WO2014034833A1 - 保護素子 - Google Patents

保護素子 Download PDF

Info

Publication number
WO2014034833A1
WO2014034833A1 PCT/JP2013/073264 JP2013073264W WO2014034833A1 WO 2014034833 A1 WO2014034833 A1 WO 2014034833A1 JP 2013073264 W JP2013073264 W JP 2013073264W WO 2014034833 A1 WO2014034833 A1 WO 2014034833A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
opening
melting point
protective element
Prior art date
Application number
PCT/JP2013/073264
Other languages
English (en)
French (fr)
Inventor
圭一郎 野村
信行 柴原
横田 貴之
Original Assignee
タイコエレクトロニクスジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイコエレクトロニクスジャパン合同会社 filed Critical タイコエレクトロニクスジャパン合同会社
Priority to CN201380044745.1A priority Critical patent/CN104584176B/zh
Priority to US14/424,403 priority patent/US10050431B2/en
Priority to JP2014533101A priority patent/JP6231985B2/ja
Priority to KR1020157008146A priority patent/KR20150048241A/ko
Publication of WO2014034833A1 publication Critical patent/WO2014034833A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective element for protecting an electric device, and more particularly to a protective element for protecting an electric element or circuit included in the electric device.
  • the present invention relates to a protection element that cuts off a current flow when an excessive current flows in an electric device such as a secondary battery, that is, an overcurrent protection element.
  • a thermal fuse element, a current fuse element, a polymer PTC element, or the like is used as a protective element that cuts off the current flow when an excess current flows during charging or discharging of a cylindrical lithium ion secondary battery.
  • the polymer PTC element can be arranged by being incorporated in a sealing plate of a secondary battery, it is particularly useful in that a battery pack constituted by a large number of secondary batteries becomes compact.
  • a commercially available annular PTC element cannot continuously carry a large current (for example, a current of 10 A).
  • the PTC element has a recoverability that becomes low resistance when the abnormality is removed and the temperature is lowered, but there may be a problem depending on the application.
  • the cell continues to generate heat unless the short-circuited cell using the PTC element is removed, resulting in a battery cell. May burst.
  • Non-Patent Document 1 it has been proposed to use a spacer instead of the PTC element inside the sealing plate, for example, in the cylindrical lithium ion secondary battery cell (see Non-Patent Document 1 below). .
  • a spacer when a spacer is used, there is a problem that protection against excess current cannot be secured.
  • the overcurrent protection element it is preferable to quickly and surely cut off the excess current even if it is an excess current that does not greatly exceed the rated capacity, for example, an excess current that is about twice the rated capacity. Therefore, the problem to be solved by the present invention is to ensure that even when an excessive current that does not greatly exceed the rated capacity, for example, an excess current that is about twice the rated capacity, can be passed while allowing a larger current to flow. It is to provide a protective element that can provide quick protection.
  • the present invention provides: A layered element formed of insulating resin and having at least one through opening; A conductive metal thin layer located on each main surface of the layered element, and a fuse layer located on a side surface defining at least one of the through openings and electrically connecting the conductive metal thin layer; A protective element comprising a fuse layer including at least a first metal layer made of a high melting point metal and a second metal layer made of a low melting point metal is provided.
  • the present invention provides an electric device, for example, a secondary battery, comprising the protective element of the present invention as described above and below.
  • the protective element of the present invention comprises a layered element formed of an insulating resin, and this layered element has at least one through opening.
  • the opening extends along the thickness direction of the layered element and penetrates the layered element, and the cross-sectional shape in the direction perpendicular to the thickness direction is not particularly limited, but is circular, for example. Is preferred. However, other shapes, such as squares, rhombuses, rectangles, and ellipses may be used.
  • the number of through openings is at least one. That is, it may be one or two or more, for example, two, three, four, five, eight, or nine, but is appropriately selected depending on the degree of protection required for the protective element. it can. In the case of having one through opening, the through opening is preferably located at the center of the layered element, that is, the center of the cross-sectional shape in the direction perpendicular to the thickness direction.
  • the insulating resin constituting the layered element is not particularly limited as long as it is an electrically insulating resin.
  • resins such as polyethylene, polypropylene, polycarbonate, fluorine resin, ABS resin, polycarbonate-ABS alloy resin, PBT resin, and elastomer.
  • a resin such as polyethylene or polyvinylidene fluoride.
  • Such a resin has the same flexibility as the polymer used for the polymer PTC element, and the protective element of the present invention is used instead of the polymer PTC element.
  • the protective element of the present invention can be used in place of the spacer used inside the sealing plate of the secondary battery cell described above, in which case the protective element is used as a washer. be able to.
  • the layered element comprises a thin conductive metal layer disposed on the main surface on both sides thereof.
  • the conductive metal thin layer is not particularly limited as long as it is a thin layer of conductive metal (for example, a thickness of about 0.1 ⁇ m to 100 ⁇ m).
  • conductive metal for example, copper, nickel, aluminum, gold, etc. It can be composed of metal and may be formed of a plurality of thin metal layers.
  • a layered element in which a thin conductive metal layer is located on each main surface is obtained by simultaneously extruding an insulating resin constituting the layered element together with a metal sheet (or metal foil) constituting the thin metal layer. It can be manufactured by obtaining an extrudate in which an insulating resin is sandwiched between sheets (or metal foils).
  • a layered product of an insulating resin is obtained by, for example, extrusion, the layered product is sandwiched between metal sheets (or metal foils), and these are thermocompression bonded together to obtain a pressed product. You can also.
  • Such an extrudate is a state in which a large number of layered elements of insulating resin having conductive metal thin layers on both main surfaces are gathered adjacent to each other.
  • a layered element having a single conductive thin layer can be obtained by cutting into a predetermined shape and size.
  • a conductive metal thin layer may be formed on the main surfaces on both sides by plating a conductive metal on the insulating resin layered element. In this case as well, it is preferable to obtain the aggregated state as described above and then divide it into individual layered elements.
  • the layered element is preliminarily separated from the layered element by extruding or thermocompressing another metal layer, particularly preferably a metal foil, on its main surface, for example as described above. It is particularly preferable to keep it in close contact. In this case, it is preferable to form a thin conductive metal layer by plating on the other metal layer.
  • this conductive metal thin layer is formed by plating, it is advantageous in that the plating layer as the conductive metal thin layer can be in close contact with another metal layer in close contact with the layered element.
  • the protective element of the present invention has a conductive metal thin layer and a fuse layer formed by nickel plating and tin plating having nickel foil or nickel plated copper foil as another metal layer on both main surfaces of the layered element. It has a metal layer to constitute.
  • the form of the layered element is not particularly limited as long as the dimension in the thickness direction is smaller than the other dimensions, and preferably considerably small (for example, a sheet-like form).
  • the plane shape of the layered element (the figure when the layered element is viewed from directly above, for example, the contour shape of the protective element shown in FIG. 2) or the cross-sectional shape in the direction perpendicular to the thickness direction of the layered element is geometrically linear. It is preferable to have a main surface having a symmetrical and / or point-symmetrical shape, for example, a circular shape, a square shape, a rectangular shape, a diamond shape, an annular shape (particularly an annular shape, a so-called donut shape).
  • the layered element is preferably annular, particularly annular.
  • the central opening for example, the central circular opening in the case of an annular shape, may be the through opening of the present invention.
  • the layered element has one or more additional through openings, for example, through holes having a circular cross section, at a portion between the inner circumference and the outer circumference defining the ring shape (for example, an intermediate portion thereof). It's okay.
  • the protection element of the present invention has a fuse layer that is located on a side surface that defines at least one of such through-openings and that electrically connects thin conductive metal layers located on both main surfaces of the layered element.
  • the fuse layer includes at least two types of metal layers having different melting points (hereinafter, of the two types of metal layers, a layer made of a refractory metal is referred to as a “first metal layer” and a layer made of a low melting point metal. (Referred to as “second metal layer”).
  • the fuse layer may be composed of three or more metal layers. When the fuse layer is composed of three or more metal layers, the metals forming these layers do not have to be different from each other, and at least two types may be different.
  • the melting point of another metal layer other than the first metal layer and the second metal layer is a temperature not lower than the melting point of the second metal layer, more preferably not higher than the melting point of the first metal layer, and the second metal layer.
  • the temperature is higher than the melting point of.
  • the stacking order is not limited and can be set as appropriate according to product requirements.
  • the metal forming the outermost layer can be Ni or the like.
  • the metal layer is preferably laminated, but is not limited to this. For example, one layer is formed around the half of the through opening, and another layer is formed around the other half. May be formed.
  • the protective element of the present invention can be used even when an excess current of 1.2 to 4 times, preferably 1.5 to 2.0 times the rated capacity of the protective element flows.
  • the generation of arc can be suppressed, and excess current can be cut off quickly and reliably.
  • the protection element of the present invention blocks excess current as follows.
  • excessive current flowing from the thin conductive metal layer on one main surface to the thin conductive metal layer on the other main surface excessive current flows through the fuse layer and generates heat.
