquid only to the upper surface of the LED chip 320 by the inkjet method. Therefore, the loss of the ceramic precursor to be used can be reduced as in the transfer method using a circular transfer member. Further, since there is no need to prepare a transfer member having a dedicated shape, the versatility is high.
  • the ceramic precursor-containing liquid used in step 2) will be described.
  • the ceramic precursor-containing liquid preferably includes at least a ceramic precursor and a solvent, and further includes oxide particles and the like.
  • a ceramic precursor is a material that binds phosphor particles when subjected to a firing treatment.
  • the ceramic precursor is, for example, an organometallic compound.
  • the organometallic compound becomes a ceramic (preferably a glass ceramic) by a sol-gel reaction.
  • the produced ceramic binds phosphor particles (layered silicate mineral and inorganic fine particles as required) contained in the phosphor particle layer.
  • organometallic compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, metal oxides, etc., but metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred.
  • the kind of the organometallic compound is not limited as long as it can form a light-transmitting glass ceramic, and a plurality of organometallic compounds may be combined. From the viewpoint of the stability of the formed glass ceramic and the ease of production, the organometallic compound preferably contains silicon.
  • the metal alkoxide as the ceramic precursor may be a monomolecular silane compound such as tetraethoxysilane or a polysiloxane in which an organosiloxane compound is linked in a chain or a ring; according to the polysiloxane, the ceramic precursor The viscosity of the contained liquid can be increased.
  • the monomolecular silane compound can be represented by the general formula (1).
  • n represents the number of ORs and is an integer of 2 or more and 4 or less.
  • Each R independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • Y represents a hydrogen atom or an alkyl group.
  • the alkyl group has 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less, an aliphatic group, alicyclic group, aromatic group, alicyclic aromatic group. It is a family group. These may have atoms or atomic groups such as O, N, and S as a linking group. Among these, a methyl group is particularly preferable.
  • Y is a methyl group, the light resistance and heat resistance of the wavelength conversion layer formed by curing the ceramic precursor are increased.
  • the monovalent organic group represented by Y may have a substituent.
  • substituents include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic functional groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
  • Examples of monomolecular silane compounds include the following tetrafunctional silane compounds, trifunctional silane compounds, and bifunctional silane compounds.
  • Examples of tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonoprop
  • trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysi
  • bifunctional silane compound examples include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy.
  • the amount of the monomolecular silane compound contained in the ceramic precursor-containing liquid is preferably 3 to 50% by mass, more preferably 3 to 40% by mass, based on the total amount of the ceramic precursor-containing liquid.
  • the amount of the monomolecular silane compound is less than 3% by mass, the viscosity of the ceramic precursor is low and it may be difficult to apply the ceramic precursor solution.
  • the amount of the monomolecular silane compound exceeds 50% by mass, the curing reaction of the ceramic precursor proceeds faster than necessary. Therefore, the ceramic precursor is cured before entering the phosphor layer, and the phosphor particles may not be sufficiently bound.
  • the polysiloxane as the ceramic precursor is obtained by polymerizing the silane compound represented by the general formula (1).
  • the chain polysiloxane which is a ceramic precursor contained in the ceramic precursor-containing liquid preferably has a mass average molecular weight of 1000 to 3000, more preferably 1200 to 2700, and more preferably 1500 to 2000. Is more preferable.
  • the mass average molecular weight of the chain polysiloxane is less than 1000, the viscosity of the ceramic precursor-containing liquid may become too low.
  • the mass average molecular weight exceeds 3000 the viscosity becomes too high. In some cases, the ceramic precursor-containing liquid may not enter the gap formed by the phosphor particles.
  • a mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
  • the polysiloxane as the ceramic precursor may be a silsesquioxane represented by the following general formula (1 ′) whose basic structural unit is trifunctional (T unit).
  • Formula (1 ') ( R-SiO 3/2) n
  • R represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group.
  • Si is bonded to three Os, and O is bonded to two Sis.
  • Silsesquioxane has a cage-type, ladder-type, or random-type three-dimensional structure.
  • silsesquioxane When silsesquioxane is used for the ceramic precursor, it is preferable to use silsesquioxane having a cage structure having fastness.
  • the cage-type silsesquioxane has an even number of Si, and each Si forms a cage-type silsesquioxane skeleton.
  • Si of silsesquioxane constitutes a skeleton of a quadrangular column, a pentagonal column, a hexagonal column, and a heptagonal column, respectively. To do.
  • the viscosity of the ceramic precursor-containing liquid can be adjusted to be low.
  • the ceramic precursor contained in the ceramic precursor-containing liquid may be polysilazane.
  • Polysilazane is represented by the following general formula (2), for example. Formula (2): (R 1 R 2 SiNR 3 ) n
  • R 1 to R 3 each independently represents a hydrogen atom or an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group. Further, at least one of R 1 ⁇ R 3 is a hydrogen atom, a case where all of R 1 ⁇ R 3 is a hydrogen atom that par hydro polysilazane. n is an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • perhydropolysilazane that can be cured at low temperature and low humidity is preferable.
  • the polysiloxane concentration in the ceramic precursor-containing liquid is preferably 1 to 40% by mass, and more preferably 2 to 30% by mass.
  • the content of polysilazane in the ceramic precursor-containing liquid is large, if the content of polysilazane is too large, the storage period of the ceramic precursor-containing liquid is shortened. Therefore, the content of polysilazane in the ceramic precursor-containing liquid is preferably 5 to 50% by mass with respect to the total amount of the ceramic precursor-containing liquid.
  • the ceramic precursor-containing liquid may contain a reaction accelerator together with the ceramic precursor (particularly polysilazane).
  • the reaction accelerator may be an acid or a base.
  • Examples of reaction accelerators include bases such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid
  • metal carboxylates including, but not limited to, nickel, iron, palladium, iridium, platinum, titanium, and aluminum.
  • a particularly preferred reaction accelerator is a metal carboxylate.
  • the reaction accelerator When the reaction accelerator is contained in the ceramic precursor-containing liquid together with polysilazane, the preferred content is 0.01 to 5 mol% based on polysilazane.
  • Heat treatment, excimer light treatment, and ultraviolet light treatment are applied to a ceramic precursor-containing solution in which polysilazane and a reaction accelerator are dissolved in an appropriate solvent to cure the ceramic precursor-containing solution, resulting in heat resistance and light resistance.
  • An excellent wavelength conversion layer can be formed.
  • the solvent contained in the ceramic precursor-containing liquid adjusts the wettability of the ceramic precursor-containing liquid with respect to the phosphor particle layer and the side surface of the LED light emitting unit.
  • the solvent include hydrocarbons, ethers, esters, alcohols, ketones, nitrogen-containing compounds and derivatives thereof. These solvents may be used alone or in combination.
  • a more preferable one is a monohydric alcohol or a polyhydric alcohol.
  • monohydric alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, t-butanol, 3-methoxy-1-butanol, 3- Methyl-3-methoxybutanol, 1-pentanol, 1-octanol, 2-octanol, stearyl alcohol, oleyl alcohol, benzyl alcohol, n-nonyl alcohol, tridecyl alcohol, n-undecyl alcohol;
  • polyhydric alcohols include ethylene glycol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 2,3-butanediol, 3-methyl-1,3-butanediol, 1,2-
  • the solvent contained in the ceramic precursor-containing liquid may be a derivative of these alcohols.
  • alcohol derivatives include glycol ethers in which the hydroxyl group of a polyhydric alcohol is etherified.
  • the ceramic precursor-containing liquid may contain one type of these solvents or two or more types, but preferably contains two or more types.
  • the surface tension of the solvent is 20 to 30 mN / m
  • the wettability of the ceramic precursor-containing liquid to the phosphor particle layer is enhanced.
  • the surface tension of the solvent is less than 20 mN / m
  • the ceramic precursor-containing liquid adheres to the surface of the ink jet head, or the ceramic precursor-containing liquid cannot form a meniscus in the nozzle of the ink jet head. descend.
  • the surface tension of the solvent exceeds 30 mN / m, it is difficult to obtain sufficient wettability to the phosphor particle layer.
  • the surface tension (mN / m) of the solvent is a value of the surface tension measured at 25 ° C.
  • examples of the measuring method include a ring method (Dunoi method) and a platinum plate method (Wilhelmy method). .
  • the viscosity of the solvent is 1 to 50 mPa ⁇ s
  • the viscosity of the ceramic precursor-containing liquid can be adjusted appropriately, and the ejection properties of the ceramic precursor-containing liquid from the inkjet head are enhanced.
  • the viscosity of the solvent can be measured with a rotary, vibration or capillary type viscometer.
  • Examples of the solvent having a surface tension of 20 to 30 mN / m and a viscosity of 1 to 50 mPa ⁇ s include 2-propanol.
  • the solvent having a boiling point of 150 to 250 ° C. can suppress drying of the ceramic precursor-containing liquid attached to the ink jet head, the injection property of the ceramic precursor-containing liquid is not easily lowered.
  • the boiling point is less than 150 ° C.
  • the ceramic precursor-containing liquid adhering to the ink jet head surface is dried, and nozzle clogging or the like is likely to occur.
  • the boiling point exceeds 250 ° C.
  • the drying time of the ceramic precursor-containing liquid becomes too long, or the drying temperature becomes too high. Therefore, the productivity of the LED device is lowered, or the LED device is deteriorated by high temperature drying.
  • the solvent having a boiling point of 150 to 250 ° C. include ethylene glycol.
  • the ceramic precursor-containing liquid may contain water as a solvent.
  • the polysiloxane is sufficiently hydrolyzed and a dense film can be formed.
  • the water content is preferably 10 to 120 parts by weight, more preferably 80 to 100 parts by weight, based on 100 parts by weight of the polysiloxane. If the water content is too small, the polysiloxane is not sufficiently hydrolyzed. On the other hand, when the amount of water is excessive, the storage stability of the ceramic precursor-containing liquid is lowered.
  • the content of the solvent with respect to the ceramic precursor-containing liquid is adjusted so that the viscosity of the ceramic precursor-containing liquid falls within the range described below; and the contact angle with respect to the phosphor particle layer is 10 ° or less, and the ceramic precursor It adjusts suitably so that the contact angle with respect to LED chip of a containing liquid may be 20 degrees or more.
  • the ceramic precursor-containing liquid preferably further contains oxide particles.
  • oxide particles include known ones such as silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), and zirconia oxide (ZrO 2 ).
  • the surface of the oxide particles may be treated with a silane coupling agent or a titanium coupling agent.
  • additives may be added to the ceramic precursor-containing liquid as necessary.
  • additives include those commonly used such as antioxidants, stabilizers, antistatic agents, leveling agents, viscosity modifiers and the like.
  • the viscosity of the ceramic precursor-containing liquid at 25 ° C. is preferably 1 to 40 mPa ⁇ s, more preferably 5 to 40 mPa ⁇ s, and further preferably 5 to 20 mPa ⁇ s. If the viscosity of the ceramic precursor-containing liquid is too high, the ejection properties of the ceramic precursor-containing liquid from the inkjet head are likely to deteriorate.
  • the viscosity of the ceramic precursor-containing liquid can be appropriately adjusted by the amount of solvent, the amount of oxide particles, etc. contained in the ceramic precursor-containing liquid. The viscosity is measured with a vibration viscometer.
  • the ceramic precursor-containing liquid preferably has a volatilization time of the solvent at 150 ° C. of 15 minutes or less. Thereby, the drying load of a ceramic precursor containing liquid can be reduced, and damage to can be reduced.
  • the volatilization time of a solvent can be suitably adjusted by selecting the solvent contained in a ceramic precursor containing liquid.
  • the present invention is characterized in that the wettability of the ceramic precursor-containing liquid is appropriately adjusted. Specifically, the contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is set to 10 ° or less. That is, the ceramic precursor-containing liquid is easily wetted with the phosphor particle layer.
  • the contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is the same as that of the LED chip to be coated on the slide glass, and the ceramic precursor-containing liquid droplets are formed on the phosphor particle layer.
  • One drop (droplet volume 3 ⁇ L) is dropped, and the contact angle is measured after 1 second.
  • DM-500 manufactured by Kyowa Interface Chemical Co., Ltd. can be used.
  • the contact angle of the ceramic precursor-containing liquid with respect to the side surface of the LED chip is set to 20 ° or more, preferably 30 ° or more. This makes it difficult to wet the ceramic precursor-containing liquid to the side surface of the LED chip. As a result, the ink droplets that have landed on the phosphor particle layer tend to stay on the phosphor particle layer.
  • the contact angle of the ceramic precursor-containing liquid with respect to the LED chip is measured by dropping one drop of the ceramic precursor-containing liquid onto the LED chip (compound semiconductor) (droplet amount: 3 ⁇ L) and measuring the contact angle after 1 second.
  • DM-500 manufactured by Kyowa Interface Chemical Co., Ltd. can be used.
  • the ceramic precursor-containing liquid applied to the phosphor particle layer is 10 ° or less and the contact angle to the LED chip is 20 ° or more, the ceramic precursor-containing liquid applied to the phosphor particle layer is It is possible to suppress the LED chip from flowing from the phosphor particle layer. Therefore, the ceramic precursor-containing liquid applied to the phosphor layer can remain in the phosphor particle layer.
  • the ceramic precursor-containing liquid can be prepared by mixing and stirring a ceramic precursor, a solvent, and, if necessary, a reaction accelerator and oxide particles. Stirring is performed by, for example, a stirring mill, a blade kneading stirring device, a thin film swirl type disperser or the like.
  • a wavelength conversion layer is formed by curing the ceramic precursor contained in the ceramic precursor-containing phosphor particle layer formed in step 2).
  • the heating temperature for curing the ceramic precursor is preferably 100 ° C. to 500 ° C., and more preferably 150 ° C. to 350 ° C. If the heating temperature is too low, moisture and the like generated during the dehydration condensation of the ceramic precursor cannot be sufficiently removed, and the light resistance and the like of the wavelength conversion layer tend to be lowered. On the other hand, if the heating temperature is too high, the LED chip, the substrate and the like are likely to deteriorate.
  • the coating film is irradiated with UVU radiation (for example, excimer light) containing a wavelength component in the range of 170 to 230 nm, and then cured by heating. Increases the penetration prevention effect.
  • UVU radiation for example, excimer light
  • the wavelength conversion layer formed on the upper surface of the LED chip may be sealed with a silicone resin (that is, covered with a silicone layer).
  • An apparatus for sealing with a silicone resin includes a dispenser.
  • a substrate 110 and an LED chip 130 conceptually shown in FIG. 1 were prepared. Specifically, one blue LED chip (rectangular shape: 200 ⁇ m ⁇ 300 ⁇ m ⁇ 100 ⁇ m) was mounted in a flip chip type in the center of the housing part of the substrate (opening diameter 3 mm, bottom surface diameter 2 mm, wall surface angle 60 °).
  • Yellow phosphor particles were prepared by the following procedure. A mixture obtained by sufficiently mixing phosphor raw materials having the composition shown below was filled in an aluminum crucible, and an appropriate amount of fluoride such as ammonium fluoride was mixed therewith as a flux. The filler is fired in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
  • a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
  • the desired fired product was obtained by pulverizing, washing, separating and drying the obtained fired product.
  • the obtained phosphor was pulverized to obtain phosphor particles having a particle size of about 10 ⁇ m.
  • the composition of the obtained phosphor particles was examined to confirm that it was the desired phosphor. When the emission wavelength with respect to the excitation light having a wavelength of 465 nm was examined, the peak wavelength was approximately 570 nm.
  • the obtained phosphor particles were used in the following comparative examples and examples.
  • This phosphor-containing liquid was spray-coated on the upper surface of the LED chip 320 using the coating apparatus 200 of FIG.
  • the mask 330 was installed so as not to apply the phosphor-containing liquid except for the upper surface of the LED chip 320.
  • the spray pressure was 0.2 MPa, and the relative moving speed of the nozzle 250 with respect to the LED chip 320 was 100 mm / s.
  • the phosphor-containing liquid on the upper surface of the LED chip 320 was dried at 150 ° C. for 20 minutes to form a 20 ⁇ m phosphor particle layer.
  • Example 1 ⁇ Preparation of ceramic precursor-containing liquid> (Example 1) As shown in Table 1, 3.0 g of methyltriethoxysilane (LS-1890 manufactured by Shin-Etsu Chemical Co., Ltd.), 19.4 g of 2-propanol, and 77.6 g of ethylene glycol were mixed to prepare a ceramic precursor-containing liquid. .
  • Example 2 As shown in Table 1, 3.0 g of methyltriethoxysilane (LS-1890, manufactured by Shin-Etsu Chemical Co., Ltd.), 29.1 g of 2-propanol, and 67.9 g of ethylene glycol were mixed to prepare a ceramic precursor-containing liquid. .
  • the same phosphor-containing liquid as described above was applied on a slide glass and dried to form a 20 ⁇ m phosphor particle layer (area: 200 ⁇ m ⁇ 300 ⁇ m).
  • a drop of ceramic precursor (droplet volume 3 ⁇ L) was dropped on the formed phosphor particle layer, and the contact angle was measured one second after dropping.
  • DM-500 manufactured by Kyowa Interface Chemical Co., Ltd.
  • the contact angle with respect to the LED chip was defined as the contact angle with respect to the semiconductor wafer surface of the semiconductor constituting the LED chip. This is because the surface area of the LED chip is too small, and it is difficult to perform measurement with a normal contact angle measurement method (droplet volume: 3 ⁇ L). A drop of ceramic precursor (droplet volume 3 ⁇ L) was dropped on a semiconductor wafer (diameter 6 inches) on which no phosphor particle layer was formed, and the contact angle of the droplet 1 second after the drop to the semiconductor wafer surface was measured. did. For the measurement of the contact angle, DM-500 (manufactured by Kyowa Interface Chemical Co., Ltd.) was used.
  • a KM512L inkjet head was prepared for the Konica Minolta inkjet evaluation apparatus EB-150 and XY-100.
  • the ceramic precursor-containing liquids of Examples 1 and 2 and Comparative Examples 1 and 2 were respectively applied to the phosphor particle layers disposed on the upper surface of the LED chip.
  • the droplet amount and resolution of the ceramic precursor-containing liquid were adjusted so that the wet film thickness (ceramic precursor-containing phosphor particle layer) was 100 ⁇ m.
  • the wet membrane was dried at 150 ° C. for 15 minutes. Thereafter, heat treatment was applied at 150 ° C. for 1 hour, and the ceramic precursor was fired to form glass.
  • the ceramic precursor-containing liquids of Examples 1 and 2 were suppressed from flowing from the phosphor particle layer to the side surface of the LED chip when applied to the phosphor particle layer. Therefore, the ceramic precursor-containing liquid could be retained on the phosphor particle layer, and the wavelength conversion layer could be formed on the upper surface of the LED chip.
  • Comparative Example 1 the contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is 18.2 °, and the wettability of the ceramic precursor-containing liquid with respect to the LED chip is slightly high.
  • Comparative Example 2 the contact angle of the ceramic precursor-containing liquid to the LED chip is 2.5 °, and the wettability of the ceramic precursor-containing liquid to the LED chip is higher than that of Comparative Example 1. Therefore, the ceramic precursor containing liquid apply
  • the present invention it is possible to reduce the loss of the functional material by applying the ink jet coating composition containing the functional material only to the upper surface of the convex portion of the member having the convex portion. Moreover, it can suppress that the inkjet coating composition apply

