WO2014029199A1 - 一种交流发电机 - Google Patents

一种交流发电机 Download PDF

Info

Publication number
WO2014029199A1
WO2014029199A1 PCT/CN2013/070817 CN2013070817W WO2014029199A1 WO 2014029199 A1 WO2014029199 A1 WO 2014029199A1 CN 2013070817 W CN2013070817 W CN 2013070817W WO 2014029199 A1 WO2014029199 A1 WO 2014029199A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency
pole
alternator
voltage
Prior art date
Application number
PCT/CN2013/070817
Other languages
English (en)
French (fr)
Inventor
陈维加
Original Assignee
苏州星奢汇进出口贸易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州星奢汇进出口贸易有限公司 filed Critical 苏州星奢汇进出口贸易有限公司
Publication of WO2014029199A1 publication Critical patent/WO2014029199A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/042Rectifiers associated with rotating parts, e.g. rotor cores or rotary shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/26Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets
    • H02K21/28Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets with armatures rotating within the magnets
    • H02K21/30Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating armatures and stationary magnets with armatures rotating within the magnets having annular armature cores with salient poles

Definitions

  • the invention relates to an alternator.
  • Inverter generators have developed rapidly in the field of small engine generators in recent years due to their small size, light weight and good electrical performance.
  • the working principle of the existing inverter generator is to use a high-frequency generator to send a higher-frequency equal-amplitude alternating current, and the alternating current is rectified into a constant direct current by a rectifying method, and then converted into a Required alternating current, commonly known as ADA mode. Since the existing ADA inverter circuit is passed through a bridge circuit, the IGBT power transistor is used to chop the DC current and then pass through the LC. The circuit shapes the waveform and restores it to an AC sine wave.
  • the IGBT power transistor is used at the chopping frequency 20K Working in a state will result in large switching losses, resulting in heat loss and power loss of the transistor, reducing efficiency, and high-power inductors used to shape the post-chopper waveform will also generate a large amount of heat, resulting in a larger Loss.
  • Simultaneously Multiple harmonics of the 20K chopping frequency produce high-frequency radio waves that can be emitted. If the generator power is to be made larger, the radio electromagnetic waves are also larger, which will not pass the existing European EMC certification requirements.
  • the alternating current of the sinusoidal waveform is obtained by rectifying the higher frequency equal amplitude alternating current directly by the controllable rectification method and controlling the conduction angle at different times, but the waveform distortion is large, and The distortion changes more under different loads, which cannot meet the requirements of many electrical appliances.
  • IGBT high-power transistors used in ADA inverter mode large-capacity electrolytic capacitors, high-power inductors are expensive, and IGBT Transistor specifications increase exponentially with increasing current, so generators that produce more than 5 kW or more will cost more. Therefore, it is still difficult to replace traditional generators with inverter generators.
  • the object of the present invention is to provide an alternator which is not only simple in structure, convenient in production process, saves raw materials, has low cost, and has small waveform distortion and strong anti-interference ability, compared with the existing generator involved in the background art. Power generation efficiency is high.
  • an alternator comprising an engine as a power source, characterized in that it further comprises two multi-pole high-frequency generators having different magnetic pole numbers, a high-frequency rectifying circuit, a conductive ring, a carbon brush, and a bridge type low frequency commutating circuit;
  • the rotors of the two multi-pole high frequency generators are mounted on the same rotor shaft driven by the engine, and the conductive ring is also mounted on the rotor shaft and in contact with the carbon brush;
  • the rotor coils of the two multi-pole high-frequency generators are connected in series with the input end of the high-frequency rectifying circuit, and the output end of the high-frequency rectifying circuit is connected to the conductive ring, and then the sinusoidal alternating current is output by the carbon brush and the bridge low-frequency commutating circuit.
  • the output end of the high frequency rectifying circuit is connected to the conductive loop by a bridge type low frequency commutating circuit, and then the sinusoidal alternating current is output by
  • the two multi-pole high frequency generators of the present invention are both outer stator inner rotor structures, and their stators are fixed in the same stator sleeve.
  • the output AC frequency is 50 Hz.
  • the general requirement is that the difference in the number of cycles between one multi-pole high-frequency generator and another multi-pole high-frequency generator is preferably two weeks, that is, two amplitude-modulated amplitude-modulated waveforms are generated, and the two-period-variable amplitude-modulated superimposed waveforms are passed.
  • Forming a high frequency rectification The forward DC ripple voltage waveform after the 50Hz sine wave AC is rectified, and then the DC ripple voltage is commutated through the bridge low frequency commutation circuit to finally output the required sinusoidal AC power.