  • the second metal layer made of a low melting point metal is melted.
  • the current flowing in the second metal layer also flows in the first metal layer, and the current flowing in the first metal layer increases. Therefore, an excess current at a low magnification of the rated capacity of the protective element, for example, 1. Even when an excess current of 5 to 2.0 times flows, the first metal layer is quickly melted, and the excess current is quickly and reliably interrupted.
  • the metal layer having the lowest melting point is first melted and current is commutated to the remaining metal layers, and the current flowing through these metal layers is the same as above. Will increase. And by repeating such fusing and commutation sequentially, the fuse layer is blown quickly, and the excess current is cut off quickly and reliably.
  • the metal forming the metal layer is not particularly limited as long as it is conductive.
  • Ni-B alloy Ni, Ni, Cu, Ag, Au, Al, Zn, Rh, Ru, Ir, Pd, Pt, Ni—P Alloy, Ni-B alloy, Sn, Sn-Ag alloy, Sn-Cu alloy, Sn-Ag-Cu alloy, Sn-Ag-Cu-Bi alloy, Sn-Ag-Cu-Bi-In alloy, Sn-Ag- Bi—In alloy, Sn—Ag—Cu—Sb alloy, Sn—Sb alloy, Sn—Cu—Ni—P—Ge alloy, Sn—Cu—Ni alloy, Sn—Ag—Ni—Co alloy, Sn—Ag— Cu—Co—Ni alloy, Su—Bi—Ag alloy, Sn—Zn alloy, Sn—In alloy, Sn—Cu—Sb alloy, Sn—Fe alloy, Zn—Ni alloy, Zn—Fe alloy, Zn—Co alloy ,
  • the refractory metal is not limited, but, for example, Ni, Cu, Ag, Au, Al, Zn, Sn, Rh, Ru, Ir, Pd, Pt, Sn, Ni—Au alloy, Ni-P alloy and Ni-B alloy are mentioned.
  • the first metal layer is preferably formed by electroless plating of the refractory metal, but is not limited thereto.
  • low melting point metal examples include, but are not limited to, Sn, Sn—Ag alloy, Sn—Cu alloy, Sn—Ag—Cu alloy, Sn—Ag—Cu—Bi alloy, Sn—Ag—Cu—.
  • the low melting point metal is preferably a conductive metal having a melting point lower than the decomposition temperature of the insulating resin constituting the layered element.
  • a conductive metal having a melting point lower than the decomposition temperature of the insulating resin constituting the layered element when an excess current flows, the fuse layer is cut before the decomposition temperature of the insulating resin is reached, and the insulation Decomposition of the functional resin can be prevented.
  • the decomposition temperature of the insulating resin refers to a temperature at which the insulating resin is thermally decomposed, and can be measured by, for example, a differential thermothermal weight simultaneous measurement apparatus (TG-DTA).
  • the insulating resin is high-density polyethylene
  • a gradual weight loss is observed between 300 and 550 ° C. in air, and a rapid weight loss occurs particularly at 400 ° C. or higher. That is, 400 ° C. is the decomposition temperature.
  • the second metal layer is preferably formed by electroplating the low melting point metal on the first metal layer, but is not limited thereto.
  • the thickness of the fuse layer is not particularly limited, but is preferably 0.001 to 0.02 mm, and more preferably 0.002 to 0.015 mm.
  • the thickness of the fuse layer is less than 0.001 mm, it is difficult to form a uniform plating layer, and pinholes or the like may occur.
  • the thickness of the fuse layer exceeds 0.02 mm, the time and cost for plating are increased. In such a case, it is preferable to adjust the element characteristics by increasing the number of through openings or the diameter of the through openings.
  • the thickness ratio of each metal layer in the fuse layer is not particularly limited as long as desired characteristics can be obtained.
  • the fuse layer includes the first metal layer and the second metal layer
  • the first metal The ratio of the layer to the second metal layer (thickness ratio) is 1: 100 to 5: 1, preferably 1:25 to 3: 5, more preferably 1:25 to 3:10.
  • the layered element When a single through opening having a fuse layer on the side is provided, the layered element is circular or other suitable flat plate shape without holes, and its central portion (planar shape is circular (ie, disk shape) It is preferable to provide a through opening (also referred to as “center through opening”) in such a layered element where such a central portion exists). As a result, the layered element has a strictly annular shape. The current flowing through the thin conductive metal layer on one main surface of the layered element having such an annular shape flows toward one end of the through opening, and then passes through the fuse layer to form the through opening. Flows radially from the other end of the part over the thin conductive metal layer on the other main surface of the layered element.
  • a larger through opening is formed in the central part of the annular element as compared with an aspect in which a plurality of through openings to be described in detail later is provided.
  • the opening is preferably provided, and a fuse layer is provided on the side surface of the through opening. Since such a protective element can reduce the resistance value, a large current (preferably a current larger than 20 A, such as a current of 30 to 40 A or larger, such as 50 A) is selected by selecting a suitable metal layer material. It can be suitably used when flowing. Moreover, since only one through opening is provided, the manufacture of the protective element is simplified.
  • the layered element has an annular shape defined by an inner periphery 30 and an outer periphery 34 as shown in FIG. 2 or FIG.
  • the diameter of the circle defining the inner circumference of the layered element is preferably 6 to 16 mm, for example, and the diameter of the circle defining the outer circumference is preferably 13 to 24 mm, for example.
  • the diameter of a circle on the inner circumference is, for example, 6.5 mm, and the thickness of the fuse layer is, for example, 0.008 mm.
  • a through opening having the same cross-sectional shape and size (“In this case, it is preferable to provide the through openings at an equal angle with respect to the center of the inner circumferential circle that defines the ring. For example, two through openings are provided every 180 °, three every 120 °, four every 90 °, and six every 60 °.
  • the layered element may have only one peripheral through opening. Therefore, the number of circumferential through openings may be 1 to 6, for example.
  • a fuse layer may also be provided on the side surface defining such a central through opening.
  • the diameter of the cross-sectional circle of the central through opening is larger than the diameter of the cross-sectional circle of the peripheral through opening, it is preferable not to provide a fuse layer in the central through opening.
  • Whether or not the fuse layer is provided in the central through opening as described above is determined by whether or not the current flowing through the fuse layer provided in each through opening of the protective element is substantially equal.
  • the central through opening has a larger circular cross section than the peripheral through opening, if a fuse layer is provided in the central through opening, substantially the majority of the current flowing through the protective element is likely to flow through the fuse layer, Since it is difficult for current to flow through the fuse layer provided in another through opening having a smaller circular cross section, the meaning of providing the fuse layer in the other through opening is reduced.
  • the layered element is an annular element defined by an outer circumference and an inner circumference, a through opening is defined by the inner circumferential surface, and another through opening is located inside the layered element, ie Further, it may be provided as a peripheral through-opening through between the inner periphery and the outer periphery that define the layered element (that is, the portion of the insulating resin that defines the layered element). Accordingly, in this case, the layered element has a central through opening (one) defined by the inner circumference and at least one through opening (corresponding to the peripheral through opening described above) penetrating through the body part of the layered element.
  • the fuse layer exists on the side surface (that is, the wall) that defines the peripheral through opening. If the diameter of the central through-opening is not much different from the diameter of the peripheral through-opening and a fuse layer exists in the central through-opening, current flows through the fuse layer in the same way as the fuse layer of the peripheral through-opening. If expected, a fuse layer may also be provided in the central through opening. When the diameter of the central through opening is larger than the diameter of the peripheral through opening and a fuse layer exists in the central through opening, a much larger amount of current flows through the fuse layer than the fuse layer of the peripheral through opening. In the case where it is expected, there is no point in providing a fuse layer in the peripheral through opening, and therefore no fuse is provided in the central through opening.
  • the central through opening does not have a fuse layer and is arranged circumferentially around it. And a plurality of peripheral through openings.
  • the circumference in which the peripheral through-opening is provided is usually preferably single, but in some cases, it may be a multiple circumference, for example, a double circumference or a triple circumference.
  • the resistance value of the protection element can be controlled according to the number of peripheral through openings provided. Accordingly, there is an advantage that the resistance value of the protection element can be easily and precisely changed by simply changing the number of through openings provided, as compared with the above-described embodiment in which the fuse layer is provided only in the central through opening.
  • the peripheral through-opening is preferably located in contrast to the center of the layered element when the layered element is ring-shaped, for example annular.
  • the center of the annular element that is, the figure defining the inner circumference, for example, the same angle around the center of the circle, for example, two every 180 °, three every 120 ° , Preferably there are four every 90 °.
  • the diameter of the central through opening (without the fuse layer) is 6 to 16 mm, and the diameter of the sectional circle around the peripheral through opening (with the fuse layer) is 0.2 to 1 mm.
  • the outer diameter of the layered element is preferably 13 to 24 mm, for example.
  • eight peripheral through openings having a diameter of 0.6 mm are provided, and the thickness of the fuse layer is preferably 0.008 mm, for example.
  • the through opening may have any other suitable cross-sectional shape, and preferably has a circular cross section.
  • a square, a rectangle, a rhombus, a triangle, etc. may be sufficient.
  • the above-mentioned diameter corresponds to the equivalent diameter of another cross-sectional shape.
  • the cross-sectional shape of the through-opening the size (usually the diameter) of the through-opening and the length in the thickness direction, the thickness of the fuse layer, the fuse so as to melt in accordance with the assumed excess current amount
  • Various factors such as the material of each metal layer and the ratio of each metal layer in the layer, and the number and arrangement of the through openings are selected, and the numerical values are selected in a predetermined manner. This selection can be made by those skilled in the art with respect to these factors, for example by trial and error.
  • the thin conductive metal layer and the fuse layer are integrally formed by high-melting point metal plating and low-melting point metal plating, more preferably by Ni plating and Sn plating.
  • the fuse layer includes a first metal layer (Ni plating) and a second metal layer (Sn plating).
  • Ni plating Ni plating
  • Sn plating second metal layer
  • the conductive metal thin layer and the fuse layer can be formed simultaneously and integrally by plating the layered element having the through opening with the high melting point metal and the low melting point metal. That is, the fuse layer and the conductive metal thin layer are formed of the same type of metal.
  • an electrolytic plating method or an electroless plating method can be used, but an electroless plating method is used for a high melting point metal and an electrolytic plating method is used for a low melting point metal. It is preferable.
  • a metal foil preferably nickel foil or nickel-plated copper foil, which is in close contact with the layered element, between the layered element and the conductive metal thin layer.
  • the conductive metal thin layer formed as the plating layer can be in close contact with the metal foil, and as a result, the conductive metal thin layer is firmly bonded to the layered element via the metal foil.
  • the protection element of the present invention includes a first electric element (for example, a secondary battery) and a second electric element (for example, a charger) as another electric element in order to protect a circuit to be protected or an electric element constituting the circuit. Between the two, so that one of the thin conductive metal layers is in direct or indirect contact with the first electrical element and the other conductive The thin metal layer is in direct or indirect contact with the second electrical element. Accordingly, the present invention also provides an electrical device comprising the protection element of the present invention and the circuits and / or electrical elements electrically connected thereby.
  • a first electric element for example, a secondary battery
  • a second electric element for example, a charger
  • the protection element of the present invention has a thin conductive metal layer on the main surfaces on both sides of the layered element, and allows a large current to flow by electrically connecting them with the fuse layer, but also an excess current.
  • the current flows, the current flows intensively in the fuse layer. As a result, the fuse layer melts and the circuit is cut off, whereby the current flow can be cut off.
  • FIG. 1 schematically shows a protection element of the present invention in a sectional view along the thickness direction.
  • FIG. 2 schematically shows the protection element shown in FIG. 1 in a plan view.
  • FIG. 3 schematically shows a fuse layer in the protection element shown in FIGS. 1 and 2 in a sectional view.
  • FIG. 4 schematically shows a protective element according to another aspect of the present invention in a cross-sectional view along the thickness direction.
  • FIG. 5 schematically shows the protection element shown in FIG. 4 in a plan view.
  • FIG. 6 schematically shows the fuse layer in the protection element shown in FIGS. 4 and 5 in a cross-sectional view.
  • FIG. 1 schematically shows one embodiment of the protection element of the present invention in a cross-sectional view along the thickness direction (a portion appearing as a cut surface is indicated by A), and FIG. Is schematically shown in a plan view. Further, FIG. 3 schematically shows a fuse layer of the protection element shown in FIGS. 1 and 2 in a sectional view.
  • the illustrated protection element 10 is formed of an insulating resin, and includes at least one through opening, in the illustrated embodiment, two through openings, a central through opening 12 having a circular cross section and a peripheral through opening 14 having a circular cross section. And having an annular layered element 16. It has thin conductive metal layers 22 and 24 located on the major surfaces 18 and 20 on both sides of the layered element 16. In the illustrated embodiment, there are additional metal layers 26 and 28 between the layered element 16 and the thin conductive metal layer.
  • a fuse layer 40 is present on a circumferential side 38 that defines a peripheral through opening 14 located in the body portion 36 of the layered element between the inner periphery 30 and the outer periphery 34 of the annulus.
  • the fuse layer 40 includes a first metal layer 41 that exists on the circumferential side surface 38 that defines the peripheral through-opening 14, and a second metal layer 42 that exists on the first metal layer 41.
  • peripheral through opening 14 having a fuse layer 40 is provided in the middle of the body portion 36 along a diameter (shown in broken lines in FIG. 2) that passes through the center O of the layered element.
  • a peripheral through opening may be provided on the opposite side along the diametrical direction. In that case, a peripheral through opening is provided around the center O every 180 °.
  • a perforation that has three fuse layers, eg, every 120 °, four every 90 °, six every 60 °, or eight every 45 °, with respect to the center O of the circle. The openings may be provided at an equal angle.
  • the protective element can be positioned on the electric device.
  • the protective element can be positioned on the sealing plate by providing such a convex portion on the sealing plate of the secondary battery cell and fitting the convex portion into the central through opening.
  • the layered element 16 does not have a central through-opening 12 (and thus the layered element is disk-shaped) and has only at least one peripheral through-opening 14 that has a fuse layer 40. You can do it.
  • FIGS. 4 and 5 A protective element 10 'according to still another embodiment of the present invention is shown in FIGS. 4 and 5 in the same manner as FIGS.
  • the fuse layer 32 is shown in FIG. 6 as in FIG.
  • the same reference numerals are used for the same elements as in FIGS.
  • the layered element 16 does not have the peripheral through opening 14 but only the central through opening 12, which has the fuse layer 32.
  • the fuse layer 32 includes a first metal layer 43 that exists on the inner periphery 30 that defines the central through opening 12, and a second metal layer 44 that exists on the first metal layer 43.
  • Example 1 The protection element of the present invention shown in FIGS. 1 and 2 was manufactured. Therefore, the protection element 10 having only the fuse layer 40 and not having the fuse layer 32 was manufactured. However, eight peripheral through openings 14 were formed at equal intervals in the circumferential shape.
  • a sheet of insulating resin (made of polyethylene, thickness 0.3 mm, corresponding to the layered element 16) is prepared, and nickel foil (thickness: 22 ⁇ m, corresponding to the other metal layers 26 and 28) is provided on both sides thereof. These were placed and pressed together under heating to obtain a press-bonded product in which nickel foil was attached to both main surfaces.
  • a through hole having a diameter of 0.6 mm (corresponding to the peripheral through opening 14) was formed at a predetermined location of the pressure-bonded product, and then the pressure-bonded material was subjected to Ni plating by an electroless method.
  • the thickness of the nickel layer formed by the Ni plating process was about 1.5 ⁇ m.
  • the pressure-bonded product was subjected to Sn plating by an electrolytic method.
  • the thickness of the tin layer formed by the Sn plating process was about 6.5 ⁇ m.
  • a conductive metal thin layer (corresponding to the conductive metal thin layers 22 and 24), a first metal layer (corresponding to the first metal layer 41), and a second metal layer (corresponding to the second metal layer 42).
  • a fuse layer (corresponding to the fuse layer 40) was obtained.
  • the annular element was punched out from the pressure-bonded article, and the protective element 10 of the present invention was obtained in which the eight through holes are positioned at predetermined positions around the center of the annular element at every 45 °.
  • the diameter of the outer peripheral circle 34 of the obtained annular element was 15 mm, and the diameter of the inner periphery 30 (that is, the diameter of the central through opening) was 6.4 mm.
  • This annular element has nickel foils functioning as separate metal layers 26 and 28 on both main surfaces of the insulating resin layer as the layered element 16, and a peripheral through opening at an intermediate part of the main body part 36 of the annular part. 14 Further, the annular element has plating layers (nickel plating layer and tin plating layer) as the conductive metal thin layers 22 and 24 on the nickel foil, and the first metal is formed on the inner peripheral surface defining the peripheral through opening. A plating layer functioning as the fuse layer 40 composed of the layer 41 and the second metal layer 42 was provided.
  • Example 2 to Example 2 were carried out in the same manner as Example 1 except that Sn—Cu (Cu 4 wt%) plating treatment and Sn—Bi (Bi 16 wt%) plating treatment were carried out instead of tin plating treatment, respectively. 4 protective elements were obtained.
  • Comparative Examples 1 to 3 Example except that nickel plating is performed instead of tin plating, and the thickness of the nickel plating layer formed by the nickel plating is 4.5, 6.5, and 8.5 ⁇ m, respectively. In the same manner as in Example 1, protective elements of Comparative Examples 1 to 3 were obtained.
  • Test Example 1 When the current shown in Table 2 below was passed through the protective elements of Examples 1 to 3 and Comparative Examples 1 to 3 from one conductive metal thin layer 22 to the other conductive metal thin layer 24, and energized for 10 minutes.
  • the current value at which the fuse layer did not blow was investigated (60 Vdc setting). In each case, the maximum current value at which the fuse layer did not blow (blow) was defined as the rated capacity.
  • the results are shown in Table 2. In the table, “ ⁇ ” indicates that blowing was not performed for 10 minutes, “ ⁇ ” indicates that blowing was performed within 10 minutes, and “ ⁇ ” indicates that there was no data.
  • Test Example 2 In the protective elements of Examples 1 to 3 and Comparative Examples 1 to 3, from one conductive metal thin layer 22 to the other conductive metal thin layer 24, 150%, 200%, 300%, and An excess current of 400% was applied, and the current interruption time (that is, the time until the fuse layer was blown) was measured. The results are shown in Table 3 below.
  • the protective element of the present invention can be used as a protective element that cuts off the current flow when an excessive current flows in an electric device such as a secondary battery.
  • the protective element of the present invention can also be used as a substitute for, for example, a nickel washer incorporated in a sealing plate or a washer obtained by applying nickel plating to a stainless material in a cylindrical lithium ion secondary battery cell.
  • the protective element since the protective element has a layered element formed of an insulating resin, the function as a washer is improved by the elasticity of the resin. Therefore, the protection element of the present invention can be used as a washer having the characteristics of the protection element of the present invention described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuses (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