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention addresses the problem of providing: a patterning method wherein, by applying an ink jet coating composition containing a functional material only to the top surfaces of projections of a member having projections, loss etc. of the functional material can be reduced, and the ink jet coating composition that has been applied to the top surfaces of the projections can be prevented from flowing etc. down along the side surfaces of the projections; and a method for producing LED devices using the patterning method. In order to solve said problem, a patterning method in which a functional layer is selectively formed on the top surfaces of projections of a member having projections is provided, said patterning method comprising a step for preparing the member provided with projections; and a step for applying an ink jet coating application to the top surfaces of the projections from an ink jet head so as to form a functional layer. The angle at which the ink jet coating composition contacts the top surfaces of the projections is 10° or less, and the angle at which the ink jet composition contacts the sides of the projections is 20° or more.

Description

インクジェット塗布組成物を用いたパターニング方法およびLED装置の製造方法Patterning method using inkjet coating composition and method for manufacturing LED device
 本発明はインクジェット塗布組成物を用いたパターニング方法およびLED装置の製造方法に関する。 The present invention relates to a patterning method using an inkjet coating composition and a method for manufacturing an LED device.
 近年、部材の微細な部分に感光性高分子材料、接着剤、粘着材、光学材料、セラミック前駆体などの機能性材料をパターニングする技術が求められている。部材の微細な部分とは、例えば凸部を有する部材の凸部の上面などであり、より具体的にはLED装置のLEDチップの上面などである。 In recent years, there is a demand for a technique for patterning a functional material such as a photosensitive polymer material, an adhesive, an adhesive material, an optical material, and a ceramic precursor on a minute portion of a member. The fine portion of the member is, for example, the upper surface of the convex portion of the member having the convex portion, and more specifically, the upper surface of the LED chip of the LED device.
 従来から、部材の表面をパターニングする方法として、転写法が用いられている。転写法には、円形型や凹凸構造の転写用部材などが用いられている。円形型の転写用部材は、例えば、円形型ローラーとその表面に離型層とを有している(特許文献1参照)。また、凹凸構造の転写用部材は、例えば、凹凸構造の金型と、その金型上に離型層とを有している(特許文献2参照)。離型層とは、離型層上に付与された転写材料が転写用部材から均一に離れて被転写部材に転写するのを補助する層であり、例えばシリコーンゴムなどである。転写材料とは、被転写部材にパターニングされる材料であればいかなる材料であってもよく、例えば機能性材料などである。転写用部材を被転写部材に圧着することで、転写材料を被転写部材上にパターニングできる。 Conventionally, a transfer method has been used as a method for patterning the surface of a member. For the transfer method, a transfer member having a circular shape or an uneven structure is used. The circular transfer member has, for example, a circular roller and a release layer on the surface thereof (see Patent Document 1). Moreover, the transcription | transfer member of an uneven structure has a metal mold | die of an uneven structure, and a mold release layer on the metal mold | die (refer patent document 2), for example. The release layer is a layer that assists the transfer material applied on the release layer to be uniformly separated from the transfer member and transferred to the transfer member, such as silicone rubber. The transfer material may be any material as long as it can be patterned on the member to be transferred, such as a functional material. The transfer material can be patterned on the transferred member by pressing the transfer member to the transferred member.
 このような転写法を用いて、凸部を有する部材の凸部の上面のような微細な部分に、機能性材料をパターニングすることが考えられる。しかしながら、円形型の転写用部材を用いて凸部の上面のみに機能性材料をパターニングする場合、凸部の上面以外への機能性材料の付与を防ぐために、マスクを用いる必要がある。そのため、マスクにも機能性材料が付与されてしまい、機能性材料をロスしてしまう。一方、凹凸構造の転写用部材を用いる方法は、凸部の上面の形状や大きさに合った転写部材を用意する必要があるため、汎用性が低い。 Using such a transfer method, it is conceivable to pattern a functional material on a fine portion such as the upper surface of a convex portion of a member having a convex portion. However, when a functional material is patterned only on the upper surface of the convex portion using a circular transfer member, it is necessary to use a mask in order to prevent the functional material from being applied to other than the upper surface of the convex portion. For this reason, the functional material is also applied to the mask, and the functional material is lost. On the other hand, the method using a transfer member having a concavo-convex structure has low versatility because it is necessary to prepare a transfer member that matches the shape and size of the upper surface of the convex portion.
 一方、所望の部位に、必要な量の液滴を塗布する方法としてインクジェット法が用いられている。インクジェット法とは、インクが充填されたインクジェットヘッドの微細なノズルから液滴を吐出して部材に着弾させることで、所定の形状の塗布パターンを形成する方法である。この方法を用いると、液滴を吐出するノズルと、部材との相対的な位置を変化させて、所望の場所に液滴を吐出できる。また、ノズル径、液滴の吐出量、及びノズルと、パターニングされる部材との移動速度の相対的な関係によって、形成する塗膜の厚さ等を調整できる。このため、所望の箇所に必要量の液滴を塗布することができる(特許文献3参照)。 On the other hand, an inkjet method is used as a method of applying a necessary amount of droplets to a desired site. The ink jet method is a method of forming a coating pattern having a predetermined shape by discharging droplets from a fine nozzle of an ink jet head filled with ink and landing on a member. By using this method, it is possible to change the relative position between the nozzle that discharges the droplet and the member, and discharge the droplet to a desired location. Further, the thickness of the coating film to be formed can be adjusted by the relative relationship of the nozzle diameter, the droplet discharge amount, and the moving speed of the nozzle and the member to be patterned. For this reason, a required amount of droplets can be applied to a desired location (see Patent Document 3).
特開平6-55827号公報JP-A-6-55827 特開2009-21126号公報JP 2009-21126 A 特開2011-47021号公報JP 2011-47021 A
 前述の通り、機能性材料のロスを減らすためには、凸部を有する部材の凸部の上面のみに機能性材料をパターニングすることが好ましい。そのため、インクジェット法を用いて、機能性材料を含むインクジェット塗布組成物を、所望の場所に必要な量だけ塗布することで、機能性材料のロスを低減できる。また、凸部を有する部材の凸部の上面の形状や大きさに合わせて、転写部材を用意する必要もないため、汎用性が高い。 As described above, in order to reduce the loss of the functional material, it is preferable to pattern the functional material only on the upper surface of the convex portion of the member having the convex portion. Therefore, the loss of the functional material can be reduced by applying an ink jet coating composition containing the functional material by a necessary amount to a desired place using the ink jet method. Moreover, since there is no need to prepare a transfer member in accordance with the shape and size of the upper surface of the convex portion of the member having the convex portion, the versatility is high.
 しかしながら、凸部を有する部材の凸部の側面に対するインクジェット塗布組成物の濡れ性が高すぎる場合には、凸部の上面に塗布されたインクジェット塗布組成物が凸部の側面をつたって流れてしまう。また、凸部を有する部材の凸部の上面に対するインクジェット塗布組成物の濡れ性が低すぎる場合には、インクジェット塗布組成物が凸部の上面ではじかれてしまうなどの問題があった。 However, when the wettability of the inkjet coating composition with respect to the side surface of the convex portion of the member having the convex portion is too high, the ink jet coating composition applied to the upper surface of the convex portion flows along the side surface of the convex portion. . Moreover, when the wettability of the inkjet coating composition with respect to the upper surface of the convex part of the member which has a convex part is too low, there existed problems, such as an inkjet coating composition being repelled on the upper surface of a convex part.
 本発明の第一は、以下に示すパターニング方法に関する。
 [1]凸部を有する部材の凸部の上面に、機能性層を選択的に形成するパターニング方法であって、
 凸部を備えた部材を準備する工程と、前記凸部の上面に、機能材料を含むインクジェット塗布組成物をインクジェット塗布して、機能性層を形成する工程とを含み、
 前記インクジェット塗布組成物の、前記凸部の上面に対する接触角が10°以下であり、かつ前記凸部の側面に対する接触角が20°以上である、パターニング方法。
 [2]前記機能性層形成工程前に、前記凸部の上面の前記インクジェット塗布組成物に対する接触角を低下させる工程、または前記凸部の側面の前記インクジェット塗布組成物に対する接触角を低下させる工程を有する[1]に記載のパターニング方法。
 [3]前記凸部が、その上面に複数の粒子を含む空隙層を有する、[1]または[2]に記載のパターニング方法。
The first of the present invention relates to a patterning method shown below.
[1] A patterning method for selectively forming a functional layer on an upper surface of a convex portion of a member having a convex portion,
A step of preparing a member provided with a convex portion, and a step of forming a functional layer on the upper surface of the convex portion by applying an inkjet coating composition containing a functional material by inkjet.
The patterning method of the said inkjet coating composition being a contact angle with respect to the upper surface of the said convex part of 10 degrees or less, and a contact angle with respect to the side surface of the said convex part being 20 degrees or more.
[2] A step of reducing a contact angle of the upper surface of the convex portion with respect to the inkjet coating composition or a step of reducing a contact angle of the side surface of the convex portion with respect to the inkjet coating composition before the functional layer forming step. The patterning method according to [1], comprising:
[3] The patterning method according to [1] or [2], wherein the convex portion has a void layer including a plurality of particles on an upper surface thereof.
 本発明の第二は、以下に示すLED装置の製造方法に関する。
 [4]基板に実装された凸状のLEDチップと、前記LEDチップの上面のみに成膜された蛍光体粒子を含む波長変換層と、を含むLED装置の製造方法であって、
 基板に実装され、上面に蛍光体粒子を含む蛍光体粒子層が配置された凸状のLEDチップを用意する工程と、前記LEDチップの上面に配置された蛍光体粒子層に、インクジェット法でセラミック前駆体含有液を塗布する工程と、前記セラミック前駆体を硬化させて、前記蛍光体粒子層を波長変換層とする工程とを含み、
 前記セラミック前駆体含有液の、前記蛍光体粒子層に対する接触角が10°以下であり、かつ前記LEDチップに対する接触角が20°以上である、LED装置の製造方法。
 [5]前記セラミック前駆体含有液が、1価のアルコール、多価アルコール、それらの誘導体から選ばれる1種以上をさらに含む、[4]に記載のLED装置の製造方法。
 [6]前記セラミック前駆体含有液が、エチレングリコールと2-プロパノールとをさらに含む、[4]に記載のLED装置の製造方法。
2nd of this invention is related with the manufacturing method of the LED device shown below.
[4] A method for manufacturing an LED device, comprising: a convex LED chip mounted on a substrate; and a wavelength conversion layer containing phosphor particles formed only on the upper surface of the LED chip,
A step of preparing a convex LED chip mounted on a substrate and having a phosphor particle layer including phosphor particles disposed on an upper surface thereof, and a phosphor particle layer disposed on the upper surface of the LED chip by a ceramic by an inkjet method A step of applying a precursor-containing liquid, and a step of curing the ceramic precursor to make the phosphor particle layer a wavelength conversion layer,
The method for manufacturing an LED device, wherein a contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is 10 ° or less and a contact angle with the LED chip is 20 ° or more.
[5] The method for manufacturing an LED device according to [4], wherein the ceramic precursor-containing liquid further includes at least one selected from monohydric alcohols, polyhydric alcohols, and derivatives thereof.
[6] The LED device manufacturing method according to [4], wherein the ceramic precursor-containing liquid further contains ethylene glycol and 2-propanol.
 本発明によれば、凸部を有する部材の凸部の上面のみに機能性材料を含むインクジェット塗布組成物を塗布することができ、機能性材料のロスの低減などが可能となる。また、凸部の上面に塗布されたインクジェット塗布組成物が凸部の側面をつたって流れてしまうこと等を抑制できる。 According to the present invention, an inkjet coating composition containing a functional material can be applied only to the upper surface of the convex portion of a member having a convex portion, and loss of the functional material can be reduced. Moreover, it can suppress that the inkjet coating composition apply | coated to the upper surface of a convex part flows through the side surface of a convex part, etc.
本発明のパターニング方法により製造されるLED装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the LED apparatus manufactured by the patterning method of this invention. LEDチップの上面に蛍光体含有液をスプレー塗布する様子を示す図である。It is a figure which shows a mode that a fluorescent substance containing liquid is spray-coated on the upper surface of a LED chip. LEDチップの上面に配置された蛍光体粒子層にセラミック前駆体含有液を塗布する様子を示す図である。It is a figure which shows a mode that a ceramic precursor containing liquid is apply | coated to the fluorescent substance particle layer arrange | positioned on the upper surface of a LED chip.
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist.
 1.本発明のパターニング方法について
 本発明は、凸部を有する部材の凸部の上面に、機能性層を選択的に形成するパターニング方法であり、凸部を備えた部材を準備する工程と、前記凸部の上面にインクジェット塗布組成物をインクジェットヘッドから塗布して、機能性層を形成する工程とを含む。
1. About the patterning method of the present invention The present invention is a patterning method for selectively forming a functional layer on the upper surface of a convex portion of a member having a convex portion, and a step of preparing a member having a convex portion; Forming a functional layer by applying an inkjet coating composition from the inkjet head to the upper surface of the part.
 本発明において、凸部を備えた部材とは、微細な凸部を備えた被塗布物をいう。微細な凸部とは、上面の面積が1,000,000μm以下であることが好ましく、100,000μm以下であることが好ましく、50,000μm以下であってもよい。 In this invention, the member provided with the convex part means the to-be-coated object provided with the fine convex part. The minute projections is preferably an area of the upper surface is 1,000,000Myuemu 2 or less, preferably 100,000Myuemu 2 or less, may be 50,000 2 or less.
 凸部は、上面の表面物性と、側面の表面物性とが異なることを特徴とする。具体的には、凸部の上面の濡れ性と、側面の濡れ性とが異なることを特徴とする。また、凸部は、上面を構成する物質と側面を構成する物質とが異なっていてもよいし、上面の表面形状(表面粗さなど)と側面の表面形状などが異なっていてもよい。いずれにしても、凸部の上面に塗布する塗布物の、凸部の上面に対する接触角が10°以下となり;かつ凸部の側面に対する接触角が20°以上となるように、凸部の上面の濡れ性と、側面の濡れ性とが調整されていればよい。 The convex portion is characterized in that the surface physical properties of the upper surface and the surface physical properties of the side surfaces are different. Specifically, the wettability of the upper surface of the convex portion is different from the wettability of the side surface. Moreover, the substance which comprises an upper surface, and the substance which comprises a side surface may differ from a convex part, and the surface shape (surface roughness etc.) of an upper surface may differ from the surface shape of a side surface. In any case, the top surface of the convex portion is so that the contact angle of the coating applied to the top surface of the convex portion is 10 ° or less with respect to the top surface of the convex portion; It is sufficient that the wettability and the side wettability are adjusted.
 このような凸部は、上面に濡れ性を高めるための処理を施して得てもよく、側面に濡れ性を低下させるための処理を施して得てもよい。処理の例には、金属皮膜の形成、非金属皮膜の形成、化成処理液による表面処理、化学研磨、ラミネート加工、赤外線照射、プラズマ照射、コロナ処理などが含まれるが、これらに限定されない。
 例えば、凸部の上面の濡れ性は、凸部の上面にCVD法により○○、○○からなる層を形成したり、凸部の上面のみに赤外線やプラズマを照射したり、コロナ処理することで、高まりやすい。
Such a convex part may be obtained by performing a process for increasing wettability on the upper surface, or may be obtained by performing a process for reducing wettability on the side surface. Examples of the treatment include, but are not limited to, formation of a metal film, formation of a non-metal film, surface treatment with a chemical conversion solution, chemical polishing, laminating, infrared irradiation, plasma irradiation, corona treatment, and the like.
For example, the wettability of the upper surface of the convex part is to form a layer of OO, XX on the upper surface of the convex part by CVD, or to irradiate only the upper surface of the convex part with infrared rays or plasma, or to corona-treat. It is easy to increase.
 一方、凸部の上面には、複数の粒子を含む空隙層が形成されてもよい。凸部の上面に複数の粒子から形成される空隙層があると、凸部の上面に塗布物が空隙層に浸透しやすくなる。そのため、凸部の上面のみに塗布物を塗布しやすくなる。 On the other hand, a void layer containing a plurality of particles may be formed on the upper surface of the convex portion. When there is a void layer formed from a plurality of particles on the upper surface of the convex portion, the coated material easily penetrates into the void layer on the upper surface of the convex portion. Therefore, it becomes easy to apply the coating material only to the upper surface of the convex portion.
 このような凸部を備えた部材の凸部の上面に、機能材料を含むインクジェット塗布組成物をインクジェットヘッド塗布して、機能性層を形成する。塗布後に、塗布組成物に含まれる溶媒を除去したり、塗布組成物に含まれる機能材料を熱硬化または光硬化させてもよい。 The functional layer is formed by applying an ink jet coating composition containing a functional material to the upper surface of the convex portion of the member having such a convex portion by applying an ink jet head. After coating, the solvent contained in the coating composition may be removed, or the functional material contained in the coating composition may be heat-cured or photocured.
 インクジェット塗布組成物を塗布するインクジェットヘッドは、ドロップオンデマンド方式であっても、コンティニュアス方式であってもよい。ドロップオンデマンド方式は、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)及び放電方式(例えば、スパークジェット型等)等がある。インクジェットヘッドのコストや生産性の観点から、電気-機械変換方式、または電気-熱変換方式のヘッドを用いることが好ましい。 The inkjet head for applying the inkjet coating composition may be a drop-on-demand system or a continuous system. The drop-on-demand method is an electro-mechanical conversion method (for example, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), electro-thermal conversion method (for example, thermal ink jet) Type, bubble jet (registered trademark) type), electrostatic attraction type (for example, electric field control type, slit jet type, etc.) and discharge type (for example, spark jet type). From the viewpoint of the cost and productivity of the inkjet head, it is preferable to use an electro-mechanical conversion type or an electro-thermal conversion type head.
 インクジェットヘッドから吐出される液滴の量は、0.5~60plであればよい。液滴量は、インクジェットヘッドのノズル径や、インクジェットヘッドにかける電圧の大きさやパターンにより調整できる。インクジェット装置は、市販の装置を用いればよく、コニカミノルタIJ社製のインクジェット装置を用いることができる。 The amount of droplets ejected from the inkjet head may be 0.5 to 60 pl. The droplet amount can be adjusted by the nozzle diameter of the inkjet head, the magnitude of the voltage applied to the inkjet head, and the pattern. A commercially available apparatus may be used as the inkjet apparatus, and an inkjet apparatus manufactured by Konica Minolta IJ may be used.
 インクジェット塗布組成物は、機能性材料を含有する。機能性材料とは、主に熱、光、化学、電気または力学などの機能を発現する材料である。機能性材料の例には、感光性高分子材料、接着剤、粘着材、光学材料などが含まれるが、これらに限定されない。 The ink jet coating composition contains a functional material. The functional material is a material that mainly exhibits functions such as heat, light, chemistry, electricity, or mechanics. Examples of the functional material include, but are not limited to, a photosensitive polymer material, an adhesive, an adhesive material, and an optical material.
 インクジェット塗布組成物は、溶媒を含有することが好ましい。溶媒の種類と量とによって、被塗布物である凸部の上面に対する濡れ性と、側面に対する濡れ性とを適切に調整することができる。 The ink jet coating composition preferably contains a solvent. Depending on the type and amount of the solvent, the wettability with respect to the upper surface of the convex portion, which is an object to be coated, and the wettability with respect to the side surface can be adjusted appropriately.
 インクジェット塗布組成物は、射出性の観点から、25℃における粘度が1~40mPa・sであることが好ましく、5~40mPa・sであることがより好ましく、5~20mPa・sであることがさらに好ましい。インクジェット塗布組成物の粘度は、溶媒によって調整することができる。 The ink jet coating composition preferably has a viscosity at 25 ° C. of 1 to 40 mPa · s, more preferably 5 to 40 mPa · s, and further preferably 5 to 20 mPa · s from the viewpoint of injection properties. preferable. The viscosity of the inkjet coating composition can be adjusted by a solvent.
 本発明のパターニング方法は、凸部を備えた部材の上面に機能性材料をインクジェット塗布することで、凸部の上面にのみ機能性層を形成できる。そのため、凸部の上面以外に機能性材料を塗布する必要がないので、使用する機能性材料のロスを低減できる。また、本発明のパターニング方法は、パターニングに応じて専用の転写用部材を用意する必要がないため、汎用性が高い。 In the patterning method of the present invention, the functional layer can be formed only on the upper surface of the convex portion by applying the functional material to the upper surface of the member having the convex portion by inkjet. For this reason, it is not necessary to apply a functional material other than the upper surface of the convex portion, and thus loss of the functional material to be used can be reduced. Further, the patterning method of the present invention is highly versatile because it is not necessary to prepare a dedicated transfer member according to patterning.
2.LED装置の製造方法について
 本発明のパターニング方法は、LED装置の製造に適用することができる。図1は、本発明のパターニング方法を用いて製造されたLED装置の例を示す断面図である。
2. About the manufacturing method of an LED device The patterning method of this invention is applicable to manufacture of an LED device. FIG. 1 is a cross-sectional view showing an example of an LED device manufactured using the patterning method of the present invention.
 LED装置100は、凹部を有する基板110と、メタル部(メタル配線)120と、基板110の凹部の底面に配置されたLED発光部160と、メタル部120とLED発光部160とを接続する突起電極140とを有する。このように、突起電極140を介してメタル部120とLED発光部160とを接続する態様を、フリップチップ型という。 The LED device 100 includes a substrate 110 having a concave portion, a metal portion (metal wiring) 120, an LED light emitting portion 160 disposed on the bottom surface of the concave portion of the substrate 110, and a protrusion that connects the metal portion 120 and the LED light emitting portion 160. An electrode 140. Thus, a mode in which the metal part 120 and the LED light emitting part 160 are connected via the protruding electrode 140 is referred to as a flip chip type.
 基板110は、例えば液晶ポリマーやセラミックであるが、絶縁性と耐熱性を有していれば、その材質は特に限定されない。 The substrate 110 is, for example, a liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulating properties and heat resistance.
 基板110の凹部の底面に配置されたLED発光部160は、LEDチップ130と、LEDチップ130の上面のみを覆う波長変換層150とを具備する。LEDチップ130は、例えば青色LEDである。例えば青色LEDの構成は、サファイア基板上に積層されたn-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体である。 The LED light emitting unit 160 disposed on the bottom surface of the concave portion of the substrate 110 includes an LED chip 130 and a wavelength conversion layer 150 that covers only the upper surface of the LED chip 130. The LED chip 130 is, for example, a blue LED. For example, a blue LED has an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer) stacked on a sapphire substrate. A laminate with a transparent electrode layer.
 LEDチップ130は、例えば200~300μm×200~300μmの上面を有し、LEDチップ130の高さは50~200μmである。 The LED chip 130 has an upper surface of, for example, 200 to 300 μm × 200 to 300 μm, and the height of the LED chip 130 is 50 to 200 μm.
 波長変換層150は、蛍光体粒子がバインダーとしてのセラミックで結着されたセラミック層である。波長変換層150は、その他にも平板状粒子、酸化物微粒子、アルミニウムケイ酸塩(イモゴライト)などの層状ケイ酸塩化合物などを含んでいてもよい。 The wavelength conversion layer 150 is a ceramic layer in which phosphor particles are bound with ceramic as a binder. The wavelength conversion layer 150 may further contain a layered silicate compound such as tabular particles, fine oxide particles, and aluminum silicate (imogolite).
 この波長変換層150の厚みは、5~200μmであることが好ましく、10~200μmであることがより好ましく、10~100μmであることがさらに好ましい。波長変換層150は、図1に示されるように、LEDチップ130の上面だけを選択的に覆うものとする。 The thickness of the wavelength conversion layer 150 is preferably 5 to 200 μm, more preferably 10 to 200 μm, and even more preferably 10 to 100 μm. As shown in FIG. 1, the wavelength conversion layer 150 selectively covers only the upper surface of the LED chip 130.
 波長変換層150は、LEDチップ130から出射される光(励起光)を受けて、蛍光を発する層である。励起光と蛍光とが混ざることで、LED装置100から所望の色の光が発光される。例えば、LEDチップ130からの光が青色であり、波長変換層150からの蛍光が黄色であれば、LED装置100は白色LED発光装置となりうる。 The wavelength conversion layer 150 is a layer that receives light (excitation light) emitted from the LED chip 130 and emits fluorescence. By mixing the excitation light and the fluorescence, light of a desired color is emitted from the LED device 100. For example, if the light from the LED chip 130 is blue and the fluorescence from the wavelength conversion layer 150 is yellow, the LED device 100 can be a white LED light-emitting device.
 図1に示されるLED装置100には、基板110の凹部に、1つのLED発光部160が配置されているが;LED基板110の凹部に、複数のLED発光部160が配置されていてもよい。 In the LED device 100 shown in FIG. 1, one LED light emitting unit 160 is disposed in the recess of the substrate 110; however, a plurality of LED light emitting units 160 may be disposed in the recess of the LED substrate 110. .
 本発明のLED装置の製造方法は、基板に実装された凸状のLEDチップと、前記LEDチップの上面のみに成膜された蛍光体粒子を含む波長変換層と、を含むLED装置の製造方法であり、少なくとも以下の1)~3)工程を含み、4)工程をさらに含んでもよい。
 1)基板に実装され、上面に蛍光体粒子を含む蛍光体粒子層が配置された凸状のLEDチップを用意する工程
 2)LEDチップの上面に配置された蛍光体粒子層のみに、インクジェット法でセラミック前駆体含有液を塗布する工程
 3)セラミック前駆体を硬化させて、蛍光体粒子層を波長変換層とする工程
 4)波長変換層の上をシリコーン樹脂で封止する工程
The LED device manufacturing method of the present invention includes a convex LED chip mounted on a substrate, and a wavelength conversion layer including phosphor particles formed only on the upper surface of the LED chip. Including at least the following steps 1) to 3) and further including step 4).
1) Step of preparing a convex LED chip mounted on a substrate and having a phosphor particle layer containing phosphor particles disposed on the upper surface 2) Ink jet method only on the phosphor particle layer disposed on the upper surface of the LED chip The step of applying the ceramic precursor-containing liquid 3) The step of curing the ceramic precursor to make the phosphor particle layer a wavelength conversion layer 4) The step of sealing the top of the wavelength conversion layer with a silicone resin
 <工程1)について>
 メタル部が配設された基板上に、凸状のLEDチップを実装して、LEDチップの上面のみに蛍光体粒子層を形成する。LEDチップとは、典型的には化合物半導体層の積層体である。LEDチップの実装とは、基板にLEDチップを固定するとともに、基板の配線とLEDチップとを接続することである。
<About step 1>
A convex LED chip is mounted on the substrate on which the metal part is disposed, and a phosphor particle layer is formed only on the upper surface of the LED chip. An LED chip is typically a stack of compound semiconductor layers. The mounting of the LED chip refers to fixing the LED chip to the substrate and connecting the wiring of the substrate and the LED chip.
 基板に実装されたLEDチップの上面のみに蛍光体粒子層を形成するには、LEDチップの上面に選択的に蛍光体粒子を含む蛍光体含有液を塗布すればよい。蛍光体含有液の塗布は、例えば、スプレーまたはディスペンサーなどを用いて行えばよい。LEDチップの上面のみに蛍光体含有液を塗布するには、通常は、LEDチップの上面以外をマスクして、LEDチップの上面に蛍光体含有液を塗布する。 In order to form the phosphor particle layer only on the upper surface of the LED chip mounted on the substrate, a phosphor-containing liquid containing phosphor particles may be selectively applied to the upper surface of the LED chip. The phosphor-containing liquid may be applied using, for example, a spray or a dispenser. In order to apply the phosphor-containing liquid only to the upper surface of the LED chip, usually, the phosphor-containing liquid is applied to the upper surface of the LED chip while masking other than the upper surface of the LED chip.
 図2は、蛍光体含有液を収容するスプレー装置を用いて、LEDチップの上面に蛍光体含有液をスプレー塗布する様子を示す図である。塗布装置200は、塗布液タンク210と、連結管230と、ヘッド240と、ノズル250と、を有する。 FIG. 2 is a diagram showing a state in which the phosphor-containing liquid is spray-applied on the upper surface of the LED chip using a spray device that contains the phosphor-containing liquid. The coating apparatus 200 includes a coating liquid tank 210, a connecting pipe 230, a head 240, and a nozzle 250.
 塗布液タンク210は、蛍光体含有液220を保持可能であれば、特に制限はないが、蛍光体含有液220の攪拌機構を有することが好ましい。塗布前の蛍光体含有液220を常に攪拌することで、蛍光体粒子の沈降を抑止できる。塗布液タンク210の具体例には、アネスト岩田社製PC-51等がある。 The coating liquid tank 210 is not particularly limited as long as it can hold the phosphor-containing liquid 220, but preferably has a stirring mechanism for the phosphor-containing liquid 220. By always stirring the phosphor-containing liquid 220 before coating, the sedimentation of the phosphor particles can be suppressed. Specific examples of the coating liquid tank 210 include PC-51 manufactured by Anest Iwata.
 ヘッド240及びノズル250は、任意の方向に移動可能であることが好ましい。ノズル250の先端部の孔径は、蛍光体含有液220を均一に吐出可能であれば、特に制限はないが、20μm~2mmであることが好ましく、より好ましくは0.1~1.5mmである。ノズル250の具体例には、アネスト岩田社製スプレーガンW-101-142BPG等がある。 It is preferable that the head 240 and the nozzle 250 are movable in an arbitrary direction. The hole diameter at the tip of the nozzle 250 is not particularly limited as long as the phosphor-containing liquid 220 can be uniformly discharged, but is preferably 20 μm to 2 mm, more preferably 0.1 to 1.5 mm. . Specific examples of the nozzle 250 include a spray gun W-101-142BPG manufactured by Anest Iwata.
 また、ノズル250の下面には、基板310とLEDチップ320とマスク330とが設置されている。マスク330は、例えばLEDチップ320の上面以外を覆うように配置されていればよい。 Further, a substrate 310, an LED chip 320, and a mask 330 are installed on the lower surface of the nozzle 250. The mask 330 may be disposed so as to cover other than the upper surface of the LED chip 320, for example.
 塗布装置200における、塗布液タンク210内の蛍光体含有液220は、圧力をかけられて連結管230を通じてヘッド240に供給される。ヘッド240に供給された蛍光体含有液220は、ノズル250から吐出される。吐出された蛍光体含有液220はマスク330とLEDチップ320の上面とに塗布される。 The phosphor-containing liquid 220 in the coating liquid tank 210 in the coating apparatus 200 is supplied with pressure to the head 240 through the connecting pipe 230. The phosphor-containing liquid 220 supplied to the head 240 is discharged from the nozzle 250. The discharged phosphor-containing liquid 220 is applied to the mask 330 and the upper surface of the LED chip 320.
 蛍光体含有液の塗布後、マスク330を取り外す。その後、LEDチップ320の上面のみに塗布された蛍光体含有液220を乾燥させて、蛍光体粒子層を形成する。蛍光体含有液220の乾燥により、蛍光体含有液220に含まれる溶媒を乾燥させることが好ましい。蛍光体含有液220に含まれる溶媒を乾燥させる際の温度は、通常20~200℃であり、好ましくは25~150℃である。20℃未満であると、溶媒を十分に乾燥させにくい。一方、200℃を超えると、LEDチップを劣化させやすい。また、乾燥時間は、製造効率の観点から、通常0.1~30分であり、好ましくは0.1~15分である。 After removing the phosphor-containing liquid, the mask 330 is removed. Thereafter, the phosphor-containing liquid 220 applied only to the upper surface of the LED chip 320 is dried to form a phosphor particle layer. It is preferable to dry the solvent contained in the phosphor-containing liquid 220 by drying the phosphor-containing liquid 220. The temperature at which the solvent contained in the phosphor-containing liquid 220 is dried is usually 20 to 200 ° C., preferably 25 to 150 ° C. If it is lower than 20 ° C., it is difficult to sufficiently dry the solvent. On the other hand, when it exceeds 200 ° C., the LED chip tends to deteriorate. The drying time is usually 0.1 to 30 minutes, preferably 0.1 to 15 minutes, from the viewpoint of production efficiency.
 蛍光体粒子層の厚さは特に制限されないが、発光強度、膜強度などの観点から5~200μmであり、より好ましくは、10~200μmであり、更に好ましくは、10~100μmである。 The thickness of the phosphor particle layer is not particularly limited, but is 5 to 200 μm, more preferably 10 to 200 μm, and still more preferably 10 to 100 μm from the viewpoint of light emission intensity and film strength.
 蛍光体含有液について
 蛍光体含有液には、少なくとも、蛍光体粒子と溶媒とが含まれ、層状ケイ酸塩鉱物や無機粒子をさらに含むことが好ましい。溶媒は、例えば、水や有機溶媒などでありうる。
About Phosphor-Containing Liquid The phosphor-containing liquid preferably contains at least phosphor particles and a solvent, and further contains a layered silicate mineral or inorganic particles. The solvent can be, for example, water or an organic solvent.
 蛍光体粒子はLEDチップからの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射するものであればよい。例えば、青色の励起光を受けて黄色の蛍光を発する蛍光体粒子の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体が含まれる。YAG蛍光体は、青色LEDチップから出射される青色光(波長420nm~485nm)を励起光として、黄色(波長550nm~650nm)の蛍光を出射する。 The phosphor particles may be any particles that are excited by the wavelength of the light emitted from the LED chip (excitation wavelength) and emit fluorescence having a wavelength different from the excitation wavelength. For example, YAG (yttrium, aluminum, garnet) phosphors are included in examples of phosphor particles that emit yellow fluorescence upon receiving blue excitation light. The YAG phosphor emits yellow (wavelength 550 nm to 650 nm) fluorescence using blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip as excitation light.
