WO2014041801A1 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014041801A1
WO2014041801A1 PCT/JP2013/005387 JP2013005387W WO2014041801A1 WO 2014041801 A1 WO2014041801 A1 WO 2014041801A1 JP 2013005387 W JP2013005387 W JP 2013005387W WO 2014041801 A1 WO2014041801 A1 WO 2014041801A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cooling
temperature
hot
steel sheet
Prior art date
Application number
PCT/JP2013/005387
Other languages
English (en)
French (fr)
Inventor
力 上
聡太 後藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112015005440-4A priority Critical patent/BR112015005440B1/pt
Priority to IN770DEN2015 priority patent/IN2015DN00770A/en
Priority to KR1020157007699A priority patent/KR101702793B1/ko
Priority to CN201380047662.8A priority patent/CN104619877B/zh
Priority to JP2014510587A priority patent/JP5605526B2/ja
Priority to EP13836371.8A priority patent/EP2871253B1/en
Priority to US14/427,822 priority patent/US10047416B2/en
Publication of WO2014041801A1 publication Critical patent/WO2014041801A1/ja
Priority to US16/027,803 priority patent/US10900104B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a low-yield-ratio high-strength hot-rolled steel sheet suitable as a material for spiral steel pipes or ERW steel pipes used for line pipes and a method for producing the same.
  • it relates to ensuring a low yield ratio and excellent low temperature toughness while preventing a decrease in yield strength after pipe making.
  • spiral steel pipes that are made by spirally winding steel sheets can be used to efficiently produce large-diameter steel pipes, and in recent years have come to be widely used as line pipes for transporting crude oil and natural gas.
  • pipelines for long-distance transportation are required to have high transportation efficiency and have a high pressure, and there are many oil wells and gas wells in cold regions, and they often pass through cold regions.
  • the line pipe used is required to have high strength and high toughness.
  • the line pipe is required to have a low yield ratio.
  • the yield ratio of the spiral steel pipe in the longitudinal direction of the pipe hardly changes depending on the pipe making, and almost coincides with that of the hot-rolled steel sheet. Therefore, in order to reduce the yield ratio of a line pipe made of spiral steel pipe, it is necessary to lower the yield ratio of the hot-rolled steel sheet as the material.
  • Patent Document 1 describes a method of manufacturing a hot-rolled steel sheet for a low-yield ratio high-tensile line pipe excellent in low-temperature toughness.
  • the technique described in Patent Document 1 contains, by weight, C: 0.03 to 0.12%, Si: 0.50% or less, Mn: 1.70% or less, Al: 0.070% or less, and Nb: 0.01 to 0.05%.
  • V 0.01 to 0.02%
  • Ti 0.01 to 0.20% of steel slab containing at least one kind is heated to 1180 to 1300 ° C, then rough rolling finish temperature: 950 to 1050 ° C, finish rolling finish temperature : Hot rolled under conditions of 760 to 800 ° C, cooled at a cooling rate of 5 to 20 ° C / s, started air cooling until reaching 670 ° C, held for 5 to 20s, then 20 ° C / It is cooled at a cooling rate of s or higher and wound at a temperature of 500 ° C. or lower to form a hot rolled steel sheet.
  • Patent Document 2 describes a method for producing a hot-rolled steel sheet for a high-strength, low-yield ratio pipe.
  • the technology described in Patent Document 2 contains C: 0.02 to 0.12%, Si: 0.1 to 1.5%, Mn: 2.0% or less, Al: 0.01 to 0.10%, and Mo + Cr: 0.1 to 1.5%
  • the steel to be heated is heated to 1000 to 1300 ° C, hot rolling is finished in the range of 750 to 950 ° C, and the steel is cooled to the coiling temperature at a cooling rate of 10 to 50 ° C / s, and in the range of 480 to 600 ° C. It is a manufacturing method of the hot-rolled steel plate wound up.
  • the main component is ferrite, and it has martensite with an area ratio of 1 to 20%, and the yield ratio is 85% or less.
  • the yield ratio is 85% or less.
  • Patent Document 3 describes a method for producing a low yield ratio electric resistance welded steel pipe excellent in low temperature toughness.
  • the technology described in Patent Document 3 includes C: 0.01 to 0.09% 0.0, Si: 0 to 0.50% or less, Mn: 2.5% or less, Al: 0.01 to 0.10%, Nb: 0.005 to 0.10% by mass%.
  • a slab with a composition containing Mneq that satisfies the content relation of 2.0 or more is hot-rolled, cooled to 500 to 650 ° C at a cooling rate of 5 ° C / s or more, and this temperature range. Then, the steel sheet is retained for 10 minutes or more and then cooled to a temperature of less than 500 ° C. to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet is formed into an electric-welded steel pipe.
  • Patent Document 3 it has a structure containing bainitic ferrite as a main phase and containing 3% or more martensite and, if necessary, 1% or more retained austenite, and has a fracture surface transition temperature of It is said that ERW steel pipes with excellent low temperature toughness and high plastic deformation absorption ability can be manufactured at -50 ° C or lower.
  • Patent Document 4 describes a low yield ratio high tough steel plate.
  • C 0.03-0.15%
  • Si 1.0% or less
  • Mn 1.0-2.0%
  • Al 0.005-0.060%
  • Ti 0.008-0.030%
  • N 0.0020-0.010%
  • O Heated to a slab having a composition containing 0.010% or less, preferably 950 to 1300 ° C, and the reduction rate in the temperature range of (Ar3 transformation point + 100 ° C) to (Ar3 transformation point + 150 ° C) is 10% or more.
  • JP 63-227715 A Japanese Patent Laid-Open No. 10-176239 JP 2006-299413 JP JP 2010-59472 A
  • the cooling rate is large before and after air cooling, particularly after air cooling, it is necessary to quickly and appropriately control the cooling rate, the cooling stop temperature, and the like.
  • the hot-rolled steel sheet obtained by the technique described in Patent Document 1 has a problem that it has a structure mainly composed of soft polygonal ferrite and it is difficult to obtain a desired high strength.
  • Patent Document 2 still has a problem in that a decrease in yield strength after pipe forming is still recognized, and a recent increase in steel pipe strength cannot be satisfied.
  • Patent Document 3 has a problem that it has not yet been able to stably secure excellent low-temperature toughness, which is a recent cold region specification, with a fracture surface transition temperature vTrs of ⁇ 80 ° C. or lower. .
  • the thick steel plate obtained by the technique described in Patent Document 4 can only have a toughness of about ⁇ 30 to ⁇ 41 ° C. at the fracture surface transition temperature vTrs at the most. There is a problem that can not be dealt with.
  • the finishing rolling speed is 100 to 250 mpm, so the cooling zone after finishing rolling is similarly passed at high speed. Therefore, cooling having a larger heat transfer coefficient is performed as the plate thickness increases. For this reason, there is a problem that the surface hardness of the hot-rolled steel sheet becomes higher than necessary, and the surface of the hot-rolled steel sheet is hardened as compared with the inside of the plate thickness, and the uneven distribution is often increased. Such a non-uniform distribution of hardness also causes a problem that the steel pipe characteristics vary.
  • An object of the present invention is to provide a high yield hot-rolled steel sheet having a low yield ratio and excellent in low temperature toughness that can be prevented from lowering.
  • an object is to provide a low yield ratio high strength hot-rolled steel sheet having excellent low-temperature toughness having a thickness of 8 mm or more (more preferably 10 mm or more) and 50 mm or less (more preferably 25 mm or less).
  • high strength refers to the case where the yield strength in the 30-degree direction from the rolling direction is 480 MPa or more and the tensile strength in the sheet width direction is 600 MPa or more, and “excellent in low temperature toughness” When the fracture surface transition temperature vTrs of the Charpy impact test is ⁇ 80 ° C. or lower, “low yield ratio” indicates a continuous yield type stress-strain curve, and the yield ratio is 85% or lower, Each shall be said.
  • the “steel plate” includes a steel plate and a steel strip.
  • the present inventors have intensively studied various factors affecting steel pipe strength after pipe making and steel pipe toughness.
  • the decrease in strength due to pipe making is caused by the decrease in yield strength due to the Bauschinger effect on the inner surface of the tube where compressive stress acts and the disappearance of yield elongation on the outer surface side where tensile stress acts. I found out.
  • the inventors have made a structure in which the structure of the steel sheet has fine bainitic ferrite as a main phase, and hard massive martensite is finely dispersed in the bainitic ferrite.
  • a steel pipe that can prevent a decrease in strength after pipe making, particularly after spiral pipe making, and that has a yield ratio of 85% or less and also has excellent toughness can be obtained.
  • the work hardening ability of the steel plate material is improved, so that a sufficient increase in strength can be obtained by work hardening on the outer surface of the pipe during pipe making.
  • the toughness is remarkably improved by finely dispersing massive martensite. Furthermore, it is particularly effective to control the lath spacing of the bainitic ferrite on the surface layer in order to have excellent pipe shape after molding by preventing uneven rise in surface hardness and to have uniform deformability. I also found out.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. (1) By mass%, C: 0.03-0.10%, Si: 0.01-0.50%, Mn: 1.4-2.2%, P: 0.025% or less, S: 0.005% or less, Al: 0.005-0.10%, Nb: 0.02 -0.10%, Ti: 0.001-0.030%, Mo: 0.01-0.50%, Cr: 0.01-0.50%, Ni: 0.01-0.50%, the composition consisting of the balance Fe and inevitable impurities, and the surface layer It consists of a tick ferrite phase or a bainitic ferrite phase and a tempered martensite phase, the lath spacing of the bainitic ferrite phase is 0.2 to 1.6 ⁇ m, the inner layer has a bainitic ferrite phase as a main phase,
  • the two-phase structure has a structure in which massive martensite having an aspect ratio of less than 5.0 is included in an
  • the steel material is, in mass%, C: 0.03 to 0.10%, Si: 0.01 to 0.50% , Mn: 1.4 to 2.2%, P: 0.025% or less, S: 0.005% or less, Al: 0.005 to 0.10%, Nb: 0.02 to 0.10%, Ti: 0.001 to 0.030%, Mo: 0.01 to 0.50%, Cr: A steel material containing 0.01 to 0.50%, Ni: 0.01 to 0.50% and having a composition consisting of the balance Fe and unavoidable impurities, and the hot rolling step, the steel material is heated to a heating temperature of 1050 to 1300 ° C.
  • the heated steel material is subjected to rough rolling to form a sheet bar, and the sheet bar is subjected to a finish rolling at a cumulative reduction ratio of 50% or more in a temperature range of 930 ° C. or less to form a hot rolled steel sheet.
  • the cooling process is started immediately after finishing rolling, and the temperature in the center of the plate thickness is 750 to 600 ° C with an average cooling rate of 5 to 30 ° C / s and 600 to 450 ° C.
  • Winding temperature A method for producing a hot-rolled steel sheet, characterized by a step of winding at 450 ° C. or higher.
  • a method for producing a hot-rolled steel sheet characterized by having a composition satisfying a Moeq defined in the range of 1.4 to 2.2%.
  • Cu 0.50% or less
  • V 0.10% or less
  • B 0.0005% or less
  • the manufacturing method of the hot rolled sheet steel characterized by including a seed or more.
  • the present invention particularly suitable as a material for spiral steel pipes, excellent in uniform deformability at the time of pipe making, less decrease in strength after pipe making, and excellent in pipe shape after pipe making, from the rolling direction.
  • a high-strength hot-rolled steel sheet with excellent yield ratio is obtained.
  • the low yield ratio high strength hot-rolled steel sheet of the present invention can be easily and inexpensively manufactured without any special heat treatment. As described above, the present invention has a remarkable industrial effect.
  • the present invention there is an effect that a line pipe laid by the reel barge method and an ERW steel pipe for a line pipe that requires earthquake resistance can be easily and inexpensively manufactured. Moreover, if the low-yield ratio high-strength hot-rolled steel sheet according to the present invention is used as a raw material, there is also an effect that a high-strength spiral steel pipe pile serving as a building member and a port member having excellent earthquake resistance can be manufactured. Moreover, since the spiral steel pipe using such a hot-rolled steel sheet has a low yield ratio in the longitudinal direction of the pipe, it has an effect that it can also be applied to high-value-added high-strength steel pipe piles.
  • C precipitates as a carbide and contributes to an increase in the strength of the steel sheet through precipitation strengthening. It is also an element that contributes to improving the toughness of the steel sheet through grain refinement. Further, C has an action of forming a solid solution in the steel, stabilizing austenite, and promoting the formation of untransformed austenite. In order to obtain these effects, a content of 0.03% or more is required. On the other hand, if the content exceeds 0.10%, the tendency to form coarse cementite at the grain boundaries becomes strong, and the toughness decreases. For this reason, C is limited to the range of 0.03-0.10%. Preferably, the content is 0.04 to 0.09%.
  • Si 0.01-0.50% Si contributes to increasing the strength of the steel sheet through solid solution strengthening. Moreover, it contributes to yield ratio reduction through formation of a hard second phase (for example, martensite). In order to obtain these effects, a content of 0.01% or more is required. On the other hand, if the content exceeds 0.50%, the generation of oxide scale containing firelite becomes remarkable, and the appearance of the steel sheet deteriorates. For this reason, Si was limited to the range of 0.01 to 0.50%. Note that the content is preferably 0.20 to 0.40%.
  • Mn 1.4-2.2% Mn dissolves to improve the hardenability of the steel and promote the formation of martensite. Further, it is an element that lowers the bainitic ferrite transformation start temperature and contributes to improvement of steel sheet toughness through refinement of the structure. In order to obtain these effects, a content of 1.4% or more is required. On the other hand, the content exceeding 2.2% lowers the toughness of the weld heat affected zone. For this reason, Mn was limited to the range of 1.4 to 2.2%. From the viewpoint of stable production of massive martensite, it is preferably 1.6 to 2.0%.
  • P 0.025% or less P dissolves and contributes to an increase in the strength of the steel sheet, but at the same time lowers the toughness. For this reason, in the present invention, P is preferably reduced as much as possible as an impurity. However, up to 0.025% is acceptable. Preferably it is 0.015% or less. In addition, since excessive reduction raises refining cost, it is preferable to set it as about 0.001% or more.
  • S 0.005% or less S forms coarse sulfide inclusions such as MnS in steel and causes cracks such as slabs. Moreover, the ductility of a steel plate is reduced. Such a phenomenon becomes remarkable when the content exceeds 0.005%. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.004% or less. In addition, although there is no problem even if S content is 0%, since excessive reduction raises refining cost, it is preferable to make it about 0.0001% or more.