  • the zero-crossing point of the envelope waveform of the high-frequency alternating current outputted by the two-pole high-frequency generator of the two different magnetic poles is compared with the commutation point angle of the bridge low-frequency commutating circuit Align.
  • the present invention further includes a voltage control circuit, wherein an output end of the high frequency rectification circuit is first connected to the voltage control circuit, and then sequentially output through a conductive ring, a carbon brush, and a bridge low frequency commutation circuit; or The output end of the high frequency rectifying circuit is sequentially output through a conductive ring, a carbon brush, a voltage control circuit and a bridge type low frequency reversing circuit; or the output end of the high frequency rectifying circuit is first connected to the voltage control circuit, and then through the bridge The low frequency reversing circuit, the conductive ring and the carbon brush output; the voltage control circuit is used for adjusting the magnitude of the DC ripple voltage after the high frequency rectification to achieve the stability of the output voltage of the alternator.
  • the high frequency rectifying circuit and the voltage control circuit are both mounted on the rotor shaft and rotate synchronously with the rotors of the two multi-pole high frequency generators.
  • the circuit board carrying the high frequency rectifying circuit and the voltage control circuit can be fixed with the rotor bracket on the rotor shaft for fixing the rotors of the two multi-pole high frequency generators.
  • the present invention provides another voltage regulation method as follows:
  • the stator poles of the two multi-pole high-frequency generators are all combined with a permanent magnet pole and an electric field pole, and the electric field pole coils on the two stators are connected to a voltage control circuit, and the voltage control circuit includes an alternating current power generation a sampling circuit for sampling the output voltage of the machine and an electric excitation magnetic pole coil driving circuit, wherein the electric excitation magnetic pole coil driving circuit uses the output end of the alternator as a power supply end or adopts another power supply end (for example, a power supply of an independent dedicated power supply magnetic pole coil)
  • the voltage control circuit controls the magnitude of the voltage on the two rotor coils by adjusting the magnitude of the current on the electric field pole coils of the two stators, thereby achieving stabilization of the output voltage.
  • the sampling circuit of the voltage control circuit and the electric field pole coil driving circuit of the present invention are both connected to the output end of the bridge low frequency reversing circuit, and the sampling circuit is connected to the bridge low frequency.
  • the sinusoidal alternating current obtained by commutation of the commutation circuit is sampled, and the electric field pole coil is powered by the sinusoidal alternating current of the above output.
  • the present invention can also provide a voltage control circuit in the bridge type low frequency reversing circuit, and adjust the high frequency rectified DC ripple voltage to the alternator output voltage while commutating. Stability, this is also a desirable means of pressure regulation.
  • the working principle of the invention is as follows: after the output coils of two multi-pole high-frequency alternators emitting different amplitude equal-amplitude alternating currents are connected in series, the waveform superposition will produce an amplitude which varies with the voltage difference of two equal-amplitude alternating currents.
  • An amplitude modulation alternating current having an envelope and then rectifying the amplitude modulated alternating current through a high frequency rectifying circuit to form a DC ripple voltage waveform after the sine wave is rectified, and then extracting the DC ripple voltage through the conductive ring and the carbon brush, and finally
  • the commutated output of the bridge type low frequency commutation circuit forms the required sinusoidal alternating current; or the DC ripple voltage can also be converted into a sinusoidal alternating current by the switching of the bridge type low frequency commutating circuit, and finally led out through the conductive ring and the carbon brush.
  • the invention Compared with the prior art generator, the invention has the advantages of simple structure, convenient production process, large amount of silicon steel material and copper material, thereby reducing the cost, and the electrical performance can reach most of the indexes of the current inverter generator, which are higher than the existing ones.
  • the general-purpose generator's index, power generation efficiency is greatly improved compared with general-purpose generators, especially small-sized general-purpose generators. This saves on the cost of use and also reduces environmental pollution.
  • the invention can generate sinusoidal alternating current with small waveform distortion and no high-frequency radio electromagnetic wave interference, which not only has all the advantages of the existing inverter generator, but also has lower manufacturing cost than the existing inverter generator, and even Lower than the current general-purpose generator manufacturing cost, and there is no high-frequency radio electromagnetic wave, able to pass existing Europe EMC certification requirements.
  • FIG. 1 is a schematic structural view of a specific embodiment of the present invention (a high frequency rectification link controls a DC ripple voltage to stabilize an output voltage);
  • Figure 2 is a cross-sectional view taken along line A - A of Figure 1;
  • Figure 3 is a B - B sectional view of Figure 1;
  • Figure 4 is a schematic diagram of the electrical principle of the embodiment of Figure 1;
  • Figure 5 A schematic structural view of a second embodiment of the present invention (by controlling a portion of the electric field pole current to stabilize the output voltage);
  • Figure 6 is a cross-sectional view taken along line C - C of Figure 5;
  • Figure 7 is a cross-sectional view taken along line D - D of Figure 5;
  • Figure 8 is a schematic diagram of the electrical principle of the embodiment of Figure 5;
  • Figure 9 is a waveform of a constant amplitude alternating current generated by a multi-pole high-frequency generator
  • Figure 10 shows the amplitude of the alternating current waveform from another multi-pole high-frequency generator
  • Figure 11 is an alternating current waveform with an envelope after two equal-amplitude alternating currents of different frequencies
  • Figure 12 is a DC ripple voltage waveform after high frequency rectification of an alternating current with an envelope
  • Figure 13 shows the sinusoidal AC waveform output after the DC ripple voltage is commutated by the bridge low frequency commutation circuit
  • Figure 14 is a schematic diagram of an electrical principle of a third embodiment of the present invention (self-contained voltage control circuit in a bridge type low frequency commutation circuit).
  • M1 and M2 respectively represent two multi-pole high-frequency generators with different magnetic pole numbers; 1. Engine; 2; rotor shaft; 4, stator sleeve; 5, conductive ring; 6, carbon brush; 7, carbon brush holder; 8, high frequency rectifier circuit; 9, bridge low frequency commutation circuit; 10, voltage control circuit; Q1, Q2 represents the rotor poles of two multi-pole high-frequency generators; R1 and R2 respectively represent the stator magnets of two multi-pole high-frequency generators; L1 and L2 The electric excitation poles of the stators of two multi-pole high-frequency generators are respectively indicated.
  • Embodiment 1 As shown in FIG. 1 - 4, the alternator provided in this embodiment has an engine as a power source.
  • the power generating device part is characterized in that two multi-pole high-frequency generators M1 and M2 having different magnetic pole numbers are formed into a single structure, that is, two of the multi-pole high-frequency generators M1 and M2
  • the rotor is fixed to the same rotor support 3, and the rotor support 3 is fixed to the rotor shaft 2, which is connected to the output shaft of the engine 1.
  • two multi-pole high-frequency generators M1, M2 The stators are fixed to the same stator sleeve 4.
  • the two multi-pole high-frequency generators M1 and M2 are made in different numbers of poles because the two multi-pole high-frequency generators M1 and M2 The number of poles is different, so it is fixed on the same rotor shaft 2.
  • the rotor shaft 2 in this embodiment is further equipped with a conductive ring 5 and a stator sleeve. Inside the 4, a carbon brush holder 7 is fixed, and the carbon brush holder 6 is fixed on the carbon brush holder 7 to be in contact with the conductive ring 5.
  • FIG. 1 the electrical schematic diagram shown in FIG.
  • the rotor coil of the M2 is connected in series with the input end of the high frequency rectifying circuit 8, as shown in FIG. 1.
  • the output end of the high frequency rectifying circuit 8 and the voltage control circuit 10 are carried in this embodiment.
  • the circuit board 8 of the circuit 8 and the voltage control circuit 10 and the rotor shaft 2 are used to fix two multi-pole high-frequency generators M1
  • the rotor bracket of the M2 rotor is fixed in 3 phases.
  • the number of rotor poles Q1 of one of the multi-pole high-frequency generators M1 is 30.
  • another multi-pole high-frequency generator M2 has a rotor pole Q2 of 24 poles; a 30-pole multipole high-frequency generator M1 corresponds to a stator magnet R1 of 10 pairs of SN poles, 24
  • the pole multipole high frequency generator M2 corresponds to the stator magnet R2 is 8 pairs of SN poles.
  • the 30-pole multi-pole high-frequency generator M1 outputs three-phase 500 Hz equal-amplitude high-frequency alternating current (as shown in Figure 9)
  • 24-pole multi-pole high-frequency generator M2 outputs three-phase 400 Hz equal-amplitude high-frequency alternating current (as shown in Figure 10).
  • FIG. 11 when working in this embodiment, two multi-pole high-frequency generators M1, M2
  • the rotor coils are connected in series to output an alternating current (shown in FIG. 11) having an envelope waveform generated by superposition of two high-frequency voltages, and then rectified by the high-frequency rectifying circuit 8 to form a sinusoidal rectified DC ripple voltage.
  • Figure 12 shows that since the voltage regulation of the direct current is much more convenient than the voltage regulation of the alternating current, the present embodiment preferentially selects the voltage adjustment of the direct current ripple voltage, that is, the high frequency rectifier circuit 8
  • the DC ripple voltage of the rectified output is adjusted by the voltage control circuit 10 to obtain a DC ripple voltage having a constant voltage.
  • the regulated DC ripple voltage is then passed through the conductive ring 5 and the carbon brush 6
  • the sinusoidal alternating current (shown in Figure 13) required for the commutation output is finally derived by the bridge low frequency commutation circuit.
