WO2014030799A1 - Self power-generating heat meter using thermoelectric element and method for measuring amount of heat - Google Patents

Self power-generating heat meter using thermoelectric element and method for measuring amount of heat Download PDF

Info

Publication number
WO2014030799A1
WO2014030799A1 PCT/KR2012/007635 KR2012007635W WO2014030799A1 WO 2014030799 A1 WO2014030799 A1 WO 2014030799A1 KR 2012007635 W KR2012007635 W KR 2012007635W WO 2014030799 A1 WO2014030799 A1 WO 2014030799A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
calorimeter
self
thermoelectric element
energy
Prior art date
Application number
PCT/KR2012/007635
Other languages
French (fr)
Korean (ko)
Inventor
이재용
임용훈
정대헌
강새별
이동현
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014030799A1 publication Critical patent/WO2014030799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/10Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature between an inlet and an outlet point, combined with measurement of rate of flow of the medium if such, by integration during a certain time-interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2215/00Details concerning sensor power supply

Definitions

  • the present invention relates to a calorimeter for measuring the amount of cooling or heating energy supplied through the pipe.
  • District heating system is to supply hot water produced by using large scale heat production facilities to buildings in a specific area and use it for heating. Buildings using these district heating systems pay for their own calories, which are installed in individual buildings.
  • Calorimeters typically calculate calories using electronic components, and in order to supply electrical energy to these electronic components, the calorimeter includes a separate energy supply device such as a battery.
  • a method of supplying electrical energy to electronic components of a calorimeter using an energy supply device such as a battery has some problems.
  • the first is the occurrence of labor costs. When the electric energy stored in the battery is exhausted, the labor cost for processing such a task is incurred because the manager has to replace the used battery daily.
  • the second problem is that calorimeters applied to district heating systems are more likely to be exposed to high temperatures. Batteries typically have poor high temperature characteristics, resulting in shorter lifespans, which often requires frequent battery replacement and, in severe cases, no energy remaining in the batteries. Failure to measure may occur.
  • a calorimeter for measuring the amount of cooling or heating energy supplied through the pipe, the flow rate measuring unit for measuring the amount of the fluid supplied through the pipe;
  • a temperature measuring unit measuring a temperature difference between the supply pipe and the recovery pipe;
  • a calorific value calculator configured to calculate the amount of energy supplied by using the measured flow rate value and a temperature difference measurement value between the supply side pipe and the recovery side pipe;
  • a self-generation unit converting a temperature difference between at least two places around the pipe or the pipe using a thermoelectric element to electrical energy, and providing the electrical energy as a power source of the calorimeter.
  • the calorimeter measuring the amount of cooling or heating energy supplied through the pipe comprising the steps of: measuring the amount of fluid supplied through the pipe; Measuring a temperature difference between the supply pipe and the recovery pipe; Calculating the amount of energy supplied using the measured flow rate value and a temperature difference measurement value between the supply side pipe and the recovery side pipe; And converting a temperature difference between the pipe or at least two places around the pipe into an electric energy using a thermoelectric element, and providing the electric energy to a power source of the calorimeter.
  • FIG. 1 is a block diagram of a district heating system including a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 2 is an internal block diagram of a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
  • thermoelectric element is installed between a supply side pipe and an atmosphere in a district heating system.
  • thermoelectric element is installed between a supply side pipe and the atmosphere in a district heating system, and a heat pipe is further installed on the atmosphere side of the thermoelectric element.
  • FIG. 5 is a schematic diagram of a district cooling system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and the atmosphere in a district cooling system.
  • thermoelectric element is installed between a supply side pipe and the atmosphere in a district cooling system, and a heat pipe is further installed on the atmosphere side of the thermoelectric element.
  • thermoelectric device 7 is a flowchart of a method for measuring self-generating calories using a thermoelectric device according to an exemplary embodiment of the present invention.
  • FIG. 1 is a block diagram of a district heating system including a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
  • the system may include a calorimeter 110, an energy consumer 120, a supply side pipe 130, a recovery side pipe 140, a supply side temperature sensor 150, a recovery side temperature sensor 160, and the like. have.
  • Cooling or heating energy supplied from the cooling and heating energy source is introduced through the supply side pipe 130 and delivered to the energy consumer 120.
  • the energy supplied is stored in and delivered to the fluid, which can typically be in the form of water, but is not limited thereto, and any fluid can flow while retaining energy in the form of heat.
  • the fluid (eg, hot water) supplied through the supply side pipe 130 is deprived of energy at the energy consumer 120 and has a lower temperature than the state in which it was originally supplied. Return to the source that supplied the supply.
  • the fluid (eg, cold water) supplied through the supply side pipe 130 is deprived of the cold air from the energy consumer 120 and has a higher temperature than the state in which it was originally supplied. Return to the source that supplied the supply.
  • the institution managing the air conditioning system installs the calorimeter 110 at the individual energy consumer 120.
  • the calorimeter 110 In the case of a heating system, as shown in FIG. It is installed in the recovery pipe 140. Since the electronic component used in the calorimeter 110 is weak in heat, it is installed in the recovery side pipe 140 maintaining a relatively low temperature.
  • the calorimeter 110 needs to obtain temperature information of the supply side pipe 130 and the recovery side pipe 140 in order to calculate the amount of energy supplied through the pipe. 150 and the recovery side temperature sensor 160.
  • thermoelectric device 2 is an internal block diagram of a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
  • the calorimeter 110 includes a flow rate measuring unit 210, a temperature measuring unit 220, a calorific value calculating unit 230, a self-generating unit 240, an energy storage control unit 250, and an energy storage device ( 260), and the like.
  • the flow rate measuring unit 210 measures the amount of fluid supplied through the pipe.
  • the amount (flow rate) of the fluid may be measured by being installed in the supply side pipe 130, or may be installed in the recovery side pipe 140 to measure the flow rate.
  • the flow rate measuring unit 210 is a method of measuring the flow rate is a method of reducing the rotation of the blade wheel proportional to the passing volume with a gear to generate an electrical signal for each predetermined volume and send it to the calorie calculation unit 230.
  • the temperature measuring unit 220 measures a temperature difference between the supply side pipe 130 and the recovery side pipe 140.
  • the temperature of each pipe can be measured using a sensor using RTD (Resistance Temperature Detector).
  • the calorific value calculating unit 230 calculates the amount of energy supplied using the flow rate value measured by the flow rate measuring unit 210 and the temperature difference measurement value between the supply side pipe 130 and the recovery side pipe 140.
  • Q mxcx ⁇ T
  • the calorific value (Q) is calculated as the mass (m), the specific heat (c), and the value of the temperature change ( ⁇ T), where the mass (m) and the specific heat (c) are the flow rate and type of fluid ( For example, water), and the value ⁇ T of the temperature change is determined according to the measured temperature difference between the supply pipe 130 and the recovery pipe 140.
  • the self-generating unit 240 converts the temperature difference between at least two places around the pipe or the pipe by using a thermoelectric element to electric energy, and provides the converted electric energy as a power source of the calorimeter 110.
  • thermoelectric element is a generic term for a device using various effects represented by interaction between heat and electricity.
  • Thermoelectric elements can be used to convert heat into electrical energy.
  • One example of converting heat into electrical energy using a thermoelectric element is to use the Seebeck effect.
  • the phenomenon of generating current in the circuit when two kinds of metals are connected in a ring shape and one contact is made high temperature and the other is made low temperature is called the Seebeck effect.
  • the self-generating unit 240 connects the high temperature part of the thermoelectric element to the supply side pipe 130 and the low temperature part of the thermoelectric element to the recovery side pipe 140 to supply the supply side pipe 130 and the recovery side pipe 140.
  • the temperature difference generated between the) is converted into electrical energy to provide it as a power source of the calorimeter 110.
  • the self-generating unit 240 performs the high temperature portion of the thermoelectric element to the recovery side pipe 140. And a low temperature part of the thermoelectric element is connected to the supply side pipe 130 to convert a temperature difference generated between the recovery side pipe 140 and the supply side pipe 130 into electrical energy and provide it as a power source of the calorimeter 110.
