WO2014038192A1 - リーク検査を行うシステムおよび方法 - Google Patents

リーク検査を行うシステムおよび方法 Download PDF

Info

Publication number
WO2014038192A1
WO2014038192A1 PCT/JP2013/005228 JP2013005228W WO2014038192A1 WO 2014038192 A1 WO2014038192 A1 WO 2014038192A1 JP 2013005228 W JP2013005228 W JP 2013005228W WO 2014038192 A1 WO2014038192 A1 WO 2014038192A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
gas
leak
container
ionization
Prior art date
Application number
PCT/JP2013/005228
Other languages
English (en)
French (fr)
Inventor
プラカッシ スリダラ ムルティ
Original Assignee
アトナープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アトナープ株式会社 filed Critical アトナープ株式会社
Priority to JP2014534193A priority Critical patent/JP6227537B2/ja
Priority to US14/419,586 priority patent/US20150226629A1/en
Publication of WO2014038192A1 publication Critical patent/WO2014038192A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/229Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators removably mounted in a test cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/624Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]

Definitions

  • the present invention relates to a system and method for performing a leak inspection.
  • a leak detection system disclosed in Japanese Patent Application Laid-Open No. 2011-107036 includes a test chamber connected to a vacuum pump, sealing means for sealing helium gas into a test body TP, and a detection preparation position capable of transferring the test body to the test chamber And a transport means for transporting the test body between the sealing operation position where the sealing operation of the helium gas is performed by the sealing means, a transport means for transporting the test body from the detection preparation position to the detection position in the test chamber, and helium Sealing means for sealing the test chamber in a state where the gas-filled specimen is in the detection position, and after sealing the test chamber by the sealing means, the specimen is evacuated to a predetermined pressure by a vacuum pump.
  • Leakage detecting means for detecting helium leaking from the tank.
  • International Publication WO2012 / 056709 discloses a system having a unit for analyzing a sample proposed by the present applicant.
  • This analyzing unit is configured to measure 2 of the data contained in the measurement data obtained by supplying the sample to an ion mobility sensor that measures the ion intensity of the ionized chemical passing through an electric field controlled by at least two parameters.
  • a leak detection system that consumes helium has a high running cost. Therefore, there is a need for a low-cost and highly accurate leak inspection system and method.
  • One embodiment of the present invention includes an ionization unit that ionizes a component (molecule) contained in a gas, a detection unit that detects an ionized component, a container that stores an object for leak inspection, an object and a container A first path for supplying a first gas of a first component that is not ionized by the ionization unit to one side, and supplying a gas in one of the object and the container to the detection unit via the ionization unit; and the object And a determination unit that determines leakage of the second gas containing the second component ionized by the ionization unit from the other inside of the container based on the detection result of the detection unit.
  • the detection unit is not in the absence of leakage of the second gas from the object by introducing the first component gas from the container through the ionization unit to the detection unit. Also not detected.
  • the second gas leaks from the object, the second component is ionized by the ionization unit and detected by the detection unit. Therefore, the determination unit can easily and reliably determine whether there is a leak. If the leak direction is the target from the container, the leak into the target can be detected in the same manner as described above by connecting the target to the first path.
  • the first path including the container can be filled with the first component gas (carrier gas) that is not ionized by the ionization unit. Further, a gas flow having a predetermined flow rate can be formed in the first path, and the gas flow is not detected by the detection unit. Therefore, purging of the first path including the container or the object is easy, and if there is a slight amount of leak in the object, the leaked component is transported to the first gas, and it is transferred to the detection unit in a short time. To reach. Therefore, the background of the detection unit can be reduced, and the presence / absence of leakage of the object can be accurately detected in a short time.
  • the first component gas carrier gas
  • the ionization unit may be an indirect ionization unit such as Ni63 or corona discharge, or a direct ionization unit such as a UV ionization unit.
  • a UV ionization unit When a UV ionization unit is employed, carbon dioxide, nitrogen, argon, or the like can be employed as the first component. Carbon dioxide is preferred because its ionization energy is sufficiently high and stable.
  • the system further includes a circulation unit that collects the first gas discharged from the detection unit into the first gas supply unit that is connected to the first path. Running costs can be further reduced.
  • This system desirably has a second path for supplying or enclosing a second gas containing a second component ionized by the ionization unit to the object or container. Leaks from the object can be detected with higher accuracy.
  • An example of the second gas is air (dry air). Dry air is low-cost, and is detected by ionizing trace components or oxygen molecules contained in the air by UV (ultraviolet) energy.
  • the second gas may be a gas containing a minute amount (0.1 to 10%) of molecules that are easily ionized by UV, such as acetone.
  • the detection unit may be a mass spectrometer, gas chromatography, or the like, but if it is an ion mobility sensor such as FAIMS, a vacuum atmosphere is unnecessary and detection can be performed almost in real time. Therefore, a system capable of detecting a leak at a low cost and in a short time can be supplied.
  • Another aspect of the present invention is a method including performing a leak inspection of an object using a system including a detection unit that ionizes and detects molecules contained in a gas by an ionization unit.
  • Performing a leak test includes the following steps. 1. Supplying the first gas of the first component that is not ionized by the ionization unit to one of the object and the container, and supplying the gas inside one of the object and the container to the detection unit via the ionization unit. 2. Judging the leakage of the second gas containing the second component ionized by the ionization unit from the other of the object and the container based on the detection result of the detection unit.
  • Performing the leak inspection may include supplying or enclosing a second gas containing molecules ionized by the ionization unit to the other of the object or the container.
  • the supplying step preferably includes collecting and circulating the first gas discharged from the detection unit.
  • the block diagram which shows schematic structure of a leak test
  • the block diagram which shows the structure of a purifier.
  • the flowchart which shows the process of performing a leak test
  • Fig. 1 shows an outline of a leak inspection system equipped with an ion mobility sensor.
  • An example of the ion mobility sensor 11 is FAIMS (FAIMS, Field Asymmetric Waveform Ion Mobility Spectrometry, Field Asymmetric Mass Spectrometer, or DIMS, Differential Ion Mobility Spectrometry).
  • FAIMS FAIMS technology
  • the chemical substance (component) to be measured is a compound, composition, molecule, or other product that can be ionized by the ionization unit 12 arranged upstream of the FAIMS 11.
  • the leak inspection system 1 includes a supply unit (carrier gas supply unit) 20 for supplying a carrier gas 29, a sealed container (chamber) 30 for storing an object 35 for leak inspection, an ionization unit 12 and a detection unit from upstream.
  • the sensor unit 10 including the FAIMS 11 and the intake pump 40 are included.
  • There are various leak inspection objects (test body TP, device under test DUT) 35 such as a heat exchanger such as a radiator, a cylinder, a pressure vessel, and a pressure vessel.
  • a heat exchanger such as a radiator, a cylinder, a pressure vessel, and a pressure vessel.
  • the leak direction is from the object 35 to the container 30 will be described. That is, the object 35 has a high internal pressure with respect to the outside such as a radiator, and it is necessary to inspect the leak from the object 35 to the outside.
  • the leak inspection system 1 includes a first path 5 in which the carrier gas 29 is carbon dioxide that is not ionized by the ionization unit 12 and supplies the carrier gas 29 to the FAIMS 11 of the detection unit via the ionization unit 12.
  • the first path 5 includes a carrier gas supply unit 20, a container 30, a pipe 39 that connects the container 30 and the sensor unit 10, and the sensor unit 10.
  • the leak inspection system 1 further determines the leak of the second gas containing the second component ionized by the ionization unit 12 from the inside of the object 35 through the first path 5 based on the detection result of the FAIMS 11.
  • the determination unit 71 is included.
  • the determination unit 71 may be included in a device 60 (odor processor, OLP, Office Processor) including a function of analyzing the measurement data obtained from the FAIMS 11 or controlling the flow rate of the FAIMS 11. You may include in the control unit 70 which controls the whole.
  • the control unit 70 is realized by general-purpose hardware resources (including a CPU and a memory) such as a personal computer, and operates a leak inspection application 72 provided by a program (program product).
  • the determination unit (determination function) 71 is included in the leak inspection application 72, and the leak inspection application 72 controls the leak inspection system 1 and outputs a result indicating the presence or absence of a leak.
  • the OLP 60 is provided as one integrated device (semiconductor chip, ASIC, LSI) or a plurality of integrated chips (chip set), and controls the measurement conditions or environment of the FAIMS 11, the measurement conditions or the environment.
  • ASIC semiconductor integrated circuit
  • LSI semiconductor integrated circuit
  • chip set a plurality of integrated chips
  • the carrier gas supply unit 20 supplies a gas composed of carbon dioxide as the carrier gas 29. Therefore, the supply unit 20 supplies the carrier gas (dioxide dioxide) from the cylinder 21 so that the carbon dioxide cylinder 21, the storage tank 23 of the carrier gas 29, and the pressure of the storage tank 23 are slightly higher than atmospheric pressure, for example, 1 bar.
  • a feeder (pressure controller) 22 for supplying carbon (29) and a purifier (filter, cleaning device) 25 for the carrier gas 29 are included.
  • the purity of commercially available high-purity carbon dioxide is 99.995% or more.
  • a purifier 25 is provided, and a higher-purity carbon dioxide (CO2, first component) gas is used as a carrier gas. 29 is supplied to the chamber 30.
  • FIG. 2 shows an example of the purifier 25.
  • the purifier 25 discharges impurities 27 contained in the carrier gas 29 using a diffusion membrane (permeation membrane, porous polymer membrane) 26 having high permselectivity, and further improves the purity of the carrier gas 29.
  • a diffusion membrane permeation membrane, porous polymer membrane
  • An example of the diffusion film 26 is PDMS (polydimethylsiloxane), hybrid silica, or the like.
  • a silica-based microporous organic-inorganic hybrid membrane having an average pore size of 0.1 to 0.6 nm and hydrothermally stable up to at least 200 ° C. in several media is a short-chain crosslinked silane. It has been reported to be suitable for separation of water and other small molecule compounds from various organic compounds such as low molecular weight alcohols.
  • the purifier 25 includes an input tube 27a for introducing a carrier gas 29 to the input side 26a of the diffusion film 26, an output tube 27b for outputting the carrier gas 29 having improved purity in contact with the input side 26a of the diffusion film 26, And an exhaust pipe 28 for discharging impurities such as water that has passed through the diffusion film 26 from the output side 26b of the diffusion film 26.
  • the leak inspection system 1 further includes a circulation unit 45 that recovers and reuses the carrier gas 29 that has passed through the sensor unit 10 in the carrier gas supply unit 20.
  • the circulation unit 45 includes a filter unit 46 that filters the exhaust of the intake pump 40, and the filtered carrier gas 29 is collected in the storage tank 23 of the carrier gas supply unit 20.
  • the filter unit 46 includes a molecular sieve 46a that adsorbs impurities and a carbon scrubber 46b that separates moisture.
  • the leak inspection system 1 further includes a second path (second supply unit, leak gas supply unit) 50 for supplying the leak gas 59 to the inspection object 35 accommodated in the chamber 30.
  • air (dry air) 59 is used as a leak gas
  • the second path 50 connects the air reservoir 51 and the inspection object 35.
  • the leak gas 59 may be continuously supplied to the inspection object 35 accommodated in the chamber 30. Further, before the inspection object 35 is stored in the chamber 30, the inspection object 35 may be sealed with a leak gas 59 and the supply port may be sealed.
  • the leak gas 59 is not limited to dry air, but the running cost can be reduced by using air.
  • An example of the detection unit FAIMS 11 is a MEMS sensor manufactured by Owlstone.
  • An example of the ionization unit 12 is to ionize a gas by UV (ultraviolet light).
  • the ionization unit 12 may be one using Ni 63 (555 MBq ⁇ -ray source, 0.1 ⁇ Sv / hr) or one using corona discharge.
  • the ionization unit 12 of this example includes an ultraviolet light source such as an ultraviolet light emitting diode (UV-LED), an ultraviolet lamp (UV Low pressure lamp), etc., and emits light having a short wavelength of 280 nm or less and is included in the carrier gas 29. Ionized components.
  • the ionization unit 12 may further emit ultraviolet light in the VUV (vacuum ultraviolet) region with a wavelength of 200 to 10 nm, or short (extended) ultraviolet light (Extra Ultraviolet, EUV) with a wavelength of 121 to 10 nm. Desirably, it is an ultraviolet ray that emits an ultraviolet ray having a wavelength of 120 to 95 nm and an ionization energy of about 10 to 13 eV.
  • the sensor unit 10 of the leak inspection system 1 employs an ionization unit 12 having an ultraviolet source that emits ultraviolet rays having a wavelength of 120 to 110 nm and an ionization energy of about 10 to 10.6 eV.
  • the ionization unit 12 When using the ionization unit 12 that irradiates ultraviolet rays of this energy level, it has been reported that the ionization energy of carbon dioxide is 13.79-14.4 eV, and carbon dioxide is not ionized. Similarly, it has been reported that the ionization energy of the nitrogen molecule (N2) is 15-20 eV, and nitrogen is not ionized. On the other hand, oxygen (oxygen molecule, O2) has been reported to be ionized by ultraviolet rays having a wavelength of 130 nm or less including ozone formation, and it is considered that a part of oxygen in the air is ionized. Other organic polymers that often float in the air are ionized at 10 eV or less. For example, the ionization energy of benzene is 9.24 eV, and the ionization energy of acetone is around 10.5 eV.
  • high-purity carbon dioxide is supplied as a carrier gas 29 to a chamber (container) 30 that houses an inspection object 35, and is supplied to the sensor unit 10 via a pipe 39.
  • the sensor unit 10 among the molecules contained in the carrier gas 29, the molecules ionized by the UV ionization unit 12 are detected by the FAIMS 11 which is a detection unit. Since the carrier gas 29 of the leak inspection system 1 is carbon dioxide, it is not ionized by the UV ionization unit 12 and is not detected by the FAIMS 11.
  • the determination unit 71 of the leak inspection application 72 outputs an inspection result indicating that no leak is observed in the inspection object 35.
  • Air 59 is supplied to the sensor unit 10 by the carrier gas 29 through the first path 5.
  • Components such as oxygen or other trace organic substances in the air 59 contained in the carrier gas 29 are ionized by the UV ionization unit 12 and reach the FAIMS 11. Therefore, FAIMS 11 outputs a spectrum including positive and / or negative ion peaks, and outputs from OLP 60 that there is some detected object.
  • the OLP 60 does not need to specify the detected molecule, and the determination unit (determination function) 71 receives the fact that the OLP 60 has detected some molecule and outputs a test result indicating that the inspection target 35 has a leak. To do.
  • the FAIMS 11 can detect a trace component contained in the supplied carrier gas 29, for example, a component present in the carrier gas 29 at a concentration of ppt to ppb. Therefore, the leak inspection system 1 can detect a small amount of leak of the inspection object 35 with high accuracy. Furthermore, it is necessary to supply a carrier gas 29 of about 1 to 1000 mL / min for measurement with the FAIMS 11, but the sensitivity of the FAIMS 11 is not lowered by using carbon dioxide that is not ionized by the UV ionization unit 12 as the carrier gas 29. The carrier gas flow can be secured. Since the carrier gas flow is secured, if there is a leak in the inspection object 35, the leaked component is supplied to the FAIMS 11 by the carrier gas 29 in a short time. Therefore, in this leak inspection system 1, it is possible to determine the presence or absence of leaks in a short time in almost real time, and the inspection time can be greatly shortened.
  • the carrier gas 29 can purge the chamber 30 and the pipe 39 connecting the chamber 30 and the sensor unit 10. Therefore, the adhesion of impurities to the chamber 30 and the pipe 39 can be suppressed, and the accuracy of leak inspection can be improved.
  • the gases used for the leak check are carbon dioxide (first gas) 29 and air (second gas) 59, and the running cost can be greatly reduced as compared with the conventional leak inspection using helium. .
  • the running cost can be further reduced by collecting and reusing the carrier gas 29 by the circulation unit 45.
  • the entire leak inspection system 1 is controlled at a pressure around atmospheric pressure, and there is no need to evacuate the chamber. Therefore, it is not necessary to significantly increase the mechanical strength of the container and the pipe, and it is not necessary to prepare a vacuum pump. For this reason, equipment costs can also be reduced.
  • the chamber 30 can be heated, and a leak inspection can be performed at a high temperature.
  • FIG. 3 is a flowchart showing a process for performing a leak inspection using the leak inspection system 1.
  • the carrier gas (carbon dioxide, first gas) 29 and the leak gas (air, second gas) 59 are prepared.
  • the carrier gas (carbon dioxide) 29 is supplied until the reservoir 23 reaches a predetermined pressure, and the purifier 25 is operated.
  • a leak gas (dry air) 59 is prepared in the reservoir 51.
  • the inspection object (DUT) 35 is accommodated in the chamber 30, and the chamber 30 is sealed.
  • a loading / unloading chamber (air lock) such as a double door system is provided so that the inspection objects 35 can be successively set in the chamber 30 one after another by a belt conveyor or the like. Also good.
  • the flow (flow rate) of the carrier gas 29 is checked in step 83, and the state of the carrier gas 29 is checked by the FAIMS 11 in step 84.
  • the flow rate of the carrier gas 29 is stabilized, the purity of the carrier gas 29 is sufficiently high, and impurities such as moisture and VOC are no longer detected by the FAIMS 11, the leak gas 59 is supplied to the inspection object 35 in the chamber 30 in step 85.
  • measurement by FAIMS 11 is started. That is, the carrier gas 29 that is not ionized by the ionization unit 12 is supplied to the chamber (container) 30 in which the object 35 is stored, and the carrier gas 29 is supplied to the FAIMS 11 through the ionization unit 12.
  • the leak inspection application 72 analyzes the data obtained from the OLP 60 and determines whether there is a leak in the inspection object 35. That is, the determination unit 71 of the leak inspection application 72 determines the leak of the dry air 59 containing the component ionized by the ionization unit 12 from the inside of the target object 35 based on the detection result of the FAIMS 11, and appropriate means such as an alarm. To output.
  • the leak inspection application 72 may include a function of recording the inspection result on an appropriate recording medium 87 or outputting it via a computer network.
  • step 88 If there is a next inspection object 35 in step 88, the process returns to step 82, the inspection object 35 in the chamber 30 is replaced, and the leak inspection is started again.
  • the above example describes the case where the leak direction is from the object 35 to the container 30, but if the leak direction is from the container 30 to the object 35, the object 35 is connected to the carrier gas supply unit 20, and the object The leak inspection can be performed by connecting the 35 to the sensor unit 10 via the pipe 39.
  • the leak gas 59 employs dry air.
  • the leak gas 59 may be normal air. However, when it is not dry air, it takes time to remove the moisture when it adheres to the chamber 30 and the pipe 39, and the waiting time until the next leak test condition is established becomes long. Therefore, the leak gas 59 is preferably dry air.
  • the leak gas 59 may be acetone or other gas having a high volatility and containing a small amount of a specific component that is easily ionized by UV, for example, about 0.1 to 10%.
  • the concentration of a specific component in the leak gas 59 is set on the assumption that the sensitivity of the FAIMS 11 is highest when the inspection target 35 is leaked, for example, ppb or sub ppb. Is desirable.
  • the sensor for detecting the leaked component is not limited to FAIMS, but may be another type of ion mobility sensor or a mass analyzer. However, since the ion mobility sensor can measure components leaked in the air, it is easy to manage and is suitable for a low-cost leak inspection system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 リーク検査システムは、気体に含まれる成分をイオン化するイオン化ユニットと、イオン化された成分を検出する検出ユニットと、リーク検査の対象物が収納される容器と、対象物および容器の一方にイオン化ユニットによりイオン化されない第1の成分の第1の気体を供給し、対象物および容器の一方の内部の気体を、イオン化ユニットを介して検出ユニットに供給する第1の経路と、対象物および容器の他方の内部からの、イオン化ユニットによりイオン化される第2の成分を含む第2の気体のリークを検出ユニットの検出結果により判断する判定ユニットとを有する。低コストで検出精度の高いリーク検査システムを提供できる。

Description

リーク検査を行うシステムおよび方法
 本発明は、リーク検査を行うシステムおよび方法に関するものである。
 日本国特開2011-107036号公報の漏洩検知システムは、真空ポンプに接続されたテストチャンバと、試験体TPにヘリウムガスを封入する封入手段と、テストチャンバに試験体を移送し得る検知準備位置と、封入手段によるヘリウムガスの封入操作が行われる封入操作位置との間で試験体を搬送する搬送手段と、検知準備位置からテストチャンバ内の検知位置に試験体を移送する移送手段と、ヘリウムガス封入済みの試験体が検知位置に存する状態でテストチャンバを密閉する密閉手段と、密閉手段によりテストチャンバを密閉した後、真空ポンプによりテストチャンバを所定圧力まで真空引きしたときに、この試験体から漏洩するヘリウムを検知する漏洩検知手段とを備える。
 国際公開WO2012/056709号公報には、本件出願人が提案しているサンプルを分析するユニットを有するシステムが開示されている。この分析するユニットは、少なくとも2つのパラメータにより制御される電界をイオン化された化学物質が通過するイオン強度を測定するイオン移動度センサーにサンプルを供給して得られた測定データに含まれるデータの2次元表現であって、第1のパラメータを変化させ、他のパラメータを固定したときのイオン強度を示す2次元表現の中に存在するピークを検出する機能ユニットと、検出されたピークと他の2次元表現の中に存在するピークとの連続性および生滅に基づいて検出されたピークを分類する機能ユニットと、分類されたピークに基づいてサンプルに含まれる化学物質を推定する機能ユニットとを有する。
 ヘリウムを消費する漏洩検知システムはランニングコストが高い。このため、低コストで、精度の高いリーク検査システムおよび方法が求められている。
 本発明の一態様は、気体に含まれる成分(分子)をイオン化するイオン化ユニットと、イオン化された成分を検出する検出ユニットと、リーク検査の対象物が収納される容器と、対象物および容器の一方にイオン化ユニットによりイオン化されない第1の成分の第1の気体を供給し、対象物および容器の一方の内部の気体を、イオン化ユニットを介して検出ユニットに供給する第1の経路と、対象物および容器の他方の内部からの、イオン化ユニットによりイオン化される第2の成分を含む第2の気体のリークを検出ユニットの検出結果により判断する判定ユニットとを有するシステムである。リーク方向が対象物から容器であれば、容器からイオン化ユニットを通して検出ユニットに第1の成分の気体を導くことにより、対象物からの第2の気体のリーク(漏洩)がなければ検出ユニットはなにも検知しない。一方、対象物から第2の気体のリークがあれば、第2の成分がイオン化ユニットでイオン化され、検出ユニットで検出される。したがって、判定ユニットはリークの有無を簡単に、そして確実に判断できる。リーク方向が容器から対象物であれば、対象物を第1の経路に繋ぐことにより上記と同様に対象物内部へのリークを検出できる。
 リーク検査のために対象物を収納する容器を真空引きするシステムにおいては、容器から検出ユニットに至るフローが確保できないので容器やそれに続く配管系の不純物の除去が容易でない。また、そのようなシステムでは、フローがないので容器からの漏洩物が検出ユニットに到達するのに時間を要する。
 このシステムにおいては、イオン化ユニットによりイオン化されない第1の成分の気体(キャリアガス)により、たとえば、容器を含む第1の経路を満たすことができる。また、第1の経路に所定の流量の気体の流れを形成でき、その気体の流れは検出ユニットでは検出されない。このため、容器または対象物を含む第1の経路のパージが容易であり、さらに、対象物に微量なリークがあると、リークした成分は第1の気体に搬送され、短時間で検出ユニットに到達する。したがって、検出ユニットのバックグランドを小さくでき、対象物のリークの有無を短時間で精度よく検出できる。
 イオン化ユニットはNi63あるいはコロナ放電のような間接イオン化ユニットであってもよく、UVイオン化ユニットのような直接イオン化ユニットであってもよい。UVイオン化ユニットを採用する場合は、二酸化炭素、窒素、アルゴンなどを第1の成分として採用できる。二酸化炭素はイオン化エネルギーが十分に高く、安定しているので好ましい。
 このシステムは、さらに、検出ユニットから排出される第1の気体を第1の経路に繋がる第1の気体の供給ユニットに回収する循環ユニットを有することが望ましい。ランニングコストをさらに削減できる。
 このシステムは、対象物または容器にイオン化ユニットによりイオン化される第2の成分を含む第2の気体を供給または封入する第2の経路を有することが望ましい。対象物からのリークをさらに精度よく検出できる。第2の気体の一例は空気(ドライエアー)である。ドライエアーは低コストであり、空気に含まれている微量成分あるいは酸素分子がUV(紫外線)のエネルギーによりイオン化されることにより検出される。第2の気体は、アセトンなどのUVによりイオン化されやすい分子を微量(0.1~10%)含む気体であってもよい。
 検出ユニットは質量分析装置、ガスクロマトグラフィなどであってもよいが、FAIMSなどのイオン移動度センサーであれば、真空雰囲気が不要で、ほぼリアルタイムで検出できる。したがって、低コストおよび短時間でリークを検出できるシステムを供給できる。
 本発明の他の態様の1つは、気体に含まれる分子をイオン化ユニットによりイオン化して検出する検出ユニットを含むシステムを用いて対象物のリーク検査を行うことを含む方法である。リーク検査を行うことは、以下のステップを含む。
1.対象物および容器の一方にイオン化ユニットによりイオン化されない第1の成分の第1の気体を供給し、対象物および容器の一方の内部の気体を、イオン化ユニットを介して検出ユニットに供給すること。
2.対象物および容器の他方の内部からの、イオン化ユニットによりイオン化される第2の成分を含む第2の気体のリークを検出ユニットの検出結果により判断すること。
 リーク検査を行うことは、対象物または容器の他方にイオン化ユニットによりイオン化される分子を含む第2の気体を供給または封入することを含んでいてもよい。供給するステップは、検出ユニットから排出される第1の気体を回収して循環することを含むことが望ましい。
リーク検査システムの概略構成を示すブロック図。 ピュリファイアーの構成を示すブロック図。 リーク検査システムによりリーク検査する工程を示すフローチャート。
発明の実施の形態
 図1にイオン移動度センサーを備えたリーク検査システムの概要を示している。イオン移動度センサー11の一例はFAIMS(FAIMS、Field Asymmetric waveform Ion Mobility Spectrometry、フィールド非対称質量分析計、またはDIMS、Differential Ion Mobility Spectrometry)である。FAIMS(FAIMS技術)では、測定対象となる化学物質(成分)はFAIMS11の上流に配置されたイオン化ユニット12によりイオン化できる化合物、組成物、分子、その他の生成物である。FAIMS11では、イオン移動度が化学物質毎にユニークである性質を利用して、イオン化された化学物質を電界中を移動させながら、イオン化された化学物質に対し差動型電圧(DV、Dispersion Voltage、Vd電圧、電界電圧、交流電圧、以降ではVf)と補償電圧(CV、Compensation Voltage、補償電圧、直流電圧、以降ではVc)とを印加する。検出目標のイオン化された化学物質は、VfおよびVcの値が適切に制御されれば、検出用の電極に到達して電流値として検出される。
 このリーク検査システム1は、上流から、キャリアガス29を供給する供給ユニット(キャリアガス供給ユニット)20と、リーク検査の対象物35を収納する密閉容器(チャンバ)30と、イオン化ユニット12および検出ユニットであるFAIMS11とを含むセンサーユニット10と、吸気用のポンプ40とを含む。リーク検査の対象物(試験体TP、被試験デバイスDUT)35は、ラジエターなどの熱交換器、ボンベ、圧力容器、耐圧容器などさまざまである。以下においては、リーク方向が対象物35から容器30である例を説明する。すなわち、対象物35がラジエターなどの外界に対して内部圧力が高くなるものであり、対象物35から外界へのリークを検査することが必要なケースである。
 リーク検査システム1は、キャリアガス29がイオン化ユニット12によりイオン化されない二酸化炭素であり、キャリアガス29を、イオン化ユニット12を介して検出ユニットのFAIMS11に供給する第1の経路5を含む。第1の経路5は、キャリアガス供給ユニット20、容器30、容器30とセンサーユニット10とを連通する配管39、およびセンサーユニット10を含む。
 リーク検査システム1は、さらに、第1の経路5を介して対象物35の内部からの、イオン化ユニット12によりイオン化される第2の成分を含む第2の気体のリークをFAIMS11の検出結果により判断する判定ユニット71を含む。判定ユニット71は、FAIMS11の通過流量を制御したり、FAIMS11から得られた測定データの分析機能を含むデバイス(臭覚プロセッサ、OLP、Olfaction Processor)60に含まれていてもよく、リーク検査システム1の全体を制御する制御ユニット70に含まれていてもよい。制御ユニット70は、パーソナルコンピュータなどの汎用的なハードウェア資源(CPUおよびメモリを含む)により実現され、プログラム(プログラム製品)により提供されるリーク検査アプリケーション72が稼働する。本例では判定ユニット(判定機能)71はリーク検査アプリケーション72に含まれており、リーク検査アプリケーション72は、リーク検査システム1を制御し、リークの有無を示す結果を出力する。
 OLP60は、1つの集積化されたデバイス(半導体チップ、ASIC、LSI)または複数の集積化されたチップ(チップセット)として提供され、FAIMS11の測定条件または環境を制御する機能や、測定条件または環境により測定された結果を解析(解釈)する機能などを含み、詳細は、たとえば、本件出願人の出願(国際公開WO2012/056709号公報)に開示されている。
 キャリアガス供給ユニット20は、二酸化炭素からなる気体をキャリアガス29として供給する。そのため、供給ユニット20は、二酸化炭素のボンベ21と、キャリアガス29の貯蔵タンク23と、貯蔵タンク23の圧力が大気圧よりも若干高い値、たとえば1barになるようにボンベ21からキャリアガス(二酸化炭素)29を供給するフィーダー(圧力コントローラ)22と、キャリアガス29のピュリファイアー(フィルタ、清浄装置)25とを含む。市販されている高純度二酸化炭素の純度は99.995%以上であり、このシステム1においては、ピュリファイアー25を設け、より純度の高い二酸化炭素(CO2、第1の成分)のガスをキャリアガス29としてチャンバ30に供給する。
 図2にピュリファイアー25の一例を示している。このピュリファイアー25は、透過選択性の高い拡散膜(透過膜、多孔質高分子膜)26を用いてキャリアガス29に含まれている不純物27を排出し、キャリアガス29の純度をさらに向上する。拡散膜26の一例はPDMS(ポリジメチルシロキサン)、ハイブリッドシリカなどである。たとえば、平均細孔径が0.1ないし0.6nmで、数種類の媒体内で少なくとも200℃まで熱水的に安定であるシリカをベースとする微孔質有機-無機ハイブリッド膜が、短鎖架橋シランのゾル-ゲル処理を使用して製造することができ、気体の分離ならびに低分子量アルコールなどの様々な有機化合物からの水および他の小分子化合物の分離に適していることが報告されている。
 ピュリファイアー25は、拡散膜26の入力側26aにキャリアガス29を導入する入力管27aと、拡散膜26の入力側26aに接触して純度が向上したキャリアガス29を出力する出力管27bと、拡散膜26の出力側26bから拡散膜26を透過した水などの不純物を放出する排気管28とを含む。
 リーク検査システム1は、さらに、センサーユニット10を通過したキャリアガス29をキャリアガス供給ユニット20に回収して再利用する循環ユニット45を含む。循環ユニット45は、吸気ポンプ40の排気をフィルタリングするフィルタユニット46を含み、フィルタリングされたキャリアガス29はキャリアガス供給ユニット20の貯蔵タンク23に回収される。フィルタユニット46は、不純物を吸着するモレキュラシーブ46aと、水分を分離するカーボンスクラバ46bとを含む。ピュリファイアー25により純度を向上したキャリアガス29を供給ユニット20に回収することにより高純度の二酸化炭素の消費を抑制でき、リーク検査に要するランニングコストを低減できる。
 リーク検査システム1は、さらに、チャンバ30に収納される検査対象物35にリークガス59を供給する第2の経路(第2の供給ユニット、リークガス供給ユニット)50を有する。このシステムではリークガスとして空気(乾燥空気)59が用いられ、第2の経路50は、エアーリザーバ51と検査対象物35とを接続する。リークガス59は、チャンバ30に収納された検査対象物35に連続して供給されてもよい。また、チャンバ30に検査対象物35を収納する前に、検査対象物35にリークガス59を封入し、供給口を封止しておいてもよい。リークガス59は、乾燥空気に限定されないが、空気を使用することでランニングコストを低減できる。
 検出ユニットであるFAIMS11の一例はオウルストーン(Owlstone)社製のMEMSセンサーである。イオン化ユニット12の一例はUV(紫外線)によりガスをイオン化するものである。イオン化ユニット12は、Ni63(555MBqのβ線源、0.1μSv/hr)を使用したもの、コロナ放電を用いたものであってもよい。本例のイオン化ユニット12は、紫外発光ダイオード(UV-LED)、紫外線ランプ(UV Low pressure lamp)などの紫外線源を含み、280nm以下の短波長の光を放出してキャリアガス29の中に含まれる成分をイオン化する。
 イオン化ユニット12は、さらに波長が200~10nmのVUV(真空紫外線)領域、または、波長が121~10nmの短(延)紫外光(Extra Ultraviolet、EUV)の紫外光を放出するものであることが望ましく、波長が120~95nmでイオン化エネルギーが10~13eV程度の紫外線を放出する紫外線であることが望ましい。このリーク検査システム1のセンサーユニット10では、波長が120~110nmでイオン化エネルギーが10~10.6eV程度の紫外線を放出する紫外線源を備えたイオン化ユニット12が採用されている。
 このエネルギーレベルの紫外線を照射するイオン化ユニット12を使用する場合、二酸化炭素のイオン化エネルギーは13.79-14.4eVとの報告があり、二酸化炭素はイオン化されない。同様に、窒素分子(N2)のイオン化エネルギーは15-20eVとの報告があり、窒素もイオン化されない。一方、酸素(酸素分子、O2)は、オゾンの形成などを含めて波長130nm以下の紫外線でイオン化が始まるとの報告があり、空気中の酸素の一部はイオン化されると考えられる。その他の空気中に浮遊することの多い有機系高分子は10eVあるいはそれ以下でイオン化される。たとえば、ベンゼンのイオン化エネルギーは9.24eVであり、アセトンのイオン化エネルギーは10.5eV前後である。
 このリーク検査システム1においては、キャリアガス29として高純度の二酸化炭素が検査対象物35を収納するチャンバ(容器)30に供給され、配管39を介してセンサーユニット10に供給される。センサーユニット10では、キャリアガス29に含まれる分子のうち、UVイオン化ユニット12によりイオン化された分子が検出ユニットであるFAIMS11により検出される。このリーク検査システム1のキャリアガス29は二酸化炭素なので、UVイオン化ユニット12ではイオン化されず、FAIMS11では検出されない。したがって、チャンバ30に封入(収納)された検査対象物35にリークがなければ、FAIMS11では何も検出されずフラットなスペクトラムまたはある程度のホワイトノイズがのったスペクトラムが出力され、OLP60からは検出物がないことを示す結果が出力される。その結果を受けて、リーク検査アプリケーション72の判定ユニット71は、検査対象物35にリークが見られないことを示す検査結果を出力する。
 一方、検査対象物35にリークがあると、検査対象物35に封入または供給されているリークガス(空気)59がチャンバ30に放出される。空気59はキャリアガス29により第1の経路5を通ってセンサーユニット10に供給される。キャリアガス29に含まれる空気59の中の酸素あるいはその他の微量な有機物質などの成分がUVイオン化ユニット12によりイオン化され、FAIMS11に到達する。したがって、FAIMS11では、ポジティブおよび/またはネガティブなイオンのピークを含むスペクトラムが出力され、OLP60からは何等かの検出物があることが出力される。OLP60は、検出された分子を特定する必要はなく、判定ユニット(判定機能)71は、OLP60が何らかの分子を検出したことを受けて、検査対象物35にリークがあることを示す検査結果を出力する。
 FAIMS11は、供給されるキャリアガス29に含まれる微量成分、たとえば、ppt~ppbの濃度でキャリアガス29に存在する成分を検出できる。したがって、このリーク検査システム1は、検査対象物35の微量なリークを高精度で検出できる。さらに、FAIMS11で測定するために1~1000mL/分程度のキャリアガス29を供給する必要があるが、UVイオン化ユニット12によりイオン化されない二酸化炭素をキャリアガス29として使用することによりFAIMS11の感度を下げずにキャリアガスフローを確保できる。キャリアガスフローが確保されるので、検査対象物35にリークがあると、リークした成分はキャリアガス29により短時間でFAIMS11に供給される。したがって、このリーク検査システム1においては、短時間で、ほぼリアルタイムでリークの有無を判断でき、検査時間を大幅に短縮できる。
 また、第1の経路5に含まれるチャンバ30および配管39を流れるキャリアガスフローを常に確保できる。このため、チャンバ30およびチャンバ30とセンサーユニット10とを接続する配管39をキャリアガス29でパージできる。したがって、チャンバ30や配管39への不純物の付着を抑制でき、リーク検査の精度を向上できる。
 さらに、リークチェックに用いるガスは、二酸化炭素(第1の気体)29と空気(第2の気体)59とであり、従来のヘリウムを用いたリーク検査に比較すると、ランニングコストを大幅に削減できる。また、このリーク検査システム1においては、循環ユニット45によりキャリアガス29を回収して再利用することにより、さらにランニングコストを削減できる。また、このリーク検査システム1は、全体が大気圧前後の圧力で制御され、チャンバ内部を真空にする必要がない。したがって、容器および配管の機械的な強度を大幅に高める必要はなく、真空ポンプを用意する必要もない。このため、設備費用も削減できる。また、チャンバ30を加熱することも可能であり、高温でリーク検査を行うことも可能である。
 図3に、リーク検査システム1を用いてリーク検査するプロセスをフローチャートにより示している。ステップ81において、キャリアガス(二酸化炭素、第1の気体)29およびリークガス(空気、第2の気体)59の準備を行う。キャリアガス供給ユニット20ではリザーバ23が所定の圧力になるまでキャリアガス(二酸化炭素)29を供給し、ピュリファイアー25を稼働させる。リークガス供給ユニット50においては、リークガス(ドライエアー)59をリザーバ51に準備する。ステップ82においてチャンバ30に検査対象物(DUT)35を収納し、チャンバ30を密閉する。測定用のチャンバ30の搬入前後に、二重ドア方式などの搬入搬出用のチャンバ(エアーロック)を設け、ベルトコンベアなどにより連続的にチャンバ30へ検査対象物35を次々とセットできるようにしてもよい。
 チャンバ30に検査対象物35が収納され、チャンバ30が密閉されると、ステップ83でキャリアガス29のフロー(流量)をチェックし、ステップ84でキャリアガス29の状態をFAIMS11によりチェックする。キャリアガス29の流量が安定し、キャリアガス29の純度が十分に高く、水分やVOCなどの不純物がFAIMS11により検出されなくなると、ステップ85においてチャンバ30の中の検査対象物35にリークガス59を供給し、FAIMS11による測定を開始する。すなわち、対象物35が収納されたチャンバ(容器)30にイオン化ユニット12によりイオン化されないキャリアガス29を供給し、キャリアガス29を、イオン化ユニット12を介してFAIMS11に供給する。
 検査対象物35にリークガス59が封入されている場合は、ステップ83および84の条件が確認されるか、適当な時間が経過すると、それ以降のFAIMS11の測定データによりリークの有無を判断する。
 ステップ86において、リーク検査アプリケーション72は、OLP60から得られたデータを解析し、検査対象物35のリークの有無を判断する。すなわち、リーク検査アプリケーション72の判定ユニット71は、対象物35の内部からの、イオン化ユニット12によりイオン化される成分を含むドライエアー59のリークをFAIMS11の検出結果により判断し、アラームなどの適当な手段により出力する。リーク検査アプリケーション72は、検査結果を適当な記録媒体87に記録したり、コンピュータネットワークを介して出力する機能を含んでいてもよい。
 ステップ88において、次の検査対象物35があれば、ステップ82に戻ってチャンバ30の検査対象物35を入れ替えて、再びリーク検査を開始する。
 上記の例はリーク方向が対象物35から容器30の場合を説明しているが、リーク方向が容器30から対象物35であれば、対象物35をキャリアガス供給ユニット20に接続し、対象物35を、配管39を介してセンサーユニット10に接続することによりリーク検査を行うことができる。
 また、上記の例において、リークガス59は乾燥空気を採用している。リークガス59は通常の空気であってもよい。ただし、ドライエアーでない場合、チャンバ30および配管39に水分が付着すると除去するために時間がかかり、次のリークテストの条件が確立するまでの待ち時間が長くなる。したがって、リークガス59は乾燥空気であることが好ましい。リークガス59は、アセトンあるいはその他の揮発性が高く、UVでイオン化されやすい特定の成分を微量、たとえば0.1~10%程度含むガスであってもよい。チャンバ30あるいは配管39にリークが発生した場合や、チャンバ30あるいは配管39のパージに時間を要するような場合に、そのような事態の発生をFAIMS11の測定結果により判断しやすい。また、リークガス59の中の特定の成分の濃度は、検査対象物35にリークがある場合に、FAIMS11の感度が最も高くなる濃度、たとえば、ppbまたはサブppbになることを想定して設定することが望ましい。
 リークした成分を検出するセンサーはFAIMSに限らず、他のタイプのイオン移動度センサーであってもよく、質量分析器であってもよい。しかしながら、イオン移動度センサーは空気中でリークした成分を測定できるので、管理が容易で、低コストのリーク検査システムに好適である。

Claims (9)

  1.  気体に含まれる成分をイオン化するイオン化ユニットと、
     イオン化された成分を検出する検出ユニットと、
     リーク検査の対象物が収納される容器と、
     前記対象物および前記容器の一方に前記イオン化ユニットによりイオン化されない第1の成分の第1の気体を供給し、前記対象物および前記容器の一方の内部の気体を、前記イオン化ユニットを介して前記検出ユニットに供給する第1の経路と、
     前記対象物および前記容器の他方の内部からの、前記イオン化ユニットによりイオン化される第2の成分を含む第2の気体のリークを前記検出ユニットの検出結果により判断する判定ユニットとを有するシステム。
  2.  請求項1において、前記検出ユニットから排出される前記第1の気体を前記第1の経路に繋がる前記第1の気体の供給ユニットに回収する循環ユニットを有する、システム。
  3.  請求項1または2において、前記対象物および前記容器の他方に前記第2の気体を供給または封入する第2の経路を有する、システム。
  4.  請求項1ないし3のいずれかにおいて、前記イオン化ユニットはUVイオン化ユニットであり、
     前記第1の成分は二酸化炭素である、システム。
  5.  請求項1ないし4のいずれかにおいて、前記第2の気体は空気である、システム。
  6.  請求項1ないし5のいずれかにおいて、前記検出ユニットはイオン移動度センサーを含む、システム。
  7.  気体に含まれる成分をイオン化ユニットによりイオン化して検出する検出ユニットを含むシステムを用いて対象物のリーク検査を行うことを含む方法であって、
     前記リーク検査を行うことは、
     前記対象物および前記容器の一方に前記イオン化ユニットによりイオン化されない第1の成分の第1の気体を供給し、前記対象物および前記容器の一方の内部の気体を、前記イオン化ユニットを介して前記検出ユニットに供給することと、
     前記対象物および前記容器の他方の内部からの、前記イオン化ユニットによりイオン化される第2の成分を含む第2の気体のリークを前記検出ユニットの検出結果により判断することとを含む、方法。
  8.  請求項7において、前記リーク検査を行うことは、前記対象物および前記容器の他方に前記第2の気体を供給または封入することをさらに含む、方法。
  9.  請求項7または8において、前記供給することは、前記検出ユニットから排出される前記第1の気体を回収して循環することを含む、方法。
PCT/JP2013/005228 2012-09-04 2013-09-04 リーク検査を行うシステムおよび方法 WO2014038192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014534193A JP6227537B2 (ja) 2012-09-04 2013-09-04 リーク検査を行うシステムおよび方法
US14/419,586 US20150226629A1 (en) 2012-09-04 2013-09-04 System and method for leak inspection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-193683 2012-09-04
JP2012193683 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014038192A1 true WO2014038192A1 (ja) 2014-03-13

Family

ID=50236821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005228 WO2014038192A1 (ja) 2012-09-04 2013-09-04 リーク検査を行うシステムおよび方法

Country Status (3)

Country Link
US (1) US20150226629A1 (ja)
JP (1) JP6227537B2 (ja)
WO (1) WO2014038192A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028266A (ko) * 2016-09-08 2018-03-16 현대자동차주식회사 연료전지 스택의 기밀 검사 장치 및 방법
US10935453B2 (en) 2015-11-16 2021-03-02 Inficon Gmbh Leak detection with oxygen
US20220107239A1 (en) * 2020-10-06 2022-04-07 Abb Schweiz Ag Systems and methods for efficiently identifying gas leak locations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000215B1 (fr) 2012-12-21 2016-02-05 Aneolia Dispositif et procede de test d'un echantillon, en particulier de discrimination d'un gaz d'un echantillon
US9816973B2 (en) * 2014-01-08 2017-11-14 Nova Engineering Ltd. Industrial process stream compositional headspace analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230747Y2 (ja) * 1984-11-22 1990-08-20
JP2004340844A (ja) * 2003-05-19 2004-12-02 Mitsubishi Heavy Ind Ltd 漏れ検査装置および該漏れ検査装置の制御方法
JP2005134382A (ja) * 2003-10-10 2005-05-26 Wilson Greatbatch Technologies Inc 埋め込み型エネルギ蓄積装置に対する密閉された筐体の漏れを検出する方法
JP2009198322A (ja) * 2008-02-21 2009-09-03 Yazaki Corp シール検査方法、及びシール検査装置、並びにシール検査システム
JP2011179975A (ja) * 2010-03-01 2011-09-15 Ts:Kk 漏れ検査装置及び漏れ検査方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541519A (en) * 1991-02-28 1996-07-30 Stearns; Stanley D. Photoionization detector incorporating a dopant and carrier gas flow
US5361626A (en) * 1992-01-29 1994-11-08 United States Surgical Corporation Method and apparatus for detecting leaks in sealed packages
DE10133831C1 (de) * 2001-07-12 2003-04-10 Eads Deutschland Gmbh Verfahren und Vorrichtung zum selektiven Entfernen gasförmiger Schadstoffe aus der Raumluft
US8922219B2 (en) * 2010-11-30 2014-12-30 General Electric Company Photo-ionization detectors and associated methods thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230747Y2 (ja) * 1984-11-22 1990-08-20
JP2004340844A (ja) * 2003-05-19 2004-12-02 Mitsubishi Heavy Ind Ltd 漏れ検査装置および該漏れ検査装置の制御方法
JP2005134382A (ja) * 2003-10-10 2005-05-26 Wilson Greatbatch Technologies Inc 埋め込み型エネルギ蓄積装置に対する密閉された筐体の漏れを検出する方法
JP2009198322A (ja) * 2008-02-21 2009-09-03 Yazaki Corp シール検査方法、及びシール検査装置、並びにシール検査システム
JP2011179975A (ja) * 2010-03-01 2011-09-15 Ts:Kk 漏れ検査装置及び漏れ検査方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935453B2 (en) 2015-11-16 2021-03-02 Inficon Gmbh Leak detection with oxygen
KR20180028266A (ko) * 2016-09-08 2018-03-16 현대자동차주식회사 연료전지 스택의 기밀 검사 장치 및 방법
KR101927178B1 (ko) 2016-09-08 2018-12-10 현대자동차 주식회사 연료전지 스택의 기밀 검사 장치 및 방법
US10330557B2 (en) 2016-09-08 2019-06-25 Hyundai Motor Company Device and method for testing airtightness of fuel cell stack
US20220107239A1 (en) * 2020-10-06 2022-04-07 Abb Schweiz Ag Systems and methods for efficiently identifying gas leak locations
US11619562B2 (en) * 2020-10-06 2023-04-04 Abb Schweiz Ag Systems and methods for efficiently identifying gas leak locations

Also Published As

Publication number Publication date
JP6227537B2 (ja) 2017-11-08
US20150226629A1 (en) 2015-08-13
JPWO2014038192A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6227537B2 (ja) リーク検査を行うシステムおよび方法
JP6275134B2 (ja) 密封製品の耐漏洩性を検査するための検出方法及び検出装置
US9459235B2 (en) Interference compensated photoionization detector
JP6679714B2 (ja) エキシマレーザーシステム、使用済みのレーザーガス混合物を再利用する方法、レーザーチャンバー内のレーザー増強ガスの濃度を計測する方法、および4種混合ガス
JP5612594B2 (ja) 燃料電池の積層体の密閉性を検査する方法
US8393197B2 (en) Method and apparatus for the measurement of atmospheric leaks in the presence of chamber outgassing
RU2576550C2 (ru) Течеискатель с оптическим обнаружением пробного газа
Leskinen et al. Characterization and testing of a new environmental chamber
TW534987B (en) Method and apparatus for measuring nitrogen in a gas
JP2005233943A (ja) フィルム材料のガス透過度測定装置及びガス透過度測定方法
JP2006064416A (ja) プラスチック成形体のガスバリア性測定方法及びそのガスバリア性測定装置。
US11906464B2 (en) System having a pre-separation unit
US10431484B2 (en) Method and station for measuring the contamination of a transport box for the atmospheric conveyance and storage of substrates
Bratu et al. Removal of interfering gases in breath biomarker measurements
Rottländer et al. Fundamentals of leak detection
KR20120111080A (ko) 셀의 가스 분석 장치 및 이를 이용한 가스 분석 방법
WO2016125338A1 (ja) ガス分析方法およびガス分析装置
JP6755263B2 (ja) 冷媒分析装置及び冷媒分析装置を利用して冷媒ガス内の不純物を検出する方法
JP6209519B2 (ja) 膜交換ユニットおよび膜交換ユニットを有するシステム
JP2010096753A (ja) 水銀捕集剤、水銀捕集ユニットおよび水銀分析装置ならびにその方法
JP6847092B2 (ja) 冷媒分析器及び冷媒分析器の使用方法
JP2008196870A (ja) シロキサン分析装置
CN105934277B (zh) 具有膜的化学分析仪
JP7200667B2 (ja) 電池における電解液の漏れを検出する方法
JP2002139431A (ja) 気体中の微量有機物の分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534193

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834744

Country of ref document: EP

Kind code of ref document: A1