WO2014029195A1 - 可监测放射性物质的背散射人体安检***及其扫描方法 - Google Patents

可监测放射性物质的背散射人体安检***及其扫描方法 Download PDF

Info

Publication number
WO2014029195A1
WO2014029195A1 PCT/CN2013/070259 CN2013070259W WO2014029195A1 WO 2014029195 A1 WO2014029195 A1 WO 2014029195A1 CN 2013070259 W CN2013070259 W CN 2013070259W WO 2014029195 A1 WO2014029195 A1 WO 2014029195A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
radiation
detector
detected
monitoring
Prior art date
Application number
PCT/CN2013/070259
Other languages
English (en)
French (fr)
Inventor
赵自然
吴万龙
金颖康
唐乐
朱晨光
丁光伟
曹硕
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2014029195A1 publication Critical patent/WO2014029195A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/26Passive interrogation, i.e. by measuring radiation emitted by objects or goods

Definitions

  • the invention relates to a human body safety inspection system, in particular to a backscattering human body security inspection system and a scanning method capable of monitoring a human body carrying radioactive substances. Background technique
  • Backscatter imaging technology is one of the main techniques for human body security inspection. By scanning the human body with an X-ray beam and using a large-area detector to receive the scattered signal, the data is processed to obtain a scattering image by matching the scanning position with the scattered signal point.
  • the source of radiation is also one of the dangerous goods that the human body may carry.
  • existing human security screening equipment including backscattering equipment and millimeter wave equipment, do not implement monitoring and alarming functions for radioactive sources. This is a loophole in human security screening.
  • the object of the present invention is to solve at least one of the above problems and deficiencies existing in the prior art.
  • a backscatter human body security system capable of monitoring a human body carrying radioactive material, comprising: a radiation source for generating radiation rays; and a flying spot forming device for performing radiation rays from the radiation source Modulating to form a flying spot scanning beam that scans the detected human body; for detecting from the detected person a radiation ray of the body and outputting a detector characterizing the signal of the radiation dose; a control and data processing device for processing the signal output by the detector to obtain radiation imaging of the detected human body, wherein: the detecting The device detects the radiation rays from the radiation source and the radiation rays from the radioactive substances carried by the detected human body by the detected human body.
  • the backscattering human body security system capable of monitoring a human body carrying a radioactive substance further includes: a display device for displaying the obtained radiation imaging of the detected human body.
  • the flying spot forming device includes: a fixed shielding plate and a rotating shield respectively located between the radiation source and the scanned object, wherein the fixed shielding plate is fixed with respect to the radiation source, the rotation The shielding body is rotatable relative to the fixed shielding plate, wherein: the fixed shielding plate is provided with a ray passing region for allowing a beam of rays from the radiation source to pass through the fixed shielding plate, and the rotating shielding body is respectively provided with The ray incident region and the ray exiting region, during the rotational scanning of the rotating shield, the ray passing region of the fixed shielding plate continuously intersects with the ray incident region and the ray exiting region of the rotating shield to constitute a scanning collimating hole.
  • the ray passing region of the fixed shielding plate is a linear slit
  • the rotating shielding body is a cylinder
  • the ray incident region and the ray emitting region are respectively a series of discrete small holes or narrow lines arranged along a spiral line. Seam.
  • the detector as a whole detects radiation scattered from the surface of the scanned human body, generates an electrical signal and is sent to the control and data processing device for processing through a single transmission line.
  • the detector comprises a plurality of detecting units respectively detecting rays scattered from the surface of the scanned human body, and generating electrical signals are respectively sent to the control and data processing device for processing through respective transmission lines. .
  • the radiation source is an X-ray machine, a gamma ray source or an isotope ray source; and the detector is a plastic scintillator detector or an inorganic scintillator detector.
  • a scanning method for monitoring a backscattered human body security system carrying a radioactive substance in a human body comprising the steps of:
  • the radioactive substance radiation detecting step (d) includes: when the radiation source does not emit radiation rays and the human body is not detected before the device, the detector is placed in a working state, and the radiation detection, control, and data processing device are performed.
  • Data processing using a predetermined algorithm to extract the feature quantity as the environmental background feature quantity; when the radiation source does not emit radiation rays and there is a detected human body in front of the device, the detector is placed in the same work as when measuring the environmental parameter feature quantity State, perform ray detection, control and data processing device for data processing and feature quantity extraction as the detected human body feature quantity; compare detected human body feature quantity and environmental background feature quantity, if the detected human body feature quantity is higher than the environmental version If the bottom characteristic amount reaches a certain threshold, it is considered that the detected human body has the suspicion of carrying a radioactive substance.
  • the detected human body feature quantity and the environmental background feature quantity are preferably: an average value of the signal level in a certain period of time; a number of pulses exceeding a certain level value in a certain period of time; A statistical means of a flat average and the number of pulses exceeding a certain level for a certain period of time; or various combinations of these numerical or statistical parameters.
  • the method comprises: directly comparing whether the detected human body carries the radioactive substance; or comparing the various characteristic quantities to obtain the detected human body carrying the radioactive The conclusion of the probability of matter.
  • the detector includes a plurality of detecting units respectively detecting rays scattered from the surface of the scanned human body, and generating electrical signals are respectively sent to the control and data processing through the respective transmission lines. Processing is performed in the device.
  • the method further includes the step of: determining, based on the detected output values of the plurality of detecting units, whether there is a radioactive material in different regions of the detected human body or a probability of the presence of radioactive material in each region.
  • the operation of measuring the ambient background amount of the environment is performed during the period of unattended scanning after the device is started.
  • the operation of measuring the detected feature amount of the human body is performed within a preparation time before the detected human body is in the device or a time period during which the detected human body turns around in front of the device.
  • FIG. 1 is a schematic diagram showing a typical backscatter body scanning system in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic view showing a backscattering human body security system capable of monitoring a human-borne radioactive substance using a plurality of detectors in accordance with another embodiment of the present invention
  • Figure 3 is an exploded perspective view showing the radiation generator 1 and the flying spot forming device 2 in accordance with an embodiment of the present invention
  • Figure 4 is a cross-sectional view showing the operation of the radiation generator 1 and the flying spot forming device 2 of Figure 3; and
  • Figure 5 is a flow chart showing the operation of the backscattering human body security system in accordance with an embodiment of the present invention.
  • FIG. 5B is a working flow chart of a backscattering human body safety inspection system for performing radioactive substance detection.
  • the system includes a radiation generator 1 as a radiation source, and a flying spot forming device 2, the pair of The radiation rays of the radiation source are modulated to form a flying spot scanning beam for scanning the detected human body; the detector 3 for detecting the radiation rays from the detected human body and outputting a signal characterizing the radiation dose, the control and data processing terminal 5 And for processing the signal output by the detector to obtain radiation imaging of the detected human body; and a display terminal 6, such as an LCD display, as a display device.
  • the radiation beam emitted from the radiation generator 1 is modulated by the flying spot forming device 2
  • a beam of flying spot rays is formed, incident on the scanned body 4, and then backscattered on the surface of the scanned body 4, and the scattered rays are detected.
  • the device 3 receives, generates an electrical signal, and sends it to the control and data processing terminal 5, and the processed scanned image is displayed on the display terminal 6.
  • the ray generator 1, the flying spot forming device 2, the detector 3, and the display terminal 6 are connected to the control and data processing terminal 5 via transmission lines 15, 25, 35 and 56, respectively, to realize the respective rays described above.
  • the generator 1, the flying spot forming device 2, the detector 3, and the display terminal 6 are controlled.
  • Figures 3-4 illustrate a radiation generator 1 and a flying spot forming device 2 in accordance with an embodiment of the present invention.
  • the radiation generator 1 includes a radiation generator housing 11 and a radiation source 13 housed in the radiation generator housing 11.
  • the radiation source 13 may be an X-ray machine, a Y-ray source or an isotope ray source or the like.
  • the flying spot forming device 2 includes the fixed shielding plate 14 and the rotating shield 21 respectively located between the radiation source 13 and the object 4 to be scanned, wherein the fixed shielding plate 14 is fixed with respect to the radiation source 13, rotating The shield 21 is rotatable relative to the fixed shield 14.
  • the fixed shield plate 14 is provided with a radiation passage region that allows a beam of radiation from the radiation source 13 to pass through the fixed shield plate 14, such as the longitudinal slit 50 in FIG.
  • the rotating shield 21 is respectively provided with a ray incident region 23, such as a series of discrete small holes or slits arranged along a spiral line in Fig. 3, and a ray exiting region 22, such as a series of spirals arranged in Fig. 3. Discrete small holes or slits.
  • the radiation passage region 50 of the fixed shield plate 14 continuously intersects the radiation incident region 23 and the radiation exit region 22 of the rotary shield 21 to constitute a scanning alignment hole.
  • the fixed shield plate 14 is disposed between the radiation source 13 and the rotary shield 21. Further, as shown in FIG. 3, the system may further include a driving device 26 for driving the rotation of the rotating shield 21, such as a speed regulating motor or the like.
  • the ray generator housing 11 is in the shape of a generally rectangular parallelepiped box having radiation rays from the radiation source 13 from the ray generator housing 11 disposed thereon.
  • the collimation slit 31 exits.
  • the radiation beam 40 emitted from the target P of the radiation source 13 passes through the collimation slit 31 to form a ray fan, and then passes through a passing region passing through the fixed shielding plate 14, for example, a longitudinal slit 50 in 3; the ray of the rotating shield 21
  • the ray passing region of the shield plate 14 is fixed during the rotational scanning of the rotary shield 21.
  • 50 intersects discrete apertures or slits in the ray incidence region 23 of the rotating shield 21 and discrete apertures or slits in the ray exit region 22 to form a scanning collimation aperture.
  • discrete apertures or slits in the ray incidence region 23 on the rotating shield 21, discrete apertures or slits in the ray exit region 22, and longitudinal slits 50 on the fixed shield 14 together form a ray collimation hole.
  • the discrete apertures 32, 22 are circular, square or elliptical in shape, preferably circular.
  • the ray passing region 50 of the fixed shielding plate 14 is a linear slit
  • the rotating shield 21 is a cylinder
  • the ray incident region 3 and the ray exiting region 2 are respectively a series of discrete small holes arranged along a spiral line. 32.
  • any point of the ray incident region 23 and the ray exit region 22, such as points A and B, may be on the one hand a constant velocity circular motion along the cylindrical surface of the rotating shield 21, and on the other hand, rotating along the other hand.
  • the radial direction of the shield 21 is linearly moved at a uniform speed to form a constant velocity cylindrical helix.
  • the target beam P connecting the radiation source 13 and the radiation beam 40 formed by the incident point A of the ray incident region 23 can be determined.
  • the ray incident region 23 and the ray exiting region 22 are disposed in the form of a constant velocity cylindrical spiral, when the rotating shield 21 rotates at a constant speed, the position of the ray collimating hole moves with the rotation of the shield rotating body 21, and the outgoing ray beam 40 also The movement is then moved so that the scanning collimation holes are continuously and uniformly moved along the linear slit 50.
  • the ray generator housing 11 can also be coupled to the fixed shield 14 by a shield sleeve 12 to ensure shielding of the radiation.
  • the radiation source 13 is not disposed inside the rotary shield 21, but is disposed inside the radiation generator housing 11, and the scanning mechanism is matched to the shield sleeve as a mechanical interface on the mass production X-ray machine.
  • the cartridge 12 can be completed, so that the structure of the scanning device is compact, and it is not necessary to redesign the shield of the X-ray machine, which saves cost.
  • a large area detector 3 such as a plastic scintillator detector, is usually used in the backscattering body scanning system.
  • the large-area detector 3 as a whole detects rays scattered from the surface of the body 4 to be scanned, generates electrical signals and passes them through a single transmission line 35 for control and data processing.
  • terminal 5 In terminal 5.
  • FIG. 5 is a schematic diagram showing the workflow of a backscattering human body security inspection system in accordance with an embodiment of the present invention, wherein 5A is a working flow chart of a backscattering human body safety inspection system that does not perform radioactive substance detection; FIG. 5B is performed. Work flow chart for a backscattered human safety inspection system for radioactive material testing.
  • the device is powered up at boot time, and then the software and hardware are initialized. After the device is ready, wait for instructions on whether to perform a backscatter scan. If the control system gives a scan command for backscattering, the radiation source 13, such as an X-ray machine, is beamed out, and the pencil beam emitted by the radiation generator 1 is modulated by the flying spot forming device 2 to form a flying spot beam 234.
  • the first dimension scan is performed on the scanned body 4 to perform the first dimension in a first direction, such as the vertical direction of the human body in FIGS. 1-2.
  • the flying spot forming device 2 is moved in a direction perpendicular to the first direction in which the scanned human body 4 is scanned by the pen beam 234.
  • the line is translated or rotated to perform a second dimension scan of the human body.
  • backscattering occurs on the surface of the scanned human body 4, and the scattered radiation is received by the detector 3, an electrical signal is generated and sent to the control and data processing terminal 5, and the processed scanned image is displayed on the display terminal 6, thereby Complete a backscatter scanning operation.
  • Figure 5B shows a workflow diagram of a backscattered human safety inspection system for radioactive material detection.
  • the backscatter scanning operation step is substantially the same as the operation step in Fig. 5A, which differs in that it includes a flow step of performing radioactive substance detection.
  • the detector 3 is placed in an operational state, and the ray detection is performed, and the data processing is performed by the data processing terminal 5, and the use is scheduled.
  • the algorithm extracts the feature quantity as the environmental parameter feature quantity or the environmental background feature quantity; when the detected human body 4 is in front of the device and the ray generator 1 does not emit X-rays, the detector 3 is placed and measured when the environmental parameter characteristic quantity is measured In the same working state, the ray detection is performed, and the data processing is performed by the control and data processing terminal 5, and the feature quantity is extracted as the detected human body feature quantity; the detected human body characteristic quantity and the environmental parameter characteristic quantity or the environmental background characteristic quantity are compared If the detected human body characteristic quantity is higher than the environmental parameter characteristic quantity or the environmental background characteristic quantity reaches a certain threshold value, it is considered that the detected human body 4 has the suspicion of carrying the radioactive substance.
  • the above feature quantity is preferably: an average value of the signal level in a certain period of time; or a number of pulses exceeding a certain level value in a certain period of time; an average value of the signal level in a certain period of time and a certain period of time exceeding a certain time
  • Statistical parameters of the number of pulses of the level value such as standard deviation, etc., may also include various combinations of these values or parameters. It should be noted that the selection of the above feature quantity is related to the selected algorithm, including but not limited to the above-mentioned feature quantities.
  • comparing the environmental feature quantity and the detected human body characteristic quantity including but not limited to the following manner - directly comparing whether the detected human body carries the radioactive substance; and comprehensively comparing the various characteristic quantities
  • the probability that the detected human body carries radioactive material is the probability.
  • the backscattering human body security detection system capable of monitoring human body carrying radioactive material includes a radiation generator 1, a flying spot forming device 2, a detector 3, a control and data processing terminal 5, and a display terminal 6.
  • the flying spot forming device 2 rotates at a high speed, the fan beam emitted from the X-ray source 1 can be modulated into a plurality of pencil beams which are time-divided in the vertical direction.
  • detectors 301, 302, 303, and 304 use plastic scintillators that deposit energy in the material and emit optical signals proportional to the deposition energy that are collected by the photomultiplier tube. And converted into an electrical signal into the data processing computer 5.
  • the data processing terminal 5 obtains the scatter signal at the specific position of the human body surface at this moment, which is proportional to the energy deposition of the scattered X-rays in the detector, and reflects the strength of the backscatter signal.
  • the second surface scan of the human body can be performed by mechanically interlocking to cause the flying point forming device 2 to translate or rotate in a direction perpendicular to the first direction in which the scanned human body 4 scans the pencil beam 234, and the surface of the human body can be scanned. Scattering signals from the entire surface of the human body are obtained and combined to form a backscattered image.
  • the radioactive material detecting function is integrated, as shown in FIG. 5B, when the device is ready and the scanned human body 4 stands before the device, the collection and calculation of the environmental background feature amount is performed; when the scanned human body 4 needs to be inspected, Before the X-ray machine is released, the data acquisition and calculation of the scanned human body 4 is performed for a predetermined time, for example, about 1 second, to obtain the detected human body feature quantity, and compared with the environmental background feature quantity, and the result is given. It is displayed on the software interface, and then the X-ray machine is taken out to perform the scanning process.
  • a predetermined time for example, about 1 second
  • the detector and data processing terminal used for the environmental background acquisition are identical to the detector and data processing terminal used for collecting the X-ray backscatter signal of the human body.
  • the radioactive material carried by the human body can be monitored without adding hardware.
  • control and data processing terminal 5 can separately process the data received by the different detector modules 301, 302, 303, and 304 to obtain several sets of feature quantities, including the environmental background feature quantity and The detected human body feature quantity, after algorithm analysis, obtains the conclusion that the detected human body 4 has different radioactive substances in different regions of the body or the probability of radioactive substances in each region.
  • the present invention is not limited thereto, and the time period for measuring the characteristic amount of the environmental parameter and the time period for measuring the amount of the human body feature to be detected may be flexibly customized according to the scanning process.
  • the time period for measuring the characteristic quantity of the environmental parameter only needs to satisfy the condition that the ray generator 1 does not emit X-rays and the human body 4 is not detected before the device, including but not limited to the time when the device is not scanned after the device is started;
  • the time period for measuring the amount of the human body to be detected only needs to satisfy the condition that the ray generator 1 does not emit X-rays and the detected human body is in front of the device, including but not limited to the preparation of the detected human body in front of the device.
  • Time the time when the human body is turned around in front of the device.
  • the detector 3 time-sharing detection is detected Radiation rays from the radiation source 1 scattered by the human body 4 and radiation rays from the radioactive substances carried by the detected human body 4.
  • the flying point forming apparatus may be another type such as a rotary wheel type or a rotary disk type.
  • the large-area detector 3 in the preferred embodiment of the present invention employs a plastic scintillator detector, the present invention is not limited thereto, and an inorganic scintillator detector such as a Csl, BaFCl inorganic scintillator detector may be employed.
  • the present invention is not limited thereto, and for example, other arrangements may be employed.
  • the detector can be fixed either horizontally or longitudinally by a mechanical linkage.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种可监测人体携带放射性物质的背散射人体安检***,包括:辐射源(1),其用于产生辐射射线;飞点形成装置(2),其对来自辐射源(1)的辐射射线进行调制以形成对被检测人体(4)进行扫描的飞点扫描束;探测器(3),其用于探测来自被检测人体(4)的辐射射线并输出表征辐射射线剂量的信号;控制与数据处理装置(5),其用于对探测器(3)输出的信号进行处理以得到被检测人体(4)的辐射成像,其中:探测器(3)分时探测被检测人体(4)散射的来自辐射源(1)的辐射射线以及来自被检测人体(4)携带的放射性物质的辐射射线。该背散射人体安检***在不增加和改动硬件的前提下,有效地扩展了背散射人体扫描设备的应用范围,增加了其对人体携带放射性物质的监测功能。还提供了一种可监测人体携带放射性物质的背散射人体安检***的扫描方法。

Description

可监测放射性物质的背散射人体安检***及其扫描方法 本申请要求了 2012年 8月 21日提交的、 申请号为 201210299638.0、 发明名称为
"可监测放射性物质的背散射人体安检***及其扫描方法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种人体安全检查***, 特别是涉及一种可监测人体携带放射性物质 的背散射人体安检***及扫描方法。 背景技术
背散射成像技术是人体安检的主要技术之一, 通过用 X射线束扫描人体, 同时使 用大面积探测器接收散射信号, 数据处理时将扫描位置和散射信号点点对应即可得到 散射图像。
除了***、 刀具、 ***物等危险品外, 放射源也是人体可能携带的危险品之一。 但是现有的人体安检设备, 包括背散射设备、 毫米波设备等, 均没有实现对放射源的 监测和报警功能, 这是人体安检的一个漏洞所在。
因此, 有必要利用背散射人体扫描安检设备中使用的大面积探测器, 在合适的检 查流程和算法支持下, 以实现对人体携带放射源的监测, 来进一步完善人体安全检查 的效果。 发明内容
鉴于此, 本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方 面。
相应地, 本发明的目的之一在于提供一种可以实现对人体携带放射源的监测进行 检测的背散射人体安全检查***。
根据本发明的一个方面, 其提供一种可监测人体携带放射性物质的背散射人体安 检***, 其包括: 用于产生辐射射线的辐射源; 飞点形成装置, 其对来自辐射源的辐 射射线进行调制以形成对被检测人体进行扫描的飞点扫描束; 用于探测来自被检测人 体的辐射射线并输出表征辐射射线剂量的信号的探测器; 控制与数据处理装置, 用于 对所述探测器输出的所述信号进行处理以得到被检测人体的辐射成像, 其中: 所述探 测器分时探测被检测人体散射的来自辐射源的辐射射线以及来自被检测人体携带的放 射性物质的辐射射线。
具体地, 所述可监测人体携带放射性物质的背散射人体安检***还包括: 显示装 置, 其用于显示所获得的被检测人体的辐射成像。
在上述技术方案中, 所述飞点形成装置包括: 分别位于辐射源和被扫描对象之间 的固定屏蔽板和旋转屏蔽体, 其中所述固定屏蔽板相对于辐射源是固定的, 所述旋转 屏蔽体相对于固定屏蔽板是可旋转的, 其中: 所述固定屏蔽板上设置有允许来自所述 辐射源的射线束穿过所述固定屏蔽板的射线通过区域, 旋转屏蔽体上分别设置有射线 入射区域和射线出射区域, 在旋转屏蔽体旋转扫描过程中, 固定屏蔽板的射线通过区 域与旋转屏蔽体的射线入射区域和射线出射区域连续相交以构成扫描准直孔。
进一步地, 所述固定屏蔽板的射线通过区域为直线缝隙, 所述旋转屏蔽体为圆柱 体, 所述射线入射区域和所述射线出射区域分别为沿螺旋线设置的一系列离散小孔或 狭缝。
可选地, 所述探测器作为一个整体对从被扫描人体的表面散射回来的射线进行探 测, 产生电信号并通过单一的传输线路被送入控制与数据处理装置中进行处理。
可选地, 所述探测器包括多个探测单元, 其分别对从被扫描人体的表面散射回来 的射线进行探测, 产生电信号分别通过各自的传输线路被送入控制与数据处理装置中 进行处理。
更具体地, 所述辐射源为 X光机、 γ射线源或同位素射线源; 以及所述探测器为 塑料闪烁体探测器或无机闪烁体探测器。
根据本发明的另一方面, 其提供一种可监测人体携带放射性物质的背散射人体安 检***的扫描方法, 所述方法包括步骤:
(a) 驱动所述辐射源发射辐射射线束;
(b) 通过飞点形成装置对来自辐射源的射线束进行调制以形成飞点射线束, 并 入射到被扫描人体上;
( c ) 通过所述探测器探测从被检测人体散射回来的辐射射线, 产生电信号并被 输入到控制与处理装置中进行处理, 以获得背散射辐射成像;
(d)通过所述探测器对来自被检测人体携带的放射性物质的辐射射线进行探测, 产生电信号并被输入到控制与处理装置中进行处理, 以获得放射性物质辐射成像, 其 中- 所述背散射辐射探测步骤 (c ) 和所述放射性物质辐射探测步骤 (d) 分时进行。 具体地, 所述放射性物质辐射探测步骤 (d ) 包括: 当辐射源不发射辐射射线且 设备前没有被检测人体的时候, 将探测器置于工作状态, 进行射线探测, 控制与数据 处理装置进行数据处理, 使用预定的算法提取特征量, 作为环境本底特征量; 当辐射 源不发射辐射射线且设备前有被检测人体的时候, 将探测器置于与测量环境参数特征 量时相同的工作状态, 进行射线探测, 控制与数据处理装置进行数据处理并进行特征 量提取, 作为被检测人体特征量; 比较被检测人体特征量与环境本底特征量, 如果被 检测人体特征量高于环境本底特征量达到一定的阈值, 则认为该被检测人体有携带放 射性物质的嫌疑。
具体地, 上述被检测人体特征量和环境本底特征量优选为: 某段时间内的信号电 平平均值; 某段时间内超过某个电平值的脉冲数量; 某段时间内的信号电平平均值和 某段时间内超过某个电平值的脉冲数量的统计参数; 或这些数值或统计参数的各种组 合。
在比较环境特征量和被检测人体特征量的方法步骤中, 其包括: 直接比较给出被 检测人体是否带有放射性物质的结论; 或所述各种特征量综合比较得出被检测人体携 带放射性物质的概率的结论。
在一种具体实施方式中, 所述探测器包括多个探测单元, 其分别对从被扫描人体 的表面散射回来的射线进行探测, 产生电信号分别通过各自的传输线路被送入控制与 数据处理装置中进行处理。 所述方法还包括步骤: 基于所述多个探测单元的探测输出 值,判断被检测人体的不同区域是否存在放射性物质或各区域存在放射性物质的概率。
在一种优选实施方式中, 在设备启动后无人扫描的时间段内执行测量环境本底特 征量的操作。
在一种优选实施方式中, 在被检测人体处于设备前的准备时间或被检测人体在设 备前转身的时间段内执行测量被检测人体特征量的操作。 本发明的上述不特定的实施方式至少具有下述一个或者多个方面的优点和效果: 根据本发明的一个方面, 其可以在不增加和改动硬件的前提下, 有效扩展背散射 人体扫描设备的应用范围, 增加设备对人体携带放射性物质的监测功能, 进一步完善 人体安全检查的效果。 附图说明
图 1 是显示根据本发明的一种具体实施方式中的典型背散射人体扫描***的示 意图;
图 2 是显示根据本发明的另一种具体实施方式中的使用多块探测器的可监测人 体携带放射性物质的背散射人体安检***的示意图;
图 3是显示根据本发明的一种具体实施方式中的射线发生器 1和飞点形成装置 2 的分解示意图;
图 4是显示图 3中的射线发生器 1和飞点形成装置 2的工作原理的截面图; 以及 图 5是显示根据本发明的一种具体实施方式中的背散射人体安检***的工作流程 的示意图, 其中 5A是不进行放射性物质检测的背散射人体安全检查***的工作流程 图; 图 5B是进行放射性物质检测的背散射人体安全检查***的工作流程图。 具体实施方式
下面通过实施例, 并结合附图 2-3, 对本发明的技术方案作进一步具体的说明。在 说明书中, 相同或相似的附图标号指示相同或相似的部件。 下述参照附图对本发明实 施方式的说明旨在对本发明的总体发明构思进行解释, 而不应当理解为对本发明的一 种限制。
图 1示出了根据本发明的一种具体实施方式中的典型背散射人体扫描***, 如图 1 所示, 该***包括作为辐射源的射线发生器 1、 飞点形成装置 2, 其对来自辐射源的辐 射射线进行调制以形成对被检测人体进行扫描的飞点扫描束; 用于探测来自被检测人 体的辐射射线并输出表征辐射射线剂量的信号的探测器 3、 控制与数据处理终端 5, 用 于对所述探测器输出的所述信号进行处理以得到被检测人体的辐射成像; 以及作为显 示装置的显示终端 6, 例如 LCD显示器。 由射线发生器 1发出的射线束经过飞点形成装 置 2的调制之后, 形成飞点射线束, 入射到被扫描人体 4上, 然后在被扫描人体 4的表面 发生背散射, 散射回来的射线被探测器 3接收到, 产生电信号并送入控制与数据处理终 端 5中, 处理得到扫描图像在显示终端 6上显示。 如图 1所示, 射线发生器 1、 飞点形成 装置 2、探测器 3和显示终端 6分别通过传输线路 15, 25 , 35和 56连接到控制与数据处理 终端 5, 以实现对上述各个射线发生器 1、飞点形成装置 2、探测器 3和显示终端 6的控制。 图 3-4示出了根据本发明的一种具体实施方式中的射线发生器 1和飞点形成装置 2。 如图 3所示, 在本发明的上述实施例中, 射线发生器 1包括射线发生器壳体 11和 容纳在射线发生器壳体 11中的辐射源 13。 在上述结构中, 辐射源 13可以为 X光机、 Y射线源或同位素射线源等。 在上述实施例中, 飞点形成装置 2包括分别位于辐射源 13和被扫描对象 4之间的固定屏蔽板 14和旋转屏蔽体 21,其中固定屏蔽板 14相对于 辐射源 13是固定的, 旋转屏蔽体 21相对于固定屏蔽板 14是可旋转的。进一步地, 固 定屏蔽板 14上设置有允许来自辐射源 13 的射线束穿过固定屏蔽板 14的射线通过区 域, 例如图 3中的纵向缝隙 50。 旋转屏蔽体 21上分别设置有射线入射区域 23, 例如 图 3中的沿螺旋线设置的一系列离散小孔或狭缝, 和射线出射区域 22, 例如图 3中的 沿螺旋线设置的一系列离散小孔或狭缝。在旋转屏蔽体 21旋转扫描过程中, 固定屏蔽 板 14的射线通过区域 50与旋转屏蔽体 21的射线入射区域 23和射线出射区域 22连续 相交以构成扫描准直孔。 在上述实施例中, 固定屏蔽板 14设置在辐射源 13与旋转屏 蔽体 21之间。 进一步地, 如图 3所示, 该***还可以包括用于驱动旋转屏蔽体 21旋 转的驱动装置 26, 例如调速电机等。
如图 3-4所示,在一种具体实施例中,射线发生器壳体 11呈大体长方体盒体形状, 其上设置有使来自辐射源 13发出的辐射射线从射线发生器壳体 11 的准直缝隙 31 出 射。辐射源 13的靶点 P发射出的射线束 40穿过准直缝隙 31形成一个射线扇面,然后 经过穿过固定屏蔽板 14的通过区域, 例如 3中的纵向缝隙 50; 旋转屏蔽体 21的射线 入射区域 23, 例如图 3-4中沿螺旋线设置的一系列离散小孔或狭缝, 和射线出射区域 22, 例如沿螺旋线设置的一系列离散小孔或狭缝。通过设置固定屏蔽板 14的纵向缝隙 50、旋转屏蔽体 21的射线入射区域 23和射线出射区域 22的相对位置关系, 以使在旋 转屏蔽体 21旋转扫描过程中, 固定屏蔽板 14的射线通过区域 50与旋转屏蔽体 21的 射线入射区域 23中的离散小孔或狭缝和射线出射区域 22中的离散小孔或狭缝连续相 交以构成扫描准直孔。 换言之, 旋转屏蔽体 21上的射线入射区域 23中的离散小孔或 狭缝、射线出射区域 22中的离散小孔或狭缝以及固定屏蔽板 14上的纵向窄缝 50共同 组成一个射线准直孔。可选择地, 如图 3-4所示,所述离散小孔 32、 22的形状为圆形、 方形或椭圆形, 优选为圆形。
如图 3-4所示, 固定屏蔽板 14的射线通过区域 50为直线缝隙, 旋转屏蔽体 21为圆 柱体, 射线入射区域 3和射线出射区域 2分别为沿螺旋线设置的一系列离散小孔 32。 具 体地说, 参见图 2, 图中射线入射区域 23和射线出射区域 22中的任何离散小孔, 例如 A 和 B点, 一方面沿旋转屏蔽体 21的圆柱面作等速圆周运动, 另一方面沿旋转屏蔽体 21 的轴向方向按照一定速度分布做直线运动, 从而形成特定的圆柱体螺旋线。 在一种具 体实施例中, 图中射线入射区域 23和射线出射区域 22的任何一点例如 A和 B点, 可以一 方面沿旋转屏蔽体 21的圆柱面作等速圆周运动, 另一方面沿旋转屏蔽体 21的径向方向 按照作匀速直线运动, 从而形成等速圆柱体螺旋线。 参见图 4, 当辐射源 13的靶点 P和 射线入射区域 23的 A点确定之后, 连接辐射源 13的靶点 P和射线入射区域 23的入射点 A 点形成的射线束 40, 即可确定射线出射区域 22上的出射点 B。 由于射线入射区域 23和 射线出射区域 22设置成等速圆柱体螺旋线形式, 当旋转屏蔽体 21匀速旋转时, 射线准 直孔的位置随屏蔽旋转体 21的转动而移动, 出射射线束 40也随之移动, 从而使扫描准 直孔沿直线缝隙 50连续匀速移动。
参见图 3, 射线发生器壳体 11还可以通过屏蔽套筒 12与固定屏蔽板 14相连, 以 确保射线的屏蔽。 从上述设置可以看出, 辐射源 13不设置在旋转屏蔽体 21的内部, 而是设置在射线发生器壳体 11 的内部, 该扫描机构在量产的 X光机上匹配作为机械 接口的屏蔽套筒 12即可完成, 从而使扫描装置的结构紧凑, 不需要重新设计 X光机 的屏蔽体, 节约了成本。
在上述背散射人体安全检查***中, 为了尽可能多的收集从被扫描人体 4散射回 来的射线信号, 在背散射人体扫描***中通常使用大面积探测器 3, 例如塑料闪烁体探 测器。在图 1所示的实施方式中, 大面积探测器 3作为一个整体对从被扫描人体 4的表面 散射回来的射线进行探测, 产生电信号并通过单一的传输线路 35并送入控制与数据处 理终端 5中。
下面结合附图 5对根据本发明的背散射人体安全检查***的操作方式进行说明。 图 5是显示根据本发明的一种具体实施方式中的背散射人体安检***的工作流程的示 意图, 其中 5A是不进行放射性物质检测的背散射人体安全检查***的工作流程图; 图 5B是进行放射性物质检测的背散射人体安全检查***的工作流程图。
如图 5 A所示, 开机启动时对设备进行加电, 然后进行软、 硬件的初始化。 在设 备准备就绪之后, 等待是否进行背散射扫描的指令。 如果控制***给出进行背散射的 扫描指令, 则射线源 13, 例如 X光机出束, 由射线发生器 1发出的笔形射线束经过飞 点形成装置 2的调制之后, 形成飞点射线束 234, 入射到被扫描人体 4上进行沿第一 方向, 例如图 1-2 中的人体竖直方向进行第一维扫描。 与此同时, 通过机械联动以使 飞点形成装置 2相对于被扫描人体 4在笔形射线束 234扫描的第一方向垂直的方向进 行平移或转动来对人体进行第二维扫描。 然后, 在被扫描人体 4的表面发生背散射, 散射回来的射线被探测器 3接收到, 产生电信号并送入控制与数据处理终端 5中, 处 理得到扫描图像在显示终端 6上显示, 从而完成一次背散射扫描操作过程。
图 5B 示出了进行放射性物质检测的背散射人体安全检查***的工作流程图。 如 图 5B所示, 其中的背散射扫描操作步骤与图 5A中的操作步骤基本相同, 其不同点在 于其包括进行放射性物质检测的流程步骤。具体而言, 当射线发生器 1不发射 X射线、 且设备前没有被检测人体 4的时候, 将探测器 3置于工作状态, 进行射线探测, 控制 与数据处理终端 5进行数据处理, 使用预定的算法提取特征量, 作为环境参数特征量 或环境本底特征量; 当设备前有被检测人体 4且射线发生器 1不发射 X射线时, 将探 测器 3置于与测量环境参数特征量时相同的工作状态, 进行射线探测, 控制与数据处 理终端 5进行数据处理并进行特征量提取, 作为被检测人体特征量; 比较被检测人体 特征量与环境参数特征量或环境本底特征量, 如果被检测人体特征量高于环境参数特 征量或环境本底特征量达到一定的阈值, 则认为该被检测人体 4有携带放射性物质的 嫌疑。
上述特征量优选为: 某段时间内的信号电平平均值; 或某段时间内超过某个电平 值的脉冲数量; 某段时间内的信号电平平均值和某段时间内超过某个电平值的脉冲数 量的统计参数, 例如标准差等, 也可以包括这些数值或参数的各种组合。 需要说明的 是, 上述特征量的选取与选取的算法相关, 包括但不限于上述这些特征量。
在比较环境特征量和被检测人体特征量的方法步骤中, 包括但不限于下述方式- 直接比较给出被检测人体是否带有放射性物质的结论; 和所述各种特征量综合比较得 出被检测人体携带放射性物质的可能性即概率的结论。
图 2示出了根据本发明的另一种具体实施方式中的使用多块探测器的可监测人体 携带放射性物质的背散射人体安检***的示意图。 如图 2所示, 根据本发明的可监测 人体携带放射性物质的背散射人体安检***包括射线发生器 1、飞点形成装置 2、探测 器 3、控制与数据处理终端 5和显示终端 6。 当飞点形成装置 2高速旋转时, 可以将从 X射线源 1中出射的扇形束调制为多个在竖直方向上分时出射的笔形束。 每个时刻只 有一束笔形束可以通过飞点形成装置 2出射到被扫描人体 4的身体表面的一小块区域, 并在人体表面被散射, 然后被探测器 301、 302、 303和 304所接收到, 产生电信号并 通过独立的传输线路 3015、 3025、 3035和 3045分别送入控制与数据处理终端 5中, 处理得到扫描图像在显示终端 6上显示。 在一种具体实施例中, 探测器 301、 302、 303和 304使用塑料闪烁体, X射线能 在这种材料中沉积能量并发射出正比于沉积能量的光信号, 这些光信号被光电倍增管 收集并转化为电信号传入数据处理计算机 5中。 这样控制与数据处理终端 5中就得到 了这个时刻人体表面这个特定位置的散射信号, 该信号正比于散射 X射线在探测器中 的能量沉积, 也就反映了背散射信号的强弱。 通过机械联动以使飞点形成装置 2相对 于被扫描人体 4在笔形射线束 234扫描的第一方向垂直的方向进行平移或转动来对人 体进行第二维扫描, 可以对人体表面进行扫描, 进而得到整个人体表面的散射信号, 组合形成背散射图像。
当集成了放射性材料检测功能时, 如图 5B所示, 在设备就绪且被扫描人体 4站 立于设备之前时,进行环境本底特征量的采集和计算; 当有被扫描人体 4需要检查时, 在 X光机出束前, 采用预定时间, 例如 1秒左右的时间, 进行被扫描人体 4的数据采 集和计算, 得到被检测人体特征量, 并与环境本底特征量进行比较, 给出结果并显示 在软件界面上, 之后再让 X光机出束, 进行扫描流程。在上述放射性材料检测步骤中, 环境本底采集使用的探测器和数据处理终端与采集人体 X射线背散射信号所使用的探 测器和数据处理终端完全一样。 由此, 利用上述背散射***的探测器 3对射线的敏感 性, 通过改变或增加扫描流程、 数据采集和算法, 可以在不增加硬件的条件下对人体 携带的放射性物质进行监测。
在上述实施例中, 如图 2所示, 控制与数据处理终端 5可以分别处理不同的探测 器模块 301、 302、 303、 304接收到的数据得到几组特征量, 包括环境本底特征量和被 检测人体特征量, 经过算法分析后, 得到被检测人体 4身体不同区域是否存在放射性 物质或各区域存在放射性物质的概率的结论。
虽然, 在上述实施方式中, 在设备就绪且被扫描人体 4站立于设备之前时, 进行 环境本底特征量的采集和计算; 当有被扫描人体 4需要检查时, 在 X光机出束前, 进行 被扫描人体 4的数据采集和计算,得到被检测人体特征量。但是,本发明并不仅限于此, 上述测量环境参数特征量的时间段和测量被检测人体特征量的时间段, 可以根据扫描 流程灵活定制。 一方面, 测量环境参数特征量的时间段只需满足条件 "射线发生器 1 不发射 X射线、 且设备前没有被检测人体 4" 即可, 包括但不限于设备启动后无人扫描 的时间; 另一方面, 测量被检测人体特征量的时间段只需满足条件"射线发生器 1不发 射 X射线、 且被检测人体处于设备前" 即可, 包括但不限于被检测人体处于设备前的 准备时间、 被检测人体在设备前转身的时间等。 换言之, 所述探测器 3分时探测被检测 人体 4散射的来自辐射源 1的辐射射线以及来自被检测人体 4携带的放射性物质的辐射 射线。
虽然结合附图 1-5对本发明的优选实施方式进行了说明, 应当理解的是, 上述具 体实施方式对本发明并不具有限制意义。 例如除了本发明具体实施方式中的旋转圆筒 式飞点形成装置, 上述飞点形成装置也可以是旋转轮式、 旋转盘式等其它方式。 虽然 本发明中的优选实施方式中的大面积探测器 3采用塑料闪烁体探测器, 但是本发明并 不仅限于此, 其也可以采用无机闪烁体探测器, 例如 Csl、 BaFCl无机闪烁体探测器。 虽然上述实施方式中采用了探测器模块 301、 302、 303、 304相对于被检测人体对称排 布的探测器分布形式, 但是本发明并不仅限于此, 例如也可能有其它的排布方式。 此 外, 探测器既可以固定不动, 也可以通过机械联动机构横向或纵向移动。
虽然本总体发明构思的一些实施例巳被显示和说明, 本领域普通技术人员将理 解, 在不背离本总体发明构思的原则和精神的情况下, 可对这些实施例做出改变, 本 发明的范围以权利要求和它们的等同物限定。

Claims

权 利 要 求
1. 一种可监测人体携带放射性物质的背散射人体安检***, 其包括- 用于产生辐射射线的辐射源;
飞点形成装置, 其对来自辐射源的辐射射线进行调制以形成对被检测人体进行扫 描的飞点扫描束;
用于探测来自被检测人体的辐射射线并输出表征辐射射线剂量的信号的探测器; 控制与数据处理装置, 用于对所述探测器输出的所述信号进行处理以得到被检测 人体的辐射成像, 其中- 所述探测器分时探测被检测人体散射的来自辐射源的辐射射线以及来自被检测 人体携带的放射性物质的辐射射线。
2. 根据权利要求 1所述的可监测人体携带放射性物质的背散射人体安检***, 其 特征在于还包括- 显示装置, 其用于显示所获得的被检测人体的辐射成像。
3. 根据权利要求 1或 2所述的可监测人体携带放射性物质的背散射人体安检***, 其特征在于所述飞点形成装置包括- 分别位于辐射源和被扫描对象之间的固定屏蔽板和旋转屏蔽体, 其中所述固定屏 蔽板相对于辐射源是固定的, 所述旋转屏蔽体相对于固定屏蔽板是可旋转的, 其中- 所述固定屏蔽板上设置有允许来自所述辐射源的射线束穿过所述固定屏蔽板的射 线通过区域,
旋转屏蔽体上分别设置有射线入射区域和射线出射区域, 在旋转屏蔽体旋转扫描 过程中, 固定屏蔽板的射线通过区域与旋转屏蔽体的射线入射区域和射线出射区域连 续相交以构成扫描准直孔。
4. 根据权利要求 3所述的可监测人体携带放射性物质的背散射人体安检***, 其 特征在于- 所述固定屏蔽板的射线通过区域为直线缝隙, 所述旋转屏蔽体为圆柱体, 所述射线入射区域和所述射线出射区域分别为沿螺旋 线设置的一系列离散小孔或狭缝。
5. 根据权利要求 1或 2所述的可监测人体携带放射性物质的背散射人体安检***, 其特征在于:
所述探测器作为一个整体对从被扫描人体的表面散射回来的射线进行探测, 产生 电信号并通过单一的传输线路被送入控制与数据处理装置中进行处理。
6. 根据权利要求 1或 2所述的可监测人体携带放射性物质的背散射人体安检***, 其特征在于:
所述探测器包括多个探测单元, 其分别对从被扫描人体的表面散射回来的射线进 行探测,产生电信号分别通过各自的传输线路被送入控制与数据处理装置中进行处理。
7. 根据权利要求 1或 2所述的可监测人体携带放射性物质的背散射人体安检***, 其特征在于:
所述辐射源为 X光机、 Y射线源或同位素射线源; 以及
所述探测器为塑料闪烁体探测器或无机闪烁体探测器。
8. 一种如权利要求 1-7中任何一项所述的可监测人体携带放射性物质的背散射人 体安检***的扫描方法, 所述方法包括步骤-
(a) 驱动所述辐射源发射辐射射线束;
(b) 通过飞点形成装置对来自辐射源的射线束进行调制以形成飞点射线束, 并 入射到被扫描人体上;
( c ) 通过所述探测器探测从被检测人体散射回来的辐射射线, 产生电信号并被 输入到控制与处理装置中进行处理, 以获得背散射辐射成像;
(d)通过所述探测器对来自被检测人体携带的放射性物质的辐射射线进行探测, 产生电信号并被输入到控制与处理装置中进行处理, 以获得放射性物质辐射成像, 其 中- 所述背散射辐射探测步骤 (c) 和所述放射性物质辐射探测步骤 (d) 分时进行。
9. 根据权利要求 8所述的可监测人体携带放射性物质的背散射人体安检***的扫 描方法, 其特征在于所述放射性物质辐射探测步骤 (d ) 包括- 当辐射源不发射辐射射线且设备前没有被检测人体的时候, 将探测器置于工作状 态, 进行射线探测, 控制与数据处理装置进行数据处理, 使用预定的算法提取特征量, 作为环境本底特征量;
当辐射源不发射辐射射线且设备前有被检测人体的时候, 将探测器置于与测量环 境参数特征量时相同的工作状态, 进行射线探测, 控制与数据处理装置进行数据处理 并进行特征量提取, 作为被检测人体特征量;
比较被检测人体特征量与环境本底特征量, 如果被检测人体特征量高于环境本底 特征量达到一定的阈值, 则认为该被检测人体有携带放射性物质的嫌疑。
10. 根据权利要求 9所述的可监测人体携带放射性物质的背散射人体安检***的 扫描方法, 其特征在于- 上述被检测人体特征量和环境本底特征量优选为:某段时间内的信号电平平均值; 某段时间内超过某个电平值的脉冲数量; 某段时间内的信号电平平均值和某段时间内 超过某个电平值的脉冲数量的统计参数; 或这些数值或统计参数的各种组合。
11. 根据权利要求 9或 10所述的可监测人体携带放射性物质的背散射人体安检系 统的扫描方法, 其特征在于- 在比较环境特征量和被检测人体特征量的方法步骤中, 包括: 直接比较给出被检 测人体是否带有放射性物质的结论; 或所述各种特征量综合比较得出被检测人体携带 放射性物质的概率的结论。
12. 根据权利要求 11所述的可监测人体携带放射性物质的背散射人体安检***的 扫描方法, 其特征在于- 所述探测器作为一个整体对从被扫描人体的表面散射回来的射线进行探测, 产生 电信号并通过单一的传输线路被送入控制与数据处理装置中进行处理。
13. 根据权利要求 11所述的可监测人体携带放射性物质的背散射人体安检***的 扫描方法, 其特征在于- 所述探测器包括多个探测单元, 其分别对从被扫描人体的表面散射回来的射线进 行探测,产生电信号分别通过各自的传输线路被送入控制与数据处理装置中进行处理。
14. 根据权利要求 13所述的可监测人体携带放射性物质的背散射人体安检***的 扫描方法, 其特征在于还包括步骤- 基于所述多个探测单元的探测输出值, 判断被检测人体的不同区域是否存在放射 性物质或各区域存在放射性物质的概率。
15. 根据权利要求 13所述的可监测人体携带放射性物质的背散射人体安检***的 扫描方法, 其特征在于- 在设备启动后无人扫描的时间段内执行测量环境本底特征量的操作。
16. 根据权利要求 15所述的可监测人体携带放射性物质的背散射人体安检***的 扫描方法, 其特征在于- 在被检测人体处于设备前的准备时间或被检测人体在设备前转身的时间段内执 行测量被检测人体特征量的操作。
PCT/CN2013/070259 2012-08-21 2013-01-09 可监测放射性物质的背散射人体安检***及其扫描方法 WO2014029195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210299638.0A CN103630947B (zh) 2012-08-21 2012-08-21 可监测放射性物质的背散射人体安检***及其扫描方法
CN201210299638.0 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014029195A1 true WO2014029195A1 (zh) 2014-02-27

Family

ID=49028907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070259 WO2014029195A1 (zh) 2012-08-21 2013-01-09 可监测放射性物质的背散射人体安检***及其扫描方法

Country Status (4)

Country Link
US (1) US20140056410A1 (zh)
EP (1) EP2703849A1 (zh)
CN (1) CN103630947B (zh)
WO (1) WO2014029195A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901491B (zh) 2012-12-27 2017-10-17 同方威视技术股份有限公司 人体背散射安检***
CN104865281B (zh) * 2014-02-24 2017-12-12 清华大学 人体背散射检查方法和***
EP3115771B1 (en) * 2014-03-07 2018-04-11 Powerscan Company Limited Flying spot forming apparatus
CN106772533A (zh) * 2017-02-10 2017-05-31 北京格物时代科技发展有限公司 放射物残留扫描装置及***
CN110007359A (zh) * 2019-04-26 2019-07-12 安徽启路达光电科技有限公司 一种人员安检及综合信息采集智能一体机
CN111352170B (zh) * 2020-03-09 2021-03-23 浙江云特森科技有限公司 一种分段式扫描方法
CN112924481B (zh) * 2021-03-15 2023-04-07 北京君和信达科技有限公司 训管控制***及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839913A (en) * 1987-04-20 1989-06-13 American Science And Engineering, Inc. Shadowgraph imaging using scatter and fluorescence
US5181234A (en) * 1990-08-06 1993-01-19 Irt Corporation X-ray backscatter detection system
CN1485611A (zh) * 2003-08-22 2004-03-31 貊大卫 一种反散射式x射线扫描仪
CN201096891Y (zh) * 2007-10-22 2008-08-06 中国原子能科学研究院 γ放射性安全检测装置
CN201173903Y (zh) * 2008-03-14 2008-12-31 王经瑾 跳点扫描辐射成像装置
CN101509880A (zh) * 2009-03-25 2009-08-19 公安部第一研究所 一种应用x射线的多效应探测融合技术的安全检查***
US20090312953A1 (en) * 2008-06-17 2009-12-17 Veritainer Corporation Mitigation of Nonlinear Background Radiation During Real Time Radiation Monitoring of Containers at a Quayside Crane
CN201555956U (zh) * 2009-10-09 2010-08-18 华瑞科力恒(北京)科技有限公司 一种放射性安检门
CN102116747A (zh) * 2009-12-30 2011-07-06 同方威视技术股份有限公司 一种背散射成像用射线束的扫描装置和方法
CN102590851A (zh) * 2012-01-11 2012-07-18 上海新漫传感技术研究发展有限公司 一种行人、行李放射性监测***

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2083064C (en) * 1990-08-06 2001-12-18 Steven W. Smith X-ray backscatter detection system
US5600303A (en) * 1993-01-15 1997-02-04 Technology International Incorporated Detection of concealed explosives and contraband
US7388205B1 (en) * 1995-10-23 2008-06-17 Science Applications International Corporation System and method for target inspection using discrete photon counting and neutron detection
US8325871B2 (en) * 2000-03-28 2012-12-04 American Science And Engineering, Inc. Radiation threat detection
WO2001073415A2 (en) * 2000-03-28 2001-10-04 American Science And Engineering, Inc. Detection of fissile material
US6982643B2 (en) * 2002-10-08 2006-01-03 Freight Glove Technologies, Llc Cargo security method and apparatus
US7505556B2 (en) * 2002-11-06 2009-03-17 American Science And Engineering, Inc. X-ray backscatter detection imaging modules
US20090257555A1 (en) * 2002-11-06 2009-10-15 American Science And Engineering, Inc. X-Ray Inspection Trailer
US7809109B2 (en) * 2004-04-09 2010-10-05 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
DE102004043158A1 (de) * 2004-09-03 2006-03-23 Smiths Heimann Gmbh Transportable Kontrollstation zur Überprüfung von Personen und Gepäck
US7633062B2 (en) * 2006-10-27 2009-12-15 Los Alamos National Security, Llc Radiation portal monitor system and method
CN101435783B (zh) * 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
WO2009082762A1 (en) * 2007-12-25 2009-07-02 Rapiscan Security Products, Inc. Improved security system for screening people
CN201812043U (zh) * 2010-08-25 2011-04-27 上海英迈吉东影图像设备有限公司 一种x射线人体扫描装置
US20120314836A1 (en) * 2011-06-08 2012-12-13 Steven Winn Smith X-ray Shoe Inspection
CN202929217U (zh) * 2012-08-21 2013-05-08 同方威视技术股份有限公司 可监测人体携带放射性物质的背散射人体安检***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839913A (en) * 1987-04-20 1989-06-13 American Science And Engineering, Inc. Shadowgraph imaging using scatter and fluorescence
US5181234A (en) * 1990-08-06 1993-01-19 Irt Corporation X-ray backscatter detection system
US5181234B1 (en) * 1990-08-06 2000-01-04 Rapiscan Security Products Inc X-ray backscatter detection system
CN1485611A (zh) * 2003-08-22 2004-03-31 貊大卫 一种反散射式x射线扫描仪
CN201096891Y (zh) * 2007-10-22 2008-08-06 中国原子能科学研究院 γ放射性安全检测装置
CN201173903Y (zh) * 2008-03-14 2008-12-31 王经瑾 跳点扫描辐射成像装置
US20090312953A1 (en) * 2008-06-17 2009-12-17 Veritainer Corporation Mitigation of Nonlinear Background Radiation During Real Time Radiation Monitoring of Containers at a Quayside Crane
CN101509880A (zh) * 2009-03-25 2009-08-19 公安部第一研究所 一种应用x射线的多效应探测融合技术的安全检查***
CN201555956U (zh) * 2009-10-09 2010-08-18 华瑞科力恒(北京)科技有限公司 一种放射性安检门
CN102116747A (zh) * 2009-12-30 2011-07-06 同方威视技术股份有限公司 一种背散射成像用射线束的扫描装置和方法
CN102590851A (zh) * 2012-01-11 2012-07-18 上海新漫传感技术研究发展有限公司 一种行人、行李放射性监测***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, ZIRAN.: "Analysis and discussion on new technology of body security checking.", CHINA SECURITY & PROTECTION., 31 March 2012 (2012-03-31), pages 33 - 36 *

Also Published As

Publication number Publication date
US20140056410A1 (en) 2014-02-27
EP2703849A1 (en) 2014-03-05
CN103630947A (zh) 2014-03-12
CN103630947B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2014029195A1 (zh) 可监测放射性物质的背散射人体安检***及其扫描方法
JP6820884B2 (ja) 放射線透過・蛍光ct結像システム及び結像方法
US6473487B1 (en) Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction
US7492862B2 (en) Computed tomography cargo inspection system and method
US7551714B2 (en) Combined X-ray CT/neutron material identification system
JP6415023B2 (ja) 3d散乱撮像に用いるハンドヘルドx線システム
US5642393A (en) Detecting contraband by employing interactive multiprobe tomography
JP5054518B2 (ja) 物質の平均原子番号及び質量を求めるための方法及びシステム
JP6572326B2 (ja) セキュリティ検査機器及び放射線検出方法
JP2018508787A (ja) 手持ち式携帯型後方散乱検査システム
JP2008501463A (ja) 干渉性散乱コンピュータ断層撮影装置及び方法
JPH10513265A (ja) X線検査システム
CN202929217U (zh) 可监测人体携带放射性物质的背散射人体安检***
JP2004177138A (ja) 危険物探知装置および危険物探知方法
JP2010501860A (ja) 散乱減衰式断層撮影
JP2007533993A (ja) 扇ビーム干渉性散乱コンピュータ断層撮影
US20160033426A1 (en) Portable x-ray backscattering imaging system including a radioactive source
KR102187572B1 (ko) 방사선을 이용하여 위험물의 검출 및 위치 탐지가 가능한 보안 검색 장치
JP5957099B2 (ja) 単一エネルギガンマ線源による、同位体識別、分析およびイメージングのための二重同位体ノッチ観測機
JP6306738B2 (ja) 検査デバイス、方法およびシステム
JP2015187567A (ja) 放射線計測装置
Drakos et al. Multivariate analysis of energy dispersive X-ray diffraction data for the detection of illicit drugs in border control
CN208752213U (zh) 一种x射线背散射扫描仪
US20080095304A1 (en) Energy-Resolved Computer Tomography
CN109031441A (zh) 一种x射线背散射扫描仪及扫描方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831528

Country of ref document: EP

Kind code of ref document: A1