  • thermoelectric element is installed between a supply side pipe 130 and the atmosphere in a district heating system.
  • the temperature of fluids (eg hot water) supplied by district heating systems is usually maintained between 50 and 65 degrees.
  • the fluid 330 containing energy for heating is introduced through the supply side pipe 130.
  • the fluid 330 contained in the supply-side piping 130 maintains a high temperature.
  • the high temperature part of the thermoelectric element 360 included in the self-generating unit 240 is connected to the supply side pipe 130 to absorb heat from the high temperature fluid 330.
  • the low temperature part, which is the other side of the thermoelectric element 360 is exposed to the air state as shown in FIG.
  • the circuit is connected to use the electromotive force generated by the thermoelectric element 360 is installed between the supply side pipe 130 and the atmosphere in which the temperature difference occurs, and electrical energy is transferred to the calorimeter 110 through the circuit.
  • the self-generating unit 240 may further include a predetermined conversion module to provide electrical energy generated by the thermoelectric element as a power source of the calorimeter 110.
  • the self-generation unit 240 further includes a stabilization circuit for stabilizing the voltage and current of the generated electrical energy to supply stable power. There may be.
  • the high temperature fluid 330 supplied to the supply side pipe 130 is supplied to the energy consumer 120 again to supply heat energy and then discharged through the recovery side pipe 140 in a cooled state. At this time, the fluid 340 flowing to the recovery side pipe 140 is in a low temperature state compared to the fluid 330 flowing to the supply side pipe 130.
  • thermoelectric element 360 is installed between a supply side pipe 130 and the atmosphere in a district heating system, and a heat pipe is further installed on the atmosphere side of the thermoelectric element 360.
  • a heat pipe 470 is provided between the atmosphere side of the thermoelectric element 360 and the recovery side pipe 140.
  • 3 illustrates a structure in which the low temperature portion is cooled by air cooling
  • the example illustrated in FIG. 4 illustrates a structure in which the heat pipe 470 is cooled in water by contacting the fluid 340 flowing in the recovery-side pipe 140.
  • the structure connecting the heat pipe 470 to the recovery side pipe 140 may be more advantageous for generating electrical energy using the thermoelectric element 360.
  • thermoelectric element 360 in the district cooling system.
  • FIG. 5 is a schematic diagram of a district cooling system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and the atmosphere in a district cooling system.
  • the temperature of the fluid (eg cold water) supplied by the district cooling system is maintained at about 3 degrees.
  • the fluid 530 containing the energy for cooling is introduced through the supply side pipe 130.
  • the fluid 530 included in the supply-side piping 130 maintains a low temperature.
  • the low temperature part of the thermoelectric element 360 included in the self-generating part 240 is connected to the supply side pipe 130 to discharge heat to the low temperature fluid 530.
  • the high temperature part, which is the other side of the thermoelectric element 360 is exposed to the atmospheric state as shown in FIG. 5 to absorb heat from the atmosphere.
  • the circuit is connected to use the electromotive force generated by the thermoelectric element 360 is installed between the supply side pipe 130 and the atmosphere in which the temperature difference occurs, and electrical energy is transferred to the calorimeter 110 through the circuit.
  • the low temperature fluid 530 supplied to the supply side pipe 130 is supplied to the energy consumer 120 again and used for cooling, and then discharged through the recovery side pipe 140 in a state where the temperature is raised. At this time, the fluid 540 flowing to the recovery side pipe 140 is in a high temperature state compared to the fluid 530 flowing to the supply side pipe 130.
  • thermoelectric element 360 is installed between a supply side pipe 130 and an atmosphere in a district cooling system, and a heat pipe 470 is further installed on the atmosphere side of the thermoelectric element 360. to be.
  • a heat pipe 470 is provided between the atmosphere side of the thermoelectric element 360 and the recovery side pipe 140.
  • 5 illustrates a structure in which the high temperature part directly contacts the atmosphere to absorb heat
  • the example illustrated in FIG. 6 shows that the heat pipe 470 is in contact with the fluid 340 flowing through the recovery-side pipe 140. It has a structure to absorb it. Since the contact with the fluid in the liquid state is more endothermic than the contact with the atmosphere, a structure for connecting the heat pipe 470 to the recovery side pipe 140 may be more advantageous for generating electrical energy using the thermoelectric element 360. Can be.
  • the calorimeter 240 may further include an energy storage controller 250 and an energy storage device 260 in addition to the aforementioned internal blocks 210, 220, 230, and 240.
  • the energy storage controller 250 stores the energy stored in the energy storage device 260 when the electrical energy converted by the self-generation unit 240 is greater than the electrical energy consumed by the calorimeter 110 and converts the energy by the self-generation unit 240. When energy is less than the electrical energy consumed by the calorimeter 110, the electrical energy stored in the energy storage device 260 is supplied to the calorimeter 110.
  • the hot water is constantly flowing to the supply-side piping 130 in winter, the atmospheric temperature may be a relatively low temperature, but in the summer for temporary use such as bathing without heating Since the heating system is used, the temperature of the supply pipe 130 may not always maintain a high temperature, and the temperature of the atmosphere may also be relatively high. Therefore, in the winter, the electrical energy generation using the thermoelectric element 360 can be operated quite effectively, but in the summer, the power supply capacity may not keep up with the demand.
  • An auxiliary device that can solve this problem is the energy storage device 260 and the energy storage control unit 260.
  • the calorimeter 110 may further include other electronic components in addition to the aforementioned internal blocks 210, 220, 230, 240, 250, and 260.
  • wireless communication devices (not shown) are required to remotely read the calorimeter 110.
  • various display devices (not shown) may be further attached to the calorimeter 110 to increase user convenience.
  • Such wireless communication devices (not shown) and display devices (not shown) consume a lot of power.
  • the conventional method depending on the battery has more and more problems, and the utility value of the calorimeter 110 including the self-generating unit 240 as in the embodiment of the present invention becomes higher.
  • the self-powered calorimeter 110 using the thermoelectric device according to the embodiment of the present invention has been described, hereinafter, the method for measuring the calorific value of the calorimeter 110 according to the embodiment of the present invention will be described. .
  • the method for measuring calories according to an embodiment of the present invention to be described later may be performed by the calorimeter 110 according to the embodiment of the present invention shown in FIG. 2.
  • thermoelectric device 360 is a flowchart illustrating a self-generating calorimetry method using a thermoelectric device 360 according to an embodiment of the present invention.
  • the calorimeter 110 first converts a temperature difference between at least two places around a pipe or a pipe by using a thermoelectric element 360 to electrical energy, and provides electrical energy as a power source of the calorimeter 110. (S700).
  • the calorimeter 110 supplied with power measures the amount of fluid supplied through the pipe (S702), and measures the temperature difference between the supply side pipe 130 and the recovery side pipe 140 (S704), and then measures The amount of energy supplied is calculated using the flow rate value and the temperature difference measurement value between the supply side pipe 130 and the recovery side pipe 140 to measure the amount of heat (S706).
  • the calorimetric measuring method according to the embodiment of the present invention has been described as being performed by the same procedure as in FIG. 7, but this is only for convenience of description and within the scope of not departing from the essential concept of the present invention. Accordingly, the execution procedure of each step may be changed, two or more steps may be integrated, or one step may be performed by being separated into two or more steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The present invention relates to a heat meter for measuring the amount of cooling or heating energy supplied through a pipe. The present invention provides a self power-generating heat meter using a thermoelectric element, wherein the heat meter for measuring an amount of cooling or heating energy supplied through a pipe comprises: a flow measurement unit for measuring the amount of a fluid supplied through the pipe; a temperature measurement unit for measuring a temperature difference between a supplying-side pipe and a collecting-side pipe; a heat amount calculation unit for calculating the an amount of the supplied energy by using the measured flow value and the temperature difference measurement value between the supplying-side pipe and the collecting-side pipe; and a self power-generating unit which converts the temperature difference between the pipes or a temperature difference in at least two places around the pipes into electric energy by using a thermoelectric element, and which provides the electric energy as a power source for the heat meter.

Description

열전소자를 이용한 자가발전식 열량계 및 열량 측정 방법Self-powered calorimeter and calorimetry method using thermoelectric element
본 발명은 배관을 통해 공급되는 냉방 혹은 난방용 에너지의 양을 측정하는 열량계에 관한 것이다. The present invention relates to a calorimeter for measuring the amount of cooling or heating energy supplied through the pipe.
대규모 열 생산 시설을 이용하여 생산한 열수를 특정 지역에 있는 건물 등으로 공급하여 난방용으로 사용할 수 있게 하는 것이 지역난방 시스템이다. 이러한 지역난방 시스템을 이용하는 건물은 자신이 사용한 열량에 따라 그 비용을 지불하게 되는데, 이를 위해 개별 건물에 열량계가 설치된다.District heating system is to supply hot water produced by using large scale heat production facilities to buildings in a specific area and use it for heating. Buildings using these district heating systems pay for their own calories, which are installed in individual buildings.
열량계는 통상적으로 전자부품을 이용하여 열량을 계산하게 되는데, 이러한 전자부품에 전기 에너지를 공급하기 위해 열량계는 배터리와 같은 에너지 공급 장치를 별도로 구비하게 된다.Calorimeters typically calculate calories using electronic components, and in order to supply electrical energy to these electronic components, the calorimeter includes a separate energy supply device such as a battery.
그런데, 이러한 배터리와 같은 에너지 공급 장치를 이용하여 열량계의 전자부품에 전기 에너지를 공급하는 방식은 몇 가지 문제를 안고 있다. 그 첫번째는 인건비의 발생이다. 배터리에 저장되어 있는 전기 에너지가 모두 소모되는 경우, 관리자가 일일이 소모된 배터리를 교체해야 하기 때문에 이러한 업무 처리를 위한 인건비가 별도로 발생하게 된다. 두번째 문제는 지역난방 시스템에 적용되는 열량계는 고온에 노출될 가능성이 높은데, 배터리는 통상적으로 고온 특성이 좋지 않아 수명이 짧아지고 이로 인해 잦은 배터리 교체가 요구되며 심한 경우 배터리의 잔류 에너지가 없어 열량을 측정하지 못하는 문제가 발생할 수도 있다.However, a method of supplying electrical energy to electronic components of a calorimeter using an energy supply device such as a battery has some problems. The first is the occurrence of labor costs. When the electric energy stored in the battery is exhausted, the labor cost for processing such a task is incurred because the manager has to replace the used battery daily. The second problem is that calorimeters applied to district heating systems are more likely to be exposed to high temperatures. Batteries typically have poor high temperature characteristics, resulting in shorter lifespans, which often requires frequent battery replacement and, in severe cases, no energy remaining in the batteries. Failure to measure may occur.
이러한 배경에서, 본 발명의 목적은, 열량계에서 소비되는 전기 에너지를 배터리를 이용하여 공급하지 않고, 자가 발전식으로 생산한 전기 에너지를 공급하는 것이다.In this background, it is an object of the present invention to supply electric energy produced by self-generation without supplying the electric energy consumed by a calorimeter using a battery.
전술한 목적을 달성하기 위하여, 일 측면에서, 본 발명은, 배관을 통해 공급되는 냉방 혹은 난방용 에너지의 양을 측정하는 열량계에 있어서, 상기 배관을 통해 공급되는 유체의 양을 측정하는 유량 측정부; 공급측 배관과 회수측 배관 사이의 온도 차이를 측정하는 온도 측정부; 상기 측정된 유량값과 상기 공급측 배관과 회수측 배관 사이의 온도 차이 측정값을 이용하여 상기 공급되는 에너지량을 계산하는 열량 계산부; 및 열전소자를 이용하여 상기 배관 혹은 상기 배관 주변의 적어도 두 곳의 온도 차이를 전기 에너지로 변환시키고, 상기 전기 에너지를 상기 열량계의 전원으로 제공하는 자가 발전부를 포함하는 열전 소자를 이용한 자가발전식 열량계를 제공한다. In order to achieve the above object, in one aspect, the present invention, a calorimeter for measuring the amount of cooling or heating energy supplied through the pipe, the flow rate measuring unit for measuring the amount of the fluid supplied through the pipe; A temperature measuring unit measuring a temperature difference between the supply pipe and the recovery pipe; A calorific value calculator configured to calculate the amount of energy supplied by using the measured flow rate value and a temperature difference measurement value between the supply side pipe and the recovery side pipe; And a self-generation unit converting a temperature difference between at least two places around the pipe or the pipe using a thermoelectric element to electrical energy, and providing the electrical energy as a power source of the calorimeter. To provide.
다른 측면에서, 본 발명은, 열량계가 배관을 통해 공급되는 냉방 혹은 난방용 에너지의 양을 측정하는 방법에 있어서, 상기 배관을 통해 공급되는 유체의 양을 측정하는 단계; 공급측 배관과 회수측 배관 사이의 온도 차이를 측정하는 단계; 상기 측정된 유량값과 상기 공급측 배관과 회수측 배관 사이의 온도 차이 측정값을 이용하여 상기 공급되는 에너지량을 계산하는 단계; 및 열전소자를 이용하여 상기 배관 혹은 상기 배관 주변의 적어도 두 곳의 온도 차이를 전기 에너지로 변환시키고, 상기 전기 에너지를 상기 열량계의 전원으로 제공하는 단계를 포함하는 열량 측정 방법을 제공한다. In another aspect, the present invention, the calorimeter measuring the amount of cooling or heating energy supplied through the pipe, comprising the steps of: measuring the amount of fluid supplied through the pipe; Measuring a temperature difference between the supply pipe and the recovery pipe; Calculating the amount of energy supplied using the measured flow rate value and a temperature difference measurement value between the supply side pipe and the recovery side pipe; And converting a temperature difference between the pipe or at least two places around the pipe into an electric energy using a thermoelectric element, and providing the electric energy to a power source of the calorimeter.
이상에서 설명한 바와 같이 본 발명에 의하면, 열량계에서 배터리를 이용할 필요가 없어, 배터리 교체의 필요가 없으며 안정적이고 지속적으로 열량계를 구동할 수 있는 효과가 있다.As described above, according to the present invention, there is no need to use a battery in the calorimeter, there is no need to replace the battery, and there is an effect that the calorimeter can be driven stably and continuously.
도 1은 본 발명의 일 실시예에 따른 열전 소자를 이용한 자가발전식 열량계를 포함하는 지역냉난방 시스템의 구성도이다.1 is a block diagram of a district heating system including a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 열전 소자를 이용한 자가발전식 열량계의 내부 블록도이다.2 is an internal block diagram of a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
도 3은 지역난방 시스템에서 열전 소자가 공급측 배관과 대기 사이에 설치된 실시예를 나타내는 지역난방 시스템의 개략도이다.3 is a schematic diagram of a district heating system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and an atmosphere in a district heating system.
도 4는 지역난방 시스템에서 열전 소자가 공급측 배관과 대기 사이에 설치되고, 열전 소자의 대기 쪽에 히트파이프가 더 설치된 실시예를 나타내는 지역난방 시스템의 개략도이다.4 is a schematic diagram of an district heating system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and the atmosphere in a district heating system, and a heat pipe is further installed on the atmosphere side of the thermoelectric element.
도 5는 지역냉방 시스템에서 열전 소자가 공급측 배관과 대기 사이에 설치된 실시예를 나타내는 지역냉방 시스템의 개략도이다.5 is a schematic diagram of a district cooling system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and the atmosphere in a district cooling system.
도 6은 지역냉방 시스템에서 열전 소자가 공급측 배관과 대기 사이에 설치되고, 열전 소자의 대기 쪽에 히트파이프가 더 설치된 실시예를 나타내는 지역냉방 시스템의 개략도이다.6 is a schematic diagram of a district cooling system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and the atmosphere in a district cooling system, and a heat pipe is further installed on the atmosphere side of the thermoelectric element.
도 7은 본 발명의 일 실시예에 따른 열전 소자를 이용한 자가발전식 열량 측정 방법의 흐름도이다.7 is a flowchart of a method for measuring self-generating calories using a thermoelectric device according to an exemplary embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
도 1은 본 발명의 일 실시예에 따른 열전 소자를 이용한 자가발전식 열량계를 포함하는 지역냉난방 시스템의 구성도이다.1 is a block diagram of a district heating system including a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
도 1을 참조하면 시스템은 열량계(110), 에너지 소비처(120), 공급측 배관(130), 회수측 배관(140), 공급측 온도 센서(150), 회수측 온도 센서(160) 등을 포함할 수 있다.Referring to FIG. 1, the system may include a calorimeter 110, an energy consumer 120, a supply side pipe 130, a recovery side pipe 140, a supply side temperature sensor 150, a recovery side temperature sensor 160, and the like. have.
냉난방 에너지 공급원으로부터 공급되는 냉방 혹은 난방용 에너지는 공급측 배관(130)을 통해 유입되어 에너지 소비처(120)로 전달된다. 공급되는 에너지는 유체에 저장되어 전달되는데, 유체는 통상적으로 물의 형태일 수 있으나, 이로 제한되는 것은 아니며, 열의 형태로 에너지를 보유하면서 흐를 수 있는 것이면 어느 것이나 가능하다.Cooling or heating energy supplied from the cooling and heating energy source is introduced through the supply side pipe 130 and delivered to the energy consumer 120. The energy supplied is stored in and delivered to the fluid, which can typically be in the form of water, but is not limited thereto, and any fluid can flow while retaining energy in the form of heat.
난방 시스템의 경우 공급측 배관(130)을 통해 공급된 유체(예, 열수)는 에너지 소비처(120)에서 에너지를 빼앗기고 최초 공급되어 온 상태보다 낮은 온도를 가지면서 회수측 배관(140)을 통해 다시 유체를 공급했던 공급원으로 돌아가게 된다.In the case of the heating system, the fluid (eg, hot water) supplied through the supply side pipe 130 is deprived of energy at the energy consumer 120 and has a lower temperature than the state in which it was originally supplied. Return to the source that supplied the supply.
냉방 시스템의 경우 공급측 배관(130)을 통해 공급된 유체(예, 냉수)는 에너지 소비처(120)에서 냉기를 빼앗기고 최초 공급되어 온 상태보다 높은 온도를 가지면서 회수측 배관(140)을 통해 다시 유체를 공급했던 공급원으로 돌아가게 된다.In the case of the cooling system, the fluid (eg, cold water) supplied through the supply side pipe 130 is deprived of the cold air from the energy consumer 120 and has a higher temperature than the state in which it was originally supplied. Return to the source that supplied the supply.
아래에서는 본 발명의 일 실시예에 대한 설명에서 주로 난방 시스템의 경우를 상정하여 설명을 하는데, 특별한 부가 설명이 없다면 냉방 시스템의 경우는 위와 같은 내용을 참조하면 쉽게 이해할 수 있을 것이다.Hereinafter, a description will be given assuming a case of the heating system mainly in the description of an embodiment of the present invention, if there is no special additional description will be easily understood with reference to the above contents of the cooling system.
냉난방 시스템을 관리하는 기관은 개별 에너지 소비처(120)에서 어느 정도의 에너지를 사용하였는지 파악하기 위해 열량계(110)를 개별 에너지 소비처(120)에 설치하게 되는데, 난방 시스템의 경우 통상적으로 도 1과 같이 회수측 배관(140)에 설치한다. 열량계(110)에서 사용되는 전자부품이 열에 약하기 때문에 상대적으로 낮은 온도를 유지하는 회수측 배관(140)에 설치되는 것이다.In order to figure out how much energy is consumed by the individual energy consumer 120, the institution managing the air conditioning system installs the calorimeter 110 at the individual energy consumer 120. In the case of a heating system, as shown in FIG. It is installed in the recovery pipe 140. Since the electronic component used in the calorimeter 110 is weak in heat, it is installed in the recovery side pipe 140 maintaining a relatively low temperature.
열량계(110)는 배관을 통해 공급되는 에너지의 양을 계산하기 위해 공급측 배관(130)과 회수측 배관(140)의 온도 정보를 획득해야 하는데, 이러한 온도 정보는 각각의 배관에 설치된 공급측 온도 센서(150) 및 회수측 온도 센서(160)를 통해 획득한다.The calorimeter 110 needs to obtain temperature information of the supply side pipe 130 and the recovery side pipe 140 in order to calculate the amount of energy supplied through the pipe. 150 and the recovery side temperature sensor 160.
이상에서는 본 발명의 일 실시예에 따른 열량계(110)를 포함하는 지역냉난방 시스템의 구성도에 대해 설명하였으며, 이하에서는 본 발명의 일 실시예에 따른 열량계(110)에 대해 좀더 구체적으로 설명한다.In the above, the configuration diagram of the district heating system including the calorimeter 110 according to an embodiment of the present invention has been described. Hereinafter, the calorimeter 110 according to an embodiment of the present invention will be described in more detail.
도 2는 본 발명의 일 실시예에 따른 열전 소자를 이용한 자가발전식 열량계의 내부 블록도이다.2 is an internal block diagram of a self-generating calorimeter using a thermoelectric device according to an embodiment of the present invention.
도 2를 참조하면, 열량계(110)는 유량 측정부(210), 온도 측정부(220), 열량 계산부(230), 자가 발전부(240), 에너지 저장 제어부(250), 에너지 저장 장치(260) 등을 포함할 수 있다.2, the calorimeter 110 includes a flow rate measuring unit 210, a temperature measuring unit 220, a calorific value calculating unit 230, a self-generating unit 240, an energy storage control unit 250, and an energy storage device ( 260), and the like.
유량 측정부(210)는 배관을 통해 공급되는 유체의 양을 측정한다. 도 1을 참조할 때, 공급측 배관(130)에 설치되어 유체의 양(유량)을 측정할 수도 있고, 회수측 배관(140)에 설치되어 유량을 측정할 수도 있다. 유량 측정부(210)는 유량을 측정하는 일 예시 방법은 통과체적에 비례한 익차의 회전을 기어로 감속하여 일정 체적마다 전기적인 신호를 생성하고 이를 열량 계산부(230)로 송부하는 방법이다.The flow rate measuring unit 210 measures the amount of fluid supplied through the pipe. Referring to FIG. 1, the amount (flow rate) of the fluid may be measured by being installed in the supply side pipe 130, or may be installed in the recovery side pipe 140 to measure the flow rate. The flow rate measuring unit 210 is a method of measuring the flow rate is a method of reducing the rotation of the blade wheel proportional to the passing volume with a gear to generate an electrical signal for each predetermined volume and send it to the calorie calculation unit 230.
온도 측정부(220)는 공급측 배관(130)과 회수측 배관(140) 사이의 온도 차이를 측정한다. 각 배관의 온도는 RTD(Resistance Temperature Detector)를 이용한 센서를 사용하여 측정할 수 있다.The temperature measuring unit 220 measures a temperature difference between the supply side pipe 130 and the recovery side pipe 140. The temperature of each pipe can be measured using a sensor using RTD (Resistance Temperature Detector).
열량 계산부(230)는 유량 측정부(210)를 통해 측정된 유량값과 공급측 배관(130)과 회수측 배관(140) 사이의 온도 차이 측정값을 이용하여 공급되는 에너지량을 계산한다. Q = m x c x ΔT의 식에 따라 열량(Q)은 질량(m), 비열(c), 온도 변화의 값(ΔT)으로 계산되는데, 질량(m) 및 비열(c)은 유량과 유체의 종류(예, 물)에 따라 결정하고, 온도 변화의 값(ΔT)은 공급측 배관(130)과 회수측 배관(140) 사이의 온도 차이 측정값에 따라 결정한다.The calorific value calculating unit 230 calculates the amount of energy supplied using the flow rate value measured by the flow rate measuring unit 210 and the temperature difference measurement value between the supply side pipe 130 and the recovery side pipe 140. According to the equation Q = mxcx ΔT, the calorific value (Q) is calculated as the mass (m), the specific heat (c), and the value of the temperature change (ΔT), where the mass (m) and the specific heat (c) are the flow rate and type of fluid ( For example, water), and the value ΔT of the temperature change is determined according to the measured temperature difference between the supply pipe 130 and the recovery pipe 140.
자가 발전부(240)는 열전소자를 이용하여 배관 혹은 배관 주변의 적어도 두 곳의 온도 차이를 전기 에너지로 변환시키고, 변환된 전기 에너지를 열량계(110)의 전원으로 제공한다.The self-generating unit 240 converts the temperature difference between at least two places around the pipe or the pipe by using a thermoelectric element to electric energy, and provides the converted electric energy as a power source of the calorimeter 110.
열전 소자는 열과 전기의 상호 작용으로 나타나는 각종 효과를 이용한 소자의 총칭이다. 열전 소자를 이용하면 열을 전기 에너지로 변환할 수 있다. 열전 소자를 이용하여 열을 전기 에너지로 변환하는 것 중 일 예는 제베크 효과를 이용하는 것이다. 두 종류의 금속을 고리 모양으로 연결하고, 한쪽 접점을 고온, 다른 쪽을 저온으로 했을 때 그 회로에 전류가 생기는 현상을 제베크 효과라고 한다.A thermoelectric element is a generic term for a device using various effects represented by interaction between heat and electricity. Thermoelectric elements can be used to convert heat into electrical energy. One example of converting heat into electrical energy using a thermoelectric element is to use the Seebeck effect. The phenomenon of generating current in the circuit when two kinds of metals are connected in a ring shape and one contact is made high temperature and the other is made low temperature is called the Seebeck effect.
난방시스템의 경우 자가 발전부(240)는 열전 소자의 고온부를 공급측 배관(130)에 연결하고, 열전 소자의 저온부를 회수측 배관(140)에 연결하여 공급측 배관(130)과 회수측 배관(140) 사이에서 발생하는 온도 차이를 전기 에너지로 변환하여 이를 열량계(110)의 전원으로 제공한다.In the heating system, the self-generating unit 240 connects the high temperature part of the thermoelectric element to the supply side pipe 130 and the low temperature part of the thermoelectric element to the recovery side pipe 140 to supply the supply side pipe 130 and the recovery side pipe 140. The temperature difference generated between the) is converted into electrical energy to provide it as a power source of the calorimeter 110.
냉방시스템의 경우 난방시스템의 경우와는 반대로 공급측 배관(130)의 온도가 회수측 배관(140)의 온도보다 높으므로, 자가 발전부(240)는 열전 소자의 고온부를 회수측 배관(140)에 연결하고 열전 소자의 저온부를 공급측 배관(130)에 연결하여 회수측 배관(140)과 공급측 배관(130) 사이에서 발생하는 온도 차이를 전기 에너지로 변환하여 이를 열량계(110)의 전원으로 제공한다.In the case of the cooling system, as opposed to the heating system, since the temperature of the supply side pipe 130 is higher than the temperature of the recovery side pipe 140, the self-generating unit 240 performs the high temperature portion of the thermoelectric element to the recovery side pipe 140. And a low temperature part of the thermoelectric element is connected to the supply side pipe 130 to convert a temperature difference generated between the recovery side pipe 140 and the supply side pipe 130 into electrical energy and provide it as a power source of the calorimeter 110.
자가 발전부(240)에서 열전 소자의 설치 예시를 도 3 내지 도 6을 참조하여 설명한다.An example of installation of the thermoelectric element in the self-generating unit 240 will be described with reference to FIGS. 3 to 6.
도 3은 지역난방 시스템에서 열전 소자가 공급측 배관(130)과 대기 사이에 설치된 실시예를 나타내는 지역난방 시스템의 개략도이다.3 is a schematic diagram of a district heating system showing an embodiment in which a thermoelectric element is installed between a supply side pipe 130 and the atmosphere in a district heating system.
지역난방 시스템에서 공급되는 유체(예, 열수)의 온도는 통상 50~65도를 유지한다. 그리고, 대기의 온도는 통상 상온(25도)이다. 도 3은 이 두 곳의 온도 차이를 이용하여 전기 에너지를 생성하는 실시예를 나타내는 도면이다.The temperature of fluids (eg hot water) supplied by district heating systems is usually maintained between 50 and 65 degrees. The atmospheric temperature is usually room temperature (25 degrees). 3 is a view showing an embodiment of generating electrical energy using the temperature difference between these two places.
도 3을 참조하면, 난방용 에너지를 포함하고 있는 유체(330)가 공급측 배관(130)을 통해 유입된다. 이때, 공급측 배관(130)에 포함된 유체(330)는 고온을 유지하고 있다. 자가 발전부(240)에 포함된 열전 소자(360)의 고온부는 공급측 배관(130)에 연결되어 고온의 유체(330)로부터 열을 흡수한다. 또한, 열전 소자(360)의 다른 한 쪽인 저온부는 도 3과 같이 대기 상태에 노출되어 대기 중으로 방열하게 된다. 이렇게 온도 차이가 발생하는 공급측 배관(130)과 대기 사이에 열전 소자(360)가 설치됨으로써 발생한 기전력을 이용하기 위해 회로가 연결되고, 이러한 회로를 통해 전기 에너지가 열량계(110)로 전달되게 된다. 자가 발전부(240)는 열전 소자에서 발생한 전기 에너지를 열량계(110)의 전원으로 제공하기 위해 소정의 변환 모듈을 더 포함할 수 있다. 통상적으로 열전 소자에서 생성되는 전기 에너지는 그 전압과 전류가 불안정한 형태일 수 있으므로 안정적인 전력을 공급하기 위해 생성된 전기 에너지의 전압과 전류를 안정시키는 안정화 회로가 자가 발전부(240)에 더 포함되어 있을 수 있다.Referring to FIG. 3, the fluid 330 containing energy for heating is introduced through the supply side pipe 130. At this time, the fluid 330 contained in the supply-side piping 130 maintains a high temperature. The high temperature part of the thermoelectric element 360 included in the self-generating unit 240 is connected to the supply side pipe 130 to absorb heat from the high temperature fluid 330. In addition, the low temperature part, which is the other side of the thermoelectric element 360, is exposed to the air state as shown in FIG. The circuit is connected to use the electromotive force generated by the thermoelectric element 360 is installed between the supply side pipe 130 and the atmosphere in which the temperature difference occurs, and electrical energy is transferred to the calorimeter 110 through the circuit. The self-generating unit 240 may further include a predetermined conversion module to provide electrical energy generated by the thermoelectric element as a power source of the calorimeter 110. In general, since the electrical energy generated by the thermoelectric element may have an unstable voltage and current, the self-generation unit 240 further includes a stabilization circuit for stabilizing the voltage and current of the generated electrical energy to supply stable power. There may be.
공급측 배관(130)으로 공급된 고온의 유체(330)는 다시 에너지 소비처(120)로 공급되어 열 에너지를 공급한 후 냉각된 상태로 회수측 배관(140)을 통해 배출된다. 이 때 회수측 배관(140)으로 흐르는 유체(340)는 공급측 배관(130)에 흐르는 유체(330)에 비해 저온 상태에 있게 된다.The high temperature fluid 330 supplied to the supply side pipe 130 is supplied to the energy consumer 120 again to supply heat energy and then discharged through the recovery side pipe 140 in a cooled state. At this time, the fluid 340 flowing to the recovery side pipe 140 is in a low temperature state compared to the fluid 330 flowing to the supply side pipe 130.
도 4는 지역난방 시스템에서 열전 소자(360)가 공급측 배관(130)과 대기 사이에 설치되고, 열전 소자(360)의 대기 쪽에 히트파이프가 더 설치된 실시예를 나타내는 지역난방 시스템의 개략도이다.4 is a schematic diagram of a district heating system showing an embodiment in which a thermoelectric element 360 is installed between a supply side pipe 130 and the atmosphere in a district heating system, and a heat pipe is further installed on the atmosphere side of the thermoelectric element 360.
도 4를 참조하면, 열전 소자(360)의 대기 쪽과 회수측 배관(140) 사이에 히트파이프(470)가 설치되어 있는 것을 확인할 수 있다. 도 3에 도시된 예시는 저온부가 공냉식으로 냉각되는 구조라면, 도 4에 도시된 예시는 히트파이프(470)가 회수측 배관(140)에 흐르는 유체(340)와 접촉하여 수냉식으로 냉각되는 구조를 가진다. 공냉식에 비해 수냉식이 방열 효과가 좋기 때문에 히트파이프(470)를 회수측 배관(140)에 연결하는 구조가 열전 소자(360)를 이용하여 전기 에너지를 생성하는데 더 유리할 수 있다.Referring to FIG. 4, it can be seen that a heat pipe 470 is provided between the atmosphere side of the thermoelectric element 360 and the recovery side pipe 140. 3 illustrates a structure in which the low temperature portion is cooled by air cooling, the example illustrated in FIG. 4 illustrates a structure in which the heat pipe 470 is cooled in water by contacting the fluid 340 flowing in the recovery-side pipe 140. Have Since the water cooling type has a better heat dissipation effect than the air cooling type, the structure connecting the heat pipe 470 to the recovery side pipe 140 may be more advantageous for generating electrical energy using the thermoelectric element 360.
지역냉방시스템에서 열전 소자(360)의 설치 예시를 더 살펴 본다.Look at the installation example of the thermoelectric element 360 in the district cooling system.
도 5는 지역냉방 시스템에서 열전 소자가 공급측 배관과 대기 사이에 설치된 실시예를 나타내는 지역냉방 시스템의 개략도이다.5 is a schematic diagram of a district cooling system showing an embodiment in which a thermoelectric element is installed between a supply side pipe and the atmosphere in a district cooling system.
지역냉방 시스템에서 공급되는 유체(예, 냉수)의 온도는 3도 정도를 유지한다. 그리고, 대기의 온도는 통상 상온(25도)이다. 도 4는 이 두 곳의 온도 차이를 이용하여 전기 에너지를 생성하는 실시예를 나타내는 도면이다.The temperature of the fluid (eg cold water) supplied by the district cooling system is maintained at about 3 degrees. The atmospheric temperature is usually room temperature (25 degrees). 4 is a view showing an embodiment of generating electrical energy using the temperature difference between these two places.
도 5를 참조하면, 냉방용 에너지를 포함하고 있는 유체(530)는 공급측 배관(130)을 통해 유입된다. 이때, 공급측 배관(130)에 포함된 유체(530)는 저온을 유지하고 있다. 자가 발전부(240)에 포함된 열전 소자(360)의 저온부는 공급측 배관(130)에 연결되어 저온의 유체(530)로 열을 방출한다. 또한, 열전 소자(360)의 다른 한 쪽인 고온부는 도 5와 같이 대기 상태에 노출되어 대기로부터 열을 흡수한다. 이렇게 온도 차이가 발생하는 공급측 배관(130)과 대기 사이에 열전 소자(360)가 설치됨으로써 발생한 기전력을 이용하기 위해 회로가 연결되고, 이러한 회로를 통해 전기 에너지가 열량계(110)로 전달되게 된다. Referring to FIG. 5, the fluid 530 containing the energy for cooling is introduced through the supply side pipe 130. At this time, the fluid 530 included in the supply-side piping 130 maintains a low temperature. The low temperature part of the thermoelectric element 360 included in the self-generating part 240 is connected to the supply side pipe 130 to discharge heat to the low temperature fluid 530. In addition, the high temperature part, which is the other side of the thermoelectric element 360, is exposed to the atmospheric state as shown in FIG. 5 to absorb heat from the atmosphere. The circuit is connected to use the electromotive force generated by the thermoelectric element 360 is installed between the supply side pipe 130 and the atmosphere in which the temperature difference occurs, and electrical energy is transferred to the calorimeter 110 through the circuit.
공급측 배관(130)으로 공급된 저온의 유체(530)는 다시 에너지 소비처(120)로 공급되어 냉방용으로 사용된 후 온도가 상승된 상태로 회수측 배관(140)을 통해 배출된다. 이때, 회수측 배관(140)으로 흐르는 유체(540)는 공급측 배관(130)에 흐르는 유체(530)에 비해 고온 상태에 있게 된다.The low temperature fluid 530 supplied to the supply side pipe 130 is supplied to the energy consumer 120 again and used for cooling, and then discharged through the recovery side pipe 140 in a state where the temperature is raised. At this time, the fluid 540 flowing to the recovery side pipe 140 is in a high temperature state compared to the fluid 530 flowing to the supply side pipe 130.
도 6은 지역냉방 시스템에서 열전 소자(360)가 공급측 배관(130)과 대기 사이에 설치되고, 열전 소자(360)의 대기 쪽에 히트파이프(470)가 더 설치된 실시예를 나타내는 지역냉방 시스템의 개략도이다.6 is a schematic diagram of a district cooling system showing an embodiment in which a thermoelectric element 360 is installed between a supply side pipe 130 and an atmosphere in a district cooling system, and a heat pipe 470 is further installed on the atmosphere side of the thermoelectric element 360. to be.
도 6을 참조하면, 열전 소자(360)의 대기 쪽과 회수측 배관(140) 사이에 히트파이프(470)가 설치되어 있는 것을 확인할 수 있다. 도 5에 도시된 예시는 고온부가 대기와 직접 접촉하여 열을 흡수하는 구조라면, 도 6에 도시된 예시는 히트파이프(470)가 회수측 배관(140)에 흐르는 유체(340)와 접촉하여 열을 흡수하는 구조를 가진다. 대기와의 접촉보다 액체 상태의 유체와의 접촉이 흡열 효과가 좋기 때문에 히트파이프(470)를 회수측 배관(140)에 연결하는 구조가 열전 소자(360)를 이용하여 전기 에너지를 생성하는데 더 유리할 수 있다.Referring to FIG. 6, it can be seen that a heat pipe 470 is provided between the atmosphere side of the thermoelectric element 360 and the recovery side pipe 140. 5 illustrates a structure in which the high temperature part directly contacts the atmosphere to absorb heat, the example illustrated in FIG. 6 shows that the heat pipe 470 is in contact with the fluid 340 flowing through the recovery-side pipe 140. It has a structure to absorb it. Since the contact with the fluid in the liquid state is more endothermic than the contact with the atmosphere, a structure for connecting the heat pipe 470 to the recovery side pipe 140 may be more advantageous for generating electrical energy using the thermoelectric element 360. Can be.
열량계(240)는 전술한 내부 블록들(210, 220, 230, 240) 이외에 에너지 저장 제어부(250) 및 에너지 저장 장치(260)를 더 포함할 수 있다.The calorimeter 240 may further include an energy storage controller 250 and an energy storage device 260 in addition to the aforementioned internal blocks 210, 220, 230, and 240.
에너지 저장 제어부(250)는 자가 발전부(240)에서 변환시키는 전기 에너지가 열량계(110)에서 소비되는 전기 에너지보다 많은 경우 에너지 저장 장치(260)로 저장하고 자가 발전부(240)에서 변환시키는 전기 에너지가 열량계(110)에서 소비되는 전기 에너지보다 적은 경우 에너지 저장 장치(260)에 저장된 전기 에너지를 열량계(110)로 공급한다.The energy storage controller 250 stores the energy stored in the energy storage device 260 when the electrical energy converted by the self-generation unit 240 is greater than the electrical energy consumed by the calorimeter 110 and converts the energy by the self-generation unit 240. When energy is less than the electrical energy consumed by the calorimeter 110, the electrical energy stored in the energy storage device 260 is supplied to the calorimeter 110.
도 3에 도시된 실시예에서, 겨울에는 공급측 배관(130)에 상시적으로 고온의 열수가 흐르고, 대기 온도는 상대적으로 낮은 온도일 수 있으나, 여름에는 난방을 하지 않고 목욕 등의 일시적인 사용을 위해 난방 시스템을 이용하기 때문에 공급측 배관(130)의 온도가 상시적으로 고온을 유지하기 어렵고 대기의 온도 또한 상대적으로 높을 수 있다. 따라서 겨울에는 열전 소자(360)를 이용한 전기 에너지 생성이 상당히 효과적으로 운용될 수 있으나, 여름에는 자칫 전원 공급 용량이 수요를 따라가지 못할 수도 있다. 이러한 것을 해결할 수 있는 보조 장치가 에너지 저장 장치(260) 및 에너지 저장 제어부(260)이다.In the embodiment shown in Figure 3, the hot water is constantly flowing to the supply-side piping 130 in winter, the atmospheric temperature may be a relatively low temperature, but in the summer for temporary use such as bathing without heating Since the heating system is used, the temperature of the supply pipe 130 may not always maintain a high temperature, and the temperature of the atmosphere may also be relatively high. Therefore, in the winter, the electrical energy generation using the thermoelectric element 360 can be operated quite effectively, but in the summer, the power supply capacity may not keep up with the demand. An auxiliary device that can solve this problem is the energy storage device 260 and the energy storage control unit 260.
열량계(110)는 또한, 전술한 내부 블록들(210, 220, 230, 240, 250, 260) 이외에 다른 전자부품을 더 포함할 수 있다. 예를 들어, 열량계(110)을 원격 검침하기 위해서는 무선 통신 장치(미도시)들이 더 필요하게 된다. 또한, 사용자의 편의성을 높이기 위해 다양한 디스플레이 장치(미도시)들이 열량계(110)에 더 부착될 수 있다. 이러한 무선 통신 장치(미도시)들 및 디스플레이 장치(미도시)들은 많은 전력을 소비하게 된다. 이 경우, 배터리에 의존하는 종래 방식은 더더욱 많은 문제를 가지게 되고, 본 발명의 일 실시예와 같은 자가 발전부(240)를 포함하는 열량계(110)의 효용 가치는 더 높아지게 된다.The calorimeter 110 may further include other electronic components in addition to the aforementioned internal blocks 210, 220, 230, 240, 250, and 260. For example, wireless communication devices (not shown) are required to remotely read the calorimeter 110. In addition, various display devices (not shown) may be further attached to the calorimeter 110 to increase user convenience. Such wireless communication devices (not shown) and display devices (not shown) consume a lot of power. In this case, the conventional method depending on the battery has more and more problems, and the utility value of the calorimeter 110 including the self-generating unit 240 as in the embodiment of the present invention becomes higher.
이상에서는, 본 발명의 실시예에 따른 열전 소자를 이용한 자가발전식 열량계(110)에 대하여 설명하였으며, 이하에서는, 본 발명의 실시예에 따른 열량계(110)가 열량을 측정 하는 방법에 대하여 설명한다. 후술하게 될 본 발명의 실시예에 따른 열량을 측정하는 방법은, 도 2에 도시된 본 발명의 실시예에 따른 열량계(110)에 의해 모두 수행될 수 있다. In the above, the self-powered calorimeter 110 using the thermoelectric device according to the embodiment of the present invention has been described, hereinafter, the method for measuring the calorific value of the calorimeter 110 according to the embodiment of the present invention will be described. . The method for measuring calories according to an embodiment of the present invention to be described later may be performed by the calorimeter 110 according to the embodiment of the present invention shown in FIG. 2.
도 7은 본 발명의 일 실시예에 따른 열전 소자(360)를 이용한 자가발전식 열량 측정 방법의 흐름도이다.7 is a flowchart illustrating a self-generating calorimetry method using a thermoelectric device 360 according to an embodiment of the present invention.
도 7을 참조하면, 열량계(110)는 먼저, 열전소자(360)를 이용하여 배관 혹은 배관 주변의 적어도 두 곳의 온도 차이를 전기 에너지로 변환시키고, 전기 에너지를 열량계(110)의 전원으로 제공한다(S700). 전원을 제공받은 열량계(110)는 배관을 통해 공급되는 유체의 양을 측정하고(S702), 공급측 배관(130)과 회수측 배관(140) 사이의 온도 차이를 측정(S704)한 후, 측정된 유량값과 공급측 배관(130)과 회수측 배관(140) 사이의 온도 차이 측정값을 이용하여 공급되는 에너지량을 계산하여 열량을 측정하게 된다(S706).Referring to FIG. 7, the calorimeter 110 first converts a temperature difference between at least two places around a pipe or a pipe by using a thermoelectric element 360 to electrical energy, and provides electrical energy as a power source of the calorimeter 110. (S700). The calorimeter 110 supplied with power measures the amount of fluid supplied through the pipe (S702), and measures the temperature difference between the supply side pipe 130 and the recovery side pipe 140 (S704), and then measures The amount of energy supplied is calculated using the flow rate value and the temperature difference measurement value between the supply side pipe 130 and the recovery side pipe 140 to measure the amount of heat (S706).
이상에서는 본 발명의 실시예에 따른 열량 측정 방법이 도 7에서와 같은 절차로 수행되는 것으로 설명되었으나, 이는 설명의 편의를 위한 것일 뿐, 본 발명의 본질적인 개념을 벗어나지 않는 범위 내에서, 구현 방식에 따라 각 단계의 수행 절차가 바뀌거나 둘 이상의 단계가 통합되거나 하나의 단계가 둘 이상의 단계로 분리되어 수행될 수도 있다. In the above description, the calorimetric measuring method according to the embodiment of the present invention has been described as being performed by the same procedure as in FIG. 7, but this is only for convenience of description and within the scope of not departing from the essential concept of the present invention. Accordingly, the execution procedure of each step may be changed, two or more steps may be integrated, or one step may be performed by being separated into two or more steps.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 등이 포함될 수 있다.In the above description, all elements constituting the embodiments of the present invention are described as being combined or operating in combination, but the present invention is not necessarily limited to the embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, although all of the components may be implemented in one independent hardware, each or all of the components may be selectively combined to perform some or all functions combined in one or a plurality of hardware. It may be implemented as a computer program having a. Codes and code segments constituting the computer program may be easily inferred by those skilled in the art. Such a computer program may be stored in a computer readable storage medium and read and executed by a computer, thereby implementing embodiments of the present invention. The storage medium of the computer program may include a magnetic recording medium, an optical recording medium, and the like.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be included, unless otherwise stated, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meanings as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be construed in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 8월 22일 한국에 출원한 특허출원번호 제 10-2012-0091842 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under No. 119 (a) (35 USC § 119 (a)) of the Patent Application No. 10-2012-0091842, filed in Korea on August 22, 2012, All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (9)

  1. 배관을 통해 공급되는 냉방 혹은 난방용 에너지의 양을 측정하는 열량계에 있어서,In the calorimeter for measuring the amount of cooling or heating energy supplied through the pipe,
    상기 배관을 통해 공급되는 유체의 양을 측정하는 유량 측정부;A flow rate measuring unit measuring an amount of the fluid supplied through the pipe;
    공급측 배관과 회수측 배관 사이의 온도 차이를 측정하는 온도 측정부;A temperature measuring unit measuring a temperature difference between the supply pipe and the recovery pipe;
    상기 측정된 유량값과 상기 공급측 배관과 회수측 배관 사이의 온도 차이 측정값을 이용하여 상기 공급되는 에너지량을 계산하는 열량 계산부; 및A calorific value calculator configured to calculate the amount of energy supplied by using the measured flow rate value and a temperature difference measurement value between the supply side pipe and the recovery side pipe; And
    열전소자를 이용하여 상기 배관 혹은 상기 배관 주변의 적어도 두 곳의 온도 차이를 전기 에너지로 변환시키고, 상기 전기 에너지를 상기 열량계의 전원으로 제공하는 자가 발전부를 포함하는 열전 소자를 이용한 자가발전식 열량계.A self-generating calorimeter using a thermoelectric element comprising a self-generation unit for converting the temperature difference between the pipe or at least two places around the pipe by using a thermoelectric element to the electrical energy, and providing the electrical energy to the calorimeter power.
  2. 제1항에 있어서,The method of claim 1,
    상기 자가 발전부는 상기 열전 소자를 이용하여 상기 공급측 배관과 상기 회수측 배관 사이의 온도 차이를 전기 에너지로 변환하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.The self-generation unit is a self-generating calorimeter using a thermoelectric element, characterized in that for converting the temperature difference between the supply side pipe and the recovery-side pipe to electrical energy using the thermoelectric element.
  3. 제1항에 있어서,The method of claim 1,
    상기 자가 발전부는 상기 열전 소자를 이용하여 상기 공급측 배관 및 상기 회수측 배관 중 어느 한 배관과 대기 사이의 온도 차이를 전기 에너지로 변환하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.The self-generating unit calorimeter using a thermoelectric element, characterized in that for converting the temperature difference between any one of the supply side pipe and the recovery-side pipe and the atmosphere by using the thermoelectric element into electrical energy.
  4. 제3항에 있어서,The method of claim 3,
    상기 공급측 배관을 통해 난방용 에너지가 공급되고,Energy for heating is supplied through the supply side pipe,
    상기 자가 발전부는 상기 공급측 배관과 대기 사이의 온도 차이를 전기 에너지로 변환하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.The self-generation unit is a self-generating calorimeter using a thermoelectric element, characterized in that for converting the temperature difference between the supply side pipe and the atmosphere into electrical energy.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 자가 발전부는 히트파이프의 어느 한 쪽을 상기 열전 소자의 대기 쪽에 연결하고 상기 히트파이프의 다른 한 쪽을 상기 회수측 배관에 연결하여 방열하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.The self-generating unit is a self-powered calorimeter characterized in that any one of the heat pipe is connected to the atmosphere side of the thermoelectric element and the other side of the heat pipe is connected to the recovery side pipe to radiate heat.
  6. 제3항에 있어서,The method of claim 3,
    상기 공급측 배관을 통해 냉방용 에너지가 공급되고,Cooling energy is supplied through the supply side pipe,
    상기 자가 발전부는 상기 공급측 배관과 대기 사이의 온도 차이를 전기 에너지로 변환하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.The self-generation unit is a self-generating calorimeter using a thermoelectric element, characterized in that for converting the temperature difference between the supply side pipe and the atmosphere into electrical energy.
  7. 제6항에 있어서,The method of claim 6,
    상기 자가 발전부는 히트파이프의 어느 한 쪽을 상기 열전 소자의 대기 쪽에 연결하고 상기 히트파이프의 다른 한 쪽을 상기 회수측 배관에 연결하여 방열하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.The self-generating unit is a self-powered calorimeter characterized in that any one of the heat pipe is connected to the atmosphere side of the thermoelectric element and the other side of the heat pipe is connected to the recovery side pipe to radiate heat.
  8. 제1항에 있어서,The method of claim 1,
    에너지 저장 장치 및 상기 에너지 저장 장치에 대한 에너지 저장 제어부를 더 포함하되,Further comprising an energy storage device and an energy storage control unit for the energy storage device,
    상기 에너지 저장 제어부는 상기 자가 발전부에서 변환시키는 전기 에너지가 상기 열량계에서 소비되는 전기 에너지보다 많은 경우 상기 에너지 저장 장치로 저장하고 The energy storage control unit stores the energy stored in the energy storage device when the electrical energy converted by the self-generation unit is greater than the electrical energy consumed by the calorimeter.
    상기 자가 발전부에서 변환시키는 전기 에너지가 상기 열량계에서 소비되는 전기 에너지보다 적은 경우 상기 에너지 저장 장치에 저장된 전기 에너지를 상기 열량계로 공급하는 것을 특징으로 하는 열전 소자를 이용한 자가발전식 열량계.When the electrical energy converted by the self-generation unit is less than the electrical energy consumed by the calorimeter self-powered calorimeter using a thermoelectric element, characterized in that for supplying the electrical energy stored in the energy storage device to the calorimeter.
  9. 열량계가 배관을 통해 공급되는 냉방 혹은 난방용 에너지의 양을 측정하는 방법에 있어서,In the calorimeter measuring the amount of cooling or heating energy supplied through the pipe,
    상기 배관을 통해 공급되는 유체의 양을 측정하는 단계;Measuring the amount of fluid supplied through the pipe;
    공급측 배관과 회수측 배관 사이의 온도 차이를 측정하는 단계;Measuring a temperature difference between the supply pipe and the recovery pipe;
    상기 측정된 유량값과 상기 공급측 배관과 회수측 배관 사이의 온도 차이 측정값을 이용하여 상기 공급되는 에너지량을 계산하는 단계; 및Calculating the amount of energy supplied using the measured flow rate value and a temperature difference measurement value between the supply side pipe and the recovery side pipe; And
    열전소자를 이용하여 상기 배관 혹은 상기 배관 주변의 적어도 두 곳의 온도 차이를 전기 에너지로 변환시키고, 상기 전기 에너지를 상기 열량계의 전원으로 제공하는 단계를 포함하는 열량 측정 방법.And converting a temperature difference between the pipe or at least two places around the pipe into electric energy using a thermoelectric element, and providing the electric energy to a power source of the calorimeter.
PCT/KR2012/007635 2012-08-22 2012-09-24 Self power-generating heat meter using thermoelectric element and method for measuring amount of heat WO2014030799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0091842 2012-08-22
KR1020120091842A KR101435361B1 (en) 2012-08-22 2012-08-22 Calorimeter self-generating by using thermo-electric device and calorimetric method

Publications (1)

Publication Number Publication Date
WO2014030799A1 true WO2014030799A1 (en) 2014-02-27

Family

ID=50150087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007635 WO2014030799A1 (en) 2012-08-22 2012-09-24 Self power-generating heat meter using thermoelectric element and method for measuring amount of heat

Country Status (2)

Country Link
KR (1) KR101435361B1 (en)
WO (1) WO2014030799A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596794B1 (en) 2014-05-14 2016-03-07 서울대학교 산학협력단 Apparatus for measuring heating value and method of measuring heating value
KR101860628B1 (en) * 2016-03-12 2018-05-23 차진환 Pipe heat-quantity measuring apparatus using thermoelectric element
KR101979376B1 (en) * 2017-10-13 2019-05-16 강옥수 A built-in water service box
KR101959988B1 (en) * 2017-10-16 2019-03-20 주식회사 다스코포레이션 Internet of thing valve adjusting apparatus and system for applying harvest of thermal energy
KR101986093B1 (en) 2018-04-02 2019-06-07 대모 엔지니어링 주식회사 Self generation electricty type hydraulic breaker
KR102027229B1 (en) 2018-06-27 2019-10-02 대모 엔지니어링 주식회사 Hydraulic breaker having a self generator
KR102423721B1 (en) * 2019-12-27 2022-07-22 한국서부발전 주식회사 IoT piping temperature monitoring system using thermoelectric power module
KR102329293B1 (en) * 2021-04-21 2021-11-22 (주)삼원씨앤지 Automated facility management system with algorithm of calculating calories for cooling and heating each room of building

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075053A (en) * 1993-06-17 1995-01-10 Toshiba Corp Calorimeter
JP2006010473A (en) * 2004-06-25 2006-01-12 Shin Nippon Air Technol Co Ltd Method for measuring fluid temperature flowing through pipe and method for measuring fluid heat quantity
JP2006271163A (en) * 2005-03-25 2006-10-05 Toshiba Corp Temperature-difference power generation system
KR20110136489A (en) * 2010-06-15 2011-12-21 대우조선해양 주식회사 Vessel with thermoelectirc generating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846249A (en) * 1994-07-27 1996-02-16 Seiko Instr Inc Thermoelectric element module and portable electronic apparatus using the same
KR200361542Y1 (en) * 2004-06-29 2004-09-14 한국건설기술연구원 Equipment of Error Checking and Correcting for Heat and Flow Meter
KR101078964B1 (en) * 2009-12-02 2011-11-01 주식회사 효성 fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075053A (en) * 1993-06-17 1995-01-10 Toshiba Corp Calorimeter
JP2006010473A (en) * 2004-06-25 2006-01-12 Shin Nippon Air Technol Co Ltd Method for measuring fluid temperature flowing through pipe and method for measuring fluid heat quantity
JP2006271163A (en) * 2005-03-25 2006-10-05 Toshiba Corp Temperature-difference power generation system
KR20110136489A (en) * 2010-06-15 2011-12-21 대우조선해양 주식회사 Vessel with thermoelectirc generating system

Also Published As

Publication number Publication date
KR101435361B1 (en) 2014-08-28
KR20140025758A (en) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2014030799A1 (en) Self power-generating heat meter using thermoelectric element and method for measuring amount of heat
WO2011105070A1 (en) Demand and supply control apparatus, demand and supply control method, and program
US20130214763A1 (en) Power control device and power control method
WO2006023240A1 (en) Power delivery system
CN102792513A (en) Thermal sensor device with average temperature and hot spot feedback
CN102778627B (en) Method and device for determining current-carrying capacity of cable
JP2010252625A (en) Energy management system
Darkwa et al. Enhanced laminated composite phase change material for energy storage
CN104620115A (en) Power monitoring system and method
CN106018904B (en) Low-voltage anti-electricity-stealing device and method for rapidly and accurately measuring and calculating loss power thereof
CN115561564A (en) ARIMA sequence prediction method for dynamic current-carrying capacity of cable joint
WO2015108219A1 (en) Remote meter-reading calorimeter, and operating method and system thereof
CN110361109A (en) A kind of temperature computation method of indoor substation, system and device
ITPD20060006A1 (en) UPS'
JPH1082801A (en) Display device for consumed power quantity in power consumer
JP6468216B2 (en) Power storage control device, power storage control method, and power storage control program
JP6202988B2 (en) Power measurement system, power measurement method, and program
WO2013095026A1 (en) Heat recovery unit based on fuel cell and operating method thereof
CN207528367U (en) Resistance to movement temperature measuring equipment
Kalay et al. IoT-Based Data Acquisition and Remote Monitoring System for Large-Scale Photovoltaic Power Plants
RU127938U1 (en) MULTIMEDIA COMMUNICATOR
WO2020045918A1 (en) Dc-dc converter for photovoltaic energy storage system and method for controlling same
CN104807580A (en) Integrated wireless indicator diagram sensor
McMahon et al. Operational study of domestic battery energy storage system
CN202177394U (en) Data acquisition and monitoring device of large power medium frequency induction furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883101

Country of ref document: EP

Kind code of ref document: A1