WO2014034158A1 - 連続処理装置 - Google Patents

連続処理装置 Download PDF

Info

Publication number
WO2014034158A1
WO2014034158A1 PCT/JP2013/054740 JP2013054740W WO2014034158A1 WO 2014034158 A1 WO2014034158 A1 WO 2014034158A1 JP 2013054740 W JP2013054740 W JP 2013054740W WO 2014034158 A1 WO2014034158 A1 WO 2014034158A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
processing
processing apparatus
injection
continuous processing
Prior art date
Application number
PCT/JP2013/054740
Other languages
English (en)
French (fr)
Inventor
陽 銅谷
秀徳 後藤
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to CN201380043123.7A priority Critical patent/CN104582828B/zh
Priority to CA2881636A priority patent/CA2881636C/en
Priority to EP13833157.4A priority patent/EP2891518A4/en
Priority to US14/423,045 priority patent/US9527058B2/en
Priority to KR1020157003566A priority patent/KR101762042B1/ko
Publication of WO2014034158A1 publication Critical patent/WO2014034158A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/103Mixing by creating a vortex flow, e.g. by tangential introduction of flow components with additional mixing means other than vortex mixers, e.g. the vortex chamber being positioned in another mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/104Mixing by creating a vortex flow, e.g. by tangential introduction of flow components characterised by the arrangement of the discharge opening
    • B01F25/1041Mixing by creating a vortex flow, e.g. by tangential introduction of flow components characterised by the arrangement of the discharge opening the mixing chamber being vertical with the outlet tube at its upper side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/813Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles mixing simultaneously in two or more mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1862Stationary reactors having moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2435Loop-type reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a continuous processing apparatus for circulating a processing liquid.
  • it relates to a continuous reaction apparatus with reaction.
  • the A component, B component or C component is put into the stirring contact processing tank 1, and stirred by the stirring blade 3 with the stirring motor 2, thereby promoting the reaction of each component. It is common to make it.
  • the product liquid is withdrawn from the discharge port 5, and then target crystallized particles are obtained by, for example, filtration, washing and drying.
  • 4 is a baffle.
  • Patent Document 1 A technique for bringing a component into contact with another component in the process of moving the component in a cyclone method is described in Patent Document 1.
  • a main object of the present invention is to provide a reaction apparatus that exhibits a sufficient throughput while exhibiting a uniform contact processability even though it is a small processing apparatus.
  • inventions that has solved this problem is as follows.
  • a processing unit an injection means for injecting an injection solution into the processing unit, and a processing solution is extracted from the other end of the processing unit, and at least a part of the extracted processing solution is returned to the one end of the processing unit.
  • Circulation means A continuous processing apparatus characterized in that the liquid flow in the processor is a swirl flow, and the injection liquid is injected at a position closer to the center than the inner surface of the processor.
  • the contact processing field in the processing unit is a region on the center side from the inner surface of the processing unit of the swirling flow generated in the processing unit, and the contact processing of the injection solution is performed in the contact processing field.
  • Item 8 The continuous processing apparatus according to Item 1.
  • the present inventor tried to develop a reaction processing apparatus using a tube reactor as an apparatus that exhibits a sufficient throughput while being a small processing apparatus.
  • fine showers primary nuclei
  • crystals grow from this as the nuclei, blocking the flow and long-term stable operation.
  • the liquid flow in the processing unit is swirled, and the injection liquid to be processed is injected at a position closer to the center than the inner surface of the processing unit in the contact processing field in the processing unit, It has been found that the above-mentioned problems can be solved by performing the treatment.
  • various liquids including an injection liquid containing an inorganic substance to be injected are injected from, for example, the tangential direction of the inner wall surface of the container, thereby turning the liquid flow in the processing device into a swirl flow.
  • the flow can be a contact treatment plant.
  • a swirling flow is generated by circulating the liquid to the processor and returning the circulating liquid to the processor, a cylindrical body having a thickness where the outer peripheral portion of the swirling flow is on the inner surface of the processor Forming part.
  • the processing unit may have a cylindrical shape in which the inner space has a uniform radius, but a processing unit having a tapered inner surface from one end in the longitudinal direction toward the other end is suitable for generating a swirling flow.
  • a processing device it is desirable to secure a certain long space along the longitudinal direction in order to lengthen the swirl flow contact processing field. In view of this, it is preferable that the liquid flow in from one end portion in the longitudinal direction of the processing device and flow out from the other end portion in the longitudinal direction.
  • Processors can be arranged in parallel, for example, when it is desired to increase the amount of processing. In particular, when the same processors are arranged in parallel, the amount of processing can be increased after uniform contact processing is performed. When installing in the series direction, a pressure gradient is generated in the flow direction. Therefore, when all the processors are desired to react uniformly, a parallel arrangement is preferable.
  • the injection direction of the injected liquid with respect to the contact treatment field may be directed to the upstream direction of the swirl flow of the liquid, but the direction directed to the downstream direction of the swirl flow of the liquid is the inner surface of the material. Less adhesion.
  • the liquid is circulated to the processor, and two external tanks are provided in series in the middle of the circulation system, and the downstream external tank is an external sedimentation separation tank that does not inject the injection liquid.
  • the continuous processing apparatus of Claim 2 which returns only the upper microparticle group of an external sedimentation tank to a processor.
  • the treatment includes a crystallization treatment
  • the upstream external tank can also be used as a buffer tank or a processing tank.
  • the particle size distribution in the processor can be adjusted.
  • the effect of reducing the reaction product gas in the liquid is obtained in advance, which reduces the concentration of the reaction product in the circulating liquid and facilitates the reaction in the forward direction, improving the reaction rate. The effect can be expected.
  • the processing unit can be made of metal or the like, and the processing unit can be formed in a body block such as a transparent plastic by, for example, cutting.
  • the contact efficiency of the injected liquid with respect to the mother liquor is improved, mass transfer is further promoted, and a mixing effect is obtained.
  • the injection solution can be stably injected in a reactor with pressure fluctuation.
  • the injection port shape may be not only a circular cross section but also a cross section such as a square cross section. In the case of a square cross section (b ⁇ h), the lateral length b (height h) is read as D1.
  • reaction apparatus that exhibits a sufficient throughput while exhibiting a uniform contact processability even though it is a small processing apparatus.
  • FIG. 1 It is a schematic diagram of another example of a form. It is a schematic diagram of another example of a form. It is a schematic diagram of another example of a form. An example of a block unit is shown, (a) is a plan view and (b) is a front view. It is a schematic diagram of another example of a block unit. It is a schematic diagram of the example of another block unit. It is a schematic diagram of the example of another block unit. It is a schematic diagram of another example of a form. It is a schematic diagram of the example of a form of a processing unit, (a) is a top view and (b) is a front view. It is a schematic diagram of an example of an integrated device. It is a schematic diagram of a prior art example. 3 is a graph showing changes in particle diameter of Example 1. 2 is a SEM photograph of particles in Example 1. 6 is a graph showing a change in particle diameter of Comparative Example 1. 2 is a SEM photograph of particles in Comparative Example 1.
  • a typical example of the present invention is a continuous processing apparatus for obtaining metal particles used for producing a positive electrode active material for a lithium ion battery, for example.
  • a specific example is directed to manufacturing aggregated particles using transition metals of Ni, Co, and Mn.
  • a method for injecting an injection solution containing an inorganic substance to be injected in a swirl flow contact treatment field in a processing device at a position closer to the center side than the inner surface of the processing device and performing the contact processing is generally widely used. Since it can be applied to the case where aggregated particles are obtained from an inorganic substance, metals other than the transition metal and other inorganic substances may be targeted.
  • FIG. 4 shows a first example of the present invention, in which a liquid flow in the processing device 10 is a swirl flow, and an injection solution containing an inorganic substance to be injected is used as a contact treatment field in the processing device 10.
  • the injection is carried out at a position on the center side from the inner surface of the processor 10 to perform a contact process.
  • a liquid, B liquid, and C liquid are injected as an injection liquid containing an inorganic substance to be injected.
  • gas D inert gas such as nitrogen gas or carbon dioxide gas
  • the first example of the present invention is an example in which the injection direction of the injection liquid containing the inorganic substance to be injected into the contact treatment field is directed to the downstream direction of the swirling flow of the liquid.
  • the illustrated processor 10 is facing in the saddle direction, in principle it does not affect the flow and may be in the landscape direction.
  • the illustrated processor 10 circulates the liquid through the circulation paths 11 and 14 (the extraction path 11 and the return path 14) by the circulation pump 13, and causes the return liquid of the circulating liquid to flow into the processor 10.
  • a swirl flow is generated.
  • Reference numeral 15 denotes a temperature controller for heating or cooling the liquid.
  • the inner surface of the processing device 10 is tapered from one end portion in the longitudinal direction to the other end portion, and the inflow position including the inlet 10X for returning the circulating fluid is the processing device 10.
  • the return liquid is allowed to flow in substantially the tangential direction in a form along the inner peripheral surface thereof. Thereby, a swirl flow R is formed.
  • the outflow position including the outflow outlet 10Y of the effluent after the contact treatment is performed is the other end in the longitudinal direction. Further, the final contact treatment liquid is allowed to flow out from the overflow port 10Z at one end in the longitudinal direction.
  • the liquid flow in the processor 10 becomes a swirl flow R, but there is a tendency that a hollow portion V is formed at the center of the upper part and at the center of the vortex.
  • the flow in the inner peripheral portion in the vicinity of the vortex center of the swirling flow R is remarkably faster than the average flow velocity, and the flow disturbance is large.
  • injection liquids A to C containing the metal to be injected are injected at such positions, the injection liquid diffuses rapidly and a homogeneous reaction is possible. Therefore, it is desirable to prevent the infusion solutions A to C from contacting each other until they are discharged from their tips using the infusion tubes 16A, 16B. Furthermore, it is desirable to insert the guide tube 17 so as not to be affected by the swirling flow R.
  • the injection positions of the injection liquids A to C containing the inorganic substance to be injected are sufficient if they are injected at a position closer to the center than the inner wall surface of the processing device 10 in the contact processing field in the processing device 10. Is within 2/3 of the radius r, preferably within 1/2.