  • Embodiment 2 The basic structure and embodiment 1 of the alternator provided in this embodiment are shown in conjunction with FIG. 5 - FIG. Similarly, the engine 1 is provided as a power source, and the power generating device portion is characterized in that two multi-pole high-frequency generators M1 and M2 having different magnetic pole numbers are formed into a unitary structure, that is, two of the multi-pole high-frequency power generations. machine The rotors of M1 and M2 are fixed to the same rotor support 3, and the rotor support 3 is fixed to the rotor shaft 2, which is connected to the output shaft of the engine 1. And two multipole high frequency generators The stators of M1 and M2 are fixed on the same stator sleeve 4.
  • the two multi-pole high-frequency generators M1 and M2 are made in different numbers of poles because the two multi-pole high-frequency generators M1 and M2 The number of poles is different, so it is fixed on the same rotor shaft 2. When rotating, the two multi-pole high-frequency generators M1 and M2 can emit high-frequency equal-amplitude AC at different frequencies.
  • Rotor shaft 2 in this embodiment A conductive ring 5 is also mounted thereon, and a carbon brush holder 7 is fixed in the stator sleeve 4, and the carbon brush 6 is fixed on the carbon brush holder 7 to be in contact with the conductive ring 5.
  • the second embodiment differs from the first embodiment in that the two multi-pole high-frequency generators M1 are The stator poles of M2 are combined with permanent magnet poles and electric field poles (that is, magnetic steel and electric field poles are mounted on the stator sleeve 4 at the same time).
  • the two multi-pole high frequency generators M1, M2 The rotor coil is connected in series with the input end of the high frequency rectifying circuit 8, and the output end of the high frequency rectifying circuit 8 is connected to the conductive ring 5, and then the carbon brush 6 is passed through the bridge low frequency commutating circuit.
  • the electric excitation poles L1 and L2 coils on the stators of the two multi-pole high-frequency generators M1 and M2 in the embodiment are connected to the bridge low-frequency commutation circuit at the end through a voltage control circuit 10 9 .
  • the voltage control circuit 10 in this embodiment The sampling circuit and the electric field pole coil driving circuit for sampling the voltage of the output end of the alternator, the voltage control circuit 10 in this embodiment
  • the sampling circuit and the electric field pole coil driving circuit are both connected to the output end of the bridge low frequency commutating circuit 9.
  • the sampling circuit pairs the bridged low frequency commutation circuit 9
  • the sinusoidal alternating current obtained by the commutation is sampled, and the electric field pole coil is powered by the sine wave alternating current of the above output.
  • the voltage control circuit 10 adjusts two multi-pole high frequency generators M1, M2
  • the magnitude of the current on the coil of the electric field of the stator controls the magnitude of the voltage across the two rotor coils to achieve stable output voltage.
  • the number of rotor poles Q1 of one multi-pole high-frequency generator M1 is 30.
  • another multi-pole high-frequency generator M2 has a rotor pole Q2 of 24 poles.
  • the 30-pole multi-pole high-frequency generator M1 corresponds to 8 pairs of SN pole permanent magnet stator magnets R1 and 2 pairs of SN
  • the pole-excited magnetic pole L1 corresponds to 6 pairs of SN pole permanent magnet stator magnets R2 and 2 pairs of SN pole electric poles L2.
  • the 30-pole multi-pole high-frequency generator M1 outputs three-phase 500 Hz equal-amplitude high-frequency alternating current (as shown in Figure 9), and the 24-pole multi-pole high-frequency generator M2 outputs three-phase. 400 Hz equal amplitude high frequency AC (as shown in Figure 10).
  • the two multi-pole high-frequency generators M1 and M2 are The stators are respectively equipped with partial electric magnetic poles L1 and L2, and the electric field poles L1 and L2 are changed by the voltage control circuit 10.
  • the magnitude of the current on the coil controls the magnitude of the voltage on the rotor coil to achieve a stable output voltage.
  • the two multi-pole high frequency generators M1, M2 The regulated equal-amplitude high-frequency alternating current is superimposed in series to generate an alternating current with an envelope waveform (shown in Figure 11), and then rectified by the high-frequency rectifying circuit 8 to form a sinusoidal rectified DC ripple voltage. ( Figure 12)), the DC ripple voltage is drawn through the conductive ring 5 and the carbon brush 6, and finally the sinusoidal alternating current required for the output is commutated by the bridge low frequency commutation circuit 9 (shown in Figure 13).
  • Embodiment 3 The structure of the alternator provided in this embodiment is basically the same as that in Embodiment 1 (see FIG. 1 to FIG. 3). The difference is that the voltage control circuit 10 is not arranged at the output end of the high frequency rectifying circuit 8 in the present embodiment, but the voltage control circuit 10 is placed in the bridge low frequency commutating circuit 9 Medium. That is, in this embodiment, the rectified DC ripple voltage is not adjusted in the high frequency rectification section, but the DC ripple voltage after the high frequency rectification is adjusted while the commutation is performed to achieve the stability of the alternator output voltage.
  • the waveform diagram of the working principle of this embodiment is shown in the figure. 11 ⁇ 13, no longer detailed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种交流发电机,包括作为动力源的发动机(1),还包括两个具有不同磁极数的多极高频发电机(M1,M2)、高频整流电路(8)、导电环(5)、碳刷(6)和桥式低频换向电路(9)。两个多极高频发电机(M1,M2)的转子安装在同一个由发动机(1)驱动的转子轴(2)上,导电环(5)也安装在转子轴(2)上并与碳刷(6)接触,两个发电机(M1,M2)的转子线圈串联并与高频整流电路(8)的输入端连接,高频整流电路(8)依次经由导电环(5)、碳刷(6)和桥式低频换向电路(9)或依次经由桥式低频换向电路(9)、导电环(5)和碳刷(6)输出正弦波交流电。交流发电机波形失真小。

Description

一种交流发电机
技术领域
本发明涉及一种交流发电机。
背景技术
逆变发电机由于其体积小,重量轻,电性能好等诸多优点,近年来在小型引擎发电机领域发展很快。现有的逆变发电机的工作原理是采用一个高频发电机发出一个频率较高的等幅交流电,通过整流方法将该交流电整流成一个恒定的直流电,再通过逆变电路将其转换成所需要的交流电,俗称 ADA 方式。由于现有的 ADA 逆变电路是通过桥式电路,采用 IGBT 功率晶体管对直流电斩波,再通过 LC 电路对该波形进行整形,还原成交流正弦波。因为采用 IGBT 功率晶体管在斩波频率 20K 的状态下工作会产生较大的开关损耗,造成晶体管的发热及功率的损失,降低了效率,同时用来对斩波后波形进行整形的大功率电感也会产生较大的热量,造成较大的损耗。同时 20K 斩波频率的多次谐波会产生可发射的高频无线电电磁波,如要将发电机功率做的更大,则无线电电磁波也更大,这将无法通过现有的欧洲 EMC 认证要求。
当然现有技术中亦有通过对较高频率等幅交流电直接用可控整流方法整流,同时控制其不同时间的导通角来获得接近正弦波波形的交流电,但波形失真度较大,而且在不同负载下失真度变化更大,从而无法满足许多用电器的要求。且从成本角度 ADA 逆变方式所使用的 IGBT 大功率晶体管,大容量电解电容,大功率电感的价格都较高,且 IGBT 晶体管规格随着电流的增大,价格成指数倍的增加,所以要制造 5 千瓦以上或更大功率的发电机成本将更高。所以目前逆变发电机还很难替代传统发电机。
两个高频交流电叠加后会产生具有包络线的交流电是公知的原理方法,这种方法可产生出波形失真度小的正弦波交流电,然而上述原理方法还未利用在交流发电机行业领域。
发明内容
本发明目的是:提供一种交流发电机,其相比背景技术中涉及的现有发电机,不仅结构简单,生产工艺方便,节约原材料,成本低廉,而且波形失真度小,抗干扰能力强,发电效率高。
本发明的技术方案是:一种交流发电机,包括作为动力源的发动机,其特征在于还包括两个具有不同磁极数的多极高频发电机、高频整流电路、导电环、碳刷和桥式低频换向电路;所述两个多极高频发电机的转子安装在同一个由发动机驱动的转子轴上,所述导电环也安装在该转子轴上并与碳刷接触;所述两个多极高频发电机的转子线圈串联后与高频整流电路输入端连接,而高频整流电路的输出端接导电环后由碳刷再经桥式低频换向电路输出正弦波交流电,或者所述高频整流电路的输出端经桥式低频换向电路后再接导电环由碳刷输出正弦波交流电。
优选的,本发明中所述两个多极高频发电机均为外定子内转子结构,并且它们的定子固定在同一个定子套内。
本发明中如按照转子 3000 转 / 分,输出交流电频率 50Hz 的通用要求,其中一个多极高频发电机与另一个多极高频发电机的周波数差优选两周,即产生两个周期变化的调幅叠加波形,所述两个周期变化的调幅叠加波形通过高频整流后形成一个 50Hz 正弦波交流电被整流后的正向直流脉动电压波形,再将该直流脉动电压通过桥式低频换向电路换向,最终输出所需的正弦波交流电。
优选的,本发明中所述两个不同磁极数的多极高频发电机发出的高频交流电串联后输出的包络线波形的过零点与所述桥式低频换向电路的换向点角度对齐。
进一步的,本发明中还包括电压控制电路,所述高频整流电路的输出端先与所述电压控制电路相连,再依次经导电环、碳刷和桥式低频换向电路输出;或者所述高频整流电路的输出端依次经导电环、碳刷、电压控制电路和桥式低频换向电路输出;或者所述高频整流电路的输出端先与所述电压控制电路相连,再依次经桥式低频换向电路、导电环和碳刷输出;所述电压控制电路用于对高频整流后的直流脉动电压大小进行调整从而达到交流发电机输出电压的稳定。
当然更进一步的,本发明中所述高频整流电路和电压控制电路均安装在转子轴上,并与两个多极高频发电机的转子同步旋转。具体实施时,承载高频整流电路和电压控制电路的电路板可与转子轴上用于固定两个多极高频发电机转子的转子支架相固定。
本发明除开上述的在高频整流环节采用电压控制电路对整流后的直流脉动电压进行调整的方法之外,还提供另一种调压手段如下:
所述两个多极高频发电机的定子磁极均采用永磁磁极与电励磁磁极组合,所述两个定子上的电励磁磁极线圈均连接电压控制电路,所述电压控制电路包括对交流发电机输出端电压进行取样的取样电路及电励磁磁极线圈驱动电路,所述电励磁磁极线圈驱动电路以交流发电机输出端作为供电端或者采用其它供电端(比如独立的专供电励磁磁极线圈的供电电路);所述电压控制电路通过调整两个定子的电励磁磁极线圈上的电流大小来控制两个转子线圈上的电压大小,从而达到输出电压的稳定。
当然,实际实施时优选的,本发明中所述电压控制电路的取样电路和电励磁磁极线圈驱动电路均接入所述桥式低频换向电路的输出端,所述取样电路对经桥式低频换向电路换向得到的正弦波交流电进行取样,同时电励磁磁极线圈则采用上述输出的正弦波交流电来供电。
除了上述两种调压手段之外,本发明也可以在桥式低频换向电路中设置电压控制电路,在换向的同时对经高频整流后的直流脉动电压进行调节达到交流发电机输出电压的稳定,这也是一种可取的调压手段。
本发明的工作原理如下:两个发出不同频率等幅交流电的多极高频交流发电机的输出线圈以串联方式连接后,其波形叠加会产生一个幅度随两个等幅交流电的电压差变化的具有包络线的调幅交流电,再将所述调幅交流电通过高频整流电路整流后形成一个正弦波被整流后的直流脉动电压波形,再将所述直流脉动电压经导电环和碳刷引出,最后经桥式低频换向电路的换向输出形成所需的正弦波交流电;或者直流脉动电压也可以先经桥式低频换向电路的换向形成正弦波交流电,最后再通过导电环和碳刷引出。
本发明的优点是:
本发明相比现有技术的发电机,结构简单、生产工艺方便、可节约大量硅钢材料及铜材因此降低了成本,电性能可达到目前逆变发电机的大部分指标,均高于现有通用发电机的指标,发电效率与通用发电机相比特别是小型通用发电机相比大大提高。因此节约了使用成本,同时也减少了对环境的污染。
本发明能够产生出波形失真度小,且不存在高频无线电电磁波干扰的正弦波交流电,它不但具有现有逆变发电机的所有优点,而且制造成本大大低于现有逆变发电机,甚至低于目前一般通用发电机的制造成本,且不存在高频无线电电磁波,能够通过现有的欧洲 EMC 认证要求。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为本发明一种具体实施例的结构示意图(高频整流环节对直流脉动电压进行控制来稳定输出电压);
图 2 为图 1 的 A - A 剖面图;
图 3 为图 1 的 B - B 剖面图;
图 4 为图 1 实施例的电原理简图;
图 5 为本发明第二种具体实施例的结构示意图(通过控制部分电励磁磁极线圈电流来稳定输出电压);
图 6 为图 5 的 C - C 剖面图;
图 7 为图 5 的 D - D 剖面图;
图 8 为图 5 实施例的电原理简图;
图 9 为一个多极高频发电机发出的等幅交流电波形;
图 10 为另一个多极高频发电机发出的等幅交流电波形;
图 11 为两个不同频率等幅交流电叠加后的具有包络线的交流电波形;
图 12 为具有包络线的交流电经高频整流后的直流脉动电压波形;
图 13 为直流脉动电压经桥式低频换向电路换向后输出的正弦波交流电波形;
图 14 为本发明第三种具体实施例的电原理简图(桥式低频换向电路中自带电压控制电路)。
其中: M1 、 M2 分别表示磁极数不同的两个多极高频发电机; 1 、发动机; 2 、转子轴; 3 、转子支架; 4 、定子套; 5 、导电环; 6 、碳刷; 7 、碳刷架; 8 、高频整流电路; 9 、桥式低频换向电路; 10 、电压控制电路; Q1 、 Q2 分别表示两个多极高频发电机的转子磁极; R1 、 R2 分别表示两个多极高频发电机的定子磁钢; L1 、 L2 分别表示两个多极高频发电机定子的电励磁磁极。
具体实施方式
实施例 1 :结合图 1 - 4 所示,本实施例提供的这种交流发电机,具有作为动力源的发动机 1 ,其发电装置部分的特点是将两个磁极数不同的多极高频发电机 M1 、 M2 做成一个整体结构,即将两个所述多极高频发电机 M1 、 M2 的转子固定在同一个转子支架 3 上,再将转子支架 3 固定在转子轴 2 上,该转子轴 2 与发动机 1 的输出轴相连。而将两个多极高频发电机 M1 、 M2 的定子固定在同一个定子套 4 上。所述两个多极高频发电机 M1 、 M2 做成不同数量磁极数,因为这两个多极高频发电机 M1 、 M2 的磁极数不同,因此被固定在同一根转子轴 2 上在转动时两个多极高频发电机可发出不同频率的高频等幅交流电。本实施例中的转子轴 2 上还装配有导电环 5 ,定子套 4 内则固定有碳刷架 7 ,所述碳刷架 7 上固定碳刷 6 与导电环 5 接触。具体结合图 4 所示的电原理简图,本实施例中所述两个多极高频发电机 M1 、 M2 的转子线圈串联后与高频整流电路 8 输入端连接,如图 1 所示,具体实施时,本实施例中承载高频整流而高频整流电路 8 的输出端与一电压控制电路 10 相连,再依次经导电环 5 、碳刷 6 和桥式低频换向电路 9 输出。电路 8 和电压控制电路 10 的电路板与转子轴 2 上用于固定两个多极高频发电机 M1 、 M2 转子的转子支架 3 相固定。
具体结合图 2 - 3 所示,本实施例中,其中一个多极高频发电机 M1 的转子磁极 Q1 数为 30 极,另一个多极高频发电机 M2 的转子磁极 Q2 数为 24 极; 30 极的多极高频发电机 M1 相对应的定子磁钢 R1 为 10 对 SN 极、 24 极的多极高频发电机 M2 相对应的定子磁钢 R2 为 8 对 SN 极。在转速为 3000 转 / 分时, 30 极的多极高频发电机 M1 输出的为三相 500 赫兹等幅高频交流电(如图 9 所示), 24 极的多极高频发电机 M2 输出的为三相 400 赫兹等幅高频交流电(如图 10 所示)。
结合图 11 - 13 所示,本实施例工作时,两个多极高频发电机 M1 、 M2 的转子线圈串联后输出由两个高频电压相叠加产生的具有包络线波形的交流电(图 11 所示),后经高频整流电路 8 的整流形成一个正弦波被整流后的直流脉动电压(图 12 所示),由于直流电的调压比交流电的调压要方便得多,因此本实施方案优先选择对所述直流脉动电压进行电压调整,即使得高频整流电路 8 整流输出的直流脉动电压经过电压控制电路 10 调整后获得电压恒定的直流脉动电压。随后将调压后的直流脉动电压通过导电环 5 和碳刷 6 引出,最后经桥式低频换向电路 9 换向输出所需的正弦波交流电(图 13 所示)。
实施例 2 :结合图 5 -图 8 所示,本实施例提供的这种交流发电机其大致结构与实施例 1 相同,都具有作为动力源的发动机 1 ,并且发电装置部分的特点是将两个磁极数不同的多极高频发电机 M1 、 M2 做成一个整体结构,即将两个所述多极高频发电机 M1 、 M2 的转子固定在同一个转子支架 3 上,再将转子支架 3 固定在转子轴 2 上,该转子轴 2 与发动机 1 的输出轴相连。而将两个多极高频发电机 M1 、 M2 的定子固定在同一个定子套 4 上。所述两个多极高频发电机 M1 、 M2 做成不同数量磁极数,因为这两个多极高频发电机 M1 、 M2 的磁极数不同,因此被固定在同一根转子轴 2 上在转动时两个多极高频发电机 M1 、 M2 可发出不同频率的高频等幅交流电。本实施例中的转子轴 2 上还装配有导电环 5 ,定子套 4 内则固定有碳刷架 7 ,所述碳刷架 7 上固定碳刷 6 与导电环 5 接触。
具体结合图 6 -图 8 所示,本实施例 2 与实施例 1 的不同在于所述两个多极高频发电机 M1 、 M2 的定子磁极均采用永磁磁极与电励磁磁极组合(即在定子套 4 上同时安装有磁钢和电励磁磁极)。所述两个多极高频发电机 M1 、 M2 的转子线圈串联后与高频整流电路 8 输入端连接,而高频整流电路 8 的输出端接导电环 5 后由碳刷 6 再经桥式低频换向电路 9 输出;同时本实施例中所述两个多极高频发电机 M1 、 M2 定子上的电励磁磁极 L1 、 L2 线圈均经一电压控制电路 10 接入末端的桥式低频换向电路 9 。
本实施例中所述电压控制电路 10 包括对交流发电机输出端电压进行取样的取样电路及电励磁磁极线圈驱动电路,本实施例中该电压控制电路 10 的取样电路和电励磁磁极线圈驱动电路均接入所述桥式低频换向电路 9 的输出端。其中所述取样电路对经桥式低频换向电路 9 换向得到的正弦波交流电进行取样,同时电励磁磁极线圈则采用上述输出的正弦波交流电来供电。所述电压控制电路 10 通过调整两个多极高频发电机 M1 、 M2 定子的电励磁磁极线圈上的电流大小来控制两个转子线圈上的电压大小,从而达到输出电压的稳定。
具体如图 6 、图 7 所示,本实施例中;其中一个多极高频发电机 M1 的转子磁极 Q1 数为 30 极,另一个多极高频发电机 M2 的转子磁极 Q2 数为 24 极。 30 极的多极高频发电机 M1 相对应的为8对 SN 极永磁定子磁钢 R1 和2对 SN 极电励磁磁极 L1 , 24 极的多极高频发电机 M2 相对应的为 6 对 SN 极永磁定子磁钢 R2 和2对 SN 极电励磁磁极 L2 。在转速为 3000 转 / 分时, 30 极的多极高频发电机 M1 输出的为三相 500 赫兹等幅高频交流电(如图 9 所示), 24 极的多极高频发电机 M2 输出的为三相 400 赫兹等幅高频交流电(如图 10 所示)。
结合图 11 -图 13 所示,本实施例具体工作时,由于所述两个多极高频发电机 M1 、 M2 的定子分别安装有部分电励磁磁极 L1 、 L2 ,通过电压控制电路 10 改变电励磁磁极 L1 、 L2 线圈上电流的大小即可控制所述转子线圈上电压的大小,从而达到稳定输出电压的目的。由所述两个多极高频发电机 M1 、 M2 发出的经稳压的等幅高频交流电串联叠加后产生一个具有包络线波形的交流电(图 11 所示),后经高频整流电路 8 的整流形成一个正弦波被整流后的直流脉动电压(图 12 所示),该直流脉动电压通过导电环 5 和碳刷 6 引出,最后经桥式低频换向电路 9 换向输出所需的正弦波交流电(图 13 所示)。
实施例 3 :本实施例提供的这种交流发电机的结构与实施例 1 基本相同(参见图 1~ 图 3 ),其区别在于本实施例中没有在高频整流电路 8 的输出端安排电压控制电路 10 ,而是将电压控制电路 10 置于桥式低频换向电路 9 中。即本实施例没有在高频整流环节对经整流后的直流脉动电压进行调整,而是在换向的同时对经高频整流后的直流脉动电压进行调节达到交流发电机输出电压的稳定。本实施例的工作原理波形图参见图 11~13 ,不再详述。
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 1 .一种交流发电机,包括作为动力源的发动机,其特征在于还包括两个具有不同磁极数的多极高频发电机、高频整流电路、导电环、碳刷和桥式低频换向电路;所述两个多极高频发电机的转子安装在同一个由发动机驱动的转子轴上,所述导电环也安装在该转子轴上并与碳刷接触;所述两个多极高频发电机的转子线圈串联后与高频整流电路输入端连接,而高频整流电路的输出端接导电环后由碳刷再经桥式低频换向电路输出正弦波交流电,或者所述高频整流电路的输出端经桥式低频换向电路后再接导电环由碳刷输出正弦波交流电。
  2. 2 .根据权利要求 1 所述的一种交流发电机,其特征在于所述两个多极高频发电机均为外定子内转子结构,并且它们的定子固定在同一个定子套内。
  3. 3. 根据权利要求 1 所述的一种交流发电机,其特征在于:所述两个不同磁极数的多极高频发电机在相同转速时的周波数差为两周。
  4. 4. 根据权利要求 1 或 3 所述的一种交流发电机,其特征在于:所述两个不同磁极数的多极高频发电机发出的高频交流电串联后输出的包络线波形的过零点与所述桥式低频换向电路的换向点角度对齐。
  5. 5. 根据权利要求 1 所述的一种交流发电机,其特征在于:还包括电压控制电路,所述高频整流电路的输出端先与所述电压控制电路相连,再依次经导电环、碳刷和桥式低频换向电路输出;或者所述高频整流电路的输出端依次经导电环、碳刷、电压控制电路和桥式低频换向电路输出;或者所述高频整流电路的输出端先与所述电压控制电路相连,再依次经桥式低频换向电路、导电环和碳刷输出;所述电压控制电路用于对高频整流后的直流脉动电压大小进行调整从而达到交流发电机输出电压的稳定。
  6. 6 .根据权利要求 5 所述的一种交流发电机,其特征在于:所述高频整流电路和电压控制电路均安装在转子轴上,并与两个多极高频发电机的转子同步旋转。
  7. 7 .根据权利要求 1 或 2 所述的一种交流发电机,其特征在于:所述两个多极高频发电机的定子磁极均采用永磁磁极与电励磁磁极组合,所述两个定子上的电励磁磁极线圈均连接一电压控制电路,所述电压控制电路包括对交流发电机输出端电压进行取样的取样电路及电励磁磁极线圈驱动电路,所述电励磁磁极线圈驱动电路以交流发电机输出端作为供电端或者采用其它供电端;所述电压控制电路通过调整两个定子的电励磁磁极线圈上的电流大小来控制两个转子线圈上的电压大小,从而达到输出电压的稳定。
  8. 8 .根据权利要求 7 所述的一种交流发电机,其特征在于所述电压控制电路的取样电路和电励磁磁极线圈驱动电路均接入桥式低频换向电路的输出端,所述取样电路对经桥式低频换向电路换向得到的正弦波交流电进行取样,同时电励磁磁极线圈则采用输出的正弦波交流电来供电。
  9. 9.根据权利要求1所述的一种交流发电机,其特征在于所述桥式低频换向电路中设有电压控制电路,在换向的同时对经高频整流后的直流脉动电压进行调节达到交流发电机输出电压的稳定。
PCT/CN2013/070817 2012-08-22 2013-01-22 一种交流发电机 WO2014029199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210299904.X 2012-08-22
CN201210299904XA CN102857052A (zh) 2012-08-22 2012-08-22 一种交流发电机