 本発明は、絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素(16);層状要素の各主表面上に位置する導電性金属薄層(22)および(28);および該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層であって、少なくとも、高融点金属からなる第1金属層(41)および低融点金属(42)からなる第2金属層を含むヒューズ層(40)を有する保護素子を提供する。本発明の保護素子は、より大きい電流を流すことを可能にしながらも、過剰電流に対する保護を提供できる。

Description

保護素子
 本発明は、電気装置を保護する保護素子、より詳しくは、電気装置に含まれる電気要素または回路を保護する保護素子に関する。例えば、2次電池のような電気装置内で過剰の電流が流れた場合に、その電流の流れを遮断する保護素子、即ち、過電流保護素子に関する。
 円筒型リチウムイオン2次電池の充電または放電時に過剰電流が流れた場合にその電流の流れを遮断する保護素子として、温度ヒューズ素子、電流ヒューズ素子、ポリマーPTC素子等が使用されている。中でも、ポリマーPTC素子は、2次電池の封口板に組み込んで配置できるので、特に多数の2次電池によって構成する電池パックがコンパクトになる点で有用である。
 しかしながら、市販されている例えば円環状PTC素子は、大きな電流(例えば10Aの電流)を継続して通電することができない。また、PTC素子は異常が取り除かれて温度が低下すると、低抵抗となる復帰性を有するが、用途によっては問題が生じる場合がある。例えば、多並列で使用する円筒型リチウムイオン2次電池セルにおいてPTC素子を使用する場合、PTC素子を使用している短絡したセルを取り除かない限り、そのセルが発熱し続け、結果的に電池セルが破裂する可能性がある。
 このような問題点を考慮して、円筒型リチウムイオン2次電池セルにおいて、例えば封口板の内側でPTC素子に代えて、スペーサを使用することが提案されている(下記非特許文献1参照)。しかしながら、スペーサを用いる場合、過剰電流に対する保護を確保できないという問題点がある。
Matsushita Technical Journal Vol. 52 No. 4 Aug. 2006 pp31-35
 さらに、過電流保護素子においては、定格容量をそれほど大きく上回らない過剰電流、例えば定格容量の2倍程度の過剰電流であっても、迅速かつ確実に過剰電流を遮断することが好ましい。
 そこで、本発明が解決しようとする課題は、より大きい電流を流すことを可能にしながら、定格容量をそれほど大きく上回らない過剰電流、例えば定格容量の2倍程度の過剰電流に対しても、確実かつ迅速な保護を提供できる保護素子を提供することである。
 第1の要旨において、本発明は、
 絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素、
 層状要素の各主表面上に位置する導電性金属薄層、および
 該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層であって、少なくとも、高融点金属からなる第1金属層および低融点金属からなる第2金属層を含むヒューズ層
を有して成る、保護素子を提供する。
 第2の要旨において、本発明は、上述および後述するような本発明の保護素子を有して成る電気装置、例えば2次電池を提供する。
 本発明の保護素子は、絶縁性樹脂により形成された層状要素を有して成り、この層状要素は、少なくとも1つの貫通開口部を有する。この開口部は、層状要素の厚さ方向に沿って延びて層状要素を貫通しており、その厚さ方向に垂直な方向の断面形状は特に限定されるものではないが、例えば円形であるのが好ましい。しかしながら、他の形状、例えば正方形、菱形、長方形、楕円形であってもよい。貫通開口部の数は、少なくとも1つである。即ち、1つまたは2つ以上であり、例えば2つ、3つ、4つ、5つ、8つ、9つであってよいが、保護素子に要求される保護の程度に応じて、適宜選択できる。1つの貫通開口部を有する場合、貫通開口部は層状要素の中心部、即ち、厚さ方向に垂直な方向の断面形状の中心部に位置するのが好ましい。
 層状要素を構成する絶縁性樹脂は、電気的に絶縁性を有する樹脂であれば特に限定されるものではない。例えば、ポリエチレン、ポリプロピレン、ポリカーボネート、フッ素系樹脂、ABS樹脂、ポリカーボネート-ABSアロイ樹脂、PBT樹脂、エラストマー等の樹脂を例示できる。特にポリエチレンやポリフッ化ビニリデンのような樹脂を使用するのが好ましく、そのような樹脂は、ポリマーPTC素子に用いるポリマーと同様の柔軟性を持っており、ポリマーPTC素子に代えて本発明の保護素子を2次電池セルの封口板に組み込むことができ、また、一般的に電気装置において信頼して使用できるという点で有利である。別の態様では、本発明の保護素子を、上述の2次電池セルの封口板の内側で用いられているスペーサに代えて素子使用することができ、その場合、保護素子は、ワッシャーとして使用することができる。
 この層状要素は、その両側の主表面上に配置された導電性金属薄層を有して成る。この導電性金属薄層は、導電性を有する金属の薄い層(例えば、厚さが0.1μm~100μm程度)であれば特に限定されるものではなく、例えば銅、ニッケル、アルミニウム、金等の金属によって構成でき、複数の金属薄層により形成されていてもよい。
 導電性金属薄層が各主表面上に位置する層状要素は、層状要素を構成する絶縁性樹脂を、金属薄層を構成する金属シート(または金属箔)と一緒に同時押し出しすることによって、金属シート(または金属箔)の間に絶縁性樹脂が挟まれた状態の押出物を得ることによって、製造することができる。別の態様では、絶縁性樹脂の層状物を例えば押出によって得、この層状物を金属シート(または金属箔)の間に挟み、これらを一体に熱圧着して圧着物を得ることによって、製造することもできる。このような押出物(または圧着物)は、導電性金属薄層を両側の主表面に有する、絶縁性樹脂の層状要素が多数隣接して集合した状態であり、押出物(または圧着物)を所定の形状・寸法に切り出して、単一の、導電性薄層を有する層状要素を得ることができる。
 更に、別の態様では、絶縁性樹脂の層状要素に導電性金属のメッキを施すことによって、両側の主表面上に導電性金属薄層を形成してもよい。この場合も、上述のような集合状態のものを得、その後、個別の層状要素に分割するのが好ましい。
 このように、メッキする場合、層状要素は、その主表面に別の金属層、特に好ましくは金属箔を、例えば上述と同様に、押出または熱圧着することによって、予め別の金属層を層状要素に密着させておくのが特に好ましい。この場合、この別の金属層の上に、導電性金属薄層をメッキによって形成するのが好ましい。この導電性金属薄層をメッキによって形成する場合、導電性金属薄層としてのメッキ層が、層状要素に密着している別の金属層に密着できるという点で有利である。例えば、本発明の保護素子は、層状要素の両側主表面に別の金属層としてニッケル箔またはニッケルメッキ銅箔を有し、ニッケルメッキおよびスズメッキによって形成された、導電性金属薄層およびヒューズ層を構成する金属層を有する。
 層状要素の形態は、厚さ方向のディメンションが他のディメンションより小さい、好ましくは相当小さいもの(例えばシート状形態)であれば、特に限定されるものではない。層状要素の平面形状(層状要素を真上から見た場合の図形、例えば図2に示す保護素子の輪郭形状)または層状要素の厚さ方向に垂直な方向の断面形状が、幾何学的に線対称および/または点対称の形状、例えば、円形、正方形、長方形、菱形、環状(特に円環状、いわゆるドーナツ状)等の形状の主表面として有するのが好ましい。
 中でも、層状要素は、環状、特に円環状であるのが好ましい。環状の場合、中央の開口部、例えば円環状の場合の中央の円形開口部が、本発明の貫通開口部であってよい。また、層状要素は、環形状を規定する内側周と外側周との間の部分(例えばその中間部)に、追加の貫通開口部、例えば断面が円形の貫通開口部を1またはそれ以上有してよい。
 本発明の保護素子は、そのような貫通開口部の少なくとも1つを規定する側面上に位置し、層状要素の両側主表面に位置する導電性金属薄層を電気的に接続するヒューズ層を有する。該ヒューズ層は、融点が相互に異なる少なくとも2種の金属層を含む(以下、2種の金属層のうち、高融点金属からなる層を「第1金属層」と、低融点金属からなる層を「第2金属層」という)。該ヒューズ層は、3層以上の金属層からなってもよい。該ヒューズ層が3層以上の金属層からなる場合、これらの層を形成する金属はすべて異なっている必要はなく、少なくとも2種が異なっていればよい。好ましくは第1金属層および第2金属層以外の別の金属層の融点は、第2金属層の融点以上の温度であり、より好ましくは第1金属層の融点以下、かつ、第2金属層の融点以上の温度である。上記金属層が積層される場合、積層順は限定されず、製品要求などに応じて適宜設定することができる。例えば、腐食耐性が要求される場合、最外層を形成する金属をNi等とすることができる。また、該金属層は積層されていることが好ましいが、これに限定されるものではなく、例えば、貫通開口部の半分の周に1つの層が形成され、残りの半分の周に別の層が形成されていてもよい。本発明の保護素子は、このような構造をとることにより、保護素子の定格容量の1.2~4倍、好ましくは1.5~2.0倍の過剰電流が流れた場合であっても、アークの発生を抑え、迅速かつ確実に過剰電流を遮断することができる。
 本発明はいかなる理論によっても拘束されないが、本発明の保護素子は、下記のように過剰電流を遮断すると考えられる。一方の主表面上の導電性金属薄層から他方の主表面上の導電性金属薄層に向かって過剰電流が流れようとする場合に、過剰電流が集中的にヒューズ層を流れて発熱する結果、まず、低融点金属からなる第2金属層が溶断する。その結果、第2金属層を流れていた電流も第1金属層に流れ、第1金属層に流れる電流が増大するので、保護素子の定格容量の低倍率の過剰電流、例えば定格容量の1.5~2.0倍の過剰電流が流れた場合であっても、第1金属層が速やかに溶断し、過剰電流が迅速かつ確実に遮断される。ヒューズ層が3層以上の金属層を含む場合も、上記と同様に、最初に最も融点が低い金属層が溶断して、残りの金属層に電流が転流され、これらの金属層に流れる電流が増大する。そして、このような溶断と転流が順次繰り返されることにより、速やかにヒューズ層が溶断し、過剰電流が迅速かつ確実に遮断される。
 上記金属層を形成する金属としては、導電性であれば特に限定されるものではなく、例えば、Ni、Cu、Ag、Au、Al、Zn、Rh、Ru、Ir、Pd、Pt、Ni-P合金、Ni-B合金、Sn、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金、Sn-Ag-Cu-Bi合金、Sn-Ag-Cu-Bi-In合金、Sn-Ag-Bi-In合金、Sn-Ag-Cu-Sb合金、Sn-Sb合金、Sn-Cu-Ni-P-Ge合金、Sn-Cu-Ni合金、Sn-Ag-Ni-Co合金、Sn-Ag-Cu-Co-Ni合金、Su-Bi-Ag合金、Sn-Zn合金、Sn-In合金、Sn-Cu-Sb合金、Sn-Fe合金、Zn-Ni合金、Zn-Fe合金、Zn-Co合金、Zn-Co-Fe合金、Sn-Zn合金、Pd-Ni合金およびSn-Bi合金が挙げられる。
 このうち、上記高融点金属としては、限定するものではないが、例えば、Ni、Cu、Ag、Au、Al、Zn、Sn、Rh、Ru、Ir、Pd、Pt、Sn、Ni-Au合金、Ni-P合金およびNi-B合金が挙げられる。上記第1金属層は、該高融点金属を無電解メッキすることにより形成されることが好ましいが、これに限定されない。
 上記低融点金属としては、限定するものではないが、例えば、Sn、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金、Sn-Ag-Cu-Bi合金、Sn-Ag-Cu-Bi-In合金、Sn-Ag-Bi-In合金、Sn-Ag-Cu-Sb合金、Sn-Sb合金、Sn-Cu-Ni-P-Ge合金、Sn-Cu-Ni合金、Sn-Ag-Ni-Co合金、Sn-Ag-Cu-Co-Ni合金、Su-Bi-Ag合金、Sn-Zn合金およびSn-Bi合金が挙げられる。該低融点金属は、層状要素を構成する絶縁性樹脂の分解温度よりも低い融点を有する導電性金属であることが好ましい。層状要素を構成する絶縁性樹脂の分解温度よりも低い融点を有する導電性金属を用いることにより、過剰電流が流れた場合に、ヒューズ層が絶縁性樹脂の分解温度に達する前に切断され、絶縁性樹脂の分解を防止することができる。絶縁性樹脂の分解温度とは、絶縁性樹脂が熱分解する温度を言い、例えば示差熱熱重量同時測定装置(TG-DTA)により測定することができる。例えば、絶縁性樹脂が高密度ポリエチレンである場合、空気中で300~550℃の間に段階的な重量減少が見られ、特に400℃以上において急激な重量減少が発生する。すなわち、400℃が分解温度である。上記第2金属層は、上記第1金属層上に、上記低融点金属を電解メッキすることにより形成されることが好ましいが、これに限定されない。
 ヒューズ層の厚さは、特に限定されないが、例えば0.001~0.02mmであるのが好ましく、より好ましくは0.002~0.015mmである。ヒューズ層の厚さが0.001mm未満である場合は、均一なメッキ層を成形することが困難でありピンホール等が生じ得る。一方、ヒューズ層の厚さが0.02mmを超える場合は、メッキ成形における時間とコストが大きくなる。このような場合は、貫通開口部の数量もしくは貫通開口部の径を増加させることにより素子特性を調整する方が好ましい。
 ヒューズ層における各金属層の厚さの比率は、所望の特性を得られるものであれば特に限定されないが、例えば、ヒューズ層が、第1金属層および第2金属層からなる場合、第1金属層と第2金属層の比(厚み比)は、1:100~5:1、好ましくは1:25~3:5、より好ましくは1:25~3:10である。
 ヒューズ層を側面上に有する貫通開口部を1つ設ける場合、層状要素は円形または他の適当な、元々穴の無い平板形状であり、その中心部(平面形状が円形(即ち、円板状)である層状要素のように、そのような中心部が存在する場合)に貫通開口部(「中心貫通開口部」とも呼ぶ)を設けるのが好ましい。その結果、層状要素は厳密には環状の形状を有することになる。このような環状の形状を有する層状要素の一方の主表面の導電性金属薄層を流れる電流は、貫通開口部の一方の端部に向かって流れ、その後、ヒューズ層を通過して、貫通開口部の他方の端部から層状要素の他方の主表面の導電性金属薄層上を放射状に流れる。
 このように層状要素に貫通開口部を1つ設ける態様では、後で詳細に説明する複数の貫通開口部を設ける態様と比較して、より大きい貫通開口部を環状要素の中心部に、中心貫通開口部として、設けるのが好ましく、その貫通開口部の側面上にヒューズ層を設ける。そのような保護素子は、抵抗値を小さくできるので、好適な金属層材料を選択することにより大容量の電流(好ましくは20Aより大きい電流、例えば30~40Aまたはそれより大きい電流、例えば50A)を流す場合に好適に使用できる。また、貫通開口部を1つ設けるだけであるので、保護素子の製造が簡単になる。
 好ましい態様では、層状要素は、図2または図5で示すように、内側周30および外側周34によって規定される円環状である。層状要素の内側周を規定する円の直径は、例えば6~16mmであり、その外側周を規定する円の直径は、例えば13~24mmであるのが好ましい。20~30Aの電流を流す場合の保護素子としては、内側周の円の直径は例えば6.5mmであり、ヒューズ層の厚さは、例えば0.008mmであるのが好ましい。
 複数の貫通開口部を設ける場合、層状要素を通過する電流が可及的に均等に各貫通開口部のヒューズ層を流れるように貫通開口部を配置するのが好ましい。例えば、中心貫通開口部を有する円環状の層状要素の周状部分(即ち、内側周と外側周とによって規定される層状要素の本体部分)に、同じ断面形状およびサイズを有する貫通開口部(「周辺貫通開口部」とも呼ぶ)を複数設けてよく、この場合、円環を規定する内側周の円の中心に関して等角度で貫通開口部を設けるのが好ましい。例えば、180°毎に2つ、120°毎に3つ、90°毎に4つ、60°毎に6つ貫通開口部を設ける。但し、保護素子の使用の条件に応じて、層状要素は、周辺貫通開口部を1つのみ有してもよい。従って、周状貫通開口部の数は、例えば1~6であってよい。
 円環状の層状要素を規定する、内側周の円、即ち、中心貫通開口部の断面円の直径が他の貫通開口部、即ち、周辺貫通開口部の直径と同じであるか、それより小さい場合、そのような中心貫通開口部を規定する側面にもヒューズ層を設けてもよい。逆に、中心貫通開口部の断面円の直径が周辺貫通開口部の断面円の直径より大きい場合、中心貫通開口部にはヒューズ層を設けないのが好ましい。
 このように中心貫通開口部にヒューズ層を設けるか否かは、保護素子の各貫通開口部に設けたヒューズ層を流れる電流が実質的に等量となるか否かにより判断する。簡単には、中心貫通開口部が周辺貫通開口部より大きな円形断面を有する場合、中心貫通開口部にヒューズ層を設けると、保護素子を流れる電流の実質的に大部分そのヒューズ層を流れ易く、より小さい円形断面を有する他の貫通開口部に設けたヒューズ層を電流が流れ難いため、他の貫通開口部にヒューズ層を設ける意味が薄れる。
 1つの好ましい態様では、層状要素は、外側周および内側周によって規定される環状要素であり、内側周面によって貫通開口部が規定され、更に、別の貫通開口部が、層状要素の内部、即ち、層状要素を規定する内側周と外側周との間(即ち、層状要素を規定する絶縁性樹脂の部分)に貫通して周辺貫通開口部として存在してよい。従って、この場合、層状要素には、内側周によって規定される中心貫通開口部(1つ)および層状要素の本体部分中を貫通する少なくとも1つの貫通開口部(上述の周辺貫通開口部に対応)が存在する。 
 この態様では、ヒューズ層は、周辺貫通開口部を規定する側面(即ち、壁)上に存在する。中心貫通開口部の直径が周辺貫通開口部の直径と大差なく、中心貫通開口部にヒューズ層が存在するとした場合に、そのヒューズ層に、周辺貫通開口部のヒューズ層と同等に電流が流れるであろうと予想される場合、中心貫通開口部にもヒューズ層を設けてもよい。中心貫通開口部の直径が周辺貫通開口部の直径より大きく、中心貫通開口部にヒューズ層が存在するとした場合に、そのヒューズ層に、周辺貫通開口部のヒューズ層より遥かに多量の電流が流れるであろうと予想される場合、周辺貫通開口部にヒューズ層を設ける意味がなくなるため、中心貫通開口部にヒューズを設けない。
 従って、複数の貫通開口部を有する環状の層状要素、例えば円環状の層状要素を有する保護素子の1つの態様では、中心貫通開口部はヒューズ層を有さず、その回りで周状に配置された複数の周辺貫通開口部を有する。周辺貫通開口部を設ける周は通常1重であるのが好ましいが、場合によっては複数重の周、例えば2重の周または3重の周であってもよい。このように、周辺貫通開口部のみにヒューズ層を設ける態様は、設ける周辺貫通開口部の数に応じて、保護素子の抵抗値をコントロールできる。従って、上述の中心貫通開口部のみにヒューズ層を設ける態様と比較して、設ける貫通開口部の数を単に変えることによって、保護素子の抵抗値を容易かつ精密に変えることができる利点がある。
 周辺貫通開口部は、層状要素が環形状、例えば円環状である場合、層状要素の中心に関して対照的に位置するのが好ましい。周辺貫通開口部が複数存在する場合、例えば環状要素の中心、即ち、内側周を規定する図形、例えば円の中心の周囲で等角度で、例えば180°毎に2つ、120°毎に3つ、90°毎に4つ存在するのが好ましい。
 具体的な態様では、中心貫通開口部(ヒューズ層を設けない)の直径は6~16mmであり、その周囲の周辺貫通開口部(ヒューズ層を設ける)の断面円の直径は、0.2~1mmである。このような態様では、層状要素の外径は、例えば13~24mmであるのが好ましい。20~30Aの電流を流す場合の保護素子としては、例えば、直径0.6mmの周辺貫通開口部を8つ設け、ヒューズ層の厚さは、例えば0.008mmであるのが好ましい。
 尚、いずれの態様においても、貫通開口部は、いずれの適当な他の断面形状を有してもよく、通常円形断面を有するのが好ましい。別の態様では、正方形、長方形、菱形、三角形等であってもよい。その場合、上述の直径は、他の断面形状の相当直径に対応する。
 従って、想定される過剰電流量に応じて溶融するように、貫通開口部の断面形状、貫通開口部の大きさ(通常、直径)およびその厚さ方向の長さ、ヒューズ層の厚さ、ヒューズ層における各金属層の材料および各金属層の比、ならびに貫通開口部の数および配置等の種々のファクターを選択し、その数値等を所定のように選択する。この選択は、当業者であれば、これらのファクターに関して例えば試行錯誤によって、実施することができる。
 1つの好ましい態様では、導電性金属薄層およびヒューズ層が、高融点金属のメッキおよび低融点金属のメッキによって、より好ましくはNiメッキおよびSnメッキによって、一体に形成されている。この態様において、ヒューズ層は、第1金属層(Niメッキ)および第2金属層(Snメッキ)からなる。この場合、貫通開口部を有する層状要素を高融点金属および低融点金属でメッキすることによって、導電性金属薄層およびヒューズ層を同時にかつ一体に形成できるので有利である。即ち、ヒューズ層と導電性金属薄層とは、同じ種類の金属で形成される。ヒューズ層および導電性金属薄層を形成するメッキ法としては、電解メッキまたは無電解メッキ法を用いることができるが、高融点金属については無電解メッキ法、低融点金属については電解メッキ法を用いることが好ましい。
 特に好ましい態様では、層状要素と導電性金属薄層との間に、層状要素に予め密着している金属箔、好ましくはニッケル箔またはニッケルメッキ銅箔が存在する。この場合、メッキ層として形成された導電性金属薄層が金属箔に密着でき、その結果、導電性金属薄層が金属箔を介して層状要素に強固に結合するという利点がある。
 本発明の保護素子は、保護すべき回路またはそれを構成する電気要素を保護するために、第1電気要素(例えば2次電池)と別の電気要素としての第2電気要素(例えば充電器)とを電気的に直接的または間接的に接続するためにこれらの間に位置し、その結果、一方の導電性金属薄層は第1電気要素と直接または間接的に接触し、他方の導電性金属薄層は第2電気要素と直接または間接的に接触する。従って、本発明の保護素子、ならびにそれによって電気的に接続された回路および/または電気要素を有して成る電気装置をも本発明は提供する。
 本発明の保護素子は、層状要素の両側の主表面上に導電性金属薄層を有し、これらをヒューズ層が電気的に接続することによって大きい電流を流すことを可能にしながらも、過剰電流が流れる場合には、ヒューズ層に電流が集中的に流れる結果、ヒューズ層が溶融して回路が遮断され、それによって電流の流れを遮断できる。
図1は、本発明の保護素子を、その厚さ方向に沿った断面図にて模式的に示す。 図2は、図1に示す保護素子を、平面図にて模式的に示す。 図3は、図1および図2に示す保護素子におけるヒューズ層を、断面図にて模式的に示す。 図4は、本発明の別の態様の保護素子を、その厚さ方向に沿った断面図にて模式的に示す。 図5は、図4に示す保護素子を、平面図にて模式的に示す。 図6は、図4および図5に示す保護素子におけるヒューズ層を、断面図にて模式的に示す。