  • the final contact treatment liquid flows out from the overflow port 10Z and is guided to the reservoir 20 through the extraction path 19, and at an appropriate time, the extraction valve 21 is opened from the bottom thereof, and the aggregated particle liquid is extracted to be a final product by the pump 22.
  • Lead to the process. 23 is a stirrer.
  • the processors 10, 10... That provide the contact processing field can be arranged in series.
  • the overflow in the first stage processor 10 can be guided to the reservoir 20, and the effluent from the final stage processor 10 can be circulated to the first stage processor 10.
  • injection liquids A to C containing the metal to be injected can be injected from the bottom to the top with respect to the processor 10 that provides the contact treatment field.
  • the example of FIG. 6 is an example in which the injection direction of the injection liquid containing the inorganic substance to be injected with respect to the contact treatment field is directed upstream of the swirling flow of the liquid.
  • the effluent from the upper part is circulated and a part thereof is extracted and led to the reservoir 20 through the extraction path 19.
  • the liquid can be extracted from the lower part of the processor 10 by the extraction pump 24 and guided to the reservoir 20 through the extraction path 25.
  • the processing units 10, 10... That provide the contact processing field are connected in series even in the injection form of the injection liquids A to C containing the metal to be injected from the bottom to the top. Can be arranged.
  • processors 10, 10... That provide the contact processing field can be arranged in parallel.
  • the treatment device having a tapered inner surface from one end to the other end in the longitudinal direction is suitable for generating a swirling flow, but may be a cylindrical one having a uniform inner radius.
  • the rotary cylinder 40 is arranged in the processor 10 so as to be rotated by a motor 41, and the injection liquids A to C containing the metal to be injected are injected through the injection pipes 42 and 43. It is also possible to inject in the tangential direction of the inner wall surface and to discharge the effluent after the contact treatment is performed from the outflow pipe 44 at the other end. In this case, the rotating cylinder 40 can be rotated as necessary to promote the swirling flow.
  • the swirl flow can be generated by rotating a plurality of stirring blades 50, 50,.
  • FIG. 12 can also be used. That is, the liquid is circulated to the processor 10 through the circulation paths 11A and 11B, and is completely different from the processor 10 in the middle of the circulation system, and has a completely mixed type outside having a stirring blade.
  • a treatment tank 20A is provided, and a part of the final contact treatment liquid flows out from the treatment device 10 and is led to the external treatment tank 20A through the circulation path 11A.
  • the injection liquids A to C are also introduced into the external treatment tank 20A. The treatment liquid is injected and treated, and the treatment liquid is circulated to the treatment device 10. In the external treatment tank, it is possible to omit the stirring blade.
  • the residence time can be increased and the minute particle size can be reduced.
  • the external sedimentation tank 20B that does not inject the liquids A to C may be used.
  • the external sedimentation separation tank 20B it is possible to settle and separate in the external sedimentation separation tank 20B, and to return only the upper fine particle group to the processor 10 via the return path 19R by the return pump 13A. By allowing the crystals in the return liquid to function as seed crystals, the particle size distribution in the processor 10 can be adjusted.
  • FIG. 13 is an example in which the tank 20B is a sedimentation separation tank, but the tank 20B is a buffer that adjusts the circulation amount in relation to the out-of-system discharge amount discharged out of the system via the extraction pump 22. It can also be used as a tank.
  • the injection liquids A to C or one or two of the required injection liquids are injected into the tank 20B for processing, and the processing liquid is returned via the return path 19R. It is also possible to inject into the vessel 10.
  • FIG. 12 and FIG. 13 the form shown in FIG. 12 and FIG. 13 is developed, and as shown in FIG. 14, two external tanks 20B1 and 20B2 are provided, the external tank 20B1 is used as a buffer tank, and the transfer pump 22A is used.
  • the liquid is transferred to the external tank 20B2 that functions as a sedimentation separation tank, and the liquid is transferred to the external tank 20B2, for example, by being injected into the feed well 24 of the thickener, and is settled and separated in the external tank 20B2.
  • the liquid can be returned to the processor 10 via the return path 19R by the return pump 13A. It is.
  • FIG. 14 shows an example in which two external tanks 20B1 and 20B2 are provided. 14 is provided on the downstream side of the external treatment tank 20A in the form of FIG. 12, for example, the overflow of the external treatment tank 20A in the form of FIG. 12 is transferred to the external tank 20B2 in FIG. A sedimentation treatment or the like can be performed (this form is not shown).
  • the injection solution is injected relatively below the processing unit 10.
  • the guide tube 17 is shortened and the injection solution A to C solution injection tube 16A, 16B may be provided on the upstream side.
  • the guide tube may be eliminated and an injection tube may be provided at the end.
  • the form shown in FIG. 15 since the reaction length in the swirl flow field can be gained, the adhesion of the material in the flow path on the downstream side is drastically reduced.
  • the form which is set as the piping part before inflow as an overflow position is also illustrated.
  • the metal agglomerated particles obtained by the production method of the present invention can be used as a positive electrode active material for a lithium ion battery to produce a positive electrode active material for a lithium ion battery, and thus a lithium ion battery can be obtained.
  • the aggregated particles of metal having a small particle size, uniform particle size, and excellent spherical shape obtained by the present invention are used as a positive electrode active material for a lithium ion battery, the characteristics as a positive electrode are improved.
  • the apparatus according to the present invention can have an appropriate dimensional relationship depending on the processing material and liquid, but it is possible to obtain a device that exhibits a sufficient throughput while exhibiting uniform contact processability even though it is a small processing apparatus.
  • a processor processing unit
  • a processor can be formed by forming a space in the main body block 100 (or 101) by cutting or the like.
  • the chemical injection part is preferably a detachable type that can be easily replaced.
  • the material of the main body block 100 (or 101) is not limited to SUS material, and plastic material such as polyester, acrylic, polypropylene, polyethylene and polycarbonate, more preferably transparent or translucent material can be used.
  • the flow paths 14A and 18 and the injection portion are detachable so that they can be easily replaced.
  • FIG. 20 shows a mode in which the flow path 15A is formed, a heat medium is circulated therein, and the temperature is controlled by the processor 10. Further, an example in which the injection liquid is injected from the injection pipes 16A and 16B with a swirling flow is also illustrated. If the treatment liquid is not smoothly discharged, the generation of the swirling flow in the treatment device 10 will become unstable or cause clogging. Therefore, it is important not to form a staying part in the discharge path using the elbow joint 60 or the like. When the liquid is discharged out of the system at the time of maintenance at an appropriate time, it is desirable to store it in the temporary container 61 and close the front and rear with the valves 62 and 63.
  • a space can be formed in the main body block 101, and a processor 10, an extraction path 11 for extracting the processing liquid, and a return path 14 for returning the processing liquid can be formed.
  • the space 64 can be the same as the temporary container shown in FIG.
  • such a block unit is combined with the circulation path 11A, the circulation pump 13 and the return path 14A, the heating / cooling device 64, the overflow section 65, the storage device 20, the transfer pump 22, and the like. It can be formed as a single unit as a processing unit and movable by a caster 67 if necessary.
  • Reference numeral 68 denotes a measurement sensor such as temperature and pH.
  • Such block units and processing units can be obtained, for example, by arranging a plurality or a large number of them in a direction penetrating the paper surface and having a large processing amount.
  • the present invention efficiently performs mass transfer and chemical reaction in a reaction field that is controlled by mass transfer rather than reaction, and can be used regardless of inorganic reaction or organic reaction. It can also be used as a liquid-liquid mixing device such as application of this device in liquid-liquid extraction, water-oil emulsion, and the like. In addition, it is an apparatus that can be used for processes other than liquid-liquid reactions such as gas-liquid reactions and reactions (coating) on the surface of solid particles.
  • a liquid viscosity of 1000 cP or less, particularly 100 cP or less is desirable.
  • Example 1 Example of nickel manganese cobalt hydroxide A solution in which nickel sulfate, manganese sulfate, and cobalt sulfate are made 1.6M in a ratio of 1: 1: 1 as the reactant A. 25% strength sodium hydroxide was used as the reactant B, and 25% ammonia water was used as the reactant C.
  • solvent adjustment is performed by adding ammonium sulfate, hydrogen peroxide solution, ethanol, glycerin, and the like.
  • an example in which 0.1 M ammonium sulfate is added is shown.
  • the reactant A, the reactant B, and the reactant C were injected into the processor 10.
  • the starting mother liquor a solution obtained by adding 40 g of ammonia water to 2 kg of ion-exchanged water was used.
  • the circulation pump was operated at 20 L / min.
  • A was injected at about 120 g / min
  • B was about 40 g / min
  • C was injected at about 3 g / min.
  • N2 gas was injected at 50 ml / min.
  • the change result of the particle size after the lapse of time is shown as a graph in FIG.
  • grains at the time of implementing for 20 hours was shown to Fig.25 (a) (b) (c).
  • the particle size is small and stable over time. Moreover, even if this operation was carried out for 20 hours, no material adhered to the inner wall surface of the circulation path (the circulation path used a transparent plastic pipe, and the presence or absence of material adhesion was visually determined from the outside).
  • Example of nickel manganese cobalt hydroxide As shown in FIG. 23, nickel manganese cobalt hydroxide particles were obtained in a general mixing tank with a draft tube. A solution in which nickel sulfate, manganese sulfate, and cobalt sulfate are made 1.6M in a ratio of 1: 1: 1 as the reactant A. 25% strength sodium hydroxide was used as the reactant B, and 25% ammonia water was used as the reactant C. The stirring machine is operated at a rotational speed of 2000 rpm, A is about 10 g / min, B is about 4 g / min, C is about 0.6 g / min, and is injected around the stirring tank rotor blade.
  • FIG. 26 shows the change in the particle diameter after 30 hours of this operation
  • FIGS. 27A, 27B, and 27C show SEM photographs of the particles after 15 hours. According to these results, in the case of Comparative Example 1, the particle size is large and is unstable over time.
  • Example 2 Production example of emulsion fuel 1 L of water, 1 L of light oil Preliminary injection of 3.4% of emulsifier with respect to 1 L of water was circulated for 1 minute at a flow rate of 10 L / min. 200 mL / min of water, 250 mL / min of light oil, and 34 g / min of an emulsifier were added, and the mixture was discharged by overflow. An O / W type emulsion fuel was obtained, and it was in an emulsified state even after 1 week. When a static mixer was used in the reaction section, oil-water separation occurred after 1 day.
  • 10 Processor, 10X ... Inlet, 10Y ... Outlet, 10Z ... Overflow port, DESCRIPTION OF SYMBOLS 11, 14 ... Circulation path, 16A, 16B ... Injection pipe, 17 ... Guide pipe, 20 ... Reservoir, 40 ... Rotating cylinder, A, B, C ... Injection liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示すものを得る。 【解決手段】処理器10内の液流れを旋回流とし、 注入液A,Bを、前記処理器10内の接触処理場において、処理器10の内表面より中心側位置において注入し、接触処理を行なわせる。