 蛍光体粒子は、例えば1)所定の組成を有する混合原料に、フラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得て、2)得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、焼結体を得ることで製造しうる。 The phosphor particles are, for example, 1) an appropriate amount of a fluoride such as ammonium fluoride is mixed and pressed into a mixed raw material having a predetermined composition to obtain a molded body, and 2) the obtained molded body is put into a crucible. It can be produced by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を、化学両論比で十分に混合して得られる。あるいは、所定の組成を有する混合原料は、Y、Gd、Ce、Smの希土類元素を化学両論比で酸に溶解した溶液を、シュウ酸で共沈して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して得られる。 The mixed raw material having a predetermined composition can be obtained by sufficiently mixing oxides of Y, Gd, Ce, Sm, Al, La, Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. Alternatively, the mixed raw material having a predetermined composition includes a coprecipitation oxide obtained by coprecipitation with oxalic acid in a solution in which a rare earth element of Y, Gd, Ce, and Sm is dissolved in acid at a stoichiometric ratio, and aluminum oxide. It is obtained by mixing gallium oxide.
 蛍光体粒子の種類は、YAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等、他の蛍光体粒子であってもよい。 The kind of the phosphor particles is not limited to the YAG phosphor, and may be other phosphor particles such as a non-garnet phosphor not containing Ce.
 蛍光体粒子の平均一次粒径は1μm以上50μm以下であることが好ましく、10μm以下であることがより好ましい。蛍光体粒子の粒径が大きいほど発光効率(波長変換効率)は高くなる。一方、蛍光体粒子の粒径が大きすぎると、波長変換層内で蛍光体粒子とセラミックとの密着性が低くなり、波長変換層の強度が低下する。蛍光体粒子の平均一次粒径は、例えばコールターカウンター法によって測定できる。 The average primary particle diameter of the phosphor particles is preferably 1 μm or more and 50 μm or less, and more preferably 10 μm or less. The larger the particle size of the phosphor particles, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, if the particle diameter of the phosphor particles is too large, the adhesion between the phosphor particles and the ceramic in the wavelength conversion layer is lowered, and the strength of the wavelength conversion layer is lowered. The average primary particle diameter of the phosphor particles can be measured by, for example, a Coulter counter method.
 蛍光体含有液に含まれる蛍光体粒子の量は、蛍光体含有液の固形分全量に対して10~99質量%であることが好ましく、20~97質量%であることがより好ましい。蛍光体粒子の濃度を上記範囲とすると、蛍光体含有液内で蛍光体粒子が均一に分散されやすくなる。 The amount of the phosphor particles contained in the phosphor-containing liquid is preferably 10 to 99% by mass, and more preferably 20 to 97% by mass with respect to the total solid content of the phosphor-containing liquid. When the concentration of the phosphor particles is within the above range, the phosphor particles are easily dispersed uniformly in the phosphor-containing liquid.
 溶媒の例には、水、水との相溶性に優れた有機溶媒、または水との相溶性が低い有機溶媒が含まれる。 Examples of the solvent include water, an organic solvent having excellent compatibility with water, or an organic solvent having low compatibility with water.
 溶媒に水が含まれると、後述の層状ケイ酸塩鉱物を膨潤させることができる。例えば、親水性の層状ケイ酸塩鉱物と共に水が含まれると、層状ケイ酸塩鉱物の層間に水が入り込む。それにより、蛍光体含有液の粘度が高まり、蛍光体粒子の沈降を抑制できる。ただし、水に不純物が含まれると、層状ケイ酸塩鉱物の膨潤を阻害するおそれがある。そこで、層状ケイ酸塩鉱物を膨潤させる場合には、添加する水を純水とする。 When water is contained in the solvent, the later-described layered silicate mineral can be swollen. For example, when water is contained together with the hydrophilic layered silicate mineral, the water enters between the layers of the layered silicate mineral. Thereby, the viscosity of the phosphor-containing liquid is increased, and sedimentation of the phosphor particles can be suppressed. However, when impurities are contained in water, there is a risk of inhibiting the swelling of the layered silicate mineral. Therefore, when the layered silicate mineral is swollen, the added water is pure water.
 有機溶媒は、蛍光体含有液の濡れ性向上、粘度調整のために用いられる。親水性の層状ケイ酸塩鉱物を膨潤させる場合には、有機溶媒として、水との相溶性に優れたメタノール、エタノール、プロパノール、ブタノール等のアルコール類を用いることが好ましい。水を加えることにより粘度が増加するため、水との相溶性に優れた有機溶媒を用いることが好ましい。 The organic solvent is used for improving the wettability of the phosphor-containing liquid and adjusting the viscosity. When the hydrophilic layered silicate mineral is swollen, it is preferable to use alcohols such as methanol, ethanol, propanol, and butanol, which have excellent compatibility with water, as the organic solvent. Since the viscosity is increased by adding water, it is preferable to use an organic solvent excellent in compatibility with water.
 層状ケイ酸塩鉱物が蛍光体含有液に含まれることで、蛍光体含有液の粘性を高め、蛍光体粒子の沈降を抑制できる。本発明に用いられる層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、またはスメクタイト構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造を有する膨潤性粘土鉱物が特に好ましい。層状ケイ酸塩鉱物は、蛍光体含有液中においてカードハウス構造を形成するため、少量で蛍光体含有液の粘度を高める。また、層状ケイ酸塩鉱物は平板状を呈するため、蛍光体粒子層の強度も高める。 By including the layered silicate mineral in the phosphor-containing liquid, it is possible to increase the viscosity of the phosphor-containing liquid and suppress the sedimentation of the phosphor particles. The layered silicate mineral used in the present invention is preferably a swellable clay mineral having a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a swellable clay mineral having a smectite structure rich in swelling properties. Since the layered silicate mineral forms a card house structure in the phosphor-containing liquid, the viscosity of the phosphor-containing liquid is increased with a small amount. Further, since the layered silicate mineral has a flat plate shape, the strength of the phosphor particle layer is also increased.
 粘土鉱物でありうる層状ケイ酸塩鉱物の例には、天然または合成の、ヘクトライト、サポナイト、スチブンサイト、ハイデライト、モンモリロナイト、ノントライト、ベントナイト、ラポナイト等のスメクタイト属粘土鉱物;Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の膨潤性雲母属粘土鉱物;白雲母、金雲母、フッ素金雲母、絹雲母、カリウム四ケイ素雲母等の非膨潤性雲母属粘土鉱物;バーミキュラライト;カオリナイト;またはこれらの混合物が含まれる。粘土鉱物は、表面がアンモニウム塩等で修飾(表面処理)されたものでありうる。アンモニウム塩等で修飾された粘土鉱物が含まれると、粘土鉱物と溶媒との相溶性が高まる。 Examples of layered silicate minerals that can be clay minerals include natural or synthetic hectorite, saponite, stevensite, hydelite, montmorillonite, nontrinite, bentonite, laponite, and other smectite clay minerals; Na-type tetralithic fluorine Swelling mica genus clay minerals such as mica, Li-type tetralithic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite; Mica clay minerals; vermiculite; kaolinite; or mixtures thereof. The clay mineral may have a surface modified with an ammonium salt or the like (surface treatment). If a clay mineral modified with an ammonium salt or the like is included, the compatibility between the clay mineral and the solvent increases.
 蛍光体含有液に含まれる層状ケイ酸塩鉱物の量は、蛍光体含有液の固形分全量に対して0.5~20質量%であることが好ましく、0.5~10質量%であることがより好ましい。層状ケイ酸塩鉱物の含有量が0.5質量%未満であると、蛍光体含有液の粘性が十分に高まらない。一方、層状ケイ酸塩鉱物の含有量が、20質量%を超えると、相対的に蛍光体粒子の量が少なくなり、蛍光体粒子層から十分な蛍光が発せられない。 The amount of the layered silicate mineral contained in the phosphor-containing liquid is preferably 0.5 to 20% by mass, and preferably 0.5 to 10% by mass with respect to the total solid content of the phosphor-containing liquid. Is more preferable. When the content of the layered silicate mineral is less than 0.5% by mass, the viscosity of the phosphor-containing liquid is not sufficiently increased. On the other hand, when the content of the layered silicate mineral exceeds 20% by mass, the amount of the phosphor particles is relatively reduced, and sufficient fluorescence is not emitted from the phosphor particle layer.
 無機粒子は、蛍光体と層状ケイ酸塩鉱物の界面に生じる隙間を埋める充填効果、蛍光体含有液の粘度を高める効果を有する。また無機粒子が含まれると、蛍光体粒子層の強度が高まる。 The inorganic particles have a filling effect of filling a gap generated at the interface between the phosphor and the layered silicate mineral, and an effect of increasing the viscosity of the phosphor-containing liquid. When inorganic particles are included, the strength of the phosphor particle layer is increased.
 無機粒子の例には、酸化ケイ素、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム等の酸化物微粒子等が含まれる。無機粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、無機粒子と、セラミックバインダとの密着性が高まる。また、無機粒子は、比表面積の大きい多孔質の無機粒子でありうる。 Examples of inorganic particles include fine oxide particles such as silicon oxide, titanium oxide, zinc oxide, aluminum oxide, and zirconium oxide. The surface of the inorganic particles may be treated with a silane coupling agent or a titanium coupling agent. The surface treatment increases the adhesion between the inorganic particles and the ceramic binder. The inorganic particles can be porous inorganic particles having a large specific surface area.
 無機粒子の粒径分布は特に制限はない。広範囲に分布していてもよく、比較的狭い範囲に分布していてもよい。なお、無機粒子の粒径は、一次粒径の中心粒径が0.001μm以上50μm以下であることが好ましく、蛍光体の一次粒径より小さいことがより好ましい。また、無機粒子の粒径は、蛍光体乾燥膜の厚さより小さい範囲とする。蛍光体乾燥膜の表面平滑性を高めるためである。無機粒子の平均粒径は、例えばコールターカウンター法によって測定される。 The particle size distribution of inorganic particles is not particularly limited. It may be distributed over a wide range or may be distributed over a relatively narrow range. In addition, as for the particle size of an inorganic particle, it is preferable that the center particle size of a primary particle size is 0.001 micrometer or more and 50 micrometers or less, and it is more preferable that it is smaller than the primary particle diameter of fluorescent substance. The particle size of the inorganic particles is set to be smaller than the thickness of the phosphor dry film. This is for enhancing the surface smoothness of the phosphor dry film. The average particle diameter of the inorganic particles is measured by, for example, a Coulter counter method.
 蛍光体含有液に含まれる無機粒子の量は、蛍光体含有液の固形分全量に対して0.5~70質量%が好ましく、より好ましくは0.5~65質量%であり、さらに好ましくは1.0~60質量%である。無機粒子の含有量が0.5質量%未満であると、相対的に蛍光体粒子等の量が多くなり、蛍光体粒子の分散性が低下することがある。また、蛍光体含有液の塗布時のハンドリング性が悪化する。一方、無機粒子の含有量が70質量%を超えると、相対的に蛍光体粒子の量が少なくなり、十分な蛍光が得られない。さらに、無機粒子によって光が散乱しやすくなり、LED装置からの光取り出し効率が低下する。 The amount of inorganic particles contained in the phosphor-containing liquid is preferably 0.5 to 70% by mass, more preferably 0.5 to 65% by mass, and still more preferably based on the total solid content of the phosphor-containing liquid. 1.0 to 60% by mass. When the content of the inorganic particles is less than 0.5% by mass, the amount of phosphor particles and the like is relatively increased, and the dispersibility of the phosphor particles may be lowered. Moreover, the handling property at the time of application | coating of a fluorescent substance containing liquid deteriorates. On the other hand, when the content of the inorganic particles exceeds 70% by mass, the amount of the phosphor particles is relatively reduced and sufficient fluorescence cannot be obtained. Furthermore, light is easily scattered by the inorganic particles, and the light extraction efficiency from the LED device is reduced.
 蛍光体含有液の粘度は、通常は10~1000mPa・sであり、12~500mPa・sであることが好ましく、20~400mPa・sであることがより好ましく、200~400mPa・sであることがさらに好ましい。粘度が低すぎると、蛍光体含有液において蛍光体粒子が沈降しやすくなる。一方、粘度が高すぎると、蛍光体含有液の塗布、特にスプレーによる塗布が困難になる。 The viscosity of the phosphor-containing liquid is usually 10 to 1000 mPa · s, preferably 12 to 500 mPa · s, more preferably 20 to 400 mPa · s, and 200 to 400 mPa · s. Further preferred. If the viscosity is too low, the phosphor particles tend to settle in the phosphor-containing liquid. On the other hand, when the viscosity is too high, it becomes difficult to apply the phosphor-containing liquid, particularly by spraying.
 蛍光体含有液は、蛍光体粒子を溶媒に混合して、必要に応じて、これに層状ケイ酸塩鉱物および無機粒子を添加して調製されうる。 The phosphor-containing liquid can be prepared by mixing phosphor particles in a solvent and adding layered silicate minerals and inorganic particles to the mixture as necessary.
 <工程2)について>
 工程1)で用意したLEDチップの上面に配置された蛍光体粒子層に、セラミック前駆体含有液をインクジェット法で塗布する。
<About step 2>
A ceramic precursor-containing liquid is applied by an inkjet method to the phosphor particle layer disposed on the upper surface of the LED chip prepared in step 1).
 セラミック前駆体含有液は、蛍光体粒子を結着させるのに必要な量を塗布すればよく、蛍光体粒子層の厚さなどにより調整する。セラミック前駆体含有液の塗布量が過剰であると、形成した波長変換層にクラックが生じやすくなる。一方、セラミック前駆体含有液の量が少なすぎると、蛍光体粒子層内の空隙を埋められず、多数の空隙が残りやすくなる。 The ceramic precursor-containing liquid may be applied in an amount necessary to bind the phosphor particles, and is adjusted according to the thickness of the phosphor particle layer. If the coating amount of the ceramic precursor-containing liquid is excessive, cracks are likely to occur in the formed wavelength conversion layer. On the other hand, if the amount of the ceramic precursor-containing liquid is too small, the voids in the phosphor particle layer cannot be filled, and a large number of voids tend to remain.
 図3は、LEDチップの上面に配置された蛍光体粒子層にセラミック前駆体含有液を塗布する様子を示す図である。基板310とLEDチップ320とは、前記1)工程で用意したものであればよい。上面に蛍光体粒子を含む蛍光体粒子層340が配置された凸状のLEDチップ320が基板310に実装されている(図3A)。次いで、セラミック前駆体含有液が充填されたインクジェットヘッド350からセラミック前駆体含有液の液滴360を蛍光体粒子層340に向けて吐出する(図3B)。蛍光体粒子層340に着弾したセラミック前駆体含有液の液滴360は、蛍光体粒子層340内に浸透し、セラミックが硬化する前の波長変換層(セラミック前駆体含有蛍光体粒子層)370を形成する(図3C)。 FIG. 3 is a diagram showing a state in which a ceramic precursor-containing liquid is applied to the phosphor particle layer disposed on the upper surface of the LED chip. The substrate 310 and the LED chip 320 may be those prepared in the step 1). A convex LED chip 320 having a phosphor particle layer 340 containing phosphor particles on the upper surface is mounted on a substrate 310 (FIG. 3A). Next, droplets 360 of the ceramic precursor-containing liquid are ejected from the inkjet head 350 filled with the ceramic precursor-containing liquid toward the phosphor particle layer 340 (FIG. 3B). The liquid droplets 360 of the ceramic precursor-containing liquid that have landed on the phosphor particle layer 340 penetrate into the phosphor particle layer 340 and pass through the wavelength conversion layer (ceramic precursor-containing phosphor particle layer) 370 before the ceramic is cured. Form (FIG. 3C).
 インクジェット法は、スプレー法等と比べて、セラミック前駆体含有液の塗布時の風圧を抑制できる。そのため、蛍光体粒子層340へのダメージを低減でき、蛍光体粒子がLEDチップ320から剥離することを抑制できる。また、スプレー法などでは液適量が大きいため、蛍光体粒子層中の空隙に液滴が浸透しにくい。一方、インクジェット法では、液滴径を数10μm程度に抑えることができ、蛍光体粒子層の空隙にセラミック前駆体含有液を浸透させやすい。そのため、セラミック前駆体を硬化させて形成される波長変換層の硬度を高めることができる。 The ink jet method can suppress the wind pressure at the time of applying the ceramic precursor-containing liquid as compared with the spray method or the like. Therefore, damage to the phosphor particle layer 340 can be reduced, and the phosphor particles can be prevented from peeling from the LED chip 320. In addition, since the appropriate amount of the liquid is large in the spray method or the like, the liquid droplets do not easily penetrate into the voids in the phosphor particle layer. On the other hand, in the ink jet method, the droplet diameter can be suppressed to about several tens of μm, and the ceramic precursor-containing liquid can easily penetrate into the voids of the phosphor particle layer. Therefore, the hardness of the wavelength conversion layer formed by curing the ceramic precursor can be increased.
 また、インクジェット法により、LEDチップ320の上面のみにセラミック前駆体含有液を塗布することで、LEDチップ320の上面のみにセラミック前駆体含有蛍光体粒子層370を形成できる。そのため、円形型の転写用部材を用いる転写法のように、使用するセラミック前駆体のロスを低減できる。また、専用の形状を有する転写用部材を用意する必要がないため、汎用性が高い。 Further, the ceramic precursor-containing phosphor particle layer 370 can be formed only on the upper surface of the LED chip 320 by applying the ceramic precursor-containing liquid only to the upper surface of the LED chip 320 by the inkjet method. Therefore, the loss of the ceramic precursor to be used can be reduced as in the transfer method using a circular transfer member. Further, since there is no need to prepare a transfer member having a dedicated shape, the versatility is high.
 (セラミック前駆体含有液)
 工程2)で用いるセラミック前駆体含有液について説明する。セラミック前駆体含有液には、少なくとも、セラミック前駆体と溶媒とが含まれ、酸化物粒子などをさらに含むことが好ましい。
(Ceramic precursor-containing liquid)
The ceramic precursor-containing liquid used in step 2) will be described. The ceramic precursor-containing liquid preferably includes at least a ceramic precursor and a solvent, and further includes oxide particles and the like.
 セラミック前駆体とは、焼成処理を受けることによって、蛍光体粒子を結着する材料である。セラミック前駆体は、例えば有機金属化合物である。有機金属化合物は、ゾル-ゲル反応によってセラミック(好ましくはガラスセラミック)となる。生成するセラミックは、蛍光体粒子層に含まれる蛍光体粒子(必要に応じて、層状ケイ酸塩鉱物、無機微粒子)を結着させる。 A ceramic precursor is a material that binds phosphor particles when subjected to a firing treatment. The ceramic precursor is, for example, an organometallic compound. The organometallic compound becomes a ceramic (preferably a glass ceramic) by a sol-gel reaction. The produced ceramic binds phosphor particles (layered silicate mineral and inorganic fine particles as required) contained in the phosphor particle layer.
 有機金属化合物の例には、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属酸化物などが含まれるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。透光性のガラスセラミックを形成できるものであれば有機金属化合物の種類は制限されず、複数種の有機金属化合物を組み合わせてもよい。形成されるガラスセラミックの安定性や製造の容易性の観点から、有機金属化合物にはケイ素が含有されていることが好ましい。 Examples of organometallic compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, metal oxides, etc., but metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred. The kind of the organometallic compound is not limited as long as it can form a light-transmitting glass ceramic, and a plurality of organometallic compounds may be combined. From the viewpoint of the stability of the formed glass ceramic and the ease of production, the organometallic compound preferably contains silicon.
 セラミック前駆体である金属アルコキシドは、テトラエトキシシランのような単分子のシラン化合物でもよいし、有機シロキサン化合物が鎖状または環状に連結したポリシロキサンでもよいが;ポリシロキサンによれば、セラミック前駆体含有液の粘性を高めることができる。 The metal alkoxide as the ceramic precursor may be a monomolecular silane compound such as tetraethoxysilane or a polysiloxane in which an organosiloxane compound is linked in a chain or a ring; according to the polysiloxane, the ceramic precursor The viscosity of the contained liquid can be increased.
 単分子のシラン化合物は、一般式(1)で示されうる。一般式(1)において、nはORの数を表し、2以上4以下の整数である。また、Rは、それぞれ独立にアルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基またはフェニル基を表す。
 一般式(1):Si(OR)4-n
The monomolecular silane compound can be represented by the general formula (1). In general formula (1), n represents the number of ORs and is an integer of 2 or more and 4 or less. Each R independently represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms or a phenyl group.
Formula (1): Si (OR) n Y 4-n
 一般式(1)中、Yは、水素原子またはアルキル基を表す。アルキル基は、炭素数が1~1000、好ましくは500以下、より好ましくは100以下、さらに好ましくは50以下、特に好ましくは6以下の脂肪族基、脂環族基、芳香族基、脂環芳香族基である。これらは、連結基として、O、N、S等の原子または原子団を有してもよい。これらの中でも特にメチル基が好ましい。Yがメチル基である場合には、セラミック前駆体を硬化させて形成される波長変換層の耐光性及び耐熱性が高まる。 In general formula (1), Y represents a hydrogen atom or an alkyl group. The alkyl group has 1 to 1000 carbon atoms, preferably 500 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 6 or less, an aliphatic group, alicyclic group, aromatic group, alicyclic aromatic group. It is a family group. These may have atoms or atomic groups such as O, N, and S as a linking group. Among these, a methyl group is particularly preferable. When Y is a methyl group, the light resistance and heat resistance of the wavelength conversion layer formed by curing the ceramic precursor are increased.
 一般式(1)中、Yで表される1価の有機基は、置換基を有していてもよい。置換基の例には、F、Cl、Br、I等のハロゲン原子;ビニル基、メタクリロキシ基、アクリロキシ基、スチリル基、メルカプト基、エポキシ基、エポキシシクロヘキシル基、グリシドキシ基、アミノ基、シアノ基、ニトロ基、スルホン酸基、カルボキシ基、ヒドロキシ基、アシル基、アルコキシ基、イミノ基、フェニル基等の有機官能基等が含まれる。 In the general formula (1), the monovalent organic group represented by Y may have a substituent. Examples of the substituent include halogen atoms such as F, Cl, Br, and I; vinyl group, methacryloxy group, acryloxy group, styryl group, mercapto group, epoxy group, epoxycyclohexyl group, glycidoxy group, amino group, cyano group, Organic functional groups such as nitro group, sulfonic acid group, carboxy group, hydroxy group, acyl group, alkoxy group, imino group and phenyl group are included.
 単分子のシラン化合物の例には、以下の4官能のシラン化合物、3官能のシラン化合物、2官能のシラン化合物等とすることができる。
 4官能のシラン化合物の例には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラペンチルオキシシラン、テトラフェニルオキシシラン、トリメトキシモノエトキシシラン、ジメトキシジエトキシシラン、トリエトキシモノメトキシシラン、トリメトキシモノプロポキシシラン、モノメトキシトリブトキシシラン、モノメトキシトリペンチルオキシシラン、モノメトキシトリフェニルオキシシラン、ジメトキシジプロポキシシラン、トリプロポキシモノメトキシシラン、トリメトキシモノブトキシシラン、ジメトキシジブトキシシラン、トリエトキシモノプロポキシシラン、ジエトキシジプロポキシシラン、トリブトキシモノプロポキシシラン、ジメトキシモノエトキシモノブトキシシラン、ジエトキシモノメトキシモノブトキシシラン、ジエトキシモノプロポキシモノブトキシシラン、ジプロポキシモノメトキシモノエトキシシラン、ジプロポキシモノメトキシモノブトキシシラン、ジプロポキシモノエトキシモノブトキシシラン、ジブトキシモノメトキシモノエトキシシラン、ジブトキシモノエトキシモノプロポキシシラン、モノメトキシモノエトキシモノプロポキシモノブトキシシランなどのテトラアルコキシシラン等が含まれる。これらの中でもテトラメトキシシラン、テトラエトキシシランが好ましい。
Examples of monomolecular silane compounds include the following tetrafunctional silane compounds, trifunctional silane compounds, and bifunctional silane compounds.
Examples of tetrafunctional silane compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetrapentyloxysilane, tetraphenyloxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymono Methoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytripentyloxysilane, monomethoxytriphenyloxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane , Triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxymonobutoxy Orchid, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dibutoxymonomethoxymonoethoxysilane, Examples include tetraalkoxysilanes such as dibutoxy monoethoxy monopropoxy silane and monomethoxy monoethoxy monopropoxy monobutoxy silane. Among these, tetramethoxysilane and tetraethoxysilane are preferable.
 3官能のシラン化合物の例には、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリペンチルオキシシラン、トリフェニルオキシシラン、ジメトキシモノエトキシシラン、ジエトキシモノメトキシシラン、ジプロポキシモノメトキシシラン、ジプロポキシモノエトキシシラン、ジペンチルオキシルモノメトキシシラン、ジペンチルオキシモノエトキシシラン、ジペンチルオキシモノプロポキシシラン、ジフェニルオキシルモノメトキシシラン、ジフェニルオキシモノエトキシシラン、ジフェニルオキシモノプロポキシシラン、メトキシエトキシプロポキシシラン、モノプロポキシジメトキシシラン、モノプロポキシジエトキシシラン、モノブトキシジメトキシシラン、モノペンチルオキシジエトキシシラン、モノフェニルオキシジエトキシシラン等のモノヒドロシラン化合物;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリペンチルオキシシラン、メチルモノメトキシジエトキシシラン、メチルモノメトキシジプロポキシシラン、メチルモノメトキシジペンチルオキシシラン、メチルモノメトキシジフェニルオキシシラン、メチルメトキシエトキシプロポキシシラン、メチルモノメトキシモノエトキシモノブトキシシラン等のモノメチルシラン化合物;エチルトリメトキシシラン、エチルトリプロポキシシラン、エチルトリペンチルオキシシラン、エチルトリフェニルオキシシラン、エチルモノメトキシジエトキシシラン、エチルモノメトキシジプロポキシシラン、エチルモノメトキシジペンチルオキシシラン、エチルモノメトキシジフェニルオキシシラン、エチルモノメトキシモノエトキシモノブトキシシラン等のモノエチルシラン化合物;プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリペンチルオキシシラン、プロピルトリフェニルオキシシラン、プロピルモノメトキシジエトキシシラン、プロピルモノメトキシジプロポキシシラン、プロピルモノメトキシジペンチルオキシシラン、プロピルモノメトキシジフェニルオキシシラン、プロピルメトキシエトキシプロポキシシラン、プロピルモノメトキシモノエトキシモノブトキシシラン等のモノプロピルシラン化合物;ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリペンチルオキシシラン、ブチルトリフェニルオキシシラン、ブチルモノメトキシジエトキシシラン、ブチルモノメトキシジプロポキシシラン、ブチルモノメトキシジペンチルオキシシラン、ブチルモノメトキシジフェニルオキシシラン、ブチルメトキシエトキシプロポキシシラン、ブチルモノメトキシモノエトキシモノブトキシシラン等のモノブチルシラン化合物が含まれる。これらの中でも、メチルトリメトキシシランおよびメチルトリエトキシシランがより好ましく、メチルトリメトキシシランがさらに好ましい。 Examples of trifunctional silane compounds include trimethoxysilane, triethoxysilane, tripropoxysilane, tripentyloxysilane, triphenyloxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, di Propoxymonoethoxysilane, dipentyloxylmonomethoxysilane, dipentyloxymonoethoxysilane, dipentyloxymonopropoxysilane, diphenyloxylmonomethoxysilane, diphenyloxymonoethoxysilane, diphenyloxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane Monopropoxydiethoxysilane, monobutoxydimethoxysilane, monopentyloxydiethoxysilane, monophenyl Monohydrosilane compounds such as ruoxydiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltripentyloxysilane, methylmonomethoxydiethoxysilane, methylmonomethoxydipropoxysilane, methylmonomethoxydipentyl Monomethylsilane compounds such as oxysilane, methylmonomethoxydiphenyloxysilane, methylmethoxyethoxypropoxysilane, methylmonomethoxymonoethoxymonobutoxysilane; ethyltrimethoxysilane, ethyltripropoxysilane, ethyltripentyloxysilane, ethyltriphenyloxy Silane, ethyl monomethoxydiethoxysilane, ethyl monomethoxydipropoxysilane, ethyl monomethoxydipentyloxy Monoethylsilane compounds such as lan, ethylmonomethoxydiphenyloxysilane, ethylmonomethoxymonoethoxymonobutoxysilane; propyltrimethoxysilane, propyltriethoxysilane, propyltripentyloxysilane, propyltriphenyloxysilane, propylmonomethoxydi Monopropylsilane compounds such as ethoxysilane, propylmonomethoxydipropoxysilane, propylmonomethoxydipentyloxysilane, propylmonomethoxydiphenyloxysilane, propylmethoxyethoxypropoxysilane, propylmonomethoxymonoethoxymonobutoxysilane; butyltrimethoxysilane, Butyltriethoxysilane, Butyltripropoxysilane, Butyltripentyloxysilane, Butyltriphenyl Monobutylsilane compounds such as oxysilane, butylmonomethoxydiethoxysilane, butylmonomethoxydipropoxysilane, butylmonomethoxydipentyloxysilane, butylmonomethoxydiphenyloxysilane, butylmethoxyethoxypropoxysilane, butylmonomethoxymonoethoxymonobutoxysilane Is included. Among these, methyltrimethoxysilane and methyltriethoxysilane are more preferable, and methyltrimethoxysilane is more preferable.
 2官能のシラン化合物の具体例には、ジメトキシシラン、ジエトキシシラン、ジプロポキシシラン、ジペンチルオキシシラン、ジフェニルオキシシラン、メトキシエトキシシラン、メトキシプロポキシシラン、メトキシペンチルオキシシラン、メトキシフェニルオキシシラン、エトキシプロポキシシラン、エトキシペンチルオキシシラン、エトキシフェニルオキシシラン、メチルジメトキシシラン、メチルメトキシエトキシシラン、メチルジエトキシシラン、メチルメトキシプロポキシシラン、メチルメトキシペンチルオキシシラン、メチルメトキシフェニルオキシシラン、エチルジプロポキシシラン、エチルメトキシプロポキシシラン、エチルジペンチルオキシシラン、エチルジフェニルオキシシラン、プロピルジメトキシシラン、プロピルメトキシエトキシシラン、プロピルエトキシプロポキシシラン、プロピルジエトキシシラン、プロピルジペンチルオキシシラン、プロピルジフェニルオキシシラン、ブチルジメトキシシラン、ブチルメトキシエトキシシラン、ブチルジエトキシシラン、ブチルエトキシプロポキシシシラン、ブチルジプロポキシシラン、ブチルメチルジペンチルオキシシラン、ブチルメチルジフェニルオキシシラン、ジメチルジメトキシシラン、ジメチルメトキシエトキシシラン、ジメチルジエトキシシラン、ジメチルジペンチルオキシシラン、ジメチルジフェニルオキシシラン、ジメチルエトキシプロポキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルメトキシプロポキシシラン、ジエチルジエトキシシラン、ジエチルエトキシプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジペンチルオキシシラン、ジプロピルジフェニルオキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルメトキシペンチルオキシシラン、ジブチルメトキシフェニルオキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジペンチルオキシシラン、メチルエチルジフェニルオキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、メチルブチルジメトキシシラン、メチルブチルジエトキシシラン、メチルブチルジプロポキシシラン、メチルエチルエトキシプロポキシシラン、エチルプロピルジメトキシシラン、エチルプロピルメトキシエトキシシラン、ジプロピルジメトキシシラン、ジプロピルメトキシエトキシシラン、プロピルブチルジメトキシシラン、プロピルブチルジエトキシシラン、ジブチルメトキシエトキシシラン、ジブチルメトキシプロポキシシラン、ジブチルエトキシプロポキシシラン等が含まれる。これらの中でもジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましい。 Specific examples of the bifunctional silane compound include dimethoxysilane, diethoxysilane, dipropoxysilane, dipentyloxysilane, diphenyloxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxypentyloxysilane, methoxyphenyloxysilane, ethoxypropoxy. Silane, ethoxypentyloxysilane, ethoxyphenyloxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxypentyloxysilane, methylmethoxyphenyloxysilane, ethyldipropoxysilane, ethylmethoxy Propoxysilane, ethyldipentyloxysilane, ethyldiphenyloxysilane, propyldimethoxysilane, pro Rumethoxyethoxysilane, propylethoxypropoxysilane, propyldiethoxysilane, propyldipentyloxysilane, propyldiphenyloxysilane, butyldimethoxysilane, butylmethoxyethoxysilane, butyldiethoxysilane, butylethoxypropoxysilane, butyldipropoxysilane, Butylmethyldipentyloxysilane, butylmethyldiphenyloxysilane, dimethyldimethoxysilane, dimethylmethoxyethoxysilane, dimethyldiethoxysilane, dimethyldipentyloxysilane, dimethyldiphenyloxysilane, dimethylethoxypropoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, Diethylmethoxypropoxysilane, diethyldiethoxysilane, diethyl Toxipropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldipentyloxysilane, dipropyldiphenyloxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dibutyldipropoxysilane, dibutylmethoxypentyloxysilane, dibutylmethoxyphenyl Oxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldipentyloxysilane, methylethyldiphenyloxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylbutyldimethoxysilane, methylbutyl Diethoxysilane, methylbutyldipropoxysilane, methylethylethoxypropoxysilane, ethyl Includes rupropyldimethoxysilane, ethylpropylmethoxyethoxysilane, dipropyldimethoxysilane, dipropylmethoxyethoxysilane, propylbutyldimethoxysilane, propylbutyldiethoxysilane, dibutylmethoxyethoxysilane, dibutylmethoxypropoxysilane, dibutylethoxypropoxysilane, etc. It is. Among these, dimethoxysilane, diethoxysilane, methyldimethoxysilane, and methyldiethoxysilane are preferable.
 セラミック前駆体含有液に含まれる単分子のシラン化合物の量は、セラミック前駆体含有液全量に対して、3~50質量%であることが好ましく、より好ましくは3~40質量%である。単分子のシラン化合物の量が3質量%未満であると、セラミック前駆体の粘度が低く、セラミック前駆体溶液を塗布し難い場合がある。一方、単分子のシラン化合物の量が50質量%を超えると、セラミック前駆体の硬化反応が必要以上に速く進む。そのため、セラミック前駆体が蛍光体層中に入り込む前に硬化してしまい、蛍光体粒子を十分に結着できないおそれがある。 The amount of the monomolecular silane compound contained in the ceramic precursor-containing liquid is preferably 3 to 50% by mass, more preferably 3 to 40% by mass, based on the total amount of the ceramic precursor-containing liquid. When the amount of the monomolecular silane compound is less than 3% by mass, the viscosity of the ceramic precursor is low and it may be difficult to apply the ceramic precursor solution. On the other hand, when the amount of the monomolecular silane compound exceeds 50% by mass, the curing reaction of the ceramic precursor proceeds faster than necessary. Therefore, the ceramic precursor is cured before entering the phosphor layer, and the phosphor particles may not be sufficiently bound.
 セラミック前駆体であるポリシロキサンは、前述の一般式(1)で表されるシラン化合物を重合させて得られる。 The polysiloxane as the ceramic precursor is obtained by polymerizing the silane compound represented by the general formula (1).
 セラミック前駆体含有液に含まれる、セラミック前駆体である鎖状のポリシロキサンは、質量平均分子量が1000~3000であることが好ましく、1200~2700であることがより好ましく、1500~2000であることがさらに好ましい。鎖状のポリシロキサンの質量平均分子量が1000未満であると、セラミック前駆体含有液の粘度が低くなり過ぎることがある。一方、質量平均分子量が3000を超えると、上記粘度が高くなり過ぎてしまう。セラミック前駆体含有液が蛍光体粒子によって形成された隙間に入り込めないことがある。なお、質量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される値(ポリスチレン換算)である。 The chain polysiloxane which is a ceramic precursor contained in the ceramic precursor-containing liquid preferably has a mass average molecular weight of 1000 to 3000, more preferably 1200 to 2700, and more preferably 1500 to 2000. Is more preferable. When the mass average molecular weight of the chain polysiloxane is less than 1000, the viscosity of the ceramic precursor-containing liquid may become too low. On the other hand, when the mass average molecular weight exceeds 3000, the viscosity becomes too high. In some cases, the ceramic precursor-containing liquid may not enter the gap formed by the phosphor particles. In addition, a mass average molecular weight is a value (polystyrene conversion) measured by gel permeation chromatography.
 セラミック前駆体であるポリシロキサンは、基本構成単位が3官能(T単位)である以下の一般式(1’)で表されるシルセスキオキサンであってもよい。
 一般式(1’):(R-SiO/2)
The polysiloxane as the ceramic precursor may be a silsesquioxane represented by the following general formula (1 ′) whose basic structural unit is trifunctional (T unit).
Formula (1 ') :( R-SiO 3/2) n
 一般式(1’)中、Rは、アルキル基またはフェニル基を表し、好ましくは炭素数1~5のアルキル基、またはフェニル基を表す。また、Siは3個のOと結合し、Oは2個のSiと結合している。 In general formula (1 '), R represents an alkyl group or a phenyl group, preferably an alkyl group having 1 to 5 carbon atoms, or a phenyl group. Si is bonded to three Os, and O is bonded to two Sis.
 シルセスキオキサンは、カゴ型、はしご型、またはランダム型の立体構造を有する。セラミック前駆体にシルセスキオキサンを用いる場合には、堅牢性を有するカゴ型構造のシルセスキオキサンを用いることが好ましい。カゴ型構造のシルセスキオキサンは偶数個のSiを有し、それぞれのSiがカゴ型構造のシルセスキオキサンの骨格を構成する。カゴ型構造のシルセスキオキサンを構成するSiの数(n)によって、カゴ型構造の形状がさらに分類される。例えば、n=6(T6)の場合、シルセスキオキサンのSiは三角柱の骨格を構成する。また、n=8(T8)、10(T10)、12(T12)、14(T14)の場合、シルセスキオキサンのSiは、それぞれ四角柱、五角柱、六角柱、七角柱の骨格を構成する。 Silsesquioxane has a cage-type, ladder-type, or random-type three-dimensional structure. When silsesquioxane is used for the ceramic precursor, it is preferable to use silsesquioxane having a cage structure having fastness. The cage-type silsesquioxane has an even number of Si, and each Si forms a cage-type silsesquioxane skeleton. The shape of the cage structure is further classified according to the number (n) of Si constituting the silsesquioxane having the cage structure. For example, when n = 6 (T6), Si of silsesquioxane forms a triangular prism skeleton. In the case of n = 8 (T8), 10 (T10), 12 (T12), and 14 (T14), Si of silsesquioxane constitutes a skeleton of a quadrangular column, a pentagonal column, a hexagonal column, and a heptagonal column, respectively. To do.
 セラミック前駆体含有液におけるポリシロキサンをシルセスキオキサンとすることで、セラミック前駆体含有液の粘度を低めに調整することができる。 By making the polysiloxane in the ceramic precursor-containing liquid into silsesquioxane, the viscosity of the ceramic precursor-containing liquid can be adjusted to be low.
 また、セラミック前駆体含有液に含まれるセラミック前駆体は、ポリシラザンであってもよい。ポリシラザンは、例えば以下の一般式(2)で表される。
 一般式(2):(RSiNR
The ceramic precursor contained in the ceramic precursor-containing liquid may be polysilazane. Polysilazane is represented by the following general formula (2), for example.
Formula (2): (R 1 R 2 SiNR 3 ) n
 一般式(2)中、R~Rは、それぞれ独立して水素原子又はアルキル基、アリール基、ビニル基、シクロアルキル基を表す。また、R~Rのうち少なくとも1つは水素原子であり、R~Rの全てが水素原子である場合をパーハイドロポリシラザンという。nは1~60の整数である。ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。一般式(2)で表される化合物の中でも、低温度、低湿度で硬化できるパーハイドロポリシラザンが好ましい。 In general formula (2), R 1 to R 3 each independently represents a hydrogen atom or an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group. Further, at least one of R 1 ~ R 3 is a hydrogen atom, a case where all of R 1 ~ R 3 is a hydrogen atom that par hydro polysilazane. n is an integer of 1 to 60. The molecular shape of polysilazane may be any shape, for example, linear or cyclic. Among the compounds represented by the general formula (2), perhydropolysilazane that can be cured at low temperature and low humidity is preferable.
 セラミック前駆体含有液におけるポリシロキサン濃度は、1~40質量%であることが好ましく、2~30質量%であることがより好ましい。セラミック前駆体含有液におけるポリシラザンの含有量は多い方が好ましいが、ポリシラザンの含有量が多すぎると、セラミック前駆体含有液の保存期間が短くなる。そのため、セラミック前駆体含有液におけるポリシラザンの含有量は、セラミック前駆体含有液全量に対して5~50質量%であることが好ましい。 The polysiloxane concentration in the ceramic precursor-containing liquid is preferably 1 to 40% by mass, and more preferably 2 to 30% by mass. Although it is preferable that the content of polysilazane in the ceramic precursor-containing liquid is large, if the content of polysilazane is too large, the storage period of the ceramic precursor-containing liquid is shortened. Therefore, the content of polysilazane in the ceramic precursor-containing liquid is preferably 5 to 50% by mass with respect to the total amount of the ceramic precursor-containing liquid.
 セラミック前駆体含有液には、セラミック前駆体(特に、ポリシラザン)とともに、反応促進剤が含まれていてもよい。反応促進剤は、酸または塩基などでありうる。反応促進剤の例には、トリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミンなどの塩基や、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸や、ニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属のカルボン酸塩などが含まれるが、これに限られない。特に好ましい反応促進剤は金属カルボン酸塩である。反応促進剤がポリシラザンとともにセラミック前駆体含有液に含まれる場合、好ましい含有量は、ポリシラザンを基準にして0.01~5mol%である。ポリシラザンと反応促進剤とを、適切な溶媒に溶かしたセラミック前駆体含有液に、加熱やエキシマー光処理、紫外光処理を行うことでセラミック前駆体含有液を硬化させて、耐熱性、耐光性に優れた波長変換層を形成できる。 The ceramic precursor-containing liquid may contain a reaction accelerator together with the ceramic precursor (particularly polysilazane). The reaction accelerator may be an acid or a base. Examples of reaction accelerators include bases such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid And metal carboxylates including, but not limited to, nickel, iron, palladium, iridium, platinum, titanium, and aluminum. A particularly preferred reaction accelerator is a metal carboxylate. When the reaction accelerator is contained in the ceramic precursor-containing liquid together with polysilazane, the preferred content is 0.01 to 5 mol% based on polysilazane. Heat treatment, excimer light treatment, and ultraviolet light treatment are applied to a ceramic precursor-containing solution in which polysilazane and a reaction accelerator are dissolved in an appropriate solvent to cure the ceramic precursor-containing solution, resulting in heat resistance and light resistance. An excellent wavelength conversion layer can be formed.
 セラミック前駆体含有液に含まれる溶媒は、セラミック前駆体含有液の、蛍光体粒子層やLED発光部の側面に対する濡れ性を調整する。溶媒の例には、炭化水素類、エーテル類、エステル類、アルコール類、ケトン類、含窒素類とそれらの誘導体などが含まれる。これらの溶媒は、単独で用いてもよいし、複数混合して用いてもよい。 The solvent contained in the ceramic precursor-containing liquid adjusts the wettability of the ceramic precursor-containing liquid with respect to the phosphor particle layer and the side surface of the LED light emitting unit. Examples of the solvent include hydrocarbons, ethers, esters, alcohols, ketones, nitrogen-containing compounds and derivatives thereof. These solvents may be used alone or in combination.
 セラミック前駆体含有液に含まれる溶媒として、より好ましものは1価のアルコールまたは多価のアルコールである。1価のアルコールの例にはメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、t-ブタノール、3―メトキシ-1-ブタノール、3-メチル-3-メトキシブタノール、1-ペンタノール、1-オクタノール、2-オクタノール、ステアリルアルコール、オレイルアルコール、ベンジルアルコール、n-ノニルアルコール、トリデシルアルコール、n-ウンデシルアルコール;多価のアルコールの例には、エチレングリコール、1,4-ブタンジオール、1、3-ブタンジオール、1、2-ブタンジオール、2,3-ブタンジオール、3-メチル-1,3-ブタンジオール、1、2-ペンタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール等が含まれる。セラミック前駆体含有液に含まれる溶媒は、これらのアルコールの誘導体であってもよい。アルコールの誘導体とは、多価アルコールのヒドロキシル基がエーテル化されたグリコールエーテルなどである。セラミック前駆体含有液には、これらの溶媒が1種類含まれていても、2種類以上含まれていてもよいが、2種類以上含まれることが好ましい。 As a solvent contained in the ceramic precursor-containing liquid, a more preferable one is a monohydric alcohol or a polyhydric alcohol. Examples of monohydric alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, t-butanol, 3-methoxy-1-butanol, 3- Methyl-3-methoxybutanol, 1-pentanol, 1-octanol, 2-octanol, stearyl alcohol, oleyl alcohol, benzyl alcohol, n-nonyl alcohol, tridecyl alcohol, n-undecyl alcohol; examples of polyhydric alcohols Include ethylene glycol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 2,3-butanediol, 3-methyl-1,3-butanediol, 1,2-pentane Diol, 1,5-pentanediol, 2-methyl-2,4-pe Butanediol, 3-methyl-1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol and the like. The solvent contained in the ceramic precursor-containing liquid may be a derivative of these alcohols. Examples of alcohol derivatives include glycol ethers in which the hydroxyl group of a polyhydric alcohol is etherified. The ceramic precursor-containing liquid may contain one type of these solvents or two or more types, but preferably contains two or more types.
 セラミック前駆体含有液に2種類以上の溶媒が含まれる場合、1)表面張力が20~30mN/m、かつ粘度が1~50mPa・sである溶媒と、2)沸点が150~250℃である溶媒とが併用されることが好ましい。 When two or more kinds of solvents are contained in the ceramic precursor-containing liquid, 1) a solvent having a surface tension of 20 to 30 mN / m and a viscosity of 1 to 50 mPa · s, and 2) a boiling point of 150 to 250 ° C. It is preferable that a solvent is used in combination.
 溶媒の表面張力が20~30mN/mであると、セラミック前駆体含有液の蛍光体粒子層への濡れ性が高まる。溶媒の表面張力が20mN/m未満であると、インクジェットヘッド表面にセラミック前駆体含有液が付着することや、インクジェットヘッドのノズル内でセラミック前駆体含有液がメニスカスを形成できなくなることで射出性が低下する。一方、溶媒の表面張力が30mN/mを超えると、蛍光体粒子層への十分な濡れ性が得られにくい。なお、溶媒の表面張力(mN/m)は、25℃で測定した表面張力の値であり、測定方法の例には、輪環法(デュヌーイ法)、白金プレート法(ウィルヘルミー法)が含まれる。 When the surface tension of the solvent is 20 to 30 mN / m, the wettability of the ceramic precursor-containing liquid to the phosphor particle layer is enhanced. When the surface tension of the solvent is less than 20 mN / m, the ceramic precursor-containing liquid adheres to the surface of the ink jet head, or the ceramic precursor-containing liquid cannot form a meniscus in the nozzle of the ink jet head. descend. On the other hand, when the surface tension of the solvent exceeds 30 mN / m, it is difficult to obtain sufficient wettability to the phosphor particle layer. In addition, the surface tension (mN / m) of the solvent is a value of the surface tension measured at 25 ° C., and examples of the measuring method include a ring method (Dunoi method) and a platinum plate method (Wilhelmy method). .
 さらに、溶媒の粘度が1~50mPa・sであると、セラミック前駆体含有液の粘度を適度に調節でき、インクジェットヘッドからのセラミック前駆体含有液の射出性が高まる。なお、溶媒の粘度は、回転式、振動式や細管式の粘度計で測定できる。表面張力が20~30mN/m、かつ粘度が1~50mPa・sである溶媒の例には、2-プロパノールなどが含まれる。 Furthermore, when the viscosity of the solvent is 1 to 50 mPa · s, the viscosity of the ceramic precursor-containing liquid can be adjusted appropriately, and the ejection properties of the ceramic precursor-containing liquid from the inkjet head are enhanced. The viscosity of the solvent can be measured with a rotary, vibration or capillary type viscometer. Examples of the solvent having a surface tension of 20 to 30 mN / m and a viscosity of 1 to 50 mPa · s include 2-propanol.
 また、沸点が150~250℃である溶媒は、インクジェットヘッドに付着したセラミック前駆体含有液の乾燥を抑制できるため、セラミック前駆体含有液の射出性が低下しにくい。沸点が150℃未満であると、インクジェットヘッド表面に付着したセラミック前駆体含有液が乾燥してしまい、ノズルつまり等が生じやくなる。一方、沸点が250℃を超えると、セラミック前駆体含有液の乾燥時間が長くなりすぎたり、乾燥温度が高くなりすぎたりする。そのため、LED装置の生産性が低下したり、高温乾燥によりLED装置が劣化したりする。沸点が150~250℃である溶媒の例には、エチレングリコールなどが含まれる。 In addition, since the solvent having a boiling point of 150 to 250 ° C. can suppress drying of the ceramic precursor-containing liquid attached to the ink jet head, the injection property of the ceramic precursor-containing liquid is not easily lowered. When the boiling point is less than 150 ° C., the ceramic precursor-containing liquid adhering to the ink jet head surface is dried, and nozzle clogging or the like is likely to occur. On the other hand, if the boiling point exceeds 250 ° C., the drying time of the ceramic precursor-containing liquid becomes too long, or the drying temperature becomes too high. Therefore, the productivity of the LED device is lowered, or the LED device is deteriorated by high temperature drying. Examples of the solvent having a boiling point of 150 to 250 ° C. include ethylene glycol.
 セラミック前駆体含有液に含まれるセラミック前駆体がポリシロキサンである場合には、セラミック前駆体含有液は溶媒として水を含んでもよい。水が含まれると、十分にポリシロキサンが加水分解され、緻密な膜を形成できる。水の含有量は、ポリシロキサン100質量部に対して、10~120質量部が好ましく、より好ましくは80~100質量部である。水の含有量が少な過ぎるとポリシロキサンが十分に加水分解されない。一方、水の量が過剰であると、セラミック前駆体含有液の保存安定性が低下する。 When the ceramic precursor contained in the ceramic precursor-containing liquid is polysiloxane, the ceramic precursor-containing liquid may contain water as a solvent. When water is contained, the polysiloxane is sufficiently hydrolyzed and a dense film can be formed. The water content is preferably 10 to 120 parts by weight, more preferably 80 to 100 parts by weight, based on 100 parts by weight of the polysiloxane. If the water content is too small, the polysiloxane is not sufficiently hydrolyzed. On the other hand, when the amount of water is excessive, the storage stability of the ceramic precursor-containing liquid is lowered.
 セラミック前駆体含有液に対する溶媒の含有量は、セラミック前駆体含有液の粘度が後述の範囲になるようする調整し;かつ、前記蛍光体粒子層に対する接触角が10°以下となり、かつセラミック前駆体含有液のLEDチップに対する接触角が20°以上となるように適宜調整する。 The content of the solvent with respect to the ceramic precursor-containing liquid is adjusted so that the viscosity of the ceramic precursor-containing liquid falls within the range described below; and the contact angle with respect to the phosphor particle layer is 10 ° or less, and the ceramic precursor It adjusts suitably so that the contact angle with respect to LED chip of a containing liquid may be 20 degrees or more.
 セラミック前駆体含有液には、酸化物粒子をさらに含有させることが好ましい。セラミック前駆体含有液に酸化物粒子を含有させることで、セラミック前駆体を硬化させて形成される波長変換層の強度が高まる。酸化物粒子の例には、酸化ケイ素(SiO)、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ジルコニア(ZrO)等、公知のものが含まれる。なお、セラミック前駆体や有機溶媒との相溶性を考慮して、酸化物粒子の表面をシランカップリング剤やチタンカップリング剤で処理したものを用いてもよい。 The ceramic precursor-containing liquid preferably further contains oxide particles. By containing oxide particles in the ceramic precursor-containing liquid, the strength of the wavelength conversion layer formed by curing the ceramic precursor is increased. Examples of the oxide particles include known ones such as silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), and zirconia oxide (ZrO 2 ). In consideration of compatibility with the ceramic precursor and the organic solvent, the surface of the oxide particles may be treated with a silane coupling agent or a titanium coupling agent.
 セラミック前駆体含有液には、必要に応じてその他添加剤を加えてもよい。その他の添加剤の例には、酸化防止剤、安定化剤、耐電防止剤、レベリング剤、粘度調整剤など、一般的に使用されるものが含まれる。 Other additives may be added to the ceramic precursor-containing liquid as necessary. Examples of other additives include those commonly used such as antioxidants, stabilizers, antistatic agents, leveling agents, viscosity modifiers and the like.
 セラミック前駆体含有液の25℃における粘度は、1~40mPa・sであることが好ましく、5~40mPa・sであることがより好ましく、5~20mPa・sであることがさらに好ましい。セラミック前駆体含有液の粘度が高すぎると、インクジェットヘッドからのセラミック前駆体含有液の射出性が低下しやすい。セラミック前駆体含有液の粘度は、セラミック前駆体含有液に含まれる溶媒の量、酸化物粒子の量等で適宜調整できる。なお、粘度の測定は振動式粘度計で行う。 The viscosity of the ceramic precursor-containing liquid at 25 ° C. is preferably 1 to 40 mPa · s, more preferably 5 to 40 mPa · s, and further preferably 5 to 20 mPa · s. If the viscosity of the ceramic precursor-containing liquid is too high, the ejection properties of the ceramic precursor-containing liquid from the inkjet head are likely to deteriorate. The viscosity of the ceramic precursor-containing liquid can be appropriately adjusted by the amount of solvent, the amount of oxide particles, etc. contained in the ceramic precursor-containing liquid. The viscosity is measured with a vibration viscometer.
 セラミック前駆体含有液は、150℃における溶媒の揮発時間が15分以下であることが好ましい。これにより、セラミック前駆体含有液の乾燥負荷を低減でき、へのダメージを低減できる。なお、溶媒の揮発時間は、セラミック前駆体含有液に含まれる溶媒を選択することで適宜調整できる。 The ceramic precursor-containing liquid preferably has a volatilization time of the solvent at 150 ° C. of 15 minutes or less. Thereby, the drying load of a ceramic precursor containing liquid can be reduced, and damage to can be reduced. In addition, the volatilization time of a solvent can be suitably adjusted by selecting the solvent contained in a ceramic precursor containing liquid.
 本発明は、セラミック前駆体含有液の濡れ性が適切に調整されていることを特徴とする。具体的には、セラミック前駆体含有液の蛍光体粒子層に対する接触角を10°以下に設定する。つまり、セラミック前駆体含有液を蛍光体粒子層に濡れやすくする。 The present invention is characterized in that the wettability of the ceramic precursor-containing liquid is appropriately adjusted. Specifically, the contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is set to 10 ° or less. That is, the ceramic precursor-containing liquid is easily wetted with the phosphor particle layer.
 セラミック前駆体含有液の蛍光体粒子層に対する接触角は、LEDチップの被塗布物と同じ蛍光体粒子層をスライドガラス上に形成し、その蛍光体粒子層にセラミック前駆体含有液の液滴を一滴(液滴量3μL)滴下し、1秒後に接触角を実測する。接触角の測定には、株式会社協和界面化学製のDM-500を用いることができる。 The contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is the same as that of the LED chip to be coated on the slide glass, and the ceramic precursor-containing liquid droplets are formed on the phosphor particle layer. One drop (droplet volume 3 μL) is dropped, and the contact angle is measured after 1 second. For measuring the contact angle, DM-500 manufactured by Kyowa Interface Chemical Co., Ltd. can be used.