Publications (1)

Publication Number Publication Date
WO2014029199A1 true WO2014029199A1 (zh) 2014-02-27

Family

ID=47403334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070817 WO2014029199A1 (zh) 2012-08-22 2013-01-22 一种交流发电机

Country Status (2)

Country Link
CN (1) CN102857052A (zh)
WO (1) WO2014029199A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857052A (zh) * 2012-08-22 2013-01-02 苏州星奢汇进出口贸易有限公司 一种交流发电机
CN112436675B (zh) * 2020-11-13 2021-08-31 重庆宗申航空发动机制造有限公司 一种航空发动机的双发电机结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058374A1 (en) * 2007-08-28 2009-03-05 Thomas Evans High efficiency alternator
CN102624310A (zh) * 2012-03-19 2012-08-01 陈维加 一种交流发电机
CN102857052A (zh) * 2012-08-22 2013-01-02 苏州星奢汇进出口贸易有限公司 一种交流发电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541943B1 (en) * 2001-03-02 2003-04-01 Penntex Industries, Inc. Regulator for boosting the output of an alternator
CN202034860U (zh) * 2011-01-30 2011-11-09 陈维加 一种交流发电机
CN202759356U (zh) * 2012-08-22 2013-02-27 苏州星奢汇进出口贸易有限公司 一种交流发电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058374A1 (en) * 2007-08-28 2009-03-05 Thomas Evans High efficiency alternator
CN102624310A (zh) * 2012-03-19 2012-08-01 陈维加 一种交流发电机
CN102857052A (zh) * 2012-08-22 2013-01-02 苏州星奢汇进出口贸易有限公司 一种交流发电机

Also Published As

Publication number Publication date
CN102857052A (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
CN102185448A (zh) 无线传输、齿谐波励磁的混合励磁永磁电机
EP2320542A3 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
CN206611355U (zh) 一种永磁同步电机启动、制动下的电流回馈装置
JP2011050237A (ja) 電気機械を非制限電流波形で励起させるシステム及び方法
WO2014029199A1 (zh) 一种交流发电机
WO2012100578A1 (zh) 一种交流发电机及其发电方法
CN202503405U (zh) 一种交流发电机
WO2013139060A1 (zh) 一种交流发电机
JP2013236480A (ja) 誘導型ブラシレス交流励磁システム
Beik et al. High voltage generator for wind turbines
CN100405709C (zh) 同枢式交直流无刷发电机
Zhao et al. Slot-PM-assisted hybrid reluctance generator with self-excited DC source for stand-alone wind power generation
CN202759356U (zh) 一种交流发电机
CN101719729A (zh) 发电机的串联连接装置
Xia et al. Brushless excitation principle and experimental verification of hybrid excitation synchronous generator based on harmonic magnetic field
CN207588640U (zh) 三相谐整变压式磁能源发电装置
US10770999B2 (en) Brushless, self-excited synchronous field-winding machine
CN113364156A (zh) 一种附加转子轭部槽型无刷电励磁同步电机
CN101976923A (zh) 二次谐波励磁的混合励磁永磁电机
CN208895357U (zh) 一种发电焊机的起弧电路
CN108111076B (zh) 一种自励恒压发电机的三频励磁机***及其控制方法
CN2812396Y (zh) 同枢式交直流无刷发电机
CN201742195U (zh) 多极永磁逆变发电电焊机组
CN112583308B (zh) 一种基于无线电能传输的同步电机无刷励磁***
CN211744158U (zh) 一种双凸极交流发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831400

Country of ref document: EP

Kind code of ref document: A1