 図面を参照して、本発明の保護素子をより詳細に説明する。図1に、本発明の保護素子の1つの態様を、その厚さ方向に沿った断面図にて模式的に示し(切断面として現れる部分をAで示す)、また、図2に、図1に示す保護素子を、平面図にて模式的に示す。さらに、図3に、図1および図2に示す保護素子のヒューズ層を、断面図にて模式的に示す。
 図示した保護素子10は、絶縁性樹脂により形成され、少なくとも1つの貫通開口部、図示した態様では、断面円形の中心貫通開口部12および断面円形の周辺貫通開口部14の2つの貫通開口部を有する、円環状の層状要素16を有して成る。層状要素16の両側の主表面18および20上に位置する導電性金属薄層22および24を有する。尚、図示した態様では、層状要素16と導電性金属薄層との間に別の金属層26および28が存在する。
 図示した態様では、中心貫通開口部を規定する、円環の内側周30上に、即ち、円環の内側の側面上にはヒューズ層は存在しない。図示した態様では、円環の内側周30と外側周34との間の層状要素の本体部分36に位置する周辺貫通開口部14を規定する円周状側面38上にヒューズ層40が存在する。
 図示した態様では、ヒューズ層40は、周辺貫通開口部14を規定する円周状側面38上に存在する第1金属層41、第1金属層41上に存在する第2金属層42からなる。
 図示した態様では、ヒューズ層40を有する周辺貫通開口部14は、層状要素の中心Oを通過する直径(図2にて破線にて図示)に沿って本体部分36の中間に設けた1つのみであるが、直径方向に沿って反対側にもそのような周辺貫通開口部を設けてよい。その場合、中心Oの回りで180°毎に周辺貫通開口部を設けたことになる。更に別の態様では、円の中心Oを基準にして、例えば120°毎に3つ、90°毎に4つ、60°毎に6つ、あるいは45°毎に8つのヒューズ層を有する周辺貫通開口部を等角度で設けてよい。
 尚、図示した態様では、中心貫通開口部の直径が、周辺貫通開口部の直径より遥かに大きいため、円環の内側周30の側面上にはヒューズ層が存在しないが、中心貫通開口部の直径が周辺貫通開口部の直径と同等または小さい場合、必要に応じて、円環の内側周30の側面上にヒューズ層を設けてもよい。尚、ある態様では、保護素子を配置すべき電気装置に中心貫通開口部に対応する凸部を設けておくと、中心貫通開口部の大きい直径部分内にそのような凸部が嵌まり込むことによって、保護素子を電気装置に位置決めできる場合がある。例えば、2次電池セルの封口板にそのような凸部を設け、中心貫通開口部にその凸部が嵌まり込むようにすることによって、封口板に保護素子を位置決めできる。
 別の態様では、層状要素16は、中心貫通開口部12を有さず(従って、層状要素は円板形状)、少なくとも1つの周辺貫通開口部14のみを有し、それがヒューズ層40を有してよい。
 本発明の更に別の態様の保護素子10’を図4および図5に、図1および図2と同様に示す。また、ヒューズ層32を図6に、図3と同様に示す。尚、図1~図3と同じ要素については、同じ符号を用いている。図示した態様では、層状要素16は、周辺貫通開口部14を有さず、中心貫通開口部12のみを有し、それがヒューズ層32を有する。ヒューズ層32は、中心貫通開口部12を規定する内側周30上に存在する第1金属層43、第1金属層43上に存在する第2金属層44からなる。
(実施例1)
 図1および図2に示す本発明の保護素子を製造した。従って、ヒューズ層40のみを有し、ヒューズ層32を有さない保護素子10を製造した。但し、周辺貫通開口部14は、周状に等間隔で8つ形成した。
 最初に、絶縁性樹脂のシート(ポリエチレン製、厚さ0.3mm、層状要素16に対応)を準備し、その両側にニッケル箔(厚さ:22μm、別の金属層26および28に対応)を配置し、加熱下、これらを一体に押圧して、ニッケル箔を両主表面に貼り付けた圧着物を得た。
 圧着物の所定の箇所に直径0.6mmの貫通孔(周辺貫通開口部14に対応)を形成し、その後、圧着物を無電解法によるNiメッキ処理に付した。Niメッキ処理により形成したニッケル層の厚さは、約1.5μmであった。次に、圧着物を電解法によるSnメッキ処理に付した。Snメッキ処理により形成したスズ層の厚さは、約6.5μmであった。かかるメッキ処理により、導電性金属薄層(導電性金属薄層22および24に対応)、第1金属層(第1金属層41に対応)および第2金属層(第2金属層42に対応)からなるヒューズ層(ヒューズ層40に対応)を得た。次に、圧着物から円環状要素を打ち抜き、8つの貫通孔が円環状要素の中心の回りで所定の箇所に45°毎に位置する本発明の保護素子10を得た。
 得られた円環状要素の外側周円34の直径は15mmであり、内側周30の直径(即ち、中心貫通開口部の直径)は6.4mmであった。この円環状要素は、層状要素16としての絶縁樹脂層の両側主表面に別の金属層26および28として機能するニッケル箔を有し、円環状部分の本体部分36の中間部分に周辺貫通開口部14を有した。また、円環状要素は、導電性金属薄層22および24としてのメッキ層(ニッケルメッキ層およびスズメッキ層)をニッケル箔上に有し、周辺貫通開口部を規定する内側周面上に第1金属層41および第2金属層42からなるヒューズ層40として機能するメッキ層を有した。
(実施例2~3)
 スズメッキ処理に代えて、それぞれ、Sn-Cu(Cu 4重量%)メッキ処理、およびSn-Bi(Bi 16重量%)メッキ処理を行うこと以外は、実施例1と同様にして、実施例2~4の保護素子を得た。
(比較例1~3)
 スズメッキ処理に代えて、ニッケルメッキ処理を行い、該ニッケルメッキ処理により形成されるニッケルメッキ層の厚さが、それぞれ、4.5、6.5、および8.5μmであること以外は、実施例1と同様にして、比較例1~3の保護素子を得た。
 実施例1~3および比較例1~3の特徴を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
(試験例1)
 実施例1~3および比較例1~3の保護素子に、一方の導電性金属薄層22から他方の導電性金属薄層24に、下記表2に示す電流を流し、10分間通電した際にヒューズ層がブローしない電流値を調査した(60Vdc設定)。それぞれにおいてヒューズ層がブロー(溶断)しない最大電流値を定格容量とした。結果を表2に示す。なお、表中「○」は10分間ブローしなかったことを示し、「×」は10分内にブローしたことを示し、「-」はデータなしを示す。
Figure JPOXMLDOC01-appb-T000002
(試験例2)
 実施例1~3および比較例1~3の保護素子に、一方の導電性金属薄層22から他方の導電性金属薄層24に、それぞれの定格容量の150%、200%、300%、および400%の過剰電流を流し、電流遮断時間(即ち、ヒューズ層がブローするまでの時間)を測定した。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、その容量の約1.5倍程度の過剰電流に対しても、確実かつ迅速な保護を提供できることが確認された。
 本発明の保護素子は、2次電池のような電気装置内で過剰の電流が流れた場合に、その電流の流れを遮断する保護素子として利用することができる。また、本発明の保護素子は、例えば円筒型リチウムイオン2次電池セルにおいて、封口板に組み込まれたニッケルワッシャー、ステンレス材料にニッケルめっきを施したワッシャー等の代替品としても利用することができる。この場合、保護素子は、絶縁性樹脂により形成された層状要素を有するので、樹脂の弾性によってワッシャーとしての機能が向上する。従って、本発明の保護素子は、上述の本発明の保護素子の特徴を有するワッシャーとして利用することができる。
 10,10’…保護素子、12…中心貫通開口部、14…周辺貫通開口部、
 16…層状要素、18,20…主表面、22,24…導電性金属薄層、
 26,28…別の金属層、30…内側周、32…ヒューズ層、34…外側周、
 36…本体部分、38…側面、40…ヒューズ層、41…第1金属層、
 42…第2金属層、43…第1金属層、44…第2金属層。

Claims (17)

  1.  絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素、
     層状要素の各主表面上に位置する導電性金属薄層、および
     該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層であって、少なくとも、高融点金属からなる第1金属層および低融点金属からなる第2金属層を含むヒューズ層
    を有して成る、保護素子。
  2.  ヒューズ層が、高融点金属からなる第1金属層および低融点金属からなる第2金属層からなることを特徴とする請求項1に記載の保護素子。
  3.  高融点金属が、Niであることを特徴とする請求項1または2に記載の保護素子。
  4.  低融点金属が、絶縁性樹脂の分解温度よりも低い融点を有することを特徴とする請求項1または2に記載の保護素子。
  5.  低融点金属が、Sn、Sn-Cu合金、またはSn-Bi合金であることを特徴とする請求項4に記載の保護素子。
  6.  第1金属層が、高融点金属を無電解メッキすることにより形成され、第2金属層が、該第1金属層上に低融点金属を電解メッキすることにより形成されていることを特徴とする請求項1~5のいずれかに記載の保護素子。
  7.  第1金属層と第2金属層の厚みの比が、1:100~5:1であることを特徴とする請求項1~6のいずれかに記載の保護素子。
  8.  導電性金属薄層およびヒューズ層が、高融点金属および低融点金属をメッキすることによって一体に形成されていることを特徴とする請求項1~7のいずれかに記載の保護素子。
  9.  層状要素と導電性金属薄層との間に位置する金属箔を更に有して成ることを特徴とする請求項8に記載の保護素子。
  10.  金属箔が、ニッケル箔またはニッケルメッキ銅箔であることを特徴とする請求項9に記載の保護素子。
  11.  層状要素が、内側周面および外側周面により規定される環状要素であって、内側周面によって規定される1つの貫通開口部を有することを特徴とする請求項1~10のいずれかに記載の保護素子。
  12.  層状要素が、内側周面と外側周面により規定され、少なくとも2つの貫通開口部を有する環状要素であって、これらの貫通開口部は、内側周面によって規定される中心貫通開口部および内側周面と外側周面との間に位置する少なくとも1つの周辺貫通開口部であり、周辺貫通開口部がヒューズ層を有することを特徴とする請求項1~10のいずれかに記載の保護素子。
  13.  層状要素において、周辺貫通開口部が、中心貫通開口部の回りで45°毎に8つ設けられていることを特徴とする請求項12に記載の保護素子。
  14.  層状要素が円環状形状を有することを特徴とする請求項1~13のいずれかに記載の保護素子。
  15.  請求項1~14のいずれかに記載の保護素子を有して成ることを特徴とする電気装置。
  16.  請求項1~14のいずれかに記載の保護素子を有して成ることを特徴とする2次電池セル。
  17.  絶縁性樹脂により形成され、少なくとも1つの貫通開口部を有する層状要素、
     層状要素の各主表面上に位置する導電性金属薄層、および
     該貫通開口部の少なくとも1つを規定する側面上に位置し、導電性金属薄層を電気的に接続するヒューズ層であって、融点の異なる少なくとも2種の金属層を含むヒューズ層
    を有して成る、ワッシャー。
PCT/JP2013/073264 2012-08-31 2013-08-30 保護素子 WO2014034833A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380044745.1A CN104584176B (zh) 2012-08-31 2013-08-30 保护元件
US14/424,403 US10050431B2 (en) 2012-08-31 2013-08-30 Protection element
JP2014533101A JP6231985B2 (ja) 2012-08-31 2013-08-30 保護素子
KR1020157008146A KR20150048241A (ko) 2012-08-31 2013-08-30 보호 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-192157 2012-08-31
JP2012192157 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034833A1 true WO2014034833A1 (ja) 2014-03-06

Family

ID=50183638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073264 WO2014034833A1 (ja) 2012-08-31 2013-08-30 保護素子

Country Status (6)

Country Link
US (1) US10050431B2 (ja)
JP (1) JP6231985B2 (ja)
KR (1) KR20150048241A (ja)
CN (1) CN104584176B (ja)
TW (1) TWI628688B (ja)
WO (1) WO2014034833A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185933A (ja) * 2018-04-04 2019-10-24 株式会社豊田中央研究所 二次電池及びその製造方法
CN110828255A (zh) * 2018-08-08 2020-02-21 力特电子(日本)有限责任公司 保护元件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629703B (zh) * 2012-08-31 2018-07-11 太谷電子日本合同公司 保護元件、電氣裝置、2次單電池及墊圈
JP6437262B2 (ja) * 2014-09-26 2018-12-12 デクセリアルズ株式会社 実装体の製造方法、温度ヒューズ素子の実装方法及び温度ヒューズ素子
JP7010706B2 (ja) * 2018-01-10 2022-01-26 デクセリアルズ株式会社 ヒューズ素子
CN110783502B (zh) * 2019-09-23 2022-04-26 江苏正力新能电池技术有限公司 一种防止电池外短路的结构及顶盖
CN110783519B (zh) * 2019-09-23 2022-03-18 江苏正力新能电池技术有限公司 一种防止电池外短路的连接结构及电池顶盖
DE102021124154A1 (de) 2021-09-17 2023-03-23 Bayerische Motoren Werke Aktiengesellschaft Unterlegscheibe für einen elektrischen Energiespeicher, elektrischer Energiespeicher, Anordnung sowie Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275546A (ja) * 1997-03-29 1998-10-13 Uchihashi Estec Co Ltd 温度ヒュ−ズ及び二次電池における温度ヒュ−ズの取付け構造
JP2002042632A (ja) * 2000-07-25 2002-02-08 Matsuo Electric Co Ltd 超小型ヒューズ及びその製造方法
JP2007280807A (ja) * 2006-04-07 2007-10-25 Sumitomo Electric Ind Ltd ヒューズ及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320374A (en) * 1979-03-21 1982-03-16 Kearney-National (Canada) Limited Electric fuses employing composite aluminum and cadmium fuse elements
JPH1050184A (ja) * 1996-07-30 1998-02-20 Kyocera Corp チップヒューズ素子
US7436284B2 (en) * 2002-01-10 2008-10-14 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
JP4001757B2 (ja) * 2002-03-06 2007-10-31 内橋エステック株式会社 合金型温度ヒュ−ズ
US20090027821A1 (en) * 2007-07-26 2009-01-29 Littelfuse, Inc. Integrated thermistor and metallic element device and method
EP2312594A4 (en) * 2008-07-10 2014-07-09 Tyco Electronics Japan G K PTC ELEMENT AND ELECTRICAL DEVICE THEREFOR
US9847203B2 (en) 2010-10-14 2017-12-19 Avx Corporation Low current fuse
KR20140021593A (ko) 2011-03-03 2014-02-20 타이코 일렉트로닉스 저팬 지.케이. 보호 소자
CN202025698U (zh) * 2011-05-13 2011-11-02 Aem科技(苏州)股份有限公司 悬空熔丝型表面贴装熔断器
TWI629703B (zh) 2012-08-31 2018-07-11 太谷電子日本合同公司 保護元件、電氣裝置、2次單電池及墊圈

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275546A (ja) * 1997-03-29 1998-10-13 Uchihashi Estec Co Ltd 温度ヒュ−ズ及び二次電池における温度ヒュ−ズの取付け構造
JP2002042632A (ja) * 2000-07-25 2002-02-08 Matsuo Electric Co Ltd 超小型ヒューズ及びその製造方法
JP2007280807A (ja) * 2006-04-07 2007-10-25 Sumitomo Electric Ind Ltd ヒューズ及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185933A (ja) * 2018-04-04 2019-10-24 株式会社豊田中央研究所 二次電池及びその製造方法
US11101456B2 (en) 2018-04-04 2021-08-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery and method for manufacturing same
CN110828255A (zh) * 2018-08-08 2020-02-21 力特电子(日本)有限责任公司 保护元件

Also Published As

Publication number Publication date
US20150333497A1 (en) 2015-11-19
TW201409519A (zh) 2014-03-01
TWI628688B (zh) 2018-07-01
CN104584176B (zh) 2018-03-27
JP6231985B2 (ja) 2017-11-15
US10050431B2 (en) 2018-08-14
JPWO2014034833A1 (ja) 2016-08-08
CN104584176A (zh) 2015-04-29
KR20150048241A (ko) 2015-05-06

Similar Documents

Publication Publication Date Title
JP6231985B2 (ja) 保護素子
JP6306508B2 (ja) 保護素子
US12009551B2 (en) Short-circuit protection of battery cells using fuses
JP7346785B2 (ja) ディスク型ヒューズ
US8486283B2 (en) Method of making fusible links
WO2012118153A1 (ja) 保護素子
JP6209585B2 (ja) 封口体
JP2015097183A (ja) 可溶導体の製造方法
WO2014103916A1 (ja) 保護素子
KR20200107839A (ko) 봉구체
JP6891148B2 (ja) 保護素子
JP6352095B2 (ja) 保護素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008146

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424403

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13832530

Country of ref document: EP

Kind code of ref document: A1