 一方、セラミック前駆体含有液のLEDチップの側面に対する接触角を20°以上、好ましくは30°以上に設定する。これにより、セラミック前駆体含有液をLEDチップの側面に濡れにくくする。これにより、蛍光体粒子層に着弾したインク液滴が、蛍光体粒子層にとどまりやすくなる。 Meanwhile, the contact angle of the ceramic precursor-containing liquid with respect to the side surface of the LED chip is set to 20 ° or more, preferably 30 ° or more. This makes it difficult to wet the ceramic precursor-containing liquid to the side surface of the LED chip. As a result, the ink droplets that have landed on the phosphor particle layer tend to stay on the phosphor particle layer.
 セラミック前駆体含有液のLEDチップに対する接触角は、LEDチップ(化合物半導体)にセラミック前駆体含有液の液滴を一滴(液滴量3μL)滴下し、1秒後に接触角を実測する。接触角の測定には、株式会社協和界面化学製のDM-500を用いることができる。 The contact angle of the ceramic precursor-containing liquid with respect to the LED chip is measured by dropping one drop of the ceramic precursor-containing liquid onto the LED chip (compound semiconductor) (droplet amount: 3 μL) and measuring the contact angle after 1 second. For measuring the contact angle, DM-500 manufactured by Kyowa Interface Chemical Co., Ltd. can be used.
 セラミック前駆体含有液の、蛍光体粒子層に対する接触角が10°以下であり、かつLEDチップに対する接触角が20°以上とすることで、蛍光体粒子層に塗布されたセラミック前駆体含有液が、蛍光体粒子層からLEDチップをつたって流れることを抑制できる。そのため、蛍光体層に塗布されたセラミック前駆体含有液は、蛍光体粒子層に留まることができる。 When the contact angle of the ceramic precursor-containing liquid to the phosphor particle layer is 10 ° or less and the contact angle to the LED chip is 20 ° or more, the ceramic precursor-containing liquid applied to the phosphor particle layer is It is possible to suppress the LED chip from flowing from the phosphor particle layer. Therefore, the ceramic precursor-containing liquid applied to the phosphor layer can remain in the phosphor particle layer.
 [セラミック前駆体含有液の調製]
 セラミック前駆体含有液は、セラミック前駆体、溶媒、必要に応じて、反応促進剤、酸化物粒子等を混合・攪拌して調製できる。撹拌は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機等で行う。
[Preparation of ceramic precursor-containing liquid]
The ceramic precursor-containing liquid can be prepared by mixing and stirring a ceramic precursor, a solvent, and, if necessary, a reaction accelerator and oxide particles. Stirring is performed by, for example, a stirring mill, a blade kneading stirring device, a thin film swirl type disperser or the like.
 <工程3)について>
 工程2)で形成されたセラミック前駆体含有蛍光体粒子層に含まれるセラミック前駆体を硬化させて波長変換層を形成する。
<About step 3>
A wavelength conversion layer is formed by curing the ceramic precursor contained in the ceramic precursor-containing phosphor particle layer formed in step 2).
 セラミック前駆体を硬化させるには加熱または光照射を行えばよい。セラミック前駆体を硬化させるときの加熱温度は、100℃~500℃とすることが好ましく、150℃~350℃とすることがより好ましい。加熱温度が低すぎると、セラミック前駆体の脱水縮合時に生じる水分等を十分に除去できず、波長変換層の耐光性等が低下しやすい。一方、加熱温度が高すぎると、LEDチップや基板等が劣化しやすい。 In order to cure the ceramic precursor, heating or light irradiation may be performed. The heating temperature for curing the ceramic precursor is preferably 100 ° C. to 500 ° C., and more preferably 150 ° C. to 350 ° C. If the heating temperature is too low, moisture and the like generated during the dehydration condensation of the ceramic precursor cannot be sufficiently removed, and the light resistance and the like of the wavelength conversion layer tend to be lowered. On the other hand, if the heating temperature is too high, the LED chip, the substrate and the like are likely to deteriorate.
 特にセラミック前駆体としてポリシラザンを用いる場合には、170~230nmの範囲の波長成分を含むUVU放射線(例えばエキシマ光)を塗膜に照射して硬化させた後に、さらに加熱硬化を行うことで、水分の浸透防止効果をより高める。 In particular, when polysilazane is used as the ceramic precursor, the coating film is irradiated with UVU radiation (for example, excimer light) containing a wavelength component in the range of 170 to 230 nm, and then cured by heating. Increases the penetration prevention effect.
 <工程4)について>
 LEDチップの上面に形成された波長変換層の上をシリコーン樹脂で封止(即ち、シリコーン層で覆う)してもよい。シリコーン樹脂による封止を行う装置には、ディスペンサーなどがある。この封止により、波長変換層の経時的な劣化を抑制することができ、波長変換層のLEDチップへの接着性を高めることができる。
<About Step 4>
The wavelength conversion layer formed on the upper surface of the LED chip may be sealed with a silicone resin (that is, covered with a silicone layer). An apparatus for sealing with a silicone resin includes a dispenser. By this sealing, deterioration of the wavelength conversion layer over time can be suppressed, and the adhesion of the wavelength conversion layer to the LED chip can be improved.
 本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。以下に、各実施例の評価方法を示す。 The present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this. Below, the evaluation method of each Example is shown.
 <LEDチップの基板への実装>
 図1に概念的に示される基板110とLEDチップ130とを用意した。具体的には、基板(開口径3mm,底面直径2mm、壁面角度60°)の収容部の中央に、1つの青色LEDチップ(直方体状;200μm×300μm×100μm)をフリップチップタイプで実装した。
<Mounting LED chip on substrate>
A substrate 110 and an LED chip 130 conceptually shown in FIG. 1 were prepared. Specifically, one blue LED chip (rectangular shape: 200 μm × 300 μm × 100 μm) was mounted in a flip chip type in the center of the housing part of the substrate (opening diameter 3 mm, bottom surface diameter 2 mm, wall surface angle 60 °).
 <蛍光体粒子の作製>
 以下の手順で黄色蛍光体粒子を作製した。下記に示す組成の蛍光体原料を十分に混合した混合物を、アルミ坩堝に充填し、これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合した。充填物を、水素含有窒素ガスを流通させた還元雰囲気中において1350~1450℃の温度範囲で2~5時間焼成して、焼成品((Y0.72Gd0.24Al12:Ce0.04)を得た。
<Preparation of phosphor particles>
Yellow phosphor particles were prepared by the following procedure. A mixture obtained by sufficiently mixing phosphor raw materials having the composition shown below was filled in an aluminum crucible, and an appropriate amount of fluoride such as ammonium fluoride was mixed therewith as a flux. The filler is fired in a reducing atmosphere in which hydrogen-containing nitrogen gas is circulated in a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a fired product ((Y 0.72 Gd 0.24 ) 3 Al 5 O 12 : Ce 0.04 ).
 (蛍光体粒子の原料組成)
 Y:7.41g
 Gd:4.01g
 CeO:0.63g
 Al:7.77g
(Raw material composition of phosphor particles)
Y 2 O 3 : 7.41 g
Gd 2 O 3 : 4.01 g
CeO 2 : 0.63 g
Al 2 O 3 : 7.77 g
 得られた焼成品を粉砕、洗浄、分離、乾燥することで所望の蛍光体を得た。得られた蛍光体を粉砕して10μm程度の粒径の蛍光体粒子とした。得られた蛍光体粒子の組成を調べて、所望の蛍光体であることを確認した。波長465nmの励起光に対する発光波長を調べたところ、おおよそ波長570nmにピーク波長を有していた。得られた蛍光体粒子を、以下の比較例および実施例で用いた。 The desired fired product was obtained by pulverizing, washing, separating and drying the obtained fired product. The obtained phosphor was pulverized to obtain phosphor particles having a particle size of about 10 μm. The composition of the obtained phosphor particles was examined to confirm that it was the desired phosphor. When the emission wavelength with respect to the excitation light having a wavelength of 465 nm was examined, the peak wavelength was approximately 570 nm. The obtained phosphor particles were used in the following comparative examples and examples.
 <蛍光体粒子層の形成>
 蛍光体粒子37.0gと、合成スメクタイト(ルーセンタイトSWN コープケミカル社製)3.0gと、純水60.0gとを混合し、蛍光体含有液を調製した。この蛍光体含有液を図2の塗布装置200を用いて、LEDチップ320の上面にスプレー塗布した。このとき、LEDチップ320の上面以外に蛍光体含有液を塗布しないようにマスク330を設置した。スプレー圧は0.2MPa、ノズル250のLEDチップ320に対する相対移動速度は100mm/sとした。その後、LEDチップ320の上面の蛍光体含有液を150℃で20分間乾燥させて、20μmの蛍光体粒子層を形成した。
<Formation of phosphor particle layer>
37.0 g of phosphor particles, 3.0 g of synthetic smectite (manufactured by Lucentite SWN Corp Chemical) and 60.0 g of pure water were mixed to prepare a phosphor-containing liquid. This phosphor-containing liquid was spray-coated on the upper surface of the LED chip 320 using the coating apparatus 200 of FIG. At this time, the mask 330 was installed so as not to apply the phosphor-containing liquid except for the upper surface of the LED chip 320. The spray pressure was 0.2 MPa, and the relative moving speed of the nozzle 250 with respect to the LED chip 320 was 100 mm / s. Thereafter, the phosphor-containing liquid on the upper surface of the LED chip 320 was dried at 150 ° C. for 20 minutes to form a 20 μm phosphor particle layer.
 <セラミック前駆体含有液の調製>
 (実施例1)
 表1に示す通り、メチルトリエトキシシラン(信越化学製LS-1890)3.0gと、2-プロパノール19.4gと、エチレングリコール77.6gとを混合して、セラミック前駆体含有液を作製した。
<Preparation of ceramic precursor-containing liquid>
(Example 1)
As shown in Table 1, 3.0 g of methyltriethoxysilane (LS-1890 manufactured by Shin-Etsu Chemical Co., Ltd.), 19.4 g of 2-propanol, and 77.6 g of ethylene glycol were mixed to prepare a ceramic precursor-containing liquid. .
 (実施例2)
 表1に示すとおり、メチルトリエトキシシラン(信越化学製LS-1890)3.0gと、2-プロパノール29.1gと、エチレングリコール67.9gとを混合して、セラミック前駆体含有液を作製した。
(Example 2)
As shown in Table 1, 3.0 g of methyltriethoxysilane (LS-1890, manufactured by Shin-Etsu Chemical Co., Ltd.), 29.1 g of 2-propanol, and 67.9 g of ethylene glycol were mixed to prepare a ceramic precursor-containing liquid. .
 (比較例1)
 表1に示すとおり、メチルトリエトキシシラン(信越化学製LS-1890)3.0gと、2-プロパノール33.95gと、エチレングリコール63.05gとを混合して、セラミック前駆体含有液を作製した。
(Comparative Example 1)
As shown in Table 1, 3.0 g of methyltriethoxysilane (LS-1890, manufactured by Shin-Etsu Chemical Co., Ltd.), 33.95 g of 2-propanol, and 63.05 g of ethylene glycol were mixed to prepare a ceramic precursor-containing liquid. .
 (比較例2)
 表1に示すとおり、メチルトリエトキシシラン(信越化学製LS-1890)3.0gと、2-プロパノール19.4gと、2-メチル-2,4-ペンタンジオール77.6gとを混合して、セラミック前駆体含有液を作製した。
(Comparative Example 2)
As shown in Table 1, 3.0 g of methyltriethoxysilane (LS-1890 manufactured by Shin-Etsu Chemical), 19.4 g of 2-propanol, and 77.6 g of 2-methyl-2,4-pentanediol were mixed, A ceramic precursor-containing liquid was prepared.
 実施例および比較例で調製したセラミック前駆体含有液の、蛍光体粒子層に対する接触角と、LEDチップに対する接触角とをそれぞれ求めた。 The contact angle with respect to the phosphor particle layer and the contact angle with respect to the LED chip of the ceramic precursor-containing liquids prepared in Examples and Comparative Examples were respectively determined.
 蛍光体粒子層に対する接触角は、前述と同様の蛍光体含有液をスライドガラス上に塗布および乾燥して、20μmの蛍光体粒子層を形成した(面積:200μm×300μm)。形成した蛍光体粒子層に、一滴のセラミック前駆体(液滴量3μL)を滴下し、滴下1秒後に接触角を実測した。接触角の測定には、DM-500(株式会社協和界面化学製)を用いた。 For the contact angle with respect to the phosphor particle layer, the same phosphor-containing liquid as described above was applied on a slide glass and dried to form a 20 μm phosphor particle layer (area: 200 μm × 300 μm). A drop of ceramic precursor (droplet volume 3 μL) was dropped on the formed phosphor particle layer, and the contact angle was measured one second after dropping. For the measurement of the contact angle, DM-500 (manufactured by Kyowa Interface Chemical Co., Ltd.) was used.
 LEDチップに対する接触角を、LEDチップを構成する半導体の半導体ウエハ表面に対する接触角と定義した。LEDチップの表面積が小さすぎるため、通常の接触角の測定方法(液滴量3μL)で測定することが困難なためである。蛍光体粒子層を成膜していない半導体ウエハー(直径6インチ)に、一滴のセラミック前駆体(液滴量3μL)を滴下し、滴下1秒後の液滴の半導体ウエハ表面に対する接触角を実測した。接触角の測定には、DM-500(株式会社協和界面化学製)を用いた。 The contact angle with respect to the LED chip was defined as the contact angle with respect to the semiconductor wafer surface of the semiconductor constituting the LED chip. This is because the surface area of the LED chip is too small, and it is difficult to perform measurement with a normal contact angle measurement method (droplet volume: 3 μL). A drop of ceramic precursor (droplet volume 3 μL) was dropped on a semiconductor wafer (diameter 6 inches) on which no phosphor particle layer was formed, and the contact angle of the droplet 1 second after the drop to the semiconductor wafer surface was measured. did. For the measurement of the contact angle, DM-500 (manufactured by Kyowa Interface Chemical Co., Ltd.) was used.
 <パターニングの評価方法>
 コニカミノルタ製インクジェット評価装置EB-150とXY-100とに、KM512Lインクジェットヘッドを用意した。実施例1、2および比較例1、2のセラミック前駆体含有液をLEDチップの上面に配置された蛍光体粒子層にそれぞれ塗布した。セラミック前駆体含有液の液滴量と解像度とは、湿潤膜厚(セラミック前駆体含有蛍光体粒子層)が100μmになるように調整した。その湿潤膜を150℃で15分間乾燥させた。その後、150℃で1時間熱処理を加え、セラミック前駆体を焼成してガラスを形成した。蛍光体粒子層のみにセラミック前駆体含有液をパターニングできたかを目視により観察し、以下の基準で評価した。評価結果を表1に示す。
 《評価基準》
 ○:LEDチップの上面に波長変換層を形成できた
 ×:蛍光体粒子層からセラミック前駆体含有液がLEDチップ側面をつたって流れてしまい、LEDチップの上面に波長変換層を形成できなかった
<Evaluation method of patterning>
A KM512L inkjet head was prepared for the Konica Minolta inkjet evaluation apparatus EB-150 and XY-100. The ceramic precursor-containing liquids of Examples 1 and 2 and Comparative Examples 1 and 2 were respectively applied to the phosphor particle layers disposed on the upper surface of the LED chip. The droplet amount and resolution of the ceramic precursor-containing liquid were adjusted so that the wet film thickness (ceramic precursor-containing phosphor particle layer) was 100 μm. The wet membrane was dried at 150 ° C. for 15 minutes. Thereafter, heat treatment was applied at 150 ° C. for 1 hour, and the ceramic precursor was fired to form glass. Whether the ceramic precursor-containing liquid was patterned only on the phosphor particle layer was visually observed and evaluated according to the following criteria. The evaluation results are shown in Table 1.
"Evaluation criteria"
○: The wavelength conversion layer could be formed on the upper surface of the LED chip. ×: The ceramic precursor-containing liquid flowed from the phosphor particle layer along the side surface of the LED chip, and the wavelength conversion layer could not be formed on the upper surface of the LED chip.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1および2のセラミック前駆体含有液は、蛍光体粒子層に塗布されたときに、蛍光体粒子層からLEDチップの側面に流れることが抑制された。そのため、セラミック前駆体含有液を蛍光体粒子層に留めることができ、LEDチップの上面に波長変換層を形成できた。 The ceramic precursor-containing liquids of Examples 1 and 2 were suppressed from flowing from the phosphor particle layer to the side surface of the LED chip when applied to the phosphor particle layer. Therefore, the ceramic precursor-containing liquid could be retained on the phosphor particle layer, and the wavelength conversion layer could be formed on the upper surface of the LED chip.
 一方、比較例1は、セラミック前駆体含有液の蛍光体粒子層に対する接触角が18.2°であり、セラミック前駆体含有液のLEDチップに対する濡れ性がやや高い状態である。また、比較例2は、セラミック前駆体含有液のLEDチップに対する接触角が2.5°であり、比較例1よりもさらにセラミック前駆体含有液のLEDチップに対する濡れ性が高い。そのため、蛍光体層に塗布されたセラミック前駆体含有液が、LEDチップの側面に流れてしまった。そのため、LEDチップの上面に波長変換層を形成できなかった。 On the other hand, in Comparative Example 1, the contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is 18.2 °, and the wettability of the ceramic precursor-containing liquid with respect to the LED chip is slightly high. In Comparative Example 2, the contact angle of the ceramic precursor-containing liquid to the LED chip is 2.5 °, and the wettability of the ceramic precursor-containing liquid to the LED chip is higher than that of Comparative Example 1. Therefore, the ceramic precursor containing liquid apply | coated to the fluorescent substance layer has flowed to the side surface of the LED chip. Therefore, the wavelength conversion layer could not be formed on the upper surface of the LED chip.
 本発明によれば、凸部を有する部材の凸部上面のみに機能性材料を含有するインクジェット塗布組成物を塗布することで、機能性材料のロスの低減等が可能となる。また、凸部上面に塗布されたインクジェット塗布組成物が凸部側面をつたって流れてしまうこと等を抑制できる。 According to the present invention, it is possible to reduce the loss of the functional material by applying the ink jet coating composition containing the functional material only to the upper surface of the convex portion of the member having the convex portion. Moreover, it can suppress that the inkjet coating composition apply | coated to the convex part upper surface flows through a convex part side surface, etc.
 100 LED装置
 110 基板
 120 メタル部
 130 LEDチップ
 140 突起電極
 150 波長変換層
 160 LED発光部
 200 塗布装置
 210 塗布液タンク
 220 蛍光体含有液
 230 連結管
 240 ヘッド
 250 ノズル
 310 基板
 320 LEDチップ
 330 マスク
 340 蛍光体粒子層
 350 インクジェットヘッド
 360 セラミック前駆体含有液の液滴
 370 セラミック前駆体含有蛍光体粒子層
 
 
DESCRIPTION OF SYMBOLS 100 LED apparatus 110 Board | substrate 120 Metal part 130 LED chip 140 Projection electrode 150 Wavelength conversion layer 160 LED light emission part 200 Coating apparatus 210 Coating liquid tank 220 Phosphor containing liquid 230 Connection pipe 240 Head 250 Nozzle 310 Substrate 320 LED chip 330 Mask 340 Fluorescence Body particle layer 350 Ink jet head 360 Liquid droplets of ceramic precursor-containing liquid 370 Ceramic precursor-containing phosphor particle layer

Claims (6)

  1.  凸部を有する部材の凸部の上面に、機能性層を選択的に形成するパターニング方法であって、
     凸部を備えた部材を準備する工程と、前記凸部の上面に、機能材料を含むインクジェット塗布組成物をインクジェット塗布して、機能性層を形成する工程とを含み、
     前記インクジェット塗布組成物の、前記凸部の上面に対する接触角が10°以下であり、かつ前記凸部の側面に対する接触角が20°以上である、パターニング方法。
    A patterning method for selectively forming a functional layer on the upper surface of a convex portion of a member having a convex portion,
    A step of preparing a member provided with a convex portion, and a step of forming a functional layer on the upper surface of the convex portion by applying an inkjet coating composition containing a functional material by inkjet.
    The patterning method of the said inkjet coating composition being a contact angle with respect to the upper surface of the said convex part of 10 degrees or less, and a contact angle with respect to the side surface of the said convex part being 20 degrees or more.
  2.  前記機能性層形成工程前に、
     前記凸部の上面の前記インクジェット塗布組成物に対する接触角を低下させる工程、または前記凸部の側面の前記インクジェット塗布組成物に対する接触角を低下させる工程、を有する請求項1に記載のパターニング方法。
    Before the functional layer forming step,
    The patterning method according to claim 1, further comprising a step of reducing a contact angle of the upper surface of the convex portion with respect to the inkjet coating composition or a step of decreasing a contact angle of the side surface of the convex portion with respect to the inkjet coating composition.
  3.  前記凸部が、その上面に複数の粒子を含む空隙層を有する、請求項1に記載のパターニング方法。 The patterning method according to claim 1, wherein the convex portion has a void layer including a plurality of particles on an upper surface thereof.
  4.  基板に実装された凸状のLEDチップと、前記LEDチップの上面のみに成膜された蛍光体粒子を含む波長変換層と、を含むLED装置の製造方法であって、
     基板に実装され、上面に蛍光体粒子を含む蛍光体粒子層が配置された凸状のLEDチップを用意する工程と、前記LEDチップの上面に配置された蛍光体粒子層に、インクジェット法でセラミック前駆体含有液を塗布する工程と、前記セラミック前駆体を硬化させて、前記蛍光体粒子層を波長変換層とする工程とを含み、
     前記セラミック前駆体含有液の、前記蛍光体粒子層に対する接触角が10°以下であり、かつ前記LEDチップに対する接触角が20°以上である、LED装置の製造方法。
    A method for manufacturing an LED device, comprising: a convex LED chip mounted on a substrate; and a wavelength conversion layer containing phosphor particles formed only on the upper surface of the LED chip,
    A step of preparing a convex LED chip mounted on a substrate and having a phosphor particle layer including phosphor particles disposed on an upper surface thereof, and a phosphor particle layer disposed on the upper surface of the LED chip by a ceramic by an inkjet method A step of applying a precursor-containing liquid, and a step of curing the ceramic precursor to make the phosphor particle layer a wavelength conversion layer,
    The method for manufacturing an LED device, wherein a contact angle of the ceramic precursor-containing liquid with respect to the phosphor particle layer is 10 ° or less and a contact angle with the LED chip is 20 ° or more.
  5.  前記セラミック前駆体含有液が、1価のアルコール、多価アルコール、それらの誘導体から選ばれる1種以上をさらに含む、請求項4に記載のLED装置の製造方法。 The method for producing an LED device according to claim 4, wherein the ceramic precursor-containing liquid further contains one or more selected from monohydric alcohols, polyhydric alcohols, and derivatives thereof.
  6.  前記セラミック前駆体含有液が、エチレングリコールと2-プロパノールとをさらに含む、請求項4に記載のLED装置の製造方法。
     
     
    The method for manufacturing an LED device according to claim 4, wherein the ceramic precursor-containing liquid further contains ethylene glycol and 2-propanol.

PCT/JP2013/005425 2012-09-12 2013-09-12 Patterning method using ink jet coating composition and method for producing led devices WO2014041812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535383A JP6237631B2 (en) 2012-09-12 2013-09-12 Manufacturing method of LED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012200350 2012-09-12
JP2012-200350 2012-09-12

Publications (1)

Publication Number Publication Date
WO2014041812A1 true WO2014041812A1 (en) 2014-03-20

Family

ID=50277952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005425 WO2014041812A1 (en) 2012-09-12 2013-09-12 Patterning method using ink jet coating composition and method for producing led devices

Country Status (2)

Country Link
JP (1) JP6237631B2 (en)
WO (1) WO2014041812A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149389A (en) * 2015-02-10 2016-08-18 株式会社東芝 Semiconductor light emitting device and phosphor layer formation method
WO2022124109A1 (en) * 2020-12-08 2022-06-16 シャープ株式会社 Fluorescent member and method for producing fluorescent member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266003A (en) * 2002-03-14 2003-09-24 Dainippon Printing Co Ltd Method for producing functional device and apparatus for producing the same
WO2012067200A1 (en) * 2010-11-19 2012-05-24 コニカミノルタオプト株式会社 Wavelength conversion element and production method therefor, light-emitting device and production method therefor
JP2012148213A (en) * 2011-01-17 2012-08-09 Toppan Printing Co Ltd Method and apparatus for inkjet coating

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129658A (en) * 1997-10-27 1999-05-18 Seiko Epson Corp Card which can form image, and recording article using the same
JP4450547B2 (en) * 2002-08-29 2010-04-14 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2007156155A (en) * 2005-12-06 2007-06-21 Fujifilm Corp Pixel barrier and its manufacturing method, substrate with the pixel barrier, manufacturing method of color filter and color filter manufactured by the manufacturing method, and liquid crystal display device
JP2007264187A (en) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd Coating device and coating method
JP4407673B2 (en) * 2006-07-10 2010-02-03 セイコーエプソン株式会社 Bank structure, electronic circuit, electronic device manufacturing method, and pattern forming method
JP2009025764A (en) * 2007-07-24 2009-02-05 Ulvac Japan Ltd Method for manufacturing color filter substrate, and method for manufacturing color filter
JP5742839B2 (en) * 2010-04-13 2015-07-01 コニカミノルタ株式会社 Light emitting device and manufacturing method thereof
JP5869769B2 (en) * 2011-03-07 2016-02-24 コニカミノルタ株式会社 Method for forming phosphor layer and method for manufacturing light emitting device
JP5729327B2 (en) * 2012-02-15 2015-06-03 コニカミノルタ株式会社 Manufacturing method of LED device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266003A (en) * 2002-03-14 2003-09-24 Dainippon Printing Co Ltd Method for producing functional device and apparatus for producing the same
WO2012067200A1 (en) * 2010-11-19 2012-05-24 コニカミノルタオプト株式会社 Wavelength conversion element and production method therefor, light-emitting device and production method therefor
JP2012148213A (en) * 2011-01-17 2012-08-09 Toppan Printing Co Ltd Method and apparatus for inkjet coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149389A (en) * 2015-02-10 2016-08-18 株式会社東芝 Semiconductor light emitting device and phosphor layer formation method
WO2022124109A1 (en) * 2020-12-08 2022-06-16 シャープ株式会社 Fluorescent member and method for producing fluorescent member

Also Published As

Publication number Publication date
JPWO2014041812A1 (en) 2016-08-18
JP6237631B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5900425B2 (en) Method for manufacturing light emitting device
WO2013051280A1 (en) Phosphor dispersion liquid, and production method for led device using same
JP5541433B1 (en) Method for manufacturing phosphor dispersion liquid and method for manufacturing LED device
WO2014104295A1 (en) Light emitting device
JP5999223B2 (en) Method for manufacturing light emitting device and phosphor mixture
WO2012086483A1 (en) Phosphor coating device, and method for manufacturing light-emitting device
JP2014130871A (en) Light emitting device
JP2014138081A (en) Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
WO2014030342A1 (en) Led device and method for manufacturing same
JP6237631B2 (en) Manufacturing method of LED device
JP2014019844A (en) Phosphor dispersion and method for manufacturing led device
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
WO2014103330A1 (en) Phosphor dispersion, led device and method for manufacturing same
JP5747994B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP5880566B2 (en) LED device
JP5729327B2 (en) Manufacturing method of LED device
JP5874425B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP2014160713A (en) Led device manufacturing method
JP2014127495A (en) Led device and method for manufacturing the same
JP5862675B2 (en) Method for manufacturing light emitting device
JP5870736B2 (en) Method for producing phosphor dispersion and method for producing LED device using the same
JP5765428B2 (en) Manufacturing method of LED device
JP2017011130A (en) Solution for dispersing high specific gravity particles, phosphor dispersion liquid including the solution, light-emitting device, and method for manufacturing the solution
JP2014165463A (en) Light-emitting apparatus and process of manufacturing the same
JP2017025215A (en) Solution for dispersing high specific gravity particle, phosphor particle dispersion liquid including the same, light-emitting device and method for producing the same device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836310

Country of ref document: EP

Kind code of ref document: A1