  • Al acts as a deoxidizer. Further, it is an element effective for fixing N that causes strain aging. In order to obtain these effects, a content of 0.005% or more is required. On the other hand, if the content exceeds 0.10%, the amount of oxide in the steel increases and the toughness of the base metal and the bath contact portion decreases. Further, when a steel material such as a slab or a steel plate is heated in a heating furnace, a nitride layer is easily formed on the surface layer, which may increase the yield ratio. For this reason, Al is limited to the range of 0.005 to 0.10%. In addition, Preferably it is 0.08% or less.
  • Nb 0.02 to 0.10% Nb dissolves in steel or precipitates as carbonitride, and has the effect of suppressing austenite grain coarsening and suppressing recrystallization of austenite grains. Make it possible. It is also an element that precipitates finely as carbide or carbonitride and contributes to an increase in the strength of the steel sheet. During cooling after hot rolling, it precipitates as carbides or carbonitrides on the dislocations introduced by hot rolling, acts as the core of ⁇ ⁇ ⁇ transformation, promotes intragranular formation of bainitic ferrite, This contributes to the formation of fine massive untransformed austenite and, in turn, fine massive martensite. In order to obtain these effects, a content of 0.02% or more is required.
  • an excessive content exceeding 0.10% increases deformation resistance during hot rolling, which may make hot rolling difficult.
  • An excessive content exceeding 0.10% leads to an increase in the yield strength of the main phase bainitic ferrite, making it difficult to ensure a yield ratio of 85% or less.
  • Nb was limited to the range of 0.02 to 0.10%. Note that the content is preferably 0.03 to 0.07%.
  • Ti 0.001 to 0.030%
  • Ti fixes N as nitride and contributes to prevention of slab cracking. Moreover, it has the effect
  • a content of 0.001% or more is required.
  • the content exceeds 0.030%, the bainitic ferrite transformation point is excessively raised and the toughness of the steel sheet is lowered. For this reason, Ti is limited to the range of 0.001 to 0.030%. Note that the content is preferably 0.005 to 0.025%.
  • Mo 0.01-0.50% Mo contributes to the improvement of hardenability, attracts C in bainitic ferrite to untransformed austenite, and has an action of promoting martensite formation by improving the hardenability of untransformed austenite. Furthermore, it is an element that contributes to an increase in steel sheet strength by solid solution in steel and solid solution strengthening. In order to obtain these effects, a content of 0.01% or more is required. On the other hand, if the content exceeds 0.50%, martensite is formed more than necessary, and the toughness of the steel sheet is lowered. In addition, Mo is an expensive element, and a large amount thereof causes an increase in material cost. For this reason, Mo is limited to the range of 0.01 to 0.50%. Note that the content is preferably 0.10 to 0.40%.
  • Cr 0.01-0.50% Cr delays the ⁇ ⁇ ⁇ transformation, contributes to improving hardenability, and has an action of promoting martensite formation. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if it exceeds 0.50%, defects tend to occur frequently in the weld. For this reason, Cr is limited to the range of 0.01 to 0.50%. Note that the content is preferably 0.20 to 0.45%.
  • Ni 0.01-0.50% Ni contributes to improving hardenability and promotes martensite formation. In addition, it is an element that further contributes to improved toughness. In order to obtain these effects, a content of 0.01% or more is required. On the other hand, if the content exceeds 0.50%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Ni was limited to the range of 0.01 to 0.50%. Preferably, the content is 0.30 to 0.45%.
  • Moeq (%) Mo + 0.36Cr + 0.77Mn + 0.07Ni (1) (Here, Mn, Ni, Cr, Mo: Content of each element (mass%)) It is preferable to adjust so that Moeq defined by the formula satisfies the range of 1.4 to 2.2%.
  • Moeq is an index representing the hardenability of untransformed austenite remaining in the steel sheet after passing through the cooling step. When Moeq is less than 1.4%, the hardenability of untransformed austenite is insufficient, and it transforms into pearlite or the like during the subsequent winding process.
  • Moeq exceeds 2.2%, martensite is generated more than necessary, and the toughness decreases. For this reason, Moeq is preferably limited to a range of 1.4 to 2.2%. If Moeq is 1.5% or more, the yield ratio is low and the deformability is further improved. For this reason, it is more preferable to set it as 1.5% or more.
  • Cu 0.50% or less
  • V 0.10% or less
  • B One or more selected from 0.0005% or less
  • Cu, V, and B are all elements that contribute to increasing the strength of steel sheets. It can be selected and contained as necessary.
  • V and Cu contribute to increasing the strength of the steel sheet through solid solution strengthening or precipitation strengthening.
  • B segregates at the grain boundaries and contributes to increasing the strength of the steel sheet through improving hardenability.
  • the Cu content exceeds 0.50%, the hot workability is lowered.
  • V Content exceeding 0.10% reduces weldability.
  • B Content exceeding 0.0005% lowers the toughness of the steel sheet. For this reason, when it contains, it is preferable to limit to Cu: 0.50% or less, V: 0.10% or less, B: 0.0005% or less.
  • Ca: 0.0005 to 0.0050% Ca is an element that contributes to the control of the morphology of sulfides in which coarse sulfides are spherical sulfides, and can be contained as required. In order to acquire such an effect, it is preferable to contain Ca: 0.0005% or more. On the other hand, the content exceeding Ca: 0.0050% reduces the cleanliness of the steel sheet. For this reason, when it contains, it is preferable to limit to Ca: 0.0005 to 0.0050% of range.
  • the balance other than the components described above consists of Fe and inevitable impurities. As unavoidable impurities, N: 0.005% or less, O: 0.005% or less, Mg: 0.003% or less, Sn: 0.005% or less are acceptable.
  • the low yield ratio high strength hot-rolled steel sheet of the present invention has the above-described composition, and further includes a sheet thickness direction surface side layer (hereinafter sometimes simply referred to as a surface layer) and a sheet thickness direction inner surface side layer (hereinafter simply referred to as a surface layer). (Sometimes referred to as the inner layer).
  • the “thickness direction inner surface side layer (inner layer)” refers to a region having a depth of 2 mm or more in the thickness direction inward from the front and back surfaces of the steel plate.
  • the thickness direction surface side layer (surface layer) consists of a bainitic ferrite phase or a bainitic ferrite phase and a tempered martensite phase, and has a structure in which the lath interval of the bainitic ferrite phase is 0.2 to 1.6 ⁇ m. .
  • the “bainitic ferrite” herein is a phase having a substructure with a high dislocation density, and includes acicular ferrite and acicular ferrite.
  • the bainitic ferrite does not include polygonal ferrite having an extremely low dislocation density or pseudo-polygonal ferrite with a substructure such as fine subgrains. By setting it as such a structure
  • the processing strain in the plate thickness direction increases as the distance from the plate thickness center increases, and becomes greater as the plate thickness increases. Therefore, it is important to adjust the surface layer structure. Further, if the lath spacing of the bainitic ferrite phase on the surface layer is less than 0.2 ⁇ m, the dislocation density is high, causing an excessive increase in hardness and causing shape defects and cracks during pipe forming, so special care is required. On the other hand, when the lath spacing exceeds 1.6 ⁇ m, the dislocation density is lowered, it becomes difficult to secure a desired high strength, and this causes a variation in strength.
  • the lath spacing of the bainitic ferrite phase on the surface layer was limited to 0.2 to 1.6 ⁇ m.
  • the lath interval can be measured by observing the lath from the side by the method described in the examples described later.
  • the surface layer structure is a substantially single phase structure with a bainitic ferrite phase of 98% or more, and the tempered martensite phase is preferably 2% or less in terms of area ratio. Inclusion of a tempered martensite phase exceeding 2% tends to increase the cross-sectional hardness of the surface layer portion, the surface layer is hardened compared to the inside of the plate thickness, and exhibits a non-uniform distribution of hardness.
  • the average particle size of tempered martensite is preferably 3.0 ⁇ m or less.
  • the maximum particle size of the tempered martensite is preferably 4.0 ⁇ m or less.
  • the tempered martensite is preferably uniformly dispersed with a maximum particle size of 4.0 ⁇ m or less. Note that the above-described structure is that the cumulative reduction ratio in the temperature range of 930 ° C. or lower in finish rolling is 50% or more in the manufacturing conditions, and in the cooling step after finish rolling, the sheet thickness central portion temperature is 750 to Primary cooling in which the temperature range of 600 ° C.
  • the sheet is cooled at an average cooling rate of 5 to 30 ° C./s, cooling is stopped at the cooling stop temperature of 600 to 450 ° C., and further, the cooling stop temperature of the primary cooling From the cooling to the coiling temperature, the sheet is cooled at an average cooling rate of 2 ° C./s or less at the sheet thickness center temperature, or retained for 20s or more in the temperature range from the cooling stop temperature of the primary cooling to the coiling temperature.
  • the primary cooling is performed at a surface temperature of 600 to 450 ° C. so that the average cooling rate is 100 ° C./s or less, and the cooling stop temperature is the surface temperature (Ms transformation point). Can be obtained by adjusting the cooling so as to be over -20 ° C). That.
  • an average particle diameter and a maximum particle diameter can be measured by the method as described in the Example mentioned later.
  • the surface layer structure is different from the inner layer structure shown below.
  • the sheet thickness direction inner surface side layer has bainitic ferrite as a main phase and has a structure composed of a main phase and a second phase.
  • the main phase refers to a phase having an occupied area of 50% or more in area ratio.
  • fine carbonitride is precipitated in the bainitic ferrite as the main phase.
  • the bainitic ferrite phase that is the main phase has a feature that the lath interval is 0.2 to 1.6 ⁇ m.
  • the lath interval is less than 0.2 ⁇ m, the dislocation density is high, causing an excessive increase in hardness, the movable dislocations caused by the strain formed around the massive martensite phase do not function sufficiently, and the low yield ratio tends to be hindered.
  • the lath interval exceeds 1.6 ⁇ m, the dislocation density is lowered, it becomes difficult to secure a desired high strength, and this causes a variation in strength.
  • the lath spacing of the inner layer bainitic ferrite was limited to 0.2 to 1.6 ⁇ m.
  • the bainitic ferrite phase as the main phase preferably has an average particle size of 10 ⁇ m or less. Thereby, variation in toughness is reduced. When the average grain size of the bainitic ferrite phase exceeds 10 ⁇ m, fine grains and coarse grains are mixed, and the low temperature toughness tends to fluctuate.
  • the second phase in the inner layer is a massive martensite phase with an area ratio of 1.4 to 15% and an aspect ratio of less than 5.0.
  • the massive martensite referred to in the present invention is martensite generated from untransformed austenite in the prior ⁇ grain boundaries or in the prior ⁇ grains in the cooling step after rolling. In the present invention, such massive martensite is dispersed between the old ⁇ grain boundaries or the bainitic ferrite grains as the main phase and the bainitic ferrite grains. Martensite is harder than the main phase, and a large amount of movable dislocations can be introduced into the bainitic ferrite during processing, and the yield behavior can be a continuous yield type.
  • martensite has a higher tensile strength than bainitic ferrite, a low yield ratio can be achieved.
  • the martensite is a massive martensite having an aspect ratio of less than 5.0, more movable dislocations can be introduced into the surrounding bainitic ferrite, which is effective in improving the deformability.
  • the martensite aspect ratio is 5.0 or more, it becomes rod-shaped martensite (non-agglomerated martensite) and the desired low yield ratio cannot be achieved, but it is acceptable if the rod-shaped martensite is less than 30% in terms of the area ratio relative to the total amount of martensite. it can.
  • the bulk martensite is preferably 70% or more in terms of the area ratio of the total amount of martensite.
  • an aspect ratio can be measured by the method as described in the Example mentioned later.
  • the massive martensite phase is dispersed in an area ratio of 1.4 to 15% as the second phase. If the massive martensite is less than 1.4% in terms of area ratio, it becomes difficult to ensure a desired low yield ratio. On the other hand, if the massive martensite increases in area ratio exceeding 15%, the low temperature toughness is remarkably lowered. For this reason, lump martensite was limited to the range of 1.4 to 15%. In addition, Preferably it is 10% or less.
  • an area ratio can be measured by the method as described in the Example mentioned later.
  • the size of the massive martensite is preferably 5.0 ⁇ m or less at maximum and 0.5 to 3.0 ⁇ m on average.
  • the size of the massive martensite is preferably 5.0 ⁇ m or less at maximum and 0.5 to 3.0 ⁇ m on average. In addition, the size was defined as “diameter” of 1/2 of the sum of the long side length and the short side length.
  • the maximum of them was regarded as the “maximum” of the size of the massive martensite, and the value obtained by arithmetically averaging the “diameter” of each obtained grain was designated as the “average” of the size of the massive martensite.
  • the number of martensite to be measured is 100 or more. Note that the above-described structure is that the cumulative reduction ratio in the temperature range of 930 ° C. or lower in finish rolling is 50% or more in the manufacturing conditions, and in the cooling step after finish rolling, the sheet thickness central portion temperature is 750 to Primary cooling in which a temperature range of 600 ° C.
  • the sheet is cooled at an average cooling rate of 2 ° C./s or less at the sheet thickness center temperature, or retained for 20s or more in the temperature range from the cooling stop temperature of the primary cooling to the coiling temperature.
  • the primary cooling is performed at a surface temperature of 600 to 450 ° C. so that the average cooling rate is 100 ° C./s or less, and the cooling stop temperature is the surface temperature (Ms transformation point). Can be obtained by adjusting the cooling so as to be over -20 ° C). That.
  • the preferable manufacturing method of the low yield ratio high-strength hot-rolled steel sheet of this invention is demonstrated.
  • the steel material having the above composition is subjected to a hot rolling process, a cooling process, and a winding process to obtain a hot rolled steel sheet.
  • it is not necessary to specifically limit the manufacturing method of the steel raw material to be used and the molten steel having the above composition is melted by using a generally known melting method such as a converter or an electric furnace, and a normal casting method or the like is usually used.
  • a steel material such as a slab by a known melting method.
  • the obtained steel material is subjected to a hot rolling process.
  • a steel material having the above composition is heated to a heating temperature of 1050 to 1300 ° C., subjected to rough rolling to form a sheet bar, and the sheet bar is subjected to a cumulative reduction in a temperature range of 930 ° C. or less.
  • Rate It is a process of applying hot rolling to 50% or more to obtain a hot-rolled steel sheet.
  • Heating temperature 1050-1300 ° C
  • the steel material used in the present invention essentially contains Nb and Ti as described above. In order to secure a desired high strength by precipitation strengthening, it is necessary to dissolve these coarse carbides, nitrides and the like once and then finely precipitate them. Therefore, the heating temperature of the steel material is 1050 ° C. or higher.
  • each element will remain undissolved and desired steel plate strength will not be obtained.
  • the temperature exceeds 1300 ° C.
  • the crystal grains become coarse and the steel sheet toughness decreases.
  • the heating temperature of the steel material was limited to 1050-1300 ° C.
  • the steel material heated to the above heating temperature is subjected to rough rolling to form a sheet bar.
  • the conditions for rough rolling need not be particularly limited as long as a sheet bar having a desired size and shape can be secured.
  • the obtained sheet bar is then finish-rolled to obtain a hot-rolled steel sheet having a desired size and shape. Finish rolling is rolling with a cumulative reduction ratio of 50% or more in a temperature range of 930 ° C. or lower.
  • Cumulative rolling reduction in the temperature range of 930 ° C or lower 50% or higher Cumulative rolling reduction in the temperature range of 930 ° C or lower is 50% for finer bainitic ferrite in the inner layer structure and fine dispersion of massive martensite. % Or more. If the cumulative rolling reduction in the temperature range of 930 ° C. or less is less than 50%, the rolling amount is insufficient, and the bainitic ferrite that is the main phase in the inner layer structure cannot be made fine.
  • the cumulative rolling reduction in the temperature range of 930 ° C. or lower in finish rolling is limited to 50% or more.
  • the cumulative rolling reduction is preferably 80% or less. Even if the cumulative rolling reduction exceeds 80%, the effect is saturated, the occurrence of segregation becomes significant, and the absorbed energy in the Charpy impact test may be reduced.
  • the finish rolling temperature of finish rolling is preferably 850 to 760 ° C.
  • finishing temperature of finish rolling exceeds 850 ° C and becomes high, it is necessary to increase the reduction amount per pass in order to increase the cumulative reduction rate in the temperature range of 930 ° C or less to 50% or more. There may be an increase in load.
  • the temperature is lower than 760 ° C., ferrite is produced during rolling, which causes coarsening of the structure and precipitates, and may reduce the low temperature toughness and strength.
  • the obtained hot rolled steel sheet is then subjected to a cooling process.
  • cooling is preferably started within 15 s, and primary cooling and secondary cooling are sequentially performed.
  • the temperature range from 750 to 600 ° C is cooled at an average cooling rate of 5 to 30 ° C / s at the center temperature of the plate thickness, and the cooling is stopped at the cooling stop temperature in the temperature range of 600 to 450 ° C. .
  • the cooling rate of primary cooling is the plate thickness center temperature, and the temperature range of 750 to 600 ° C is cooled at an average cooling rate of 5 to 30 ° C / s.
  • the cooling rate is less than 5 ° C./s on average, it becomes a structure mainly composed of polygonal ferrite, and it becomes difficult to secure a structure having a desired bainitic ferrite as a main phase, and the lath interval also increases.
  • the primary cooling was limited to a cooling rate of 5 to 30 ° C./s on average in the temperature range of 750 to 600 ° C., which is the formation temperature range of polygonal ferrite, at the temperature at the center of the plate thickness. It is preferably 5 to 25 ° C./s.
  • the temperature at the center of the plate thickness can be obtained by heat transfer calculation or the like based on the surface temperature of the steel plate, the temperature of the cooling water, the amount of water, and the like.
  • the cooling stop temperature of the primary cooling is the temperature in the temperature range of 600 to 450 ° C at the plate thickness center temperature. When the cooling stop temperature is higher than 600 ° C., it is difficult to secure a structure having a desired bainitic ferrite as a main phase. On the other hand, if the cooling stop temperature is less than 450 ° C., the untransformed ⁇ is almost completely transformed, and a desired amount of massive martensite cannot be secured. For this reason, the cooling stop temperature of the primary cooling is set to a temperature in the temperature range of 600 to 450 ° C.
  • the average temperature range of 600 to 450 ° C (below the bainite transformation point) should be 100 ° C / s or less.
  • the cooling is adjusted so that the cooling stop temperature is equal to or higher than the surface temperature (Ms transformation point ⁇ 20 ° C.).
  • the surface temperature is rapidly cooled at an average cooling rate exceeding 100 ° C / s in the temperature range of 600 to 450 ° C (below the bainite transformation point)
  • the surface layer is hardened compared to the inner layer and shows a non-uniform distribution. This increases the pipe characteristics.
  • the primary cooling is limited to adjusting the cooling so that the average cooling rate at the surface temperature is 100 ° C./s or less.
  • the non-uniform rise of surface hardness can be prevented, it can deform uniformly at the time of pipe making, and it can be set as the excellent pipe-shaped steel pipe after pipe making.
  • it is 90 degrees C / s or less.
  • the cooling rate of the primary cooling regulates the average cooling rate in the temperature range of 600 to 450 ° C at the surface temperature, and it is controlled to 100 ° C / s or less by continuous cooling or includes a short time intermittent
  • the average cooling rate may be adjusted to 100 ° C./s or less by cooling.
  • a cooling device is provided with a plurality of cooling nozzles and is generally a cooling bank in which a plurality of cooling nozzles are bundled, and can be continuously adjusted by adjusting the cooling bank to be used. Moreover, it can also cool intermittently sandwiching air cooling. Also, in the primary cooling, when the cooling stop temperature drops below (Ms point –20 ° C) at the surface temperature, the surface layer becomes a martensite single phase structure and then tempered to become a tempered martensite single phase structure. Becomes higher. For this reason, in the primary cooling, the cooling stop temperature is limited to adjusting the cooling so that the surface temperature becomes (Ms point ⁇ 20 ° C.) or higher.
  • the cooling stop temperature is equal to or higher than the Ms point at the surface temperature.
  • the cooling rate of the surface layer of the steel plate and the central portion of the plate thickness can be controlled within a predetermined range, respectively. it can.
  • the cooling from the cooling stop temperature of the primary cooling to the coiling temperature is further cooled at a cooling rate of 2 ° C./s or less at the average thickness of the plate thickness, or from the cooling stop temperature of the primary cooling. Apply secondary cooling to retain for 20s or more in the temperature range up to the coiling temperature.
  • the temperature range from the cooling stop temperature of the primary cooling to the coiling temperature is set to gentle cooling as schematically shown in FIG.
  • alloy elements such as C are further diffused into the untransformed ⁇ , the untransformed ⁇ is stabilized, and the subsequent cooling facilitates the formation of massive martensite.
  • slow cooling is cooling from the cooling stop temperature of the primary cooling described above to the coiling temperature averaged at a cooling rate of 2 ° C./s or less, preferably 1.5 ° C./s or less at the sheet thickness center temperature?
  • the above-described cooling is performed so as to stay for 20 seconds or more in the temperature range from the cooling stop temperature of the primary cooling to the winding temperature.
  • the hot rolled steel sheet is subjected to a winding process.
  • the winding process is a process of winding at a surface temperature and a winding temperature of 450 ° C. or higher. If the coiling temperature is less than 450 ° C., the desired low yield ratio cannot be realized. For this reason, the coiling temperature was limited to 450 ° C. or higher.
  • a hot-rolled steel sheet manufactured by the above-described manufacturing method is used as a pipe-forming material, and is subjected to a normal pipe-making process to be a spiral steel pipe or an electric-welded steel pipe.
  • the pipe making process is not particularly limited, and any ordinary process can be applied.
  • the present invention will be described in more detail based on examples.
  • Molten steel having the composition shown in Table 1 was melted in a converter and made into a steel material (slab: thickness 220 mm) by a continuous casting method. Next, these steel materials are heated to the heating temperatures shown in Tables 2 and 5 and subjected to rough rolling to form a sheet bar, and then the sheet bar is subjected to finish rolling under the conditions shown in Tables 2 and 5 and heated. A hot rolling process was performed to obtain a rolled steel sheet (sheet thickness: 8 to 25 mm). Immediately after the finish rolling, the obtained hot-rolled steel sheet was cooled within the times shown in Tables 2 and 5 and subjected to a cooling process. The cooling step was cooling consisting of primary cooling and secondary cooling.
  • the primary cooling was an average cooling rate at the plate thickness center temperature shown in Table 2 and Table 5, and was cooled to the cooling stop temperature at the plate thickness center temperature shown in Table 2 and Table 5.
  • a plurality of cooling banks are prepared, and the surface layer portion has an average cooling rate in the temperature range of 750 to 600 ° C. shown in Table 2 and Table 5 in terms of surface temperature, and Table 2 and Table 5 in terms of surface temperature. It cooled so that it might become the cooling stop temperature shown in.
  • secondary cooling was performed under the conditions shown in Table 2 and Table 5.
  • the cooling was performed under the conditions shown in Tables 2 and 5 from the cooling stop temperature of the primary cooling shown in Tables 2 and 5 to the winding temperature shown in Tables 2 and 5.
  • the hot-rolled steel sheet was subjected to a winding process in which it was wound into a coil at the winding temperatures shown in Tables 2 and 5 and allowed to cool.
  • Test pieces were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and impact test.
  • the test method was as follows. (1) Microstructure observation From the obtained hot-rolled steel sheet, a microstructural specimen was taken so that the cross section in the rolling direction (L cross section) became the observation surface. The test piece was polished, subjected to Nital corrosion, and the structure was observed and imaged using an optical microscope (magnification: 500 times) or a scanning electron microscope (magnification: 2000 times).
  • the type of tissue, the tissue fraction (area ratio) of each phase, and the average particle diameter were measured using an image analyzer.
  • the observation position of the structure was the surface layer (position 1.5 mm from the surface of the steel plate) and the center of the plate thickness.
  • the average particle size of bainitic ferrite, the average particle size of tempered martensite, and the maximum particle size were determined by a cutting method in accordance with JIS G 0552.
  • the aspect ratio of the martensite grain is the ratio of the length in the longitudinal direction of each grain, that is, the direction in which the grain size is maximum (long side) and the length in the direction perpendicular to the length (short side), (long side) / (Short side).
  • Martensite grains having an aspect ratio of less than 5.0 are defined as massive martensite, and martensite having an aspect ratio of 5.0 or more is referred to as “bar-shaped” martensite.
  • the size of the massive martensite is 1/2 the sum of the long side length and the short side length of each grain of the massive martensite, and the diameter of each obtained grain is arithmetically averaged. The average size of martensite was used.
  • the largest value among the diameter of each grain of massive martensite was made into the maximum of the magnitude
  • the measured martensite grains were 100 or more.
  • a thin film test piece was collected from the obtained hot rolled steel sheet and made into a thin film test piece by grinding, mechanical polishing, electrolytic polishing, etc., and the structure was observed with a transmission electron microscope (magnification: 20000 times).
  • the lath spacing of tick ferrite was measured.
  • the number of fields of view was 3 or more.
  • a line segment was drawn in a direction perpendicular to the lath to obtain a line segment length between the laths, and the average value was defined as the lath interval.
  • the sampling position of the test piece for thin films was a surface layer (position of 1.5 mm from the steel plate surface), and a plate thickness central part.
  • a spiral steel pipe (outer diameter: 1067 mm ⁇ ) was manufactured by a spiral pipe making process using the obtained hot-rolled steel sheet as a pipe material.
  • the magnitude of ⁇ YS is preferably ⁇ 10 to 90 MPa from the viewpoint of the stability of the pipe strength.
  • ⁇ YS is smaller than ⁇ 10 MPa (YS of steel pipe is smaller than steel sheet 30 ° YS by more than 10 MPa)
  • the amount of YS decrease after pipe forming is large, which is not preferable.
  • ⁇ YS is larger than 90 MPa, it is not preferable because strength changes easily due to tube-forming strain. The obtained results are shown together in Tables 4 and 7.
  • the yield stress in the 30 ° direction from the rolling direction was 480 MPa or more
  • the tensile strength in the sheet width direction was 600 MPa or more
  • the fracture surface transition temperature vTrs was ⁇ 80 ° C. or less.
  • it is a low yield ratio high strength high toughness hot rolled steel sheet with a yield ratio of 85% or less.
  • a comparative example that is out of the scope of the present invention is that the yield stress is insufficient, the tensile stress is lowered, the low temperature toughness is lowered, the low yield ratio is not secured, or the desired characteristics are obtained.
  • the hot-rolled steel sheet is not obtained.
  • the steel sheet is suitable as a material for spiral steel pipes or ERW steel pipes.
  • Steel plate No. 27 satisfies YS in the direction of 30 ° from the rolling direction of 480 MPa or more, TS in the plate thickness direction of 600 MPa or more, vTrs of -80 ° C. or less, and a yield ratio of 85% or less.
  • the tempered martensite content exceeds 2%, and ⁇ YS after pipe forming is greater than 90 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

 鋼管素材用として好適な、低温靭性に優れた低降伏比高強度熱延鋼板を提供する。 C:0.03~0.10%、Si:0.01~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.01~0.50%、Cr:0.01~0.50%、Ni:0.01~0.50%を含み、好ましくはMoeqが1.4~2.2%の範囲を満足するように含有する組成を有し、内層が、ベイニティックフェライトを主相とし、第二相として、面積率で1.4~15%のアスペクト比:5.0未満の塊状マルテンサイトを含み、ベイニティックフェライト相のラス間隔が0.2~1.6μmである組織とする。なお、塊状マルテンサイトの大きさは、最大で5.0μm以下、平均で0.5~3.0μmとすることが好ましい。

Description

熱延鋼板およびその製造方法
本発明は、ラインパイプに使用されるスパイラル鋼管あるいは電縫鋼管の素材として好適な、低降伏比高強度熱延鋼板およびその製造方法に係る。とくに、造管後の降伏強さの低下を防止しながら、低降伏比および優れた低温靭性の安定確保に関する。
 鋼板をらせん状に巻きながら造管するスパイラル鋼管は、大径の鋼管を効率的に製造できることから、近年、原油、天然ガスを輸送するラインパイプ用として多用されるようになってきた。とくに、長距離輸送するパイプラインでは、輸送効率を高めることが要求され高圧化しており、また油井やガス井が寒冷地に多く存在することもあり、寒冷地を経由することが多い。このため、使用されるラインパイプは、高強度化、高靭性化することが要求されている。さらに、耐座屈性、耐震性の観点から、ラインパイプは、低降伏比であることが求められている。スパイラル鋼管の管長手方向の降伏比は、造管によってほとんど変化せず、素材である熱延鋼板のそれとほぼ一致する。そのため、スパイラル鋼管製のラインパイプを低降伏比化するためには、素材である熱延鋼板の降伏比を低くすることが必要となる。
 このような要求に対し、例えば特許文献1には、低温靭性に優れた低降伏比高張力ラインパイプ用熱延鋼板の製造方法が記載されている。特許文献1に記載された技術では、重量%で、C:0.03~0.12%、Si:0.50%以下、Mn:1.70%以下、Al:0.070%以下を含有し、さらに、Nb:0.01~0.05%、V:0.01~0.02%、Ti:0.01~0.20%のうちの少なくとも1種を含有する鋼スラブを、1180~1300℃に加熱した後、粗圧延終了温度:950~1050℃、仕上圧延終了温度:760~800℃の条件で熱間圧延を行い、5~20℃/s の冷却速度で冷却し、670℃に至るまでの間に空冷を開始し5~20s間保持し、ついで20℃/s以上の冷却速度で冷却し、500℃以下の温度で巻き取り、熱延鋼板とするとしている。特許文献1に記載された技術によれば、引張強さ60kg/mm以上(590MPa以上)で降伏比が85%以下、破面遷移温度:-60℃以下の高靭性を有する熱延鋼板が製造できるとしている。
 また、特許文献2には、高強度低降伏比パイプ用熱延鋼板の製造方法が記載されている。特許文献2に記載された技術は、C:0.02~0.12%、Si:0.1~1.5%、Mn:2.0%以下、Al:0.01~0.10%を含有し、さらに、Mo+Cr:0.1~1.5%を含有する鋼を1000~1300℃に加熱し、750~950℃の範囲で熱間圧延を終了し、冷却速度:10~50℃/sにて巻取温度まで冷却し、480~600℃の範囲で巻き取る、熱延鋼板の製造方法である。特許文献2 に記載された技術によれば、オーステナイト温度域からの急冷を行うことなく、フェライトを主体とし、面積率で1~20% のマルテンサイトを有し、降伏比が85%以下で、かつ造管後の降伏強さ低下量の少ない熱延鋼板が得られるとしている。
 また、特許文献3には、低温靭性に優れた低降伏比電縫鋼管の製造方法が記載されている。特許文献3に記載された技術では、質量%で、C:0.01~0.09% 、Si :0 .50%以下、Mn:2.5%以下、Al:0.01~0.10% 、Nb:0.005~0.10%を含み、さらにMo:0.5%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0 .5%以下のうちの1種または2種以上を、Mn、Si、P、Cr、Ni、Moの含有量の関係式であるMneqが2.0以上を満足するように含有する組成のスラブを熱間圧延し、5℃/s以上の冷却速度で500~650℃まで冷却して巻取り、この温度範囲で10min以上滞留させてから500℃未満の温度まで冷却して熱延鋼板とし、該熱延鋼板を造管して電縫鋼管とする。特許文献3に記載された技術によれば、ベイニティックフェライトを主相とし、3%以上のマルテンサイトと、必要に応じ1%以上の残留オーステナイトを含む組織を有し、破面遷移温度が-50℃以下で、低温靭性に優れ、かつ高い塑性変形吸収能を有する電縫鋼管を製造できるとしている。
 また、特許文献4には、低降伏比高靭性厚鋼板が記載されている。特許文献4に記載された技術では、C:0.03~0.15%、Si:1.0%以下、Mn:1.0~2.0%、Al:0.005~0.060%、Ti:0.008~0.030%、N:0.0020~0.010%、O:0.010%以下を含む組成のスラブに、好ましくは950~1300℃に加熱し、(Ar3変態点+100℃)~(Ar3変態点+150℃)の温度範囲での圧下率を10% 以上とし、仕上げ圧延温度を800~700℃とした熱間圧延を施したのち、仕上げ圧延温度から-50℃以内で加速冷却を開始し、5~50℃/sの平均冷却速度で400~150℃まで水冷したのち、空冷することにより、平均粒径が10~50μmのフェライトと、1~20面積%の島状マルテンサイトが分散したベイナイトとの混合組織を有する低降伏比で高靭性の厚鋼板を得ることができるとしている。なお、島状マルテンサイトの形状(棒状、塊状:後述)についての言及は無い。
特開昭63-227715号公報 特開平10-176239号公報 特開2006-299413号公報 特開2010-59472号公報
 しかしながら、特許文献1に記載された技術では、空冷前後、とくに空冷後の冷却速度が大きいため、冷却速度、冷却停止温度等を速やかかつ適正に制御する必要がある。とくに、厚肉の熱延鋼板を製造するためには、大掛かりな冷却設備等を必要とするという問題がある。また、特許文献1に記載された技術で得られる熱延鋼板は、軟質なポリゴナルフェライトを主とする組織を有し、所望の高強度を得にくいという問題もある。
 また、特許文献2に記載された技術では、依然として造管後の降伏強さの低下が認められ、最近の鋼管強度の増加要求を満足できない場合が生じるという問題がある。
 また、特許文献3に記載された技術では、最近の寒冷地仕様である、破面遷移温度vTrsが-80℃以下という優れた低温靭性を安定して確保できるまでには至っていないという問題がある。
 また、特許文献4に記載された技術で得られた厚鋼板では、破面遷移温度vTrsで高々-30~-41℃程度の靭性しか確保できておらず、最近の更なる靭性向上の要望には対処できないという問題がある。
 また、近年、原油等を高効率で輸送するという要求から、高強度でかつ厚肉の鋼管用素材が求められている。しかし、高強度化のために合金元素量が増大する、厚肉化に伴い熱延鋼板製造工程での急冷処理を余儀なくされる、という問題がある。熱延鋼板は、限られた長さの水冷帯を高速で搬送されてコイル状に巻き取られるため、板厚が厚くなるほど強い冷却を行う必要がある。このため、鋼板の表面硬さが必要以上に高くなるという問題がある。
 特に、例えば、10mm以上と板厚が厚い熱延鋼板を製造する場合、仕上げ圧延速度は100~250mpmと高速通板するため、仕上げ圧延後の冷却帯も同様に高速で通板される。そのため、板厚が厚くなるほど大きな熱伝達係数を有する冷却が行われる。このため、熱延鋼板の表面硬さが必要以上に高くなり、熱延鋼板表面は板厚内部に比べて硬化し、しかも不均一な分布を示すことが多くなるという問題がある。このような硬さの不均一な分布は、鋼管特性のバラツキを生じるという問題も生じている。
 本発明は、かかる従来技術の問題を解決し、複雑な熱処理を施すことなく、また、大掛かりな設備改造を行なうことなく、鋼管用素材、とくにスパイラル鋼管用として好適な、スパイラル造管後の強度低下が防止できる、低温靭性に優れた低降伏比高強度熱延鋼板を提供することを目的とする。特に、板厚8mm以上(より好ましくは10mm以上)50mm以下(より好ましくは25mm以下)の低温靭性に優れた低降伏比高強度熱延鋼板を提供することを目的とする。ここでいう「高強度」とは、圧延方向から30度方向の降伏強さが480MPa以上、板幅方向の引張強さが600MPa以上である場合を、また「低温靭性に優れた」とは、シャルピー衝撃試験の破面遷移温度vTrsが-80℃以下である場合を、また、「低降伏比」とは、連続降伏型の応力歪曲線を示し、降伏比が85%以下である場合を、それぞれ云うものとする。また、「鋼板」には鋼板および鋼帯を含むものとする。
 本発明者らは、上記した目的を達成するために、造管後の鋼管強度、および鋼管靭性に及ぼす各種要因について鋭意研究した。その結果、造管による強度の低下は、圧縮応力が作用する管内面側でのバウシンガー効果による降伏強さの低下と、引張応力が作用する管外面側での降伏伸びの消失とによって、引き起こされていることを見出した。
 そこで、本発明者らは、更なる研究を行った結果、鋼板の組織を、微細なベイニティックフェライトを主相とし、該ベイニティックフェライト中に硬質な塊状マルテンサイトを微細分散させた組織とすることにより、造管後、とくにスパイラル造管後の強度低下を防止できるとともに、降伏比が85%以下で、さらに優れた靭性をも兼備する鋼管とすることができることに想到した。というのは、このような組織とすることにより、鋼管素材である鋼板の加工硬化能が向上するため、造管時における管外面側での加工硬化により十分な強度上昇が得られ、造管後、とくにスパイラル造管後、の強度低下を抑制できる。さらに、塊状マルテンサイトを微細に分散させることにより、靭性が顕著に向上することを知見した。さらに、表面硬さの不均一な上昇を防止することで成形後のパイプ形状に優れ、均一変形能を有するためには、とくに表層のベイニティックフェライトのラス間隔を制御することが有効であることも知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、次のとおりである。
(1)質量%で、C:0.03~0.10%、Si:0.01~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.01~0.50%、Cr:0.01~0.50%、Ni:0.01~0.50%を含み、残部Feおよび不可避的不純物からなる組成と、表層が、ベイニティックフェライト相またはベイニティックフェライト相と焼戻マルテンサイト相とからなり、前記ベイニティックフェライト相のラス間隔が0.2~1.6μmであり、内層が、ベイニティックフェライト相を主相とし、第二相として、アスペクト比:5.0未満の塊状マルテンサイトを面積率で1.4~15%含み、前記内層の前記ベイニティックフェライト相のラス間隔が0.2~1.6μmである組織と、を有することを特徴とする熱延鋼板。
(2)(1)において、前記組成が、質量%で、次(1)式
Moeq (%)=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
(ここで、Mn、Ni、Cr、Mo:各元素の含有量(質量%))
で定義されるMoeqが1.4~2.2%の範囲を満足する組成であることを特徴とする熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:0.50%以下、V:0.10%以下、B:0.0005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする熱延鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%を含有することを特徴とする熱延鋼板。
(5)(1)ないし(4)のいずれかにおいて、前記塊状マルテンサイトの大きさが、最大で5.0μm以下、平均で0.5~3.0μmであることを特徴とする熱延鋼板。
(6)(1)ないし(5)のいずれかにおいて、前記表層の焼戻マルテンサイトの平均粒径が3.0μm以下、最大粒径が4.0μm以下であることを特徴とする熱延鋼板。
(7)鋼素材に、熱延工程、冷却工程、巻取工程を施して、熱延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.03~0.10%、Si:0.01~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.01~0.50%、Cr:0.01~0.50%、Ni:0.01~0.50%を含み、残部Feおよび可避的不純物からなる組成を有する鋼素材とし、前記熱延工程を、前記鋼素材を加熱温度:1050~1300℃に加熱し、該加熱された鋼素材に、粗圧延を施しシートバーとし、該シートバーに、930℃以下の温度域での累積圧下率:50%以上となる仕上圧延を施し熱延鋼板とする工程とし、前記冷却工程を、仕上圧延終了後直ちに冷却を開始し、板厚中央部温度で、750~600℃の温度域を平均で5~30℃/sの冷却速度 で冷却し、600~450℃ の温度域の冷却停止温度で冷却を停止する一次冷却と、さらに、前記一次冷却の冷却停止温度から巻取温度までを、板厚中央部温度で平均で2℃/s以下の冷却速度で冷却するか、あるいは前記一次冷却の冷却停止温度から巻取温度までの温度域で20s以上滞留させる二次冷却とからなり、かつ前記一次冷却を、表面温度で600~450℃の温度域を平均で100℃/s以下の冷却速度となるようにし、かつ冷却停止温度が表面温度で(Ms変態点-20℃)以上となるように調節した冷却とする工程とし、前記巻取工程が、表面温度で巻取温度:450℃以上で巻き取る工程とすることを特徴とする熱延鋼板の製造方法。
(8)(7)において、 前記組成が、質量%で、次(1)式
Moeq(%)=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥‥(1)
(ここで、Mn、Ni、Cr、Mo:各元素の含有量(質量%))
で定義されるMoeqが1.4~2.2%の範囲を満足する組成であることを特徴とする熱延鋼板の製造方法。
(9)(7)または(8)において、前記組成に加えてさらに、質量%で、Cu:0.50%以下、V:0.10%以下、B:0.0005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする熱延鋼板の製造方法。
(10)(7)ないし(9)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%を含有することを特徴とする熱延鋼板の製造方法。
本発明によれば、とくに、スパイラル鋼管用素材として好適な、造管時の均一変形能に優れ、造管後の強度低下が少なく、また、造管後のパイプ形状に優れた、圧延方向から30度方向の降伏強さが480MPa以上で、板幅方向の引張強さが600MPa以上、シャルピー衝撃試験の破面遷移温度vTrsが-80℃以下で、かつ降伏比が85%以下の、低温靭性に優れた低降伏比高強度熱延鋼板が得られる。そして、本発明の低降伏比高強度熱延鋼板は、特別な熱処理を施すこともなく、また容易にかつ安価に製造できる。このように、本発明では、産業上格段の効果を奏する。また、本発明によれば、リールバージ法で敷設されるラインパイプや、耐震性を要求されるラインパイプ用の電縫鋼管を安価にかつ容易に製造できるという効果もある。また、本発明になる低降状比高強度熱延鋼板を素材として用いれば、耐震性に優れた建築用部材および港湾部材となる高強度スパイラル鋼管杭も製造できるという効果もある。また、このような熱延鋼板を用いたスパイラル鋼管は管長手方向の降伏比が低いことから、高付加価値の高強度鋼管杭へも適用できるという効果もある。
塊状マルテンサイトの生成と、熱問圧延後の冷却における二次冷却との関係を模式的に示す説明図である。
 まず、本発明熱延鋼板の組成限定理由について説明する。以下、とくに断わらない限り質量%は単に%で記す。
 C:0.03~0.10%
Cは、炭化物として析出し、析出強化を介し鋼板の強度増加に寄与する。結晶粒微細化を介し鋼板の靭性向上にも寄与する元素でもある。さらに、Cは、鋼中に固溶しオーステナイトを安定化し、未変態オーステナイトの形成を促進する作用を有する。これらの効果を得るためには、0.03%以上の含有を必要とする。一方、0.10%を超える含有は、結晶粒界に粗大なセメンタイトを形成する傾向が強くなり、靭性が低下する。このため、Cは0.03~0.10%の範囲に限定した。なお、好ましくは0.04~0.09%である。
 Si:0.01~0.50%
Siは、固溶強化を介して鋼板の強度増加に寄与する。また、硬質第二相(例えば、マルテンサイト)の形成を介し、降伏比低減に寄与する。これらの効果を得るためには、0.01%以上の含有を必要とする。一方、0.50%を超える含有は、ファイヤライトを含む酸化スケールの生成が顕著となり、鋼板外観性状が低下する。このため、Siは0.01~0.50%の範囲に限定した。なお、好ましくは0.20~0.40%である。
 Mn:1.4~2.2%
Mnは、固溶して鋼の焼入れ性を向上させ、マルテンサイトの生成を促進させる。また、ベイニティックフェライト変態開始温度を低下させ、組織の微細化を介して鋼板靭性の向上に寄与する元素である。これらの効果を得るためには、1.4%以上の含有を必要とする。一方、2.2%を超える含有は、溶接熱影響部の靭性を低下させる。このため、Mnは1.4~2.2%の範囲に限定した。なお、塊状マルテンサイトの安定生成という観点からは、好ましくは1.6~2.0%である。
 P : 0.025%以下
Pは、固溶して鋼板強度の増加に寄与するが、同時に靭性を低下させる。このため、本発明では、Pは不純物として可及的に低減することが好ましい。しかし、0.025%までは許容できる。好ましくは0.015%以下である。なお、過度の低減は精錬コストを高騰させるため、0.001%以上程度とすることが好ましい。
 S:0.005%以下
Sは、鋼中ではMnS等の粗大な硫化物系介在物を形成し、スラブ等の割れを生起する。また、鋼板の延性を低下させる。このような現象は0.005%を超える含有で顕著になる。このため、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。なお、S含有量は零%でも問題ないが、過度の低減は精錬コストを高騰させるため、0.0001%以上程度とすることが好ましい。
 Al:0.005~0.10%
Alは、脱酸剤として作用する。また、歪時効の原因となるNを固定するのに有効な元素である。これらの効果を得るためには、0.005%以上の含有を必要とする。一方、0.10%を超える含有は、鋼中酸化物が増加し母材および浴接部の靭性を低下させる。また、スラブ等の鋼素材、鋼板を加熱炉で加熱する際に、表層で窒化層を形成しやすく、降伏比の増加をもたらす恐れがある。このため、Alは0.005~0.10%の範囲に限定した。なお、好ましくは0.08%以下である。
 Nb:0.02~0.10%
Nbは、鋼中に固溶し、あるいは炭窒化物として析出し、オーステナイト粒の粗大化を抑制するとともに、オーステナイト粒の再結晶を抑制する作用を有し、オーステナイトの未再結晶温度域圧延を可能とする。また、炭化物あるいは炭窒化物として微細に析出して、鋼板の強度増加に寄与する元素でもある。熱間圧延後の冷却中に、熱間圧延により導入された転位上に炭化物あるいは炭窒化物として析出し、γ→ α変態の核として作用し、ベイニティックフェライトの粒内生成を促進し、微細な塊状の未変態オーステナイト、ひいては微細な塊状のマルテンサイトの生成に寄与する。これらの効果を得るためには0.02%以上の含有を必要とする。一方、0.10%を超える過剰な含有は、熱間圧延時の変形抵抗が増大し、熱間圧延が困難となる恐れがある。また、0.10%を超える過剰な含有は、主相であるベイニティックフェライトの降伏強さの増加を招き、85%以下の降伏比を確保することが困難となる。このため、Nbは0.02~0.10%の範囲に限定した。なお、好ましくは0.03~0.07%である。
 Ti:0.001~0.030%
Tiは、Nを窒化物として固定し、スラブ割れの防止に寄与する。また、炭化物として微細に析出して鋼板強度を増加させる作用を有する。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.030%を超えて多量に含有するとベイニティックフェライト変態点を過度に上昇させ、鋼板の靭性が低下する。このため、Ti は0.001~0.030%の範囲に限定した。なお、好ましくは0.005~0.025%である。
 Mo:0.01~0.50%   
Moは、焼入れ性向上に寄与し、ベイニティックフェライト中のCを未変態オーステナイト中に引き寄せ、未変態オーステナイトの焼入性を向上させることを介してマルテンサイト形成を促進する作用を有する。さらに、鋼中に固溶し固溶強化により鋼板強度の増加に寄与する元素である。これらの効果を得るためには、0.01%以上の含有を必要とする。一方、0.50%を超える含有は、必要以上にマルテンサイトを形成させ、鋼板の靭性を低下させる。また、Moは高価な元素であり、多量の含有は材料コストの高騰を招く。このようなことから、Moは0.01~0.50%の範囲に限定した。なお、好ましくは0.10~0.40%である。
 Cr:0.01~0.50%
Crは、γ→ α変態を遅延させ、焼入れ性向上に寄与し、マルテンサイト形成を促進する作用を有する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.50%を超える含有は、溶接部に欠陥を多発させる傾向となる。このため、Crは0.01~0.50%の範囲に限定した。なお、好ましくは0.20~0.45%である。
 Ni :0.01~0.50%
Niは、焼入れ性向上に寄与し、マルテンサイト形成を促進する。加えて、さらに靭性の向上に寄与する元素である。これらの効果を得るためには、0.01%以上の含有を必要とする。一方、0.50%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できないため経済的に不利となる。このため、Ni は0.01~0.50%の範囲に限定した。なお、好ましくは0.30~0.45%である。
 上記した成分が基本の成分であるが、本発明では、上記した成分を、上記した含有範囲内で、かつ、次(1)式
Moeq (%)=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥‥(1)
(ここで、Mn、Ni、Cr、Mo:各元素の含有量(質量%))
で定義されるMoeqが、1.4~2.2%の範囲を満足するように調整することが好ましい。
Moeqは、冷却工程を経た後に、鋼板中に残存する未変態オーステナイトの焼入れ性を表す指標である。Moeqが1.4%未満では、未変態オーステナイトの焼入れ性が不足し、その後の巻取工程中にパーライト等に変態する。一方、Moeqが2.2%を超えると、必要以上にマルテンサイトが生成し、靭性が低下する。このため、Moeqは1.4~2.2%の範囲に限定することが好ましい。Moeqが1.5%以上であれば、低降伏比となり、さらに変形能が向上する。このため、1.5%以上とすることがより好ましい。
 本発明では、上記した成分の範囲で、さらに必要に応じて、選択元素として、Cu:0.50%以下、V:0.10%以下、B:0.0005%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005~0.0050%を含有することができる。
 Cu:0.50%以下、V:0.10%以下、B:0.0005%以下のうちから選ばれた1種または2種以上
 Cu、V、Bはいずれも、鋼板の高強度化に寄与する元素であり、必要に応じて選択して含有できる。
V、Cuは、固溶強化あるいは析出強化を介して、鋼板の高強度化に寄与する。また、Bは、結晶粒界に偏析して焼入れ性向上を介して、鋼板の高強度化に寄与する。このような効果を得るためには、Cu:0.01%以上、V:0.01%以上、B:0.0001%以上、含有することが好ましい。一方、Cu:0.50%を超える含有は熱間加工性を低下させる。V:0.10%を超える含有は、溶接性を低下させる。B:0.0005%を超える含有は、鋼板の靭性を低下させる。このため、含有する場合には、Cu:0.50%以下、V:0.10%以下、B:0.0005%以下に限定することが好ましい。
Ca:0.0005~0.0050%
Caは、粗大な硫化物を球状の硫化物とする硫化物の形態制御に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、Ca:0.0005%以上含有することが好ましい。一方、Ca:0.0050%を超える含有は、鋼板の清浄度を低下させる。このため、含有する場合にはCa:0.0005~0.0050%の範囲に限定することが好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、N:0.005%以下、O:0.005%以下、Mg:0.003%以下、Sn:0.005%以下が許容できる。
 つぎに、本発明の低降伏比高強度熱延鋼板の組織限定理由について説明する。
本発明の低降伏比高強度熱延鋼板は、上記した組成を有し、さらに、板厚方向表面側層(以下、単に表層と称することもある)と板厚方向内面側層(以下、単に内層と称することもある)とが異なる組織を有する。ここでいう「板厚方向表面側層(表層)」とは、鋼板表裏面から板厚方向に深さ2mm未満の領域をいうものとする。また、「板厚方向内面側層(内層)」とは、鋼板表裏面から内側に板厚方向に深さ2mm以上の領域をいうものとする。
 板厚方向表面側層(表層)は、ベイニティックフェライト相またはベイニティックフェライト相と焼戻マルテンサイト相とからなり、ベイニティックフェライト相のラス間隔が0.2~1.6μmである組織を有する。ここでいう「ベイニティックフェライト」は、転位密度が高い下部組織を有する相であり、針状フェライト、アシキュラーフェライトを含む。なお、ベイニティックフェライトには、転位密度が極めて低いポリゴナルフェライトや、細かいサブグレン等の下部組織をともなう擬ポリゴナルフェライトは含まれない。
このような組織とすることにより、優れた均一変形能を具備させることができる。パイプ成形は曲げ変形であるため、板厚方向の加工歪は板厚中心から距離が離れるほど大きく、板厚が厚いほど顕著となるので、表層組織を調整することが重要となる。
また、表層のベイニティックフェライト相のラス間隔が、0.2μm未満では転位密度が高く、過度な硬さ上昇を招き、パイプ成形時の形状不良や割れを引き起こすため、とくに注意が必要となる。一方、ラス間隔が1.6μmを超えると転位密度が低くなり、所望の高強度を確保しにくくなり、また強度バラツキの原因ともなる。このようなことから、表層のベイニティックフェライト相のラス間隔を0.2~1.6μmに限定した。なお、ラス間隔は後述する実施例に記載の方法でラスを真横から観察することにより測定することができる。
表層組織は、ベイニティックフェライト相が98%以上の実質的に単相組織であり、焼戻マルテンサイト相は面積率で2%以下とすることが好ましい。2%を超える焼戻マルテンサイト相の含有は、表層部の断面硬さを上昇させ、表層が板厚内部に比べて硬化し、しかも硬さの不均一分布を示すことが多くなりやすい。なお、焼戻マルテンサイトの平均粒径は3.0μm以下が好ましい。平均粒径が3.0μmを超えると、表層部の硬さに不均一が生じる場合がある。さらに、焼戻マルテンサイトの最大粒径は4.0μm以下とすることが好ましい。最大粒径が4.0μmを超えると、表層部硬さムラの発生や造管後の形状に悪影響を及ぼしやすい。このため、焼戻マルテンサイトは最大粒径4.0μm以下として均一分散させることが好ましい。なお、上記組織は、製造条件、中でも、仕上圧延における930℃以下の温度域での累積圧下率を50%以上とし、仕上圧延圧延終了後の冷却工程において、板厚中央部温度で、750~600℃の温度域を平均で5~30℃/sの冷却速度で冷却し、600~450℃ の温度域の冷却停止温度で冷却を停止する一次冷却と、さらに、前記一次冷却の冷却停止温度から巻取温度までを、板厚中央部温度で平均で2℃/s以下の冷却速度で冷却するか、あるいは前記一次冷却の冷却停止温度から巻取温度までの温度域で20s以上滞留させる二次冷却とからなり、かつ前記一次冷却を、表面温度で600~450℃の温度域を平均で100℃/s以下の冷却速度となるようにし、かつ冷却停止温度が表面温度で(Ms変態点-20℃)以上となるように調節した冷却とすることにより得ることができる。また、平均粒径および最大粒径は後述する実施例に記載の方法で測定することができる。また、表層部組織は以下に示す内層部組織とは異なる組織である。
 板厚方向内面側層(内層)は、ベイニティックフェライトを主相とし、主相と第二相とからなる組織を有する。ここで、主相とは、面積率で50%以上の占有面積を有する相をいう。なお、所望の高強度を確保するために、主相であるベイニティックフェライトには、微細な炭窒化物が析出していることが好ましい。
主相であるベイニティックフェライト相は、ラス間隔が0.2~1.6μmとなる特徴を有する。ラス間隔が0.2μm未満では転位密度が高く、過度な硬度上昇を招き、塊状マルテンサイト相周辺に形成される歪みに起因する可動転位が十分に機能せず、低降伏比が阻害されやすい。一方、ラス間隔が1.6μmを超えると転位密度が低くなり、所望の高強度を確保できにくくなり、強度バラツキの原因ともなる。このようなことから、内層のベイニティックフェライトのラス間隔は0.2~1.6μmに限定した。
なお、主相であるベイニティックフェライト相は、10μm以下の平均粒径を有することが好ましい。これにより靭性バラツキが低減される。ベイニティックフェライト相の平均粒径が10μmを超えて大きくなると、細粒と粗粒が混在することになり、低温靭性が変動しやすくなる。
 内層における第二相は、面積率で1.4~15%の、アスペクト比:5.0未満の塊状マルテンサイト相とする。なお、本発明でいう塊状マルテンサイトは、圧延後の冷却工程で未変態オーステナイトから旧γ粒界、あるいは旧γ粒内に生成したマルテンサイトである。本発明では、このような塊状マルテンサイトを、旧γ粒界、あるいは主相であるベイニティックフェライト粒とベイニティックフェライト粒の間に分散させる。マルテンサイトは、主相と比べ硬質であり、加工時にベイニティックフェライト中に可動転位を多量に導入することができ、降伏挙動を連続降伏型とすることができる。また、マルテンサイトはベイニティックフェライトより高い引張強さを有するため、低降伏比を達成できることになる。また、マルテンサイトを、アスペクト比:5.0未満の塊状マルテンサイトとすることにより、周囲のベイニティックフェライトに、より多くの可動転位を導入することができ、変形能向上に有効である。マルテンサイトのアスペクト比が5.0以上では、棒状マルテンサイト(非塊状マルテンサイト)となり、所望の低降伏比を達成できなくなるが、棒状マルテンサイトがマルテンサイト全量に対する面積率で30%未満であれば許容できる。塊状マルテンサイトはマルテンサイト全量の面積率で70%以上とすることが好ましい。なお、アスペクト比は後述する実施例に記載の方法で測定することができる。
内層では、第二相として、塊状マルテンサイト相を面積率で1.4~15%分散させる。塊状マルテンサイトが面積率で1.4%未満では、所望の低降伏比を確保することが難しくなる。一方、塊状マルテンサイトが面積率で15%を超えて多くなると、低温靭性が著しく低下する。このため、塊状マルテンサイトは1.4~15%の範囲に限定した。なお、好ましくは10%以下である。なお、面積率は後述する実施例に記載の方法で測定することができる。また、塊状マルテンサイトの大きさは、最大で5.0μm以下、平均で、0.5~3.0μmとすることが好ましい。塊状マルテンサイトの大きさが平均で3.0μmを超えて粗大化すると、脆性破壊の起点となりやすく、あるいは亀裂の伝播を促進させやすく、したがって低温靭性が低下する。また、平均で0.5μm未満では、粒が細かくなりすぎて、周辺のベイニティックフェライトへの可動転位の導入量が少なくなる。また、最大で5.0μm超えでは靭性が低下する。このため、塊状マルテンサイトの大きさは、最大で5.0μm以下、平均で、0.5~3.0μmとすることが好ましい。なお、大きさは長辺長さと短辺長さの和の1/2を「直径」とした。そして、そのうちの最大のものを塊状マルテンサイトの大きさの「最大」とし、得られた各粒の「直径」を算術平均した値を塊状マルテンサイトの大きさの「平均」とした。なお、測定するマルテンサイトは100個以上とする。
なお、上記組織は、製造条件、中でも、仕上圧延における930℃以下の温度域での累積圧下率を50%以上とし、仕上圧延圧延終了後の冷却工程において、板厚中央部温度で、750~600℃の温度域を平均で5~30℃/sの冷却速度 で冷却し、600~450℃ の温度域の冷却停止温度で冷却を停止する一次冷却と、さらに、前記一次冷却の冷却停止温度から巻取温度までを、板厚中央部温度で平均で2℃/s以下の冷却速度で冷却するか、あるいは前記一次冷却の冷却停止温度から巻取温度までの温度域で20s以上滞留させる二次冷却とからなり、かつ前記一次冷却を、表面温度で600~450℃の温度域を平均で100℃/s以下の冷却速度となるようにし、かつ冷却停止温度が表面温度で(Ms変態点-20℃)以上となるように調節した冷却とすることにより得ることができる。
 次に、本発明の低降伏比高強度熱延鋼板の好ましい製造方法について説明する。
本発明では、上記した組成を有する鋼素材に、熱延工程、冷却工程、巻取工程を施して熱延鋼板とする。
なお、使用する鋼素材の製造方法はとくに限定する必要はなく、上記した組成の溶鋼を転炉、電気炉等の通常公知の溶製方法を用いて、溶製し、連続鋳造法等の通常公知の溶製方法により、スラブ等の鋼素材とすることが好ましい。
得られた鋼素材に、熱延工程を施す。
熱延工程は、上記した組成を有する鋼素材を、加熱温度:1050~1300℃に加熱し、粗圧延を施しシートバーとしたのち、該シートバーに、930℃以下の温度域での累積圧下率:50%以上となる仕上圧延を施し熱延鋼板とする工程とする。
加熱温度:1050~1300℃
本発明で使用する鋼素材は、上記したようにNb、Tiを必須含有する。析出強化により所望の高強度を確保するためには、これらの粗大な炭化物、窒化物等を一旦溶解させて、その後微細析出させることが必要となる。そのため、鋼素材の加熱温度は1050℃以上とする。1050℃未満では、各元素が未固溶のままとなり、所望の鋼板強度が得られない。一方、1300℃を超えて高温になると、結晶粒の粗大化が生じ、鋼板靭性が低下する。このため、鋼素材の加熱温度は1050~1300℃に限定した。
上記した加熱温度に加熱された鋼素材は、粗圧延を施されてシートバーとされる。粗圧延の条件はとくに限定する必要はなく、所望の寸法形状のシートバーが確保できる条件であればよい。
得られたシートバーは、ついで仕上圧延され、所望の寸法形状の熱延鋼板とされる。仕上圧延は、930℃以下の温度域での累積圧下率:50%以上の圧延とする。
930℃以下の温度域での累積圧下率:50%以上
内層組織におけるベイニティックフェライトの微細化、および塊状マルテンサイトの微細分散のために、930℃以下の温度域での累積圧下率を50%以上とする。930℃以下の温度域での累積圧下率が50%未満では、圧下量が不足し、内層組織における主相であるベイニティックフェライトを微細とすることができない。また、γ→ α変態の核生成を促進するNbC等の析出サイトとなる転位が不足し、ベイニティックフェライトの粒内生成が不足し、塊状マルテンサイトを形成するための塊状の未変態γを微細かつ多数分散して残留させることができなくなる。このため、仕上圧延における930℃以下の温度域での累積圧下率を50%以上に限定した。なお、好ましくは累積圧下率は80%以下である。累積圧下率が80%を超えて大きくしても、効果が飽和し、さらにセバレーションの発生が著しくなり、シャルピー衝撃試験の吸収エネルギーの低下を招く場合がある。
なお、仕上圧延の圧延終了温度は、鋼板靭性、鋼板強度、圧延負荷等の観点から、850~760℃とすることが好ましい。仕上圧延の圧延終了温度が850℃を超えて高温となると、930℃以下の温度域での累積圧下率を50%以上とするために、1パス当たりの圧下量を大きくする必要があり、圧延荷重の増加を招く場合がある。一方、760℃未満と低温となると、圧延中にフェライトが生成し、組織、析出物の粗大化を招き、低温靭性、強度が低下する場合がある。
 得られた熱延鋼板は、ついで冷却工程を施される。
 冷却工程では、仕上圧延終了後直ちに、好ましくは15s以内に冷却を開始し、一次冷却と二次冷却を順次施す。
 一次冷却では、板厚中央部温度で、750~600℃の温度域を平均で5~30℃/sの冷却速度で冷却し、600~450℃ の温度域の冷却停止温度で冷却を停止する。
一次冷却の冷却速度が板厚中央部温度で、750~600℃の温度域を平均で5~30℃/sの冷却速度で冷却する。冷却速度が平均で5℃/s未満では、ポリゴナルフェライト主体の組織となり、所望のベイニティックフェライトを主相とする組織を確保することが難しくなり、ラス間隔も増大する。一方、冷却速度が平均で30℃/sを超える急冷では、未変態オーステナイトへの合金元素の濃縮が不十分となり、その後の冷却で所望量の塊状マルテンサイトを微細分散させることができなくなり、所望の低降伏比、所望の優れた低温靭性を確保することが困難となる。このようなことから、一次冷却は、板厚中央部温度で、ポリゴナルフェライトの生成温度域である750~600℃の温度域を平均で、5~30℃/sの冷却速度に限定した。なお、好ましくは5~25℃/sである。なお、板厚中央部の温度は、鋼板の表面温度、冷却水の水温および水量等を基に、伝熱計算等により求めることができる。
一次冷却の冷却停止温度は、板厚中央部温度で600~450℃ の温度域の温度とする。冷却停止温度が600℃より高温では、所望のベイニティックフェライトを主相とする組織を確保することが難しくなる。一方、冷却停止温度が450℃未満では、未変態γがほぼ変態を完了して所望量の塊状マルテンサイトを確保できなくなる。このようなことから、一次冷却の冷却停止温度は板厚中央部温度で600~450℃の温度域の温度とした。
なお、一次冷却では、上記した板厚中央部での制御に加えて、表面温度で600~450℃ (ベイナイト変態点以下)の温度域を平均で100℃/s以下の冷却速度となるようにし、かつ冷却停止温度が表面温度で(Ms変態点-20℃)以上となるように調節した冷却とする。
表面温度で、600~450℃ (ベイナイト変態点以下)の温度域を平均冷却速度で、100℃/sを超えて急冷されると、表層が内層に比べて硬化し、不均一な分布を示すことが多くなり、パイプ特性のバラツキが生じる。このため、一次冷却では、表面温度で冷却速度が平均で100℃/s以下となるように冷却を調整することに限定した。これにより、表面硬さの不均一な上昇を防止することができ、造管時に均一変形し、造管後に優れたパイプ形状の鋼管とすることができる。なお、好ましくは90℃/s以下である。
なお、一次冷却の冷却速度は、表面温度で600~450℃の温度区間における平均冷却速度を規定しており、連続的な冷却で100℃/s以下に制御するか、短時間の間欠を含む冷却を行うことで平均冷却速度を100℃/s以下に調整してもよい。というのは、冷却装置には、複数の冷却ノズルが設けられており、複数の冷却ノズルを束ねた冷却バンクとすることが一般的であり、使用する冷却バンクを調整することで連続的にもまた空冷をはさむ間欠的にも冷却することができる。
また、一次冷却では、表面温度で冷却停止温度が(Ms点-20℃)未満まで低下すると、表層がマルテンサイト単相組織となり、その後、焼戻されて焼戻マルテンサイト単相組織となり降伏比が高くなる。このため、一次冷却では冷却停止温度を、表面温度で(Ms点-20℃)以上になるように冷却を調整することに限定した。好ましくは冷却停止温度は表面温度でMs点以上である。
なお、例えば鋼板内部の板厚方向温度勾配を速やかに形成し、その後表層の冷却速度を管理することで、鋼板の表層と板厚中央部の冷却速度をそれぞれ所定の範囲内に制御することができる。
 一次冷却を終了後、さらに一次冷却の冷却停止温度から巻取温度までを、板厚中央部温度で平均で2℃/s以下の冷却速度で冷却するか、あるいは前記一次冷却の冷却停止温度から巻取温度までの温度域で20s以上滞留させる二次冷却を施す。
 二次冷却では、一次冷却の冷却停止温度から巻取温度までの温度域を、板厚中心温度で図1に模式的に示すような緩冷却とする。この温度域を緩冷却とすることにより、C等の合金元素がさらに未変態γ中へ拡散して、未変態γが安定化して、その後の冷却により塊状マルテンサイトの生成が容易となる。このような緩冷却として、上記した一次冷却の冷却停止温度から巻取温度までを、板厚中央部温度で平均で2℃/s以下の冷却速度、好ましくは1.5℃/s以下で冷却するか、あるいは上記した一次冷却の冷却停止温度から巻取温度までの温度域で20s以上滞留させる冷却とする。
 一次冷却の冷却停止温度から巻取温度までを2℃/sを超える冷却速度で冷却すると、C等の合金元素が未変態γ中へ十分に拡散できず、未変態γの安定化が不十分となり、図1に点線で示す冷却のように、未変態γがベイニティックフェライト間に残存する形で棒状となり、所望の塊状マルテンサイトの生成が困難となる。
なお、この二次冷却は、ランナウトテーブルの後段での注水を停止して行うことが好ましい。板厚の薄い鋼板では、所望の冷却条件を確保するために、鋼板上に残存する冷却水の完全除去、保温カバーの設置等で調整することが好ましい。さらに、上記した温度域で20s以上の滞留時間を確保するためには搬送速度を調整することが好ましい。
二次冷却後、熱延鋼板は巻取工程を施される。
巻取工程は、表面温度で巻取温度:450℃以上で巻き取る工程とする。
巻取温度が450℃未満では、所望の低降伏比化を実現できなくなる。このため、巻取温度は450℃以上に限定した。上記した工程とすることにより、フェライトとオーステナイトが共存する温度域で所定時間以上、滞留させることができる。
上記した製造方法で製造された熱延鋼板を造管素材として、通常の造管工程を経て、スパイラル鋼管、電縫鋼管とされる。造管工程はとくに限定する必要はなく、通常の工程がいずれも適用できる。
以下、実施例に基いて、さらに本発明について詳しく説明する。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼素材(スラブ:肉厚220mm) とした。ついで、これら鋼素材を表2および表5に示す加熱温度に加熱して、粗圧延を行い、シートバーとしたのち、該シートバーに、表2および表5に示す条件で仕上圧延を行い熱延鋼板(板厚:8~25mm)とする熱延工程を施した。
得られた熱延鋼板に、仕上圧延終了後直ちに、表2および表5に示す時間内に冷却を開始し、冷却工程を施した。冷却工程は、一次冷却と二次冷却からなる冷却とした。一次冷却とは、表2および表5に示す板厚中心部温度での平均冷却速度で、表2および表5に示す板厚中心部温度での冷却停止温度まで冷却する冷却とした。なお、一次冷却では、複数の冷却バンクを調整して、表層部が、表面温度で表2および表5に示す750~600℃の温度域の平均冷却速度で、表面温度で表2および表5に示す冷却停止温度となるように冷却した。
一次冷却後、表2および表5に示す条件で二次冷却を行った。二次冷却では、表2および表5に示す一次冷却の冷却停止温度から表2および表5に示す巻取温度まで、表2および表5に示す条件で冷却した。
二次冷却後、熱延鋼板には、表2および表5に示す巻取温度でコイル状に巻き取り、放冷する巻取工程を施した。
得られた熱延鋼板から、試験片を採取し、組織観察、引張試験、衝撃試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた熱延鋼板から、圧延方向断面(L断面)が観察面となるように、組織観察用試験片を採取した。試験片を研磨し、ナイタール腐食して、光学顕微鏡(倍率:500倍)または走査型電子顕微鏡(倍率:2000倍)を用いて、組織観察を行い、撮像した。得られた組織写真から、画像解析装置を用いて、組織の種類、各相の組織分率(面積率)、平均粒径を測定した。なお、組織の観察位置は、表層(鋼板表面から1.5mmの位置)、板厚中央部とした。
なお、ベイニティックフェライトの平均粒径、焼戻マルテンサイトの平均粒径、最大粒径は、JIS G 0552に準拠して切断法で求めた。また、マルテンサイト粒のアスペクト比は、各粒における長手方向すなわち粒径が最大である方向の長さ(長辺)とそれに直角な方向の長さ(短辺)との比、(長辺) / (短辺)、で算出するものとする。アスペクト比が5.0未満のマルテンサイト粒を塊状マルテンサイトと定義し、アスペクト比が5.0以上のマルテンサイトは、「棒状」マルテンサイトと称する。また、塊状マルテンサイトの大きさは、塊状マルテンサイト各粒の長辺長さと短辺長さの和の1/2を直径とし、得られた各粒の直径を算術平均し、その鋼板における塊状マルテンサイトの大きさの平均とした。なお、塊状マルテンサイト各粒の直径のうちの最大の値を塊状マルテンサイトの大きさの最大とした。測定したマルテンサイト粒は100個以上とした。
また、得られた熱延鋼板から、薄膜用試験片を採取し、研削、機械研磨、電解研磨等により、薄膜試験片とし、透過型電子顕微鏡(倍率:20000倍)で組織観察し、ベイニティックフェライトのラス間隔を測定した。観察した視野数は3以上とした。なお、ラス間隔の測定は、ラスに対して垂直方向に線分を引き、ラス間の線分長を求め、その平均値をラス間隔とした。なお、薄膜用試験片の採取位置は、表層(鋼板表面から1.5mmの位置)、板厚中央部とした。
(2)引張試験
得られた熱延鋼板から、引張方向が、圧延方向と直角方向(板幅方向)および圧延方向から30度方向となるように、それぞれ引張試験片(API-5Lに定める全厚試験片:GL50mm、幅38.1mm) を採取し、ASTM A 370の規定に準拠して、引張試験を実施し、引張特性(降伏強さYS、引張強さTS) を求めた。
(3)衝撃試験
得られた熱延鋼板から、試験片長手方向が、圧延方向に直角方向となるように、Vノッチ試験片を採取し、ASTM A 370の規定に準拠して、シャルピー衝撃試験を実施し、破面遷移温度vTrs (℃)を求めた。
得られた結果を表3、表4、表6および表7に示す。
 次に、得られた熱延鋼板を管素材として、スパイラル造管工程により、スパイラル鋼管(外径:1067mmφ)を製造した。得られた鋼管から、引張方向が管周方向となるように、引張試験片(APIに定める試験片)を採取し、ASTM A 370の規定に準拠して、引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を測定した。得られた結果から、ΔYS(=鋼管YS-鋼板30°YS) を算出し、造管による強度低下の程度を評価した。ΔYSの大きさは、パイプ強度の安定性の観点から、-10~90MPaであることが好ましい。ΔYSが-10MPaよりも小さい(鋼管のYSが鋼板30°YSより10MPaを超えて小さい)場合は、造管後のYS低下量が大きいため好ましくない。ΔYSが90MPaを超えて大きい場合には、造管歪による強度変化が生じやすいため好ましくない。
得られた結果を表4および表7に併記して示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明例はいずれも、特別な熱処理を施すこともなく、圧延方向から30°方向の降伏応力が480MPa以上、板幅方向の引張強さが600MPa以上、破面遷移温度vTrsが-80℃以下、かつ降伏比が85%以下の低降伏比高強度高靭性熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、降伏応力が不足しているか、引張応力が低下しているか、低温靭性が低下しているか、低降伏比が確保できていないか、所望の特性を有する熱延鋼板が得られていない。
 さらに本発明例はいずれも、造管されて鋼管になったのちも、造管による強度低下も少なく、スパイラル鋼管あるいは電縫鋼管用素材として、好適な熱延鋼板になっている。
 なお、鋼板No.27は、圧延方向から30°方向のYSが480MPa以上、板厚方向のTSが600MPa以上、vTrsが-80℃以下、かつ降伏比が85%以下を満足するが、表層の焼戻マルテンサイトの含有量が2%を越えて、造管後のΔYSが90MPaよりも大きくなっている。

Claims (10)

  1.  質量%で、C:0.03~0.10%、Si:0.01~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.01~0.50%、Cr:0.01~0.50%、Ni:0.01~0.50%を含み、残部Feおよび不可避的不純物からなる組成と、
    表層が、ベイニティックフェライト相またはベイニティックフェライト相と焼戻マルテンサイト相とからなり、前記ベイニティックフェライト相のラス間隔が0.2~1.6μmであり、
    内層が、ベイニティックフェライト相を主相とし、第二相として、アスペクト比:5.0未満の塊状マルテンサイトを面積率で1.4~15%含み、前記内層の前記ベイニティックフェライト相のラス間隔が0.2~1.6μmである組織と、
    を有することを特徴とする熱延鋼板。
  2.  前記組成が、質量%で、下記(1)式で定義されるMoeqが1.4~2.2%の範囲を満足する組成であることを特徴とする請求項1に記載の熱延鋼板。
                 記
    Moeq (%)=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
    ここで、Mn、Ni、Cr、Mo:各元素の含有量(質量%)
  3.  前記組成に加えてさらに、質量%で、Cu:0.50%以下、V:0.10%以下、B:0.0005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載の熱延鋼板。
  4.  前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%を含有することを特徴とする請求項1ないし3のいずれか一項に記載の熱延鋼板。
  5.  前記塊状マルテンサイトの大きさが、最大で5.0μm以下、平均で0.5~3.0μmであることを特徴とする請求項1ないし4のいずれか一項に記載の熱延鋼板。
  6.  前記表層の焼戻マルテンサイトの平均粒径が3.0μm以下、最大粒径が4.0μm以下であることを特徴とする請求項1ないし5のいずれか一項に記載の熱延鋼板。
  7.  鋼素材に、熱延工程、冷却工程、巻取工程を施して、熱延鋼板とするにあたり、前記鋼素材を、質量%で、
    C:0.03~0.10%、Si:0.01~0.50%、Mn:1.4~2.2%、P:0.025%以下、S:0.005%以下、Al:0.005~0.10%、Nb:0.02~0.10%、Ti:0.001~0.030%、Mo:0.01~0.50%、Cr:0.01~0.50%、Ni:0.01~0.50%を含み、残部Feおよび可避的不純物からなる組成を有する鋼素材とし、
    前記熱延工程を、前記鋼素材を加熱温度:1050~1300℃に加熱し、該加熱された鋼素材に、粗圧延を施しシートバーとし、該シートバーに、930℃以下の温度域での累積圧下率:50%以上となる仕上圧延を施し熱延鋼板とする工程とし、
    前記冷却工程を、仕上圧延終了後直ちに冷却を開始し、板厚中央部温度で、750~600℃の温度域を平均で5~30℃/sの冷却速度 で冷却し、600~450℃ の温度域の冷却停止温度で冷却を停止する一次冷却と、さらに、前記一次冷却の冷却停止温度から巻取温度までを、板厚中央部温度で平均で2℃/s以下の冷却速度で冷却するか、あるいは前記一次冷却の冷却停止温度から巻取温度までの温度域で20s以上滞留させる二次冷却とからなり、かつ前記一次冷却を、表面温度で600~450℃の温度域を平均で100℃/s以下の冷却速度となるようにし、かつ冷却停止温度が表面温度で(Ms変態点-20℃)以上となるように調節した冷却とする工程とし、
    前記巻取工程が、表面温度で巻取温度:450℃以上で巻き取る工程とすることを特徴とする熱延鋼板の製造方法。
  8.  前記組成が、質量%で、下記(1)式で定義されるMoeqが1.4~2.2%の範囲を満足する組成であることを特徴とする請求項7に記載の熱延鋼板の製造方法。
                 記
    Moeq (%)=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
    ここで、Mn、Ni、Cr、Mo:各元素の含有量(質量%)
  9.  前記組成に加えてさらに、質量%で、Cu:0.50%以下、V:0.10%以下、B:0.0005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項7または8に記載の熱延鋼板の製造方法。
  10. 前記組成に加えてさらに、質量%で、Ca:0.0005~0.0050%を含有することを特徴とする請求項7ないし9のいずれか一項に記載の熱延鋼板の製造方法。
PCT/JP2013/005387 2012-09-13 2013-09-11 熱延鋼板およびその製造方法 WO2014041801A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112015005440-4A BR112015005440B1 (pt) 2012-09-13 2013-09-11 Chapa de aço laminada a quente e método para fabricar a mesma
IN770DEN2015 IN2015DN00770A (ja) 2012-09-13 2013-09-11
KR1020157007699A KR101702793B1 (ko) 2012-09-13 2013-09-11 열연 강판 및 그 제조 방법
CN201380047662.8A CN104619877B (zh) 2012-09-13 2013-09-11 热轧钢板及其制造方法
JP2014510587A JP5605526B2 (ja) 2012-09-13 2013-09-11 熱延鋼板およびその製造方法
EP13836371.8A EP2871253B1 (en) 2012-09-13 2013-09-11 Hot-rolled steel sheet and method for manufacturing same
US14/427,822 US10047416B2 (en) 2012-09-13 2013-09-11 Hot rolled steel sheet and method for manufacturing the same
US16/027,803 US10900104B2 (en) 2012-09-13 2018-07-05 Hot rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201262 2012-09-13
JP2012201262 2012-09-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/427,822 A-371-Of-International US10047416B2 (en) 2012-09-13 2013-09-11 Hot rolled steel sheet and method for manufacturing the same
US16/027,803 Division US10900104B2 (en) 2012-09-13 2018-07-05 Hot rolled steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014041801A1 true WO2014041801A1 (ja) 2014-03-20

Family

ID=50277942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005387 WO2014041801A1 (ja) 2012-09-13 2013-09-11 熱延鋼板およびその製造方法

Country Status (8)

Country Link
US (2) US10047416B2 (ja)
EP (1) EP2871253B1 (ja)
JP (1) JP5605526B2 (ja)
KR (1) KR101702793B1 (ja)
CN (1) CN104619877B (ja)
BR (1) BR112015005440B1 (ja)
IN (1) IN2015DN00770A (ja)
WO (1) WO2014041801A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006209A (ja) * 2014-06-20 2016-01-14 Jfeスチール株式会社 高強度でかつ低温靭性に優れた熱延鋼板およびその製造方法
JP2016148096A (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管及びその製造方法
JP2017214618A (ja) * 2016-05-31 2017-12-07 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2018100436A (ja) * 2016-12-20 2018-06-28 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2018127646A (ja) * 2017-02-06 2018-08-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2020067209A1 (ja) * 2018-09-28 2020-04-02 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2020067210A1 (ja) * 2018-09-28 2020-04-02 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015005440B1 (pt) 2012-09-13 2019-07-30 Jfe Steel Corporation Chapa de aço laminada a quente e método para fabricar a mesma
EP2975146A1 (en) * 2014-07-16 2016-01-20 Uddeholms AB Cold work tool steel
WO2016157235A1 (ja) * 2015-03-27 2016-10-06 Jfeスチール株式会社 高強度鋼及びその製造方法、並びに鋼管及びその製造方法
KR102379935B1 (ko) * 2017-09-19 2022-04-01 닛폰세이테츠 가부시키가이샤 강관 및 강판
CN112585289B (zh) * 2018-08-23 2022-04-29 杰富意钢铁株式会社 热轧钢板及其制造方法
JP6662505B1 (ja) 2018-09-28 2020-03-11 Jfeスチール株式会社 リール工法用長尺鋼管及びその製造方法
KR102131538B1 (ko) * 2018-11-30 2020-07-08 주식회사 포스코 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
KR102326109B1 (ko) * 2019-12-16 2021-11-16 주식회사 포스코 황화물 응력부식 균열 저항성이 우수한 강재 및 이의 제조방법
CN112195404B (zh) * 2020-09-28 2022-04-19 首钢集团有限公司 一种700MPa级含硼汽车扭力梁用钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227715A (ja) 1987-03-17 1988-09-22 Kawasaki Steel Corp 低温靭性に優れた低降伏比高張力ラインパイプ用熱延鋼板の製造方法
JPH10176239A (ja) 1996-10-17 1998-06-30 Kobe Steel Ltd 高強度低降伏比パイプ用熱延鋼板及びその製造方法
JP2006299413A (ja) 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP2008248384A (ja) * 2007-03-08 2008-10-16 Nippon Steel Corp 低温靭性に優れるスパイラルパイプ用高強度熱延鋼板およびその製造方法
JP2010059472A (ja) 2008-09-03 2010-03-18 Kobe Steel Ltd 低降伏比高靭性厚鋼板
JP2010209471A (ja) * 2007-07-23 2010-09-24 Nippon Steel Corp 変形特性に優れた鋼管及びその製造方法
JP2013007101A (ja) * 2011-06-24 2013-01-10 Kobe Steel Ltd 低温靭性と強度のバランスに優れた高強度鋼板の製造方法、及びその制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612818C2 (de) 1996-03-30 1998-04-09 Schloemann Siemag Ag Verfahren zur Kühlung walzwarmer Stahlprofile
JP5040197B2 (ja) * 2006-07-10 2012-10-03 Jfeスチール株式会社 加工性に優れ、かつ熱処理後の強度靭性に優れた熱延薄鋼板およびその製造方法
GB0719457D0 (en) 2007-10-04 2007-11-14 Skf Ab Heat-treatment process for a steel
EP2309014B1 (en) 2008-07-31 2013-12-25 JFE Steel Corporation Thick, high tensile-strength hot-rolled steel sheets with excellent low temperature toughness and manufacturing method therefor
KR101686257B1 (ko) 2009-01-30 2016-12-13 제이에프이 스틸 가부시키가이샤 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법
JP5499731B2 (ja) 2009-01-30 2014-05-21 Jfeスチール株式会社 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
RU2478124C1 (ru) 2009-01-30 2013-03-27 ДжФЕ СТИЛ КОРПОРЕЙШН Толстый горячекатаный стальной лист с высоким пределом прочности при растяжении, обладающий высокой низкотемпературной ударной вязкостью, и способ его производства
JP5776398B2 (ja) 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5679114B2 (ja) 2011-02-24 2015-03-04 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
KR101638707B1 (ko) * 2011-07-20 2016-07-11 제이에프이 스틸 가부시키가이샤 저온 인성이 우수한 저항복비 고강도 열연 강판 및 그 제조 방법
BR112015005440B1 (pt) 2012-09-13 2019-07-30 Jfe Steel Corporation Chapa de aço laminada a quente e método para fabricar a mesma
KR101702794B1 (ko) * 2012-09-13 2017-02-03 제이에프이 스틸 가부시키가이샤 열연 강판 및 그 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227715A (ja) 1987-03-17 1988-09-22 Kawasaki Steel Corp 低温靭性に優れた低降伏比高張力ラインパイプ用熱延鋼板の製造方法
JPH10176239A (ja) 1996-10-17 1998-06-30 Kobe Steel Ltd 高強度低降伏比パイプ用熱延鋼板及びその製造方法
JP2006299413A (ja) 2005-03-24 2006-11-02 Jfe Steel Kk 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP2008248384A (ja) * 2007-03-08 2008-10-16 Nippon Steel Corp 低温靭性に優れるスパイラルパイプ用高強度熱延鋼板およびその製造方法
JP2010209471A (ja) * 2007-07-23 2010-09-24 Nippon Steel Corp 変形特性に優れた鋼管及びその製造方法
JP2010059472A (ja) 2008-09-03 2010-03-18 Kobe Steel Ltd 低降伏比高靭性厚鋼板
JP2013007101A (ja) * 2011-06-24 2013-01-10 Kobe Steel Ltd 低温靭性と強度のバランスに優れた高強度鋼板の製造方法、及びその制御方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006209A (ja) * 2014-06-20 2016-01-14 Jfeスチール株式会社 高強度でかつ低温靭性に優れた熱延鋼板およびその製造方法
JP2016148096A (ja) * 2015-02-13 2016-08-18 Jfeスチール株式会社 深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管及びその製造方法
JP2017214618A (ja) * 2016-05-31 2017-12-07 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2018100436A (ja) * 2016-12-20 2018-06-28 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2018127646A (ja) * 2017-02-06 2018-08-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2020067209A1 (ja) * 2018-09-28 2020-04-02 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
WO2020067210A1 (ja) * 2018-09-28 2020-04-02 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JPWO2020067209A1 (ja) * 2018-09-28 2021-02-15 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JPWO2020067210A1 (ja) * 2018-09-28 2021-02-15 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
RU2767260C1 (ru) * 2018-09-28 2022-03-17 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочная стальная пластина для кислотостойкого трубопровода, и способ получения стальной пластины, и высокопрочная стальная труба, в которой используется высокопрочная стальная пластина для кислотостойкого трубопровода
RU2767261C1 (ru) * 2018-09-28 2022-03-17 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочная стальная пластина для кислотостойкого трубопровода и способ получения стальной пластины, высокопрочная стальная труба, в которой используется высокопрочная стальная пластина для кислотостойкого трубопровода

Also Published As

Publication number Publication date
EP2871253A4 (en) 2015-11-18
CN104619877A (zh) 2015-05-13
EP2871253A1 (en) 2015-05-13
IN2015DN00770A (ja) 2015-07-03
KR101702793B1 (ko) 2017-02-03
BR112015005440A2 (pt) 2017-07-04
KR20150038746A (ko) 2015-04-08
US10900104B2 (en) 2021-01-26
JP5605526B2 (ja) 2014-10-15
US20150344998A1 (en) 2015-12-03
JPWO2014041801A1 (ja) 2016-08-12
EP2871253B1 (en) 2020-06-03
CN104619877B (zh) 2017-06-09
US10047416B2 (en) 2018-08-14
BR112015005440B1 (pt) 2019-07-30
US20180312945A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5776398B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5605526B2 (ja) 熱延鋼板およびその製造方法
JP5605527B2 (ja) 熱延鋼板およびその製造方法
KR101333854B1 (ko) 저온 인성이 우수한 후육 고장력 열연 강판 및 그 제조 방법
JP5609383B2 (ja) 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
KR101638707B1 (ko) 저온 인성이 우수한 저항복비 고강도 열연 강판 및 그 제조 방법
JP6477570B2 (ja) 熱延鋼板およびその製造方法
JP6327282B2 (ja) 高強度熱延鋼板およびその製造方法
JP2010174343A (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
JP2011052320A (ja) 低温靭性に優れた高強度熱延鋼板およびその製造方法
JP2010196165A (ja) 低温靭性に優れた極厚高張力熱延鋼板およびその製造方法
JP5401863B2 (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
JP2011179042A (ja) 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
JP2015190026A (ja) ラインパイプ用厚肉高強度電縫鋼管およびその製造方法
JP6519024B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2005281838A (ja) 材質均質性の優れた高強度高靭性熱延鋼帯及びその製造方法
JP6565890B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2010196157A (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014510587

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013836371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14427822

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157007699

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005440

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015005440

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150311