WO2014034230A1 - Battery system monitor device - Google Patents

Battery system monitor device Download PDF

Info

Publication number
WO2014034230A1
WO2014034230A1 PCT/JP2013/066774 JP2013066774W WO2014034230A1 WO 2014034230 A1 WO2014034230 A1 WO 2014034230A1 JP 2013066774 W JP2013066774 W JP 2013066774W WO 2014034230 A1 WO2014034230 A1 WO 2014034230A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
conversion circuit
circuit
communication conversion
control circuit
Prior art date
Application number
PCT/JP2013/066774
Other languages
French (fr)
Japanese (ja)
Inventor
彰彦 工藤
睦 菊地
金井 友範
山内 辰美
明広 町田
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Publication of WO2014034230A1 publication Critical patent/WO2014034230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an apparatus for monitoring a battery system.
  • an assembled battery configured by connecting a large number of single battery cells of a secondary battery in series is used to secure a desired high voltage.
  • an assembled battery has a monitoring IC for performing capacity calculation and protection management of each single battery cell for each predetermined number of single battery cells, and monitoring and controlling the charge / discharge state of each single battery cell. It is connected.
  • Patent Document 1 discloses a battery control system in which a main controller and each monitoring IC are connected in a daisy chain and signal communication is performed using this connection.
  • Patent Document 2 discloses a configuration in which each monitoring IC is connected via a capacitor, and the DC component of the communication signal is cut off by this capacitor, thereby eliminating the potential difference between the monitoring ICs.
  • JP 2005-318750 A Japanese Patent No. 458758
  • a communication conversion circuit using an IC or the like may be provided between a main controller using a microcomputer and a monitoring IC. In this way, after the communication signal from the main controller is converted into a communication signal with a small DC component by the communication conversion circuit, the converted communication signal is transmitted between the monitoring ICs. Transmission can be stabilized.
  • the communication conversion circuit as described above When the communication conversion circuit as described above is used, if the communication conversion circuit fails and the correct communication signal conversion operation is not performed, normal communication cannot be performed between the main controller and the monitoring IC, and the battery control system Lead to malfunctions. Therefore, it is important to reliably detect a failure in the communication conversion circuit.
  • a battery system monitoring device monitors a battery system including a plurality of cell groups in which a plurality of single battery cells are connected in series, and is provided for each cell group.
  • a battery monitoring / control integrated circuit for monitoring and controlling cells, a control circuit for inputting / outputting communication signals between the battery monitoring / control integrated circuit, and the control circuit and the battery monitoring / control integrated circuit
  • a communication conversion circuit for converting input / output communication signals.
  • the battery monitoring / control integrated circuits are connected to each other in accordance with a predetermined communication order, and the communication conversion circuit receives the communication signal output from the control circuit according to the first encoding method.
  • HEV hybrid vehicle
  • the present invention is not limited to the battery system used for HEVs, but is used for other vehicles such as plug-in hybrid vehicles (PHEV), electric vehicles (EV), railway vehicles, etc.
  • PHEV plug-in hybrid vehicles
  • EV electric vehicles
  • railway vehicles etc.
  • the present invention can be widely applied to various power storage devices used in applications.
  • a lithium-ion battery having an operating voltage in the range of about 3.0 to 4.2 V (average output voltage: 3.6 V) is used as a storage / discharge device that is the minimum unit of control in the battery system. It is assumed and explained. However, as long as it is a device that can store and discharge electricity, a battery system other than a lithium ion battery may be used.
  • the battery system monitoring device according to the present invention can be used to monitor and control the state of the battery system, and its use can be restricted when the SOC (State of Charge) is too high (overcharge) or too low (overdischarge). Anything is possible. In the following description, they are collectively referred to as a single battery or a single battery cell.
  • a plurality of (approximately several to a dozen) battery cells connected in series are called cell groups, and a plurality of cell groups are connected in series or in series-parallel. This is called a battery system.
  • the cell group and the battery system are collectively called an assembled battery.
  • FIG. 1 is a diagram showing a configuration of a battery system monitoring device according to a first embodiment of the present invention.
  • This battery system monitoring apparatus is connected to a battery system 10 constituted by connecting a plurality of lithium ion batteries 1 as single battery cells in series, and monitors the battery system 10.
  • the battery system monitoring apparatus shown in FIG. 1 includes monitoring ICs 21 and 22, insulating elements 31 and 32, a capacitor 4, a communication conversion circuit 5, and a control circuit 6.
  • the monitoring ICs 21 and 22 are provided for each cell group configured by connecting a plurality of lithium ion batteries 1 in series in the battery system 10, and monitor and control each lithium ion battery 1 of the corresponding cell group. For example, the voltage and temperature of each lithium ion battery 1 are measured, and the measurement result is transmitted to the control circuit 6. Further, balancing is performed for making the SOC uniform among the lithium ion batteries 1 in accordance with a command from the control circuit 6. In addition, various operations can be performed in the monitoring ICs 21 and 22 as necessary.
  • the monitoring IC 21 and the monitoring IC 22 each have a reception terminal Rx and a transmission terminal Tx.
  • the transmission terminal Tx of the monitoring IC 21 and the reception terminal Rx of the monitoring IC 22 are connected to each other via the capacitor 4.
  • this communication signal is input to the reception terminal Rx in the monitoring IC 22. That is, the monitoring IC 21 and the monitoring IC 22 are connected to each other according to a predetermined communication order, with the monitoring IC 21 as the upper level and the monitoring IC 22 as the lower level.
  • the communication conversion circuit 5 converts communication signals input / output between the monitoring ICs 21 and 22 and the control circuit 6, and includes a transmission terminal Tx, a reception terminal Rx, a selection signal input terminal CS, a clock terminal CLK, It has a data input terminal DIN and a data output terminal DOUT.
  • the transmission terminal Tx of the communication conversion circuit 5 is connected to the reception terminal Rx of the monitoring IC 21 via the insulating element 31, and the reception terminal Rx of the communication conversion circuit 5 is connected to the transmission terminal Tx of the monitoring IC 22 via the insulating element 32. It is connected to the.
  • the control circuit 6 is configured by using a microcomputer or the like, and performs predetermined processing for monitoring and controlling the battery system 10 based on communication signals input and output between the monitoring ICs 21 and 22, for example, The SOC estimation process of the lithium ion battery 1 is performed.
  • the control circuit 6 includes a selection signal output terminal SS, a clock terminal CLK, a data input terminal DIN, a data output terminal DOUT, a transmission signal capture terminal CTx, and a reception signal capture terminal CRx.
  • the control circuit 6 When communication is performed between the control circuit 6 and the monitoring ICs 21 and 22, the control circuit 6 outputs a predetermined selection signal from the selection signal output terminal SS to the selection signal input terminal CS of the communication conversion circuit 5.
  • a clock signal is output from the terminal CLK, and a communication signal (data signal) is output from the data output terminal DOUT.
  • data representing the content of commands to the monitoring ICs 21 and 22 is encoded according to a predetermined encoding method, for example, an NRZ (Non Return to Zero) encoding method.
  • a predetermined encoding method for example, an NRZ (Non Return to Zero) encoding method.
  • the encoding method used here is preferably suitable for synchronous communication. In the following description, this encoding method is referred to as a “first encoding method”.
  • the above clock signal and communication signal output from the control circuit 6 are input to the clock terminal CLK and the data input terminal DIN in the communication conversion circuit 5, respectively.
  • the communication conversion circuit 5 converts the input communication signal into a communication signal according to another encoding method.
  • the encoding method used here is suitable for asynchronous communication and can suppress an increase in the DC component of the communication signal even when the same code (0 or 1) continues. preferable.
  • Such an encoding method includes, for example, the Manchester encoding method. In the following description, this encoding method is referred to as a “second encoding method”.
  • the communication conversion circuit 5 converts the communication signal as described above, the communication conversion circuit 5 outputs the converted communication signal from the transmission terminal Tx. This communication signal is input to the reception terminal Rx of the monitoring IC 21 via the insulating element 31.
  • the monitoring IC 21 When the monitoring IC 21 receives the communication signal from the communication conversion circuit 5, the monitoring IC 21 decodes the content of the communication signal and performs processing according to instructions from the control circuit 6 such as measurement and balancing of the voltage and temperature of each lithium ion battery 1. Perform as necessary. Then, together with the obtained measurement result and the like, a communication signal is output from the transmission terminal Tx to the reception terminal Rx of the monitoring IC 22. Thereby, a communication signal is transmitted from the monitoring IC 21 to the monitoring IC 22 according to the communication order.
  • the monitoring IC 22 When the monitoring IC 22 receives the communication signal from the monitoring IC 21, the monitoring IC 22 decodes the contents of the communication signal and, like the monitoring IC 21, commands from the control circuit 6 such as measurement and balancing of the voltage and temperature of each lithium ion battery 1. The process according to is performed as needed. Then, together with the obtained measurement results and the like, a communication signal is output from the transmission terminal Tx to the reception terminal Rx of the communication conversion circuit 5 via the insulating element 32.
  • the communication conversion circuit 5 When receiving the communication signal from the monitoring IC 22, the communication conversion circuit 5 reconverts the communication signal in accordance with the original encoding method, that is, the first encoding method. Then, the converted communication signal is output from the data output terminal DOUT to the data input terminal DIN of the control circuit 6 in accordance with a command from the control circuit 6.
  • the battery system 10 is monitored by inputting / outputting communication signals between the control circuit 6 and the monitoring ICs 21 and 22.
  • the transmission signal capture terminal CTx of the control circuit 6 is connected between the transmission terminal Tx of the communication conversion circuit 5 and the reception terminal Rx of the monitoring IC 21.
  • the reception signal capture terminal CRx of the control circuit 6 is connected between the transmission terminal Tx of the monitoring IC 22 and the reception terminal Rx of the communication conversion circuit 5.
  • the control circuit 6 determines whether or not the communication conversion circuit 5 has correctly converted the communication signal as described below, and detects the failure of the communication conversion circuit 5. I do.
  • FIG. 2 is a flowchart of processing executed by the control circuit 6 when detecting a failure of the communication conversion circuit 5 in the present embodiment.
  • step S100 the control circuit 6 outputs transmission data to the communication conversion circuit 5.
  • the control circuit 6 outputs the transmission data encoded according to the first encoding method from the data output terminal DOUT to the data input terminal DIN of the communication conversion circuit 5 as a communication signal.
  • This transmission data may be set in advance for failure detection.
  • the selection signal is output from the selection signal output terminal SS and the clock signal is output from the clock terminal CLK.
  • step S110 the control circuit 6 observes the waveform input to the transmission signal capture terminal CTx, thereby observing the waveform of the communication signal output from the communication conversion circuit 5 to the monitoring IC 21 as the transmission waveform.
  • the communication signal whose waveform is observed here is obtained by converting the transmission data according to the first encoding method output from the control circuit 6 in step S100 by the communication conversion circuit 5 according to the second encoding method. Thereby, the observation waveform of the transmission data after the conversion by the communication conversion circuit 5 can be acquired.
  • step S120 the control circuit 6 observes the waveform input to the received signal capture terminal CRx, thereby observing the waveform of the communication signal output from the monitoring IC 22 to the communication conversion circuit 5 as the received waveform.
  • the communication signal whose waveform is observed here is received data output from the monitoring IC 22 by the second encoding method in accordance with the transmission data output from the control circuit 6 in step S100. This is before conversion according to the encoding method. Thereby, the observation waveform of the reception data before the conversion by the communication conversion circuit 5 can be acquired.
  • step S130 the control circuit 6 acquires the reception data output from the communication conversion circuit 5.
  • the communication conversion circuit 5 converts the communication signal output from the monitoring IC 22 according to the original first encoding method, and converts the converted communication signal from the data output terminal DOUT to the control circuit 6.
  • the received data is output to the data input terminal DIN.
  • the reception data may include transmission data output from the control circuit 6 in step S100.
  • predetermined information related to the monitoring ICs 21 and 22, for example, information indicating the measurement result of voltage or temperature may be added.
  • step S140 the control circuit 6 determines the transmission data after conversion by the communication conversion circuit 5 and the reception data before conversion by the communication conversion circuit 5 based on the transmission waveform and reception waveform observed in steps S110 and S120, respectively. Determine.
  • the transmission waveform that is, the position and width of the pulse in the observation waveform in step S110
  • the second conversion method used when the communication conversion circuit 5 converts the communication signal is taken into consideration, and the post-conversion Determine the transmission data.
  • received data before conversion is determined based on the received waveform, that is, the position and width of the pulse in the observed waveform in step S120.
  • step S150 the control circuit 6 compares the transmission data and the reception data before and after conversion by the communication conversion circuit 5, using the transmission data after conversion determined in step S140 and the reception data before conversion. That is, the transmission data before conversion output in step S100 is compared with the transmission data after conversion determined in step S140, and it is determined whether these contents are the same. Further, the converted reception data acquired in step S130 is compared with the reception data before conversion determined in step S140, and it is determined whether or not the contents are the same.
  • step S160 the control circuit 6 determines whether the transmission data and the reception data match before and after conversion based on the comparison result in step S150. If both the transmission data and the reception data match before and after the conversion, the process proceeds to step S170. If at least one of the transmission data and the reception data does not match before and after the conversion, the process proceeds to step S180.
  • step S170 the control circuit 6 determines that the communication conversion circuit 5 is normal without failure. If step S170 is performed, the process of the flowchart shown in FIG. 2 will be complete
  • step S180 the control circuit 6 determines that the communication conversion circuit 5 has failed. In this case, it is preferable to notify the user of the failure, for example, by turning on a warning lamp or outputting a warning sound. If step S180 is performed, the process of the flowchart shown in FIG. 2 will be complete
  • control circuit 2 is not necessarily executed at all times in the control circuit 6, but is executed at a predetermined timing, for example, when the system is started or stopped, or when a preset execution condition is satisfied. You may do it. In this way, it is possible to prevent the processing load of the control circuit 6 from becoming excessive for waveform observation.
  • step S120 only one of the transmission waveform and the reception waveform may be observed, and failure detection of the communication conversion circuit 5 may be performed based on the observation result.
  • step S120 is omitted, and in step S140, only the transmission data after conversion based on the transmission waveform is determined, and the determination of reception data before conversion based on the reception waveform is omitted. can do.
  • step S150 only the transmission data before and after conversion are compared, and the determination in step S160 can be made based on the comparison result. In this case, it is not necessary to provide the reception signal capture terminal CRx in the control circuit 6.
  • step S110 when only the received waveform is observed, the process of step S110 is omitted, and in step S140, only received data before conversion based on the received waveform is determined, and transmission data after conversion based on the transmitted waveform is determined. Can be omitted.
  • step S150 only the received data before and after conversion are compared, and the determination in step S160 can be made based on the comparison result.
  • the transmission signal capture terminal CTx may not be provided in the control circuit 6. That is, the control circuit 6 can observe at least one of the transmission waveform and the reception waveform and detect a failure of the communication conversion circuit 5 based on the observed waveform.
  • the battery system monitoring device is provided for each cell group of the battery system 10 and communicates between the monitoring ICs 21 and 22 that monitor and control each single battery cell of the corresponding cell group, and the monitoring ICs 21 and 22. And a communication conversion circuit 5 that converts communication signals input and output between the control circuit 6 and the monitoring ICs 21 and 22.
  • the monitoring ICs 21 and 22 are connected to each other according to a predetermined communication order.
  • the communication conversion circuit 5 converts the communication signal output from the control circuit 6 according to the first encoding method into a communication signal according to a second encoding method different from the first encoding method, The communication signal is output to the highest-level monitoring IC 21 in the communication order.
  • the monitoring ICs 21 and 22 transmit communication signals according to the second encoding method in accordance with the communication order.
  • the communication conversion circuit 5 converts the communication signal output from the lowest monitoring IC 22 in the communication order according to the second encoding method into a communication signal according to the first encoding method, and converts the converted communication signal to Output to the control circuit 6.
  • the control circuit 6 detects a failure of the communication conversion circuit 5 based on this communication signal. Specifically, at least one of a transmission waveform that is a waveform of a communication signal output from the communication conversion circuit 5 to the monitoring IC 21 and a reception waveform that is a waveform of the communication signal output from the monitoring IC 22 to the communication conversion circuit 5 is provided. One is observed (steps S110 and S120), and a failure of the communication conversion circuit 5 is detected based on the observed waveform (step S180). Since it did in this way, the failure of the communication conversion circuit 5 can be detected reliably.
  • step S110 the control circuit 6 determines the converted transmission data represented by the communication signal based on the transmission waveform, and when the reception waveform is observed at step S120. Based on the received waveform, received data before conversion represented by the communication signal is determined (step S140). In step S180, a failure of the communication conversion circuit 5 is detected based on at least one of these data. That is, the control circuit 6 outputs predetermined transmission data to the communication conversion circuit 5 as a communication signal (step S100). This transmission data is compared with the transmission data after conversion determined in step S140 (step S150), and if they do not match, it is determined that the communication conversion circuit 5 is out of order (steps S160 and S180).
  • the control circuit 6 receives predetermined reception data from the communication conversion circuit 5 as a communication signal (step S130).
  • the received data before conversion determined in step S140 is compared with the received data (step S150), and if they do not match, it is determined that the communication conversion circuit 5 has failed (steps S160 and S180). Since it did in this way, it can be judged correctly whether the communication conversion circuit 5 is out of order based on the observation result of a transmission waveform or a reception waveform.
  • the control circuit 6 can execute the waveform observation in step S110 or step S120 at a predetermined timing such as when the system is started or stopped. In this way, it is possible to prevent the processing load of the control circuit 6 from becoming excessive.
  • FIG. 3 is a diagram showing a configuration of a battery system monitoring apparatus according to the second embodiment of the present invention.
  • This battery system monitoring device is provided with two communication conversion circuits 51 and 52 and a changeover switch 7 for switching between them, as compared with the battery system monitoring device according to the first embodiment shown in FIG. Is different. Another difference is that the transmission circuit capture terminal CTx and the reception signal capture terminal CRx are not provided in the control circuit 6.
  • the control circuit 6 selects either the communication conversion circuit 51 or 52 as the output destination of the communication signal.
  • the control circuit 6 controls the changeover switch 7 to switch to the communication conversion circuit 51 side.
  • the selection signal is output from the selection signal output terminal SS1 to the selection signal input terminal CS of the communication conversion circuit 51
  • the clock signal is output from the clock terminal CLK
  • the communication signal is output from the data output terminal DOUT.
  • the communication signal is encoded in accordance with the first encoding method with data representing the contents of commands to the monitoring ICs 21 and 22.
  • the communication conversion circuit 51 converts the input communication signal in accordance with the second encoding format in the same manner as the communication conversion circuit 5 described in the first embodiment. To do. Then, the converted communication signal is output from the transmission terminal Tx.
  • this communication signal is input to the reception terminal Rx of the monitoring IC 21 via the changeover switch 7 and the insulating element 31, the monitoring ICs 21 and 22 perform the same operation as in the first embodiment, respectively, and the transmission terminal Tx of the monitoring IC 22 A communication signal is output from. This communication signal is input to the receiving terminals Rx of the communication conversion circuits 51 and 52 via the insulating element 32, respectively.
  • the communication conversion circuits 51 and 52 reconvert the communication signals in accordance with the original first encoding method, similarly to the communication conversion circuit 5 described in the first embodiment. . Then, according to the selection signal output from the selection signal output terminal SS1 or SS2 of the control circuit 6, the converted communication signal is output from the data output terminal DOUT to the data input terminal DIN of the control circuit 6, respectively.
  • the control circuit 6 controls the changeover switch 7 to switch to the communication conversion circuit 52 side.
  • the selection signal is output from the selection signal output terminal SS2 to the selection signal input terminal CS of the communication conversion circuit 52
  • the clock signal is output from the clock terminal CLK
  • the communication signal is output from the data output terminal DOUT.
  • the communication conversion circuit 52 converts the input communication signal in accordance with the second encoding format, and outputs the converted communication signal from the transmission terminal Tx, similarly to the communication conversion circuit 51. The subsequent operation is the same as when the communication conversion circuit 51 is selected.
  • the control circuit 6 receives the communication signals output from the communication conversion circuits 51 and 52 as described above, and monitors the battery system 10 based on the received data represented by these communication signals. Further, by comparing the received data from the communication conversion circuit 51 and the received data from the communication conversion circuit 52, it is determined whether or not the communication signal conversion by the communication conversion circuit 51 or 52 is correctly performed, and the communication Failure detection of the conversion circuits 51 and 52 is performed.
  • FIG. 4 is a flowchart of processing executed by the control circuit 6 when performing failure detection of the communication conversion circuits 51 and 52 in the present embodiment.
  • step S200 the control circuit 6 selects either the communication conversion circuit 51 or 52. Then, the switching state of the changeover switch 7 is controlled so that the selected communication conversion circuit 51 or 52 and the monitoring IC 21 are connected to each other via the changeover switch 7 and the insulating element 31.
  • step S210 the control circuit 6 outputs transmission data to the communication conversion circuit 51 or 52 selected in step S200.
  • the control circuit 6 outputs the transmission data encoded according to the first encoding method from the data output terminal DOUT to the data input terminal DIN of the communication conversion circuit 51 or 52 as a communication signal.
  • This transmission data may be set in advance for failure detection. Further, at this time, a selection signal is output from the selection signal output terminal SS1 or SS2, and a clock signal is output from the clock terminal CLK.
  • step S220 the control circuit 6 acquires the reception data output from the communication conversion circuits 51 and 52, respectively.
  • the control circuit 6 first outputs a selection signal from the selection signal output terminal SS1 or SS2 to the communication conversion circuit 51 or 52 selected in step S200, whereby reception data is output from the communication conversion circuit. So that Upon receiving this selection signal, the communication conversion circuit 51 or 52 converts the communication signal output from the monitoring IC 22 according to the original first encoding method as described above, and converts the converted communication signal to the data output terminal.
  • the received data is output from DOUT to the data input terminal DIN of the control circuit 6.
  • the selection signal is output from the selection signal output terminal SS1 or SS2 to the communication conversion circuit 51 or 52 different from the one that has previously output the selection signal.
  • the communication conversion circuit 51 or 52 converts the communication signal output from the monitoring IC 22 in accordance with the original first encoding method, as in the other communication conversion circuit, and the converted communication signal. Is output from the data output terminal DOUT to the data input terminal DIN of the control circuit 6 as received data. In this way, the reception data output from the communication conversion circuit 51 and the reception data output from the communication conversion circuit 52 are acquired.
  • these received data may include the transmission data output from the control circuit 6 in step S210, as in the first embodiment.
  • predetermined information related to the monitoring ICs 21 and 22, for example, information indicating the measurement result of voltage or temperature may be added. The order of outputting the selection signals may be reversed from the above.
  • step S230 the control circuit 6 determines whether there is a communication abnormality.
  • the reception data from the communication conversion circuits 51 and 52 is obvious, such as when no reception data is output from the communication conversion circuits 51 and 52, or when these reception data are fixed to a fixed value and do not change. If an abnormality is recognized, it is determined that there is a communication abnormality, and the process proceeds to step S280. On the other hand, when such an abnormality is not recognized in the received data, it is determined that there is no communication abnormality and the process proceeds to step S240.
  • step S240 the control circuit 6 compares the received data acquired in step S220. That is, the converted reception data represented by the communication signal output from the communication conversion circuit 51 is compared with the reception data after conversion represented by the communication signal output from the communication conversion circuit 52. And it is judged whether these contents are the same.
  • step S250 the control circuit 6 determines whether or not the received data from the communication conversion circuit 51 matches the received data from the communication conversion circuit 52 based on the comparison result in step S240. If these received data match, the process proceeds to step S260, and if they do not match, the process proceeds to step S270.
  • step S260 the control circuit 6 determines that the communication conversion circuits 51 and 52 are both normal and not faulty. If step S260 is performed, the process of the flowchart shown in FIG. 4 will be complete
  • step S270 the control circuit 6 determines that one of the communication conversion circuits 51 or 52 has failed. In this case, it is preferable to notify the user of the failure, for example, by turning on a warning lamp or outputting a warning sound, as in step S170 of FIG. If step S270 is performed, the process of the flowchart shown in FIG. 4 will be complete
  • step S280 the control circuit 6 switches the communication conversion circuit that outputs the communication signal.
  • the control circuit 6 selects a different one of the communication conversion circuits 51 or 52 from the one selected in step S200 by controlling the switching state of the selector switch 7. Then, the communication conversion circuit and the monitoring IC 21 are connected to each other via the changeover switch 7 and the insulating element 31.
  • step S290 the control circuit 6 outputs transmission data to the communication conversion circuit newly selected by switching in step S280 of the communication conversion circuits 51 or 52 by the same method as in step S210.
  • step S300 the control circuit 6 acquires the reception data output from the communication conversion circuits 51 and 52 in the same manner as in step S220.
  • step S310 the control circuit 6 determines whether or not there is a communication abnormality by the same method as in step S230. If it is determined that there is a communication abnormality, the process proceeds to step S270 described above. If it is determined that there is no communication abnormality, the process proceeds to step S320.
  • step S320 as in step S240, the control circuit 6 compares the received data acquired in step S300 and determines whether or not the contents are the same.
  • step S330 the control circuit 6 determines whether or not the received data from the communication conversion circuit 51 matches the received data from the communication conversion circuit 52 based on the comparison result in step S320. If these received data match, the process proceeds to step S340, and if they do not match, the process proceeds to step S270 described above.
  • step S340 the control circuit 6 determines that the communication conversion circuit selected first in step S200 out of the communication conversion circuits 51 or 52 has failed. Then, the communication conversion circuit 51 or 52 determined to be out of order is excluded from the subsequent selection targets, and is not used in future monitoring operations of the battery system 10. That is, when step S340 is executed, it is considered that the communication conversion function on the transmission side is broken in the communication conversion circuit 51 or 52 selected first. Therefore, by excluding the communication conversion circuit that is in failure from the subsequent selection targets, the monitoring of the battery system 10 can be continued using the normal communication conversion circuit 51 or 52. In this case as well, it is preferable to notify the user of the failure as in step S270. If step S340 is performed, the process of the flowchart shown in FIG. 4 will be complete
  • failure detection of the communication conversion circuits 51 and 52 can be performed.
  • processing as described in FIG. 4 is different from the processing in FIG. 2 described in the first embodiment, and does not require processing for waveform observation in the control circuit 6. Therefore, even if it is always executed during the monitoring operation of the battery system 10, there is little possibility that the processing load of the control circuit 6 becomes excessive. In this case as well, similar to the first embodiment, it may be executed at a predetermined timing such as when the system is started.
  • the communication conversion circuits 51 and 52 convert the communication signals output from the lowest-order monitoring IC 22 in the communication order according to the second encoding method into communication signals according to the first encoding method, and convert the communication signals.
  • the subsequent communication signals are output to the control circuit 6 respectively.
  • the control circuit 6 detects a failure of the communication conversion circuits 51 and 52 based on these communication signals. Specifically, either one of the communication conversion circuits 51 and 52 is selected (step S200), the converted reception data represented by the communication signal input from the communication conversion circuit 51, and the communication conversion circuit 52 input.
  • the converted reception data represented by the communication signal is compared (step S240). Based on the comparison result, a failure of the communication conversion circuits 51 and 52 is detected (step S270). Since it did in this way, the failure of the communication conversion circuits 51 and 52 can be detected reliably.
  • the control circuit 6 receives the converted reception data represented by the communication signal input from the communication conversion circuit 51 and the converted reception represented by the communication signal input from the communication conversion circuit 52 in the comparison result of step S240. If the data does not match, it is determined that either one of the communication conversion circuits 51 or 52 has failed (steps S250 and S270). Since it did in this way, when either one of the communication conversion circuits 51 or 52 has failed, the failure can be determined easily.
  • control circuit 6 excludes the communication conversion circuit from the selection target (steps S230 and S280). ⁇ S340). Since it did in this way, monitoring of the battery system 10 can be continued also when the communication conversion function of the transmission side has failed in either one of the communication conversion circuits 51 or 52.
  • FIG. 5 is a diagram showing a configuration of a battery system monitoring apparatus according to the third embodiment of the present invention.
  • This battery system monitoring apparatus is a combination of the characteristics of the battery system monitoring apparatus according to the first embodiment shown in FIG. 1 and the characteristics of the battery system monitoring apparatus according to the second embodiment shown in FIG. . That is, it has two communication conversion circuits 51 and 52 and a changeover switch 7 for switching between them, and the control circuit 6 is provided with a transmission signal capture terminal CTx and a reception signal capture terminal CRx.
  • the control circuit 6 selects either one of the communication conversion circuits 51 and 52 as the output destination of the communication signal and outputs the communication signal. Then, by receiving the communication signals output from the communication conversion circuits 51 and 52, the battery system 10 is monitored based on the reception data represented by these communication signals. Further, by comparing the received data from the communication conversion circuit 51 and the received data from the communication conversion circuit 52, it is determined whether or not the communication signal conversion by the communication conversion circuit 51 or 52 is correctly performed, and the communication Failure detection of the conversion circuits 51 and 52 is performed. As a result, if it is determined that either one of the communication conversion circuits 51 or 52 has failed, the communication conversion circuit 51 and the communication conversion are performed by performing the same waveform observation as described in the first embodiment. It is specified which of the circuits 52 has failed.
  • FIG. 6 is a flowchart of processing executed by the control circuit 6 when failure detection of the communication conversion circuits 51 and 52 is performed in the present embodiment.
  • step S400 to S420 the control circuit 6 performs processes similar to those in steps S200 to S220 in FIG.
  • step S430 the control circuit 6 determines whether or not there is a communication abnormality as in step S230 of FIG. As a result, if it is determined that there is a communication abnormality, the process proceeds to step S470, and if it is determined that there is no communication abnormality, the process proceeds to step S440.
  • step S440 the control circuit 6 compares the received data acquired in step S420. That is, the converted reception data represented by the communication signal output from the communication conversion circuit 51 is compared with the reception data after conversion represented by the communication signal output from the communication conversion circuit 52. And it is judged whether these contents are the same.
  • step S450 the control circuit 6 determines whether or not the received data from the communication conversion circuit 51 matches the received data from the communication conversion circuit 52 based on the comparison result in step S440. If these received data match, the process proceeds to step S460, and if they do not match, the process proceeds to step S470.
  • step S460 the control circuit 6 determines that the communication conversion circuits 51 and 52 are both normal and are not faulty. If step S460 is performed, the process of the flowchart shown in FIG. 6 will be complete
  • steps S470 to S520 the control circuit 6 performs the same processing as in steps S100 to S150 of FIG. 2 on the communication conversion circuit 51 or 52 selected in step S400. That is, transmission data is output to the selected communication conversion circuit 51 or 52, and the transmission waveform input to the transmission signal capture terminal CTx and the reception waveform input to the reception signal capture terminal CRx at that time are observed. . From this observed waveform, the transmission data after conversion and the reception data before conversion are discriminated, and based on these, the transmission data and the reception data are compared before and after conversion by the communication conversion circuit 51 or 52, respectively.
  • step S530 the control circuit 6 determines whether the transmission data and the reception data match before and after the conversion based on the comparison result in step S520. If both the transmission data and the reception data match before and after conversion, the process proceeds to step S540. If at least one of the transmission data and the reception data does not match before and after conversion, the process proceeds to step S550.
  • step S540 the control circuit 6 switches the communication conversion circuit that outputs the communication signal, similarly to step S280 in FIG. At this time, the control circuit 6 selects the communication conversion circuit 51 or 52 that is different from the one selected in step S400 by controlling the switching state of the selector switch 7. Then, the communication conversion circuit and the monitoring IC 21 are connected to each other via the changeover switch 7 and the insulating element 31.
  • step S540 is executed, the process returns to step S470, and the above-described processing is repeated for the communication conversion circuit newly selected by switching in step S540.
  • the communication conversion circuit 51 or 52 determines that at least one of transmission data and reception data does not match before and after conversion.
  • step S550 the control circuit 6 determines that the communication conversion circuit selected in step S400 or step S540 executed most recently among the communication conversion circuits 51 or 52 has failed. Then, the communication conversion circuit 51 or 52 determined to be out of order is excluded from the subsequent selection targets, and is not used in future monitoring operations of the battery system 10. That is, by determining that at least one of the transmission data or the reception data does not match before and after the conversion for the communication conversion circuit 51 or 52 by the processing of the above-described steps S520 and S530, the communication conversion circuit fails. Can be identified. Therefore, by excluding the communication conversion circuit that is in failure from the subsequent selection targets, the monitoring of the battery system 10 can be continued using the normal communication conversion circuit 51 or 52. In this case as well, it is preferable to notify the user of the failure as in steps S270 and S340 of FIG. When step S550 is executed, the processing of the flowchart shown in FIG.
  • failure detection of the communication conversion circuits 51 and 52 can be performed.
  • the communication conversion circuits 51 and 52 convert the communication signals output from the lowest-order monitoring IC 22 in the communication order according to the second encoding method into communication signals according to the first encoding method, and convert the communication signals.
  • the subsequent communication signals are output to the control circuit 6 respectively.
  • the control circuit 6 detects a failure of the communication conversion circuits 51 and 52 based on these communication signals. Specifically, either one of the communication conversion circuits 51 or 52 is selected (step S400), and the received data after conversion represented by the communication signal input from the communication conversion circuit 51 and the communication conversion circuit 52 are input. It is determined whether or not the converted reception data represented by the communication signal matches (steps S440 and S450).
  • step S480 and S490 the transmission waveform and the reception waveform when the communication conversion circuit 51 or 52 is selected are observed. Then, the transmission data after conversion based on the observation waveform when the communication conversion circuit 51 is selected and / or the reception data before conversion, and the transmission data after conversion based on the observation waveform when the communication conversion circuit 52 is selected and / or Alternatively, based on at least one of the received data before conversion, it is determined which of the communication conversion circuit 51 and the communication conversion circuit 52 is out of order (step S550). Since it did in this way, the failure of the communication conversion circuits 51 and 52 can be detected reliably.
  • the control circuit 6 excludes the communication conversion circuit 51 or the communication conversion circuit 52 that is determined to have a failure in step S550 from the selection targets. Since it did in this way, monitoring of the battery system 10 can be continued also when either one of the communication conversion circuits 51 or 52 is out of order.
  • monitoring ICs 21 and 22 are connected to the battery system 10 and a communication signal is transmitted between these monitoring ICs 21 and 22 has been described.
  • the number of is not limited to this. Any number of monitoring ICs can be used depending on the number of cell groups in the battery system 10.
  • a communication signal input / output between the control circuit 6 and the conversion ICs 21 and 22 via the communication conversion circuit 5 or the communication conversion circuits 51 and 52 may be of a differential type in order to make it strong against noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

A communication convertor circuit (5) converts a communication signal output from a control circuit (6) in accordance with a first encoding system to a communication signal in accordance with a second encoding system that is different from the first encoding system and outputs the converted communication signal to a monitor (IC21). Monitors (IC21, 22) transmit the communication signal in accordance with the second encoding system in the order of communication. The communication convertor circuit (5) converts the communication signal output from the monitor (IC22) in accordance with the second encoding system to a communication signal in accordance with the first encoding system and outputs the converted communication signal to the control circuit (6). The control circuit (6) observes the waveform of the communication signal output from the communication convertor circuit (5) to the monitor (IC21) and the waveform of the communication signal output from the monitor (IC22) to the communication convertor circuit (5), and detects the failure of the communication convertor circuit (5) on the basis of the observed waveforms. According to the above configuration, the failure of the communication convertor circuit may be reliably detected.

Description

電池システム監視装置Battery system monitoring device
 本発明は、電池システムを監視する装置に関する。 The present invention relates to an apparatus for monitoring a battery system.
 ハイブリッド自動車(HEV)や電気自動車(EV)などでは、所望の高電圧を確保するため、二次電池の単電池セルを多数直列接続して構成される組電池(電池システム)が用いられている。従来、このような組電池には、所定数の単電池セルごとに、各単電池セルの容量計算や保護管理を行い、各単電池セルの充放電状態を監視および制御するための監視ICが接続されている。たとえば特許文献1には、メインコントローラと各監視ICとをデイジーチェーン接続し、この接続を用いて信号通信を行う電池制御システムが開示されている。 In a hybrid vehicle (HEV), an electric vehicle (EV), and the like, an assembled battery (battery system) configured by connecting a large number of single battery cells of a secondary battery in series is used to secure a desired high voltage. . Conventionally, such an assembled battery has a monitoring IC for performing capacity calculation and protection management of each single battery cell for each predetermined number of single battery cells, and monitoring and controlling the charge / discharge state of each single battery cell. It is connected. For example, Patent Document 1 discloses a battery control system in which a main controller and each monitoring IC are connected in a daisy chain and signal communication is performed using this connection.
 ところで、上記のような電池制御システムにおいて用いられる各監視IC間には、対応する単電池セルの組電池内での配置位置に応じた電位差が存在する。そのため、各監視IC間では、この電位差を解消して通信を行う必要がある。たとえば特許文献2には、コンデンサを介して各監視IC間を接続し、このコンデンサにより通信信号の直流成分を遮断することで、各監視IC間の電位差を解消したものが開示されている。 By the way, there is a potential difference between the monitoring ICs used in the battery control system as described above according to the arrangement position of the corresponding single battery cell in the assembled battery. Therefore, it is necessary to perform communication by eliminating this potential difference between the monitoring ICs. For example, Patent Document 2 discloses a configuration in which each monitoring IC is connected via a capacitor, and the DC component of the communication signal is cut off by this capacitor, thereby eliminating the potential difference between the monitoring ICs.
特開2005-318750号公報JP 2005-318750 A 特許第4584758号Japanese Patent No. 458758
 特許文献2のような通信方法では、通信信号において特定の状態、たとえば0または1の符号を示す状態が連続して信号レベルの変動が少なくなると、直流成分が増加するため、各監視IC間での伝送が不安定になりやすい。こうした不都合を解消するための方法としては、マイクロコンピュータを用いたメインコントローラと監視ICとの間に、IC等を用いた通信変換回路を設けることが考えられる。このようにすると、メインコントローラからの通信信号が通信変換回路によって直流成分の少ない通信信号に変換された後、この変換後の通信信号が各監視IC間で伝送されるため、各監視IC間での伝送を安定化することができる。 In a communication method such as Patent Document 2, when a signal state varies continuously in a specific state, for example, a state indicating a sign of 0 or 1, in a communication signal, a direct current component increases. Transmission is likely to be unstable. As a method for solving such inconvenience, a communication conversion circuit using an IC or the like may be provided between a main controller using a microcomputer and a monitoring IC. In this way, after the communication signal from the main controller is converted into a communication signal with a small DC component by the communication conversion circuit, the converted communication signal is transmitted between the monitoring ICs. Transmission can be stabilized.
 上記のような通信変換回路を用いる場合、この通信変換回路が故障して正しい通信信号の変換動作が実行されなくなると、メインコントローラと監視ICとの間で正常な通信ができなくなり、電池制御システムの誤動作等につながる。そのため、通信変換回路の故障を確実に検出することが重要である。 When the communication conversion circuit as described above is used, if the communication conversion circuit fails and the correct communication signal conversion operation is not performed, normal communication cannot be performed between the main controller and the monitoring IC, and the battery control system Lead to malfunctions. Therefore, it is important to reliably detect a failure in the communication conversion circuit.
 本発明による電池システム監視装置は、複数の単電池セルを直列接続したセルグループを複数個備えた電池システムを監視するものであって、セルグループごとに設けられ、対応するセルグループの各単電池セルを監視および制御する電池監視・制御用集積回路と、電池監視・制御用集積回路との間で通信信号を入出力する制御回路と、制御回路と電池監視・制御用集積回路との間で入出力される通信信号の変換を行う通信変換回路と、を備える。この電池システム監視装置において、電池監視・制御用集積回路は、所定の通信順序に応じて互いに接続されており、通信変換回路は、制御回路から第1の符号化方式に従って出力された通信信号を、第1の符号化方式とは異なる第2の符号化方式に従った通信信号へと変換して、変換後の通信信号を通信順序で最上位の電池監視・制御用集積回路へ出力し、電池監視・制御用集積回路の各々は、第2の符号化方式に従った通信信号を、通信順序に応じて伝送し、通信変換回路は、通信順序で最下位の電池監視・制御用集積回路から第2の符号化方式に従って出力された通信信号を、第1の符号化方式に従った通信信号へと変換して、変換後の通信信号を制御回路へ出力し、制御回路は、通信信号に基づいて通信変換回路の故障を検出する。 A battery system monitoring device according to the present invention monitors a battery system including a plurality of cell groups in which a plurality of single battery cells are connected in series, and is provided for each cell group. A battery monitoring / control integrated circuit for monitoring and controlling cells, a control circuit for inputting / outputting communication signals between the battery monitoring / control integrated circuit, and the control circuit and the battery monitoring / control integrated circuit A communication conversion circuit for converting input / output communication signals. In this battery system monitoring apparatus, the battery monitoring / control integrated circuits are connected to each other in accordance with a predetermined communication order, and the communication conversion circuit receives the communication signal output from the control circuit according to the first encoding method. , Converting to a communication signal according to a second encoding method different from the first encoding method, and outputting the converted communication signal to the highest battery monitoring / controlling integrated circuit in the communication order, Each of the battery monitoring / control integrated circuits transmits a communication signal according to the second encoding method according to the communication order, and the communication conversion circuit is the lowest-order battery monitoring / control integrated circuit in the communication order. The communication signal output according to the second encoding method is converted into a communication signal according to the first encoding method, and the converted communication signal is output to the control circuit. The failure of the communication conversion circuit is detected based on the above.
 本発明によれば、通信変換回路の故障を確実に検出することができる。 According to the present invention, it is possible to reliably detect a failure of the communication conversion circuit.
本発明の第1の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 1st Embodiment of this invention. 本発明の第1の実施形態において通信変換回路の故障検出を行う際に制御回路により実行される処理のフローチャートである。It is a flowchart of the process performed by the control circuit when performing the failure detection of the communication conversion circuit in the first embodiment of the present invention. 本発明の第2の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 2nd Embodiment of this invention. 本発明の第2の実施形態において通信変換回路の故障検出を行う際に制御回路により実行される処理のフローチャートである。It is a flowchart of the process performed by a control circuit when performing the failure detection of a communication conversion circuit in the 2nd Embodiment of this invention. 本発明の第3の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 3rd Embodiment of this invention. 本発明の第3の実施形態において通信変換回路の故障検出を行う際に制御回路により実行される処理のフローチャートである。It is a flowchart of the process performed by a control circuit when performing the failure detection of a communication conversion circuit in the 3rd Embodiment of this invention.
 以下、図面を参照して、本発明による電池システム監視装置について説明する。以下の各実施形態では、ハイブリッド自動車(HEV)などに用いられる電池システムを監視する電池システム監視装置において本発明を適用した場合の例を説明する。なお、本発明はHEVに用いられる電池システムに限らず、他の車両、たとえばプラグインハイブリッド自動車(PHEV)、電気自動車(EV)、鉄道車両などに用いられる電池システムや、車両の電池システム以外の用途で用いられる各種の蓄電装置に対しても、幅広く適用可能である。 Hereinafter, a battery system monitoring apparatus according to the present invention will be described with reference to the drawings. In the following embodiments, an example in which the present invention is applied to a battery system monitoring apparatus that monitors a battery system used in a hybrid vehicle (HEV) or the like will be described. The present invention is not limited to the battery system used for HEVs, but is used for other vehicles such as plug-in hybrid vehicles (PHEV), electric vehicles (EV), railway vehicles, etc. The present invention can be widely applied to various power storage devices used in applications.
 以下の各実施形態では、電池システムにおいて制御の最小単位となる蓄電・放電デバイスとして、3.0~4.2V(平均出力電圧:3.6V)程度の範囲に動作電圧を持つリチウムイオン電池を想定して説明している。しかし、電気を蓄えて放電可能なデバイスであれば、リチウムイオン電池以外のものを用いて電池システムを構成してもよい。本発明による電池システム監視装置を用いてその状態を監視および制御可能であり、SOC(State of Charge)が高すぎる場合(過充電)や低すぎる場合(過放電)にその使用を制限することができるものであれば、何でもよい。以下の説明では、それらを総称して単電池あるいは単電池セルと呼ぶ。 In each of the following embodiments, a lithium-ion battery having an operating voltage in the range of about 3.0 to 4.2 V (average output voltage: 3.6 V) is used as a storage / discharge device that is the minimum unit of control in the battery system. It is assumed and explained. However, as long as it is a device that can store and discharge electricity, a battery system other than a lithium ion battery may be used. The battery system monitoring device according to the present invention can be used to monitor and control the state of the battery system, and its use can be restricted when the SOC (State of Charge) is too high (overcharge) or too low (overdischarge). Anything is possible. In the following description, they are collectively referred to as a single battery or a single battery cell.
 また、以下に説明する各実施形態では、単電池セルを複数個(概ね数個から十数個)直列に接続したものをセルグループと呼び、このセルグループを複数個直列または直並列に接続したものを電池システムと呼称する。セルグループおよび電池システムを総称して組電池と呼んでいる。 In each of the embodiments described below, a plurality of (approximately several to a dozen) battery cells connected in series are called cell groups, and a plurality of cell groups are connected in series or in series-parallel. This is called a battery system. The cell group and the battery system are collectively called an assembled battery.
(第1の実施形態)
 図1は、本発明の第1の実施形態による電池システム監視装置の構成を示す図である。この電池システム監視装置は、単電池セルであるリチウムイオン電池1が複数個直列接続されて構成された電池システム10と接続されており、この電池システム10を監視するものである。図1に示す電池システム監視装置は、監視IC21および22と、絶縁素子31および32と、コンデンサ4と、通信変換回路5と、制御回路6とを備える。
(First embodiment)
FIG. 1 is a diagram showing a configuration of a battery system monitoring device according to a first embodiment of the present invention. This battery system monitoring apparatus is connected to a battery system 10 constituted by connecting a plurality of lithium ion batteries 1 as single battery cells in series, and monitors the battery system 10. The battery system monitoring apparatus shown in FIG. 1 includes monitoring ICs 21 and 22, insulating elements 31 and 32, a capacitor 4, a communication conversion circuit 5, and a control circuit 6.
 監視IC21および22は、電池システム10においてリチウムイオン電池1が複数個直列接続されて構成されたセルグループごとにそれぞれ設けられており、対応するセルグループの各リチウムイオン電池1を監視および制御する。たとえば、各リチウムイオン電池1の電圧や温度を測定し、その測定結果を制御回路6へ送信する。また、制御回路6からの指令に応じて、各リチウムイオン電池1の間でSOCを均一化するためのバランシングを行う。これ以外にも、必要に応じて様々な動作を監視IC21および22において行うことができる。 The monitoring ICs 21 and 22 are provided for each cell group configured by connecting a plurality of lithium ion batteries 1 in series in the battery system 10, and monitor and control each lithium ion battery 1 of the corresponding cell group. For example, the voltage and temperature of each lithium ion battery 1 are measured, and the measurement result is transmitted to the control circuit 6. Further, balancing is performed for making the SOC uniform among the lithium ion batteries 1 in accordance with a command from the control circuit 6. In addition, various operations can be performed in the monitoring ICs 21 and 22 as necessary.
 監視IC21と監視IC22は、受信端子Rxと送信端子Txをそれぞれ有している。監視IC21の送信端子Txと監視IC22の受信端子Rxは、コンデンサ4を介して互いに接続されている。監視IC21の送信端子Txから通信信号が出力されると、この通信信号は、監視IC22において受信端子Rxに入力される。すなわち、監視IC21と監視IC22は、監視IC21を上位、監視IC22を下位として、所定の通信順序に応じて互いに接続されている。 The monitoring IC 21 and the monitoring IC 22 each have a reception terminal Rx and a transmission terminal Tx. The transmission terminal Tx of the monitoring IC 21 and the reception terminal Rx of the monitoring IC 22 are connected to each other via the capacitor 4. When a communication signal is output from the transmission terminal Tx of the monitoring IC 21, this communication signal is input to the reception terminal Rx in the monitoring IC 22. That is, the monitoring IC 21 and the monitoring IC 22 are connected to each other according to a predetermined communication order, with the monitoring IC 21 as the upper level and the monitoring IC 22 as the lower level.
 通信変換回路5は、監視IC21および22と制御回路6との間で入出力される通信信号の変換を行うものであり、送信端子Tx、受信端子Rx、選択信号入力端子CS、クロック端子CLK、データ入力端子DINおよびデータ出力端子DOUTを有する。通信変換回路5の送信端子Txは、絶縁素子31を介して監視IC21の受信端子Rxに接続されており、通信変換回路5の受信端子Rxは、絶縁素子32を介して監視IC22の送信端子Txに接続されている。 The communication conversion circuit 5 converts communication signals input / output between the monitoring ICs 21 and 22 and the control circuit 6, and includes a transmission terminal Tx, a reception terminal Rx, a selection signal input terminal CS, a clock terminal CLK, It has a data input terminal DIN and a data output terminal DOUT. The transmission terminal Tx of the communication conversion circuit 5 is connected to the reception terminal Rx of the monitoring IC 21 via the insulating element 31, and the reception terminal Rx of the communication conversion circuit 5 is connected to the transmission terminal Tx of the monitoring IC 22 via the insulating element 32. It is connected to the.
 制御回路6は、マイクロコンピュータ等を用いて構成されており、監視IC21および22との間で入出力される通信信号を基に、電池システム10を監視および制御するための所定の処理、たとえば各リチウムイオン電池1のSOC推定処理等を行う。この制御回路6は、選択信号出力端子SS、クロック端子CLK、データ入力端子DIN、データ出力端子DOUT、送信信号キャプチャ端子CTxおよび受信信号キャプチャ端子CRxを有する。 The control circuit 6 is configured by using a microcomputer or the like, and performs predetermined processing for monitoring and controlling the battery system 10 based on communication signals input and output between the monitoring ICs 21 and 22, for example, The SOC estimation process of the lithium ion battery 1 is performed. The control circuit 6 includes a selection signal output terminal SS, a clock terminal CLK, a data input terminal DIN, a data output terminal DOUT, a transmission signal capture terminal CTx, and a reception signal capture terminal CRx.
 制御回路6と監視IC21、22との間で通信を行う場合、制御回路6は、選択信号出力端子SSから通信変換回路5の選択信号入力端子CSへ所定の選択信号を出力した状態で、クロック端子CLKからクロック信号を出力すると共に、データ出力端子DOUTから通信信号(データ信号)を出力する。この通信信号では、所定の符号化方式、たとえばNRZ(Non Return to Zero)符号化方式に従って、監視IC21、22への指令内容等を表すデータが符号化されている。なお、ここで用いられる符号化方式は、同期通信に適したものであることが好ましい。以下の説明では、この符号化方式を「第1符号化方式」と称する。 When communication is performed between the control circuit 6 and the monitoring ICs 21 and 22, the control circuit 6 outputs a predetermined selection signal from the selection signal output terminal SS to the selection signal input terminal CS of the communication conversion circuit 5. A clock signal is output from the terminal CLK, and a communication signal (data signal) is output from the data output terminal DOUT. In this communication signal, data representing the content of commands to the monitoring ICs 21 and 22 is encoded according to a predetermined encoding method, for example, an NRZ (Non Return to Zero) encoding method. Note that the encoding method used here is preferably suitable for synchronous communication. In the following description, this encoding method is referred to as a “first encoding method”.
 制御回路6から出力された上記のクロック信号と通信信号は、通信変換回路5において、クロック端子CLKとデータ入力端子DINへそれぞれ入力される。すると通信変換回路5は、入力された通信信号を別の符号化方式に従った通信信号へと変換する。なお、ここで用いられる符号化方式は、非同期通信に適しており、かつ同じ符号(0または1)が連続した場合にも、通信信号の直流成分が増加するのを抑えられる方式であることが好ましい。このような符号化方式には、たとえばマンチェスター符号化方式などがある。以下の説明では、この符号化方式を「第2符号化方式」と称する。 The above clock signal and communication signal output from the control circuit 6 are input to the clock terminal CLK and the data input terminal DIN in the communication conversion circuit 5, respectively. Then, the communication conversion circuit 5 converts the input communication signal into a communication signal according to another encoding method. Note that the encoding method used here is suitable for asynchronous communication and can suppress an increase in the DC component of the communication signal even when the same code (0 or 1) continues. preferable. Such an encoding method includes, for example, the Manchester encoding method. In the following description, this encoding method is referred to as a “second encoding method”.
 通信変換回路5は、上記のようにして通信信号の変換を行ったら、変換後の通信信号を送信端子Txから出力する。この通信信号は、絶縁素子31を介して監視IC21の受信端子Rxに入力される。 When the communication conversion circuit 5 converts the communication signal as described above, the communication conversion circuit 5 outputs the converted communication signal from the transmission terminal Tx. This communication signal is input to the reception terminal Rx of the monitoring IC 21 via the insulating element 31.
 監視IC21は、通信変換回路5からの通信信号を受けると、その通信信号の内容を解読し、各リチウムイオン電池1の電圧や温度の測定、バランシングなど、制御回路6からの指令に応じた処理を必要に応じて実行する。そして、得られた測定結果等と共に、通信信号を送信端子Txから監視IC22の受信端子Rxへ出力する。これにより、監視IC21から監視IC22へ、通信順序に応じて通信信号が伝送される。 When the monitoring IC 21 receives the communication signal from the communication conversion circuit 5, the monitoring IC 21 decodes the content of the communication signal and performs processing according to instructions from the control circuit 6 such as measurement and balancing of the voltage and temperature of each lithium ion battery 1. Perform as necessary. Then, together with the obtained measurement result and the like, a communication signal is output from the transmission terminal Tx to the reception terminal Rx of the monitoring IC 22. Thereby, a communication signal is transmitted from the monitoring IC 21 to the monitoring IC 22 according to the communication order.
 監視IC22は、監視IC21からの通信信号を受けると、監視IC21と同様に、その通信信号の内容を解読し、各リチウムイオン電池1の電圧や温度の測定、バランシングなど、制御回路6からの指令に応じた処理を必要に応じて実行する。そして、得られた測定結果等と共に、通信信号を送信端子Txから絶縁素子32を介して通信変換回路5の受信端子Rxへ出力する。 When the monitoring IC 22 receives the communication signal from the monitoring IC 21, the monitoring IC 22 decodes the contents of the communication signal and, like the monitoring IC 21, commands from the control circuit 6 such as measurement and balancing of the voltage and temperature of each lithium ion battery 1. The process according to is performed as needed. Then, together with the obtained measurement results and the like, a communication signal is output from the transmission terminal Tx to the reception terminal Rx of the communication conversion circuit 5 via the insulating element 32.
 通信変換回路5は、監視IC22からの通信信号を受けると、その通信信号を元の符号化方式、すなわち第1符号化方式に従って再変換する。そして、制御回路6からの指令によって変換後の通信信号はデータ出力端子DOUTから制御回路6のデータ入力端子DINへ出力される。 When receiving the communication signal from the monitoring IC 22, the communication conversion circuit 5 reconverts the communication signal in accordance with the original encoding method, that is, the first encoding method. Then, the converted communication signal is output from the data output terminal DOUT to the data input terminal DIN of the control circuit 6 in accordance with a command from the control circuit 6.
 以上説明したようにして、制御回路6と監視IC21および22との間で通信信号が入出力されることにより、電池システム10の監視が行われる。 As described above, the battery system 10 is monitored by inputting / outputting communication signals between the control circuit 6 and the monitoring ICs 21 and 22.
 制御回路6の送信信号キャプチャ端子CTxは、通信変換回路5の送信端子Txと監視IC21の受信端子Rxの間に接続されている。これにより、通信変換回路5から監視IC21へ通信信号が出力されると、その波形が制御回路6において送信信号キャプチャ端子CTxに入力される。また、制御回路6の受信信号キャプチャ端子CRxは、監視IC22の送信端子Txと通信変換回路5の受信端子Rxの間に接続されている。これにより、監視IC22から通信変換回路5へ通信信号が出力されると、その波形が制御回路6において受信信号キャプチャ端子CRxに入力される。制御回路6は、これらの波形を観測することで、以下で説明するようにして、通信変換回路5による通信信号の変換が正しく行われているか否かを判断し、通信変換回路5の故障検出を行う。 The transmission signal capture terminal CTx of the control circuit 6 is connected between the transmission terminal Tx of the communication conversion circuit 5 and the reception terminal Rx of the monitoring IC 21. Thus, when a communication signal is output from the communication conversion circuit 5 to the monitoring IC 21, the waveform is input to the transmission signal capture terminal CTx in the control circuit 6. The reception signal capture terminal CRx of the control circuit 6 is connected between the transmission terminal Tx of the monitoring IC 22 and the reception terminal Rx of the communication conversion circuit 5. Thus, when a communication signal is output from the monitoring IC 22 to the communication conversion circuit 5, the waveform is input to the reception signal capture terminal CRx in the control circuit 6. By observing these waveforms, the control circuit 6 determines whether or not the communication conversion circuit 5 has correctly converted the communication signal as described below, and detects the failure of the communication conversion circuit 5. I do.
 図2は、本実施形態において通信変換回路5の故障検出を行う際に制御回路6により実行される処理のフローチャートである。 FIG. 2 is a flowchart of processing executed by the control circuit 6 when detecting a failure of the communication conversion circuit 5 in the present embodiment.
 ステップS100において、制御回路6は、通信変換回路5へ送信データを出力する。このとき制御回路6は、前述のように、データ出力端子DOUTから通信変換回路5のデータ入力端子DINへ、第1符号化方式に従って符号化された送信データを通信信号として出力する。この送信データは、故障検出用に予め設定されたものとしてもよい。さらにこのとき、選択信号出力端子SSから選択信号を出力すると共に、クロック端子CLKからクロック信号を出力する。 In step S100, the control circuit 6 outputs transmission data to the communication conversion circuit 5. At this time, as described above, the control circuit 6 outputs the transmission data encoded according to the first encoding method from the data output terminal DOUT to the data input terminal DIN of the communication conversion circuit 5 as a communication signal. This transmission data may be set in advance for failure detection. At this time, the selection signal is output from the selection signal output terminal SS and the clock signal is output from the clock terminal CLK.
 ステップS110において、制御回路6は、送信信号キャプチャ端子CTxに入力される波形を観測することで、通信変換回路5から監視IC21へ出力される通信信号の波形を送信波形として観測する。ここで波形観測される通信信号は、ステップS100で制御回路6から出力された第1符号化方式による送信データを、通信変換回路5が第2符号化方式に従って変換したものである。これにより、通信変換回路5による変換後の送信データの観測波形を取得することができる。 In step S110, the control circuit 6 observes the waveform input to the transmission signal capture terminal CTx, thereby observing the waveform of the communication signal output from the communication conversion circuit 5 to the monitoring IC 21 as the transmission waveform. The communication signal whose waveform is observed here is obtained by converting the transmission data according to the first encoding method output from the control circuit 6 in step S100 by the communication conversion circuit 5 according to the second encoding method. Thereby, the observation waveform of the transmission data after the conversion by the communication conversion circuit 5 can be acquired.
 ステップS120において、制御回路6は、受信信号キャプチャ端子CRxに入力される波形を観測することで、監視IC22から通信変換回路5へ出力される通信信号の波形を受信波形として観測する。ここで波形観測される通信信号は、ステップS100で制御回路6から出力された送信データに応じて監視IC22から第2符号化方式で出力された受信データを、通信変換回路5が元の第1符号化方式に従って変換する前のものである。これにより、通信変換回路5による変換前の受信データの観測波形を取得することができる。 In step S120, the control circuit 6 observes the waveform input to the received signal capture terminal CRx, thereby observing the waveform of the communication signal output from the monitoring IC 22 to the communication conversion circuit 5 as the received waveform. The communication signal whose waveform is observed here is received data output from the monitoring IC 22 by the second encoding method in accordance with the transmission data output from the control circuit 6 in step S100. This is before conversion according to the encoding method. Thereby, the observation waveform of the reception data before the conversion by the communication conversion circuit 5 can be acquired.
 ステップS130において、制御回路6は、通信変換回路5から出力される受信データを取得する。このとき通信変換回路5は、前述のように、監視IC22から出力された通信信号を元の第1符号化方式に従って変換し、この変換後の通信信号を、データ出力端子DOUTから制御回路6のデータ入力端子DINへ受信データとして出力する。なお、この受信データは、ステップS100で制御回路6から出力された送信データを含んでいてよい。さらに、監視IC21および22に関する所定の情報、たとえば電圧や温度の測定結果を示す情報などが付加されていてもよい。 In step S130, the control circuit 6 acquires the reception data output from the communication conversion circuit 5. At this time, as described above, the communication conversion circuit 5 converts the communication signal output from the monitoring IC 22 according to the original first encoding method, and converts the converted communication signal from the data output terminal DOUT to the control circuit 6. The received data is output to the data input terminal DIN. The reception data may include transmission data output from the control circuit 6 in step S100. Furthermore, predetermined information related to the monitoring ICs 21 and 22, for example, information indicating the measurement result of voltage or temperature may be added.
 ステップS140において、制御回路6は、ステップS110、S120でそれぞれ観測した送信波形および受信波形に基づいて、通信変換回路5による変換後の送信データと、通信変換回路5による変換前の受信データとを判別する。ここでは、送信波形、すなわちステップS110での観測波形におけるパルスの位置や幅などを基に、通信変換回路5が通信信号を変換する際に用いる第2符号化方式を考慮して、変換後の送信データを判別する。同様に、受信波形、すなわちステップS120での観測波形におけるパルスの位置や幅などを基に、変換前の受信データを判別する。 In step S140, the control circuit 6 determines the transmission data after conversion by the communication conversion circuit 5 and the reception data before conversion by the communication conversion circuit 5 based on the transmission waveform and reception waveform observed in steps S110 and S120, respectively. Determine. Here, based on the transmission waveform, that is, the position and width of the pulse in the observation waveform in step S110, the second conversion method used when the communication conversion circuit 5 converts the communication signal is taken into consideration, and the post-conversion Determine the transmission data. Similarly, received data before conversion is determined based on the received waveform, that is, the position and width of the pulse in the observed waveform in step S120.
 ステップS150において、制御回路6は、ステップS140で判別した変換後の送信データおよび変換前の受信データを用いて、送信データと受信データを通信変換回路5による変換の前後でそれぞれ比較する。すなわち、ステップS100で出力した変換前の送信データと、ステップS140で判別した変換後の送信データとを比較し、これらの内容が同一であるか否かを判断する。また、ステップS130で取得した変換後の受信データと、ステップS140で判別した変換前の受信データとを比較し、これらの内容が同一であるか否かを判断する。 In step S150, the control circuit 6 compares the transmission data and the reception data before and after conversion by the communication conversion circuit 5, using the transmission data after conversion determined in step S140 and the reception data before conversion. That is, the transmission data before conversion output in step S100 is compared with the transmission data after conversion determined in step S140, and it is determined whether these contents are the same. Further, the converted reception data acquired in step S130 is compared with the reception data before conversion determined in step S140, and it is determined whether or not the contents are the same.
 ステップS160において、制御回路6は、ステップS150の比較結果を基に、送信データと受信データが変換前後でそれぞれ一致したか否かを判断する。送信データと受信データが両方とも変換前後でそれぞれ一致していた場合はステップS170へ進み、送信データと受信データのいずれか少なくとも一方が変換前後で一致しなかった場合はステップS180へ進む。 In step S160, the control circuit 6 determines whether the transmission data and the reception data match before and after conversion based on the comparison result in step S150. If both the transmission data and the reception data match before and after the conversion, the process proceeds to step S170. If at least one of the transmission data and the reception data does not match before and after the conversion, the process proceeds to step S180.
 ステップS170において、制御回路6は、通信変換回路5が故障しておらずに正常であると判定する。ステップS170を実行したら、図2に示すフローチャートの処理を終了する。 In step S170, the control circuit 6 determines that the communication conversion circuit 5 is normal without failure. If step S170 is performed, the process of the flowchart shown in FIG. 2 will be complete | finished.
 ステップS180において、制御回路6は、通信変換回路5が故障していると判定する。この場合、たとえば警告ランプの点灯や警告音の出力などを行うことで、ユーザに故障を報知することが好ましい。ステップS180を実行したら、図2に示すフローチャートの処理を終了する。 In step S180, the control circuit 6 determines that the communication conversion circuit 5 has failed. In this case, it is preferable to notify the user of the failure, for example, by turning on a warning lamp or outputting a warning sound. If step S180 is performed, the process of the flowchart shown in FIG. 2 will be complete | finished.
 以上説明したような処理を実行することで、通信変換回路5の故障検出を行うことができる。 By executing the processing as described above, it is possible to detect a failure of the communication conversion circuit 5.
 なお、図2で説明したような処理は、制御回路6において必ずしも常時実行する必要はなく、たとえばシステム起動時や停止時、予め設定された実行条件を満たしたときなど、所定のタイミングで実行するようにしてよい。このようにすれば、波形観測のために制御回路6の処理負荷が過大になるのを防ぐことができる。 2 is not necessarily executed at all times in the control circuit 6, but is executed at a predetermined timing, for example, when the system is started or stopped, or when a preset execution condition is satisfied. You may do it. In this way, it is possible to prevent the processing load of the control circuit 6 from becoming excessive for waveform observation.
 また、図2の処理において、送信波形と受信波形のいずれか一方のみを観測し、その観測結果を基に通信変換回路5の故障検出を行うようにしてもよい。送信波形のみを観測する場合は、ステップS120の処理を省略すると共に、ステップS140では、送信波形に基づく変換後の送信データのみを判別して、受信波形に基づく変換前の受信データの判別を省略することができる。また、ステップS150では変換前後の送信データのみを比較し、その比較結果を基にステップS160の判定を行うことができる。この場合、制御回路6に受信信号キャプチャ端子CRxを設けなくてもよい。一方、受信波形のみを観測する場合は、ステップS110の処理を省略すると共に、ステップS140では、受信波形に基づく変換前の受信データのみを判別して、送信波形に基づく変換後の送信データの判別を省略することができる。また、ステップS150では変換前後の受信データのみを比較し、その比較結果を基にステップS160の判定を行うことができる。この場合、制御回路6に送信信号キャプチャ端子CTxを設けなくてもよい。すなわち、制御回路6では、送信波形と受信波形のいずれか少なくとも一つを観測し、その観測波形に基づいて通信変換回路5の故障を検出することができる。 Further, in the process of FIG. 2, only one of the transmission waveform and the reception waveform may be observed, and failure detection of the communication conversion circuit 5 may be performed based on the observation result. When only the transmission waveform is observed, the process of step S120 is omitted, and in step S140, only the transmission data after conversion based on the transmission waveform is determined, and the determination of reception data before conversion based on the reception waveform is omitted. can do. In step S150, only the transmission data before and after conversion are compared, and the determination in step S160 can be made based on the comparison result. In this case, it is not necessary to provide the reception signal capture terminal CRx in the control circuit 6. On the other hand, when only the received waveform is observed, the process of step S110 is omitted, and in step S140, only received data before conversion based on the received waveform is determined, and transmission data after conversion based on the transmitted waveform is determined. Can be omitted. In step S150, only the received data before and after conversion are compared, and the determination in step S160 can be made based on the comparison result. In this case, the transmission signal capture terminal CTx may not be provided in the control circuit 6. That is, the control circuit 6 can observe at least one of the transmission waveform and the reception waveform and detect a failure of the communication conversion circuit 5 based on the observed waveform.
 以上説明した本発明の第1の実施形態によれば、次の作用効果を奏する。 According to the first embodiment of the present invention described above, the following operational effects are obtained.
(1)電池システム監視装置は、電池システム10のセルグループごとに設けられ、対応するセルグループの各単電池セルを監視および制御する監視IC21、22と、監視IC21、22との間で通信信号を入出力する制御回路6と、制御回路6と監視IC21、22との間で入出力される通信信号の変換を行う通信変換回路5とを備える。監視IC21、22は、所定の通信順序に応じて互いに接続されている。通信変換回路5は、制御回路6から第1符号化方式に従って出力された通信信号を、第1符号化方式とは異なる第2符号化方式に従った通信信号へと変換して、変換後の通信信号を通信順序で最上位の監視IC21へ出力する。監視IC21、22は、この第2符号化方式に従った通信信号を通信順序に応じて伝送する。通信変換回路5は、通信順序で最下位の監視IC22から第2符号化方式に従って出力された通信信号を、第1符号化方式に従った通信信号へと変換して、変換後の通信信号を制御回路6へ出力する。制御回路6は、この通信信号に基づいて通信変換回路5の故障を検出する。具体的には、通信変換回路5から監視IC21へ出力される通信信号の波形である送信波形と、監視IC22から通信変換回路5へ出力される通信信号の波形である受信波形とのいずれか少なくとも一つを観測し(ステップS110、S120)、その観測波形に基づいて通信変換回路5の故障を検出する(ステップS180)。このようにしたので、通信変換回路5の故障を確実に検出することができる。 (1) The battery system monitoring device is provided for each cell group of the battery system 10 and communicates between the monitoring ICs 21 and 22 that monitor and control each single battery cell of the corresponding cell group, and the monitoring ICs 21 and 22. And a communication conversion circuit 5 that converts communication signals input and output between the control circuit 6 and the monitoring ICs 21 and 22. The monitoring ICs 21 and 22 are connected to each other according to a predetermined communication order. The communication conversion circuit 5 converts the communication signal output from the control circuit 6 according to the first encoding method into a communication signal according to a second encoding method different from the first encoding method, The communication signal is output to the highest-level monitoring IC 21 in the communication order. The monitoring ICs 21 and 22 transmit communication signals according to the second encoding method in accordance with the communication order. The communication conversion circuit 5 converts the communication signal output from the lowest monitoring IC 22 in the communication order according to the second encoding method into a communication signal according to the first encoding method, and converts the converted communication signal to Output to the control circuit 6. The control circuit 6 detects a failure of the communication conversion circuit 5 based on this communication signal. Specifically, at least one of a transmission waveform that is a waveform of a communication signal output from the communication conversion circuit 5 to the monitoring IC 21 and a reception waveform that is a waveform of the communication signal output from the monitoring IC 22 to the communication conversion circuit 5 is provided. One is observed (steps S110 and S120), and a failure of the communication conversion circuit 5 is detected based on the observed waveform (step S180). Since it did in this way, the failure of the communication conversion circuit 5 can be detected reliably.
(2)制御回路6は、ステップS110で送信波形を観測した場合は、その送信波形に基づいて当該通信信号が表す変換後の送信データを判別し、ステップS120で受信波形を観測した場合は、その受信波形に基づいて当該通信信号が表す変換前の受信データを判別する(ステップS140)。ステップS180では、これらのデータのいずれか少なくとも一つに基づいて、通信変換回路5の故障を検出する。すなわち、制御回路6は、通信信号として、所定の送信データを通信変換回路5へ出力する(ステップS100)。この送信データとステップS140で判別した変換後の送信データとを比較し(ステップS150)、一致しない場合は、通信変換回路5が故障していると判断する(ステップS160、S180)。また制御回路6は、通信信号として、通信変換回路5から所定の受信データを受信する(ステップS130)。ステップS140で判別した変換前の受信データとこの受信データとを比較し(ステップS150)、一致しない場合は、通信変換回路5が故障していると判断する(ステップS160、S180)。このようにしたので、送信波形や受信波形の観測結果を基に、通信変換回路5が故障しているか否かを正確に判断することができる。 (2) When the transmission waveform is observed at step S110, the control circuit 6 determines the converted transmission data represented by the communication signal based on the transmission waveform, and when the reception waveform is observed at step S120. Based on the received waveform, received data before conversion represented by the communication signal is determined (step S140). In step S180, a failure of the communication conversion circuit 5 is detected based on at least one of these data. That is, the control circuit 6 outputs predetermined transmission data to the communication conversion circuit 5 as a communication signal (step S100). This transmission data is compared with the transmission data after conversion determined in step S140 (step S150), and if they do not match, it is determined that the communication conversion circuit 5 is out of order (steps S160 and S180). The control circuit 6 receives predetermined reception data from the communication conversion circuit 5 as a communication signal (step S130). The received data before conversion determined in step S140 is compared with the received data (step S150), and if they do not match, it is determined that the communication conversion circuit 5 has failed (steps S160 and S180). Since it did in this way, it can be judged correctly whether the communication conversion circuit 5 is out of order based on the observation result of a transmission waveform or a reception waveform.
(3)制御回路6は、ステップS110やステップS120での波形の観測を、システム起動時や停止時などの所定のタイミングで実行することができる。このようにすれば、制御回路6の処理負荷が過大になるのを防ぐことができる。 (3) The control circuit 6 can execute the waveform observation in step S110 or step S120 at a predetermined timing such as when the system is started or stopped. In this way, it is possible to prevent the processing load of the control circuit 6 from becoming excessive.
(第2の実施形態)
 図3は、本発明の第2の実施形態による電池システム監視装置の構成を示す図である。この電池システム監視装置は、図1に示した第1の実施形態による電池システム監視装置と比較して、2つの通信変換回路51および52と、これらを切り替えるための切替スイッチ7とを備える点が異なっている。また、制御回路6に送信信号キャプチャ端子CTxおよび受信信号キャプチャ端子CRxが設けられていない点も異なっている。
(Second Embodiment)
FIG. 3 is a diagram showing a configuration of a battery system monitoring apparatus according to the second embodiment of the present invention. This battery system monitoring device is provided with two communication conversion circuits 51 and 52 and a changeover switch 7 for switching between them, as compared with the battery system monitoring device according to the first embodiment shown in FIG. Is different. Another difference is that the transmission circuit capture terminal CTx and the reception signal capture terminal CRx are not provided in the control circuit 6.
 本実施形態において、制御回路6は、通信変換回路51または52のいずれか一方を通信信号の出力先として選択する。通信変換回路51を選択した場合、制御回路6は、切替スイッチ7を制御して通信変換回路51側へと切り替える。この状態で、選択信号出力端子SS1から通信変換回路51の選択信号入力端子CSへ選択信号を出力すると共に、クロック端子CLKからクロック信号を、データ出力端子DOUTから通信信号をそれぞれ出力する。この通信信号は、第1の実施形態で説明したように、監視IC21、22への指令内容等を表すデータが第1符号化方式に従って符号化されている。 In this embodiment, the control circuit 6 selects either the communication conversion circuit 51 or 52 as the output destination of the communication signal. When the communication conversion circuit 51 is selected, the control circuit 6 controls the changeover switch 7 to switch to the communication conversion circuit 51 side. In this state, the selection signal is output from the selection signal output terminal SS1 to the selection signal input terminal CS of the communication conversion circuit 51, the clock signal is output from the clock terminal CLK, and the communication signal is output from the data output terminal DOUT. As described in the first embodiment, the communication signal is encoded in accordance with the first encoding method with data representing the contents of commands to the monitoring ICs 21 and 22.
 通信変換回路51は、制御回路6から出力された上記の各信号を受けると、第1の実施形態で説明した通信変換回路5と同様に、入力された通信信号を第2符号化形式に従って変換する。そして、変換後の通信信号を送信端子Txから出力する。この通信信号が切替スイッチ7および絶縁素子31を介して監視IC21の受信端子Rxに入力されると、監視IC21、22は第1の実施形態と同様の動作をそれぞれ行い、監視IC22の送信端子Txから通信信号が出力される。この通信信号は、絶縁素子32を介して通信変換回路51、52の受信端子Rxへそれぞれ入力される。 When receiving the above signals output from the control circuit 6, the communication conversion circuit 51 converts the input communication signal in accordance with the second encoding format in the same manner as the communication conversion circuit 5 described in the first embodiment. To do. Then, the converted communication signal is output from the transmission terminal Tx. When this communication signal is input to the reception terminal Rx of the monitoring IC 21 via the changeover switch 7 and the insulating element 31, the monitoring ICs 21 and 22 perform the same operation as in the first embodiment, respectively, and the transmission terminal Tx of the monitoring IC 22 A communication signal is output from. This communication signal is input to the receiving terminals Rx of the communication conversion circuits 51 and 52 via the insulating element 32, respectively.
 通信変換回路51、52は、監視IC22からの通信信号を受けると、第1の実施形態で説明した通信変換回路5と同様に、その通信信号を元の第1符号化方式に従ってそれぞれ再変換する。そして、制御回路6の選択信号出力端子SS1またはSS2から出力される選択信号に応じて、変換後の通信信号はデータ出力端子DOUTから制御回路6のデータ入力端子DINへそれぞれ出力される。 When receiving the communication signal from the monitoring IC 22, the communication conversion circuits 51 and 52 reconvert the communication signals in accordance with the original first encoding method, similarly to the communication conversion circuit 5 described in the first embodiment. . Then, according to the selection signal output from the selection signal output terminal SS1 or SS2 of the control circuit 6, the converted communication signal is output from the data output terminal DOUT to the data input terminal DIN of the control circuit 6, respectively.
 一方、通信変換回路52を選択した場合、制御回路6は、切替スイッチ7を制御して通信変換回路52側へと切り替える。この状態で、選択信号出力端子SS2から通信変換回路52の選択信号入力端子CSへ選択信号を出力すると共に、クロック端子CLKからクロック信号を、データ出力端子DOUTから通信信号をそれぞれ出力する。これらの信号を受けた通信変換回路52は、通信変換回路51と同様に、入力された通信信号を第2符号化形式に従って変換し、その変換後の通信信号を送信端子Txから出力する。これ以降の動作については、通信変換回路51を選択した場合と同様である。 On the other hand, when the communication conversion circuit 52 is selected, the control circuit 6 controls the changeover switch 7 to switch to the communication conversion circuit 52 side. In this state, the selection signal is output from the selection signal output terminal SS2 to the selection signal input terminal CS of the communication conversion circuit 52, the clock signal is output from the clock terminal CLK, and the communication signal is output from the data output terminal DOUT. Upon receiving these signals, the communication conversion circuit 52 converts the input communication signal in accordance with the second encoding format, and outputs the converted communication signal from the transmission terminal Tx, similarly to the communication conversion circuit 51. The subsequent operation is the same as when the communication conversion circuit 51 is selected.
 制御回路6は、上記のようにして通信変換回路51、52からそれぞれ出力された通信信号を受けることで、これらの通信信号が表す受信データを基に電池システム10の監視を行う。さらに、通信変換回路51からの受信データと通信変換回路52からの受信データとを比較することで、通信変換回路51または52による通信信号の変換が正しく行われているか否かを判断し、通信変換回路51、52の故障検出を行う。 The control circuit 6 receives the communication signals output from the communication conversion circuits 51 and 52 as described above, and monitors the battery system 10 based on the received data represented by these communication signals. Further, by comparing the received data from the communication conversion circuit 51 and the received data from the communication conversion circuit 52, it is determined whether or not the communication signal conversion by the communication conversion circuit 51 or 52 is correctly performed, and the communication Failure detection of the conversion circuits 51 and 52 is performed.
 図4は、本実施形態において通信変換回路51、52の故障検出を行う際に制御回路6により実行される処理のフローチャートである。 FIG. 4 is a flowchart of processing executed by the control circuit 6 when performing failure detection of the communication conversion circuits 51 and 52 in the present embodiment.
 ステップS200において、制御回路6は、通信変換回路51または52のいずれか一方を選択する。そして、切替スイッチ7の切り替え状態を制御して、選択した方の通信変換回路51または52と監視IC21とが、切替スイッチ7および絶縁素子31を介して互いに接続されるようにする。 In step S200, the control circuit 6 selects either the communication conversion circuit 51 or 52. Then, the switching state of the changeover switch 7 is controlled so that the selected communication conversion circuit 51 or 52 and the monitoring IC 21 are connected to each other via the changeover switch 7 and the insulating element 31.
 ステップS210において、制御回路6は、ステップS200で選択した方の通信変換回路51または52へ送信データを出力する。このとき制御回路6は、前述のように、データ出力端子DOUTから通信変換回路51または52のデータ入力端子DINへ、第1符号化方式に従って符号化された送信データを通信信号として出力する。この送信データは、故障検出用に予め設定されたものとしてもよい。さらにこのとき、選択信号出力端子SS1またはSS2から選択信号を出力すると共に、クロック端子CLKからクロック信号を出力する。 In step S210, the control circuit 6 outputs transmission data to the communication conversion circuit 51 or 52 selected in step S200. At this time, as described above, the control circuit 6 outputs the transmission data encoded according to the first encoding method from the data output terminal DOUT to the data input terminal DIN of the communication conversion circuit 51 or 52 as a communication signal. This transmission data may be set in advance for failure detection. Further, at this time, a selection signal is output from the selection signal output terminal SS1 or SS2, and a clock signal is output from the clock terminal CLK.
 ステップS220において、制御回路6は、通信変換回路51および52からそれぞれ出力される受信データを取得する。このとき制御回路6は、最初にステップS200で選択した通信変換回路51または52に対して、選択信号出力端子SS1またはSS2から選択信号を出力することにより、当該通信変換回路から受信データが出力されるようにする。この選択信号を受けた通信変換回路51または52は、前述のように、監視IC22から出力された通信信号を元の第1符号化方式に従って変換し、この変換後の通信信号を、データ出力端子DOUTから制御回路6のデータ入力端子DINへ受信データとして出力する。その後、先に選択信号を出力したのとは異なる通信変換回路51または52に対して、選択信号出力端子SS1またはSS2から選択信号を出力する。この選択信号を受けた通信変換回路51または52は、もう一方の通信変換回路と同様に、監視IC22から出力された通信信号を元の第1符号化方式に従って変換し、この変換後の通信信号を、データ出力端子DOUTから制御回路6のデータ入力端子DINへ受信データとして出力する。このようにして、通信変換回路51から出力される受信データと、通信変換回路52から出力される受信データとを取得する。なお、これらの受信データは、第1の実施形態と同様に、ステップS210で制御回路6から出力された送信データを含んでいてよい。さらに、監視IC21および22に関する所定の情報、たとえば電圧や温度の測定結果を示す情報などが付加されていてもよい。また、選択信号を出力する順序を上記とは反対にしてもよい。 In step S220, the control circuit 6 acquires the reception data output from the communication conversion circuits 51 and 52, respectively. At this time, the control circuit 6 first outputs a selection signal from the selection signal output terminal SS1 or SS2 to the communication conversion circuit 51 or 52 selected in step S200, whereby reception data is output from the communication conversion circuit. So that Upon receiving this selection signal, the communication conversion circuit 51 or 52 converts the communication signal output from the monitoring IC 22 according to the original first encoding method as described above, and converts the converted communication signal to the data output terminal. The received data is output from DOUT to the data input terminal DIN of the control circuit 6. Thereafter, the selection signal is output from the selection signal output terminal SS1 or SS2 to the communication conversion circuit 51 or 52 different from the one that has previously output the selection signal. Upon receiving this selection signal, the communication conversion circuit 51 or 52 converts the communication signal output from the monitoring IC 22 in accordance with the original first encoding method, as in the other communication conversion circuit, and the converted communication signal. Is output from the data output terminal DOUT to the data input terminal DIN of the control circuit 6 as received data. In this way, the reception data output from the communication conversion circuit 51 and the reception data output from the communication conversion circuit 52 are acquired. Note that these received data may include the transmission data output from the control circuit 6 in step S210, as in the first embodiment. Furthermore, predetermined information related to the monitoring ICs 21 and 22, for example, information indicating the measurement result of voltage or temperature may be added. The order of outputting the selection signals may be reversed from the above.
 ステップS230において、制御回路6は、通信異常の有無を判定する。たとえば、通信変換回路51および52から受信データが全く出力されない場合や、これらの受信データが一定の値に固定されて変化しない場合などのように、通信変換回路51、52からの受信データにおいて明らかに異常が認められる場合は、通信異常ありと判定してステップS280へ進む。一方、受信データにおいてこのような異常が認められない場合は、通信異常なしと判定してステップS240へ進む。 In step S230, the control circuit 6 determines whether there is a communication abnormality. For example, the reception data from the communication conversion circuits 51 and 52 is obvious, such as when no reception data is output from the communication conversion circuits 51 and 52, or when these reception data are fixed to a fixed value and do not change. If an abnormality is recognized, it is determined that there is a communication abnormality, and the process proceeds to step S280. On the other hand, when such an abnormality is not recognized in the received data, it is determined that there is no communication abnormality and the process proceeds to step S240.
 ステップS240において、制御回路6は、ステップS220で取得した受信データ同士を比較する。すなわち、通信変換回路51から出力された通信信号が表す変換後の受信データと、通信変換回路52から出力された通信信号が表す変換後の受信データとを比較する。そして、これらの内容が同一であるか否かを判断する。 In step S240, the control circuit 6 compares the received data acquired in step S220. That is, the converted reception data represented by the communication signal output from the communication conversion circuit 51 is compared with the reception data after conversion represented by the communication signal output from the communication conversion circuit 52. And it is judged whether these contents are the same.
 ステップS250において、制御回路6は、ステップS240の比較結果を基に、通信変換回路51からの受信データと、通信変換回路52からの受信データとが一致したか否かを判断する。これらの受信データが一致していた場合はステップS260へ進み、一致しなかった場合はステップS270へ進む。 In step S250, the control circuit 6 determines whether or not the received data from the communication conversion circuit 51 matches the received data from the communication conversion circuit 52 based on the comparison result in step S240. If these received data match, the process proceeds to step S260, and if they do not match, the process proceeds to step S270.
 ステップS260において、制御回路6は、通信変換回路51および52が両方とも故障しておらずに正常であると判定する。ステップS260を実行したら、図4に示すフローチャートの処理を終了する。 In step S260, the control circuit 6 determines that the communication conversion circuits 51 and 52 are both normal and not faulty. If step S260 is performed, the process of the flowchart shown in FIG. 4 will be complete | finished.
 ステップS270において、制御回路6は、通信変換回路51または52のいずれか一方が故障していると判定する。この場合、図2のステップS170と同様に、たとえば警告ランプの点灯や警告音の出力などを行うことで、ユーザに故障を報知することが好ましい。ステップS270を実行したら、図4に示すフローチャートの処理を終了する。 In step S270, the control circuit 6 determines that one of the communication conversion circuits 51 or 52 has failed. In this case, it is preferable to notify the user of the failure, for example, by turning on a warning lamp or outputting a warning sound, as in step S170 of FIG. If step S270 is performed, the process of the flowchart shown in FIG. 4 will be complete | finished.
 ステップS280において、制御回路6は、通信信号を出力する通信変換回路を切り替える。このとき制御回路6は、切替スイッチ7の切り替え状態を制御することにより、通信変換回路51または52のうち、ステップS200で選択したのとは異なる方を選択する。そして、当該通信変換回路と監視IC21とが、切替スイッチ7および絶縁素子31を介して互いに接続されるようにする。 In step S280, the control circuit 6 switches the communication conversion circuit that outputs the communication signal. At this time, the control circuit 6 selects a different one of the communication conversion circuits 51 or 52 from the one selected in step S200 by controlling the switching state of the selector switch 7. Then, the communication conversion circuit and the monitoring IC 21 are connected to each other via the changeover switch 7 and the insulating element 31.
 ステップS290において、制御回路6は、通信変換回路51または52のうち、ステップS280の切り替えによって新たに選択された方の通信変換回路に対して、ステップS210と同様の方法により送信データを出力する。 In step S290, the control circuit 6 outputs transmission data to the communication conversion circuit newly selected by switching in step S280 of the communication conversion circuits 51 or 52 by the same method as in step S210.
 ステップS300において、制御回路6は、ステップS220と同様にして、通信変換回路51および52からそれぞれ出力される受信データを取得する。 In step S300, the control circuit 6 acquires the reception data output from the communication conversion circuits 51 and 52 in the same manner as in step S220.
 ステップS310において、制御回路6は、ステップS230と同様の方法により通信異常の有無を判定する。通信異常ありと判定した場合は前述のステップS270へ進み、通信異常なしと判定した場合はステップS320へ進む。 In step S310, the control circuit 6 determines whether or not there is a communication abnormality by the same method as in step S230. If it is determined that there is a communication abnormality, the process proceeds to step S270 described above. If it is determined that there is no communication abnormality, the process proceeds to step S320.
 ステップS320において、制御回路6は、ステップS240と同様に、ステップS300で取得した受信データ同士を比較し、これらの内容が同一であるか否かを判断する。 In step S320, as in step S240, the control circuit 6 compares the received data acquired in step S300 and determines whether or not the contents are the same.
 ステップS330において、制御回路6は、ステップS320の比較結果を基に、通信変換回路51からの受信データと、通信変換回路52からの受信データとが一致したか否かを判断する。これらの受信データが一致していた場合はステップS340へ進み、一致しなかった場合は前述のステップS270へ進む。 In step S330, the control circuit 6 determines whether or not the received data from the communication conversion circuit 51 matches the received data from the communication conversion circuit 52 based on the comparison result in step S320. If these received data match, the process proceeds to step S340, and if they do not match, the process proceeds to step S270 described above.
 ステップS340において、制御回路6は、通信変換回路51または52のうち、最初にステップS200で選択していた方の通信変換回路が故障していると判定する。そして、故障と判定した通信変換回路51または52を以降の選択対象から除外して、今後の電池システム10の監視動作ではこれを用いないようにする。すなわち、ステップS340が実行される場合は、最初に選択した通信変換回路51または52において送信側の通信変換機能が故障していると考えられる。そのため、故障している当該通信変換回路を以降の選択対象から除外することで、正常である方の通信変換回路51または52を用いて、電池システム10の監視を継続できるようにする。なお、この場合もステップS270と同様に、ユーザに故障を報知することが好ましい。ステップS340を実行したら、図4に示すフローチャートの処理を終了する。 In step S340, the control circuit 6 determines that the communication conversion circuit selected first in step S200 out of the communication conversion circuits 51 or 52 has failed. Then, the communication conversion circuit 51 or 52 determined to be out of order is excluded from the subsequent selection targets, and is not used in future monitoring operations of the battery system 10. That is, when step S340 is executed, it is considered that the communication conversion function on the transmission side is broken in the communication conversion circuit 51 or 52 selected first. Therefore, by excluding the communication conversion circuit that is in failure from the subsequent selection targets, the monitoring of the battery system 10 can be continued using the normal communication conversion circuit 51 or 52. In this case as well, it is preferable to notify the user of the failure as in step S270. If step S340 is performed, the process of the flowchart shown in FIG. 4 will be complete | finished.
 以上説明したような処理を実行することで、通信変換回路51、52の故障検出を行うことができる。 By executing the processing as described above, failure detection of the communication conversion circuits 51 and 52 can be performed.
 なお、図4で説明したような処理は、第1の実施形態で説明した図2の処理とは異なり、制御回路6において波形観測のための処理が不要である。そのため、電池システム10の監視動作中に常時実行しても、制御回路6の処理負荷が過大になるおそれが少ない。なお、この場合にも第1の実施形態と同様に、システム起動時等の所定のタイミングにおいて実行するようにしてもよい。 Note that the processing as described in FIG. 4 is different from the processing in FIG. 2 described in the first embodiment, and does not require processing for waveform observation in the control circuit 6. Therefore, even if it is always executed during the monitoring operation of the battery system 10, there is little possibility that the processing load of the control circuit 6 becomes excessive. In this case as well, similar to the first embodiment, it may be executed at a predetermined timing such as when the system is started.
 以上説明した本発明の第2の実施形態によれば、次の作用効果を奏する。 According to the second embodiment of the present invention described above, the following operational effects are obtained.
(1)通信変換回路51、52は、通信順序で最下位の監視IC22から第2符号化方式に従って出力された通信信号を、第1符号化方式に従った通信信号へと変換して、変換後の通信信号を制御回路6へそれぞれ出力する。制御回路6は、これらの通信信号に基づいて通信変換回路51、52の故障を検出する。具体的には、通信変換回路51または52のいずれか一方を選択し(ステップS200)、通信変換回路51から入力された通信信号が表す変換後の受信データと、通信変換回路52から入力された通信信号が表す変換後の受信データとを比較する(ステップS240)。この比較結果に基づいて、通信変換回路51、52の故障を検出する(ステップS270)。このようにしたので、通信変換回路51、52の故障を確実に検出することができる。 (1) The communication conversion circuits 51 and 52 convert the communication signals output from the lowest-order monitoring IC 22 in the communication order according to the second encoding method into communication signals according to the first encoding method, and convert the communication signals. The subsequent communication signals are output to the control circuit 6 respectively. The control circuit 6 detects a failure of the communication conversion circuits 51 and 52 based on these communication signals. Specifically, either one of the communication conversion circuits 51 and 52 is selected (step S200), the converted reception data represented by the communication signal input from the communication conversion circuit 51, and the communication conversion circuit 52 input. The converted reception data represented by the communication signal is compared (step S240). Based on the comparison result, a failure of the communication conversion circuits 51 and 52 is detected (step S270). Since it did in this way, the failure of the communication conversion circuits 51 and 52 can be detected reliably.
(2)制御回路6は、ステップS240の比較結果において、通信変換回路51から入力された通信信号が表す変換後の受信データと、通信変換回路52から入力された通信信号が表す変換後の受信データとが一致しない場合は、通信変換回路51または52のいずれか一方が故障していると判断する(ステップS250、S270)。このようにしたので、通信変換回路51または52のいずれか一方が故障している場合に、その故障を容易に判断することができる。 (2) The control circuit 6 receives the converted reception data represented by the communication signal input from the communication conversion circuit 51 and the converted reception represented by the communication signal input from the communication conversion circuit 52 in the comparison result of step S240. If the data does not match, it is determined that either one of the communication conversion circuits 51 or 52 has failed (steps S250 and S270). Since it did in this way, when either one of the communication conversion circuits 51 or 52 has failed, the failure can be determined easily.
(3)制御回路6は、通信変換回路51または通信変換回路52のいずれか一方を選択したときに通信信号が異常である場合は、当該通信変換回路を選択対象から除外する(ステップS230、S280~S340)。このようにしたので、通信変換回路51または52のいずれか一方において送信側の通信変換機能が故障している場合にも、電池システム10の監視を継続することができる。 (3) If the communication signal is abnormal when either the communication conversion circuit 51 or the communication conversion circuit 52 is selected, the control circuit 6 excludes the communication conversion circuit from the selection target (steps S230 and S280). ~ S340). Since it did in this way, monitoring of the battery system 10 can be continued also when the communication conversion function of the transmission side has failed in either one of the communication conversion circuits 51 or 52.
(第3の実施形態)
 図5は、本発明の第3の実施形態による電池システム監視装置の構成を示す図である。この電池システム監視装置は、図1に示した第1の実施形態による電池システム監視装置の特徴と、図3に示した第2の実施形態による電池システム監視装置の特徴とを組み合わせたものである。すなわち、2つの通信変換回路51および52と、これらを切り替えるための切替スイッチ7とを有しており、制御回路6には送信信号キャプチャ端子CTxおよび受信信号キャプチャ端子CRxが設けられている。
(Third embodiment)
FIG. 5 is a diagram showing a configuration of a battery system monitoring apparatus according to the third embodiment of the present invention. This battery system monitoring apparatus is a combination of the characteristics of the battery system monitoring apparatus according to the first embodiment shown in FIG. 1 and the characteristics of the battery system monitoring apparatus according to the second embodiment shown in FIG. . That is, it has two communication conversion circuits 51 and 52 and a changeover switch 7 for switching between them, and the control circuit 6 is provided with a transmission signal capture terminal CTx and a reception signal capture terminal CRx.
 本実施形態において、制御回路6は、第2の実施形態で説明したのと同様に、通信変換回路51または52のいずれか一方を通信信号の出力先として選択し、通信信号を出力する。そして、通信変換回路51、52からそれぞれ出力された通信信号を受けることで、これらの通信信号が表す受信データを基に電池システム10の監視を行う。さらに、通信変換回路51からの受信データと通信変換回路52からの受信データとを比較することで、通信変換回路51または52による通信信号の変換が正しく行われているか否かを判断し、通信変換回路51、52の故障検出を行う。その結果、通信変換回路51または52のいずれか一方が故障していると判断した場合は、第1の実施形態で説明したのと同様の波形観測を行うことにより、通信変換回路51と通信変換回路52のどちらが故障しているかを特定する。 In the present embodiment, as described in the second embodiment, the control circuit 6 selects either one of the communication conversion circuits 51 and 52 as the output destination of the communication signal and outputs the communication signal. Then, by receiving the communication signals output from the communication conversion circuits 51 and 52, the battery system 10 is monitored based on the reception data represented by these communication signals. Further, by comparing the received data from the communication conversion circuit 51 and the received data from the communication conversion circuit 52, it is determined whether or not the communication signal conversion by the communication conversion circuit 51 or 52 is correctly performed, and the communication Failure detection of the conversion circuits 51 and 52 is performed. As a result, if it is determined that either one of the communication conversion circuits 51 or 52 has failed, the communication conversion circuit 51 and the communication conversion are performed by performing the same waveform observation as described in the first embodiment. It is specified which of the circuits 52 has failed.
 図6は、本実施形態において通信変換回路51、52の故障検出を行う際に制御回路6により実行される処理のフローチャートである。 FIG. 6 is a flowchart of processing executed by the control circuit 6 when failure detection of the communication conversion circuits 51 and 52 is performed in the present embodiment.
 ステップS400~S420において、制御回路6は、図4のステップS200~S220と同様の処理をそれぞれ行う。続くステップS430において、制御回路6は、図4のステップS230と同様に通信異常の有無を判定する。その結果、通信異常ありと判定した場合はステップS470へ進み、通信異常なしと判定した場合はステップS440へ進む。 In steps S400 to S420, the control circuit 6 performs processes similar to those in steps S200 to S220 in FIG. In subsequent step S430, the control circuit 6 determines whether or not there is a communication abnormality as in step S230 of FIG. As a result, if it is determined that there is a communication abnormality, the process proceeds to step S470, and if it is determined that there is no communication abnormality, the process proceeds to step S440.
 ステップS440において、制御回路6は、ステップS420で取得した受信データ同士を比較する。すなわち、通信変換回路51から出力された通信信号が表す変換後の受信データと、通信変換回路52から出力された通信信号が表す変換後の受信データとを比較する。そして、これらの内容が同一であるか否かを判断する。 In step S440, the control circuit 6 compares the received data acquired in step S420. That is, the converted reception data represented by the communication signal output from the communication conversion circuit 51 is compared with the reception data after conversion represented by the communication signal output from the communication conversion circuit 52. And it is judged whether these contents are the same.
 ステップS450において、制御回路6は、ステップS440の比較結果を基に、通信変換回路51からの受信データと、通信変換回路52からの受信データとが一致したか否かを判断する。これらの受信データが一致していた場合はステップS460へ進み、一致しなかった場合はステップS470へ進む。 In step S450, the control circuit 6 determines whether or not the received data from the communication conversion circuit 51 matches the received data from the communication conversion circuit 52 based on the comparison result in step S440. If these received data match, the process proceeds to step S460, and if they do not match, the process proceeds to step S470.
 ステップS460において、制御回路6は、通信変換回路51および52が両方とも故障しておらずに正常であると判定する。ステップS460を実行したら、図6に示すフローチャートの処理を終了する。 In step S460, the control circuit 6 determines that the communication conversion circuits 51 and 52 are both normal and are not faulty. If step S460 is performed, the process of the flowchart shown in FIG. 6 will be complete | finished.
 ステップS470~S520において、制御回路6は、ステップS400で選択した通信変換回路51または52に対して、図2のステップS100~S150と同様の処理をそれぞれ行う。すなわち、選択した通信変換回路51または52に対して送信データを出力し、そのときに送信信号キャプチャ端子CTxに入力される送信波形と、受信信号キャプチャ端子CRxに入力される受信波形とを観測する。この観測波形から変換後の送信データおよび変換前の受信データを判別し、これらに基づいて、送信データと受信データを通信変換回路51または52による変換の前後でそれぞれ比較する。 In steps S470 to S520, the control circuit 6 performs the same processing as in steps S100 to S150 of FIG. 2 on the communication conversion circuit 51 or 52 selected in step S400. That is, transmission data is output to the selected communication conversion circuit 51 or 52, and the transmission waveform input to the transmission signal capture terminal CTx and the reception waveform input to the reception signal capture terminal CRx at that time are observed. . From this observed waveform, the transmission data after conversion and the reception data before conversion are discriminated, and based on these, the transmission data and the reception data are compared before and after conversion by the communication conversion circuit 51 or 52, respectively.
 ステップS530において、制御回路6は、ステップS520の比較結果を基に、送信データと受信データが変換前後でそれぞれ一致したか否かを判断する。送信データと受信データが両方とも変換前後でそれぞれ一致していた場合はステップS540へ進み、送信データと受信データのいずれか少なくとも一方が変換前後で一致しなかった場合はステップS550へ進む。 In step S530, the control circuit 6 determines whether the transmission data and the reception data match before and after the conversion based on the comparison result in step S520. If both the transmission data and the reception data match before and after conversion, the process proceeds to step S540. If at least one of the transmission data and the reception data does not match before and after conversion, the process proceeds to step S550.
 ステップS540において、制御回路6は、図4のステップS280と同様に、通信信号を出力する通信変換回路を切り替える。このとき制御回路6は、切替スイッチ7の切り替え状態を制御することにより、通信変換回路51または52のうち、ステップS400で選択したのとは異なる方を選択する。そして、当該通信変換回路と監視IC21とが、切替スイッチ7および絶縁素子31を介して互いに接続されるようにする。ステップS540を実行したらステップS470へ戻り、ステップS540の切り替えによって新たに選択された方の通信変換回路に対して、前述したような処理を繰り返す。これにより、通信変換回路51または52について、送信データと受信データのいずれか少なくとも一方が変換前後で一致しないと判定されるようにする。 In step S540, the control circuit 6 switches the communication conversion circuit that outputs the communication signal, similarly to step S280 in FIG. At this time, the control circuit 6 selects the communication conversion circuit 51 or 52 that is different from the one selected in step S400 by controlling the switching state of the selector switch 7. Then, the communication conversion circuit and the monitoring IC 21 are connected to each other via the changeover switch 7 and the insulating element 31. When step S540 is executed, the process returns to step S470, and the above-described processing is repeated for the communication conversion circuit newly selected by switching in step S540. As a result, the communication conversion circuit 51 or 52 determines that at least one of transmission data and reception data does not match before and after conversion.
 ステップS550において、制御回路6は、通信変換回路51または52のうち、直近に実行されたステップS400またはステップS540で選択された通信変換回路が故障していると判定する。そして、故障と判定した通信変換回路51または52を以降の選択対象から除外して、今後の電池システム10の監視動作ではこれを用いないようにする。すなわち、前述のステップS520およびS530の処理により、通信変換回路51または52について、その送信データまたは受信データのいずれか少なくとも一方が変換前後で一致しないと判定することで、当該通信変換回路が故障していることを特定できる。そのため、故障している当該通信変換回路を以降の選択対象から除外することで、正常である方の通信変換回路51または52を用いて、電池システム10の監視を継続できるようにする。なお、この場合も図4のステップS270やS340と同様に、ユーザに故障を報知することが好ましい。ステップS550を実行したら、図6に示すフローチャートの処理を終了する。 In step S550, the control circuit 6 determines that the communication conversion circuit selected in step S400 or step S540 executed most recently among the communication conversion circuits 51 or 52 has failed. Then, the communication conversion circuit 51 or 52 determined to be out of order is excluded from the subsequent selection targets, and is not used in future monitoring operations of the battery system 10. That is, by determining that at least one of the transmission data or the reception data does not match before and after the conversion for the communication conversion circuit 51 or 52 by the processing of the above-described steps S520 and S530, the communication conversion circuit fails. Can be identified. Therefore, by excluding the communication conversion circuit that is in failure from the subsequent selection targets, the monitoring of the battery system 10 can be continued using the normal communication conversion circuit 51 or 52. In this case as well, it is preferable to notify the user of the failure as in steps S270 and S340 of FIG. When step S550 is executed, the processing of the flowchart shown in FIG.
 以上説明したような処理を実行することで、通信変換回路51、52の故障検出を行うことができる。 By executing the processing as described above, failure detection of the communication conversion circuits 51 and 52 can be performed.
 以上説明した本発明の第3の実施形態によれば、次の作用効果を奏する。 According to the third embodiment of the present invention described above, the following operational effects are obtained.
(1)通信変換回路51、52は、通信順序で最下位の監視IC22から第2符号化方式に従って出力された通信信号を、第1符号化方式に従った通信信号へと変換して、変換後の通信信号を制御回路6へそれぞれ出力する。制御回路6は、これらの通信信号に基づいて通信変換回路51、52の故障を検出する。具体的には、通信変換回路51または52のいずれか一方を選択し(ステップS400)、通信変換回路51から入力された通信信号が表す変換後の受信データと、通信変換回路52から入力された通信信号が表す変換後の受信データとが一致するか否かを判定する(ステップS440、S450)。その結果、これらが一致しない場合は、通信変換回路51または52を選択した場合の送信波形および受信波形を観測する(ステップS480、S490)。そして、通信変換回路51を選択した場合の観測波形に基づく変換後の送信データおよび/または変換前の受信データと、通信変換回路52を選択した場合の観測波形に基づく変換後の送信データおよび/または変換前の受信データとのいずれか少なくとも一つに基づいて、通信変換回路51または通信変換回路52のどちらが故障しているかを判断する(ステップS550)。このようにしたので、通信変換回路51、52の故障を確実に検出することができる。 (1) The communication conversion circuits 51 and 52 convert the communication signals output from the lowest-order monitoring IC 22 in the communication order according to the second encoding method into communication signals according to the first encoding method, and convert the communication signals. The subsequent communication signals are output to the control circuit 6 respectively. The control circuit 6 detects a failure of the communication conversion circuits 51 and 52 based on these communication signals. Specifically, either one of the communication conversion circuits 51 or 52 is selected (step S400), and the received data after conversion represented by the communication signal input from the communication conversion circuit 51 and the communication conversion circuit 52 are input. It is determined whether or not the converted reception data represented by the communication signal matches (steps S440 and S450). As a result, if they do not match, the transmission waveform and the reception waveform when the communication conversion circuit 51 or 52 is selected are observed (steps S480 and S490). Then, the transmission data after conversion based on the observation waveform when the communication conversion circuit 51 is selected and / or the reception data before conversion, and the transmission data after conversion based on the observation waveform when the communication conversion circuit 52 is selected and / or Alternatively, based on at least one of the received data before conversion, it is determined which of the communication conversion circuit 51 and the communication conversion circuit 52 is out of order (step S550). Since it did in this way, the failure of the communication conversion circuits 51 and 52 can be detected reliably.
(2)制御回路6は、通信変換回路51または通信変換回路52のうち、ステップS550で故障していると判断した方を選択対象から除外する。このようにしたので、通信変換回路51または52のいずれか一方が故障している場合にも、電池システム10の監視を継続することができる。 (2) The control circuit 6 excludes the communication conversion circuit 51 or the communication conversion circuit 52 that is determined to have a failure in step S550 from the selection targets. Since it did in this way, monitoring of the battery system 10 can be continued also when either one of the communication conversion circuits 51 or 52 is out of order.
 なお、以上説明した各実施形態では、電池システム10に対して2つの監視IC21、22が接続されており、これらの監視IC21、22の間で通信信号を伝送する例を説明したが、監視ICの個数はこれに限定されない。電池システム10におけるセルグループ数に応じて、任意の個数の監視ICを用いることができる。 In each of the embodiments described above, an example in which two monitoring ICs 21 and 22 are connected to the battery system 10 and a communication signal is transmitted between these monitoring ICs 21 and 22 has been described. The number of is not limited to this. Any number of monitoring ICs can be used depending on the number of cell groups in the battery system 10.
 また、以上説明した各実施形態は、本発明の一例であり、本発明はこれらの実施形態に限定されない。当業者であれば、本発明の特徴を損なわずに様々な変形実施が可能である。たとえば、通信変換回路5、または通信変換回路51および52を介して、制御回路6と変換IC21、22との間で入出力される通信信号を、ノイズに強くするために差動型としても良い。 Each embodiment described above is an example of the present invention, and the present invention is not limited to these embodiments. Those skilled in the art can implement various modifications without impairing the features of the present invention. For example, a communication signal input / output between the control circuit 6 and the conversion ICs 21 and 22 via the communication conversion circuit 5 or the communication conversion circuits 51 and 52 may be of a differential type in order to make it strong against noise. .
1 リチウムイオン電池
10 電池システム
21、22 監視IC
31、32 絶縁素子
4 コンデンサ
5、51、52 通信変換回路
6 制御回路
7 切替スイッチ
1 Lithium-ion battery 10 Battery system 21, 22 Monitoring IC
31, 32 Insulating element 4 Capacitors 5, 51, 52 Communication conversion circuit 6 Control circuit 7 Changeover switch

Claims (10)

  1.  複数の単電池セルを直列接続したセルグループを複数個備えた電池システムを監視する電池システム監視装置であって、
     前記セルグループごとに設けられ、対応するセルグループの各単電池セルを監視および制御する電池監視・制御用集積回路と、
     前記電池監視・制御用集積回路との間で通信信号を入出力する制御回路と、
     前記制御回路と前記電池監視・制御用集積回路との間で入出力される前記通信信号の変換を行う通信変換回路と、を備え、
     前記電池監視・制御用集積回路は、所定の通信順序に応じて互いに接続されており、
     前記通信変換回路は、前記制御回路から第1の符号化方式に従って出力された通信信号を、前記第1の符号化方式とは異なる第2の符号化方式に従った通信信号へと変換して、変換後の通信信号を前記通信順序で最上位の電池監視・制御用集積回路へ出力し、
     前記電池監視・制御用集積回路の各々は、前記第2の符号化方式に従った通信信号を、前記通信順序に応じて伝送し、
     前記通信変換回路は、前記通信順序で最下位の電池監視・制御用集積回路から前記第2の符号化方式に従って出力された通信信号を、前記第1の符号化方式に従った通信信号へと変換して、変換後の通信信号を前記制御回路へ出力し、
     前記制御回路は、前記通信信号に基づいて前記通信変換回路の故障を検出することを特徴とする電池システム監視装置。
    A battery system monitoring device for monitoring a battery system including a plurality of cell groups in which a plurality of single battery cells are connected in series,
    A battery monitoring / controlling integrated circuit that is provided for each cell group and that monitors and controls each single battery cell of the corresponding cell group;
    A control circuit for inputting / outputting communication signals to / from the battery monitoring / control integrated circuit;
    A communication conversion circuit for converting the communication signal input and output between the control circuit and the battery monitoring / control integrated circuit;
    The battery monitoring / control integrated circuits are connected to each other according to a predetermined communication order,
    The communication conversion circuit converts a communication signal output from the control circuit according to a first encoding method into a communication signal according to a second encoding method different from the first encoding method. The converted communication signal is output to the highest-order battery monitoring / control integrated circuit in the communication order,
    Each of the battery monitoring / control integrated circuits transmits a communication signal according to the second encoding method according to the communication order,
    The communication conversion circuit converts a communication signal output from the lowest battery monitoring / controlling integrated circuit in the communication order according to the second encoding method into a communication signal according to the first encoding method. Convert, and output the converted communication signal to the control circuit,
    The battery circuit monitoring device, wherein the control circuit detects a failure of the communication conversion circuit based on the communication signal.
  2.  請求項1に記載の電池システム監視装置において、
     前記制御回路は、前記通信変換回路から前記電池監視・制御用集積回路へ出力される通信信号の波形である送信波形と、前記電池監視・制御用集積回路から前記通信変換回路へ出力される通信信号の波形である受信波形とのいずれか少なくとも一つを観測し、その観測波形に基づいて前記通信変換回路の故障を検出することを特徴とする電池システム監視装置。
    The battery system monitoring device according to claim 1,
    The control circuit includes a transmission waveform that is a waveform of a communication signal output from the communication conversion circuit to the battery monitoring / control integrated circuit, and a communication output from the battery monitoring / control integrated circuit to the communication conversion circuit. A battery system monitoring apparatus characterized by observing at least one of a reception waveform which is a signal waveform and detecting a failure of the communication conversion circuit based on the observed waveform.
  3.  請求項2に記載の電池システム監視装置において、
     前記制御回路は、
     前記送信波形を観測した場合は、前記送信波形に基づいて当該通信信号が表す変換後の送信データを判別し、
     前記受信波形を観測した場合は、前記受信波形に基づいて当該通信信号が表す変換前の受信データを判別し、
     前記変換後の送信データと、前記変換前の受信データとのいずれか少なくとも一つに基づいて、前記通信変換回路の故障を検出することを特徴とする電池システム監視装置。
    The battery system monitoring device according to claim 2,
    The control circuit includes:
    When observing the transmission waveform, determine the transmission data after conversion represented by the communication signal based on the transmission waveform,
    When observing the received waveform, determine the received data before conversion represented by the communication signal based on the received waveform,
    A battery system monitoring apparatus that detects a failure of the communication conversion circuit based on at least one of the transmission data after conversion and the reception data before conversion.
  4.  請求項3に記載の電池システム監視装置において、
     前記制御回路は、
     前記通信信号として、所定の送信データを前記通信変換回路へ出力すると共に、前記通信変換回路から所定の受信データを受信し、
     前記送信データと前記変換後の送信データとが一致しない場合、または前記変換前の受信データと前記受信データとが一致しない場合は、前記通信変換回路が故障していると判断することを特徴とする電池システム監視装置。
    The battery system monitoring device according to claim 3,
    The control circuit includes:
    As the communication signal, predetermined transmission data is output to the communication conversion circuit, and predetermined reception data is received from the communication conversion circuit,
    When the transmission data and the converted transmission data do not match, or when the reception data before the conversion and the reception data do not match, it is determined that the communication conversion circuit is faulty. Battery system monitoring device.
  5.  請求項2乃至4のいずれか一項に記載の電池システム監視装置において、
     前記制御回路は、前記波形の観測を所定のタイミングで実行することを特徴とする電池システム監視装置。
    In the battery system monitoring device according to any one of claims 2 to 4,
    The battery system monitoring apparatus, wherein the control circuit executes the observation of the waveform at a predetermined timing.
  6.  請求項1乃至5のいずれか一項に記載の電池システム監視装置において、
     前記通信変換回路は、第1の通信変換回路および第2の通信変換回路を含み、
     前記制御回路は、前記第1の通信変換回路または前記第2の通信変換回路のいずれか一方を選択し、
     前記制御回路により選択された前記第1の通信変換回路または前記第2の通信変換回路は、前記制御回路から出力された通信信号を受けて変換後の通信信号を前記通信順序で最上位の電池監視・制御用集積回路へ出力し、
     前記第1の通信変換回路および前記第2の通信変換回路は、前記通信順序で最下位の電池監視・制御用集積回路から出力された通信信号を受けて変換後の通信信号を前記制御回路へそれぞれ出力し、
     前記制御回路は、前記第1の通信変換回路から入力された通信信号が表す変換後の受信データと、前記第2の通信変換回路から入力された通信信号が表す変換後の受信データとを比較し、その比較結果に基づいて前記通信変換回路の故障を検出することを特徴とする電池システム監視装置。
    In the battery system monitoring device according to any one of claims 1 to 5,
    The communication conversion circuit includes a first communication conversion circuit and a second communication conversion circuit,
    The control circuit selects either the first communication conversion circuit or the second communication conversion circuit,
    The first communication conversion circuit or the second communication conversion circuit selected by the control circuit receives the communication signal output from the control circuit and converts the converted communication signal to the highest battery in the communication order. Output to the integrated circuit for monitoring and control,
    The first communication conversion circuit and the second communication conversion circuit receive a communication signal output from the lowest battery monitoring / controlling integrated circuit in the communication order, and convert the converted communication signal to the control circuit. Output each
    The control circuit compares the converted reception data represented by the communication signal input from the first communication conversion circuit with the converted reception data represented by the communication signal input from the second communication conversion circuit. And detecting a failure of the communication conversion circuit based on the comparison result.
  7.  請求項6に記載の電池システム監視装置において、
     前記制御回路は、前記第1の通信変換回路から入力された通信信号が表す変換後の受信データと、前記第2の通信変換回路から入力された通信信号が表す変換後の受信データとが一致しない場合は、前記第1の通信変換回路または前記第2の通信変換回路のいずれか一方が故障していると判断することを特徴とする電池システム監視装置。
    The battery system monitoring device according to claim 6,
    In the control circuit, the converted reception data represented by the communication signal input from the first communication conversion circuit matches the converted reception data represented by the communication signal input from the second communication conversion circuit. If not, it is determined that either one of the first communication conversion circuit or the second communication conversion circuit is out of order.
  8.  請求項6または7に記載の電池システム監視装置において、
     前記制御回路は、前記第1の通信変換回路または前記第2の通信変換回路のいずれか一方を選択したときに前記通信信号が異常である場合は、当該通信変換回路を選択対象から除外することを特徴とする電池システム監視装置。
    The battery system monitoring device according to claim 6 or 7,
    If the communication signal is abnormal when either the first communication conversion circuit or the second communication conversion circuit is selected, the control circuit excludes the communication conversion circuit from the selection target. A battery system monitoring device characterized by the above.
  9.  請求項2乃至5のいずれか一項に記載の電池システム監視装置において、
     前記通信変換回路は、第1の通信変換回路および第2の通信変換回路を含み、
     前記制御回路は、前記第1の通信変換回路または前記第2の通信変換回路のいずれか一方を選択し、
     前記制御回路により選択された前記第1の通信変換回路または前記第2の通信変換回路は、前記制御回路から出力された通信信号を受けて変換後の通信信号を前記通信順序で最上位の電池監視・制御用集積回路へ出力し、
     前記第1の通信変換回路および前記第2の通信変換回路は、前記通信順序で最下位の電池監視・制御用集積回路から出力された通信信号を受けて変換後の通信信号を前記制御回路へそれぞれ出力し、
     前記制御回路は、前記第1の通信変換回路から入力された通信信号が表す変換後の受信データと、前記第2の通信変換回路から入力された通信信号が表す変換後の受信データとが一致しない場合は、前記第1の通信変換回路を選択した場合の観測波形に基づく前記変換後の送信データおよび/または前記変換前の受信データと、前記第2の通信変換回路を選択した場合の観測波形に基づく前記変換後の送信データおよび/または前記変換前の受信データとのいずれか少なくとも一つに基づいて、前記第1の通信変換回路または前記第2の通信変換回路のどちらが故障しているかを判断することを特徴とする電池システム監視装置。
    In the battery system monitoring device according to any one of claims 2 to 5,
    The communication conversion circuit includes a first communication conversion circuit and a second communication conversion circuit,
    The control circuit selects either the first communication conversion circuit or the second communication conversion circuit,
    The first communication conversion circuit or the second communication conversion circuit selected by the control circuit receives the communication signal output from the control circuit and converts the converted communication signal to the highest battery in the communication order. Output to the integrated circuit for monitoring and control,
    The first communication conversion circuit and the second communication conversion circuit receive a communication signal output from the lowest battery monitoring / controlling integrated circuit in the communication order, and convert the converted communication signal to the control circuit. Output each
    In the control circuit, the converted reception data represented by the communication signal input from the first communication conversion circuit matches the converted reception data represented by the communication signal input from the second communication conversion circuit. If not, the transmission data after conversion and / or the reception data before conversion based on the observation waveform when the first communication conversion circuit is selected, and the observation when the second communication conversion circuit is selected Which of the first communication conversion circuit and the second communication conversion circuit is malfunctioning based on at least one of the transmission data after conversion and / or the reception data before conversion based on a waveform The battery system monitoring device characterized by determining.
  10.  請求項9に記載の電池システム監視装置において、
     前記制御回路は、前記第1の通信変換回路または前記第2の通信変換回路のうち故障していると判断した方を選択対象から除外することを特徴とする電池システム監視装置。
    The battery system monitoring device according to claim 9,
    The battery system monitoring device, wherein the control circuit excludes one of the first communication conversion circuit and the second communication conversion circuit that is determined to be faulty as a selection target.
PCT/JP2013/066774 2012-08-29 2013-06-19 Battery system monitor device WO2014034230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012188546A JP6005445B2 (en) 2012-08-29 2012-08-29 Battery system monitoring device
JP2012-188546 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014034230A1 true WO2014034230A1 (en) 2014-03-06

Family

ID=50183054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066774 WO2014034230A1 (en) 2012-08-29 2013-06-19 Battery system monitor device

Country Status (2)

Country Link
JP (1) JP6005445B2 (en)
WO (1) WO2014034230A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878405B1 (en) * 2014-04-14 2018-07-16 엘에스산전 주식회사 energy storage system with checking function
JP6819233B2 (en) * 2016-11-17 2021-01-27 株式会社オートネットワーク技術研究所 Battery monitoring system for vehicles
JP7184691B2 (en) * 2019-03-28 2022-12-06 ラピスセミコンダクタ株式会社 Monitoring device and battery monitoring system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061927A (en) * 2009-09-08 2011-03-24 Hitachi Ltd Battery controller and electric power unit
JP2011182558A (en) * 2010-03-01 2011-09-15 Pues Corp Assembled battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061927A (en) * 2009-09-08 2011-03-24 Hitachi Ltd Battery controller and electric power unit
JP2011182558A (en) * 2010-03-01 2011-09-15 Pues Corp Assembled battery

Also Published As

Publication number Publication date
JP2014050119A (en) 2014-03-17
JP6005445B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP4186916B2 (en) Battery pack management device
US8659265B2 (en) Battery pack and method of sensing voltage of battery pack
JP5747900B2 (en) Battery monitoring device
US9728993B2 (en) Battery management system and battery system
US9551750B2 (en) Monitoring system and vehicle
JP7302765B2 (en) Battery diagnostic device and method
US10444295B2 (en) Battery balance management circuit
CN102067372A (en) Secondary battery pack
US8428896B2 (en) Malfunction detecting apparatus
CN104838536A (en) Battery management system and battery system
EP3260871B1 (en) Battery system monitoring apparatus
JP2013092397A (en) Battery monitoring device
JP6581706B2 (en) Battery management device
JPWO2018101005A1 (en) Battery control unit
JP2012088106A (en) Battery state monitoring apparatus
JP6005445B2 (en) Battery system monitoring device
JP6251136B2 (en) Battery system monitoring device and power storage device including the same
JP6129346B2 (en) Battery system monitoring device
JP2007020336A (en) Failure detection device for battery malfunction detection circuit
JP6787705B2 (en) Anomaly detector and battery system
US20190288523A1 (en) Power supply system including high-voltage system and low-voltage system
JP2015100179A (en) Battery monitoring device
US9203235B2 (en) Method for monitoring a disconnection device, in particular a service plug or a service socket, in a battery system, and corresponding monitoring device
JP5742745B2 (en) Battery status monitoring device
JP5910538B2 (en) Battery monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832492

Country of ref document: EP

Kind code of ref document: A1