Description

連続処理装置
 本発明は、処理液を循環させる連続処理装置に関する。とりわけ反応を伴う連続反応装置に関する.
 液液反応、気液反応又は触媒反応などの反応によって、あるいは晶析処理により粒子を生成させるなど、工業的な処理を経て製品又は中間品を得る操作としては限りなく多くある。
 代表的な処理は、たとえば図23に示すように、A成分、B成分あるいはC成分を撹拌接触処理槽1内に投入し、攪拌モータ2付き攪拌羽根3により攪拌し、各成分の反応を促進させるのが一般的である。適宜の時点で、排出口5から成品液を抜き出し、その後、たとえば濾過、洗浄及び乾燥により目的の晶析粒子を得る。4はバッフルである。
 しかし、この処理形態では、接触処理槽1として大きなものを必要とし、均一な反応や処理のために攪拌羽根3により攪拌しているが、高い均一性を期待するのに限界がある。
 他方、処理方法として、各成分の接触処理槽1内への投入及びその後の撹拌をバッチ式で処理する場合には、生産効率が悪い。したがって、撹拌中に連続的に各成文を投入する連続生産方式が高い効率が得られるが、接触処理の条件設定(対時間での投入量コントロールなど)が難しく、必ずしも均一な製品を効率良く得ることができるものでもない。
 これらを改善する試みとして、流路を1mm以下にしたマイクロリアクターが提唱されているが、生産量が乏しく流路の閉塞による連続生産の不具合が指摘されており、工業規模での実用化事例は少ない。
 成分をサイクロン方式で移動させる過程で他の成分と接触させる技術は、特許文献1に記載されている。
特開平4-240288
 しかし、先行技術は、成分の分離技術であって、反応や処理を目的にしたものではない。
 化学工業界をはじめとする接触処理分野において、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示す反応装置が求める要望は大きい。
 したがって、本発明の主たる課題は、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示す反応装置を提供することにある。
 この課題を解決した本発明は、次の通りである。
 〔請求項1記載の発明〕
 処理器と、この処理器内に注入液を注入する注入手段と、前記処理器の他方端部から処理液を抜き出して、抜き出した処理液の少なくとも一部を前記処理器の一方端部へ返送する循環手段とを有し、
 前記処理器内の液流れを旋回流とし、処理器の内表面より中心側位置において前記注入液を注入するようにしたことを特徴とする連続処理装置。
 〔請求項2記載の発明〕
 前記処理器内の接触処理場を、前記処理器内に生成された旋回流の処理器の内表面より中心側領域とし、この接触処理場において前記注入液の接触処理を行なわせるようにした請求項1記載の連続処理装置。
 (作用効果)
 液流れとして旋回流を示す接触処理場においては、竜巻のように中心の渦部分あるいは中心の空洞部分近傍の内周部分の流れは、反応を左右する物質移動・攪拌混合効果が高いなど流れの乱れが大きい。この部分は、注入するガスもしくは反応物質を含む注入液の急激な拡散場となり、均質な反応が可能となる。
 さらに、流路の壁面には旋回流の外周部分が接しているので、外周の旋回流が反応物質の供給体となり、物質・熱の急激な変化を和らげている。注入した注入物質(液・ガス・固形物)の反応物質に対してバリヤー(障壁)として機能するために、反応物質の流路内面への付着が防止され、長時間にわたり安定した運転が可能となるものと考えられる
 当初、本発明者は、小型の処理装置でありながら、十分な処理量を発揮する装置として、チューブリアクターを使用する反応処理装置の開発を試みた。しかし、ある種の反応処理材料系では、流路の壁面に微細なシャワー(一次核)が付着し、その後にこれを核として結晶が成長し、流れを阻害し、長時間の安定した運転ができ難いケースが散見された。
 その対策として、反応径路を並設し、詰まりが発生したならば、他方の反応経路に切換えて流通させ、その間に詰まりが生じた反応経路は清浄する方策が考えられる。しかし、切換えの僅かな時間においても、接触処理場の不連続運転に起因した粒径の変動を避けるべきであり、長時間にわたり安定した運転に耐えるべく新たな機構が必要と判断した。
 これに対し、本発明に従って、処理器内の液流れを旋回流とし、処理すべき注入液を、前記処理器内の接触処理場において、処理器の内表面より中心側位置において注入し、接触処理を行なわせることにより前記課題を解決できることが知見された。
 〔請求項3記載の発明〕
 前記循環手段による処理液の返送液を前記処理器内へ流入させることにより前記旋回流を生成させる構成とした請求項1記載の連続処理装置。
 〔請求項4記載の発明〕
 処理器内に、その内周面に沿う形態で、前記返送液を流入させることにより旋回流を生成させる請求項3記載の連続処理装置。
 (作用効果)
 接触処理場の生成にあたり、注入すべき無機物質を含む注入液を含めた各種の液を、たとえば容器内壁面の接線方向から注入することにより、処理器内の液流れを旋回流とし、その旋回流を接触処理場とすることができる。
 処理器に対し液を循環させるとともに、その処理器内に、循環液の返送液を流入させることにより旋回流を生成させると、旋回流の外周部分が処理器内面においてある厚さの筒状体部分を形成する。その結果、筒状体部分が、新たに注入した注入液との反応に対してバリヤー(障壁)として機能する現象が生じ、反応による吸熱・発熱に伴う温度変化の緩和、反応物質の流路内面への付着を防止することができる。
 〔請求項5記載の発明〕
 処理器は、その内面が一方端部から他方端部に向かって先窄まりとなり、送液の流入位置が前記処理器の長手方向一方端部である請求項1記載の連続処理装置。
 (作用効果)
 処理器は内空間が均一な半径をもつ筒状のものでもよいが、長手方向一方端部から他方端部に向かって内面が先窄まりとなるものが、旋回流の生成に好適である。
 また、処理器としては、旋回流の接触処理場を長くするために長手方向に沿ったある程度長い空間を確保することが望ましい。そこで、処理器の長手方向一方端部から液を流入させ、長手方向の他方端部から流出させるのが好適な態様である。
 〔請求項6記載の発明〕
 前記接触処理がなされた後の流出液の流出位置が前記処理器の他方端部である請求項1記載の連続処理装置。
 (作用効果)
 循環路を構成するのに適しており、反応部に複雑な機構を設けることなく反応区間長を設けることが可能となり、結果的に循環エネルギーの低減効果を得る。
 〔請求項7記載の発明〕
 接触処理がなされた後の流出液の流出位置が、注入液の注入位置より一方端部の端部側にある請求項6記載の連続処理装置。
 (作用効果)
 接触処理がなされた後の流出液の流出位置が、注入液の注入位置より一方端部の端部側にあると、旋回流の生成場に影響されることなく流出させることができる。
 〔請求項8記載の発明〕
 前記接触処理がなされた後の流出液の流出位置が、前記循環手段を構成する循環ポンプと前記処理器との間にある請求項1記載の連続処理装置。
 すなわち、循環ポンプデリベリ側と処理器との間にある態様である。
 (作用効果)
 旋回流の生成場に影響されることなく流出させることができる。
 〔請求項9記載の発明〕
 前記接触処理場を与える処理器が、直列的に配置されている請求項1記載の連続処理装置。
  (作用効果)
 処理量を多くしたい場合、処理器を直列的に配置することが望ましい。
 直列配置させることで、循環返送液量を増やすことなく、注入液量を段数分増やすことが可能となり、生産量を増大させると共に、生産量に比した装置内容量を低減することができるため、結果的に省スペース化と装置コストの低減が可能となる。ここで、「生産量に比した装置内容量が低減する」とは、循環ポンプや流路部分の容量は一定のまま、処理器とこれらを連結する管の容量だけが注入となるため、結果として装置全体容量が生産量に比して低減できるという意味である。また、「装置内容量を低減」ということは、装置内における反応物質の滞留時間を短くすることができるという効果も現れ、結果的に小径化に向けた滞留時間制御が可能なものになる。
 〔請求項10記載の発明〕
 前記接触処理場を与える処理器が、並列的に配置されている請求項1記載の連続処理装置。
  (作用効果)
 処理量を多くしたい場合など、処理器を並列的に配置することができる。
 特に同一の処理器を並列配置させた場合、均一な接触処理を施した上で処理量を増やすことができる。直列方向に設置させる場合、流れ方向に渡り圧力勾配が発生するため、全ての処理器を均一反応したい場合は並列配置が好ましい。
 〔請求項11記載の発明〕
 注入液の接触処理場に対する注入方向が、前記液の旋回流の下流方向に向いている請求項1記載の連続処理装置。
  (作用効果)
 後に説明するように、注入液の接触処理場に対する注入方向が、前記液の旋回流の上流方向に向いていてもよいが、液の旋回流の下流方向に向いている方が、材料の内面付着が少なくなる。
 〔請求項12記載の発明〕
 注入液の接触処理場に対する注入方向が、前記液の旋回流の上流方向に向いている請求項1記載の連続処理装置。
  (作用効果)
 注入液の接触処理場に対する注入方向が、前記液の旋回流の上流方向に向いていても、材料の壁内面への付着量は実用上許容範囲内である場合がある。
 〔請求項13記載の発明〕
 処理器に対し液を循環させるとともに、その循環系の途中に、前記処理器とは別の形式であり、かつ、撹拌羽根を有する外部処理槽を設け、前記処理器から最終接触処理液の一部を外部へ流出させ前記外部処理槽に導き、この外部処理槽で処理した処理液を前記処理器に返送する請求項2記載の連続処理装置。
 (作用効果)
 これにより、処理器から出てきた接触処理液を外部処理槽にて再度処理するため、滞留時間を長くとれ、接触処理を確実に行なわせることができる。
 〔請求項14記載の発明〕
 処理器に対し液を循環させるとともに、その循環系の途中に、2つの外部槽を直列に設け、下流側外部槽を注入液を注入しない外部沈降分離槽とし、この外部沈降分離槽において沈降分離し、外部沈降分離槽の上部微少粒子群のみを処理器へ返送する請求項2記載の連続処理装置。
 (作用効果)
 処理が晶析処理を含む場合、返送液中の結晶を種結晶として機能させることで処理器内の粒度分布を調整することが可能となる。また、上流側外部槽はバッファ槽又は処理槽として利用することもできる。
〔請求項15記載の発明〕
 処理器に対し液を循環させるとともに、その循環系の途中に、注入液を注入しない外部分離槽を設け、この外部分離槽において固液分離、粒径分離もしくはガス分離し、外部分離槽の上部微少粒子群もしくはガス分離液のみを処理器へ返送する請求項2記載の連続処理装置。
 (作用効果)
 返送液中の結晶を種結晶として機能させることで処理器内の粒度分布を調整することが可能となる。
 ガス分離液を返送する場合、 液中の反応生成物であるガスを予め減らす効果を得、これにより循環液中の反応生成物濃度が低下するため反応が順方向に進みやすくなり反応速度の向上効果を期待できる。
 〔請求項16記載の発明〕
 本体ブロック内に空間を形成し、前記処理器を形成した請求項1記載の連続処理装置。
 (作用効果)
 処理器として金属製などとすることもできるほか、透明プラスチック等の本体ブロック内に、たとえば切削加工になどにより、前記処理器を形成することもできる。
 〔請求項17記載の発明〕
 本体ブロック内に空間を形成し、前記処理器を直列に複数形成した請求項1記載の連続処理装置。
 〔請求項18記載の発明〕
 本体ブロック内に空間を形成し、前記処理器を並列に複数形成した請求項1記載の連続処理装置。
 〔請求項19記載の発明〕
 本体ブロック内に空間を形成し、前記処理器、処理液を抜き出す抜き出し路、並びに処理液を返送する返送路をそれぞれ形成した請求項1記載の連続処理装置。
 〔請求項20記載の発明〕 
 本体ブロックを透明又は半透明材料で形成した請求項16~19のいずれか1項に記載の連続処理装置。
  (作用効果)
 運転状況として反応物質の生成状況、スケーリングや閉塞などの異常状況を目視で観察できる。
 〔請求項21記載の発明〕
 処理器と、注入手段と、循環手段とを少なくとも一体物とし、この一体物を複数有する請求項1記載の連続処理装置。
 〔請求項22記載の発明〕
 注入手段が、処理器内にて注入液を旋回流をもって注入するものである請求項1記載の連続処理装置。
  (作用効果)
 母液に対する注入液の接触効率が良好なものとなり、より物質移動が促進され混合効果を得る。また圧力変動のある反応機内においては注入液の安定した注入を可能とする。
 〔請求項23記載の発明〕
 処理器内に注入液を、逆止弁を介して注入する注入手段を有している請求項1記載の連続処理装置。
  (作用効果)
 処理器内の圧力変動があったとしても、その圧力変動に影響されることなく注入液を注入できる。
 〔請求項24記載の発明〕
 循環路の途中に処理液の加熱又は冷却手段を有する請求項1記載の連続処理装置。
  (作用効果)
 液の循環過程で加熱又は冷却することにより、処理器内での温度が一定に保持でき接触を安定して行なわせることができる。
 〔請求項25記載の発明〕
 旋回流を形成する接触処理場の直径D2に対する旋回流を形成する主流の注入口径D1の比が、D2/D1= 2.5~10である請求項1記載の連続処理装置。
 ここで、注入口形状は円形断面のみならず、四角断面などの形状断面でもよい。また、四角断面(b×h)の場合、横長さb(高さh)をD1と読むものとする。
 〔請求項26記載の発明〕
 旋回流を形成する接触処理場の直径D2に対する抜き出し部の口径D3の比が、D2/D3=0.5~10である請求項1記載の連続処理装置。
 〔請求項27記載の発明〕
 旋回流を形成する接触処理場の直径D2に対する流路方向長さHの比が、H/D2=1~10である請求項1記載の連続処理装置。
 本発明によれば、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示す反応装置を得ることができる。
本発明の第1例の概要図である。 第1例の処理器の概要図である。 処理器の上端部の横断概要図である。 旋回流の生成形態の説明概要図である。 処理器の直列配置例の概要図である。 上向き注入例の概要図である。 他の上向き注入例の概要図である。 旋回流の生成形態の説明概要図である。 処理器の直列配置例の概要図である 他の処理器例の概要図である。 別の処理器例の概要図である。 別の形態例の概要図である。 別の形態例の概要図である。 別の形態例の概要図である。 別の形態例の概要図である。 ブロックユニット例を示し、(a)は平面図、(b)は正面図である。 別のブロックユニット例の概要図である。 他のブロックユニット例の概要図である。 さらに異なるブロックユニット例の概要図である。 別の形態例の概要図である。 処理ユニットの形態例の概要図で、(a)は平面図、(b)は正面図である。 一体装置例の概要図である。 従来例の概要図である。 実施例1の粒径の変化のグラフである。 実施例1での粒子のSEM写真である。 比較例1の粒径の変化のグラフである。 比較例1での粒子のSEM写真である。
 次に、本発明を実施するための形態を説明する。
 後に説明するように、本発明の適用範囲は広範である。しかし、種々の例を総合的に説明すると、混乱の原因になりかねないので、一例を挙げながら装置例を説明し、後に他の適用範囲について説明することとする。
 本発明の典型例は、たとえばリチウムイオン電池用正極活物質の製造に使用する金属粒子を得るための連続処理装置である。具体例はNi,Co,Mnの遷移金属を用いた凝集粒子を製造することを対象とする。
 本発明に従って、注入すべき無機物質を含む注入液を、処理器内の旋回流の接触処理場において、処理器の内表面より中心側位置において注入し、接触処理を行なわせる方法は、広く一般に無機物質により凝集粒子を得る場合に適用できるものであるから、前記遷移金属以外の金属や他の無機物質を対象にしてもよい。
 図1~図4は、本発明の第1例を示したもので、処理器10内の液流れを旋回流とし、注入すべき無機物質を含む注入液を、処理器内10の接触処理場(図4に概念的に符号Qとして示した)において、処理器10の内表面より中心側位置において注入し、接触処理を行なわせるものである。
 図示例では、注入すべき無機物質を含む注入液として、A液、B液及びC液を注入している。図示しないが、併せて並行的にガスD(窒素ガスや二酸化炭素ガスなどの不活性ガス)を注入することもできる。
 また、本発明の第1例は、注入すべき無機物質を含む注入液の接触処理場に対する注入方向が、液の旋回流の下流方向に向いている例である。
 図示の処理器10は竪向きであるが、原理的に流れに影響はないため横向きでもよい。
 図示の処理器10は、循環ポンプ13により液を循環路11、14(抜き出し路11、返送路14)を介して循環させるとともに、処理器10内に、循環液の返送液を流入させることにより旋回流を生成させるものである。15は液の加温又は冷却の温度調節器である。
 図面に示されているように、処理器10はその長手方向一方端部から他方端部に向かって内面が先窄まりとなり、循環液の返送液の流入口10Xを含む流入位置が処理器10の長手方向一方端部であり、図3に示されているように、その内周面に沿う形態で、ほぼ接線方向に沿って、返送液を流入させるようにしてある。これによって、旋回流Rが形成されている。
 接触処理がなされた後の流出液の流出口10Yを含む流出位置は、長手方向他方端部となっている。
 さらに、最終接触処理液は前記長手方向一方端部のオーバーフロー口10Zから流出させるようにしてある。
 処理器10内の液流れは旋回流Rとなるが、その上部中央、渦中心部には空洞部分Vができる傾向にある。そして、特に、旋回流Rの渦中心近傍の内周部分の流れは、平均流速に比較して著しく高速であり、かつ、流れの乱れも大きい。
 かかる位置において、注入すべき金属を含む注入液A液~C液を注入すると、注入液が急激に拡散し、均質な反応が可能となる。
 そこで、各注入液A液~C液は注入管16A、16B…を使用してその先端から吐出されるまで、相互の接触を防止することが望ましい。
 さらに、旋回流Rの影響が及ばないように、ガイド管17を挿入するのが望ましい。
 ここで、注入すべき無機物質を含む注入液A液~C液の注入位置は、処理器10内の接触処理場において、処理器10の内壁表面より中心側位置において注入すれば足りるが、中心から半径rの2/3以内、好ましくは1/2以内が好適である。
 最終接触処理液はオーバーフロー口10Zから流出させ、抜き出し路19を介して貯留器20に導き、適宜の時点で、その底部から抜出し用バルブ21を開いて凝集粒子液を抜出しポンプ22により最終製品化工程に導くようにする。23は撹拌機である。
 図5に例を示したように、接触処理場を与える処理器10、10…を、直列的に配置することができる。
 この場合、第1段の処理器10でのオーバーフローを貯留器20に導き、最終段の処理器10での流出液を第1段の処理器10に循環させることができる。
 他方、図6に例を示したように、接触処理場を与える処理器10に対して、下方から上方に向かって、注入すべき金属を含む注入液A液~C液を注入することもできる。すなわち、図6の例は、注入すべき無機物質を含む注入液の接触処理場に対する注入方向が、液の旋回流の上流方向に向いている例である。また、この場合、上部からの流出液は循環させ、一部を抜き出し路19を介して貯留器20に導く。
 他方、図7に示すように、処理器10の下部から抜き出しポンプ24により液を抜き出し、抜き出し路25を介して貯留器20に導くこともできる。
 この下方から上方への、注入すべき金属を含む注入液A液~C液の注入は、下方旋回流に対し注入液A液~C液の注入が向流的に接触するために、拡散反応が良好ではないかと当初予想したが、流路の内壁面への材料の付着が見られる場合があり、最適な形態とは言いがたい。
 図9に例を示したように、下方から上方への、注入すべき金属を含む注入液A液~C液の注入形態においても、接触処理場を与える処理器10、10…を、直列的に配置することができる。
 図示は省略してあるが、接触処理場を与える処理器10、10…を並列的に配置することもできる。
 処理器は、長手方向一方端部から他方端部に向かって内面が先窄まりとなるものが、旋回流の生成に好適であるが、内空間が均一な半径をもつ筒状のものでもよい。
 さらに、図10のように、処理器10内に回転筒40をモータ41により回転するように配置し、注入すべき金属を含む注入液A液~C液を、注入管42、43を介して内壁面の接線方向に注入し、他方の端部の流出管44から、接触処理がなされた後の流出液を流出するようにすることもができる。
 この場合、必要により回転筒40を回転させ、旋回流の促進を図ることができる。
 旋回流の生成には、図11に示すように、間隔を置いた複数の撹拌羽根50、50…を回転させることにより生成させることもできる。
 他方、図12の形態も使用できる。すなわち、処理器10に対し液を循環路11A,11Bを介して循環させるとともに、その循環系の途中に、処理器10とは別の形式であり、かつ、撹拌羽根を有する完全混合型の外部処理槽20Aを設け、処理器10から最終接触処理液の一部を外部へ流出させ循環路11Aを介して外部処理槽20Aに導き、この外部処理槽20Aにおいても注入液A液~C液を注入して処理させ、処理液を処理器10に対し循環させるものである。なお、外部処理槽においては攪拌羽根を省くことも可能である。
 これにより、処理器10から出てきた接触処理液を外部処理槽20Aにて再度反応させるため、滞留時間を長くとれ、微少粒子径分を削減することができる。
 さらに、外部処理槽20Aに代えて、注入液A液~C液を注入しない、単に外部沈降分離槽20Bであってもよい。 
 また外部沈降分離槽20Bを設けた場合、外部沈降分離槽20Bにおいて沈降分離し、その上部微少粒子群のみを処理器10へ返送ポンプ13Aにより返送路19Rを介して返送することが可能であり、返送液中の結晶を種結晶として機能させることで処理器10内の粒度分布を調整することが可能となる。
 この図13の形態は、符号20Bの槽が沈降分離槽である例であるが、槽20Bは抜出しポンプ22を介して系外へ排出する系外排出量との関係で循環量を調整するバッファ槽として利用することも可能である。さらに、図12の形態と同様に、注入液A液~C液あるいはそのうちの1又は2の必要注入液を、槽20Bに注入して処理させ、処理液を返送路19Rを介して返送する処理器10に注入することも可能である。
 他方、前述の図12及び図13に示した形態を発展させて、図14に示すように、2つの外部槽20B1、20B2を設け、外部槽20B1をバッファ槽として利用し、移行ポンプ22Aにより、沈降分離槽として機能させる外部槽20B2に液を移行させ、たとえばシックナーのフィードウェル24へ注入するなどして外部槽20B2に液を移行させ、その外部槽20B2において沈降分離し、その上部微少粒子群のみを処理器10へ返送ポンプ13Aにより返送路19Rを介して返送することが可能であり、返送液中の結晶を種結晶として機能させることで処理器10内の粒度分布を調整することが可能となる。
 この形態において、外部槽20B1、20B2の一方又は両方に対し、注入液A液~C液を注入して処理した後、処理器10へ返送ポンプ13Aにより返送路19Rを介して返送することも可能である。
 図14においては、2つの外部槽20B1、20B2を設けた例である。図12の形態の外部処理槽20Aの下流側に図14の外部槽20B2を設け、図12の形態の外部処理槽20Aのたとえばそのオーバーフローを図14の外部槽20B2に移行させ、外部槽20B2において沈降分離処理などを行うことができる(この形態は図示していない。)。
 先に示した図2の形態では、処理器10の比較的下方において注入液を注入したが、図15のように、ガイド管17を短くし、注入液A液~C液の注入管16A、16B…を上流側に設けてもよい。もしくはガイド管を無くして端に注入管を設けても良い。また、図2に示すように注入管16A、16B…先端位置を異ならせるほか、注入管16A、16B…先端位置を一致させるようにしてもよい。
 図15に示す形態によれば、旋回流場での反応長が稼げるため、下流側での流路内の材料の付着が激減する。
 また、オーバーフロー位置として流入前の配管部とする形態も図示してある。
 本発明の製造方法によって得られた金属の凝集粒子を、リチウムイオン電池用正極活物質に利用してリチウムイオン電池用正極活物質を製造できるほか、しいてはリチウムイオン電池を得ることができる。
 本発明によって得られた粒子径が小さく粒子径が揃い、かつ優れた球形状である金属の凝集粒子を、リチウムイオン電池用正極活物質に利用すれば、正極としての特性が向上する。
 本発明に係る装置は、処理材料や液によって適宜の寸法関係とすることができるが、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示すものを得る観点から、旋回流を形成する接触処理場の直径D2に対する旋回流を形成する主流の注入口径D1の比が、D2/D1=2.5~10であることが望ましい。この比が小さいと旋回流の生成が十分でなく、過度に大きい場合には、速度が遅くなり、旋回流が不安定となる。
 また、旋回流が安定して生成されるためには、旋回流を形成する接触処理場の直径D2に対する抜き出し部の口径D3の比が、D2/D3=0.5~10であるのが望ましい。
 さらに、接触反応時間を確保するために、旋回流を形成する接触処理場の直径D2に対する流路方向長さHの比が、H/D2=1~10であるのが望ましい。
 本発明装置は、接触効率が高いものとなるので、小さい(内容積が小さい)処理器で足りる。したがって、図17~図22に示すように、本体ブロック100(又は101)に切削加工などにより空間を形成することにより、処理器(処理部)とすることができる。
 薬品注入部は容易に交換できる着脱式が好ましい。
 本体ブロック100(又は101)の材質はSUS材のみならず、ポリエステル、アクリル、ポリプロピレン、ポリエチレン、ポリカーボネートなどのプラスチック材料を、より好ましくは透明又は半透明材料を使用できる。
 この場合、流路14A、18や注入部は簡単に交換できる着脱式が好ましい。
 ガイド管17の設置を行なうか否か、ガイド管17や注入管16A、16B…の設置位置や長さは適宜選択できる。
 図20には、流通路15Aを形成し、その内部に熱媒体を流通させ処理器10で温度コントロールする態様を示した。
 さらに、注入管16A、16Bから注入液を旋回流をもって注入する例も併せて図示してある。
 処理液の排出が円滑でないと、やがて処理器10内での旋回流の生成が不安定になったり、詰まりの原因となる。そこで、エルボ継手60などを使用して排出径路に滞留個所を形成させないことが重要である。
 適宜時点でのメンテナンス時などにおいて、液を系外に排出させる場合、一時容器61に貯め、前後を弁62,63で閉塞させるようにするのが望ましい。
 図21及び図22に示すように、本体ブロック101内に、空間を形成し、処理器10、処理液を抜き出す抜き出し路11、並びに処理液を返送する返送路14をそれぞれ形成することができる。
 空間64は、図20に示す一時容器と同様のものとすることができる。
 かかるブロックユニットは、たとえば図23のように、循環路11A、循環ポンプ13及び返送路14A、加熱・冷却器64、オーバーフロー部65、貯留器20及び移行ポンプ22などと組み合わせ、たとえばベース66上に処理ユニットとして一体物とし、必要によりキャスター67により移動可能ものに形成できる。68は温度やpHなどの計測センサであある。
 かかるブロックユニットや処理ユニットは、たとえば紙面を貫く方向に複数又は多数並べて配置し、処理量が大きいものとして得ることができる。
 ところで本発明は、 反応より物質移動律速となっている反応場において、物質移動と化学反応を効率よく行うものであり、無機反応、有機反応に関わらず利用可能なものである。
 また、液液抽出における本装置の適用、水と油のエマルション等、液液の混合装置としても利用可能である。
 他にも気液反応、固体粒子表面への反応(コーティング)等、液液反応以外のプロセスにも用途展開可能な装置である。
 なお、旋回流を少ない動力にて得るためには液粘性として1000cP以下、特に100cP以下のものが望ましい。
 次に実施例及び比較例を示し、本発明の効果を明らかにする。
 (実施例1)ニッケルマンガンコバルト水酸化物の例 
 反応物質Aとして硫酸ニッケル、硫酸マンガン、硫酸コバルトを1:1:1の割合にて1.6Mとした液。反応物質Bとして25%濃度の水酸化ナトリウム、反応物質Cとして25%濃度のアンモニア水を使用した。反応物質Aには所定の反応を進めるために硫酸アンモニウム、過酸化水素水、エタノール、グリセリン等の添加による溶媒調整を行うが、ここでは硫酸アンモニウムを0.1M加えた例を示す。
 図1~図4の態様で、反応物質A、反応物質B及び反応物質Cを処理器10内に注入した。
 スタート母液としてはイオン交換水2kgにアンモニア水40g加えたものを使用した。
 循環ポンプは20L/minにて運転し、Aは約120g/min、Bは約40g/min,Cは約3g/minにて注入した。さらに、N2ガスを50ml/min注入した。
 経時後の粒径の変化結果を図24のグラフとして示した。20時間実施した時点での粒子のSEM写真を図25(a)(b)(c)に示した。
 <考察>
 粒子径が小さく、経時的に安定している。
また、この運転を20時間実施しても、循環路の内壁面に材料の付着がなかった(循環路は透明のプラスチック管を使用し、外部から材料の付着の有無を目視判別した)。
(比較例1)ニッケルマンガンコバルト水酸化物の例 
 図23に示すよう一般的なドラフトチューブ付き攪拌混合槽において、ニッケルマンガンコバルト水酸化物粒子を得た。 
 反応物質Aとして硫酸ニッケル、硫酸マンガン、硫酸コバルトを1:1:1の割合にて1.6Mとした液。 
反応物質Bとして25%濃度の水酸化ナトリウム、反応物質Cとして25%濃度のアンモニア水を使用した。
 攪拌機回転数は2000rpmにて運転し、Aは約10g/min、Bは約4g/min,Cは約0.6g/minにて撹拌槽回転翼周りに注入し、撹拌槽下部にN2ガスを100ml/min注入した。この装置系内の容量は約4Lとして運転した。 
 この運転を30時間実施した粒径の変化結果が図26のグラフであり、15時間実施した時点での粒子のSEM写真を図27(a)(b)(c)に示した。
 これらの結果によれば、比較例1の場合には、粒子径が大きく、経時的にも不安定である。
 (実施例2)エマルション燃料の製造例
 予め水1L、軽油1L 乳化剤を水1Lに対して3.4%注入したものを本装置にて10L/minの流量で1分間循環させた後、反応部に水200mL/min、軽油250mL/min、乳化剤を34g/min添加し、オーバーフローにて排出させた。
 O/W型のエマルション燃料が得られており、1週間経過後も乳化した状態であった。
反応部にスタティクスミキサを用いた場合、1日経過後に油水分離が起きていた。
 リチウムイオン電池用正極活物質用のほか各種の用途のものに適用できる。その例を列挙すると次のとおりである。
 1)エマルション燃料製造
 2)小径粒子製造 ナノ粒子を結晶成長させる等
 3)ジアゾ化合物製造
 4)触媒反応
 5)その他マイクロリアクターでの反応処理例
  ア 気液界面反応
   フッ素ガスによるフッ素化反応
   一酸化炭素ガスによるカルボニル化反応
  イ 液液界面反応
   ニトロ化反応(有機相/水相)
   エステル還元
   ジアゾカップリング
  ウ 固液界面反応
   固体担持触媒利用反応
  エ 気・液・固界面反応
   水素化反応
10…処理器、10X…流入口、10Y…流出口、10Z…オーバーフロー口、
11、14…循環路、16A、16B…注入管、17…ガイド管、20…貯留器、40…回転筒、A,B,C…注入液。

Claims (27)

  1.  処理器と、この処理器内に注入液を注入する注入手段と、前記処理器の他方端部から処理液を抜き出して、抜き出した処理液の少なくとも一部を前記処理器の一方端部へ返送する循環手段とを有し、
     前記処理器内の液流れを旋回流とし、処理器の内表面より中心側位置において前記注入液を注入するようにしたことを特徴とする連続処理装置。
  2.  前記処理器内の接触処理場を、前記処理器内に生成された旋回流の処理器の内表面より中心側領域とし、この接触処理場において前記注入液の接触処理を行なわせるようにした請求項1記載の連続処理装置。
  3.  前記循環手段による処理液の返送液を前記処理器内へ流入させることにより前記旋回流を生成させる構成とした請求項1記載の連続処理装置。
  4.  処理器内に、その内周面に沿う形態で、前記返送液を流入させることにより旋回流を生成させる請求項3記載の連続処理装置。
  5.  処理器は、その内面が一方端部から他方端部に向かって先窄まりとなり、送液の流入位置が前記処理器の長手方向一方端部である請求項1記載の連続処理装置。
  6.  前記接触処理がなされた後の流出液の流出位置が前記処理器の他方端部である請求項1記載の連続処理装置。
  7.  接触処理がなされた後の流出液の流出位置が、注入液の注入位置より一方端部の端部側にある請求項6記載の連続処理装置。
  8.  前記接触処理がなされた後の流出液の流出位置が、前記循環手段を構成する循環ポンプと前記処理器との間にある請求項1記載の連続処理装置。
  9.  前記接触処理場を与える処理器が、直列的に配置されている請求項1記載の連続処理装置。
  10.  前記接触処理場を与える処理器が、並列的に配置されている請求項1記載の連続処理装置。
  11.  注入液の接触処理場に対する注入方向が、前記液の旋回流の下流方向に向いている請求項1記載の連続処理装置。
  12.  注入液の接触処理場に対する注入方向が、前記液の旋回流の上流方向に向いている請求項1記載の連続処理装置。
  13.  処理器に対し液を循環させるとともに、その循環系の途中に、前記処理器とは別の形式であり、かつ、撹拌羽根を有する外部処理槽を設け、前記処理器から最終接触処理液の一部を外部へ流出させ前記外部処理槽に導き、この外部処理槽で処理した処理液を前記処理器に返送する請求項2記載の連続処理装置。
  14.  処理器に対し液を循環させるとともに、その循環系の途中に、2つの外部槽を直列に設け、下流側外部槽を注入液を注入しない外部沈降分離槽とし、この外部沈降分離槽において沈降分離し、外部沈降分離槽の上部微少粒子群のみを処理器へ返送する請求項2記載の連続処理装置。
  15.  処理器に対し液を循環させるとともに、その循環系の途中に、注入液を注入しない外部分離槽を設け、この外部分離槽において固液分離、粒径分離もしくはガス分離し、外部分離槽の上部微少粒子群もしくはガス分離液のみを処理器へ返送する請求項2記載の連続処理装置。
  16.  本体ブロック内に空間を形成し、前記処理器を形成した請求項1記載の連続処理装置。
  17.  本体ブロック内に空間を形成し、前記処理器を直列に複数形成した請求項1記載の連続処理装置。
  18.  本体ブロック内に空間を形成し、前記処理器を並列に複数形成した請求項1記載の連続処理装置。
  19.  本体ブロック内に空間を形成し、前記処理器、処理液を抜き出す抜き出し路、並びに処理液を返送する返送路をそれぞれ形成した請求項1記載の連続処理装置。
  20.  本体ブロックを透明又は半透明材料で形成した請求項16~19のいずれか1項に記載の連続処理装置。
  21.  処理器と、注入手段と、循環手段とを少なくとも一体物とし、この一体物を複数有する請求項1記載の連続処理装置。
  22.  注入手段が、処理器内にて注入液を、旋回流をもって注入するものである請求項1記載の連続処理装置。
  23.  処理器内に注入液を、逆止弁を介して注入する注入手段を有している請求項1記載の連続処理装置。
  24.  循環路の途中に処理液の加熱又は冷却手段を有する請求項1記載の連続処理装置。
  25.  旋回流を形成する接触処理場の直径D2に対する旋回流を形成する主流の注入口径D1の比が、D2/D1= 2.5~10である請求項1記載の連続処理装置。
  26.  旋回流を形成する接触処理場の直径D2に対する抜き出し部の口径D3の比が、D2/D3=0.5~10である請求項1記載の連続処理装置。
  27.  旋回流を形成する接触処理場の直径D2に対する流路方向長さHの比が、H/D2=1~10である請求項1記載の連続処理装置。
PCT/JP2013/054740 2012-08-28 2013-02-25 連続処理装置 WO2014034158A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380043123.7A CN104582828B (zh) 2012-08-28 2013-02-25 连续反应装置
CA2881636A CA2881636C (en) 2012-08-28 2013-02-25 Continuous processing device
EP13833157.4A EP2891518A4 (en) 2012-08-28 2013-02-25 CONTINUOUS PROCESSOR
US14/423,045 US9527058B2 (en) 2012-08-28 2013-02-25 Continuous processing device
KR1020157003566A KR101762042B1 (ko) 2012-08-28 2013-02-25 무기입자의 연속반응장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012187292A JP5619837B2 (ja) 2012-08-28 2012-08-28 無機粒子の連続反応装置
JP2012-187292 2012-08-28

Publications (1)

Publication Number Publication Date
WO2014034158A1 true WO2014034158A1 (ja) 2014-03-06

Family

ID=50182987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054740 WO2014034158A1 (ja) 2012-08-28 2013-02-25 連続処理装置

Country Status (7)

Country Link
US (1) US9527058B2 (ja)
EP (1) EP2891518A4 (ja)
JP (1) JP5619837B2 (ja)
KR (1) KR101762042B1 (ja)
CN (1) CN104582828B (ja)
CA (1) CA2881636C (ja)
WO (1) WO2014034158A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466732B2 (ja) * 2012-06-21 2014-04-09 月島機械株式会社 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及び反応凝集粒子の製造装置
JP6691654B2 (ja) * 2016-01-27 2020-05-13 月島機械株式会社 粒子の製造装置及び粒子の製造方法
CN106823953B (zh) * 2017-02-07 2020-05-19 珠海优特智厨科技有限公司 气力搅拌装置及配料机
KR101856482B1 (ko) * 2017-11-28 2018-05-10 주식회사 윤성에프앤씨 고전단 분산장치
JP6939499B2 (ja) * 2017-12-13 2021-09-22 住友金属鉱山株式会社 ニッケル含有水酸化物の製造方法
EP3590593A1 (en) * 2018-07-06 2020-01-08 Sandvik Mining and Construction Australia (Production/Supply) Pty Ltd. Dismountable mixing device and liquid mixing method
CN109718711A (zh) * 2019-02-21 2019-05-07 腾辉电子(苏州)有限公司 一种聚酰亚胺均质***
EP3980183A1 (en) * 2019-06-07 2022-04-13 The Board Of Trustees Of The University Of Illinois Continuous-flow, well mixed, microfluidic crystallization device for screening polymorphs, morphologies and crystallization kinetics at controlled supersaturation
CN110882645A (zh) * 2019-12-15 2020-03-17 江西辙炜新材料科技有限公司 一种环保涂料生产用快速高效乳化设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015466B1 (ja) * 1970-02-24 1975-06-05
JPS5771628A (en) * 1980-10-20 1982-05-04 Osaka Gas Co Ltd Mixer
JPS62270406A (ja) * 1986-05-15 1987-11-24 Nitto Kikai Kk 高濃度次亜塩素酸ソ−ダ水溶液の連続製造装置
JPS63258624A (ja) * 1987-04-16 1988-10-26 Konica Corp 乳化物の製造方法
JPH04240288A (ja) 1990-08-28 1992-08-27 Kamyr Inc ハイドロサイクロン及び液体スラリー成分分離装置
JPH09500822A (ja) * 1993-07-27 1997-01-28 オイローペイシェ アトムゲマインシャフト(オイラトム) 煙霧粒子を分離する機械

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL272954A (ja) *
NL156733B (nl) * 1968-02-28 1978-05-16 Stamicarbon Werkwijze voor het isoleren van in een organisch oplosmiddel opgeloste polymeren of copolymeren.
US3794299A (en) * 1971-09-23 1974-02-26 Chem Trol Pollution Services Centrifugal reactor
EP0312641A1 (en) * 1987-10-23 1989-04-26 "Harrier" Gmbh Gesellschaft Für Den Vertrieb Medizinischer Und Technischer Geräte Method for mixing fuel with water, apparatus for carrying out the method and fuel-water mixture
DE3912344A1 (de) 1989-04-14 1990-10-18 Harrier Gmbh Einrichtung zum herstellen einer oel-wasser-emulsion
JP2580084B2 (ja) * 1991-07-08 1997-02-12 積水化学工業株式会社 シャワー装置
US5462639A (en) * 1994-01-12 1995-10-31 Texas Instruments Incorporated Method of treating particles
JP2003081628A (ja) * 2001-09-10 2003-03-19 Mitsui Eng & Shipbuild Co Ltd 人工ゼオライトの連続製造装置及び連続製造方法
US6943223B1 (en) * 2004-04-27 2005-09-13 Nova Chemicals Inc. Controlled shear and turbulence flow pattern within a liquid in a vessel
JP2006239596A (ja) * 2005-03-04 2006-09-14 Sumitomo Bakelite Co Ltd 固液混合材料の製造方法
US20070036689A1 (en) * 2005-08-10 2007-02-15 Mercuri Robert A Production of nano-scale metal particles
JP5015466B2 (ja) * 2006-02-03 2012-08-29 ジオスター株式会社 耐震性可撓管路の継手構造
JP2007222849A (ja) * 2006-02-27 2007-09-06 Ebara Corp マイクロ化学反応システム
JP4850729B2 (ja) * 2007-01-15 2012-01-11 和泉工商株式会社 粉体と液体の混合方法及びその装置
JP5242193B2 (ja) * 2008-02-25 2013-07-24 株式会社仲田コーティング 水素還元水の製造方法
JP5682904B2 (ja) * 2009-08-12 2015-03-11 国立大学法人九州工業大学 高濃度溶解水生成装置および高濃度溶解水生成システム
JP5365488B2 (ja) * 2009-12-07 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合酸化物の製造方法
CN102259978A (zh) * 2010-05-31 2011-11-30 中国地质大学(北京) 一种去除水中硝酸盐的反应器及方法
CN201834832U (zh) * 2010-09-27 2011-05-18 南京宏博环保实业有限公司 一种生物沥浸池
JP5466732B2 (ja) 2012-06-21 2014-04-09 月島機械株式会社 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及び反応凝集粒子の製造装置
EP3518506A4 (en) * 2016-09-23 2020-04-22 Maxell, Ltd. PORTABLE TERMINAL DEVICE, TELEVISION RECEIVER, AND INCOMING CALL NOTIFICATION METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015466B1 (ja) * 1970-02-24 1975-06-05
JPS5771628A (en) * 1980-10-20 1982-05-04 Osaka Gas Co Ltd Mixer
JPS62270406A (ja) * 1986-05-15 1987-11-24 Nitto Kikai Kk 高濃度次亜塩素酸ソ−ダ水溶液の連続製造装置
JPS63258624A (ja) * 1987-04-16 1988-10-26 Konica Corp 乳化物の製造方法
JPH04240288A (ja) 1990-08-28 1992-08-27 Kamyr Inc ハイドロサイクロン及び液体スラリー成分分離装置
JPH09500822A (ja) * 1993-07-27 1997-01-28 オイローペイシェ アトムゲマインシャフト(オイラトム) 煙霧粒子を分離する機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2891518A4

Also Published As

Publication number Publication date
JP5619837B2 (ja) 2014-11-05
US20150217264A1 (en) 2015-08-06
EP2891518A4 (en) 2016-04-20
KR101762042B1 (ko) 2017-07-26
CN104582828A (zh) 2015-04-29
EP2891518A1 (en) 2015-07-08
CA2881636A1 (en) 2014-03-06
KR20150036522A (ko) 2015-04-07
CA2881636C (en) 2017-08-15
US9527058B2 (en) 2016-12-27
JP2014042886A (ja) 2014-03-13
CN104582828B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP5619837B2 (ja) 無機粒子の連続反応装置
JP5466732B2 (ja) 反応凝集粒子の製造方法、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池の製造方法及び反応凝集粒子の製造装置
EP2043770B1 (en) Mixing apparatus and process
CN103521110A (zh) 机械混合搅拌器
CN107108298B (zh) 用于在超临界水条件下进行盐分离的设备
CN109679682A (zh) 一种溶氢设备和溶氢方法
SE528840C2 (sv) Reaktor och förfarande för överkritisk vattenoxidation
CN109679684A (zh) 一种液相加氢反应***及方法
JP6255649B2 (ja) 連続反応晶析装置及び無機粒子の連続反応晶析方法
JP6255648B2 (ja) 無機粒子の連続反応装置及び無機粒子の連続反応晶析方法
CN214422396U (zh) 一种多相超重力微反应废水处理装置
US6368570B1 (en) Process for manufacturing Caro's acid
JP2016010774A (ja) テイラー反応装置
CN106830279A (zh) 一种硝基苯废水的处理方法及装置
CN111569816A (zh) 一种固液均质混合泵配套多管式反应器
CN114853140A (zh) 用于净化矿井水的絮凝剂加料溶解装置
JP2011189258A (ja) 水処理装置
CN105800824A (zh) 一种含肼类废水处理***
JP2008036611A (ja) 攪拌型リアクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2881636

Country of ref document: CA

Ref document number: 20157003566

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201501014

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2013833157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013833157

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE