WO2014041788A1 - Signal processing device, medical device and signal processing method - Google Patents

Signal processing device, medical device and signal processing method Download PDF

Info

Publication number
WO2014041788A1
WO2014041788A1 PCT/JP2013/005325 JP2013005325W WO2014041788A1 WO 2014041788 A1 WO2014041788 A1 WO 2014041788A1 JP 2013005325 W JP2013005325 W JP 2013005325W WO 2014041788 A1 WO2014041788 A1 WO 2014041788A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
bubble
bubble sensor
axis
tube
Prior art date
Application number
PCT/JP2013/005325
Other languages
French (fr)
Japanese (ja)
Inventor
悠希 原
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2014535375A priority Critical patent/JP5864766B2/en
Publication of WO2014041788A1 publication Critical patent/WO2014041788A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body
    • A61M5/365Air detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3626Gas bubble detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3666Cardiac or cardiopulmonary bypass, e.g. heart-lung machines

Definitions

  • the present invention relates to a signal processing device that processes an output signal of a bubble detection device (bubble sensor), a medical device including the signal processing device, and a signal processing method in the signal processing device.
  • a bubble detection device bubble sensor
  • a medical device including the signal processing device
  • a signal processing method in the signal processing device.
  • a bubble sensor for detecting bubbles contained in a liquid such as a priming solution or an infusion solution is attached to a tube, and an output signal from the bubble sensor is signaled.
  • a processing device By processing with the processing device, the presence / absence of bubbles, the size of bubbles, and the like are determined.
  • a bubble sensor attached to a tube includes a signal transmission unit that transmits signals such as ultrasonic waves and light, and a signal reception unit that receives a signal transmitted through the tube.
  • the signal receiving unit detects a decrease in the received signal level that occurs in this manner (see, for example, Patent Document 1).
  • the bubble sensor may be mounted on a vertically disposed tube, or on a horizontally disposed tube. It may be attached to.
  • the tube When mounted on a horizontally arranged tube, the tube may be mounted so that the tube is sandwiched from above and below by the signal transmitter and signal receiver, or it may be sandwiched from the left and right. It may be installed as shown.
  • the bubbles in the tube are not always in the same shape, and the shape usually changes depending on the direction in which the liquid flows. This will be described with reference to FIG.
  • FIG. 7 is a diagram showing a state in which the shape of the bubble is deformed in accordance with the direction in which the liquid flows.
  • 7a of FIG. 7 has shown the case where a mode that the bubble sensor was mounted
  • 7b of FIG. 7 has shown the state where the bubble sensor was mounted
  • 7c in FIG. 7 shows a state in which the bubble sensor is mounted from the side so that the signal transmission unit and the signal reception unit are sandwiched from the left and right with respect to the horizontally arranged tubes.
  • the shape of the detected bubble depends on the position and direction on the tube to which the bubble sensor is attached.
  • the width of attenuation of signals such as light (Wa, Wb, Wc)) is different.
  • the areas where the signal is attenuated by a predetermined level or more obtained by integrating the widths Wa, Wb, Wc in the direction in which the liquid flows, that is, the direction in which the signal is transmitted.
  • areas Sa, Sb, Sc obtained by integrating the widths Wa, Wb, Wc in the direction in which the liquid flows, that is, the direction in which the signal is transmitted.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the determination accuracy when determining the presence or absence of bubbles, the size of bubbles, and the like.
  • a signal processing apparatus comprises the following arrangement. That is, A signal processing device that is connected to a bubble sensor attached to a tube through which a liquid flows and processes an output signal output from the bubble sensor, An acquisition means for acquiring, from the bubble sensor, a reception signal obtained by receiving a signal transmitted in a direction intersecting a direction in which the liquid flows through the tube; By acquiring an inclination signal for calculating the inclination angle of each axis of the bubble sensor from the bubble sensor, the inclination angle of each axis of the bubble sensor is calculated, and based on the calculated inclination angle of each axis. Determining means for determining a mounting state of the bubble sensor with respect to the tube; A calculation unit that calculates the size of the bubble by using the reception signal acquired by the acquisition unit and a correction value that is determined in advance according to the wearing state determined by the determination unit;
  • the present invention it is possible to improve the determination accuracy when determining the presence or absence of bubbles, the size of bubbles, and the like.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of a controller 110 of the extracorporeal circulation device 100.
  • FIG. It is a figure for demonstrating the structure and mounting state of the bubble sensor. It is a figure for demonstrating the outline
  • 6 is a diagram illustrating a relationship between an inclination angle of the bubble sensor 114 and a bubble cross-sectional area calculated by a bubble cross-section calculating unit 212.
  • FIG. It is a flowchart which shows the flow of the bubble determination process in the signal processing part 210.
  • FIG. It is a figure which shows a mode that the shape of a bubble deform
  • an extracorporeal circulation device will be described as an example of a medical device to which the signal processing device according to the present invention is applied.
  • the medical device to which the signal processing device according to the present invention is applied is an extracorporeal device.
  • the medical device is not limited to the circulation device, and may be another medical device.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of an extracorporeal circulation device 100 including a signal processing device according to a first embodiment of the present invention.
  • the extracorporeal circulation device 100 is called PCPS (percutaneous cardiopulmonary support) and performs cardiopulmonary assist operations (extracorporeal circulation operation, priming operation).
  • the extracorporeal circulation apparatus 100 has a blood extracorporeal circuit (hereinafter referred to as a circulation circuit) indicated by an arrow in the figure.
  • a circulation circuit blood extracorporeal circuit
  • the blood of the subject 130 is circulated extracorporeally using this circulation circuit.
  • the priming operation refers to an operation of removing the bubbles in the circuit by circulating the priming solution in the circulation circuit in a state where the circulation circuit is sufficiently filled with the priming solution (for example, physiological saline).
  • the priming solution for example, physiological saline
  • the extracorporeal circulation device 100 includes a controller 110 that functions as a signal processing device, a drive motor 111, a centrifugal pump 112, an oxygenator 113, an oxygen supply source 117, a catheter (venous side) 119, and a catheter (arterial side). 120, a bubble sensor 114, a branch line 118, a blood filter 116, and a flow sensor 115. These components are connected by a flexible tube or the like, and the lumen of the tube forms a flow path for blood or priming liquid.
  • the catheter (arterial side) 120 pumps blood toward the body of the subject 130, and the catheter (venous side) 119 performs blood removal from the body of the subject 130.
  • the centrifugal pump 112 is also called a centrifugal artificial heart, drives a rotating body provided inside, applies pressure to the blood, and circulates the blood in the circulation circuit.
  • the drive motor 111 gives a rotational driving force to the rotating body of the centrifugal pump 112.
  • the artificial lung 113 performs blood circulation and blood gas exchange (oxygen addition, carbon dioxide removal, etc.).
  • the oxygen supply source 117 is realized by, for example, an oxygen cylinder and supplies oxygen to be added to blood.
  • the oxygen supplied from the oxygen supply source 117 is used at the time of gas exchange by the artificial lung 113.
  • the bubble sensor 114 detects bubbles contained in the priming liquid flowing in the circulation circuit during the priming operation by a predetermined detection method (ultrasonic wave, light, etc.).
  • the blood filter 116 filters blood or removes bubbles in the blood.
  • the flow sensor 115 is configured to include, for example, an ultrasonic transceiver, and measures the blood flow in the circulation circuit.
  • the branch line 118 switches the flow path of the circulation circuit. Specifically, when the blood of the subject 130 is circulated extracorporeally, a circulation circuit passing through the body of the subject 130 is constructed as shown in 1A of FIG. Circulate. During the priming operation, as shown in 1B of FIG. 1, the circuit of the circulation circuit to the inside of the body of the subject 130 is blocked by the branch line 118 (in other words, the circulation circuit that passes only the outside of the subject 130 (in other words, the subject A circulation circuit that does not pass through the body of the person 130 is constructed, and the circulation circuit is filled with the priming liquid (without passing through the body of the subject) to circulate the priming liquid.
  • one or a plurality of bubble discharge ports for discharging bubbles are provided on the circulation circuit.
  • the bubbles in the circulation circuit are circulated. It will be discharged from the bubble discharge port.
  • the controller 110 comprehensively controls the extracorporeal circulation operation and the priming operation in the extracorporeal circulation device 100.
  • the drive motor 111 is controlled to drive the centrifugal pump 112
  • the oxygenator 113 is controlled to perform a gas exchange operation
  • the bubble sensor 114 is controlled to output from the bubble sensor 114.
  • a signal is acquired, and the flow rate sensor 115 is controlled to acquire a flow rate value.
  • the bubble sensor 114 includes a signal transmission unit 231, a signal reception unit 232, an X-axis acceleration detection unit 233X, a Y-axis acceleration detection unit 233Y, and a Z-axis acceleration detection unit 233Z, as shown in FIG. .
  • the signal transmission unit 231 and the signal reception unit 232 are arranged so as to sandwich the tube through which the priming liquid flows, and the signal reception unit 232 receives the signal transmitted from the signal transmission unit 231 and transmitted through the tube and the inside thereof.
  • a signal corresponding to is output as a bubble signal.
  • the direction in which the signal transmission unit 231 transmits a signal is a direction that intersects the direction in which the priming liquid flows in the tube.
  • the X-axis acceleration detection unit 233X, the Y-axis acceleration detection unit 233Y, and the Z-axis acceleration detection unit 233Z constitute an attitude sensor that detects the attitude of the bubble sensor 114.
  • the attitude sensor can have various other configurations.
  • the attitude sensor can include a three-axis gyro.
  • the controller 110 determines the presence / absence of bubbles, the size of bubbles, and the like based on the bubble signal output from the bubble sensor 114.
  • the posture or inclination angle of the bubble sensor 114 attached to the tube is determined using the posture signal or acceleration signal output from the bubble sensor 114 when determining the presence / absence of bubbles and the size of bubbles.
  • the bubble size is corrected based on the calculated posture or inclination angle. Details of these processes relating to bubbles in the controller 110 will be described later.
  • the controller 110 controls the execution of the priming operation.
  • a circulation circuit that does not pass through the body of the subject 130 is constructed by the branch line 118 as shown in 1B of FIG.
  • the priming liquid supply source 121 is connected to the branch line 118, and the priming liquid is supplied from the priming liquid supply source 121 into the circulation circuit.
  • the circulation circuit is filled with the priming liquid.
  • the centrifugal pump 112 is driven by the control of the controller 110, and the priming liquid circulates in the circulation circuit over a plurality of rounds. Bubbles in the circulation circuit are discharged from the bubble discharge port or the like with this circulation. At this time, bubbles in the circulation circuit are detected by the bubble sensor 114, and the controller 110 determines whether or not there are bubbles contained in the circulation circuit and the size of the bubbles based on the detection result of the bubble sensor 114. .
  • the controller 110 when the result of the determination satisfies a predetermined standard, the priming operation is terminated. At the end of this, the controller 110 notifies the user that the priming operation has ended using a display (not shown), a speaker (not shown), or the like. The user who receives the notification of the end of the priming operation switches the branch line 118 and constructs a circulation circuit that passes through the body of the subject 130 as shown in 1A of FIG. Thereby, the blood of the subject 130 is circulated extracorporeally.
  • blood that has been removed from the catheter (vein side) 119 enters the oxygenator 113 via the centrifugal pump 112.
  • gas exchange that is, processing such as oxygen addition and carbon dioxide removal is performed.
  • the filtered blood is sent from the catheter (arterial side) 120 into the body of the subject 130 through the blood filter 116 and the like. This process from blood removal to blood transfer is repeated, and the blood of the subject 130 is circulated extracorporeally.
  • the controller 110 includes a display unit 203, an operation unit 202, a storage unit 201, an I / F unit 206, a timer unit 204, and a control unit 205 as functional configurations.
  • the display unit 203 is realized by a display such as a monitor, for example, and displays various types of information for the user.
  • the operation unit 202 is realized by various buttons, for example, and inputs an instruction from the user. Part or all of the display unit 203 and the operation unit 202 may be realized as a touch panel, for example.
  • the storage unit 201 is realized by, for example, a hard disk and stores various information. It is assumed that a conversion table 221 that is referred to when executing processing in the signal processing unit 210 described later is stored in the storage unit 201.
  • the I / F unit 206 exchanges various signals with an external device.
  • the output signal (bubble signal, acceleration signal) from the bubble sensor 114 including the signal transmission unit 231, the signal reception unit 232, and the X-axis acceleration detection unit 233X to the Z-axis acceleration detection unit 233Z is the I / F unit 206.
  • the timer unit 204 measures various times.
  • the control unit 205 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and a program for realizing the above-described cardiopulmonary assist operation is stored in the ROM. It shall be.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the ROM stores a program for processing an output signal (bubble signal, posture signal (acceleration signal)) from the bubble sensor 114, and is executed by the CPU, so that the control unit 205 outputs a signal. It functions as the processing unit 210.
  • the signal processing unit 210 includes an inclination measurement unit 211 that calculates an attitude (inclination angle) of the bubble sensor 114 based on an attitude signal (acceleration signal) among output signals from the bubble sensor 114, and an output from the bubble sensor 114.
  • a bubble cross-sectional area calculating unit 212 that calculates the bubble cross-sectional area based on the bubble signal and corrects the calculated bubble cross-sectional area using the attitude (inclination angle) of the bubble sensor 114.
  • the signal processing unit 210 determines the presence / absence of bubbles, the size of bubbles, and the like using the corrected bubble cross-sectional area. Details of each part of the signal processing unit 210 and a flow of bubble determination processing in the signal processing unit 210 will be described later.
  • the functional configuration of the controller 110 is merely an example, and a new configuration may be added, or unnecessary configuration may be omitted as appropriate.
  • the storage unit 201 (hard disk or the like) is not necessarily provided and may be omitted.
  • FIG. 3 is a diagram for explaining the configuration and mounting state of the bubble sensor 114.
  • the bubble sensor 114 and the tube are arranged so as to be in any one of the three postures exemplified by 3a, 3b, and 3c in FIG. Assumed.
  • the bubble sensor 114 is provided with an opening for allowing the tube to pass therethrough, and an inner wall surface (not shown) forming the opening closely contacts the outer peripheral surface of the tube. Is configured to do.
  • the bubble sensor 114 is configured to transmit a signal (an ultrasonic signal or an optical signal) in the direction of a dotted arrow, and a signal transmission unit 231 (not shown in FIG. 3) is arranged on the starting point side of the dotted arrow.
  • a signal receiver 232 (not shown in FIG. 3) is disposed on the end point side of the dotted arrow.
  • the bubble sensor 114 includes an acceleration detector 233X (not shown in FIG. 3) for detecting acceleration in the X-axis direction and an acceleration detector 233Y (not shown in FIG. 3) for detecting acceleration in the Y-axis direction. ) And an acceleration detector 233Z (not shown in FIG. 3) for detecting acceleration in the Z-axis direction.
  • the acceleration detected by each acceleration detection unit is transmitted to the controller 110 as an acceleration signal via a connection cable (not shown).
  • the posture of the bubble sensor 114 attached to the tube will be described.
  • the posture of the bubble sensor 114 attached to the tube can also be understood as the attachment state of the bubble sensor 114 to the tube.
  • 3a of FIG. 3 has shown the mode that the bubble sensor 114 was mounted
  • 3b in FIG. 3 is a direction that is substantially perpendicular to the direction in which the liquid flows in the horizontal direction along the thick arrow so that a signal is transmitted in the horizontal direction.
  • a state in which the bubble sensor 114 is attached is shown.
  • 3c in FIG. 3 shows a state in which the bubble sensor 114 is mounted so that a signal is transmitted in the vertical direction to the tube in which the liquid flows in the horizontal direction along the thick arrow.
  • the bubble sensor 114 is provided with the acceleration detectors 233X to 233Z that detect the accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction, for example, in the horizontal direction (the gravity direction and By calculating how much the bubble sensor 114 is inclined with respect to the (perpendicular direction), the mounting state can be determined.
  • the bubble sensor 114 is attached to the tube in the attachment state indicated by 3a.
  • FIG. 4A and 4B are diagrams for explaining an outline of processing in the inclination measurement unit.
  • the bubble sensor 114 is configured to detect the acceleration in each of the X-axis direction, the Y-axis direction, and the Z-axis direction, and each axis is inclined several times with respect to the horizontal direction, for example. Can be calculated.
  • the inclination angle of the X axis will be described for the sake of simplicity.
  • FIG. 4A shows how much gravity is dispersed in the X-axis direction when the X-axis of the bubble sensor 114 is inclined by ⁇ degrees with respect to the horizontal direction.
  • FIG. 4B shows the relationship between the gravitational acceleration detected in the X-axis direction of the bubble sensor 114 and the inclination angle of the X-axis from the horizontal direction.
  • the gravitational acceleration when the X-axis is inclined 90 degrees from the horizontal direction is g
  • the bubble sensor is detected when 0.5 g of gravitational acceleration is detected by the acceleration detection unit 233X in the X-axis direction. It can be determined that the X axis 114 is inclined by 30 degrees with respect to the horizontal direction.
  • the inclination measurement unit 211 obtains the acceleration signal of the X-axis acceleration detection unit 233X of the bubble sensor 114, and is obtained when the acceleration signal and the inclination angle of the X-axis from the horizontal direction are 90 degrees. By calculating the ratio to the acceleration signal to be obtained, the tilt angle of the X axis with respect to the horizontal direction can be calculated.
  • the tilt angle can be calculated based on the acceleration signal from the acceleration detectors 233Y and 233Z by the same calculation method.
  • FIG. 5 is a diagram showing the relationship between the inclination angle of the bubble sensor 114 and the bubble cross-sectional area when bubbles having the same volume flow through the tube. As shown in 5a of FIG.
  • the bubble cross-sectional area Sa calculated by the bubble cross-sectional area calculation unit 212 based on the bubble signal from 232 (the range in which the bubble signal is attenuated by a predetermined level or more. That is, toward a plane perpendicular to the direction in which the signal is transmitted. It is not necessary to correct the bubble area when the bubble is projected.
  • the X-axis tilt angle with respect to the horizontal direction was calculated as 0 degree
  • the Y-axis tilt angle with respect to the horizontal direction was calculated as 90 degrees
  • the Z-axis tilt angle with respect to the horizontal direction was calculated as 0 degrees.
  • the bubble cross-sectional area Sb calculated by the bubble cross-sectional area calculation unit 212 based on the bubble signal from the signal receiving unit 232 (the range in which the bubble signal is attenuated by a predetermined level or more, that is, perpendicular to the direction in which the signal is transmitted)
  • the area of the bubbles when the bubbles are projected toward a smooth surface is larger than the bubble cross-sectional area Sa shown in 5a of FIG. For this reason, correction is performed according to the following equation using the correction value ⁇ .
  • Corrected bubble cross-sectional area Sb ′ ⁇ ⁇ Sb where ⁇ ⁇ 1
  • the bubble cross-sectional area Sc calculated by the bubble cross-sectional area calculation unit 212 based on the bubble signal from the receiving unit 232 (the range in which the bubble signal is attenuated by a predetermined level or more.
  • FIG. 6 is a flowchart showing the flow of bubble determination processing in the signal processing unit 210.
  • step S601 the acquisition of the bubble signal output from the signal receiving unit 232 of the bubble sensor 114 is started.
  • step S602 it is determined whether or not a bubble is detected based on the captured bubble signal. Specifically, it is determined whether or not the captured bubble signal has fallen below a predetermined level.
  • step S602 If it is determined in step S602 that bubbles are not detected (that is, the incorporated bubble signal has not dropped below a predetermined level), the process waits until bubbles are detected.
  • step S602 determines whether bubbles are detected (that is, the incorporated bubble signal has dropped below a predetermined level). If it is determined in step S602 that bubbles are detected (that is, the incorporated bubble signal has dropped below a predetermined level), the process proceeds to step S603.
  • step S603 the bubble cross-sectional area is calculated. Specifically, when the state in which the captured bubble signal has decreased to a predetermined level or lower continues, the width that has decreased to a predetermined level or lower (the length in the direction orthogonal to the signal transmission direction) ) Is integrated in the liquid flow direction to calculate the bubble cross-sectional area.
  • step S604 an acceleration signal output from the acceleration detectors 233X to 233Z of the bubble sensor 114 is received.
  • the inclination angle of each axis with respect to the horizontal direction is calculated based on the acceleration signal received in step S604.
  • step S606 the posture or mounting state of the bubble sensor 114 is determined based on the calculation result of the tilt angle in step S605, and the bubble cross-sectional area calculated in step S603 is corrected based on the determination result.
  • step S607 bubble determination is performed using the bubble cross-sectional area corrected in step S606. Specifically, it is determined whether or not the corrected bubble cross-sectional area is greater than or equal to a predetermined threshold, and if it is determined that the corrected bubble cross-sectional area is greater than or equal to the predetermined threshold, it is determined that there is a bubble. If it is determined that there is a bubble, the size of the bubble is further classified based on the corrected bubble cross-sectional area (for example, the size of the bubble is classified into large, medium, and small). .
  • step S608 it is determined whether or not an instruction to end the bubble determination process has been input. If it is determined that no end instruction has been input, the process returns to step S602. On the other hand, if it is determined that an instruction to end the bubble determination process has been input, the process proceeds to step S609, the capture of the bubble signal output from the signal receiving unit 232 of the bubble sensor 114 is terminated, and the bubble determination process is terminated. .
  • the bubble sensor is provided with the acceleration detection units 233X to 233Z, and the inclination angle of the bubble sensor is calculated to determine the posture or mounting state of the bubble sensor with respect to the tube. It was. Furthermore, the bubble cross-sectional area calculated based on the bubble signal from the bubble sensor is corrected based on the determined wearing state.
  • the acceleration sensor is provided in the bubble sensor.
  • the present invention is not limited to this, and other detection means may be used. Also good.
  • the bubble sensor 114 defines three axes (X axis, Y axis, Z axis), and the acceleration detection unit is provided in the X axis direction, the Y axis direction, and the Z axis direction.
  • this invention is not limited to this, The structure provided in any one axis
  • 3a to 3c in FIG. 3 are listed as examples of the mounting state of the bubble sensor 114, but the present invention is not limited to this, and other mounting states (for example, X in the horizontal direction)
  • a mounting state in which the tilt angle in the axial direction is 30 degrees, the tilt angle in the Y-axis direction is 0 degrees, and the tilt angle in the Z-axis direction is 0 degrees may be employed.
  • the correction value ⁇ or ⁇ for correcting the bubble cross-sectional area varies depending on the inclination angle of each axis
  • the correction value corresponding to each mounting state is stored in the storage unit as the conversion table 221. You may make it store.
  • the correction value ⁇ or ⁇ at this time may be obtained experimentally or by calculation (simulation or the like).
  • the processing related to individual bubbles has been described as the bubble determination processing in the signal processing unit 210.
  • the present invention is not limited to this, and a plurality of results using the processing related to individual bubbles can be used. You may comprise so that a process may be performed about a bubble.
  • the cumulative bubble cross-sectional area may be calculated by cumulatively adding the corrected bubble cross-sectional areas. Further, the calculated cumulative bubble cross-sectional area may be compared with a predetermined threshold value.
  • the change amount per unit time of the accumulated bubble cross-sectional area calculated by accumulating the corrected bubble cross-sectional area may be calculated.
  • the calculated change amount may be compared with a predetermined threshold value.
  • it may be configured to calculate the amount of change per unit time by counting the number of each bubble size classified based on the corrected bubble cross-sectional area.
  • the corrected bubble cross-sectional area is output, but the present invention is not limited to this.
  • the bubble volume may be calculated based on the corrected bubble cross-sectional area.
  • the relationship between the corrected bubble cross-sectional area and the bubble volume may be stored as a conversion table 221 in a storage unit, and the bubble volume may be calculated using the conversion table 221.
  • the conversion table at this time may be obtained experimentally or by calculation (simulation or the like).
  • 100 extracorporeal circulation device
  • 111 drive motor
  • 112 centrifugal pump
  • 113 artificial lung
  • 114 bubble sensor
  • 115 flow sensor
  • 116 blood filter
  • 117 oxygen supply source
  • 118 branch line
  • 119 catheter
  • 120 catheter
  • 130 subject

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

This signal processing device (110) is connected to an air bubble sensor (114) mounted on a tube through which a liquid flows, and is provided with: an interface unit (206) which acquires an air bubble signal obtained by receiving, through the tube, a signal sent in a direction perpendicular to the direction of flow of the liquid; a tilt measurement unit (211) which, by incorporating an acceleration signal for each axis of the air bubble sensor (114), calculates the tilt angle of each axis of the air bubble sensor (114) and, on the basis of the calculated tilt angle on each axis, determines the mounting state of the air bubble sensor (114) relative to the tube; and a signal processing unit (210) which calculates the size of the air bubbles by using pre-determined correction values according to the acquired air bubble signal and the determined mounting state.

Description

信号処理装置、医療装置及び信号処理方法Signal processing device, medical device, and signal processing method
 本発明は、気泡検出装置(気泡センサ)の出力信号を処理する信号処理装置、及び、該信号処理装置を備える医療装置、ならびに、該信号処理装置における信号処理方法に関するものである。 The present invention relates to a signal processing device that processes an output signal of a bubble detection device (bubble sensor), a medical device including the signal processing device, and a signal processing method in the signal processing device.
 従来より、体外循環装置や輸液装置等の医療装置では、プライミング液や輸液等の液体に含まれる気泡を検出するための気泡センサがチューブに装着されており、当該気泡センサからの出力信号を信号処理装置にて処理することで、気泡の有無や気泡の大きさ等の判定が行われている。 Conventionally, in a medical device such as an extracorporeal circulation device or an infusion device, a bubble sensor for detecting bubbles contained in a liquid such as a priming solution or an infusion solution is attached to a tube, and an output signal from the bubble sensor is signaled. By processing with the processing device, the presence / absence of bubbles, the size of bubbles, and the like are determined.
 一般に、チューブに装着される気泡センサは、超音波や光等の信号を送信する信号送信部と、チューブを透過した信号を受信する信号受信部とを備えており、気泡が通過したことに伴って生じる受信信号レベルの低下を、信号受信部にて検出する構成となっている(例えば、特許文献1参照)。 In general, a bubble sensor attached to a tube includes a signal transmission unit that transmits signals such as ultrasonic waves and light, and a signal reception unit that receives a signal transmitted through the tube. The signal receiving unit detects a decrease in the received signal level that occurs in this manner (see, for example, Patent Document 1).
特開平6-178808号公報JP-A-6-178808
 しかしながら、気泡センサが装着されるチューブ上の位置や方向は、常に同じであるとは限られず、例えば、垂直に配されたチューブ上に装着されることもあれば、水平に配されたチューブ上に装着されることもある。また、水平に配されたチューブ上に装着される場合にあっては、信号送信部と信号受信部とよって、チューブが上下から挟みこまれるように装着されることもあれば、左右から挟みこまれるように装着されることもある。 However, the position and direction on the tube where the bubble sensor is mounted are not always the same. For example, the bubble sensor may be mounted on a vertically disposed tube, or on a horizontally disposed tube. It may be attached to. When mounted on a horizontally arranged tube, the tube may be mounted so that the tube is sandwiched from above and below by the signal transmitter and signal receiver, or it may be sandwiched from the left and right. It may be installed as shown.
 ここで、チューブ内の気泡は、常に同じ形状を有しているとは限られず、通常、液体が流れる方向によって、形状が変化する。図7を用いて説明する。 Here, the bubbles in the tube are not always in the same shape, and the shape usually changes depending on the direction in which the liquid flows. This will be described with reference to FIG.
 図7は、液体が流れる方向に応じて気泡の形状が変形する様子を示した図である。図7の7aは、垂直に配されたチューブに気泡センサを装着した様子を、真上から見た場合を示している。また、図7の7bは、水平に配されたチューブに対して、信号送信部と信号受信部とを上下から挟みこむように気泡センサを装着した様子を、真横から見た場合を示している。更に、図7の7cは、水平に配されたチューブに対して、信号送信部と信号受信部とを左右から挟みこむように気泡センサを装着した様子を、真横から見た場合を示している。 FIG. 7 is a diagram showing a state in which the shape of the bubble is deformed in accordance with the direction in which the liquid flows. 7a of FIG. 7 has shown the case where a mode that the bubble sensor was mounted | worn with the tube arrange | positioned perpendicularly | vertically was seen from right above. Moreover, 7b of FIG. 7 has shown the state where the bubble sensor was mounted | worn so that a signal transmission part and a signal reception part may be inserted | pinched from the upper and lower sides with respect to the tube arrange | positioned horizontally. Further, 7c in FIG. 7 shows a state in which the bubble sensor is mounted from the side so that the signal transmission unit and the signal reception unit are sandwiched from the left and right with respect to the horizontally arranged tubes.
 図7の7a-7cから明らかなように、気泡の大きさ(体積)が同じであっても、気泡センサが装着されるチューブ上の位置及び方向によって、検出される気泡の形状(超音波や光等の信号が減衰する幅(Wa、Wb、Wc))は異なってくる。 As is apparent from 7a-7c in FIG. 7, even if the size (volume) of the bubble is the same, the shape of the detected bubble (ultrasonic wave or ultrasonic wave) depends on the position and direction on the tube to which the bubble sensor is attached. The width of attenuation of signals such as light (Wa, Wb, Wc)) is different.
 この結果、信号が所定レベル以上減衰している範囲(幅Wa、Wb、Wcを、液体が流れる方向に積分していくことによって得られる面積Sa、Sb、Sc、つまり、信号が送信される方向に垂直な面に向かって気泡を投影させることにより得られる気泡断面積)を監視することで、気泡の有無や気泡の大きさ等を判定する信号処理装置の場合、誤差要因となり、判定精度が低下してしまうといった問題が生じる。 As a result, the areas where the signal is attenuated by a predetermined level or more (areas Sa, Sb, Sc obtained by integrating the widths Wa, Wb, Wc in the direction in which the liquid flows, that is, the direction in which the signal is transmitted. In the case of a signal processing device that determines the presence / absence of bubbles, the size of bubbles, etc., by monitoring the bubble cross-sectional area obtained by projecting bubbles toward a plane perpendicular to The problem of deteriorating occurs.
 本発明は上記課題に鑑みてなされたものであり、気泡の有無や気泡の大きさ等を判定する際の、判定精度を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to improve the determination accuracy when determining the presence or absence of bubbles, the size of bubbles, and the like.
 上記の目的を達成するために、本発明に係る信号処理装置は以下のような構成を備える。即ち、
 液体が流れるチューブに装着される気泡センサと接続され、該気泡センサから出力される出力信号を処理する信号処理装置であって、
 前記液体が流れる方向と交差する方向に送信された信号を前記チューブを介して受信することにより得られる受信信号を、前記気泡センサより取得する取得手段と、
 前記気泡センサの各軸の傾斜角度を算出するための傾斜信号を、前記気泡センサより取り込むことにより、前記気泡センサの各軸の傾斜角度を算出し、該算出した各軸の傾斜角度に基づいて、前記気泡センサの前記チューブに対する装着状態を判定する判定手段と、
 前記取得手段により取得された受信信号と、前記判定手段により判定された装着状態に応じて予め定められた補正値とを用いることにより、気泡の大きさを算出する算出手段とを備える。
In order to achieve the above object, a signal processing apparatus according to the present invention comprises the following arrangement. That is,
A signal processing device that is connected to a bubble sensor attached to a tube through which a liquid flows and processes an output signal output from the bubble sensor,
An acquisition means for acquiring, from the bubble sensor, a reception signal obtained by receiving a signal transmitted in a direction intersecting a direction in which the liquid flows through the tube;
By acquiring an inclination signal for calculating the inclination angle of each axis of the bubble sensor from the bubble sensor, the inclination angle of each axis of the bubble sensor is calculated, and based on the calculated inclination angle of each axis. Determining means for determining a mounting state of the bubble sensor with respect to the tube;
A calculation unit that calculates the size of the bubble by using the reception signal acquired by the acquisition unit and a correction value that is determined in advance according to the wearing state determined by the determination unit;
 本発明によれば、気泡の有無や気泡の大きさ等を判定する際の、判定精度を向上させることが可能となる。 According to the present invention, it is possible to improve the determination accuracy when determining the presence or absence of bubbles, the size of bubbles, and the like.
本発明の第1の実施形態に係る信号処理装置を備える医療装置である、体外循環装置100の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the extracorporeal circulation apparatus 100 which is a medical device provided with the signal processing apparatus which concerns on the 1st Embodiment of this invention. 体外循環装置100のコントローラ110の機能構成の一例を示す図である。3 is a diagram illustrating an example of a functional configuration of a controller 110 of the extracorporeal circulation device 100. FIG. 気泡センサ114の構成及び装着状態を説明するための図である。It is a figure for demonstrating the structure and mounting state of the bubble sensor. 傾斜測定部211における処理の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the process in the inclination measurement part. 傾斜測定部211における処理の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the process in the inclination measurement part. 気泡センサ114の傾斜角度と、気泡断面算出部212において算出される気泡断面積との関係を示す図である。6 is a diagram illustrating a relationship between an inclination angle of the bubble sensor 114 and a bubble cross-sectional area calculated by a bubble cross-section calculating unit 212. FIG. 信号処理部210における気泡判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the bubble determination process in the signal processing part 210. FIG. 液体が流れる方向によって、気泡の形状が変形する様子を示す図である。It is a figure which shows a mode that the shape of a bubble deform | transforms with the direction through which a liquid flows.
 以下、本発明の各実施形態について添付図面を参照しながら詳細に説明する。なお、以下の各実施形態では、本発明に係る信号処理装置が適用される医療装置として、体外循環装置を例に説明するが、本発明に係る信号処理装置が適用される医療装置は、体外循環装置に限定されず、他の医療装置であってもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In each of the following embodiments, an extracorporeal circulation device will be described as an example of a medical device to which the signal processing device according to the present invention is applied. However, the medical device to which the signal processing device according to the present invention is applied is an extracorporeal device. The medical device is not limited to the circulation device, and may be another medical device.
 [第1の実施形態]
 <1.体外循環装置の全体構成>
 図1の1Aは、本発明の第1の実施形態に係る信号処理装置を備える体外循環装置100の全体構成の一例を示す図である。
[First Embodiment]
<1. Overall configuration of extracorporeal circulation device>
1A of FIG. 1 is a diagram illustrating an example of an overall configuration of an extracorporeal circulation device 100 including a signal processing device according to a first embodiment of the present invention.
 体外循環装置100は、PCPS(percutaneous cardiopulmonary support)などと呼ばれ、心肺補助動作(体外循環動作、プライミング動作)を行う。体外循環装置100は、図中矢印で示す血液体外循環回路(以下、循環回路と呼ぶ)を有している。体外循環装置100では、プライミング動作を行った後、この循環回路を用いて被検者130の血液を体外循環させる。 The extracorporeal circulation device 100 is called PCPS (percutaneous cardiopulmonary support) and performs cardiopulmonary assist operations (extracorporeal circulation operation, priming operation). The extracorporeal circulation apparatus 100 has a blood extracorporeal circuit (hereinafter referred to as a circulation circuit) indicated by an arrow in the figure. In the extracorporeal circulation apparatus 100, after performing the priming operation, the blood of the subject 130 is circulated extracorporeally using this circulation circuit.
 ここで、プライミング動作とは、プライミング液(例えば、生理食塩水)で循環回路を十分に満たした状態で、循環回路内でプライミング液を循環させ、当該回路内の気泡を除去する動作をいう。 Here, the priming operation refers to an operation of removing the bubbles in the circuit by circulating the priming solution in the circulation circuit in a state where the circulation circuit is sufficiently filled with the priming solution (for example, physiological saline).
 体外循環装置100は、信号処理装置として機能するコントローラ110と、ドライブモータ111と、遠心ポンプ112と、人工肺113と、酸素供給源117と、カテーテル(静脈側)119と、カテーテル(動脈側)120と、気泡センサ114と、分岐ライン118と、血液フィルタ116と、流量センサ115とを備える。なお、これら各構成の間は、柔軟性を有するチューブ等によって接続されており、当該チューブの内腔が血液またはプライミング液の流路を構成している。 The extracorporeal circulation device 100 includes a controller 110 that functions as a signal processing device, a drive motor 111, a centrifugal pump 112, an oxygenator 113, an oxygen supply source 117, a catheter (venous side) 119, and a catheter (arterial side). 120, a bubble sensor 114, a branch line 118, a blood filter 116, and a flow sensor 115. These components are connected by a flexible tube or the like, and the lumen of the tube forms a flow path for blood or priming liquid.
 カテーテル(動脈側)120は、被検者130の体内に向けて送血し、カテーテル(静脈側)119は、被検者130の体内から脱血を行う。 The catheter (arterial side) 120 pumps blood toward the body of the subject 130, and the catheter (venous side) 119 performs blood removal from the body of the subject 130.
 遠心ポンプ112は、遠心式人工心臓とも呼ばれ、内部に設けられた回転体を駆動させて血液に圧力を与え、循環回路内で血液を循環させる。ドライブモータ111は、遠心ポンプ112の回転体に回転駆動力を与える。 The centrifugal pump 112 is also called a centrifugal artificial heart, drives a rotating body provided inside, applies pressure to the blood, and circulates the blood in the circulation circuit. The drive motor 111 gives a rotational driving force to the rotating body of the centrifugal pump 112.
 人工肺113は、血液の循環と血液のガス交換(酸素付加、二酸化炭素除去等)とを行う。酸素供給源117は、例えば、酸素ボンベ等で実現され、血液に付加する酸素を供給する。酸素供給源117から供給される酸素は、人工肺113によるガス交換時に使用される。 The artificial lung 113 performs blood circulation and blood gas exchange (oxygen addition, carbon dioxide removal, etc.). The oxygen supply source 117 is realized by, for example, an oxygen cylinder and supplies oxygen to be added to blood. The oxygen supplied from the oxygen supply source 117 is used at the time of gas exchange by the artificial lung 113.
 気泡センサ114は、プライミング動作時に循環回路内を流れるプライミング液に含まれる気泡を所定の検出方法(超音波、光等)により検出する。血液フィルタ116は、血液をろ過したり、血液中の気泡を除去したりする。流量センサ115は、例えば、超音波の送受信器を内蔵して構成され、循環回路内の血液の流量を計測する。 The bubble sensor 114 detects bubbles contained in the priming liquid flowing in the circulation circuit during the priming operation by a predetermined detection method (ultrasonic wave, light, etc.). The blood filter 116 filters blood or removes bubbles in the blood. The flow sensor 115 is configured to include, for example, an ultrasonic transceiver, and measures the blood flow in the circulation circuit.
 分岐ライン118は、循環回路の流路を切り替える。具体的には、被検者130の血液を体外循環させる場合には、図1の1Aに示すように、被検者130の体内を通る循環回路を構築し、被検者130の体外で血液を循環させる。プライミング動作時には、図1の1Bに示すように、分岐ライン118によって被検者130の体内への循環回路の経路を遮断して被検者130の体外のみを通る循環回路(言い換えれば、被検者130の体内を通らない循環回路)を構築し、プライミング液で循環回路内を満たして(被検者の体内を通らずに)プライミング液を循環させる。循環回路上には、気泡を排出するための1又は複数の気泡排出ポート(不図示)が設けられており、循環回路内でプライミング液を複数周循環させることにより、循環回路内の気泡が当該気泡排出ポートから排出されることになる。 The branch line 118 switches the flow path of the circulation circuit. Specifically, when the blood of the subject 130 is circulated extracorporeally, a circulation circuit passing through the body of the subject 130 is constructed as shown in 1A of FIG. Circulate. During the priming operation, as shown in 1B of FIG. 1, the circuit of the circulation circuit to the inside of the body of the subject 130 is blocked by the branch line 118 (in other words, the circulation circuit that passes only the outside of the subject 130 (in other words, the subject A circulation circuit that does not pass through the body of the person 130 is constructed, and the circulation circuit is filled with the priming liquid (without passing through the body of the subject) to circulate the priming liquid. On the circulation circuit, one or a plurality of bubble discharge ports (not shown) for discharging bubbles are provided. By circulating a plurality of priming liquids in the circulation circuit, the bubbles in the circulation circuit are circulated. It will be discharged from the bubble discharge port.
 コントローラ110は、体外循環装置100における体外循環動作及びプライミング動作を統括制御する。コントローラ110においては、例えば、ドライブモータ111を制御して遠心ポンプ112を駆動させたり、人工肺113を制御してガス交換動作を行わせたり、気泡センサ114を制御して気泡センサ114からの出力信号を取得したり、また、流量センサ115を制御して流量値を取得したりする。 The controller 110 comprehensively controls the extracorporeal circulation operation and the priming operation in the extracorporeal circulation device 100. In the controller 110, for example, the drive motor 111 is controlled to drive the centrifugal pump 112, the oxygenator 113 is controlled to perform a gas exchange operation, or the bubble sensor 114 is controlled to output from the bubble sensor 114. A signal is acquired, and the flow rate sensor 115 is controlled to acquire a flow rate value.
 本実施形態において、気泡センサ114は、図2に示されるように、信号送信部231、信号受信部232、X軸加速度検出部233X、Y軸加速度検出部233YおよびZ軸加速度検出部233Zを含む。信号送信部231および信号受信部232は、プライミング液が流れるチューブを挟むように配置され、信号送信部231から送信されチューブおよびその内部を透過した信号を信号受信部232が受信し、受信した信号に応じた信号を気泡信号として出力する。信号送信部231が信号(超音波信号または光信号)を送信する方向は、チューブ中をプライミング液が流れる方向と交差する方向である。X軸加速度検出部233X、Y軸加速度検出部233YおよびZ軸加速度検出部233Zは、気泡センサ114の姿勢を検出する姿勢センサを構成している。姿勢センサは、その他、種々の構成を有しうる。他の例において、姿勢センサは、3軸ジャイロを備えうる。 In the present embodiment, the bubble sensor 114 includes a signal transmission unit 231, a signal reception unit 232, an X-axis acceleration detection unit 233X, a Y-axis acceleration detection unit 233Y, and a Z-axis acceleration detection unit 233Z, as shown in FIG. . The signal transmission unit 231 and the signal reception unit 232 are arranged so as to sandwich the tube through which the priming liquid flows, and the signal reception unit 232 receives the signal transmitted from the signal transmission unit 231 and transmitted through the tube and the inside thereof. A signal corresponding to is output as a bubble signal. The direction in which the signal transmission unit 231 transmits a signal (an ultrasonic signal or an optical signal) is a direction that intersects the direction in which the priming liquid flows in the tube. The X-axis acceleration detection unit 233X, the Y-axis acceleration detection unit 233Y, and the Z-axis acceleration detection unit 233Z constitute an attitude sensor that detects the attitude of the bubble sensor 114. The attitude sensor can have various other configurations. In another example, the attitude sensor can include a three-axis gyro.
 コントローラ110では、気泡センサ114より出力された気泡信号に基づいて、気泡の有無や気泡の大きさ等を判定する。ここで、本実施形態では、気泡の有無及び気泡の大きさ等の判定に際して、気泡センサ114より出力された姿勢信号あるいは加速度信号を用いて、チューブに装着された気泡センサ114の姿勢あるいは傾斜角度を算出し、当該算出した姿勢あるいは傾斜角度に基づいて気泡の大きさの補正を行う。コントローラ110における、気泡に関するこれらの処理の詳細は後述するものとする。 The controller 110 determines the presence / absence of bubbles, the size of bubbles, and the like based on the bubble signal output from the bubble sensor 114. Here, in the present embodiment, the posture or inclination angle of the bubble sensor 114 attached to the tube is determined using the posture signal or acceleration signal output from the bubble sensor 114 when determining the presence / absence of bubbles and the size of bubbles. And the bubble size is corrected based on the calculated posture or inclination angle. Details of these processes relating to bubbles in the controller 110 will be described later.
 次に、図1の1A、1Bに示す体外循環装置100を用いて心肺補助動作(体外循環動作、プライミング動作)を行う際の処理の流れについて簡単に説明する。 Next, the flow of processing when performing cardiopulmonary assist operation (extracorporeal circulation operation, priming operation) using the extracorporeal circulation device 100 shown in FIGS. 1A and 1B will be briefly described.
 心肺補助動作が開始されると、コントローラ110は、プライミング動作の実行を制御する。プライミング動作時には、図1の1Bに示すように、分岐ライン118によって被検者130の体内を通らない循環回路が構築される。また、このとき、プライミング液供給源121が分岐ライン118に接続され、当該プライミング液供給源121から循環回路内にプライミング液が供給される。これにより、循環回路内は、プライミング液で満たされることになる。 When the cardiopulmonary assist operation is started, the controller 110 controls the execution of the priming operation. During the priming operation, a circulation circuit that does not pass through the body of the subject 130 is constructed by the branch line 118 as shown in 1B of FIG. At this time, the priming liquid supply source 121 is connected to the branch line 118, and the priming liquid is supplied from the priming liquid supply source 121 into the circulation circuit. As a result, the circulation circuit is filled with the priming liquid.
 そして、コントローラ110の制御によって遠心ポンプ112が駆動し、プライミング液が循環回路内を複数周にわたって循環する。循環回路内の気泡は、この循環とともに気泡排出ポート等から排出される。このとき、気泡センサ114によって当該循環回路内の気泡が検出され、コントローラ110では、当該気泡センサ114の検出結果に基づいて循環回路内に含まれる気泡の有無や気泡の大きさ等について判定を行う。 Then, the centrifugal pump 112 is driven by the control of the controller 110, and the priming liquid circulates in the circulation circuit over a plurality of rounds. Bubbles in the circulation circuit are discharged from the bubble discharge port or the like with this circulation. At this time, bubbles in the circulation circuit are detected by the bubble sensor 114, and the controller 110 determines whether or not there are bubbles contained in the circulation circuit and the size of the bubbles based on the detection result of the bubble sensor 114. .
 ここで、コントローラ110では、当該判定の結果が、所定の基準を満たす場合には、プライミング動作を終了させる。この終了に際して、コントローラ110は、表示器(不図示)やスピーカ(不図示)等を用いて、ユーザにプライミング動作が終了したことを通知する。プライミング動作の終了の通知を受けたユーザは、分岐ライン118を切り替え、図1の1Aに示すように、被検者130の体内を通る循環回路を構築する。これにより、被検者130の血液が体外循環される。 Here, in the controller 110, when the result of the determination satisfies a predetermined standard, the priming operation is terminated. At the end of this, the controller 110 notifies the user that the priming operation has ended using a display (not shown), a speaker (not shown), or the like. The user who receives the notification of the end of the priming operation switches the branch line 118 and constructs a circulation circuit that passes through the body of the subject 130 as shown in 1A of FIG. Thereby, the blood of the subject 130 is circulated extracorporeally.
 体外循環動作が始まると、カテーテル(静脈側)119から脱血されてくる血液が、遠心ポンプ112を経て人工肺113に入る。人工肺113では、上述した通り、ガス交換、すなわち、酸素付加や二酸化炭素除去等の処理が行われる。その後、血液フィルタ116等を経て、ろ過された血液が、カテーテル(動脈側)120から被検者130の体内に送血される。この脱血~送血までの処理が繰り返し行われ、被検者130の血液が体外循環される。 When the extracorporeal circulation operation starts, blood that has been removed from the catheter (vein side) 119 enters the oxygenator 113 via the centrifugal pump 112. In the artificial lung 113, as described above, gas exchange, that is, processing such as oxygen addition and carbon dioxide removal is performed. Thereafter, the filtered blood is sent from the catheter (arterial side) 120 into the body of the subject 130 through the blood filter 116 and the like. This process from blood removal to blood transfer is repeated, and the blood of the subject 130 is circulated extracorporeally.
 以上が、本実施形態に係る体外循環装置100の全体構成及び心肺補助動作の流れの一例についての説明である。なお、図1の1A、1Bに示す体外循環装置100の構成は、あくまでも一例にすぎず、その構成は適宜変更されてもよい。 The above is an explanation of an example of the overall configuration of the extracorporeal circulation device 100 according to the present embodiment and the flow of cardiopulmonary assist operation. Note that the configuration of the extracorporeal circulation device 100 shown in FIGS. 1A and 1B is merely an example, and the configuration may be changed as appropriate.
 <2.コントローラの機能構成>
 次に、図2を用いて、図1に示すコントローラ110の機能構成の一例について説明する。
<2. Functional configuration of controller>
Next, an example of a functional configuration of the controller 110 illustrated in FIG. 1 will be described with reference to FIG.
 コントローラ110は、その機能構成として、表示部203と、操作部202と、記憶部201と、I/F部206と、タイマ部204と、制御部205とを備える。 The controller 110 includes a display unit 203, an operation unit 202, a storage unit 201, an I / F unit 206, a timer unit 204, and a control unit 205 as functional configurations.
 表示部203は、例えば、モニタ等の表示器で実現され、各種情報をユーザに向けて表示する。操作部202は、例えば、各種ボタン等で実現され、ユーザからの指示を入力する。表示部203及び操作部202の一部又は全部は、例えば、タッチパネルとして実現されても良い。 The display unit 203 is realized by a display such as a monitor, for example, and displays various types of information for the user. The operation unit 202 is realized by various buttons, for example, and inputs an instruction from the user. Part or all of the display unit 203 and the operation unit 202 may be realized as a touch panel, for example.
 記憶部201は、例えば、ハードディスク等で実現され、各種情報を格納する。なお、後述する信号処理部210における処理を実行する際に参照される変換テーブル221は、記憶部201に格納されているものとする。 The storage unit 201 is realized by, for example, a hard disk and stores various information. It is assumed that a conversion table 221 that is referred to when executing processing in the signal processing unit 210 described later is stored in the storage unit 201.
 I/F部206は、外部装置との間で各種信号の授受を行う。信号送信部231と、信号受信部232と、X軸加速度検出部233X~Z軸加速度検出部233Zとを備える気泡センサ114からの上記出力信号(気泡信号、加速度信号)は、I/F部206を介してコントローラ110に取り込まれる。タイマ部204は、各種時間の計時を行う。 The I / F unit 206 exchanges various signals with an external device. The output signal (bubble signal, acceleration signal) from the bubble sensor 114 including the signal transmission unit 231, the signal reception unit 232, and the X-axis acceleration detection unit 233X to the Z-axis acceleration detection unit 233Z is the I / F unit 206. Via the controller 110. The timer unit 204 measures various times.
 制御部205は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等で構成され、ROMには、上述した心肺補助動作を実現するためのプログラムが格納されているものとする。 The control unit 205 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and a program for realizing the above-described cardiopulmonary assist operation is stored in the ROM. It shall be.
 また、ROMには、気泡センサ114からの出力信号(気泡信号、姿勢信号(加速度信号))を処理するためのプログラムが格納されており、CPUによって実行されることで、制御部205は、信号処理部210として機能する。 The ROM stores a program for processing an output signal (bubble signal, posture signal (acceleration signal)) from the bubble sensor 114, and is executed by the CPU, so that the control unit 205 outputs a signal. It functions as the processing unit 210.
 信号処理部210は、気泡センサ114からの出力信号のうち姿勢信号(加速度信号)に基づいて気泡センサ114の姿勢(傾斜角度)を算出する傾斜測定部211と、気泡センサ114からの出力のうち、気泡信号に基づいて気泡断面積を算出し、気泡センサ114の姿勢(傾斜角度)を用いて当該算出した気泡断面積を補正する気泡断面積算出部212とを含む。信号処理部210は、補正された気泡断面積を用いて気泡の有無及び気泡の大きさ等を判定する。信号処理部210の各部の詳細及び信号処理部210における気泡判定処理の流れは後述する。 The signal processing unit 210 includes an inclination measurement unit 211 that calculates an attitude (inclination angle) of the bubble sensor 114 based on an attitude signal (acceleration signal) among output signals from the bubble sensor 114, and an output from the bubble sensor 114. A bubble cross-sectional area calculating unit 212 that calculates the bubble cross-sectional area based on the bubble signal and corrects the calculated bubble cross-sectional area using the attitude (inclination angle) of the bubble sensor 114. The signal processing unit 210 determines the presence / absence of bubbles, the size of bubbles, and the like using the corrected bubble cross-sectional area. Details of each part of the signal processing unit 210 and a flow of bubble determination processing in the signal processing unit 210 will be described later.
 以上が、コントローラ110についての機能構成の一例についての説明である。なお、図2に示す機能構成はあくまでも一例であり、新たな構成が追加されても良いし、また、不要な構成が適宜省略されても良い。例えば、記憶部201(ハードディスク等)は、必ずしも設けられる必要なく、省略しても良い。 The above is an explanation of an example of the functional configuration of the controller 110. Note that the functional configuration shown in FIG. 2 is merely an example, and a new configuration may be added, or unnecessary configuration may be omitted as appropriate. For example, the storage unit 201 (hard disk or the like) is not necessarily provided and may be omitted.
 <3.気泡センサの構成及び姿勢(装着状態)>
 次に、気泡センサ114の構成及び姿勢(装着状態)について説明する。図3は、気泡センサ114の構成及び装着状態を説明するための図である。ここで、この実施形態では、体外循環装置100において、気泡センサ114およびチューブは、図3の3a、3b、3cに例示される3つの姿勢のいずれかの姿勢になるように配置されることを想定している。
<3. Bubble sensor configuration and orientation (wearing state)>
Next, the configuration and posture (mounted state) of the bubble sensor 114 will be described. FIG. 3 is a diagram for explaining the configuration and mounting state of the bubble sensor 114. Here, in this embodiment, in the extracorporeal circulation device 100, the bubble sensor 114 and the tube are arranged so as to be in any one of the three postures exemplified by 3a, 3b, and 3c in FIG. Assumed.
 はじめに、気泡センサ114の構成について説明する。図3の3a-3cに示すように、気泡センサ114には、チューブを通すための開口部が設けられており、当該開口部を形成する内壁面(不図示)は、チューブの外周面に密着するように構成されている。 First, the configuration of the bubble sensor 114 will be described. As shown in 3a-3c of FIG. 3, the bubble sensor 114 is provided with an opening for allowing the tube to pass therethrough, and an inner wall surface (not shown) forming the opening closely contacts the outer peripheral surface of the tube. Is configured to do.
 また、気泡センサ114は、点線矢印の方向に信号(超音波信号または光信号)を送信するよう構成されており、点線矢印の始点側には信号送信部231(図3において不図示)が配され、点線矢印の終点側には信号受信部232(図3において不図示)が配されている。 The bubble sensor 114 is configured to transmit a signal (an ultrasonic signal or an optical signal) in the direction of a dotted arrow, and a signal transmission unit 231 (not shown in FIG. 3) is arranged on the starting point side of the dotted arrow. In addition, a signal receiver 232 (not shown in FIG. 3) is disposed on the end point side of the dotted arrow.
 更に、気泡センサ114は、X軸方向の加速度を検出するための加速度検出部233X(図3において不図示)と、Y軸方向の加速度を検出するための加速度検出部233Y(図3において不図示)と、Z軸方向の加速度を検出するための加速度検出部233Z(図3において不図示)とを備える。それぞれの加速度検出部において検出された加速度は、不図示の接続ケーブルを介して、加速度信号として、コントローラ110に送信される。 Further, the bubble sensor 114 includes an acceleration detector 233X (not shown in FIG. 3) for detecting acceleration in the X-axis direction and an acceleration detector 233Y (not shown in FIG. 3) for detecting acceleration in the Y-axis direction. ) And an acceleration detector 233Z (not shown in FIG. 3) for detecting acceleration in the Z-axis direction. The acceleration detected by each acceleration detection unit is transmitted to the controller 110 as an acceleration signal via a connection cable (not shown).
 続いて、チューブに装着された気泡センサ114の姿勢について説明する。ここで、チューブに装着された気泡センサ114の姿勢は、チューブに対する気泡センサ114の装着状態として理解することもできる。図3の3aは、太矢印に沿って垂直方向に液体が流れるチューブに対して気泡センサ114を装着した様子を示している。この場合、信号は水平方向に送信されることとなる。 Subsequently, the posture of the bubble sensor 114 attached to the tube will be described. Here, the posture of the bubble sensor 114 attached to the tube can also be understood as the attachment state of the bubble sensor 114 to the tube. 3a of FIG. 3 has shown the mode that the bubble sensor 114 was mounted | worn with respect to the tube into which a liquid flows vertically along a thick arrow. In this case, the signal is transmitted in the horizontal direction.
 一方、図3の3bは、太矢印に沿って水平方向に液体が流れるチューブに対して、該液体が流れる方向と略直交する方向であって、かつ、水平方向に信号が送信されるように気泡センサ114を装着した様子を示している。 On the other hand, 3b in FIG. 3 is a direction that is substantially perpendicular to the direction in which the liquid flows in the horizontal direction along the thick arrow so that a signal is transmitted in the horizontal direction. A state in which the bubble sensor 114 is attached is shown.
 更に、図3の3cは、太矢印に沿って水平方向に液体が流れるチューブに対して、垂直方向に信号が送信されるように気泡センサ114を装着した様子を示している。 Further, 3c in FIG. 3 shows a state in which the bubble sensor 114 is mounted so that a signal is transmitted in the vertical direction to the tube in which the liquid flows in the horizontal direction along the thick arrow.
 上述したように、気泡センサ114には、X軸方向、Y軸方向、Z軸方向のそれぞれの加速度を検出する加速度検出部233X~233Zが配されているため、例えば、水平方向(重力方向と直交する方向)に対して、気泡センサ114がどの程度傾斜しているのかを算出することで、装着状態を判定することができる。 As described above, since the bubble sensor 114 is provided with the acceleration detectors 233X to 233Z that detect the accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction, for example, in the horizontal direction (the gravity direction and By calculating how much the bubble sensor 114 is inclined with respect to the (perpendicular direction), the mounting state can be determined.
 例えば、算出の結果、水平方向に対するX軸の傾斜角度が0度、水平方向に対するY軸の傾斜角度が0度、水平方向に対するZ軸の傾斜角度が90度と算出された場合には、図3の3aに示す装着状態で気泡センサ114がチューブに装着されていると判定することができる。 For example, if the calculation result shows that the X-axis tilt angle with respect to the horizontal direction is 0 degrees, the Y-axis tilt angle with respect to the horizontal direction is 0 degrees, and the Z-axis tilt angle with respect to the horizontal direction is 90 degrees, It can be determined that the bubble sensor 114 is attached to the tube in the attachment state indicated by 3a.
 また、算出の結果、水平方向に対するX軸の傾斜角度が0度、水平方向に対するY軸の傾斜角度が90度、水平方向に対するZ軸の傾斜角度が0度と算出された場合には、図3の3bに示す装着状態で気泡センサ114がチューブに装着されていると判定することができる。 In addition, as a result of calculation, when the inclination angle of the X axis with respect to the horizontal direction is calculated as 0 degree, the inclination angle of the Y axis with respect to the horizontal direction is calculated as 90 degrees, and the inclination angle of the Z axis with respect to the horizontal direction is calculated as 0 degrees, 3 can be determined that the bubble sensor 114 is attached to the tube in the attachment state shown in 3b.
 更に、算出の結果、水平方向に対するX軸の傾斜角度が90度、水平方向に対するY軸の傾斜角度が0度、水平方向に対するZ軸の傾斜角度が0度と算出された場合には、図3の3cに示す装着状態で気泡センサ114がチューブに装着されていると判定することができる。 Furthermore, as a result of calculation, when the inclination angle of the X axis with respect to the horizontal direction is calculated as 90 degrees, the inclination angle of the Y axis with respect to the horizontal direction is calculated as 0 degrees, and the inclination angle of the Z axis with respect to the horizontal direction is calculated as 0 degrees, It can be determined that the bubble sensor 114 is attached to the tube in the attachment state shown in 3c of FIG.
 <4.傾斜測定部における処理>
 次に、傾斜測定部における処理の概要について説明する。図4A、4Bは傾斜測定部における処理の概要を説明するための図である。上述したように、気泡センサ114は、X軸方向、Y軸方向、Z軸方向それぞれの加速度が検出できるよう構成されており、それぞれの軸が、例えば水平方向に対して何度傾斜しているのかを算出することができる。ただし、以下では、説明の簡略化のため、X軸の傾斜角度についてのみ説明する。
<4. Processing in tilt measurement unit>
Next, an outline of processing in the inclination measuring unit will be described. 4A and 4B are diagrams for explaining an outline of processing in the inclination measurement unit. As described above, the bubble sensor 114 is configured to detect the acceleration in each of the X-axis direction, the Y-axis direction, and the Z-axis direction, and each axis is inclined several times with respect to the horizontal direction, for example. Can be calculated. However, in the following description, only the inclination angle of the X axis will be described for the sake of simplicity.
 図4Aは、気泡センサ114のX軸が水平方向に対してθ度傾斜した場合において、X軸方向に重力がどの程度分散されるかを示している。 FIG. 4A shows how much gravity is dispersed in the X-axis direction when the X-axis of the bubble sensor 114 is inclined by θ degrees with respect to the horizontal direction.
 図4Aからわかるように、重力加速度=gとすると、水平方向に対してθ度傾斜した場合、X軸方向の重力加速度はg×sinθとなる。 As can be seen from FIG. 4A, when gravitational acceleration = g, when tilted by θ degrees with respect to the horizontal direction, the gravitational acceleration in the X-axis direction is g × sin θ.
 一方、図4Bは、気泡センサ114のX軸方向において検出される重力加速度と、X軸の水平方向からの傾斜角度との関係を示している。図4Bからわかるように、X軸が水平方向から90度傾斜した場合の重力加速度をgとすると、X軸方向の加速度検出部233Xにて0.5gの重力加速度が検出された場合、気泡センサ114のX軸は、水平方向に対して30度傾斜していると判断することができる。 On the other hand, FIG. 4B shows the relationship between the gravitational acceleration detected in the X-axis direction of the bubble sensor 114 and the inclination angle of the X-axis from the horizontal direction. As can be seen from FIG. 4B, when the gravitational acceleration when the X-axis is inclined 90 degrees from the horizontal direction is g, the bubble sensor is detected when 0.5 g of gravitational acceleration is detected by the acceleration detection unit 233X in the X-axis direction. It can be determined that the X axis 114 is inclined by 30 degrees with respect to the horizontal direction.
 このように、傾斜測定部211では、気泡センサ114のX軸の加速度検出部233Xの加速度信号を取得し、当該加速度信号と、X軸の水平方向からの傾斜角度を90度とした場合に得られる加速度信号との比を算出することにより、水平方向に対するX軸の傾斜角度を算出することができる。 As described above, the inclination measurement unit 211 obtains the acceleration signal of the X-axis acceleration detection unit 233X of the bubble sensor 114, and is obtained when the acceleration signal and the inclination angle of the X-axis from the horizontal direction are 90 degrees. By calculating the ratio to the acceleration signal to be obtained, the tilt angle of the X axis with respect to the horizontal direction can be calculated.
 Y軸、Z軸についても同様の算出方法により、加速度検出部233Y、233Zからの加速度信号に基づいて傾斜角度を算出することができる。 For the Y axis and the Z axis, the tilt angle can be calculated based on the acceleration signal from the acceleration detectors 233Y and 233Z by the same calculation method.
 <5.気泡断面積算出部における処理>
 次に、気泡断面積算出部212における処理の概要について説明する。図5は、同一の体積を有する気泡がチューブ内を流れた場合の、気泡センサ114の傾斜角度と気泡断面積との関係を示す図である。図5の5aに示すように、水平方向に対するX軸の傾斜角度が0度、水平方向に対するY軸の傾斜角度が0度、水平方向に対するZ軸の傾斜角度が90度の場合、信号受信部232からの気泡信号に基づいて気泡断面積算出部212において算出される気泡断面積Sa(気泡信号が所定レベル以上減衰している範囲。つまり、信号が送信される方向に垂直な面に向かって気泡を投影させた場合の気泡の面積)は補正の必要がない。
<5. Processing in the bubble cross section calculation unit>
Next, an outline of processing in the bubble cross-sectional area calculation unit 212 will be described. FIG. 5 is a diagram showing the relationship between the inclination angle of the bubble sensor 114 and the bubble cross-sectional area when bubbles having the same volume flow through the tube. As shown in 5a of FIG. 5, when the tilt angle of the X axis with respect to the horizontal direction is 0 degree, the tilt angle of the Y axis with respect to the horizontal direction is 0 degree, and the tilt angle of the Z axis with respect to the horizontal direction is 90 degrees, The bubble cross-sectional area Sa calculated by the bubble cross-sectional area calculation unit 212 based on the bubble signal from 232 (the range in which the bubble signal is attenuated by a predetermined level or more. That is, toward a plane perpendicular to the direction in which the signal is transmitted. It is not necessary to correct the bubble area when the bubble is projected.
 一方、図5の5bに示すように、水平方向に対するX軸の傾斜角度が0度、水平方向に対するY軸の傾斜角度が90度、水平方向に対するZ軸の傾斜角度が0度と算出された場合、信号受信部232からの気泡信号に基づいて気泡断面積算出部212において算出される気泡断面積Sb(気泡信号が所定レベル以上減衰している範囲。つまり、信号が送信される方向に垂直な面に向かって気泡を投影させた場合の気泡の面積)は、図5の5aに示す気泡断面積Saよりも大きくなる。このため、補正値αを用いて下式に従って補正を行う。 On the other hand, as shown in FIG. 5b, the X-axis tilt angle with respect to the horizontal direction was calculated as 0 degree, the Y-axis tilt angle with respect to the horizontal direction was calculated as 90 degrees, and the Z-axis tilt angle with respect to the horizontal direction was calculated as 0 degrees. In this case, the bubble cross-sectional area Sb calculated by the bubble cross-sectional area calculation unit 212 based on the bubble signal from the signal receiving unit 232 (the range in which the bubble signal is attenuated by a predetermined level or more, that is, perpendicular to the direction in which the signal is transmitted) The area of the bubbles when the bubbles are projected toward a smooth surface) is larger than the bubble cross-sectional area Sa shown in 5a of FIG. For this reason, correction is performed according to the following equation using the correction value α.
   補正気泡断面積Sb’=α×Sb ただし、α<1
 また、図5の5cに示すように、水平方向に対するX軸の傾斜角度が90度、水平方向に対するY軸の傾斜角度が0度、水平方向に対するZ軸の傾斜角度が0度の場合、信号受信部232からの気泡信号に基づいて気泡断面積算出部212において算出される気泡断面積Sc(気泡信号が所定レベル以上減衰している範囲。つまり、信号が送信される方向に垂直な面に向かって気泡を投影させた場合の気泡の面積)は、図5の5aに示す気泡断面積Saよりも小さくなる。このため、補正値βを用いて下式に従って補正を行う。
補正気泡断面積Sc’=β×Sc ただし、β>1
 このように、気泡断面積算出部212では、気泡センサ114の装着状態に応じて、算出された気泡断面積の補正を行う。
Corrected bubble cross-sectional area Sb ′ = α × Sb where α <1
In addition, as shown in FIG. 5c, when the X-axis tilt angle with respect to the horizontal direction is 90 degrees, the Y-axis tilt angle with respect to the horizontal direction is 0 degrees, and the Z-axis tilt angle with respect to the horizontal direction is 0 degrees, The bubble cross-sectional area Sc calculated by the bubble cross-sectional area calculation unit 212 based on the bubble signal from the receiving unit 232 (the range in which the bubble signal is attenuated by a predetermined level or more. That is, on the plane perpendicular to the direction in which the signal is transmitted) The area of the bubble when the bubble is projected toward the head) is smaller than the bubble cross-sectional area Sa shown in 5a of FIG. For this reason, correction is performed according to the following equation using the correction value β.
Corrected bubble cross-sectional area Sc ′ = β × Sc where β> 1
As described above, the bubble cross-sectional area calculation unit 212 corrects the calculated bubble cross-sectional area according to the mounting state of the bubble sensor 114.
 <6.信号処理部における気泡判定処理の流れ>
 次に信号処理部210における気泡判定処理の流れについて説明する。図6は、信号処理部210における気泡判定処理の流れを示すフローチャートである。
<6. Flow of bubble determination processing in signal processing unit>
Next, the flow of bubble determination processing in the signal processing unit 210 will be described. FIG. 6 is a flowchart showing the flow of bubble determination processing in the signal processing unit 210.
 気泡判定処理が開始されると、ステップS601では、気泡センサ114の信号受信部232より出力される気泡信号の取り込みを開始する。 When the bubble determination process is started, in step S601, the acquisition of the bubble signal output from the signal receiving unit 232 of the bubble sensor 114 is started.
 ステップS602では、取り込まれた気泡信号に基づいて、気泡が検出されたか否かを判定する。具体的には、取り込まれた気泡信号が所定のレベル以下に低下しているか否かを判定する。 In step S602, it is determined whether or not a bubble is detected based on the captured bubble signal. Specifically, it is determined whether or not the captured bubble signal has fallen below a predetermined level.
 ステップS602において、気泡が検出されていない(すなわち、取り込まれた気泡信号が所定のレベル以下に低下していない)と判定された場合には、気泡が検出されるまで待機する。 If it is determined in step S602 that bubbles are not detected (that is, the incorporated bubble signal has not dropped below a predetermined level), the process waits until bubbles are detected.
 一方、ステップS602において、気泡が検出された(すなわち、取り込まれた気泡信号が所定のレベル以下に低下した)と判定された場合には、ステップS603に進む。 On the other hand, if it is determined in step S602 that bubbles are detected (that is, the incorporated bubble signal has dropped below a predetermined level), the process proceeds to step S603.
 ステップS603では、気泡断面積を算出する。具体的には、取り込まれた気泡信号が所定のレベル以下に低下している状態が連続している場合、所定のレベル以下に低下している幅(信号の送信方向に直交する方向の長さ)を、液体が流れる方向に積分していくことにより気泡断面積を算出する。 In step S603, the bubble cross-sectional area is calculated. Specifically, when the state in which the captured bubble signal has decreased to a predetermined level or lower continues, the width that has decreased to a predetermined level or lower (the length in the direction orthogonal to the signal transmission direction) ) Is integrated in the liquid flow direction to calculate the bubble cross-sectional area.
 ステップS604では、気泡センサ114の加速度検出部233X~233Zより出力される加速度信号を受信する。ステップS605では、ステップS604において受信した加速度信号に基づいて、各軸の水平方向に対する傾斜角度を算出する。 In step S604, an acceleration signal output from the acceleration detectors 233X to 233Z of the bubble sensor 114 is received. In step S605, the inclination angle of each axis with respect to the horizontal direction is calculated based on the acceleration signal received in step S604.
 ステップS606では、ステップS605における傾斜角度の算出の結果に基づいて、気泡センサ114の姿勢あるいは装着状態を判定し、当該判定結果に基づいてステップS603において算出された気泡断面積を補正する。例えば、ステップS605において傾斜角度を算出した結果、気泡センサ114の姿勢あるいは装着状態が図3の3a―3cのいずれの姿勢あるいは装着状態であるかに応じて、ステップS603において算出された気泡断面積を補正する(図3の3bの場合には、補正値αをかけ、図3の3cの場合には、補正値βをかける。図3の3aの場合には、補正値=1をかける)。 In step S606, the posture or mounting state of the bubble sensor 114 is determined based on the calculation result of the tilt angle in step S605, and the bubble cross-sectional area calculated in step S603 is corrected based on the determination result. For example, as a result of calculating the inclination angle in step S605, the bubble cross-sectional area calculated in step S603 is determined depending on which posture or attachment state of the bubble sensor 114 is 3a-3c in FIG. (In the case of 3b in FIG. 3, the correction value α is applied. In the case of 3c in FIG. 3, the correction value β is applied. In the case of 3a in FIG. 3, the correction value = 1 is applied.) .
 ステップS607では、ステップS606において補正された気泡断面積を用いて気泡判定を行う。具体的には、補正された気泡断面積が所定の閾値以上であるか否かを判定し、所定の閾値以上であると判定された場合に、気泡有りと判定する。また、気泡有りと判定された場合にあっては、更に、補正された気泡断面積に基づいて、気泡の大きさを区分けする(例えば、気泡の大きさを大、中、小に区分けする)。 In step S607, bubble determination is performed using the bubble cross-sectional area corrected in step S606. Specifically, it is determined whether or not the corrected bubble cross-sectional area is greater than or equal to a predetermined threshold, and if it is determined that the corrected bubble cross-sectional area is greater than or equal to the predetermined threshold, it is determined that there is a bubble. If it is determined that there is a bubble, the size of the bubble is further classified based on the corrected bubble cross-sectional area (for example, the size of the bubble is classified into large, medium, and small). .
 ステップS608では、気泡判定処理の終了指示が入力されたか否かを判定し、終了指示が入力されていないと判定された場合には、ステップS602に戻る。一方、気泡判定処理の終了指示が入力されたと判定された場合には、ステップS609に進み、気泡センサ114の信号受信部232より出力される気泡信号の取り込みを終了し、気泡判定処理を終了する。 In step S608, it is determined whether or not an instruction to end the bubble determination process has been input. If it is determined that no end instruction has been input, the process returns to step S602. On the other hand, if it is determined that an instruction to end the bubble determination process has been input, the process proceeds to step S609, the capture of the bubble signal output from the signal receiving unit 232 of the bubble sensor 114 is terminated, and the bubble determination process is terminated. .
 以上の説明から明らかなように、本実施形態では、気泡センサに加速度検出部233X~233Zを設け、気泡センサの傾斜角度を算出することにより、気泡センサのチューブに対する姿勢あるいは装着状態を判定する構成とした。更に、判定した装着状態に基づいて、気泡センサからの気泡信号に基づいて算出される気泡断面積を補正する構成とした。 As is apparent from the above description, in this embodiment, the bubble sensor is provided with the acceleration detection units 233X to 233Z, and the inclination angle of the bubble sensor is calculated to determine the posture or mounting state of the bubble sensor with respect to the tube. It was. Furthermore, the bubble cross-sectional area calculated based on the bubble signal from the bubble sensor is corrected based on the determined wearing state.
 この結果、気泡断面積に基づいて気泡の有無や気泡の大きさを等を判定する際の判定精度を向上させることが可能となった。 As a result, it is possible to improve the determination accuracy when determining the presence / absence of bubbles and the size of bubbles based on the cross-sectional area of bubbles.
 [第2の実施形態]
 上記第1の実施形態では、気泡センサ114の傾斜角度を算出するにあたり、気泡センサに加速度検出部を設ける構成としたが、本発明はこれに限定されず、他の検出手段を用いるようにしてもよい。
[Second Embodiment]
In the first embodiment, when calculating the inclination angle of the bubble sensor 114, the acceleration sensor is provided in the bubble sensor. However, the present invention is not limited to this, and other detection means may be used. Also good.
 また、上記第1の実施形態では、気泡センサ114において3軸(X軸、Y軸、Z軸)を規定し、加速度検出部を、X軸方向、Y軸方向、Z軸方向に設ける構成としたが、本発明はこれに限定されず、いずれか1軸または2軸に設ける構成であってもよい。 In the first embodiment, the bubble sensor 114 defines three axes (X axis, Y axis, Z axis), and the acceleration detection unit is provided in the X axis direction, the Y axis direction, and the Z axis direction. However, this invention is not limited to this, The structure provided in any one axis | shaft or two axes | shafts may be sufficient.
 更に、上記第2の実施形態では、気泡センサ114の装着状態として、図3の3a―3cを例示列挙したが、本発明はこれに限定されず、他の装着状態(例えば、水平方向に対するX軸方向の傾斜角度が30度、Y軸方向の傾斜角度が0度、Z軸方向の傾斜角度が0度といった装着状態)であってもよい。この場合、各軸の傾斜角度に応じて、気泡断面積を補正するための補正値αまたはβの値は変わってくるため、それぞれの装着状態に応じた補正値を変換テーブル221として記憶部に格納しておくようにしてもよい。なお、このときの補正値αまたはβは、実験的に求めてもよいし、計算(シミュレーション等)により求めてもよい。 Furthermore, in the second embodiment, 3a to 3c in FIG. 3 are listed as examples of the mounting state of the bubble sensor 114, but the present invention is not limited to this, and other mounting states (for example, X in the horizontal direction) A mounting state in which the tilt angle in the axial direction is 30 degrees, the tilt angle in the Y-axis direction is 0 degrees, and the tilt angle in the Z-axis direction is 0 degrees may be employed. In this case, since the correction value α or β for correcting the bubble cross-sectional area varies depending on the inclination angle of each axis, the correction value corresponding to each mounting state is stored in the storage unit as the conversion table 221. You may make it store. The correction value α or β at this time may be obtained experimentally or by calculation (simulation or the like).
 [第3の実施形態]
 上記第1の実施形態では、信号処理部210における気泡判定処理として、個々の気泡に関する処理について説明したが、本発明はこれに限定されず、個々の気泡に関する処理の結果を用いて、複数の気泡について処理を実行するように構成してもよい。
[Third Embodiment]
In the first embodiment, the processing related to individual bubbles has been described as the bubble determination processing in the signal processing unit 210. However, the present invention is not limited to this, and a plurality of results using the processing related to individual bubbles can be used. You may comprise so that a process may be performed about a bubble.
 例えば、補正された気泡断面積を累積加算していくことで、累積気泡断面積を算出するように構成してもよい。更に、算出した累積気泡断面積を所定の閾値と比較するように構成してもよい。 For example, the cumulative bubble cross-sectional area may be calculated by cumulatively adding the corrected bubble cross-sectional areas. Further, the calculated cumulative bubble cross-sectional area may be compared with a predetermined threshold value.
 あるいは、補正された気泡断面積を累積加算していくことで算出される累積気泡断面積の単位時間あたりの変化量を算出するように構成してもよい。その場合、算出した変化量を所定の閾値と比較する構成としてもよい。 Alternatively, the change amount per unit time of the accumulated bubble cross-sectional area calculated by accumulating the corrected bubble cross-sectional area may be calculated. In this case, the calculated change amount may be compared with a predetermined threshold value.
 あるいは、補正された気泡断面積に基づいて区分けされた各気泡の大きさの個数をカウントしていき、単位時間あたりの変化量を算出するように構成してもよい。 Alternatively, it may be configured to calculate the amount of change per unit time by counting the number of each bubble size classified based on the corrected bubble cross-sectional area.
 [第4の実施形態]
 上記第1の実施形態では、補正された気泡断面積を出力する構成としたが、本発明はこれに限定されない。例えば、補正された気泡断面積に基づいて、気泡体積を算出するように構成してもよい。なお、補正された気泡断面積と気泡体積との関係を、変換テーブル221として記憶部に格納しておき、当該変換テーブル221を用いて気泡体積を算出するように構成してもよい。なお、このときの変換テーブルは、実験的に求めてもよいし、計算(シミュレーション等)により求めてもよい。
[Fourth Embodiment]
In the first embodiment, the corrected bubble cross-sectional area is output, but the present invention is not limited to this. For example, the bubble volume may be calculated based on the corrected bubble cross-sectional area. Note that the relationship between the corrected bubble cross-sectional area and the bubble volume may be stored as a conversion table 221 in a storage unit, and the bubble volume may be calculated using the conversion table 221. The conversion table at this time may be obtained experimentally or by calculation (simulation or the like).
 [その他の実施形態]
 以上が本発明の代表的な実施形態の例であるが、本発明は、上記及び図面に示す実施形態に限定することなく、その要旨を変更しない範囲内で適宜変形して実施できるものである。
[Other Embodiments]
The above is an example of a typical embodiment of the present invention, but the present invention is not limited to the embodiment described above and shown in the drawings, and can be appropriately modified and implemented within the scope not changing the gist thereof. .
 本願は、2012年9月11日提出の日本国特許出願特願2012-199843を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2012-199843 filed on September 11, 2012, the entire contents of which are incorporated herein by reference.
 100:体外循環装置、111:ドライブモータ、112:遠心ポンプ、113:人工肺、114:気泡センサ、115:流量センサ、116:血液フィルタ、117:酸素供給源、118:分岐ライン、119:カテーテル、120:カテーテル、130:被検者 100: extracorporeal circulation device, 111: drive motor, 112: centrifugal pump, 113: artificial lung, 114: bubble sensor, 115: flow sensor, 116: blood filter, 117: oxygen supply source, 118: branch line, 119: catheter , 120: catheter, 130: subject

Claims (9)

  1.  液体が流れるチューブに装着される気泡センサから出力される出力信号を処理する信号処理装置であって、
     前記液体が流れる方向と交差する方向に送信された信号を前記チューブを介して受信することにより得られる受信信号を、前記気泡センサより取得する取得手段と、
     前記気泡センサの各軸の傾斜角度を算出するための傾斜信号を、前記気泡センサより取り込むことにより、前記気泡センサの各軸の傾斜角度を算出し、該算出した各軸の傾斜角度に基づいて、前記気泡センサの前記チューブに対する装着状態を判定する判定手段と、
     前記取得手段により取得された受信信号と、前記判定手段により判定された装着状態に応じて予め定められた補正値とを用いることにより、気泡の大きさを算出する算出手段と
     を備えることを特徴とする信号処理装置。
    A signal processing device for processing an output signal output from a bubble sensor attached to a tube through which a liquid flows,
    An acquisition means for acquiring, from the bubble sensor, a reception signal obtained by receiving a signal transmitted in a direction intersecting a direction in which the liquid flows through the tube;
    By acquiring an inclination signal for calculating the inclination angle of each axis of the bubble sensor from the bubble sensor, the inclination angle of each axis of the bubble sensor is calculated, and based on the calculated inclination angle of each axis. Determining means for determining a mounting state of the bubble sensor with respect to the tube;
    Calculating means for calculating the size of the bubble by using the received signal acquired by the acquiring means and a correction value determined in advance according to the wearing state determined by the determining means. A signal processing device.
  2.  前記算出手段は、
     前記取得手段により取得された受信信号に基づいて、前記送信された信号と略直交する面に気泡を投影した場合の、該気泡の断面積を算出し、該算出した断面積と、前記判定手段において判定された装着状態に応じて予め定められた補正値とを用いることにより、前記気泡の大きさを算出することを特徴とする請求項1に記載の信号処理装置。
    The calculating means includes
    Based on the reception signal acquired by the acquisition means, the cross-sectional area of the bubble is calculated when the bubble is projected onto a surface substantially orthogonal to the transmitted signal, the calculated cross-sectional area, and the determination means The signal processing apparatus according to claim 1, wherein the bubble size is calculated by using a correction value determined in advance according to the mounting state determined in step 1.
  3.  前記算出手段は、前記受信信号が、所定のレベル以下に低下している状態が連続している場合において、当該連続している範囲を算出することにより、前記気泡の断面積を算出することを特徴とする請求項2に記載の信号処理装置。 The calculation means calculates the cross-sectional area of the bubble by calculating the continuous range when the state in which the reception signal is reduced to a predetermined level or lower is continuous. The signal processing apparatus according to claim 2, wherein:
  4.  前記算出手段は、前記受信信号が、所定のレベル以下に低下している長さを、前記液体が流れる方向に積分していくことにより、前記連続している範囲を算出することを特徴とする請求項3に記載の信号処理装置。 The calculating means calculates the continuous range by integrating a length in which the received signal is reduced below a predetermined level in a direction in which the liquid flows. The signal processing apparatus according to claim 3.
  5.  前記傾斜信号は、前記気泡センサの各軸の加速度を検出する加速度検出部の加速度信号であり、
     前記判定手段は、垂直方向の重力加速度に対する、前記各軸の加速度の比を算出することにより、前記気泡センサの各軸の傾斜角度を算出することを特徴とする請求項1乃至4のいずれか1項に記載の信号処理装置。
    The inclination signal is an acceleration signal of an acceleration detection unit that detects acceleration of each axis of the bubble sensor,
    The said determination means calculates the inclination angle of each axis | shaft of the said bubble sensor by calculating the ratio of the acceleration of each said axis | shaft with respect to the gravitational acceleration of a perpendicular direction, Either of the Claims 1 thru | or 4 characterized by the above-mentioned. 2. The signal processing device according to item 1.
  6.  前記算出手段は、前記判定された装着状態と、補正値との関係を規定した変換テーブルに基づいて、前記気泡の大きさを算出することを特徴とする請求項1乃至5のいずれか1項に記載の信号処理装置。 The said calculating means calculates the magnitude | size of the said bubble based on the conversion table which prescribed | regulated the relationship with the determined mounting state and a correction value, The one of Claims 1 thru | or 5 characterized by the above-mentioned. A signal processing device according to 1.
  7.  請求項1乃至6のいずれか1項に記載の信号処理装置を備える医療装置。 A medical device comprising the signal processing device according to any one of claims 1 to 6.
  8.  液体が流れるチューブに装着される気泡センサと接続され、該気泡センサから出力される出力信号を処理する信号処理装置における信号処理方法であって、
     前記液体が流れる方向と交差する方向に送信された信号を前記チューブを介して受信することにより得られる受信信号を、前記気泡センサより取得する取得工程と、
     前記気泡センサの各軸の傾斜角度を算出するための傾斜信号を、前記気泡センサより取り込むことにより、前記気泡センサの各軸の傾斜角度を算出し、該算出した各軸の傾斜角度に基づいて、前記気泡センサの前記チューブに対する装着状態を判定する判定工程と、
     前記取得工程において取得された受信信号と、前記判定工程において判定された装着状態に応じて予め定められた補正値とを用いることにより、気泡の大きさを算出する算出工程と
     を備えることを特徴とする信号処理方法。
    A signal processing method in a signal processing apparatus that is connected to a bubble sensor attached to a tube through which a liquid flows and processes an output signal output from the bubble sensor,
    An acquisition step of acquiring from the bubble sensor a reception signal obtained by receiving a signal transmitted in a direction intersecting a direction in which the liquid flows through the tube;
    By acquiring an inclination signal for calculating the inclination angle of each axis of the bubble sensor from the bubble sensor, the inclination angle of each axis of the bubble sensor is calculated, and based on the calculated inclination angle of each axis. A determination step of determining a mounting state of the bubble sensor with respect to the tube;
    A calculation step of calculating a bubble size by using the reception signal acquired in the acquisition step and a correction value determined in advance according to the wearing state determined in the determination step. A signal processing method.
  9.  液体が流れるチューブに装着される気泡センサからの信号を処理する信号処理装置であって、
     前記気泡センサは、前記チューブを挟むように配置される信号送信部および信号受信部を含み、前記信号送信部から送信され前記チューブおよびその内部を透過した信号を前記信号受信部が受信し、受信した信号に応じた信号を出力し、
     前記処理装置は、
     前記気泡センサから出力される信号を取得する取得手段と、
     前記気泡センサの姿勢を判定する判定手段と、
     前記取得手段が取得した前記信号と、前記判定手段が判定した前記気泡センサの前記姿勢とに基づいて、前記チューブを流れる液体の中の気泡の大きさを算出する算出手段と
     を備えることを特徴とする信号処理装置。
    A signal processing device for processing a signal from a bubble sensor attached to a tube through which a liquid flows,
    The bubble sensor includes a signal transmission unit and a signal reception unit arranged so as to sandwich the tube, and the signal reception unit receives and receives the signal transmitted from the signal transmission unit and transmitted through the tube and the inside thereof. Output a signal according to the
    The processor is
    Obtaining means for obtaining a signal output from the bubble sensor;
    Determining means for determining the attitude of the bubble sensor;
    Calculation means for calculating the size of bubbles in the liquid flowing through the tube based on the signal acquired by the acquisition means and the posture of the bubble sensor determined by the determination means. A signal processing device.
PCT/JP2013/005325 2012-09-11 2013-09-09 Signal processing device, medical device and signal processing method WO2014041788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535375A JP5864766B2 (en) 2012-09-11 2013-09-09 Signal processing device, medical device, and signal processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-199843 2012-09-11
JP2012199843 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041788A1 true WO2014041788A1 (en) 2014-03-20

Family

ID=50277930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005325 WO2014041788A1 (en) 2012-09-11 2013-09-09 Signal processing device, medical device and signal processing method

Country Status (2)

Country Link
JP (1) JP5864766B2 (en)
WO (1) WO2014041788A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073226A (en) * 2014-10-21 2017-08-18 赛诺菲-安万特德国有限公司 The dose data from medication injection device is recorded using OCR (OCR)
JP2018512576A (en) * 2015-02-27 2018-05-17 マッケ カーディオパルモナリー アーゲー Fluid flow measurement and bubble detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287045A (en) * 1988-09-26 1990-03-27 Power Reactor & Nuclear Fuel Dev Corp Detecting method of gas in liquid
JPH06178808A (en) * 1992-12-14 1994-06-28 Sharp Corp Infusion apparatus
JPH08201280A (en) * 1995-01-24 1996-08-09 Mitsuo Kamiwano Device for measuring dispersed-phase pattern in different-phase liquid
JP2006524810A (en) * 2003-04-25 2006-11-02 シーエックスアール リミテッド X-ray monitoring
JP2008002930A (en) * 2006-06-22 2008-01-10 Sumitomo Chemical Co Ltd Method of estimating flow rate of gas accumulated and flowing in upper part of conduit with liquid flowing therein
JP2009505079A (en) * 2005-08-12 2009-02-05 セレリティ・インコーポレイテッド Flow measurement and control using bubble detection
JP2009059002A (en) * 2007-08-29 2009-03-19 Central Res Inst Of Electric Power Ind Bubble count system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352825B2 (en) * 2003-09-11 2009-10-28 株式会社ジェイ・エム・エス Bubble amount detection system and medical device equipped with the bubble amount detection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287045A (en) * 1988-09-26 1990-03-27 Power Reactor & Nuclear Fuel Dev Corp Detecting method of gas in liquid
JPH06178808A (en) * 1992-12-14 1994-06-28 Sharp Corp Infusion apparatus
JPH08201280A (en) * 1995-01-24 1996-08-09 Mitsuo Kamiwano Device for measuring dispersed-phase pattern in different-phase liquid
JP2006524810A (en) * 2003-04-25 2006-11-02 シーエックスアール リミテッド X-ray monitoring
JP2009505079A (en) * 2005-08-12 2009-02-05 セレリティ・インコーポレイテッド Flow measurement and control using bubble detection
JP2008002930A (en) * 2006-06-22 2008-01-10 Sumitomo Chemical Co Ltd Method of estimating flow rate of gas accumulated and flowing in upper part of conduit with liquid flowing therein
JP2009059002A (en) * 2007-08-29 2009-03-19 Central Res Inst Of Electric Power Ind Bubble count system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107073226A (en) * 2014-10-21 2017-08-18 赛诺菲-安万特德国有限公司 The dose data from medication injection device is recorded using OCR (OCR)
US10796791B2 (en) 2014-10-21 2020-10-06 Sanofi-Aventis Deutschland Gmbh Recording dose data from drug injection devices using optical character recognition (OCR)
JP2018512576A (en) * 2015-02-27 2018-05-17 マッケ カーディオパルモナリー アーゲー Fluid flow measurement and bubble detection device
US10960125B2 (en) 2015-02-27 2021-03-30 MAQUET CARDIOPULMONARY GmbH Fluid flow rate measuring and gas bubble detecting apparatus

Also Published As

Publication number Publication date
JPWO2014041788A1 (en) 2016-08-12
JP5864766B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP6517023B2 (en) Blood purification device
EP2100630B1 (en) Disposable set for an extracorporeal blood processing apparatus
US9662433B2 (en) Pressure detection device of liquid flow route
JP6141733B2 (en) Blood circulation device
JP2019510598A (en) Device for extracorporeal blood processing with evaluation and control unit
JP5864766B2 (en) Signal processing device, medical device, and signal processing method
EP3753594A1 (en) System and method for preparing a catheter before use
JP5851616B2 (en) Control device, circulation device and control method
JP6296815B2 (en) Extracorporeal circulation device and control method for extracorporeal circulation device
JP7237351B2 (en) Reservoir and extracorporeal circulation system
JP7236436B2 (en) Measuring system and computing unit
JP2007075317A (en) Level detector
JP2018094243A (en) Blood circulation system
US11338072B2 (en) Blood treatment systems and related components and methods
JP6433212B2 (en) Extracorporeal circulation device
JP5947450B2 (en) Circulation device, control device and information processing method
JP2018094244A (en) Reservoir and blood circulation system
US11654223B2 (en) Extracorporeal circulation management device with blood level detection in a reservoir without a sensor
JP6922440B2 (en) Ultrasonic measuring device and extracorporeal circulation device
JP6930347B2 (en) Blood circuit and extracorporeal circulation device including the blood circuit
JP6138643B2 (en) Extracorporeal circulation device
WO2014128763A1 (en) Circulation device, control device, and information processing method
JP5918364B2 (en) Extracorporeal circulation device and priming method
WO2014128764A1 (en) Circulation device, control device, and information processing method
JP2020103833A (en) Blood purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837608

Country of ref document: EP

Kind code of ref document: A1