WO2014032440A1 - 上行控制信息的反馈方法、基站及用户设备 - Google Patents

上行控制信息的反馈方法、基站及用户设备 Download PDF

Info

Publication number
WO2014032440A1
WO2014032440A1 PCT/CN2013/076097 CN2013076097W WO2014032440A1 WO 2014032440 A1 WO2014032440 A1 WO 2014032440A1 CN 2013076097 W CN2013076097 W CN 2013076097W WO 2014032440 A1 WO2014032440 A1 WO 2014032440A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
small base
user equipment
macro base
independent small
Prior art date
Application number
PCT/CN2013/076097
Other languages
English (en)
French (fr)
Inventor
梁永明
张佳胤
郭轶
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13832327.4A priority Critical patent/EP2874455A4/en
Publication of WO2014032440A1 publication Critical patent/WO2014032440A1/zh
Priority to US14/623,400 priority patent/US20150163794A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • MSA and Soft-celK Phantom cell proposed in LTE Release-12 allow independent or non-independent cells, and these independent or non-independent cells can adopt the 3.5 GHz LTE-Hi band or the new carrier type ( New frequency bands such as NCT, New Carrier Type).
  • the Physical Uplink Control Channel can support feedback of Uplink Control Information (UCI).
  • UCI Uplink Control Information
  • the UCI information includes: Channel State Information (CSI) of the downlink (DL, Downlink), including a rank indicator (RI, Rank Indicator), Precoding matrix indicator (PMI), channel quality indicator (CQI, Channel Quality Indicator); index number (CC Index) of multiple component carriers (CC, Component Carrier) and hybrid automatic data of each CC Affirmative acknowledgement and negative acknowledgement (ACK/NACK) information of the HARQ (Hybrid Automatic Repeat Request); UE's uplink scheduling request (SR, Scheduling Request) information; and other information, such as interference received by the UE, UE distance from the base station
  • SR Scheduling Request
  • the UE may also feed back the full channel state information (Full Channel State Information) of the downlink measured by the UE to the serving base station, where the full channel information includes the amplitude of the time varying channel. All CSI information such as phase, interference, etc.
  • CA Carrier Aggregation
  • Downlink, Downlink and UL (Uplink) uplinks require a wider bandwidth problem for high-speed data rates, supporting multiple DL CCs and UL CCs in a cell.
  • LTE-A system such as an LTE Rel-10/11 system
  • 5 DL CCs and 5 UL CCs are used, and the DL Primary Component Carrier (PCC) and the UL PCC are UE-specific (UE-specific).
  • PCC Primary Component Carrier
  • UE-specific UE-specific
  • the mechanism that is, different UEs of the radio cell may be configured as one DL PCC or one UL PCC and one or more DL secondary component carriers (SCCs) or one or more UL SCCs, UEs
  • SCCs DL secondary component carriers
  • UEs An advantage of the -Specific DL/UL CC is that the base station can flexibly configure the DL/UL CC for one or more UEs according to the load condition of the DL/UL CC service.
  • the 3GPP Release-10/ll specifies that the UE can only feed back information such as CSI, ACK/NACK, and SR of each DL on the PUCCH on the respective UL PCC.
  • the load of DL PCC and UL PCC may increase in LTE Release-11 or LTERelease-12 systems.
  • CoMP Coordinated Multi-Point Transmission
  • RRHs remote radio heads
  • LPNs low-power transmitting nodes
  • the PUCCH resource of the UL PCC causes congestion due to too many UEs due to RRH or LPN, compared to the LTE Release-8/9/lO system.
  • the load of the UL PUCCH is too large, so that many UEs do not have enough uplink PUCCH resource blocks (RBs) to feed back the UL UCI information, causing severe system performance degradation.
  • information such as SR, ACK/NACK and CSI information are fed back together on the PUCCH, the ACK/NACK has the highest priority, followed by the SR, and finally the CSI.
  • ACK/NACK has the highest priority, followed by the SR, and finally the CSI.
  • UCI of multiple DL CCs may cause collisions of UCIs of different CCs, and CSI, SR, ACK/NACK between the same CCs also Collisions occur, and the priorities of ACK/NACK, SR, and CSI are high to low. Therefore, in the scenario of a non-independent small base station, it is also necessary to consider how to handle the UCI collision or collision of the PUCCH.
  • a large number of UEs may cause congestion in the control channel resources of the UL PCC, which may cause congestion.
  • the PUCCH may cause congestion due to excessive UE feedback of the UL CSI.
  • the same problem occurs in the scenario of a non-independent small base station such as a Soft-cell or a Phantom cell.
  • the UL PUCCH channel is used to feed back CSI for a large number of UEs. If the amount of CSI information is too large, the PUCCH congestion problem is more serious. Therefore, it is necessary to find a new UCI feedback method for the uplink channel to alleviate the congestion of the uplink control channel. Summary of the invention
  • the embodiment of the present invention provides a method for feeding back uplink control information, a base station, and a user equipment, which can alleviate the problem of congestion of an uplink control channel, that is, a problem that the UCI load on the PUCCH is too heavy.
  • the first aspect provides a method for feeding back uplink control information, including: receiving uplink scheduling information of a physical uplink shared channel PUSCH of a non-independent small base station; and transmitting, according to the uplink scheduling information, on a PUSCH of the non-independent small base station Uplink control information UCI.
  • the receiving the uplink scheduling information of the PUSCH of the non-independent small base station includes: receiving, by the non-independent small base station, the enhanced physical downlink control channel ePDCCH Or the uplink scheduling information that is sent by the macro base station to which the non-independent small base station belongs, on the physical downlink control channel PDCCH.
  • the method before the receiving the uplink scheduling information that is sent by the non-independent small base station on the ePDCCH, the method further includes: Sending a scheduling request SR to the macro base station on the physical uplink control channel (PUCCH) of the macro base station to which the non-independent small base station belongs, so that the macro base station notifies the non-independent small base station to send on the ePDCCH according to the SR The uplink scheduling information.
  • PUCCH physical uplink control channel
  • the method before the receiving, by the macro base station to which the non-independent small base station belongs, the uplink scheduling information sent by the PDCCH, the method further includes: transmitting, to the macro base station, a scheduling request SR on a physical uplink control channel PUCCH of the macro base station to which the dependent small base station belongs, so that the macro base station is configured according to the macro base station
  • the SR sends the uplink scheduling information on the PDCCH and notifies the non-independent small base station of the uplink scheduling information.
  • the method before the sending the SR to the macro base station on the PUCCH of the macro base station to which the non-independent small base station belongs, the method further includes: Receiving a UCI feedback period and a trigger condition configured by the macro base station or the non-independent small base station through high layer signaling.
  • the SR carries indication information, where the indication information is used to indicate that the macro base station notifies the non-independent according to the SR
  • the small base station sends the uplink scheduling information on the ePDCCH or is used to indicate the first aspect of the combination and the foregoing implementation manner.
  • the receiving the PUSCH of the non-independent small base station before the uplink scheduling information the method further includes: receiving an aperiodic UCI feedback indication and a triggering condition configured by the non-independent small base station by using high layer signaling.
  • the determining the uplink scheduling information of the user equipment on the PUSCH of the non-independent small base station includes: receiving a macro base station to which the non-independent small base station belongs The uplink scheduling information sent by the scheduling request of the user equipment.
  • the determining the uplink scheduling information of the user equipment on the PUSCH of the non-independent small base station includes: receiving the non-independent small base station And a scheduling event notification sent by the home macro base station according to the scheduling request of the user equipment; generating the uplink scheduling information according to the scheduling event notification.
  • the The method further includes: sending the uplink scheduling information to the user equipment on an enhanced physical downlink control channel (ePDCCH) of the non-independent small base station.
  • ePDCCH enhanced physical downlink control channel
  • the method further includes: configuring, by the high layer signaling, the aperiodic UCI feedback indication and the trigger condition to the user equipment.
  • the method further includes: performing downlink resource scheduling on the user equipment according to the UCI; or, to the non-independent small base station The home macro base station transmits the UCI, so that the macro base station according to the
  • the UCI performs downlink resource scheduling on the user equipment.
  • a third aspect provides a method for feeding back uplink control information, where the method is performed by a macro base station, including: receiving a scheduling request SR sent by a user equipment on a physical uplink control channel PUCCH of a macro base station, where the user equipment is vested Providing a data transmission service for the non-independent small base station of the macro base station; determining, according to the SR, uplink scheduling information for the user equipment on a physical uplink shared channel PUSCH of the non-independent small base station; The uplink downlink control information is sent to the user equipment on the physical downlink control channel PDCCH, and the uplink scheduling information is sent to the non-independent small base station, so that the user equipment is not independent according to the uplink scheduling information.
  • the uplink control information UCI is transmitted on the PUSCH of the small base station.
  • the method before receiving the SR sent by the user equipment on the PUCCH of the macro base station, the method further includes: configuring, by using the high layer signaling, the UCI feedback period to the user equipment. And trigger conditions.
  • the method further includes: receiving the UCI forwarded by the non-independent small base station; performing, according to the UCI, the user equipment Downstream scheduling.
  • a fourth aspect provides a method for feeding back uplink control information, where the method is performed by a macro base station, including: receiving a scheduling request SR sent by a user equipment on a physical uplink control channel PUCCH of a macro base station, where the user equipment is vested Providing data transmission to the non-independent small base station of the macro base station Transmitting a scheduling event notification to the non-independent small base station belonging to the macro base station according to the SR, so that the non-independent small base station sends an uplink grant to the user equipment according to the scheduling event notification, and receives the The uplink control information UCI transmitted by the user equipment on the physical uplink shared channel PUSCH of the non-independent small base station.
  • the method further includes:
  • a user equipment including: a receiving unit, configured to receive uplink scheduling information of a physical uplink shared channel (PUSCH) of a non-independent small base station; and a sending unit, configured to use, according to the uplink scheduling information received by the receiving unit,
  • the uplink control information UCI is sent on the PUSCH of the non-independent small base station.
  • PUSCH physical uplink shared channel
  • the sending unit is further configured to: send, to the macro base, a physical uplink control channel PUCCH of a macro base station to which the non-independent small base station belongs The station sends a scheduling request SR, so that the macro base station notifies the non-independent small base station to send the uplink scheduling information on the ePDCCH according to the SR.
  • the sending unit is further configured to: send, to the macro base, a physical uplink control channel PUCCH of a macro base station to which the non-independent small base station belongs The station sends a scheduling request SR, so that the macro base station sends the uplink scheduling information on the PDCCH according to the SR and notifies the non-independent small base station of the uplink scheduling information.
  • the sixth aspect provides a non-independent small base station, including: a determining unit, configured to determine uplink scheduling information for a user equipment on a physical uplink shared channel PUSCH of the non-independent small base station; The uplink scheduling information determined by the determining unit receives the uplink control information UCI sent by the user equipment on the PUSCH of the non-independent small base station.
  • the determining unit is specifically configured to receive, by the receiving unit, a macro base station to which the non-independent small base station belongs, according to the user equipment Dispatching a scheduled event notification sent by the request, and generating the uplink scheduling information according to the scheduling event notification.
  • the independent small base station further includes: a sending unit, configured to send, on the enhanced physical downlink control channel ePDCCH of the non-independent small base station The user equipment sends the uplink scheduling information.
  • a macro base station including: a receiving unit, configured to receive a scheduling request SR sent by a user equipment on a physical uplink control channel PUCCH of a macro base station, where the user equipment is not owned by the macro base station
  • the independent small base station provides a data transmission service
  • the determining unit is configured to determine, according to the SR received by the receiving unit, uplink scheduling information of the user equipment on the physical uplink shared channel PUSCH of the non-independent small base station; Transmitting the uplink scheduling information determined by the determining unit to the user equipment on the physical downlink control channel PDCCH of the macro base station, and transmitting the uplink scheduling information determined by the determining unit to the non-independent small base station, so that The user equipment sends uplink control information UCI on the PUSCH of the non-independent small base station according to the uplink scheduling information.
  • a macro base station including: a receiving unit, configured to receive a scheduling request SR sent by a user equipment on a physical uplink control channel PUCCH of a macro base station, where the user equipment is not owned by the macro base station
  • the independent small base station provides a data transmission service
  • the sending unit is configured to send, according to the SR received by the receiving unit, a scheduling event notification to the non-independent small base station belonging to the macro base station, so that the non-independent small base station according to the Scheduling event notification to the user device Sending an uplink grant and receiving uplink control information UCI sent by the user equipment on a physical uplink shared channel PUSCH of the non-independent small base station.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the traffic of the PUCCH for the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision of the PUCCH of the macro base station. Probability. DRAWINGS
  • FIG. 1 is a schematic diagram of an example of a scenario to which an embodiment of the present invention may be applied.
  • FIG. 2 is a flow chart of a UCI feedback method in accordance with an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for feeding back uplink control information according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for feeding back uplink control information according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for feeding back uplink control information according to another embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a CSI feedback process according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a CSI feedback process according to another embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a CSI feedback process according to another embodiment of the present invention.
  • Figure 9 is a block diagram of a user equipment in accordance with one embodiment of the present invention.
  • Figure 10 is a block diagram of a non-independent small base station in accordance with one embodiment of the present invention.
  • Figure 11 is a block diagram of a macro base station in accordance with one embodiment of the present invention.
  • Figure 12 is a block diagram of a macro base station according to another embodiment of the present invention.
  • Figure 13 is a block diagram of a user equipment in accordance with one embodiment of the present invention.
  • Figure 14 is a block diagram of a non-independent small base station in accordance with one embodiment of the present invention.
  • Figure 15 is a block diagram of a macro base station in accordance with one embodiment of the present invention.
  • Figure 16 is a block diagram of a macro base station according to another embodiment of the present invention. detailed description
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Future 5th Generation Mobile Cellular Communication System Wireless LAN (WLAN, Wireless Local Area) Network ), self-organizing network, multi-hop network, etc.
  • UE User Equipment
  • Mobile phone mobile terminal
  • Terminals may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which may be a mobile terminal, such as a mobile phone (or “cellular") Telephones and computers with mobile terminals, for example, portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data and/or signaling (Signaling) with the radio access network.
  • a radio access network eg, RAN, Radio Access Network
  • RAN Radio Access Network
  • Telephones and computers with mobile terminals for example, portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data and/or signaling (Signaling) with the radio access network.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e- in LTE).
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • AP Access Point
  • the invention is not limited to the base station.
  • the communication system 100 of FIG. 1 includes a macro base station 101 and a small base station 102.
  • the coverage 104 of the small base station 102 is within the coverage 103 of the macro base station 101.
  • the macro base station 101 and the small base station 102 exchange data and/or signaling through a backhaul (Backhaul).
  • Backhaul can be a wired connection, for example, via fiber optics, coaxial cable, network cable, etc. It can also be a wireless link, such as by millimeter wave, microwave, etc.
  • the Backhaul between the macro base station 101 and the small base station 102 can be implemented by using the X2 interface or the newly defined X3 interface. The specific implementation form of Backhaul is not limited in the embodiment of the present invention.
  • the embodiment of the present invention does not limit the implementation form of the small base station 102, and may include, for example, a micro base station (Micro), a pico base station (Pico), a femto base station (Femto), a low power node (LPN, Low Power Node), and a remote radio head. (RRH, Remote Radio Head), etc.
  • the spectrum of the small base station can be a licensed (License) spectrum, for example, an NCT band of 3.5 GHz or higher, or LTE-A.
  • One or more SCCs of the system or an unlicensed spectrum, for example, a WiFi (Wireless Fidelity) band below 700 MHz, a 2.4 GHz Industrial Scientific Medical (ISM) band, 5 GHz WiFi band, 60 GHz wireless Gigabit (WiGiga, Wireless Gigabit) band, etc., even for the TV industry's white spectrum or cognitive radio technology (CR, Cognitive Radio) system authorized shared access (LS A, Licensed Shared Access The spectrum of ).
  • WiFi Wireless Fidelity
  • ISM Industrial Scientific Medical
  • 5 GHz WiFi band 5 GHz WiFi band
  • 60 GHz wireless Gigabit (WiGiga, Wireless Gigabit) band etc.
  • TV industry's white spectrum or cognitive radio technology (CR, Cognitive Radio) system authorized shared access LS A, Licensed Shared Access The spectrum of ).
  • the UE 105 is a terminal that is simultaneously covered by the macro base station 101 and the small base station 102, and the UE 106 is a terminal that is only covered by the macro base station 101.
  • UE 105 may be a UE of an LTE Rel-12 system
  • UE 106 may be a UE of an LTE Rel-10/11 system.
  • the small base station 102 is a non-independent small base station belonging to the macro base station 101 and does not provide complete signaling support.
  • the small base station 102 does not have a PCC of UL and/or DL, and the corresponding signaling support needs to be provided depending on the corresponding PCC of the macro base station 101.
  • the uplink control information of the small base station 102 needs to be transmitted through the PUCCH on the UL PCC of the macro base station 101.
  • the UCI load of the macro base station may be too heavy to cause the PUCCH channel of the macro base station 101 to be crowded or Blockage, resulting in reduced performance of the entire system and reduced user experience.
  • the macro base station 101 provides a PUCCH, a PDCCH, and a Physical Broadcast Channel (PBCH) signaling service of the UE 105.
  • the small base station 102 provides a data transmission service such as a Physical Downlink Shared Channel (PDSCH) and a PUSCH of the UE 105.
  • PDSCH Physical Downlink Shared Channel
  • the non-independent small base station 102 and the macro base station 101 have the same cell ID, but the embodiment of the present invention does not limit this.
  • the embodiment of the present invention can also be applied to the case where the macro base station 101 and the non-independent small base station 102 have different cell IDs.
  • the existing LTE-Release-8/9/lO/ll system does not have a scenario of a non-independent small base station.
  • the Pico cell or the Femto cell are independent cells, and the independent cell has its own UL PCC.
  • FIG. 2 is a flow chart of a UCI feedback method in accordance with an embodiment of the present invention.
  • the method of Figure 2 is performed by a UE (e.g., UE 105 of Figure 1).
  • the uplink scheduling information may include an uplink grant (UL Grant), an index number of the corresponding uplink component carrier (UL CC ), and other related information.
  • UL Grant uplink grant
  • UL CC uplink component carrier
  • the UCI may include: CSI, including RI, PMI, CQI; ACK/NACK of multiple CCs; uplink SR information of the UE; and other information, such as interference received by the UE, full channel status information, and the like.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • Control-plane is separated from the user plane (UP, User-plane), that is, the macro base station provides signaling such as system information (SI, System Information) of the layer 1/layer 2 (L1/L2) broadcast channel (PBCH) and Layer 3 (RRC signaling) is provided to the UE, and the small base station provides DL/UL data to the UE, which not only implements data splitting of the small base station, but also reduces the signaling function of the small base station and reduces the deployment cost of the small base station.
  • SI system information
  • L1/L2 layer 1/layer 2
  • RRC signaling Layer 3
  • the PUSCH of the small base station has a good channel environment because it is relatively close to the UE and is generally an indoor channel. Therefore, the transmission capability of the PUSCH of the small base station is generally high, and the embodiment of the present invention can fully utilize the offload performance of the small base station and improve Information throughput of small base stations.
  • the macro can be based on the macro.
  • the data of the UE of the cell and the load condition of the PUCCH are used to flexibly split the UCI (for example, CSI, ACK/NACK, etc.) of the macro base station and/or the small base station with the PUSCH of the small base station.
  • the DL CSI of the small base station requires that the period of feedback is not too short.
  • the CSI of the small base station feeding back the DL UCI of the small base station on its own PUSCH should not affect the downlink resource scheduling and downlink performance of the small base station.
  • the UE transmits the UCI on the PUSCH of the small base station, and the required power is lower than the UCI transmitted on the PUCCH of the macro base station, so that the power of the UE can be saved, thereby prolonging the battery life of the UE.
  • the embodiment of the present invention can also be backward compatible with the LTE Release-10/ll standard, that is, in the LTE Release-10/ll system, the UCI can be used to separate the small base stations.
  • the UE may receive the uplink scheduling information from a macro base station (for example, the macro base station 101 shown in FIG. 1) to which the non-independent small base station belongs.
  • a macro base station for example, the macro base station 101 shown in FIG. 1
  • the uplink scheduling information is generated and transmitted by the macro base station, and the non-independent small base station generally does not have the uplink scheduling capability.
  • the macro base station may send uplink scheduling information to the UE on the PDCCH.
  • the macro base station performs uplink resource scheduling for the small base station.
  • the advantage is that an uplink inter-cell interference coordination (ICIC) mechanism is adopted between the macro base station and the small base station.
  • ICIC uplink inter-cell interference coordination
  • the macro base station uniformly manages and schedules the uplink time-frequency resource block (RB) of the macro base station and the small base station, frequency division multiplexing (FDM, Frequency-Division Multiplexing) can be adopted in the time domain and/or the frequency domain. ), resource scheduling methods such as Fractional Frequency Reuse (FFC) to mitigate or eliminate uplink co-channel interference or adjacent-channel interference that may occur in macro base stations and small base stations.
  • FFC Fractional Frequency Reuse
  • the macro base station adopts a UL frequency band of 100 MHz from 3.5 GHz to 3.6 GHz and a DL frequency band of 100 MHz from 3.6 GHz to 3.7 GHz, and the UL and DL of the macro base station adopt a duplex mode of Frequency Division Duplexing (FDD).
  • the small base station adopts a UL/DL band of 100 MHz from 3.7 GHz to 3.8 GHz, and the UL and DL of the small base station adopts a duplex mode of Time Division Duplexing (TDD), so that the DL of the macro base station is 3.6 GHz to 3.7 GHz.
  • TDD Time Division Duplexing
  • Signaling and/or data on the frequency band can cause adjacent-channel interference to the signaling and/or data on the small base station's 3.7 GHz to 3.8 GHz UL band.
  • the macro base station uniformly manages and schedules the uplink resources of the macro base station and the small base station to mitigate or avoid adjacent channel interference.
  • the UE may receive the uplink scheduling information from the non-independent small base station.
  • the uplink scheduling information is generated and transmitted by the non-independent small base station.
  • the non-independent small base station may send uplink scheduling information to the UE on its enhanced PDCCH (ePDCCH, enhanced PDCCH).
  • the non-independent small base station needs to have uplink scheduling capability.
  • the UCI sent on the PUSCH of the non-independent small base station may be a periodic UCI or a non-periodic UCI.
  • the UE may request the network side to send uplink scheduling information through the Fake SR (pseudo SR) mechanism.
  • the Fake SR is used to instruct the macro base station to notify the non-independent small base station to send uplink scheduling information on the ePDCCH according to the SR or to instruct the macro base station to send uplink scheduling information on the PDCCH according to the SR.
  • the UE transmits the SR to the macro base station on the PUCCH of the macro base station to which the dependent small base station belongs.
  • the SR may carry indication information, where it is used to identify that the SR is a Fake SR.
  • the indicator information is carried by a 1-bit cell in the SR, and the cell may be an idle bit or a reserved bit in the SR, or
  • the existing cells in the SR are reused, and the embodiment of the present invention does not limit this.
  • the Fake SR may also be the same as the normal SR. Since the macro base station can learn that the non-independent small base station provides the data transmission service of the UE, the macro base station can receive the SR sent by the UE through the PUCCH. When the SR is understood as Fake SR.
  • the UE may send the SR to the macro base station on the PUCCH of the macro base station to which the non-independent small base station belongs, so that the macro base station notifies the non-independent small base station to send the uplink scheduling information on the ePDCCH according to the SR.
  • the non-independent small base station has uplink scheduling capability, and generates and sends uplink scheduling information to the UE.
  • the macro base station may send a scheduling event notification to the non-independent small base station by using Backhaul, and is configured to trigger the non-independent small base station to perform uplink scheduling.
  • the embodiment of the present invention does not limit the specific form of scheduling event notification, and may reuse existing signaling or may be newly added signaling. Alternatively, the scheduling event notification may occupy only 1 bit of cells.
  • the UE that is not covered by the eNB may send the SR to the macro eNB on the PUCCH of the macro eNB, so that the macro eNB sends the uplink scheduling information on the PDCCH according to the SR and is small independent.
  • the base station notifies the uplink scheduling information.
  • the uplink scheduling capability of the non-independent small base station is not limited, and the macro base station performs uplink scheduling and notifies the UE and the non-independent small base station of the uplink scheduling information.
  • the macro base station may send uplink scheduling information to the UE through the PDCCH, and send the uplink scheduling information to the non-independent small base station through Backhaul.
  • the embodiment of the present invention does not limit the specific form of the macro base station notifying the non-independent small base station of the uplink scheduling information, and may reuse the existing signaling or the newly added signaling.
  • the UE may first receive the macro base station or the non-independent small base station to pass High-level signaling (such as RRC signaling) configured UCI feedback period and trigger conditions.
  • the UE sends the SR to the macro base station on the PUCCH of the macro base station when the UCI feedback period is adjacent or when the UCI feedback period arrives.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • FIG. 3 is a flowchart of a method for feeding back uplink control information according to another embodiment of the present invention.
  • the method of Fig. 3 is performed by a non-independent small base station (e.g., the small base station 102 shown in Fig. 1), and corresponds to the method of Fig. 2, and thus the duplicated description will be appropriately omitted.
  • a non-independent small base station e.g., the small base station 102 shown in Fig. 1
  • the non-independent small base station may generate uplink scheduling information by itself.
  • the non-independent small base station can configure the aperiodic UCI feedback indication and the trigger condition to the user equipment by using high layer signaling (for example, RRC signaling), and then the non-independent small base station generates
  • the uplink scheduling information is sent to the UE by using the ePDCCH to generate the generated uplink scheduling information.
  • the non-independent small base station may receive uplink scheduling information that is sent by the macro base station to which the non-independent small base station belongs according to the SR of the user equipment.
  • the SR sent by the UE may be the Fake SR
  • the macro base station generates uplink scheduling information according to the Fake SR, and sends the uplink scheduling information to the non-independent small base station.
  • the non-independent small base station may receive a scheduling event notification sent by the macro base station to which the non-independent small base station belongs according to the SR of the user equipment, and generate uplink scheduling information according to the scheduling event notification. .
  • the non-independent small base station is required to have an uplink scheduling capability.
  • the non-independent small base station may send uplink scheduling information to the user equipment on the ePDCCH.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the traffic of the PUCCH for the macro base station, reducing the load of the PUCCH of the macro base station, and reducing The load and collision probability of the PUCCH of the macro base station.
  • the transmission capability of the PUSCH of the small base station is generally high, and the embodiment of the present invention can fully utilize the offload performance of the small base station and improve the information throughput.
  • the UE transmits the UCI on the PUSCH of the small base station, and the required power is lower than the UCI transmitted on the PUCCH of the macro base station, so that the power of the UE can be saved.
  • the embodiments of the present invention are also backward compatible with the LTE Release-10/ll standard.
  • the non-independent small base station may further perform downlink resource scheduling on the user equipment according to the UCI received in step 302. In this case, the non-independent small base station needs to have downlink scheduling capability.
  • the non-independent small base station may further send a UCI to the macro base station, so that the macro base station performs downlink resource scheduling on the user equipment according to the UCI.
  • FIG. 4 is a flowchart of a method for feeding back uplink control information according to another embodiment of the present invention.
  • the method of Figure 4 is performed by a macro base station (e.g., macro base station 101 shown in Figure 1).
  • a macro base station e.g., macro base station 101 shown in Figure 1.
  • the user equipment receives an SR sent by the user equipment on a PUCCH of the macro base station.
  • the user equipment provides data transmission services by a non-independent small base station (e.g., the small base station 102 shown in Fig. 1) belonging to the macro base station.
  • a non-independent small base station e.g., the small base station 102 shown in Fig. 1
  • the SR received in step 401 may be referred to as a Fake SR.
  • the SR may carry indication information, where it is used to identify that the SR is a Fake SR.
  • the indicator information is carried by a 1-bit cell in the SR, and the cell may be an idle bit or a reserved bit in the SR, or may be
  • the existing cells in the SR are reused, and the embodiment of the present invention does not limit this.
  • the Fake SR may also be the same as the normal SR. Since the macro base station can learn that the non-independent small base station provides the data transmission service of the UE, the macro base station can receive the SR sent by the UE through the PUCCH. When the SR is understood as Fake SR.
  • the uplink scheduling information may include a UL Grant, a corresponding resource index, and other related information.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the macro base station may configure a UCI feedback period and a trigger condition to the user equipment by using high layer signaling (for example, RRC signaling).
  • high layer signaling for example, RRC signaling
  • the macro base station may receive the UCI forwarded by the non-independent small base station; perform downlink scheduling of the user equipment according to the UCI.
  • the UE transmits the UCI on the PUSCH of the small base station, and the required power is lower than the UCI transmitted on the PUCCH of the macro base station, so that the power of the UE can be saved.
  • FIG. 5 is a flowchart of a method for feeding back uplink control information according to another embodiment of the present invention.
  • the method of Figure 5 is performed by a macro base station (e.g., macro base station 101 shown in Figure 1).
  • a macro base station e.g., macro base station 101 shown in Figure 1.
  • the user equipment receives an SR sent by the user equipment on a PUCCH of the macro base station.
  • the user equipment provides data transmission services by a non-independent small base station (e.g., the small base station 102 shown in Fig. 1) belonging to the macro base station.
  • a non-independent small base station e.g., the small base station 102 shown in Fig. 1
  • the SR received in step 501 may be referred to as a Fake SR.
  • the SR may carry indication information, where it is used to identify that the SR is a Fake SR.
  • the indicator information is carried by a 1-bit cell in the SR, and the cell may be an idle bit or a reserved bit in the SR, or may be
  • the existing cells in the SR are reused, and the embodiment of the present invention does not limit this.
  • the Fake SR may also be the same as the normal SR. Since the macro base station can learn that the non-independent small base station provides the data transmission service of the UE, the macro base station can receive the SR sent by the UE through the PUCCH. When the SR is understood as Fake SR.
  • the non-independent small base station sends the uplink scheduling information to the user equipment according to the scheduling event notification, and receives the user equipment on the PUSCH of the non-independent small base station.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic of the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the macro base station may configure a UCI feedback period and a trigger condition to the user equipment by using high layer signaling (for example, RRC signaling).
  • high layer signaling for example, RRC signaling
  • the macro base station may receive the UCI forwarded by the non-independent small base station; perform downlink scheduling of the user equipment according to the UCI.
  • the transmission capability of the PUSCH of the small base station is generally high.
  • the embodiment of the present invention can fully utilize the offload performance of the small base station and improve the information throughput.
  • the UE transmits UCI on the PUSCH of the small base station, and the required power is greater than that of the macro base station.
  • the UCI is lower on the PUCCH, so the power of the UE can be saved.
  • the embodiments of the present invention are also backward compatible with the LTE Release-10/ll standard.
  • FIG. 6 is a schematic flow chart of a CSI feedback process according to an embodiment of the present invention.
  • the CSI is periodically transmitted.
  • the example of the macro base station is the macro base station 101 shown in FIG. 1.
  • the example of the small base station is the small base station 102 shown in FIG. 1.
  • the example of the UE is shown in FIG. UE 105.
  • the macro base station configures, by using high layer signaling, a CSI feedback period and a trigger condition.
  • This step 601 can also be performed by a small base station.
  • the UE determines whether the CSI feedback period is approaching.
  • the UE sends a Fake SR to the macro base station on the PUCCH channel of the macro base station.
  • the UE may send a Fake SR at a predetermined time before the feedback period is about to arrive. 604.
  • the macro base station receives and detects the SR on the PUCCH.
  • the Fake SR can carry specific indications to indicate that the SR is a Fake SR.
  • the Fake SR may be the same as the normal SR, and the macro base station determines that the SR is a Fake SR sent by the UE served by the small base station.
  • the macro base station sends uplink scheduling information (such as a UL Grant and a corresponding UL CC index, etc.) to the UE on the PDCCH.
  • uplink scheduling information such as a UL Grant and a corresponding UL CC index, etc.
  • the macro base station performs uplink scheduling according to the SR.
  • the macro base station needs to be advanced Information about the PUSCH resource of the small base station, such as the UL CC number used, is obtained.
  • the macro base station performs uplink scheduling in the PUSCH resources supported by the small base station.
  • the macro base station sends the uplink scheduling information to the small base station by using Backhaul.
  • the Backhaul between the macro base station and the small base station may be wired or wireless, and the embodiment of the present invention does not limit this.
  • the UE receives and detects uplink scheduling information sent by the macro base station.
  • the UE can determine the corresponding resource of the PUSCH for transmitting the periodic CSI.
  • the UE sends CSI information on the PUSCH of the small base station.
  • the small base station performs downlink resource scheduling according to the CSI.
  • the small base station can directly perform the downlink resource scheduling of the UE according to the CSI. Otherwise, the small base station may forward the CSI to the macro base station through the Backhaul or the wireless air interface, and the macro base station performs the downlink resource scheduling of the UE according to the CSI.
  • the UE triggers the macro base station to allocate uplink scheduling information through the Fake SR, and transmits the UCI through the PUSCH of the non-independent small base station, thereby using the data channel of the small base station to offload the traffic of the control channel for the macro base station, and reducing the PUCCH of the macro base station.
  • the load reduces the PUCCH congestion of the macro base station.
  • the small base station is not required to have an uplink scheduling capability, and the applicable scenario is richer.
  • most of the UCI information is transmitted on the PUSCH of the small base station. Since the power required by the small base station PUSCH is small and the rate is fast, the power of the UE can be saved and the throughput of the UE can be improved.
  • FIG. 7 is a schematic flow chart of a CSI feedback process according to another embodiment of the present invention.
  • the CSI is periodically transmitted.
  • the example of the macro base station is the macro base station 101 shown in FIG. 1.
  • the example of the small base station is the small base station 102 shown in FIG. 1.
  • the example of the UE is shown in FIG. UE 105.
  • the macro base station configures, by using high layer signaling, a CSI feedback period and a trigger condition.
  • This step 701 can also be performed by the small base station.
  • UE CSI feedback cycle to determine whether approaching.
  • the UE may send a Fake SR at a predetermined time before the feedback period is about to arrive.
  • the Fake SR can carry specific indications to indicate that the SR is a Fake SR. or,
  • the Fake SR can also be the same as the normal SR, and the macro base station judges that the SR is a UE served by the small base station. Fake SR sent.
  • the macro base station sends a scheduling event notification to the small base station by using Backhaul to notify the small base station to prepare for resource scheduling.
  • the Backhaul between the macro base station and the small base station may be wired or wireless, and the embodiment of the present invention does not limit this.
  • the small base station sends uplink scheduling information to the UE on the PDCCH.
  • the small base station performs uplink scheduling according to the SR. At this time, the small base station needs to have uplink scheduling capability.
  • the UE receives and detects uplink scheduling information sent by the small base station.
  • the UE sends CSI information on the PUSCH of the small base station.
  • the small base station performs downlink resource scheduling according to the CSI.
  • the small base station can directly perform the downlink resource scheduling of the UE according to the CSI. Otherwise, the small base station can forward the CSI to the macro base station through Backhaul or even the air interface, and the macro base station performs downlink resource scheduling of the UE according to the CSI.
  • the UE triggers the macro base station to allocate downlink scheduling information through the Fake SR, and transmits the UCI through the PUSCH of the non-independent small base station, thereby using the data channel of the small base station to divide the traffic of the control channel for the macro base station, and reducing the PUCCH of the macro base station.
  • the load reduces the PUCCH congestion of the macro base station.
  • most of the UCI information is transmitted on the PUSCH of the small base station. Since the power required by the small base station PUSCH is small and the rate is fast, the power of the UE can be saved and the UE throughput can be improved.
  • FIG. 8 is a schematic flow chart of a CSI feedback process according to another embodiment of the present invention.
  • the CSI is aperiodic transmission
  • the macro base station is an example of the macro base station 101 shown in FIG. 1
  • the small base station is an example of the small base station 102 shown in FIG. 1.
  • the UE example is shown in FIG. The illustrated UE 105.
  • the small base station configures the aperiodic CSI feedback indication and the trigger condition by using the high layer signaling to the UE.
  • the UE determines whether to receive high layer signaling. If received, the corresponding trigger condition is obtained.
  • the small base station sends uplink scheduling information to the UE by using the ePDCCH.
  • the UE receives and detects uplink scheduling information.
  • the UE sends the aperiodic CSI on the PUSCH of the small base station.
  • the small base station performs downlink resource scheduling according to the CSI.
  • the UE transmits the UCI through the PUSCH of the non-independent small base station, thereby using the data channel of the small base station to offload the traffic of the control channel for the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the PUCCH congestion of the macro base station. problem.
  • most of the UCI information is transmitted on the PUSCH of the small base station. Since the power required by the small base station PUSCH is small and the rate is fast, the power of the UE can be saved and the UE throughput can be improved.
  • the embodiment of the present invention does not exclude the scenario of the independent small base station. If the UE is relatively close to the independent small base station, the PUSCH of the independent small base station can be used to feed back the UCI which should be on the PUCCH of the macro base station, and similar good performance can be obtained. Similarly, the embodiment of the present invention does not exclude a scenario in which the UE is only covered by the small base station and is not covered by the macro base station. Although the UE cannot send the Fake SR information to the macro base station by directly passing the PUCCH of the macro base station, the small base station may pass the RRC.
  • the high-layer signaling configures how the UE feeds back the UCI, and the UE feeds back the UCI information on the PUSCH of the small base station according to the configuration parameter. Therefore, the embodiment of the present invention is still applicable to a scenario in which the UE is only covered by the small base station and not covered by the macro base station, and is not Let me repeat.
  • FIG. 9 is a block diagram of a user equipment in accordance with one embodiment of the present invention.
  • An example of the user equipment 90 of FIG. 9 is the UE 105 shown in FIG. 1, including a receiving unit 91 and a transmitting unit 92.
  • the receiving unit 91 receives uplink scheduling information of the PUSCH of the non-independent small base station.
  • the transmitting unit 92 transmits the UCI on the PUSCH of the non-independent small base station according to the uplink scheduling information received by the receiving unit 91.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the receiving unit 91 may receive small base stations in the non-independent enhanced physical downlink control channel uplink scheduling information sent on ePDCCH; or receive the small base station belongs dependent on a macro base station a PDCCH The uplink scheduling information sent.
  • the sending unit 92 may further send a scheduling request SR to the macro base station on the physical uplink control channel PUCCH of the macro base station to which the dependent small base station belongs, so that the macro base station notifies the non-independent small base station according to the SR.
  • the uplink scheduling information is sent on the ePDCCH.
  • the sending unit 92 may further send a scheduling request SR to the macro base station on the physical uplink control channel PUCCH of the macro base station to which the dependent small base station belongs, so that the macro base station sends the uplink on the PDCCH according to the SR. Scheduling information and notifying the non-independent small base station of the uplink scheduling information.
  • the sending unit 92 may send the SR to the macro base station on the PUCCH of the macro base station when the UCI feedback period is adjacent or when the UCI feedback period arrives.
  • the SR may carry indication information, where the indication information is used to indicate that the macro base station notifies the non-independent small base station to send uplink scheduling information on the ePDCCH according to the SR, or is used to indicate that the macro base station sends the uplink on the PDCCH according to the SR.
  • Scheduling information that is, the indication information is used to indicate that the SR is a Fake SR.
  • the receiving unit 91 may further receive an aperiodic UCI feedback indication and a trigger condition configured by the non-independent small base station through the high layer signaling.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the determining unit 96 may receive, by the receiving unit 97, a scheduling event notification sent by the macro base station to which the non-independent small base station belongs according to the scheduling request of the user equipment, and generate uplink scheduling information according to the scheduling event notification.
  • the non-independent small base station 95 may further include a scheduling unit 99, configured to perform downlink resource scheduling on the user equipment according to the UCI.
  • a scheduling unit 99 configured to perform downlink resource scheduling on the user equipment according to the UCI.
  • the sending unit 98 may send the UCI to the macro base station to which the non-independent small base station belongs, so that the macro base station performs downlink resource scheduling on the user equipment according to the UCI.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the receiving unit 111 receives the SR transmitted by the user equipment on the PUCCH of the macro base station, and the user equipment provides the data transmission service by the non-independent small base station belonging to the macro base station.
  • the sending unit 113 sends the uplink scheduling information determined by the determining unit 112 to the user equipment on the physical downlink control channel PDCCH of the macro base station, and sends the uplink scheduling information determined by the determining unit 112 to the non-independent small base station, so that the user equipment according to the uplink scheduling information
  • the channel state information UCI is transmitted on the PUSCH of the non-independent small base station.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the receiving unit 111 may further receive the UCI forwarded by the non-independent small base station, so as to perform downlink scheduling of the user equipment according to the UCI.
  • Figure 12 is a block diagram of a macro base station according to another embodiment of the present invention.
  • An example of the macro base station 120 of Fig. 12 is the macro base station 101 shown in Fig. 1, which includes a receiving unit 121 and a transmitting unit 122.
  • the receiving unit 121 receives the SR sent by the user equipment on the PUCCH of the macro base station, and the user sets A data transmission service is provided by a non-independent small base station belonging to the macro base station.
  • the sending unit 122 sends a scheduling event notification to the non-independent small base station belonging to the macro base station according to the SR received by the receiving unit 121, so that the non-independent small base station sends an uplink grant to the user equipment according to the scheduling event notification, and receives the user equipment in a non-independent small UCI transmitted on the PUSCH of the base station.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the sending unit 122 may further send a UCI feedback period and a trigger condition to the user equipment by using high layer signaling.
  • the receiving unit 121 may further receive the UCI forwarded by the non-independent small base station, so as to perform downlink scheduling of the user equipment according to the UCI.
  • FIG. 13 is a block diagram of a user equipment in accordance with one embodiment of the present invention.
  • An example of the user equipment 130 of FIG. 13 is the UE 105 shown in FIG. 1, including a receiving circuit 131 and a transmitting circuit 132.
  • the receiving circuit 131 receives uplink scheduling information of the PUSCH of the non-independent small base station.
  • the transmitting circuit 132 transmits the UCI on the PUSCH of the non-independent small base station based on the uplink scheduling information received by the receiving circuit 131.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • bus system 139 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as the bus system 139 in the figure.
  • User equipment 130 may also include a processor 133 and a memory 134.
  • the memory 134 stores instructions that cause the processor 133 to perform various operations and data required to perform various operations.
  • the processor 133 controls the operation of the user equipment 130, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 134 can include read only memory and random access memory and provides instructions and data to processor 133.
  • a portion of the memory 134 may also include non-volatile random access memory (NVRAM).
  • the receiving circuit 131 and the transmitting circuit 132 may be in the processor The method of the embodiment of the present invention is executed under the control of 133.
  • the steps of the above method may be completed by the integrated logic of the hardware in the processor 133 or by the instruction of the software.
  • the processor 133 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hard Figure.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like. The storage medium is located in the memory
  • the processor 133 reads the information in the memory 134 and combines the hardware to complete the steps of the foregoing method.
  • the receiving circuit 131 may receive uplink scheduling information that is sent by the non-independent small base station on the enhanced physical downlink control channel ePDCCH; or the macro base station that receives the non-independent small base station belongs to the physical downlink control channel PDCCH.
  • the sending circuit 132 may further send a scheduling request SR to the macro base station on the physical uplink control channel PUCCH of the macro base station to which the dependent small base station belongs, so that the macro base station notifies the non-independent small base station according to the SR.
  • the uplink scheduling information is sent on the ePDCCH.
  • the sending circuit 132 may further send a scheduling request SR to the macro base station on the physical uplink control channel PUCCH of the macro base station to which the dependent small base station belongs, so that the macro base station sends the uplink on the PDCCH according to the SR. Scheduling information and notifying the non-independent small base station of the uplink scheduling information.
  • the receiving circuit 131 may further receive a UCI feedback period and a trigger condition configured by the macro base station or the non-independent small base station through the high layer signaling.
  • the sending circuit 132 may send the SR to the macro base station on the PUCCH of the macro base station when the UCI feedback period is adjacent or when the UCI feedback period arrives.
  • the SR may carry indication information, where the indication information is used to indicate that the macro base station notifies the non-independent small base station to send uplink scheduling information on the ePDCCH according to the SR, or is used to indicate that the macro base station sends the uplink on the PDCCH according to the SR.
  • Scheduling information that is, the indication information is used to indicate that the SR is a Fake SR.
  • the receiving circuit 131 may further receive a non-periodic UCI feedback indication and a trigger condition configured by the non-independent small base station through the high layer signaling.
  • Figure 14 is a block diagram of a non-independent small base station in accordance with one embodiment of the present invention.
  • An example of the dependent small base station 140 of FIG. 14 is the small base station 102 shown in FIG. 1, including a receiving circuit 141, a processor 143, and a memory 144.
  • the memory 144 stores instructions that cause the processor 143 to determine uplink scheduling information for the user equipment on the PUSCH of the dependent small base station.
  • the receiving circuit 141 receives the UCI sent by the user equipment on the PUSCH of the non-independent small base station according to the uplink scheduling information determined by the processor 143.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the dependent small base station 140 may also include a transmitting circuit 142.
  • the non-independent small base station 140 may further include an antenna 145 and a transmission line 146.
  • receive circuitry 141 and transmit circuitry 142 may be coupled to antenna 145 or transmission line 146.
  • Transmission line 146 is used to implement a wired connection between other network side devices, such as a Backhaul connection in wired form.
  • the non-independent small base station 140 can also implement a wireless form of Backhaul connection via the antenna 145.
  • bus system 149 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 149 in the figure.
  • the memory 144 stores instructions that cause the processor 143 to perform various operations and data required to perform various operations.
  • the processor 143 controls the operation of the dependent small base station 140, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 144 can include read only memory and random access memory and provides instructions and data to processor 143.
  • a portion of memory 144 may also include non-volatile random access memory (NVRAM).
  • the receiving circuit 141 and the transmitting circuit 142 can perform the method of the embodiment of the present invention under the control of the processor 143.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 143 or an instruction control in the form of software.
  • the processor 143 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hard Figure.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor Wait.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 144, and the processor 143 reads the information in the memory 144 and performs the steps of the above method in combination with the hardware thereof.
  • the receiving circuit 141 may receive uplink scheduling information that is sent by the macro base station to which the dependent small base station belongs according to the scheduling request of the user equipment.
  • the processor 143 may receive, by the receiving circuit 141, a scheduling event notification sent by the macro base station to which the non-independent small base station belongs according to the scheduling request of the user equipment, and generate uplink scheduling information according to the scheduling event notification.
  • the sending circuit 142 may send uplink scheduling information to the user equipment on the ePDCCH of the non-independent small base station.
  • the sending circuit 142 may send a UCI feedback period and a trigger condition to the user equipment by using the high layer signaling, or may configure the aperiodic UCI feedback indication and the trigger condition to the user equipment by using the high layer signaling.
  • the processor 143 may perform downlink resource scheduling on the user equipment according to the UCI.
  • the sending circuit 142 may send the UCI to the macro base station to which the non-independent small base station belongs, so that the macro base station performs downlink resource scheduling on the user equipment according to the UCI.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • FIG. 15 is a block diagram of a macro base station in accordance with one embodiment of the present invention.
  • An example of the macro base station 150 of FIG. 15 is the macro base station 101 shown in FIG. 1, and includes a receiving circuit 151, a transmitting circuit 152, a processor 153, and a memory 154.
  • the receiving circuit 151 receives the SR transmitted by the user equipment on the PUCCH of the macro base station, and the user equipment provides the data transmission service by the non-independent small base station belonging to the macro base station.
  • the memory 154 stores instructions for causing the processor 153 to determine uplink scheduling information for the user equipment on the PUSCH of the non-independent small base station based on the SR received by the receiving circuit 151.
  • the transmitting circuit 152 is directed to the user equipment on the physical downlink control channel PDCCH of the macro base station 150.
  • the uplink scheduling information determined by the processor 153 is sent, and the uplink scheduling information determined by the processor 153 is sent to the non-independent small base station, so that the user equipment sends the channel state information UCI on the PUSCH of the non-independent small base station according to the uplink scheduling information.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the macro base station 150 may also include an antenna 155 and a transmission line 156.
  • receive circuitry 151 and transmit circuitry 152 can be coupled to antenna 155 or transmission line 156.
  • the transmission line 156 is used to implement a wired connection with other network side devices, such as a Backhaul connection in a wired form.
  • the macro base station 150 can also implement a wireless form of Backhaul connection via the antenna 155.
  • bus system 159 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 159 in the figure.
  • the memory 154 stores instructions that cause the processor 153 to perform various operations and data required to perform various operations.
  • the processor 153 controls the operation of the macro base station 150, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 154 can include read only memory and random access memory and provides instructions and data to processor 153. Portions of memory 154 may also include non-volatile random access memory (NVRAM).
  • the receiving circuit 151 and the transmitting circuit 152 can perform the method of the embodiment of the present invention under the control of the processor 153.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 153 or an instruction control in the form of software.
  • the processor 153 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hard Figure.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 154, and the processor 153 reads the information in the memory 154 and completes the steps of the above method in combination with the hardware thereof. Step.
  • the sending circuit 152 can also send a UCI feedback period and a trigger condition to the user equipment through high layer signaling.
  • the receiving circuit 151 may further receive the UCI forwarded by the non-independent small base station, so as to perform downlink scheduling of the user equipment according to the UCI.
  • Figure 16 is a block diagram of a macro base station according to another embodiment of the present invention.
  • An example of the macro base station 160 of Fig. 16 is the macro base station 101 shown in Fig. 1, which includes a receiving circuit 161 and a transmitting circuit 162.
  • the sending circuit 162 sends a scheduling event notification to the non-independent small base station belonging to the macro base station according to the SR received by the receiving circuit 161, so that the non-independent small base station sends an uplink grant to the user equipment according to the scheduling event notification and receives the user equipment in a non-independent small UCI transmitted on the PUSCH of the base station.
  • the user equipment transmits the UCI through the PUSCH of the non-independent small base station, thereby offloading the PUCCH traffic to the macro base station, reducing the load of the PUCCH of the macro base station, and reducing the load and collision probability of the PUCCH of the macro base station.
  • the macro base station 160 may also include an antenna 165 and a transmission line 166.
  • receive circuitry 161 and transmit circuitry 162 may be coupled to antenna 165 or transmission line 166.
  • the transmission line 166 is used to implement a wired connection with other network side devices, such as a Backhaul connection in a wired form.
  • the macro base station 160 can also implement a wireless form of Backhaul connection via the antenna 165.
  • bus system 169 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 169 in the figure.
  • the macro base station 160 also includes a processor 163 and a memory 164.
  • the memory 164 stores instructions that cause the processor 163 to perform various operations and data required to perform various operations.
  • the processor 163 controls the operation of the macro base station 160, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 164 can include read only memory and random access memory and provides instructions and data to processor 163.
  • a portion of memory 164 may also include non-volatile random access memory (NVRAM).
  • the receiving circuit 161 and the transmitting circuit 162 can perform the method of the embodiment of the present invention under the control of the processor 163.
  • each step of the above method may be integrated by hardware in the processor 163. Instruction control in the form of logic circuits or software is completed.
  • the processor 163 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hard Figure.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 164, and the processor 163 reads the information in the memory 164 and combines the hardware to perform the steps of the above method.
  • the sending circuit 162 may also send a UCI feedback period and a trigger condition to the user equipment through high layer signaling.
  • the receiving circuit 161 may further receive the UCI forwarded by the non-independent small base station, so as to perform downlink scheduling of the user equipment according to the UCI.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行控制信息的反馈方法、基站及用户设备。该方法包括:接收非独立小基站的上行调度信息;根据所述上行调度信息在非独立小基站的物理上行共享信道(PUSCH)上发送上行控制信息(UCI)。本发明实施例中,用户设备利用小基站的物理上行共享信道为宏基站分流了物理上行控制信道(PUCCH)的流量,从而降低了宏基站的物理上行控制信道的负载及碰撞概率。

Description

上行控制信息的反馈方法、 基站及用户设备 本申请要求于 2012 年 8 月 31 日提交中国专利局、 申请号为 201210316796.2、 发明名称为"上行控制信息的反馈方法、 基站及用户设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及无线通信领域, 并且更具体地, 涉及上行控制信息的 反馈方法、 基站及用户设备。 背景技术
随着通信技术的演进, 蜂窝通信***第三代合作伙伴计划 (3GPP, 3rd Generation Partnership Project )已经开始 Release- 12的讨论。 目前提出了多种 LTE Release-12候选的技术方案, 其中增强型的小基站 ( Small cell )是很重 要的一个方面, 例如多流聚集(MSA, Multi-Stream Aggregation ), 软小区 ( Soft-cell )、 幽灵小区( Phantom cell )等技术都有可能应用于小基站所覆盖 的无线小区。
LTE-Release-8/9/lO/ll ***的小基站一般采用异种网络 (HetNet , Heterogeneous Network ) 的机制。 HetNet网络中的小基站所服务的小区, 如 小区 (Micro cell )、 i i小区 (Pico cell )、 毫 i i小区 (Femto cell ), 都 是独立的小区, 与相应的基站( Macro-eNB、 Pico-eNB或 Femto-eNB , 可以 统称为 MeNB或 eNB )相似, 都有各自的小区特定 ( Cell- Specific ) 的控制 信令, 也有各自所服务的用户设备( UE , User Equipment )。 然而, LTE Release-12中提出的 MSA、 Soft-celK Phantom cell等概念允许有独立或非独 立的小区,而且这些独立或非独立的小区可以采用 3.5GHz的 LTE-Hi的频段 或者新型载波类型 (NCT, New Carrier Type )等新的频段。
对于非独立小基站, MSA、 Soft-celK Phantom cell等***, 可以考虑用 宏基站的信令支持非独立小基站。 物理上行控制信道(PUCCH , Physical Uplink Control Channel ) 能够支持上行控制信息 ( UCI, Uplink Control Information )的反馈。 UCI信息包括: 下行链路( DL, Downlink )的信道状 态信息(CSI, Channel State Information ), 包括秩指示(RI, Rank Indicator )、 预编码矩阵指示 (PMI, Precoding Matrix Indicator ), 信道质量指示 (CQI, Channel Quality Indicator ); 多个成员载波 ( CC , Component Carrier )的索引 号( CC Index )以及每个 CC的下行数据的混合自动重传请求( HARQ, Hybrid Automatic Repeat Request ) 的肯定确认和否定确认 ( ACK/NACK )信息; UE的上行调度请求(SR, Scheduling Request )信息; 以及其他信息, 例如 UE受到的干扰、 UE距离基站的相位信息等; 如果 PUCCH信道资源足够的 话, UE也可以向服务基站反馈 UE所测量的下行链路的全信道状态信息( Full CSI, Full Channel State Information ), 全信道信息包括时变信道的幅度、 相 位、 干扰等全部 CSI信息。
现在的载波聚集 (CA , Carrier Aggregation ) 技术已经能解决 DL
( Downlink, 下行)和 UL ( Uplink, 上行)接入高速数据速率需要的更宽 的带宽问题, 支持一个小区中有多个 DL CC和 UL CC。 在 LTE-A***中, 例如 LTE Rel- 10/11***, 采用 5个 DL CC和 5个 UL CC, 且 DL主成员载 波( PCC, Primary Component Carrier )和 UL PCC都采用 UE特定( UE-specific ) 的机制, 即无线小区的不同 UE可以配置为相同或不同的一个 DL PCC或一 个 UL PCC以及一个或多个 DL次成员载波(SCC, Secondary Component Carrier ) SCC或一个或多个 UL SCC, UE-Specific的 DL/UL CC的优点在于 基站可以灵活地根据 DL/UL CC 业务的负载情况给一个或多个 UE 配置 DL/UL CC。 3GPP Release-10/ll规定 UE只能在各自的 UL PCC上的 PUCCH 上反馈 DL各个 CC的 CSI、 ACK/NACK, SR等信息。 在此当前的 CA机制 下, DL PCC和 UL PCC的负载在 LTE Release- 11或 LTERelease-12***中有 可能会增大。 例如, 在 LTE Release-11的协作多点传输(CoMP, Coordinated Multi-Point Transmission )方案 4场景下, 众多远程射频头 ( RRH, Remote Radio Head)采或低功率发射节点 (LPN, Low Power Transmit Node )用与宏 小区采用一样的无线小区标识( Cell ID ) , 则 UL PCC的 PUCCH资源由于 RRH或 LPN而带来太多 UE而引起拥塞现象,相比于 LTE Release-8/9/lO系 统有更多 UE都需要 PUCCH来反馈 UCI, 则 UL PUCCH的负载过大, 从而 导致许多 UE没有足够的上行 PUCCH的资源块(RB, Resource Block )反 馈 UL UCI信息而引起***性能严重下降。当 SR、 ACK/NACK等信息和 CSI 信息一起在 PUCCH上反馈时, ACK/NACK的优先级最高, 其次是 SR, 最 后是 CSI, 当三者出现沖突或碰撞时, ACK/NACK、 SR、 CSI的优先级由高 到低。 相应地, 在 LTE Release- HCoMP方案 4或 LTE Release- 12***及更 高版本***中, 多个 DL CC的 UCI会导致不同 CC的 UCI出现碰撞, 同一 CC间的 CSI、 SR、 ACK/NACK也会出现碰撞, 且 ACK/NACK、 SR、 CSI 的优先级从高到低, 因此, 在非独立小基站场景下也需要考虑如何处理 PUCCH的 UCI沖突或碰撞的问题。
这样, 大量 UE会造成 UL PCC中控制信道资源不够用而造成拥塞, 例 如 PUCCH就会由于过多 UE反馈 UL CSI而造成拥塞。 同样的问题,会出现 在 Soft-cell、 Phantom cell等非独立小基站的场景中。 尤其是 UL PUCCH信 道, 用于为大量的 UE反馈 CSI。 如果 CSI信息量太大, 则 PUCCH拥塞问 题更为严重。 因此, 有必要寻找一种新的上行信道的 UCI反馈的方法, 减轻 上行控制信道拥塞的问题。 发明内容
本发明实施例提供一种上行控制信息的反馈方法、基站及用户设备, 能 够减轻上行控制信道拥塞的问题,即 PUCCH上反馈的 UCI负载过重的问题。
第一方面, 提供了一种上行控制信息的反馈方法, 包括: 接收非独立小 基站的物理上行共享信道 PUSCH的上行调度信息; 根据所述上行调度信息 在所述非独立小基站的 PUSCH上发送上行控制信息 UCI。
结合第一方面, 在第一方面的一种实现方式中, 所述接收非独立小基站 的 PUSCH的上行调度信息, 包括: 接收所述非独立小基站在增强物理下行 控制信道 ePDCCH上发送的所述上行调度信息; 或者,接收所述非独立小基 站归属的宏基站在物理下行控制信道 PDCCH上发送的所述上行调度信息。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 在所 述接收所述非独立小基站在 ePDCCH上发送的所述上行调度信息之前,所述 方法还包括: 在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所述宏基站发送调度请求 SR, 以使得所述宏基站根据所述 SR 通知所述非独立小基站在所述 ePDCCH上发送所述上行调度信息。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 在所 述接收所述非独立小基站归属的宏基站在 PDCCH上发送的所述上行调度信 息之前, 所述方法还包括: 在所述非独立小基站归属的宏基站的物理上行控 制信道 PUCCH上向所述宏基站发送调度请求 SR, 以使得所述宏基站根据 所述 SR在所述 PDCCH上发送所述上行调度信息并且向所述非独立小基站 通知所述上行调度信息。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 在所 述非独立小基站归属的宏基站的 PUCCH上向所述宏基站发送 SR之前, 所 述方法还包括: 接收所述宏基站或所述非独立小基站通过高层信令配置的 UCI反馈周期和触发条件。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 在所 述非独立小基站归属的宏基站的 PUCCH上向所述宏基站发送 SR, 包括: 在所述 UCI反馈周期邻近或者在所述 UCI反馈周期到达时, 在所述宏基站 的 PUCCH上向所述宏基站发送 SR。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 所述 SR携带指示信息,所述指示信息用于指示所述宏基站^^据所述 SR通知所述 非独立小基站在所述 ePDCCH 上发送所述上行调度信息或者用于指示所述 结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 在所 述接收非独立小基站的 PUSCH的上行调度信息之前, 所述方法还包括: 接 收所述非独立小基站通过高层信令配置的非周期性 UCI反馈指示和触发条 件。
第二方面, 提供了一种上行控制信息的反馈方法, 所述方法由非独立小 基站执行, 包括: 确定所述非独立小基站的物理上行共享信道 PUSCH上对 用户设备的上行调度信息; 根据所述上行调度信息在所述非独立小基站的 PUSCH上接收所述用户设备发送的上行控制信息 UCI。
结合第二方面, 在第二方面的一种实现方式中, 所述确定所述非独立小 基站的 PUSCH上对用户设备的上行调度信息, 包括: 接收所述非独立小基 站归属的宏基站根据所述用户设备的调度请求发送的所述上行调度信息。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 确定所述非独立小基站的 PUSCH上对用户设备的上行调度信息, 包括: 接 收所述非独立小基站归属的宏基站根据所述用户设备的调度请求发送的调 度事件通知; 根据所述调度事件通知生成所述上行调度信息。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 在确 定所述非独立小基站的 PUSCH上对用户设备的上行调度信息之后, 所述方 法还包括:在所述非独立小基站的增强物理下行控制信道 ePDCCH上向所述 用户设备发送所述上行调度信息。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 在根 据所述上行调度信息在所述非独立小基站的 PUSCH上接收所述用户设备发 送的 UCI之前, 所述方法还包括: 通过高层信令向所述用户设备配置 UCI 反馈周期和触发条件。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 在根 据所述上行调度信息在所述非独立小基站的 PUSCH上接收所述用户设备发 送的 UCI之前,所述方法还包括: 通过高层信令向所述用户设备配置非周期 性 UCI反馈指示和触发条件。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 方法还包括: 根据所述 UCI对所述用户设备进行下行资源调度; 或者, 向所 述非独立小基站归属的宏基站发送所述 UCI, 以使得所述宏基站根据所述
UCI对所述用户设备进行下行资源调度。
第三方面, 提供了一种上行控制信息的反馈方法, 所述方法由宏基站执 行, 包括: 接收用户设备在宏基站的物理上行控制信道 PUCCH上发送的调 度请求 SR, 所述用户设备由归属于所述宏基站的非独立小基站提供数据传 输服务; 根据所述 SR, 确定所述非独立小基站的物理上行共享信道 PUSCH 上对所述用户设备的上行调度信息; 在所述宏基站的物理下行控制信道 PDCCH上向所述用户设备发送所述上行调度信息, 并向所述非独立小基站 发送所述上行调度信息, 以使得所述用户设备根据所述上行调度信息在所述 非独立小基站的 PUSCH上发送上行控制信息 UCI。
结合第三方面, 在第三方面的一种实现方式中, 在接收用户设备在宏基 站的 PUCCH上发送的 SR之前, 所述方法还包括: 通过高层信令向所述用 户设备配置 UCI反馈周期和触发条件。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 方法还包括: 接收所述非独立小基站转发的所述 UCI; 根据所述 UCI执行所 述用户设备的下行调度。
第四方面, 提供了一种上行控制信息的反馈方法, 所述方法由宏基站执 行, 包括: 接收用户设备在宏基站的物理上行控制信道 PUCCH上发送的调 度请求 SR, 所述用户设备由归属于所述宏基站的非独立小基站提供数据传 输服务; 根据所述 SR, 向归属于所述宏基站的非独立小基站发送调度事件 通知, 以使得所述非独立小基站根据所述调度事件通知向所述用户设备发送 上行授权并接收所述用户设备在所述非独立小基站的物理上行共享信道 PUSCH上发送的上行控制信息 UCI。
结合第四方面, 在第四方面的一种实现方式中, 在接收用户设备在宏基 站的 PUCCH上发送的 SR之前, 所述方法还包括: 通过高层信令向所述用 户设备配置 UCI反馈周期和触发条件。
结合第四方面及其上述实现方式, 在第四方面的另一实现方式中, 所述 方法还包括:
接收所述非独立小基站转发的所述 UCI;根据所述 UCI执行所述用户设 备的下行调度。
第五方面, 提供了一种用户设备, 包括: 接收单元, 用于接收非独立小 基站的物理上行共享信道 PUSCH的上行调度信息; 发送单元, 用于根据所 述接收单元接收的上行调度信息在所述非独立小基站的 PUSCH上发送上行 控制信息 UCI。
结合第五方面, 在第五方面的一种实现方式中, 所述接收单元具体用于 接收所述非独立小基站在增强物理下行控制信道 ePDCCH上发送的所述上 行调度信息; 或者, 接收所述非独立小基站归属的宏基站在物理下行控制信 道 PDCCH上发送的所述上行调度信息。
结合第五方面及其上述实现方式, 在第五方面的另一实现方式中, 所述 发送单元还用于在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所述宏基站发送调度请求 SR, 以使得所述宏基站根据所述 SR 通知所述非独立小基站在所述 ePDCCH上发送所述上行调度信息。
结合第五方面及其上述实现方式, 在第五方面的另一实现方式中, 所述 发送单元还用于在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所述宏基站发送调度请求 SR, 以使得所述宏基站根据所述 SR 在所述 PDCCH上发送所述上行调度信息并且向所述非独立小基站通知所述 上行调度信息。
结合第五方面及其上述实现方式, 在第五方面的另一实现方式中, 所述 接收单元还用于接收所述宏基站或所述非独立小基站通过高层信令配置的 UCI反馈周期和触发条件。 结合第五方面及其上述实现方式, 在第五方面的另一实现方式中, 所述 接收单元还用于接收所述非独立小基站通过高层信令配置的非周期性 UCI 反馈指示和触发条件。
第六方面, 提供了一种非独立小基站, 包括: 确定单元, 用于确定所述 非独立小基站的物理上行共享信道 PUSCH上对用户设备的上行调度信息; 接收单元, 用于根据所述确定单元确定的上行调度信息在所述非独立小基站 的 PUSCH上接收所述用户设备发送的上行控制信息 UCI。
结合第六方面, 在第六方面的一种实现方式中, 所述确定单元具体用于 通过所述接收单元接收所述非独立小基站归属的宏基站根据所述用户设备 的调度请求发送的所述上行调度信息。
结合第六方面及其上述实现方式, 在第六方面的另一实现方式中, 所述 确定单元具体用于通过所述接收单元接收所述非独立小基站归属的宏基站 根据所述用户设备的调度请求发送的调度事件通知, 并根据所述调度事件通 知生成所述上行调度信息。
结合第六方面及其上述实现方式, 在第六方面的另一实现方式中, 该独 立小基站还包括发送单元, 用于在所述非独立小基站的增强物理下行控制信 道 ePDCCH上向所述用户设备发送所述上行调度信息。
第七方面, 提供了一种宏基站, 包括: 接收单元, 用于接收用户设备在 宏基站的物理上行控制信道 PUCCH上发送的调度请求 SR, 所述用户设备 由归属于所述宏基站的非独立小基站提供数据传输服务; 确定单元, 用于根 据所述接收单元接收的 SR, 确定所述非独立小基站的物理上行共享信道 PUSCH 上对所述用户设备的上行调度信息; 发送单元, 用于在所述宏基站 的物理下行控制信道 PDCCH上向所述用户设备发送所述确定单元确定的上 行调度信息, 并向所述非独立小基站发送所述确定单元确定的上行调度信 息, 以使得所述用户设备根据所述上行调度信息在所述非独立小基站的 PUSCH上发送上行控制信息 UCI。
第八方面, 提供了一种宏基站, 包括: 接收单元, 用于接收用户设备在 宏基站的物理上行控制信道 PUCCH上发送的调度请求 SR, 所述用户设备 由归属于所述宏基站的非独立小基站提供数据传输服务; 发送单元, 用于根 据所述接收单元接收的 SR, 向归属于所述宏基站的非独立小基站发送调度 事件通知, 以使得所述非独立小基站根据所述调度事件通知向所述用户设备 发送上行授权并接收所述用户设备在所述非独立小基站的物理上行共享信 道 PUSCH上发送的上行控制信息 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流 (Offload)了 PUCCH的流量, 降低了宏基站的 PUCCH的负 载, 降低了宏基站的 PUCCH的负载及碰撞概率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是可应用本发明实施例的场景例子的示意图。
图 2是本发明一个实施例的 UCI反馈方法的流程图。
图 3是本发明另一实施例的上行控制信息的反馈方法的流程图。
图 4是本发明另一实施例的上行控制信息的反馈方法的流程图。
图 5是本发明另一实施例的上行控制信息的反馈方法的流程图。
图 6是本发明一个实施例的 CSI反馈过程的示意流程图。
图 7是本发明另一实施例的 CSI反馈过程的示意流程图。
图 8是本发明另一实施例的 CSI反馈过程的示意流程图。
图 9是本发明一个实施例的用户设备的框图。
图 10是本发明一个实施例的非独立小基站的框图。
图 11是本发明一个实施例的宏基站的框图。
图 12是本发明另一实施例的宏基站的框图。
图 13是本发明一个实施例的用户设备的框图。
图 14是本发明一个实施例的非独立小基站的框图。
图 15是本发明一个实施例的宏基站的框图。
图 16是本发明另一实施例的宏基站的框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信***, 例如: 全球移动通信系 统( GSM , Global System of Mobile communication ), 码分多址( CDMA , Code Division Multiple Access ) ***, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务 ( GPRS , General Packet Radio Service ), 长期演进( LTE, Long Term Evolution ), 未来第 5代 移动蜂窝通信***, 无线局域网 ( WLAN , Wireless Local Area Network )、 自组织网络、 多跳网络等。
用户设备(UE, User Equipment ), 也可称之为手机、 移动终端(Mobile
Terminal ),移动用户设备等, 可以经无线接入网(例如, RAN, Radio Access Network )与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移 动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携 式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入 网交换语言和 /或数据和 /或信令 (Signaling)。
基站( BS , Base-station ), 可以是 GSM或 CDMA中的基站( BTS , Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ), 还可以是 LTE 中的演进型基站(eNB或 e-NodeB , evolutional Node B ), 还可以是 WLAN 中的接入点 (AP, Access Point ), 发明对基站并不限定。
图 1是可应用本发明实施例的场景例子的示意图。 图 1的通信*** 100 包括宏基站 101和小基站 102。
小基站 102的覆盖范围 104在宏基站 101的覆盖范围 103内。宏基站 101 和小基站 102之间通过后台连接 ( Backhaul )进行数据和 /或信令的交换。 Backhaul可以是有线的连接, 例如通过光纤、 同轴电缆、 网线等实现; 也可 以是无线的链接, 例如通过毫米波、 微波等实现。 宏基站 101与小基站 102 间的 Backhaul可以通过 X2接口来实现或者是新定义的 X3接口来实现, 本 发明实施例对 Backhaul的具体实现形式不作限制。
本发明实施例对小基站 102的实现形式不作限制,例如可以包括微基站 ( Micro )、微微基站( Pico )、 毫微微基站( Femto )、低功率节点( LPN, Low Power Node )、 远程射频头 (RRH, Remote Radio Head )等。 小基站的频谱 可以是授权( Licensed )的频谱,例如, 3.5GHz及以上的 NCT频段,或 LTE-A ***的一个或多个 SCC;也可以是非授权( Unlicensed )的频谱,例如, 700MHz 以下的无线保真 (WiFi, Wireless Fidelity )频段、 2.4GHz 的工业科学医学 ( ISM, Industrial Scientific Medical )频段、 5GHz的 WiFi频段、 60GHz的 无线千兆比特(WiGig, Wireless Gigabit )频段等, 甚至是电视产业的白频 谱或者认知无线电技术 (CR, Cognitive Radio)***的授权共享接入(LS A , Licensed Shared Access ) 的频谱。
图 1中, UE 105是同时在宏基站 101和小基站 102覆盖下的终端,UE 106 是只在宏基站 101覆盖下的终端。 例如, UE 105可以是 LTE Rel-12***的 UE, UE 106可以是 LTE Rel- 10/11***的 UE。 在下面的实施例中,假设 UE 105利用小基站 102的 PUSCH传输数据。
小基站 102是归属于宏基站 101的非独立小基站, 不提供完整的信令支 持。 换句话说, 小基站 102没有 UL和 /或 DL的 PCC, 相应的信令支持需要 依赖于宏基站 101的相应 PCC来提供。 例如, 如果小基站 102没有独立的 UL PCC, 则小基站 102的上行控制信息需要通过宏基站 101的 UL PCC上 的 PUCCH来传输。 在此情况下, 如果类似 UE 105的小基站 102覆盖下的 UE数目太多, 或者这些 UE使用的 CC数目太多, 会导致宏基站的 UCI负 载太重而导致宏基站 101的 PUCCH信道拥挤或堵塞, 从而使整个***的性 能下降和用户的体验降低。
具体地, 如图 1所示, 宏基站 101提供 UE 105的 PUCCH、 PDCCH和 物理广播信道( PBCH, Physical Broadcast Channel )等信令服务。 小基站 102 提供 UE 105 的物理下行共享信道 (PDSCH , Physical Downlink Share Channel )和 PUSCH等数据传输服务。
另外, 大多数情况下, 非独立小基站 102与宏基站 101具有相同的小区 ID, 但本发明实施例对此不作限制。 本发明实施例也可以应用于宏基站 101 和非独立小基站 102具有不同小区 ID的情况。
现有的 LTE-Release-8/9/lO/ll***不存在非独立小基站的场景。 在现有 的 HetNet场景下, Pico cell或者 Femto cell都是独立的小区, 独立小区有自 己的 UL PCC。
图 2是本发明一个实施例的 UCI反馈方法的流程图。 图 2的方法由 UE (例如图 1的 UE 105 )执行。
201 , 接收非独立小基站的 PUSCH的上行调度信息。 非独立小基站的一个例子是图 1所示的小基站 102。 上行调度信息可包 括上行授权(UL Grant )、 对应的上行成员载波( UL CC )的索引号和其他相 关信息。
202, 根据上行调度信息在非独立小基站的 PUSCH上发送 UCI。
UCI可包括: CSI, 包括 RI、 PMI、 CQI; 多个 CC的 ACK/NACK; UE 的上行 SR信息; 以及其他信息, 例如 UE受到的干扰、 全信道状态信息等。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
本质上, 由于 LTE Release-12 及以上版本的***具有控制面 (CP,
Control-plane ) 与用户面 (UP, User-plane ) 分离功能, 即宏基站提供层 1/ 层 2 ( L1/L2 ) 的广播信道 ( PBCH ) 的***信息 ( SI, System Information ) 等信令以及层 3 ( RRC信令)给 UE, 而小基站提供 DL/UL数据给 UE, 从 而不但实现小基站的数据分流, 而且筒化了小基站的信令功能而降低了小基 站的部署成本。
另外, 小基站的 PUSCH由于离开 UE比较近且一般是室内信道而具有 信道环境好的特点, 因此小基站的 PUSCH的传输能力一般较高, 本发明实 施例能够充分利用小基站的分流性能, 提高小基站的信息吞吐量。
而且, 在本发明实施例中, 对 CSI 的测量机制不作限制。 实际上如果 UE 同时处于宏基站和小基站的覆盖范围内, 由于宏基站和小基站的帧结构 中均有各自的参考信号 (RS, Reference Signal )信息, 而且小基站的 RS可 能在帧结构中的密度比较低。 但小基站也可以根据用户的数目而把 RS设计 为 CRS ( Cell-Specific RS, 小区特定参考信号 )和 URS ( UE- Specific RS, UE特定参考信号)。 这样, UE可以同时测量宏基站和小基站的 RS而得到 各自的 DL CSL 原则上, 既然宏小区的 PUCCH负载情况随着所覆盖 UE的 数目而变化, 而小基站没有 PUCCH, 因此, 可以根据宏小区的 UE的数据 和 PUCCH的负载情况来灵活地用小基站的 PUSCH来分流宏基站和 /或小基 站的 UCI (例如, CSI、 ACK/NACK等)。 至少, 由于小基站覆盖范围小且 信道环境相比宏基站要好, 因此, 小基站的 DL CSI要求反馈的周期不会过 短。 因此, 小基站的 CSI在自己的 PUSCH上反馈小基站的 DL UCI应该不 影响小基站的下行资源调度及下行链路的性能。 而且, UE在小基站的 PUSCH上传输 UCI, 需要的功率比在宏基站的 PUCCH上传输 UCI更低, 因此可以节省 UE的功率, 从而延长了 UE的电 池使用时间。
本发明实施例也能够后向兼容 LTE Release-10/ll 的标准, 即在 LTE Release-10/ll***中, 可以采用 UCI通过独立的小基站分流的机制。
可选地, 作为一个实施例, 在步骤 201中, UE可以从非独立小基站归 属的宏基站(例如图 1所示的宏基站 101 )接收上述上行调度信息。 换句话 说, 在此情况下, 上行调度信息由宏基站生成和发送, 此时非独立小基站一 般不具备上行调度能力。宏基站可以在 PDCCH上向 UE发送上行调度信息。
本实施中,宏基站为小基站进行上行资源调度有一个优点是在宏基站与 小基站间采用上行小区间干 4尤协调( ICIC, Inter-cell Interference Coordination ) 机制。 此时由于宏基站统一管理和调度宏基站与小基站的上行时频资源块 ( RB, Resource Block ), 因此, 可以在时域和 /或频域采用频分复用 (FDM, Frequency-Division Multiplexing ), 分数频率重用 ( FFC, Fractional Frequency Reuse )等资源调度方法来减轻或消除宏基站和小基站可能出现的上行同频 干扰或邻频干扰。例如,宏基站采用 3.5GHz~3.6GHz共 100MHz的 UL频段 和 3.6GHz~3.7GHz共 100MHz的 DL频段, 宏基站的 UL与 DL采用频分复 用 ( FDD , Frequency Division Duplexing ) 的双工方式, 小基站采用 3.7GHz~3.8GHz共 100MHz的 UL/DL频段,小基站的 UL与 DL采用时分复 用 ( TDD , Time Division Duplexing ) 的双工方式, 这样, 宏基站的 3.6GHz~3.7GHz的 DL频段上的信令和 /或数据会对小基站的 3.7GHz~3.8GHz 的 UL频段上的信令和 /或数据产生邻频干扰。 此时, 宏基站统一管理和调度 宏基站与小基站的上行资源会减轻或避免邻频干扰。
可选地, 作为另一实施例, 步骤 201 中, UE可以从非独立小基站接收 上述上行调度信息。 换句话说, 在此情况下, 上行调度信息由非独立小基站 生成和发送。非独立小基站可以在自己的增强型 PDCCH( ePDCCH, enhanced PDCCH )上向 UE发送上行调度信息。 此时需要非独立小基站具备上行调度 能力。
可选地, 作为一个实施例, 在非独立小基站的 PUSCH上发送的 UCI可 以是周期性的 UCI, 也可以是非周期性的 UCI。
在非周期性 UCI的情况下,非独立小基站可在需要 UE反馈 UCI时,通 过高层信令向 UE配置非周期性 UCI反馈指示和触发条件。上述高层信令可 以是无线资源控制(RRC, Radio Resource Control )信令。 此时, 在步骤 201 中, UE可接收非独立小基站在 PDSCH上发送的 RRC信令, RRC信令中包 括上行调度信息。 此外, 高层信令也可以通过宏基站直接通过宏基站的 PDSCH发给 UE, RRC信令中包括上行调度信息。
在周期性 UCI的情况下, UE可通过 Fake SR (伪 SR )机制请求网络侧 发送上行调度信息。 Fake SR用于指示宏基站根据 SR通知非独立小基站在 ePDCCH上发送上行调度信息或者用于指示宏基站根据 SR在 PDCCH上发 送上行调度信息。在此机制下, UE在非独立小基站归属的宏基站的 PUCCH 上向宏基站发送 SR。可选地,该 SR可携带指示信息,用于标识该 SR是 Fake SR, 例如利用 SR中 1比特的信元携带该指示信息, 该信元可以是 SR中的 空闲比特或保留比特, 也可以重用 SR中的现有信元, 本发明实施例对此不 作限制。 可选地, 作为另一实施例, Fake SR也可以与普通 SR相同, 由于 宏基站能够获知非独立小基站提供 UE的数据传输服务, 因此宏基站可以在 通过 PUCCH接收到这样的 UE发送的 SR时, 将该 SR理解为 Fake SR。
可选地, 作为一个实施例, UE 可以在非独立小基站归属的宏基站的 PUCCH 上向宏基站发送 SR, 以使得宏基站根据 SR通知非独立小基站在 ePDCCH上发送上行调度信息。 在此情况下, 非独立小基站具有上行调度能 力, 产生并向 UE发送上行调度信息。 具体地, 宏基站可通过 Backhaul向非 独立小基站发送调度事件通知, 用于触发非独立小基站执行上行调度。 本发 明实施例对调度事件通知的具体形式不作限制, 可用重用现有的信令, 也可 以是新增的信令。 可选地, 调度事件通知可仅仅占用 1比特的信元。
可选地, 作为另一实施例, 在非独立小基站覆盖下的 UE可以在宏基站 的 PUCCH上向宏基站发送 SR, 以使得宏基站根据 SR在 PDCCH上发送上 行调度信息并且向非独立小基站通知上行调度信息。 在此情况下, 对非独立 小基站的上行调度能力不作限制, 由宏基站执行上行调度并将上行调度信息 分别通知给 UE和非独立小基站。 例如, 宏基站可通过 PDCCH向 UE发送 上行调度信息,并通过 Backhaul向非独立小基站发送该上行调度信息。本发 明实施例对宏基站向非独立小基站通知上行调度信息的具体形式不作限制, 可用重用现有的信令, 也可以是新增的信令。
可选地, 作为一个实施例, UE可首先接收宏基站或非独立小基站通过 高层信令(如 RRC信令) 配置的 UCI反馈周期和触发条件。 可选地, UE 在 UCI反馈周期邻近或者在 UCI反馈周期到达时,在宏基站的 PUCCH上向 宏基站发送 SR。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
图 3是本发明另一实施例的上行控制信息的反馈方法的流程图。 图 3的 方法由非独立小基站(例如图 1所示的小基站 102 )执行, 并且与图 2的方 法相对应, 因此将适当省略重复的描述。
301 , 确定非独立小基站的 PUSCH上对用户设备的上行调度信息。
可选地, 作为一个实施例, 在步骤 301中, 非独立小基站可自己生成上 行调度信息。 例如, 在需要 UE进行非周期性 UCI反馈的情况下, 非独立小 基站可通过高层信令(例如 RRC信令) 向用户设备配置非周期性 UCI反馈 指示和触发条件, 然后非独立小基站生成上行调度信息并通过 ePDCCH 向 UE发送所生成的上行调度信息。
可选地, 作为另一实施例, 在步骤 301中, 非独立小基站可接收该非独 立小基站归属的宏基站根据用户设备的 SR发送的上行调度信息。 例如, UE 发送的 SR可以是上述 Fake SR, 宏基站根据该 Fake SR产生上行调度信息, 并将上行调度信息发送给非独立小基站。 在此情况下, 对非独立小基站是否 具有上行调度能力不作限制。
可选地, 作为另一实施例, 在步骤 301中, 非独立小基站可接收该非独 立小基站归属的宏基站根据用户设备的 SR发送的调度事件通知, 并根据调 度事件通知生成上行调度信息。 在此情况下, 需要非独立小基站具备上行调 度能力。可选地,非独立小基站可在 ePDCCH上向用户设备发送上行调度信 息。
302,根据上行调度信息在非独立小基站的 PUSCH上接收用户设备发送 的 UCI。
UCI可包括: CSI, 包括 RI、 PMI、 CQI; 多个 CC的 ACK/NACK; UE 的上行 SR信息; 以及其他信息, 例如 UE受到的干扰等。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
另外, 小基站的 PUSCH的传输能力一般较高, 本发明实施例能够充分 利用小基站的分流性能, 提高信息吞吐量。
而且, UE在小基站的 PUSCH上传输 UCI, 需要的功率比在宏基站的 PUCCH上传输 UCI更低, 因此可以节省 UE的功率。
本发明实施例也能够后向兼容 LTE Release-10/ll的标准。
可选地, 作为一个实施例, 在 UCI是周期性 UCI的情况下, 非独立小 基站可通过高层信令向用户设备配置 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 在 UCI是非周期性 UCI的情况下, 非独立 小基站可通过高层信令向用户设备配置非周期性 UCI反馈指示和触发条件。
可选地, 作为另一实施例, 非独立小基站还可以根据步骤 302中接收到 的 UCI对用户设备进行下行资源调度。此时需要非独立小基站具备下行调度 能力。 或者, 作为另一实施例, 非独立小基站还可以向宏基站发送 UCI, 以 使得宏基站根据 UCI对用户设备进行下行资源调度。
图 4是本发明另一实施例的上行控制信息的反馈方法的流程图。 图 4的 方法由宏基站 (例如图 1所示的宏基站 101 )执行。
401 , 接收用户设备在宏基站的 PUCCH上发送的 SR。 该用户设备由归 属于宏基站的非独立小基站 (例如图 1所示的小基站 102 )提供数据传输服 务。
在步骤 401中接收的 SR可称为 Fake SR。 可选地, 该 SR可携带指示信 息, 用于标识该 SR是 Fake SR, 例如利用 SR中 1比特的信元携带该指示信 息, 该信元可以是 SR中的空闲比特或保留比特, 也可以重用 SR中的现有 信元, 本发明实施例对此不作限制。 可选地, 作为另一实施例, Fake SR也 可以与普通 SR相同, 由于宏基站能够获知非独立小基站提供 UE的数据传 输服务, 因此宏基站可以在通过 PUCCH接收到这样的 UE发送的 SR时, 将该 SR理解为 Fake SR。
402, 根据 SR, 确定归属于宏基站的非独立小基站的 PUSCH上对用户 设备的上行调度信息。
上行调度信息可包括 UL Grant, 对应的资源索引和其他相关信息。
403 , 在宏基站的 PDCCH上向用户设备发送上行调度信息, 并向非独 立小基站发送上行调度信息, 以使得用户设备根据上行调度信息在非独立小 基站的 PUSCH上发送 UCI。
例如,宏基站可通过 Backhaul向非独立小基站发送该上行调度信息。本 发明实施例对宏基站向非独立小基站通知上行调度信息的具体形式不作限 制, 可用重用现有的信令, 也可以是新增的信令。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
可选地, 作为一个实施例, 宏基站可通过高层信令(例如 RRC信令) 向用户设备配置 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 宏基站可以接收非独立小基站转发的 UCI; 根据 UCI执行用户设备的下行调度。
小基站的 PUSCH的传输能力一般较高, 本发明实施例能够充分利用小 基站的分流性能, 提高信息吞吐量。
而且, UE在小基站的 PUSCH上传输 UCI, 需要的功率比在宏基站的 PUCCH上传输 UCI更低, 因此可以节省 UE的功率。
本发明实施例也能够后向兼容 LET Release 10/11的标准。
图 5是本发明另一实施例的上行控制信息的反馈方法的流程图。 图 5的 方法由宏基站 (例如图 1所示的宏基站 101 )执行。
501 , 接收用户设备在宏基站的 PUCCH上发送的 SR。 该用户设备由归 属于宏基站的非独立小基站 (例如图 1所示的小基站 102 )提供数据传输服 务。
在步骤 501中接收的 SR可称为 Fake SR。 可选地, 该 SR可携带指示信 息, 用于标识该 SR是 Fake SR, 例如利用 SR中 1比特的信元携带该指示信 息, 该信元可以是 SR中的空闲比特或保留比特, 也可以重用 SR中的现有 信元, 本发明实施例对此不作限制。 可选地, 作为另一实施例, Fake SR也 可以与普通 SR相同, 由于宏基站能够获知非独立小基站提供 UE的数据传 输服务, 因此宏基站可以在通过 PUCCH接收到这样的 UE发送的 SR时, 将该 SR理解为 Fake SR。
502, 根据 SR, 向归属于宏基站的非独立小基站发送调度事件通知, 以 使得非独立小基站根据调度事件通知向用户设备发送上行调度信息并接收 用户设备在非独立小基站的的 PUSCH上发送的 UCI。 本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
可选地, 作为一个实施例, 宏基站可通过高层信令(例如 RRC信令) 向用户设备配置 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 宏基站可以接收非独立小基站转发的 UCI; 根据 UCI执行用户设备的下行调度。
小基站的 PUSCH的传输能力一般较高, 本发明实施例能够充分利用小 基站的分流性能, 提高信息吞吐量。
而且, UE在小基站的 PUSCH上传输 UCI, 需要的功率比在宏基站的
PUCCH上传输 UCI更低, 因此可以节省 UE的功率。
本发明实施例也能够后向兼容 LTE Release-10/ll的标准。
下面结合具体例子, 更加详细地描述本发明的实施例。 在下面的实施例 中, 以反馈 CSI 为例进行描述, 但是本发明实施例不限于此, 其他类型的 UCI也可以类似地应用这些实施例。
图 6是本发明一个实施例的 CSI反馈过程的示意流程图。在图 6的实施 例中, CSI周期性发送, 宏基站的例子为图 1所示的宏基站 101 , 小基站的 例子为图 1所示的小基站 102, UE的例子为图 1所示的 UE 105。
601 , 宏基站通过高层信令给 UE配置 CSI反馈周期及触发条件。
该步骤 601也可以由小基站执行。
602, UE判断 CSI反馈周期是否临近。
603, 在 CSI反馈周期临近或者到达, 并且满足 CSI触发条件时, UE在 宏基站的 PUCCH信道发送 Fake SR给宏基站。
例如, UE可以在反馈周期即将到达之前的预定时刻发送 Fake SR。 604, 宏基站接收并检测 PUCCH上的 SR。
Fake SR可以携带特定的指示信息, 用以指示该 SR是 Fake SR。 或者, Fake SR也可以与普通 SR相同, 由宏基站判断该 SR为小基站服务的 UE发 送来的 Fake SR。
605 ,宏基站在 PDCCH上发送上行调度信息(如 UL Grant和相应的 UL CC的索引等)给 UE。
本实施例中, 由宏基站根据 SR进行上行调度。 此时, 宏基站需要预先 获知小基站的 PUSCH资源的信息, 例如所采用的 UL CC编号等。 宏基站在 小基站支持的 PUSCH资源内进行上行调度。
606, 宏基站通过 Backhaul向小基站发送该上行调度信息。
宏基站和小基站之间的 Backhaul可以是有线或无线的,本发明实施例对 此不作限制。
607 , UE接收并检测宏基站发送的上行调度信息。
这样 UE能够确定用于发送周期性 CSI的 PUSCH的相应资源。
608, UE在小基站的 PUSCH上发送 CSI信息。
609, 小基站根据 CSI进行下行资源调度。
如果小基站具备下行调度能力, 则小基站可以直接根据 CSI进行 UE的 下行资源调度。 否则, 小基站可将 CSI通过 Backhaul或者无线空口转发给 宏基站, 由宏基站根据 CSI进行 UE的下行资源调度。
本实施例中, UE通过 Fake SR触发宏基站分配上行调度信息, 通过非 独立小基站的 PUSCH传输 UCI, 从而利用小基站的数据信道为宏基站分流 了控制信道的流量, 降低了宏基站的 PUCCH 的负载, 减轻了宏基站的 PUCCH拥塞的问题。
在图 6的实施例中, 不需要小基站具备上行调度能力, 适用的场景更丰 富。 另夕卜, 大部分 UCI信息在小基站的 PUSCH上传输, 由于小基站 PUSCH 所需的功率较小且速率较快, 能够节省 UE的功率并提高 UE吞吐量。
图 7是本发明另一实施例的 CSI反馈过程的示意流程图。在图 7的实施 例中, CSI周期性发送, 宏基站的例子为图 1所示的宏基站 101 , 小基站的 例子为图 1所示的小基站 102, UE的例子为图 1所示的 UE 105。
701 , 宏基站通过高层信令给 UE配置 CSI反馈周期及触发条件。
该步骤 701也可以由小基站执行。
702, UE判断 CSI反馈周期是否临近。
703 , 在 CSI反馈周期临近或者到达时, UE在宏基站的 PUCCH信道发 送 Fake SR给宏基站。
例如, UE可以在反馈周期即将到达之前的预定时刻发送 Fake SR。
704, 宏基站接收并检测 PUCCH上的 SR。
Fake SR可以携带特定的指示信息, 用以指示该 SR是 Fake SR。 或者,
Fake SR也可以与普通 SR相同, 由宏基站判断该 SR为小基站服务的 UE发 送来的 Fake SR。
705, 宏基站通过 Backhaul向小基站发送调度事件通知, 以通知小基站 准备做资源调度。
宏基站和小基站之间的 Backhaul可以是有线或无线的,本发明实施例对 此不作限制。
706, 小基站在 PDCCH上发送上行调度信息给 UE。
本实施例中, 由小基站根据 SR进行上行调度。 此时, 小基站需要具备 上行调度能力。
707 , UE接收并检测小基站发送的上行调度信息。
708, UE在小基站的 PUSCH上发送 CSI信息。
709, 小基站根据 CSI做下行资源调度。
如果小基站具备下行调度能力, 则小基站可以直接根据 CSI进行 UE的 下行资源调度。 否则, 小基站可将 CSI通过 Backhaul甚至空口转发给宏基 站, 由宏基站根据 CSI进行 UE的下行资源调度。
本实施例中, UE通过 Fake SR触发宏基站分配下行调度信息, 通过非 独立小基站的 PUSCH传输 UCI, 从而利用小基站的数据信道为宏基站分流 了控制信道的流量, 降低了宏基站的 PUCCH 的负载, 减轻了宏基站的 PUCCH拥塞的问题。
在图 7的实施例中, 大部分 UCI信息在小基站的 PUSCH上传输, 由于 小基站 PUSCH所需的功率较小且速率较快,能够节省 UE的功率并提高 UE 吞吐量。
图 8是本发明另一实施例的 CSI反馈过程的示意流程图。在图 7的实施 例中, CSI为非周期性发送, 宏基站的例子为图 1所示的宏基站 101 , 小基 站的例子为图 1所示的小基站 102, UE的例子为图 1所示的 UE 105。
801 , 小基站通过高层信令给 UE配置非周期性 CSI反馈指示及触发条 件。
802, UE判断是否收到高层信令。如果接收到,则获取相应的触发条件。
803 , 小基站通过 ePDCCH发送上行调度信息给 UE。
804, UE接收并检测上行调度信息。
805 , UE在小基站的 PUSCH上发送非周期性 CSI。
806, 小基站根据 CSI做下行资源调度。 本实施例中, UE通过非独立小基站的 PUSCH传输 UCI,从而利用小基 站的数据信道为宏基站分流了控制信道的流量, 降低了宏基站的 PUCCH的 负载, 减轻了宏基站的 PUCCH拥塞的问题。
在图 8的实施例中, 大部分 UCI信息在小基站的 PUSCH上传输, 由于 小基站 PUSCH所需的功率较小且速率较快,能够节省 UE的功率并提高 UE 吞吐量。
综上所述,尽管以上实施例详细阐述了在宏基站和非独立小基站共同覆 盖 UE场景下如何反馈 UCI的问题,但本发明实施例并不排除独立小基站的 场景。 如果 UE离独立小基站比较近, 用独立小基站的 PUSCH来反馈原本 应该在宏基站的 PUCCH上的 UCI也能取得类似的良好的性能。 相似地, 本 发明实施例也不排除 UE 只被小基站覆盖而不被宏基站覆盖的场景, 尽管 UE不能通过直接通过宏基站的 PUCCH来向宏基站发送 Fake SR信息, 但 小基站可以通过 RRC高层信令配置 UE如何反馈 UCI, UE根据配置参数在 小基站的 PUSCH上反馈 UCI信息, 因此, 本发明实施例依然适用于 UE只 被小基站覆盖而不被宏基站覆盖的场景, 在此不再赘述。
图 9是本发明一个实施例的用户设备的框图。 图 9的用户设备 90的一 个例子是图 1所示的 UE 105 , 包括接收单元 91和发送单元 92。
接收单元 91接收非独立小基站的 PUSCH的上行调度信息。 发送单元 92根据接收单元 91接收的上行调度信息在非独立小基站的 PUSCH上发送 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
用户设备 90可以实现图 2的方法的各个过程, 为避免重复, 不再详细 描述。
可选地, 作为一个实施例, 接收单元 91可接收非独立小基站在增强物 理下行控制信道 ePDCCH上发送的上行调度信息;或者,接收非独立小基站 归属的宏基站在物理下行控制信道 PDCCH上发送的上行调度信息。
可选地, 作为另一实施例, 发送单元 92还可以在非独立小基站归属的 宏基站的物理上行控制信道 PUCCH上向宏基站发送调度请求 SR, 以使得 宏基站根据 SR通知非独立小基站在 ePDCCH上发送上行调度信息。 可选地, 作为另一实施例, 发送单元 92还可以在非独立小基站归属的 宏基站的物理上行控制信道 PUCCH上向宏基站发送调度请求 SR, 以使得 宏基站根据 SR在 PDCCH上发送上行调度信息并且向非独立小基站通知上 行调度信息。
可选地, 作为另一实施例, 接收单元 91还可以接收宏基站或非独立小 基站通过高层信令配置的 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 发送单元 92可以在 UCI反馈周期邻近或者 在 UCI反馈周期到达时, 在宏基站的 PUCCH上向宏基站发送 SR。
可选地, 作为另一实施例, SR可携带指示信息, 指示信息用于指示宏 基站根据 SR通知非独立小基站在 ePDCCH上发送上行调度信息或者用于指 示宏基站根据 SR在 PDCCH上发送上行调度信息, 即该指示信息用于指示 SR为 Fake SR。
可选地, 作为另一实施例, 接收单元 91还可以接收非独立小基站通过 高层信令配置的非周期性 UCI反馈指示和触发条件。
图 10是本发明一个实施例的非独立小基站的框图。 图 10的非独立小基 站 95的一个例子是图 1所示的小基站 102,包括确定单元 96和接收单元 97。
确定单元 96确定非独立小基站的 PUSCH上对用户设备的上行调度信 息。 接收单元 97根据确定单元 96确定的上行调度信息在非独立小基站的 PUSCH上接收用户设备发送的 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
非独立小基站 95可以实现图 3的方法的各个过程, 为避免重复, 不再 详细描述。
可选地, 作为一个实施例, 确定单元 96可通过接收单元 97接收非独立 小基站归属的宏基站根据用户设备的调度请求发送的上行调度信息。
可选地, 作为另一实施例, 确定单元 96可通过接收单元 97接收非独立 小基站归属的宏基站根据用户设备的调度请求发送的调度事件通知, 并根据 调度事件通知生成上行调度信息。
可选地, 作为另一实施例, 非独立小基站 95还可包括发送单元 98, 用 于在非独立小基站的 ePDCCH上向用户设备发送上行调度信息。 可选地, 作为另一实施例, 发送单元 98可通过高层信令向用户设备发 送 UCI反馈周期和触发条件,或者可通过高层信令向用户设备配置非周期性 UCI反馈指示和触发条件。
可选地, 作为另一实施例, 非独立小基站 95还可包括调度单元 99, 用 于根据 UCI对用户设备进行下行资源调度。 或者,
可选地, 作为另一实施例, 发送单元 98可向非独立小基站归属的宏基 站发送 UCI, 以使得宏基站根据 UCI对用户设备进行下行资源调度。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
图 11是本发明一个实施例的宏基站的框图。 图 11的宏基站 110的一个 例子是图 1所示的宏基站 101 , 包括接收单元 111、 确定单元 112和发送单 元 113。
接收单元 111接收用户设备在宏基站的 PUCCH上发送的 SR,用户设备 由归属于宏基站的非独立小基站提供数据传输服务。
确定单元 112根据接收单元 111接收的 SR,确定非独立小基站的 PUSCH 上对用户设备的上行调度信息。
发送单元 113在宏基站的物理下行控制信道 PDCCH上向用户设备发送 确定单元 112确定的上行调度信息, 并向非独立小基站发送确定单元 112确 定的上行调度信息, 以使得用户设备根据上行调度信息在非独立小基站的 PUSCH上发送信道状态信息 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
可选地, 作为一个实施例, 发送单元 113还可以通过高层信令向用户设 备发送 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 接收单元 111还可以接收非独立小基站转发 的 UCI, 以便根据 UCI执行用户设备的下行调度。
图 12是本发明另一实施例的宏基站的框图。 图 12的宏基站 120的一个 例子是图 1所示的宏基站 101 , 包括接收单元 121和发送单元 122。
接收单元 121接收用户设备在宏基站的 PUCCH上发送的 SR, 用户设 备由归属于宏基站的非独立小基站提供数据传输服务。
发送单元 122根据接收单元 121接收的 SR, 向归属于宏基站的非独立 小基站发送调度事件通知, 以使得非独立小基站根据调度事件通知向用户设 备发送上行授权并接收用户设备在非独立小基站的 PUSCH上发送的 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
可选地, 作为一个实施例, 发送单元 122还可以通过高层信令向用户设 备发送 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 接收单元 121还可以接收非独立小基站转发 的 UCI, 以便根据 UCI执行用户设备的下行调度。
图 13是本发明一个实施例的用户设备的框图。 图 13的用户设备 130的 一个例子是图 1所示的 UE 105 , 包括接收电路 131和发送电路 132。
接收电路 131接收非独立小基站的 PUSCH的上行调度信息。 发送电路 132根据接收电路 131接收的上行调度信息在非独立小基站的 PUSCH上发 送 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
接收电路 131和发送电路 132通过总线*** 139相连。 此外, 用户设备
130还可以包括天线 135。 具体的应用中, 接收电路 131和发送电路 132可 以耦合到天线 135。用户设备 130的各个组件通过总线*** 139耦合在一起, 其中总线*** 139除包括数据总线之外, 还可以包括电源总线、 控制总线和 状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线系 统 139。
用户设备 130还可以包括处理器 133和存储器 134。 存储器 134存储使 得处理器 133 执行各项操作的指令以及执行各项操作所需的数据。 处理器 133控制用户设备 130的操作,处理器 133还可以称为 CPU( Central Processing Unit, 中央处理单元)。 存储器 134可以包括只读存储器和随机存取存储器, 并向处理器 133提供指令和数据。存储器 134的一部分还可以包括非易失性 随机存取存储器( NVRAM )。 接收电路 131和发送电路 132可以在处理器 133的控制下执行本发明实施例的方法。
在实现过程中,上述方法的各步骤可以通过处理器 133中的硬件的集成 逻辑电路或者软件形式的指令控制完成。上述的处理器 133可以是通用处理 器、 数字信号处理器 (DSP )、 专用集成电路( ASIC )、 现成可编程门阵列 ( FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬 图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器 执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块 可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写 可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器
134, 处理器 133读取存储器 134中的信息, 结合其硬件完成上述方法的步 骤。
可选地, 作为一个实施例, 接收电路 131可接收非独立小基站在增强物 理下行控制信道 ePDCCH上发送的上行调度信息;或者,接收非独立小基站 归属的宏基站在物理下行控制信道 PDCCH上发送的上行调度信息。
可选地, 作为另一实施例, 发送电路 132还可以在非独立小基站归属的 宏基站的物理上行控制信道 PUCCH上向宏基站发送调度请求 SR, 以使得 宏基站根据 SR通知非独立小基站在 ePDCCH上发送上行调度信息。
可选地, 作为另一实施例, 发送电路 132还可以在非独立小基站归属的 宏基站的物理上行控制信道 PUCCH上向宏基站发送调度请求 SR, 以使得 宏基站根据 SR在 PDCCH上发送上行调度信息并且向非独立小基站通知上 行调度信息。
可选地, 作为另一实施例, 接收电路 131还可以接收宏基站或非独立小 基站通过高层信令配置的 UCI反馈周期和触发条件。
可选地,作为另一实施例,发送电路 132可以在 UCI反馈周期邻近或者 在 UCI反馈周期到达时, 在宏基站的 PUCCH上向宏基站发送 SR。
可选地, 作为另一实施例, SR可携带指示信息, 指示信息用于指示宏 基站根据 SR通知非独立小基站在 ePDCCH上发送上行调度信息或者用于指 示宏基站根据 SR在 PDCCH上发送上行调度信息, 即该指示信息用于指示 SR为 Fake SR。 可选地, 作为另一实施例, 接收电路 131还可以接收非独立小基站通过 高层信令配置的非周期性 UCI反馈指示和触发条件。
图 14是本发明一个实施例的非独立小基站的框图。 图 14的非独立小基 站 140的一个例子是图 1所示的小基站 102, 包括接收电路 141、处理器 143 和存储器 144。
存储器 144存储使得处理器 143确定非独立小基站的 PUSCH上对用户 设备的上行调度信息的指令。接收电路 141根据处理器 143确定的上行调度 信息在非独立小基站的 PUSCH上接收用户设备发送的 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
非独立小基站 140还可以包括发送电路 142。 此外, 非独立小基站 140 还可以包括天线 145和传输线路 146。 具体的应用中, 接收电路 141和发送 电路 142可以耦合到天线 145或传输线路 146。 传输线路 146用于实现与其 他网络侧设备之间的有线连接, 例如实现有线形式的 Backhaul连接。 当然, 非独立小基站 140也可以通过天线 145实现无线形式的 Backhaul连接。
非独立小基站 140的各个组件通过总线*** 149耦合在一起,其中总线 *** 149除包括数据总线之外, 还可以包括电源总线、 控制总线和状态信号 总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线*** 149。
存储器 144存储使得处理器 143执行各项操作的指令以及执行各项操作 所需的数据。 处理器 143控制非独立小基站 140的操作, 处理器 143还可以 称为 CPU ( Central Processing Unit, 中央处理单元)。存储器 144可以包括只 读存储器和随机存取存储器, 并向处理器 143提供指令和数据。 存储器 144 的一部分还可以包括非易失性随机存取存储器 ( NVRAM )。 接收电路 141 和发送电路 142可以在处理器 143的控制下执行本发明实施例的方法。
在实现过程中,上述方法的各步骤可以通过处理器 143中的硬件的集成 逻辑电路或者软件形式的指令控制完成。上述的处理器 143可以是通用处理 器、 数字信号处理器 (DSP )、 专用集成电路( ASIC )、 现成可编程门阵列 ( FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬 图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器 执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块 可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写 可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 144, 处理器 143读取存储器 144中的信息, 结合其硬件完成上述方法的步 骤。
可选地, 作为一个实施例, 接收电路 141可接收非独立小基站归属的宏 基站根据用户设备的调度请求发送的上行调度信息。
可选地, 作为另一实施例, 处理器 143可通过接收电路 141可接收非独 立小基站归属的宏基站根据用户设备的调度请求发送的调度事件通知, 并根 据调度事件通知生成上行调度信息。
可选地,作为另一实施例,发送电路 142可以在非独立小基站的 ePDCCH 上向用户设备发送上行调度信息。
可选地, 作为另一实施例, 发送电路 142可通过高层信令向用户设备发 送 UCI反馈周期和触发条件,或者可通过高层信令向用户设备配置非周期性 UCI反馈指示和触发条件。
可选地,作为另一实施例,处理器 143还可以根据 UCI对用户设备进行 下行资源调度。
可选地, 作为另一实施例, 发送电路 142可向非独立小基站归属的宏基 站发送 UCI, 以使得宏基站根据 UCI对用户设备进行下行资源调度。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
图 15是本发明一个实施例的宏基站的框图。 图 15的宏基站 150的一个 例子是图 1所示的宏基站 101 , 包括接收电路 151、 发送电路 152、 处理器 153和存储器 154。
接收电路 151接收用户设备在宏基站的 PUCCH上发送的 SR, 该用户 设备由归属于宏基站的非独立小基站提供数据传输服务。
存储器 154存储使得处理器 153根据接收电路 151接收的 SR确定非独 立小基站的 PUSCH上对用户设备的上行调度信息的指令。
发送电路 152在宏基站 150的物理下行控制信道 PDCCH上向用户设备 发送处理器 153确定的上行调度信息, 并向非独立小基站发送处理器 153确 定的上行调度信息, 以使得用户设备根据上行调度信息在非独立小基站的 PUSCH上发送信道状态信息 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
此外,宏基站 150还可以包括天线 155和传输线路 156。具体的应用中, 接收电路 151和发送电路 152可以耦合到天线 155或传输线路 156。 传输线 路 156 用于实现与其他网络侧设备之间的有线连接, 例如实现有线形式的 Backhaul 连接。 当然, 宏基站 150 也可以通过天线 155 实现无线形式的 Backhaul连接。
宏基站 150的各个组件通过总线*** 159耦合在一起,其中总线*** 159 除包括数据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线*** 159。
存储器 154存储使得处理器 153执行各项操作的指令以及执行各项操作 所需的数据。 处理器 153控制宏基站 150的操作, 处理器 153还可以称为 CPU ( Central Processing Unit, 中央处理单元)。 存储器 154可以包括只读存 储器和随机存取存储器, 并向处理器 153提供指令和数据。 存储器 154的一 部分还可以包括非易失性随机存取存储器( NVRAM )。接收电路 151和发送 电路 152可以在处理器 153的控制下执行本发明实施例的方法。
在实现过程中,上述方法的各步骤可以通过处理器 153中的硬件的集成 逻辑电路或者软件形式的指令控制完成。上述的处理器 153可以是通用处理 器、 数字信号处理器 (DSP )、 专用集成电路( ASIC )、 现成可编程门阵列 ( FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬 图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器 执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块 可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写 可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 154, 处理器 153读取存储器 154中的信息, 结合其硬件完成上述方法的步 骤。
可选地, 作为一个实施例, 发送电路 152还可以通过高层信令向用户设 备发送 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 接收电路 151还可以接收非独立小基站转发 的 UCI, 以便根据 UCI执行用户设备的下行调度。
图 16是本发明另一实施例的宏基站的框图。 图 16的宏基站 160的一个 例子是图 1所示的宏基站 101 , 包括接收电路 161和发送电路 162。
接收电路 161接收用户设备在宏基站的 PUCCH上发送的 SR, 用户设 备由归属于宏基站的非独立小基站提供数据传输服务。
发送电路 162根据接收电路 161接收的 SR, 向归属于宏基站的非独立 小基站发送调度事件通知, 以使得非独立小基站根据调度事件通知向用户设 备发送上行授权并接收用户设备在非独立小基站的 PUSCH上发送的 UCI。
本发明实施例中, 用户设备通过非独立小基站的 PUSCH传输 UCI, 从 而为宏基站分流了 PUCCH的流量, 降低了宏基站的 PUCCH的负载, 降低 了宏基站的 PUCCH的负载及碰撞概率。
此外,宏基站 160还可以包括天线 165和传输线路 166。具体的应用中, 接收电路 161和发送电路 162可以耦合到天线 165或传输线路 166。 传输线 路 166 用于实现与其他网络侧设备之间的有线连接, 例如实现有线形式的 Backhaul 连接。 当然, 宏基站 160 也可以通过天线 165 实现无线形式的 Backhaul连接。
宏基站 160的各个组件通过总线*** 169耦合在一起,其中总线*** 169 除包括数据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线*** 169。
宏基站 160还包括处理器 163和存储器 164。 存储器 164存储使得处理 器 163执行各项操作的指令以及执行各项操作所需的数据。处理器 163控制 宏基站 160的操作, 处理器 163还可以称为 CPU ( Central Processing Unit, 中央处理单元)。 存储器 164可以包括只读存储器和随机存取存储器, 并向 处理器 163提供指令和数据。存储器 164的一部分还可以包括非易失性随机 存取存储器( NVRAM )。 接收电路 161 和发送电路 162可以在处理器 163 的控制下执行本发明实施例的方法。
在实现过程中,上述方法的各步骤可以通过处理器 163中的硬件的集成 逻辑电路或者软件形式的指令控制完成。上述的处理器 163可以是通用处理 器、 数字信号处理器 (DSP )、 专用集成电路( ASIC )、 现成可编程门阵列 ( FPGA )或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬 图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器 等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器 执行完成, 或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块 可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写 可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 164, 处理器 163读取存储器 164中的信息, 结合其硬件完成上述方法的步 骤。
可选地, 作为一个实施例, 发送电路 162还可以通过高层信令向用户设 备发送 UCI反馈周期和触发条件。
可选地, 作为另一实施例, 接收电路 161还可以接收非独立小基站转发 的 UCI, 以便根据 UCI执行用户设备的下行调度。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种上行控制信息的反馈方法, 其特征在于, 包括:
接收非独立小基站的物理上行共享信道 PUSCH的上行调度信息; 根据所述上行调度信息在所述非独立小基站的 PUSCH上发送上行控制 信息 UCI。
2、 如权利要求 1所述的方法, 其特征在于, 所述接收非独立小基站的 PUSCH的上行调度信息, 包括:
接收所述非独立小基站在增强物理下行控制信道 ePDCCH上发送的所 述上行调度信息; 或者,
接收所述非独立小基站归属的宏基站在物理下行控制信道 PDCCH上发 送的所述上行调度信息。
3、 如权利要求 2所述的方法, 其特征在于, 在所述接收所述非独立小 基站在 ePDCCH上发送的所述上行调度信息之前, 所述方法还包括:
在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所 述宏基站发送调度请求 SR,以使得所述宏基站根据所述 SR通知所述非独立 小基站在所述 ePDCCH上发送所述上行调度信息。
4、 如权利要求 2所述的方法, 其特征在于, 在所述接收所述非独立小 基站归属的宏基站在 PDCCH上发送的所述上行调度信息之前, 所述方法还 包括:
在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所 述宏基站发送调度请求 SR, 以使得所述宏基站根据所述 SR在所述 PDCCH 上发送所述上行调度信息并且向所述非独立小基站通知所述上行调度信息。
5、 如权利要求 3或 4所述的方法, 其特征在于, 在所述非独立小基站 归属的宏基站的 PUCCH上向所述宏基站发送 SR之前, 所述方法还包括: 接收所述宏基站或所述非独立小基站通过高层信令配置的 UCI反馈周 期和触发条件,
其中, 在所述非独立小基站归属的宏基站的 PUCCH上向所述宏基站发 送 SR, 包括:
在所述 UCI反馈周期邻近或者在所述 UCI反馈周期到达时, 在所述宏 基站的 PUCCH上向所述宏基站发送 SR。
6、如权利要求 3或 4所述的方法,其特征在于,所述 SR携带指示信息, 所述指示信息用于指示所述宏基站根据所述 SR通知所述非独立小基站在所 述 ePDCCH上发送所述上行调度信息或者用于指示所述宏基站根据所述 SR 在所述 PDCCH上发送所述上行调度信息。
7、 一种上行控制信息的反馈方法, 其特征在于, 所述方法由非独立小 基站执行, 包括:
确定所述非独立小基站的物理上行共享信道 PUSCH上对用户设备的上 行调度信息;
根据所述上行调度信息在所述非独立小基站的 PUSCH上接收所述用户 设备发送的上行控制信息 UCI。
8、 如权利要求 7所述的方法, 其特征在于, 所述确定所述非独立小基 站的 PUSCH上对用户设备的上行调度信息, 包括:
接收所述非独立小基站归属的宏基站根据所述用户设备的调度请求发 送的所述上行调度信息。
9、 如权利要求 7所述的方法, 其特征在于, 所述确定所述非独立小基 站的 PUSCH上对用户设备的上行调度信息, 包括:
接收所述非独立小基站归属的宏基站根据所述用户设备的调度请求发 送的调度事件通知;
根据所述调度事件通知生成所述上行调度信息。
10、 如权利要求 9所述的方法, 其特征在于, 在确定所述非独立小基站 的 PUSCH上对用户设备的上行调度信息之后, 所述方法还包括:
在所述非独立小基站的增强物理下行控制信道 ePDCCH 上向所述用户 设备发送所述上行调度信息。
11、 如权利要求 8-10任一项所述的方法, 其特征在于, 在根据所述上 行调度信息在所述非独立小基站的 PUSCH上接收所述用户设备发送的 UCI 之前, 所述方法还包括:
通过高层信令向所述用户设备配置 UCI反馈周期和触发条件。
12、 如权利要求 7所述的方法, 其特征在于, 在根据所述上行调度信息 在所述非独立小基站的 PUSCH上接收所述用户设备发送的 UCI之前, 所述 方法还包括:
通过高层信令向所述用户设备配置非周期性 UCI反馈指示和触发条件。
13、 如权利要求 7-12任一项所述的方法, 其特征在于, 所述方法还包 括:
根据所述 UCI对所述用户设备进行下行资源调度; 或者,
向所述非独立小基站归属的宏基站发送所述 UCI, 以使得所述宏基站根 据所述 UCI对所述用户设备进行下行资源调度。
14、 一种上行控制信息的反馈方法, 其特征在于, 所述方法由宏基站执 行, 包括:
接收用户设备在宏基站的物理上行控制信道 PUCCH上发送的调度请求 SR, 所述用户设备由归属于所述宏基站的非独立小基站提供数据传输服务; 根据所述 SR,确定所述非独立小基站的物理上行共享信道 PUSCH上对 所述用户设备的上行调度信息;
在所述宏基站的物理下行控制信道 PDCCH上向所述用户设备发送所述 上行调度信息, 并向所述非独立小基站发送所述上行调度信息, 以使得所述 用户设备根据所述上行调度信息在所述非独立小基站的 PUSCH上发送上行 控制信息 UCI。
15、 如权利要求 14所述的方法, 其特征在于, 在接收用户设备在宏基 站的 PUCCH上发送的 SR之前, 所述方法还包括:
通过高层信令向所述用户设备配置 UCI反馈周期和触发条件。
16、 如权利要求 14或 15所述的方法, 其特征在于, 所述方法还包括: 接收所述非独立小基站转发的所述 UCI;根据所述 UCI执行所述用户设 备的下行调度。
17、 一种上行控制信息的反馈方法, 其特征在于, 所述方法由宏基站执 行, 包括:
接收用户设备在宏基站的物理上行控制信道 PUCCH上发送的调度请求 SR, 所述用户设备由归属于所述宏基站的非独立小基站提供数据传输服务; 根据所述 SR, 向归属于所述宏基站的非独立小基站发送调度事件通知, 以使得所述非独立小基站根据所述调度事件通知向所述用户设备发送上行 授权并接收所述用户设备在所述非独立小基站的物理上行共享信道 PUSCH 上发送的上行控制信息 UCI。
18、 如权利要求 17所述的方法, 其特征在于, 在接收用户设备在宏基 站的 PUCCH上发送的 SR之前, 所述方法还包括:
通过高层信令向所述用户设备配置 UCI反馈周期和触发条件。
19、 如权利要求 17或 18所述的方法, 其特征在于, 所述方法还包括: 接收所述非独立小基站转发的所述 UCI;根据所述 UCI执行所述用户设 备的下行调度。
20、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收非独立小基站的物理上行共享信道 PUSCH的上行 调度信息;
发送单元,用于根据所述接收单元接收的上行调度信息在所述非独立小 基站的 PUSCH上发送上行控制信息 UCI。
21、 如权利要求 20所述的用户设备, 其特征在于, 所述接收单元具体 用于接收所述非独立小基站在增强物理下行控制信道 ePDCCH上发送的所 述上行调度信息; 或者, 接收所述非独立小基站归属的宏基站在物理下行控 制信道 PDCCH上发送的所述上行调度信息。
22、 如权利要求 21所述的用户设备, 其特征在于, 所述发送单元还用 于在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所述 宏基站发送调度请求 SR,以使得所述宏基站根据所述 SR通知所述非独立小 基站在所述 ePDCCH上发送所述上行调度信息。
23、 如权利要求 21所述的用户设备, 其特征在于, 所述发送单元还用 于在所述非独立小基站归属的宏基站的物理上行控制信道 PUCCH上向所述 宏基站发送调度请求 SR, 以使得所述宏基站根据所述 SR在所述 PDCCH上 发送所述上行调度信息并且向所述非独立小基站通知所述上行调度信息。
24、 如权利要求 22或 23所述的用户设备, 其特征在于, 所述接收单元 还用于接收所述宏基站或所述非独立小基站通过高层信令配置的 UCI反馈 周期和触发条件。
25、 如权利要求 20所述的用户设备, 其特征在于, 所述接收单元还用 于接收所述非独立小基站通过高层信令配置的非周期性 UCI反馈指示和触 发条件。
26、 一种非独立小基站, 其特征在于, 包括:
确定单元, 用于确定所述非独立小基站的物理上行共享信道 PUSCH上 对用户设备的上行调度信息;
接收单元,用于根据所述确定单元确定的上行调度信息在所述非独立小 基站的 PUSCH上接收所述用户设备发送的上行控制信息 UCI。
27、 如权利要求 26所述的非独立小基站, 其特征在于, 所述确定单元 具体用于通过所述接收单元接收所述非独立小基站归属的宏基站根据所述 用户设备的调度请求发送的所述上行调度信息。
28、 如权利要求 26所述的非独立小基站, 其特征在于, 所述确定单元 具体用于通过所述接收单元接收所述非独立小基站归属的宏基站根据所述 用户设备的调度请求发送的调度事件通知, 并根据所述调度事件通知生成所 述上行调度信息。
29、 如权利要求 28所述的非独立小基站, 其特征在于, 还包括发送单 元,用于在所述非独立小基站的增强物理下行控制信道 ePDCCH上向所述用 户设备发送所述上行调度信息。
30、 一种宏基站, 其特征在于, 包括:
接收单元, 用于接收用户设备在宏基站的物理上行控制信道 PUCCH上 发送的调度请求 SR, 所述用户设备由归属于所述宏基站的非独立小基站提 供数据传输服务;
确定单元, 用于根据所述接收单元接收的 SR, 确定所述非独立小基站 的物理上行共享信道 PUSCH上对所述用户设备的上行调度信息;
发送单元, 用于在所述宏基站的物理下行控制信道 PDCCH上向所述用 户设备发送所述确定单元确定的上行调度信息, 并向所述非独立小基站发送 所述确定单元确定的上行调度信息, 以使得所述用户设备根据所述上行调度 信息在所述非独立小基站的 PUSCH上发送上行控制信息 UCI。
31、 一种宏基站, 其特征在于, 包括:
接收单元, 用于接收用户设备在宏基站的物理上行控制信道 PUCCH上 发送的调度请求 SR, 所述用户设备由归属于所述宏基站的非独立小基站提 供数据传输服务;
发送单元, 用于根据所述接收单元接收的 SR, 向归属于所述宏基站的 非独立小基站发送调度事件通知, 以使得所述非独立小基站根据所述调度事 件通知向所述用户设备发送上行授权并接收所述用户设备在所述非独立小 基站的物理上行共享信道 PUSCH上发送的上行控制信息 UCI。
PCT/CN2013/076097 2012-08-31 2013-05-22 上行控制信息的反馈方法、基站及用户设备 WO2014032440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13832327.4A EP2874455A4 (en) 2012-08-31 2013-05-22 METHOD, BASIC STATION AND USER DEVICE FOR FEEDBACKING UPLINK CONTROL INFORMATION
US14/623,400 US20150163794A1 (en) 2012-08-31 2015-02-16 Uplink control information feedback method, base station, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210316796.2A CN103686858B (zh) 2012-08-31 2012-08-31 上行控制信息的反馈方法、基站及用户设备
CN201210316796.2 2012-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/623,400 Continuation US20150163794A1 (en) 2012-08-31 2015-02-16 Uplink control information feedback method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2014032440A1 true WO2014032440A1 (zh) 2014-03-06

Family

ID=50182441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076097 WO2014032440A1 (zh) 2012-08-31 2013-05-22 上行控制信息的反馈方法、基站及用户设备

Country Status (4)

Country Link
US (1) US20150163794A1 (zh)
EP (1) EP2874455A4 (zh)
CN (1) CN103686858B (zh)
WO (1) WO2014032440A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995464A (zh) * 2017-12-29 2019-07-09 普天信息技术有限公司 检测处理的方法、装置、电子设备和存储介质
CN111213419A (zh) * 2017-09-08 2020-05-29 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355292A (zh) * 2011-08-05 2012-02-15 中兴通讯股份有限公司 参数传输方法及装置、参数生成方法及装置
AU2013387527B2 (en) * 2013-04-25 2016-04-21 Huawei Technologies Co., Ltd. Method for controlling uplink transmit power in inter-base station carrier aggregation, base station, and device
US10356623B2 (en) 2013-09-24 2019-07-16 Qualcomm Incorporated Techniques for performing carrier sense adaptive transmission in unlicensed spectrum
US9775048B2 (en) * 2013-09-24 2017-09-26 Qualcomm Incorporated Performance of a user equipment (UE) in unlicensed spectrum
US10542435B2 (en) 2013-09-24 2020-01-21 Qualcomm Incorporated Carrier sense adaptive transmission (CSAT) in unlicensed spectrum
GB2537064A (en) * 2014-01-02 2016-10-05 Zte Wistron Telecom Ab Method and apparatus for cross-node scheduling with non-ideal backhaul
CN106416390B (zh) * 2014-06-20 2020-02-14 夏普株式会社 终端装置、基站装置以及通信方法
WO2016008160A1 (en) * 2014-07-18 2016-01-21 Nokia Solutions And Networks Oy Monitoring and optimizing of control channel usage
US10230431B2 (en) 2014-09-12 2019-03-12 Parallel Wireless, Inc. Low-latency inter-eNodeB coordinated multi-point transmission
CN105991224B (zh) * 2015-02-13 2019-07-02 中兴通讯股份有限公司 一种上行数据的传输控制方法和装置
JP6479963B2 (ja) * 2015-04-02 2019-03-06 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017044986A1 (en) * 2015-09-11 2017-03-16 Parallel Wireless, Inc. Antenna-integrated radio with wireless fronthaul
CA3003597C (en) 2015-10-31 2022-08-23 Parallel Wireless, Inc. Elastic scheduling
US10721750B2 (en) 2016-01-13 2020-07-21 Parallel Wireless, Inc. Inter-cell fractional frequency reuse scheduler
WO2017126940A1 (en) * 2016-01-21 2017-07-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink control information in carrier aggregation system
CN107181577B (zh) * 2016-03-09 2022-03-01 中兴通讯股份有限公司 上行反馈信息的传输方法及装置
JP2019134199A (ja) * 2016-06-03 2019-08-08 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN107734686B (zh) * 2016-08-12 2023-04-18 中兴通讯股份有限公司 下行控制信令的发送及接收方法、装置、基站、终端
WO2018035866A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种数据发送方法及装置
EP3917245B1 (en) * 2017-02-03 2024-05-29 Telefonaktiebolaget LM Ericsson (publ) Dynamic mcs offset for short tti
CN109905215B (zh) * 2017-12-08 2021-04-23 电信科学技术研究院 传输方法和设备
CN110034905B (zh) 2018-01-12 2022-08-09 华为技术有限公司 上行信息传输方法及装置
CN110139383B (zh) * 2018-02-09 2021-02-19 维沃移动通信有限公司 数据传输方法和设备
CN113271676B (zh) * 2018-08-07 2023-09-19 维沃移动通信有限公司 Pusch和sr处理方法及设备
CN111836381B (zh) * 2019-08-16 2023-09-08 维沃移动通信有限公司 传输方法、配置pucch的方法和设备
US11240808B2 (en) 2020-02-14 2022-02-01 Exfo Oy Method and arrangement for identity collection
US11716732B2 (en) * 2020-12-09 2023-08-01 Qualcomm Incorporated Feedback configuration for uplink control messages

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215595A (zh) * 2010-04-07 2011-10-12 北京三星通信技术研究有限公司 一种上行调度请求传输方法
CN102223720A (zh) * 2011-04-08 2011-10-19 电信科学技术研究院 一种在pusch传输上行控制信息的方法及装置
CN102377537A (zh) * 2010-08-10 2012-03-14 电信科学技术研究院 一种上行控制信息uci传输和接收方法及设备
CN102377530A (zh) * 2010-08-16 2012-03-14 电信科学技术研究院 一种反馈信道状态信息的方法、装置及***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393316A4 (en) * 2009-01-29 2017-04-26 Fujitsu Limited Wireless communication system
CA2881659C (en) * 2009-09-28 2017-01-03 Samsung Electronics Co., Ltd. Extending physical downlink control channels
US8780853B2 (en) * 2009-11-06 2014-07-15 Kyocera Corporation Control channel management
US8433249B2 (en) * 2009-11-06 2013-04-30 Motorola Mobility Llc Interference reduction for terminals operating in heterogeneous wireless communication networks
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
US8660076B2 (en) * 2010-08-12 2014-02-25 Lg Electronics Inc. Apparatus and method of transmitting scheduling request in wireless communication system
JP5462203B2 (ja) * 2011-02-18 2014-04-02 株式会社Nttドコモ 非周期的チャネル状態情報通知方法、無線基地局装置、ユーザ端末
WO2012136269A1 (en) * 2011-04-08 2012-10-11 Nokia Siemens Networks Oy Uplink control signalling in a carrier aggregation system
US8873489B2 (en) * 2011-05-05 2014-10-28 Mediatek Inc. Signaling methods for UE-specific dynamic downlink scheduler in OFDMA systems
EP2721858B1 (en) * 2011-08-08 2017-10-18 BlackBerry Limited Method and system for uplink interference management in heterogeneous cellular networks
US9398573B2 (en) * 2012-03-08 2016-07-19 Samsung Electronics Co., Ltd. Transmission of uplink control information for coordinated multi-point reception

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215595A (zh) * 2010-04-07 2011-10-12 北京三星通信技术研究有限公司 一种上行调度请求传输方法
CN102377537A (zh) * 2010-08-10 2012-03-14 电信科学技术研究院 一种上行控制信息uci传输和接收方法及设备
CN102377530A (zh) * 2010-08-16 2012-03-14 电信科学技术研究院 一种反馈信道状态信息的方法、装置及***
CN102223720A (zh) * 2011-04-08 2011-10-19 电信科学技术研究院 一种在pusch传输上行控制信息的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874455A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111213419A (zh) * 2017-09-08 2020-05-29 株式会社Ntt都科摩 用户终端以及无线通信方法
CN109995464A (zh) * 2017-12-29 2019-07-09 普天信息技术有限公司 检测处理的方法、装置、电子设备和存储介质
CN109995464B (zh) * 2017-12-29 2021-10-26 普天信息技术有限公司 检测处理的方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN103686858B (zh) 2018-02-06
EP2874455A1 (en) 2015-05-20
EP2874455A4 (en) 2015-07-15
CN103686858A (zh) 2014-03-26
US20150163794A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2014032440A1 (zh) 上行控制信息的反馈方法、基站及用户设备
US10462723B2 (en) Seamless mobility for 5G and LTE systems and devices
TW201808051A (zh) 設備到設備通訊系統中基於優先順序的資源選擇
CN116261911A (zh) 用于条件主辅小区添加/改变配置的信令
US9820295B2 (en) Over-the air signaling for coordination of time-division duplexing
JP6695891B2 (ja) ワイヤレス通信におけるフレキシブル複信のための制御シグナリング
US11671890B2 (en) Timing advance group reporting for layer 1/layer 2-centric inter-cell mobility
JP2022539715A (ja) Rrc状態の間でのue支援型高速遷移
US20130279461A1 (en) Super Scheduling Control Channel
EP4022835A1 (en) Half-duplex operation in new radio frequency division duplexing bands
US11800515B2 (en) Signaling for channel access procedure type selection in new radio network with unlicensed spectrum
US11516716B2 (en) Bandwidth part/frequency location restriction for L1/L2-centric inter-cell mobility
US11825373B2 (en) Reference measurement timing selection for wireless communication mobility
WO2022046933A1 (en) Peak data rate calculation for uplink transmit switching
US20220141873A1 (en) Channel occupancy information multi-access reporting
US20230007517A1 (en) State transition feedback
EP4315682A1 (en) Ue triggered one-shot harq-ack feedback
US20220322331A1 (en) Simultaneous rx/tx for multiple carriers
WO2023087251A1 (en) Wireless communication using multiple network slice services
WO2023132912A1 (en) Switching between search space set groupings
EP4183093A2 (en) Wireless communication using multiple active bandwidth parts
WO2023114002A1 (en) Admission control based on network energy saving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013832327

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE