WO2014027873A1 - Preparation of novel modified chitosan/clay bio-composites - Google Patents

Preparation of novel modified chitosan/clay bio-composites Download PDF

Info

Publication number
WO2014027873A1
WO2014027873A1 PCT/MA2013/000024 MA2013000024W WO2014027873A1 WO 2014027873 A1 WO2014027873 A1 WO 2014027873A1 MA 2013000024 W MA2013000024 W MA 2013000024W WO 2014027873 A1 WO2014027873 A1 WO 2014027873A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
clay
thiabendazole
chitosan
chosen
Prior art date
Application number
PCT/MA2013/000024
Other languages
French (fr)
Other versions
WO2014027873A4 (en
Inventor
Abdelkrim El Kadib
Rachid Bouhfid
El Mokhtar Essassi
Original Assignee
Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) filed Critical Moroccan Foundation For Advanced Science, Innovation & Research (Mascir)
Publication of WO2014027873A1 publication Critical patent/WO2014027873A1/en
Publication of WO2014027873A4 publication Critical patent/WO2014027873A4/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to a new process for the preparation of new biodegradable and bioactive materials composed of polysaccharide polymers reinforced with clays previously modified by intercalation with thiabendazole molecules known for their biological activity. These materials are macroscopically in the form of homogeneous films, stable and of good quality. These films are potential candidates for applications such as food packaging (to improve and / or increase food preservation) and for any biological use in the biomedical field (dressing and others).
  • polymers of natural origin have attracted undeniable interest in various areas of chemical technology.
  • those derived from biomass and especially polysaccharides have developed remarkably as a substitute for polymers derived from the petroleum fraction (polystyrene, polyethylene, polypropylene, etc.) thanks in particular to their very positive image of biocompatible materials. , biodegradable and not hazardous to health and the environment.
  • One of the polymers of this series is chitosan, obtained by deacetylation of chitin which is itself extracted from the shell of crustaceans.
  • Chitosan has the distinction of being the only cationic polymer of natural origin, characteristic conferred by the presence of amino groups convertible into cationic species (ammonium) under the action of pH (from a pH ⁇ 6.3). Chitosan is only soluble in acidified water (Aznaz, R. Harris, A. Heras, CurrentOrganicChemistry, 2010, 14, 308-330). The dissolution of this polymer allows it to be used in the form of porous microspheres (A. El Kadib and M. Bousmina, Chem.Europ.J. 2012, 18, 8264 - 8277), monoliths (T.
  • Chitosan films have serious limitations regarding their mechanical properties and their chemical and thermal stability (N. Bordenave, S. Grelier, V. Coma, Agricultural and Food Chemistry, 2007, 55, 9479-9488, C. Cancer, JP Vergano, JL Wiles, Journal of Food Science, 63, 1998, 1049-1053).
  • chitosan films have been reinforced with inorganic "fillers", mainly sodium montmorillonite clays (CMM-Na) by cation exchange (N.Luuena, VA Alvarez, A. Vasquez, Materials Science and Technology). Enginnering: A, 460-461, 2007, 121-129, H. Ennajih, R. Bouhfid, E. Essassi, M. Bousmina, A. El Kadib, Micro Meso, Mater 2012, 152, 208-213.) .
  • CCM-Na sodium montmorillonite clays
  • the dispersion of the charge, the homogeneity of the material and the quality of the film are greatly improved by modification of montmorillonite.
  • This intercalation modification commonly carried out with hydrophobic ammonium chains has the advantage of increasing the interfolar distance of these lamellar clays and then enhances the organic / organophilic character of this hybrid filler (HS Hsu, Wang MC, JJ Lin, Applied Ciay Science, 56, 2012, 53-62).
  • the charge thus easily becomes “exfoliable” in the polymer network, which improves the quality of the material by ensuring good flow, which results in remarkable mechanical properties.
  • thiabendazole molecules known for their herbicidal and fungicidal properties and as an anthelmintic for animals (L. Crocetti, A. Maresca, C. Temperini, RA Hall, A. Scozzafava, FA Muhlschlegel, CT Supuran , Bioorganic and Medicinal Chemistry Letters, 19, 2009, 1371-1375, MS Pawar, DS Dalaf, SR Shimpl, PP Mahulikar, European Journal of Pharmaceutical Science, 21, 2004, 115-118, E. Home, T. Coyle, M. O. Keefee, M. Aivinerle, P. Galtier, D.
  • the object of the present invention is to prepare a new composite material based on natural products (clay, biopolymer) and bioactive molecules.
  • natural products clay, biopolymer
  • bioactive molecules derived from thiabendazole, known for their herbicidal and fungicidal properties and as anthelmintic for animals.
  • the process for the preparation of said molecule (II) comprises the reaction of thiabendazole ⁇ formula (M1) in the presence of a base, a solvent and a phase transfer catalyst.
  • the second step concerns the preparation of an amphiphilic molecule of formula (I) in which:
  • Said clay comprises at least one of the amphiphilic molecules of formula (1).
  • FIG. 1 is a 1 H NMR spectrum of the Tbz-C10-Me amphiphilic molecule
  • FIG. 2 is a 13 C NMR spectrum of the Tbz-C10-Me amphiphilic molecule
  • FIG. 3 is a 1 H NMR spectrum of the Tbz-C12-Me amphiphilic molecule
  • FIG. 4 is a 13 C NMR spectrum of the Tbz-C12-Me amphiphilic molecule
  • Figure 5 shows the curves of thermogravimetric analysis of clays modified with different surfactants.
  • Figure 6 shows the FTIR spectra of modified clays
  • FIG. 7 represents the photo of the biocomposite material obtained in the form of a homogeneous film.
  • the montmorillonite used is a commercial product that is MMT-Na (Cloisite Na + ) marketed by Southern Clay Products and having an interfolar distance of 1.17 nm
  • the chitosan used being a copolymer having both amine and acetamide groups. These groupings are distributed in a random manner. The degree of deacetylation is estimated at 90%.
  • Montmorillonite is an inorganic material which is in the form of lamellar sheets having a distance d 0 oi well defined.
  • the good dispersion of this material in a polymer is facilitated by the modification of this mineral (by addition of organic molecules by surface grafting or by cation exchange) and the increase of the interfolar space of the galleries.
  • modified clays were characterized by Fourier transform infrared spectroscopy (FTIR) to confirm the existence of molecules of organic nature, by thermogravimetric analysis (TGA) to evaluate the thermal stability of these materials and then, by X-ray diffraction (XRD) to quantify the expansion of interfolar distance after intercalation of thiabendazolealkylated molecules.
  • FTIR Fourier transform infrared spectroscopy
  • TGA thermogravimetric analysis
  • XRD X-ray diffraction
  • Modified chitosan-clay bio-composite films containing by weight 95% chitosan and 5% modified clay were prepared as follows. First, the chitosan (500 mg) is solubilized in 100 ml of acidified water (1%) by addition of acetic acid. The acid solution makes it possible to transform the "amine” groups of chitosan into "ammonium” group, which facilitates the solubilization of the chitosan polymer. Then 25mg of clay dispersed in water is added. After stirring for 3 hours to homogenize the solution, it is left without stirring for three days. The evaporation of the solvent makes it possible to generate transparent films as indicated on the photograph (FIG. 7).
  • biocomposite materials obtained are characterized by infra-red and by X-ray diffraction.
  • X-ray diffraction confirms the periodicity of the clays of the clays and particularly to evaluate the gap between the sheets before and after the organophilic treatment. Indeed, the position of the reflection (001) makes it possible to determine, by application of the Bragg's law, the periodicity which is the sum of the thickness of the sheet and the interfolar space. In the case of biocomposite, X-ray diffraction (XRD) makes it possible to evaluate the character of the dispersion of the clay within the polymer matrix, namely a partial or complete intercalation or exfoliation.
  • Thermogravimetric analysis consists in following the mass loss of a compound as a function of the heating temperature.
  • the analyzes were carried out under air using a TA Instruments instrument with a temperature rise of 20 ° C / min between 20 and 800 ° C.
  • the mass of samples introduced is of the order of 20 mg.
  • the apparatus used is: Q 500 of TA instruments.
  • amphiphilic / V, / V-alkylated molecules derived from thiabendazole was carried out in two stages using the microwave pathway to further activate the starting substrates.
  • the first step consists of the alkylation reaction of thiabendazole with different alkyl groups under the conditions of liquid solid phase transfer catalysis, using potassium carbonate as a base, tetra-n-butyl ammonium bromide as catalyst.
  • the intermediate products have all been isolated and well characterized.
  • the second step consists of the quaternization of the nitrogen at the 1-position of the benzimidazole, this reaction is carried out by microwave irradiation of the intermediate obtained in the preceding reaction in the presence of methane iodide for 15 min. the thiabendazolium salt obtained is isolated by precipitation.
  • the ⁇ /, / V-alkylated amphiphilic molecules of thiabendazole were then used for the preparation of organophilic clays. Thanks to their zwiterionic nature, the intercalation of these molecules inside the galleries has been easily achieved by cation exchange with the sodium located inside.
  • Infrared is a very effective way of confirming the confinement of organic molecules in inorganic matrices.
  • montmorillonite After modification of montmorillonite, we noted in particular the appearance of signals at 2921 and 2852 cm -1 > characteristics of the methylene group (CH 2 ), which demonstrates the efficiency of cation exchange.
  • Figure 5 shows the ATG curves of the modified montmorillonite with the three amphiphilic molecules.
  • the stability of thiabendazole derivatives was significantly increased.
  • the degradation of these molecules begins at 300 ° C which shows that these materials are suitable for any use in this temperature range.
  • "modified chitosan-SVIMT" biocomposites :
  • montmorillonite with the amphiphilic molecules derived from thiabendazole gives this clay an organophilic character. Coiling these fillers in a naturally occurring polymer, chitosan, sequesters the thiabendazole molecules in the material while reinforcing the resulting biocomposite. The material is additionally obtained in the form of a homogeneous film. The widening of the interfolar distance also facilitates the dispersion of the inorganic filler and improves the properties of the material as demonstrated in the field of nano-composites. It is also interesting to note that chitosan contains ammonium groups which can themselves diffuse inside the galleries and thus favor the intercalation and / or the exfoliation of the leaflets.
  • FIG. 7 A photograph of the material is shown in Figure 7.
  • the infrared spectrum of the material shows the existence of peak at 2921 and 2852 cm 1 .
  • X-ray diffraction (XRD) shows that the modified clay is fully exfoliated in the polymer matrix. This exfoliation is all facilitated by the initial intercalation of the surfactant which itself depends on the length of the alkyl chain grafted on the thiabendazole molecule.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

The present invention concerns the production of bio-composites that can be used in the field of agri-food made from biomaterials; in particular clay and polysaccharides. The method comprises the following steps: synthesising surfactants made from bioactive molecules by alkylation by phase transfer catalysis, followed by a quaternisation under microwave irradiation; intercalating the clay sheets with the surfactants; and preparing bio-films by dispersing the modified clay in a polysaccharide solution.

Description

Préparation de nouveaux bio-composites chitosan - argile modifiée  Preparation of new bio-composites chitosan - modified clay
Domaine de l'invention : Field of the invention
La présente invention concerne un nouveau procédé pour la préparation de nouveaux matériaux biodégradables et bioactifs, composés de polymères de polysaccharide renforcés par des argiles préalablement modifiées par intercalation avec des molécules de thiabendazole réputées pour leur activité biologique. Ces matériaux se présentent macroscopiquement sous forme de films homogènes, stables et de bonne qualité. Ces films sont des candidats potentiels pour des applications comme l'emballage alimentaire (pour améliorer et/ou augmenter la conservation des denrées alimentaires) et pour toute utilisation biologique dans le domaine biomédical (pansement et autres).  The present invention relates to a new process for the preparation of new biodegradable and bioactive materials composed of polysaccharide polymers reinforced with clays previously modified by intercalation with thiabendazole molecules known for their biological activity. These materials are macroscopically in the form of homogeneous films, stable and of good quality. These films are potential candidates for applications such as food packaging (to improve and / or increase food preservation) and for any biological use in the biomedical field (dressing and others).
Etat de la technique : State of the art:
Depuis plusieurs années, les polymères d'origine naturelle suscitent un intérêt indéniable dans divers secteurs de technologie chimique. Parmi ces polymères, ceux issus de la biomasse et tout particulièrement les polysaccharides ont connu un développement remarquable comme substituant aux polymères issus de la fraction pétrolière (polystyrène, polyéthylène, polypropylène,...) grâce en particulier à leur image très positive de matériaux biocompatibles, biodégradables et ne présentant aucun danger pour la santé et l'environnement. L'un des polymères de cette série étant le chitosane, obtenu par déacétylation de la chitine qui est elle-même extraite de la carapace des crustacés. Le chitosane a la particularité d'être le seul polymère cationique d'origine naturelle, caractéristique conférée par la présence de groupements aminés transformables en espèces cationiques (ammoniums) sous l'action du pH (à partir d'un pH<6.3). Le chitosane n'est soluble que dans l'eau acidifiée (Aznaz, R. Harris, A. Heras, CurrentOrganicChemistry, 2010, 14, 308-330). La dissolution de ce polymère permet sa mise en oeuvre sous forme de microsphères poreuses (A. El Kadib and M. Bousmina, Chem. Eur. J. 2012, 18, 8264 - 8277), de monolithes (T. Barrcso, A. C. A. Roque, A. A.-Ricardo, RSCAdvances, DOI: 10.1039/ε0κχ00000χ), de membranes ou de films avec des épaisseurs bien contrôlées (F. J. Pavïnatto, L CaseSi, O. H. Oliveira, Biomacromolecules 2010, 11, 1897 -1908). Dans cette direction, les films de chitosane trouvent de nombreuses applications dans le secteur biomédical (R. A. A. Muzzarelli, A. Muzzarelli, Advances in Polymer Science, 186, 2005, 151- 209 ; M. N. V. Ravi umar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sas iwa, A. J. Domb, ChemicaSReview, 104, 2004, 6017-6084)) et pour l'emballage alimentaire (ChitosanEdible Films and Coating-A Review. H. M. C. Azerdo, D. d. Britto, O. B. G. Assiss, în: Chitosan: Manufacture, Properties and Usage Editor: Samuel P. Davis, pp 179-194). Les films de chitosane présentent cependant de sérieuses limitations concernant leurs propriétés mécaniques et leur stabilité chimique et thermique (N. Bordenave, S. Grelier, V. Coma, Agricultural and Food Chemistry, 2007, 55, 9479-9488; C. Cancer, J. P. Vergano, J. L. Wiles, Journal of Food Science, 63, 1998, 1049-1053). Le caractère hydrophile du chitosane étant parmi les inconvénients majeurs de ce polymère. Pour pallier cette problématique, des films de chitosane ont été renforcés avec des « charges » inorganiques, essentiellement des argiles de type montmorillonite sodique (MMT-Na) par échange cationique (L N. Luduena, V. A. Alvarez, A. Vasquez, Materials Science and Enginnering : A, 460-461, 2007, 121-129; H. Ennajih, R. Bouhfid, E. Essassi, M. Bousmina, A. El Kadib, Micro. Meso. Mater. 2012, 152, 208 -213.). Cependant, la dispersion de la charge, l'homogénéité du matériau et la qualité du film sont largement améliorés par modification de la montmorillonite. Cette modification par intercalation communément réalisée avec des chaînes ammoniums hydrophobes offre l'avantage d'augmenter la distance interfolaire de ces argiles lamellaires et puis, exalte le caractère organique/organophile de cette charge hybride (H. S. Hsu, M. C. Wang, J. J. Lin, Applied Ciay Science, 56, 2012, 53-62). La charge devient ainsi facilement « exfoliable » dans le réseau du polymère ce qui permet d'améliorer la qualité du matériau en assurant un bon écoulement ce qui se traduit par des propriétés mécaniques remarquables. Bien qu'efficace, il est à noter que la toxicité des aminés, utilisées pour la modification initiale de la montmorillonite, constitue une problématique quand ces matériaux sont destinés pour des applications médicales ou alimentaires. La recherche d'une nouvelle technologie permettant de fabriquer des films de chitosane de bonne qualité et avec des propriétés biologiques, barrières et mécaniques améliorées est un sujet d'actualité (J. W. Rhim, S. I. Hong, H. M. Park, P. K. W. Ng, Journal of Agricultural and Food Chemistry, 2006, 54, 5814-5822 ; A. Casariego, B. W. S. Souza, M. A. Cerqueira, J. A. Teixeira, L Cruz, R. Diaz, A. A. Vicente, Food Hydrocolloids, 23, 2009, 1895-1902 ; Y. Xu, iVl- A. Hanna, Journa! of AppliedPolymer Science, 99, 2006, 1684-1691). Dans cette perspective, nous avons synthétisé des molécules de thiabendazole, connues pour leurs propriétés herbicides et fongicides et comme anthelminthique pour les animaux (L. Crocetti, A. Maresca, C. Temperini, R. A. Hall, A. Scozzafava, F. A. Muhlschlegel, C. T. Supuran, Bioorganic and MedicinalChemistryLetters, 19, 2009, 1371-1375 ; M. S. Pawar, D. S. Dalaf, S. R. Shimpl, P. P. Mahulikar, European Journal of Pharmaceutfcal Science, 21, 2004, 115-118 ; E. Home, T. Coyle, M. O'Keefee, M. Aîvinerle, P. Galtier, D. L Brandon, Journal of Agricultural and Food Chemistry, 51, 2003, 5552-5555). Ces molécules sont conçues de façon à être intercalées dans l'espace interfolaire de la montmorillonite et donc d'augmenter la distance entre les feuillets. A partir de ces argiles modifiées, des films de chitosane renforcés sont ensuite préparés. Les effets synergétiques entre le polymère de chitosane biologiquement actif, la montmorillonite et le thiabendazole connu pour ses propriétés fongicides, sont des éléments qui devraient améliorer les performances biologiques de ces matériaux. For several years, polymers of natural origin have attracted undeniable interest in various areas of chemical technology. Among these polymers, those derived from biomass and especially polysaccharides have developed remarkably as a substitute for polymers derived from the petroleum fraction (polystyrene, polyethylene, polypropylene, etc.) thanks in particular to their very positive image of biocompatible materials. , biodegradable and not hazardous to health and the environment. One of the polymers of this series is chitosan, obtained by deacetylation of chitin which is itself extracted from the shell of crustaceans. Chitosan has the distinction of being the only cationic polymer of natural origin, characteristic conferred by the presence of amino groups convertible into cationic species (ammonium) under the action of pH (from a pH <6.3). Chitosan is only soluble in acidified water (Aznaz, R. Harris, A. Heras, CurrentOrganicChemistry, 2010, 14, 308-330). The dissolution of this polymer allows it to be used in the form of porous microspheres (A. El Kadib and M. Bousmina, Chem.Europ.J. 2012, 18, 8264 - 8277), monoliths (T. Barrcso, ACA Roque, AA-Ricardo, RSCAdvances, DOI: 10.1039 / ε0κχ00000χ), membranes or films with well controlled thicknesses (FJ Pavinatto, CaseSi L, OH Oliveira, Biomacromolecules 2010, 11, 1897 -1908). In this direction, chitosan films have numerous applications in the biomedical sector (RAA Muzzarelli, A. Muzzarelli, Advances in Polymer Science, 186, 2005, 151-209, MNV Ravi Umar, RAA Muzzarelli, C. Muzzarelli, H. Sas iwa, AJ Domb, ChemicaSReview, 104, 2004, 6017-6084)) and for food packaging (ChitosanEdible Films and Coating-A Review, HMC Azerdo, D. Britto, OBG Assiss, In: Chitosan: Manufacture, Properties and Usage Editor: Samuel P. Davis, pp 179-194). Chitosan films, however, have serious limitations regarding their mechanical properties and their chemical and thermal stability (N. Bordenave, S. Grelier, V. Coma, Agricultural and Food Chemistry, 2007, 55, 9479-9488, C. Cancer, JP Vergano, JL Wiles, Journal of Food Science, 63, 1998, 1049-1053). The hydrophilic nature of chitosan is one of the major disadvantages of this polymer. To overcome this problem, chitosan films have been reinforced with inorganic "fillers", mainly sodium montmorillonite clays (CMM-Na) by cation exchange (N.Luuena, VA Alvarez, A. Vasquez, Materials Science and Technology). Enginnering: A, 460-461, 2007, 121-129, H. Ennajih, R. Bouhfid, E. Essassi, M. Bousmina, A. El Kadib, Micro Meso, Mater 2012, 152, 208-213.) . However, the dispersion of the charge, the homogeneity of the material and the quality of the film are greatly improved by modification of montmorillonite. This intercalation modification commonly carried out with hydrophobic ammonium chains has the advantage of increasing the interfolar distance of these lamellar clays and then enhances the organic / organophilic character of this hybrid filler (HS Hsu, Wang MC, JJ Lin, Applied Ciay Science, 56, 2012, 53-62). The charge thus easily becomes "exfoliable" in the polymer network, which improves the quality of the material by ensuring good flow, which results in remarkable mechanical properties. Although effective, it should be noted that the toxicity of amines, used for the initial modification of montmorillonite, is a problem when these materials are intended for medical or food applications. The search for a new technology to produce good quality chitosan films with improved biological, barrier and mechanical properties is a hot topic (JW Rhim, Hong SI, HM Park, PKW Ng, Journal of Agricultural Food Chemistry, 2006, 54, 5814-5822; A. Casariego, BWS Souza, MA Cerqueira, JA Teixeira, L Cruz, R. Diaz, AA Vicente, Food Hydrocolloids, 23, 2009, 1895-1902; Y. Xu, iVl- A. Hanna, Journa! of Applied Polymer Science, 99, 2006, 1684-1691). In this perspective, we have synthesized thiabendazole molecules, known for their herbicidal and fungicidal properties and as an anthelmintic for animals (L. Crocetti, A. Maresca, C. Temperini, RA Hall, A. Scozzafava, FA Muhlschlegel, CT Supuran , Bioorganic and Medicinal Chemistry Letters, 19, 2009, 1371-1375, MS Pawar, DS Dalaf, SR Shimpl, PP Mahulikar, European Journal of Pharmaceutical Science, 21, 2004, 115-118, E. Home, T. Coyle, M. O. Keefee, M. Aivinerle, P. Galtier, D. L Brandon, Journal of Agricultural and Food Chemistry, 51, 2003, 5552-5555). These molecules are designed to be intercalated in the interfolar space of montmorillonite and thus to increase the distance between the layers. From these modified clays, reinforced chitosan films are then prepared. The synergistic effects between the biologically active chitosan polymer, montmorillonite and thiabendazole known for its fungicidal properties, are elements that should improve the biological performance of these materials.
Description détaillée de l'invention : Detailed description of the invention
Le but de la présente invention est de préparer un nouveau matériau composite à base de produits naturels (argile, biopolymère) et des molécules bioactives. Dans cette perspective, nous avons synthétisé des molécules dérivés de thiabendazole, connues pour leurs propriétés herbicides et fongicides et comme anthelminthique pour les animaux.  The object of the present invention is to prepare a new composite material based on natural products (clay, biopolymer) and bioactive molecules. In this perspective, we have synthesized molecules derived from thiabendazole, known for their herbicidal and fungicidal properties and as anthelmintic for animals.
Ainsi, nous avons synthétisé une molécule amphiphile de formule (I) Thus, we have synthesized an amphiphilic molecule of formula (I)
Figure imgf000004_0001
Figure imgf000004_0001
(S)  (S)
Ou , Or ,
RI : CnH2n+1avec n = 1-20 ; CnH2nOH avec 1-4 ou CnH2n-S03H avec 1-4 RI: C n H 2n + 1 with n = 1-20; C n H 2n OH with 1-4 or C n H 2n -S0 3 H with 1-4
R2 : CnH2n+i avec n = 1-20 R2: C n H 2n + i with n = 1-20
X" = CI", B , Γ, CH3S04 ~, CH3COO" Selon des variantes de l'invention, les radicaux RI et R2 et X sont X "= Cl", B, Γ, CH 3 S0 4 ~, CH 3 COO " According to variants of the invention, the radicals R 1 and R 2 and X are
(A) : RI = C8H17, R2 = CH3, et X" = I" (A): R 1 = C 8 H 17 , R 2 = CH 3 , and X " = I "
(B) : RI = C10H2i, R2 = CH3 et X" = Γ (B): R 1 = C 10 H 2 i, R 2 = CH 3 and X " = Γ
(C): RI = Ci2H25, R2 = CH3 et X" = Γ (C): R 1 = C 1/2 H 25 , R 2 = CH 3 and X " = Γ
Dans une première étape de l'invention, il est prévu de procéderàla préparation d'une molécule de formule (II) :In a first step of the invention, provision is made for the preparation of a molecule of formula (II):
Figure imgf000005_0001
Figure imgf000005_0001
(SI)  (IF)
Dans laquelle : In which :
RI : CnH2n+iavec n = 1-20 ; CnH2nOH avec 1-4 ou CnH2n-S03H avec 1-4 RI: C n H 2n + i with n = 1-20; C n H 2n OH with 1-4 or C n H 2n -S0 3 H with 1-4
Le procédé de préparation de ladite molécule (II) comprend la réaction de thiabendazole < formule (Ml) en présence d'une base, d'un solvant et d'un catalyseur de transfert de phase.  The process for the preparation of said molecule (II) comprises the reaction of thiabendazole <formula (M1) in the presence of a base, a solvent and a phase transfer catalyst.
Figure imgf000005_0002
Figure imgf000005_0002
(il!) La deuxième étape concerne la de préparation d'une molécule amphiphile de formule (I) Dans laquelle :  (II!) The second step concerns the preparation of an amphiphilic molecule of formula (I) in which:
RI : CnH2n+iavec n = 1-20 ; CnH2nOH avec 1-4 ou CnH2n-S03H avec 1-4 RI: C n H 2n + i with n = 1-20; C n H 2n OH with 1-4 or C n H 2n -S0 3 H with 1-4
R2 : CnH2n+i avec n = 1-20 R2: C n H 2n + i with n = 1-20
X" = CI", Br", Γ, CH3SO4", CH3COO" X "= Cl", Br ", Γ, CH3SO4", CH 3 COO "
Ledit procédé comprend la réaction d'un composé de formule (II) avec un produit de formule R-X avec R = CnH2n+i avec n = 1-20 et X' = CI", Br", Γ, CH3S04 ", CH3COO" sous irradiation micro-onde pour obtenir le produit d'alkylation de formule (S) En troisième étape, nous avons procédé à l'élaboration d'une argile modifiée. Ladite argile comprend au moins une des molécules amphiphiles de formule (1). Said process comprises reacting a compound of formula (II) with a product of formula RX with R = C n H 2n + 1 with n = 1-20 and X ' = Cl " , Br " , Γ, CH 3 SO 4 " , CH 3 COO " under microwave irradiation to obtain the alkylation product of formula (S) In the third step, we proceeded to the development of a modified clay. Said clay comprises at least one of the amphiphilic molecules of formula (1).
En dernière phase, nous avons procédé à la fabrication d'un film bio composite en combinant un polysaccharide et l'argile modifiée décrite précédemment.  In the last phase, we proceeded to the manufacture of a composite bio film by combining a polysaccharide and the modified clay described previously.
Brève description des dessins : Brief description of the drawings:
La figure 1 est un spectre RMN 1H de la molécule amphiphile Tbz-C10-Me FIG. 1 is a 1 H NMR spectrum of the Tbz-C10-Me amphiphilic molecule
La figure 2 est un spectre RMN 13C de la molécule amphiphile Tbz-C10-Me FIG. 2 is a 13 C NMR spectrum of the Tbz-C10-Me amphiphilic molecule
La figure 3 est un spectre RMN 1H de la molécule amphiphile Tbz-C12-Me FIG. 3 is a 1 H NMR spectrum of the Tbz-C12-Me amphiphilic molecule
La figure 4 est un spectre RMN 13C de la molécule amphiphile Tbz-C12-Me FIG. 4 is a 13 C NMR spectrum of the Tbz-C12-Me amphiphilic molecule
La figure 5 représente les courbes de l'analyse thermogravimétrique des argiles modifiées avec différents surfactants.  Figure 5 shows the curves of thermogravimetric analysis of clays modified with different surfactants.
La figure 6 représente les spectres FTIR des argiles modifiées  Figure 6 shows the FTIR spectra of modified clays
La figure 7 représente la photo du matériau biocomposite obtenu sous forme de film homogène.  FIG. 7 represents the photo of the biocomposite material obtained in the form of a homogeneous film.
Exemples de modes de réalisation: Examples of embodiments:
Exemple 1 : Example 1
1- Argile : Montmorillonite  1- Clay: Montmorillonite
La montmorillonite utilisée, est un produit commercial qu'est la MMT-Na (Cloisite Na+) commercialisée par Southern Clay Products et possédant une distance interfolaire de 1.17 nm The montmorillonite used, is a commercial product that is MMT-Na (Cloisite Na + ) marketed by Southern Clay Products and having an interfolar distance of 1.17 nm
2- Polysaccharide : Chitosane :  2- Polysaccharide: Chitosan:
Le chitosane utilisé étant un copolymère possédant à la fois des groupements aminé et acétamide. Ces groupements sont distribués d'une manière aléatoire. Le degré de déacétylation est estimé à 90%.  The chitosan used being a copolymer having both amine and acetamide groups. These groupings are distributed in a random manner. The degree of deacetylation is estimated at 90%.
Figure imgf000006_0001
3- Surfactamî : ThiabendazoJeW,A/-alkylés :
Figure imgf000006_0001
3- Surfactam: ThiabendazoJeW, A / -alkylated:
Plusieurs molécules amphiphiles de thiabendazole-/V,/V-alkylées ont été employées dont les structures sont reportées dans le Tableau 1.  Several amphiphilic molecules of thiabendazole- / V, / V-alkylated have been employed whose structures are reported in Table 1.
Tableau 1 Table 1
Figure imgf000007_0001
Figure imgf000007_0001
Le choix des molécules dérivées du thiabendazole est émané de notre volonté à tirer profit de l'activité biologique de ces molécules tout en augmentant la distance interfolaire de la montmorillonite. Dans cette perspective, nous avons alkylé le thiabendazoleau niveau des deux atomes d'azote par des halogénures d'alkyle. Cette réaction s'effectue en deux étapes, par utilisation de la catalyse par transfert de phase dans la première, ce qui permet d'isoler une série de molécules mono-alkylées, et puis, une deuxième alkylation permet d'obtenir la forme zwiterionique souhaitable pour l'échange avec le Na de la montmorillonite. The choice of molecules derived from thiabendazole comes from our desire to take advantage of the biological activity of these molecules while increasing the interfolar distance of montmorillonite. In this perspective, we alkylated the thiabendazole level of the two nitrogen atoms with alkyl halides. This reaction is carried out in two stages, using phase transfer catalysis in the first, which makes it possible to isolate a series of mono-alkylated molecules, and then a second alkylation makes it possible to obtain the desired zwitterionic form. for exchange with Na of montmorillonite.
Nous avons particulièrement constaté que l'utilisation de la technique « micro-onde » lors de la synthèse permet d'accélérer le temps de la réaction (10 min) au lieu de 24 heures et d'améliorer le rendement en produits obtenus.  We particularly noted that the use of the "microwave" technique during the synthesis makes it possible to accelerate the reaction time (10 min) instead of 24 hours and to improve the yield of products obtained.
Protocole expérimental : Experimental protocol :
A une solution de 1 g (4.97 mmoles) du thiabendazole et 4.97 mmoles de bromure d'alkyle dans 20 mL de /V,/V-diméthylformamide, on ajoute 0.68 g (4.97 mmoles) de bicarbonate de potassium et 10 mol% de bromure de tétra-n-butylarnmonium. On porte le mélange, sous agitation énergétique, à la température ambiante. Après filtration des sels minéraux, le solvant est évaporé sous pression réduite. Le résidu obtenu est recristallisé dans l'éthanol pour obtenir 1-alkyl-thiabendazole (tbz-Cx). 4. Préparation des argiles modifiées To a solution of 1 g (4.97 mmol) of thiabendazole and 4.97 mmol of alkyl bromide in 20 ml of N-dimethylformamide is added 0.68 g (4.97 mmol) of potassium bicarbonate and 10 mol% of bromide. tetra-n-butylammonium. We bring the mixture, under stirring energy, at room temperature. After filtration of the inorganic salts, the solvent is evaporated under reduced pressure. The residue obtained is recrystallized from ethanol to obtain 1-alkyl-thiabendazole (tbz-Cx). 4. Preparation of modified clays
La montmorillonite est un matériau inorganique qui se présente sous forme de feuillets lamellaire possédant une distance d0oi bien définie. La bonne dispersion de ce matériau dans un polymère est facilitée par la modification de ce minéral (par ajout de molécules organiques par greffage en surface ou par échange cationique) et l'augmentation de l'espace interfolaire des galeries. Montmorillonite is an inorganic material which is in the form of lamellar sheets having a distance d 0 oi well defined. The good dispersion of this material in a polymer is facilitated by the modification of this mineral (by addition of organic molecules by surface grafting or by cation exchange) and the increase of the interfolar space of the galleries.
Nous avons utilisé l'échange cationique comme méthode de modification. La substitution est réalisée dans un mélange eau, éthanol ; car le gonflement de l'argile facilite la diffusion des molécules organiques à l'intérieur des galeries et augmente de ce fait leur accessibilité au sodium ce qui conduit à une substitution totale des métaux et à l'insertion complète des molécules de thiabendazoles. Après filtration de la suspension et séchage du matériau solide, l'introduction de ces molécules organiques dans les feuillets de l'argile confère à ce dernier un caractère organophile et entraine en plus une augmentation de la distance interfolaire. Ce dernier paramètre joue un rôle très important lors de la préparation du film puisque l'argile modifiée se disperse beaucoup plus facilement dans le polymère.  We used cation exchange as a modification method. The substitution is carried out in a mixture of water and ethanol; because the swelling of the clay facilitates the diffusion of organic molecules inside the galleries and thus increases their accessibility to sodium which leads to a total substitution of metals and the complete insertion of thiabendazole molecules. After filtration of the suspension and drying of the solid material, the introduction of these organic molecules in the sheets of the clay gives the latter an organophilic character and also leads to an increase in the interfolar distance. This last parameter plays a very important role during the preparation of the film since the modified clay disperses much more easily in the polymer.
Ces argiles modifiées ont été caractérisées par spectroscopie infrarouge à transformée de fourrier (FTIR) pour confirmer l'existence de molécules de nature organique, par analyse thermogravimétrique (ATG) pour évaluer la stabilité thermique de ces matériaux et puis, par diffraction des rayons X (DRX) pour quantifier l'expansion de la distance interfolaire après intercalation des molécules de thiabendazolealkylées. These modified clays were characterized by Fourier transform infrared spectroscopy (FTIR) to confirm the existence of molecules of organic nature, by thermogravimetric analysis (TGA) to evaluate the thermal stability of these materials and then, by X-ray diffraction ( XRD) to quantify the expansion of interfolar distance after intercalation of thiabendazolealkylated molecules.
5. Préparation des bio-composites chitosane-argiles modifiées 5. Preparation of modified chitosan-clay bio-composites
Des films de bio-composites chitosane-argile modifiées contenant en poids 95% de chitosane et 5% d'argile modifiée ont été préparés comme suite. Dans un premier temps, le chitosane(500 mg) est solubilisé dans lOOmL d'eau acidifiée (1%) par ajout d'acide acétique. La solution acide permet de transformer les groupements « aminé » du chitosane en groupement « ammonium » ce qui facilite la solubilisation du polymère de chitosane. Ensuite, y sont ajouté 25mg d'argile dispersée dans l'eau. Après agitation pendant 3 heures pour bien homogénéiser la solution, cette dernière est laissée sans agitation pendant trois jours. L'évaporation du solvant permet de générer des films transparents comme indiqué sur la photo (figure 7). Modified chitosan-clay bio-composite films containing by weight 95% chitosan and 5% modified clay were prepared as follows. First, the chitosan (500 mg) is solubilized in 100 ml of acidified water (1%) by addition of acetic acid. The acid solution makes it possible to transform the "amine" groups of chitosan into "ammonium" group, which facilitates the solubilization of the chitosan polymer. Then 25mg of clay dispersed in water is added. After stirring for 3 hours to homogenize the solution, it is left without stirring for three days. The evaporation of the solvent makes it possible to generate transparent films as indicated on the photograph (FIG. 7).
Les matériaux biocomposites obtenus sont caractérisés par infra-rouge et par diffraction des rayons X.  The biocomposite materials obtained are characterized by infra-red and by X-ray diffraction.
6. Procédure de caractérisation 6. Characterization procedure
6.1. La diffraction des rayons X (DRX) 6.1. X-ray diffraction (XRD)
Au cours de cette étude, nous avons analysé les différents échantillons se présentant sous forme de poudre (argiles et argiles modifiées) et sous forme de films de biocomposites (chitosane-argile modifiée).  In this study, we analyzed the different samples in the form of powder (clays and modified clays) and in the form of biocomposite films (chitosan-modified clay).
Les enregistrements ont été réalisés à température ambiante au moyen d'un diffractomètre (Bruker D8), utilisant la raie CuKct du cuivre et sous une tension de 40 kV et une intensité de 100 mA. Le pas d'enregistrement est 0.1°/ seconde pour un angle d'incidence 2Θ variant entre 0.7 et 9°.  Recordings were made at room temperature using a diffractometer (Bruker D8), using copper CuKct line and at a voltage of 40 kV and an intensity of 100 mA. The recording step is 0.1 ° / second for an angle of incidence 2Θ varying between 0.7 and 9 °.
La diffraction des rayons X permet de confirmer la périodicité des lamelles des argiles et particulièrement d'évaluer l'écart entre les feuillets avant et après traitement organophile. En effet, la position de la réflexion (001) permet de déterminer, par application de la loi de Bragg, la périodicité dooiqui est la somme de l'épaisseur du feuillet et de l'espace interfolaire. Dans le cas du biocomposite, la diffraction des rayons X (DRX) permet d'évaluer le caractère de la dispersion de l'argile au sein de la matrice polymère, à savoir une intercalation ou une exfoliation partielle ou complète.  X-ray diffraction confirms the periodicity of the clays of the clays and particularly to evaluate the gap between the sheets before and after the organophilic treatment. Indeed, the position of the reflection (001) makes it possible to determine, by application of the Bragg's law, the periodicity which is the sum of the thickness of the sheet and the interfolar space. In the case of biocomposite, X-ray diffraction (XRD) makes it possible to evaluate the character of the dispersion of the clay within the polymer matrix, namely a partial or complete intercalation or exfoliation.
6.2 Analyse thermogravimétrique 6.2 Thermogravimetric Analysis
L'analyse thermogravimétrique consiste à suivre la perte en masse d'un composé en fonction de la température de chauffage. Les analyses ont été réalisées sous air à l'aide d'un appareil du modèle TA instruments avec une montée en température de 20°C/min entre 20 et 800°C. La masse des échantillons introduite est de l'ordre de 20 mg. L'appareil utilisé est : Q 500 de TA instruments. Thermogravimetric analysis consists in following the mass loss of a compound as a function of the heating temperature. The analyzes were carried out under air using a TA Instruments instrument with a temperature rise of 20 ° C / min between 20 and 800 ° C. The mass of samples introduced is of the order of 20 mg. The apparatus used is: Q 500 of TA instruments.
6.3 Snfra-Rouge à transformée de Fourrier. Au cours de notre étude, l'infrarouge a permis de caractériser les argiles avant et après modification chimique. L'appareil utilisé étant le ABBBOMEM à transformée de fourrier. 6.3 Snfra-Red Fourier Transform. During our study, infrared allowed to characterize clays before and after chemical modification. The apparatus used is the ABBBOMEM with fourier transform.
Exemple: 2 Example: 2
1- Molécules amphiphiles dérivées du thiabendazole. 1- Amphiphilic molecules derived from thiabendazole.
La synthèse des molécules amphiphiles /V,/V-alkylées dérivées du thiabendazole a été réalisée en deux étapes en utilisant la voie microonde pour activer davantage les substrats de départ. The synthesis of amphiphilic / V, / V-alkylated molecules derived from thiabendazole was carried out in two stages using the microwave pathway to further activate the starting substrates.
Figure imgf000010_0001
Figure imgf000010_0001
Ainsi, la première étape consiste en la réaction d'alkylation de thiabendazole avec différents groupements alkyles dans les conditions de la catalyse par transfert de phase liquide solide, en utilisant le carbonate de potassium comme base, le bromure de tétra-n-butyl ammonium comme catalyseur. Les produits intermédiaires ont été tous isolés et bien caractérisés.  Thus, the first step consists of the alkylation reaction of thiabendazole with different alkyl groups under the conditions of liquid solid phase transfer catalysis, using potassium carbonate as a base, tetra-n-butyl ammonium bromide as catalyst. The intermediate products have all been isolated and well characterized.
La deuxième étape consiste en la quaternisation de l'azote en position 1 du benzimidazole, cette réaction est effectuée par irradiation micro-onde de l'intermédiaire obtenu dans la réaction précédente en présence d'iodure de méthane pendant 15 min. le sel de thiabendazolium obtenu est isolé par précipitation. The second step consists of the quaternization of the nitrogen at the 1-position of the benzimidazole, this reaction is carried out by microwave irradiation of the intermediate obtained in the preceding reaction in the presence of methane iodide for 15 min. the thiabendazolium salt obtained is isolated by precipitation.
Caractérisation des molécules amphiphiles dérivés du thiabendazole :  Characterization of amphiphilic molecules derived from thiabendazole:
Les structures des composés mono alkylés et Λ/,ΛΖ-alkylés ont été élucidées sur la base des données spectroscopique IR, RMN H et RMN 13C. The structures of the monoalkyl and Λ /, ΛΖ-alkylated compounds were elucidated on the basis of IR spectroscopic, H-NMR and 13 C-NMR data.
Les spectres de RMN ΧΗ montrent, en plus des signaux caractéristiques de l'hétérocycle du thiabendazole, des signaux typiques des chaînes hydrophobes introduites parlesdeux/V- alkylation. 2. HVlontmorillonite modifiée : The NMR spectra Χ Η show, in addition to the signals characteristic of the heterocycle of thiabendazole, signals typical of the hydrophobic chains introduced by the two alkylation agents. 2. HVontontillonite modified:
Les molécules amphiphiles Λ/,/V-alkylées du thiabendazole ont été ensuite utilisées pour l'élaboration des argiles organophiles. Grâce à leur caractère zwiterionique, l'intercalation de ces molécules à l'intérieur des galléries a été réalisée facilement par échange cationique avec le sodium localisé à l'intérieur. Nous avons étudié l'intercalation de trois molécules dérivées du thiabendazole possédant différentes chaînes ramifiées (C8, C10 et C12).  The Λ /, / V-alkylated amphiphilic molecules of thiabendazole were then used for the preparation of organophilic clays. Thanks to their zwiterionic nature, the intercalation of these molecules inside the galleries has been easily achieved by cation exchange with the sodium located inside. We investigated the intercalation of three molecules derived from thiabendazole with different branched chains (C8, C10 and C12).
Le mode opératoire appliqué est le suivant : The procedure applied is as follows:
Dans un erlenmeyer de 250 mL contenant un barreau magnétique, on introduit 100 mL d'un mélange d'eau/éthanol et 0.5 g de la montmorillonite ; le mélange est porté à une température de 80°C, sous une forte agitation. Après une heure d'agitation, est ajoutée une solution de 20 mL d'ethanol contentant 2CEC de thiabendazolium. Le mélange est chauffé à 80°C pendant 3 heures d'agitation. Le matériau est récupéré par filtration, puis lavé 3 fois à l'eau distillée chaude. Ensuite, l'argile est séchée à 60°C pendant 12 heures avant d'être broyée.  In a 250 ml Erlenmeyer flask containing a magnetic bar, 100 ml of a mixture of water / ethanol and 0.5 g of montmorillonite are introduced; the mixture is brought to a temperature of 80 ° C, with vigorous stirring. After stirring for one hour, a solution of 20 ml of ethanol containing 2CEC of thiabendazolium is added. The mixture is heated at 80 ° C for 3 hours of stirring. The material is recovered by filtration and then washed 3 times with hot distilled water. Then, the clay is dried at 60 ° C for 12 hours before being ground.
2.1 Caracténsation par infrarouge : 2.1 Infrared Characterization:
L'infrarouge est un moyen très efficace pour la confirmation du confinement des molécules organiques dans des matrices inorganiques. Après modification de la montmorillonite, nous avons noté en particulier l'apparition de signaux à 2921 et 2852 cm"1 > caractéristiques du groupement méthylène (CH2), ce qui démontre l'efficacité de l'échange cationique. Infrared is a very effective way of confirming the confinement of organic molecules in inorganic matrices. After modification of montmorillonite, we noted in particular the appearance of signals at 2921 and 2852 cm -1 > characteristics of the methylene group (CH 2 ), which demonstrates the efficiency of cation exchange.
2.2 Diffraction des rayons X (détermination de la distance interfolaire) : 2.2 X-ray diffraction (determination of interfolar distance):
En comparant les distances interfolaires de la MMT non modifiée avec ses analogues modifiées, nous avons remarqué un élargissement de l'espace interfolaire de la montmorillonite, illustré par un déplacement sensible du plan de diffraction (001) vers les petits angles. La substitution des cations sodiques par des molécules amphiphiles du thiabendazole provoque en effet un écartement de l'espace interfolaire.  Comparing the interfolar distances of unmodified MMT with its modified analogues, we noted a widening of the interfolar space of montmorillonite, illustrated by a significant displacement of the diffraction plane (001) towards the small angles. The substitution of sodium cations by amphiphilic molecules of thiabendazole indeed causes a spacing of the interfolar space.
Les résultats obtenus par DRX sont présentés dans le tableau 1. The results obtained by XRD are presented in Table 1.
2.3 L'analyse thermogravimétrique des argiles modifiées : 2.3 Thermogravimetric analysis of modified clays:
La figure 5 montre les courbes ATG de la montmorillonite modifiée avec les trois molécules amphiphiles. La stabilité des dérivés du thiabendazole a été augmentée significativement. La dégradation de ces molécules commence à 300°C ce qui montre que ces matériaux sont adaptés à toute utilisation dans cette gamme de température. 3. Biocomposites « chitosane-SVIMT modifiée » : Figure 5 shows the ATG curves of the modified montmorillonite with the three amphiphilic molecules. The stability of thiabendazole derivatives was significantly increased. The degradation of these molecules begins at 300 ° C which shows that these materials are suitable for any use in this temperature range. 3. "modified chitosan-SVIMT" biocomposites:
La modification de la montmorillonite avec les molécules amphiphiles dérivées du thiabendazole confère à cette argile un caractère organophile. L'enroulement de ces charges dans un polymère d'origine naturelle, le chitosane, permet de séquestrer les molécules du thiabendazole dans le matériau tout en renforçant le biocomposite qui en résulte. Le matériau est obtenu en plus sous forme d'un film homogène. L'élargissement de la distance interfolaire facilite également la dispersion de la charge inorganique et améliore les propriétés du matériau comme démontré dans le domaine des nano-composites. Il est également intéressant de noter que le chitosane comporte des groupements ammoniums qui peuvent eux même diffuser à l'intérieur des galléries et donc favoriser l'intercalation et/ou l'exfoliation des feuillets. Une photo du matériau est présentée sur la figure 7. Le spectre infrarouge du matériau montre l'existence de pic à 2921 et 2852 cm 1. La diffraction des rayons X (DRX) montre que l'argile modifiée est totalement exfoliée dans la matrice du polymère. Cette exfoliation est d'autant faciliter par l'intercalation initiale du surfactant qui dépend elle-même de la longueur de la chaîne alkyle greffée sur la molécule du thiabendazole. The modification of montmorillonite with the amphiphilic molecules derived from thiabendazole gives this clay an organophilic character. Coiling these fillers in a naturally occurring polymer, chitosan, sequesters the thiabendazole molecules in the material while reinforcing the resulting biocomposite. The material is additionally obtained in the form of a homogeneous film. The widening of the interfolar distance also facilitates the dispersion of the inorganic filler and improves the properties of the material as demonstrated in the field of nano-composites. It is also interesting to note that chitosan contains ammonium groups which can themselves diffuse inside the galleries and thus favor the intercalation and / or the exfoliation of the leaflets. A photograph of the material is shown in Figure 7. The infrared spectrum of the material shows the existence of peak at 2921 and 2852 cm 1 . X-ray diffraction (XRD) shows that the modified clay is fully exfoliated in the polymer matrix. This exfoliation is all facilitated by the initial intercalation of the surfactant which itself depends on the length of the alkyl chain grafted on the thiabendazole molecule.
Le tableau 2. Illustre cette variation. Table 2. Illustrates this variation.
Figure imgf000012_0001
exfoliation
Figure imgf000012_0001
exfoliation

Claims

Procédé de fabrication d'un bio composite comprenant les étapes suivantes :  A method of manufacturing a composite bio comprising the following steps:
La synthèse en deux étapes de nouvelles molécules amphiphiles de thiabendazole. La première étape consiste en la réaction d'alkylation de thiabendazole avec différents groupements alkyles dans les conditions de la catalyse par transfert de phase liquide solide, en utilisant le carbonate de potassium comme base, le bromure de tétra-n- butyl ammonium comme catalyseur. Les produits intermédiaires ont été tous isolés et bien caractérisés. La deuxième étape consiste en la quaternisation de l'azote en position 1 du benzimidazole, cette réaction est effectuée par irradiation micro-onde de l'intermédiaire obtenu dans la réaction précédente en présence d'iodure de méthane pendant 15 min. le sel de thiabendazolium obtenu est isolé par précipitation. The two-step synthesis of new amphiphilic molecules of thiabendazole. The first step consists of the alkylation reaction of thiabendazole with different alkyl groups under the conditions of liquid solid phase transfer catalysis, using potassium carbonate as a base, tetra-n-butyl ammonium bromide as catalyst. The intermediate products have all been isolated and well characterized. The second step consists of the quaternization of the nitrogen at the 1-position of the benzimidazole, this reaction is carried out by microwave irradiation of the intermediate obtained in the preceding reaction in the presence of methane iodide for 15 min. the thiabendazolium salt obtained is isolated by precipitation.
La modification d'argile avec lesdites molécules amphiphiles par procédé d'intercalation.  The modification of clay with said amphiphilic molecules by intercalation process.
La dispersion de ces charges hybrides dans un bio-polymère par procédé d'exfoliation.  The dispersion of these hybrid charges in a bio-polymer by exfoliation process.
Procédé selon la revendication 1 caractérisé en ce que le bio-polymère est parmi le groupe de : la chitine, chitosane, cellulose, amidon, alginate, dextrine, carraghénane. Process according to Claim 1, characterized in that the biopolymer is from the group of: chitin, chitosan, cellulose, starch, alginate, dextrin and carrageenan.
Procédé selon la revendication 1 caractérisé en ce que l'argile est choisie parmi la famille de la montmorillonite, la beidellite, le talc, la stevensite, la sépiolite, la saponite, la pyrophyllite, la kaolinite. Process according to Claim 1, characterized in that the clay is chosen from the family of montmorillonite, beidellite, talc, stevensite, sepiolite, saponite, pyrophyllite and kaolinite.
Procédé selon la revendication 1 caractérisé en ce que la molécule amphiphile est bioactive dérivée du thiabendazole, de type :
Figure imgf000014_0001
Process according to Claim 1, characterized in that the amphiphilic molecule is bioactive derived from thiabendazole, of type:
Figure imgf000014_0001
Dans laquelle : In which :
RI : CnH2n+i avec n= 1 - 20 ; CnH2n-OH avec n = 1 - 4; ou CnH2n-S03H RI: C n H 2n + 1 with n = 1-20; C n H 2n -OH with n = 1-4; or CnH2n-S03H
avec n = 1 - 4; with n = 1-4;
R2 : CnH2n+l avec n= 0 - 20 ; CnH2n-OH avec n = 1 - 4; ou CnH2n-SH  R2: CnH2n + 1 with n = 0-20; C n H 2n-OH with n = 1-4; or CnH2n-SH
avec n = 1 - 4; with n = 1-4;
X- : CI-, Br-, I-, CH3S04-, C6H5S03-, ou CH3COO- X-: Cl-, Br-, I-, CH3SO4-, C6H5SO3-, or CH3COO-
Obtenue par greffage de chaîne hydrophobe, de la molécule de départ de type (III), dans les conditions de la catalyse par transfert de phase en présence d'un solvant polaire aprotique, une base faible et d'un catalyseur, suivie par une quatérnisation de la molécule de type (II). Obtained by hydrophobic chain grafting of the starting molecule of type (III), under the conditions of phase transfer catalysis in the presence of an aprotic polar solvent, a weak base and a catalyst, followed by a quaterization of the type (II) molecule.
Figure imgf000014_0002
Figure imgf000014_0002
(SI) (III)  (SI) (III)
Procédé selon la revendication 4 caractérisé en ce que le solvant polaire aprotique est choisi parmi le groupe constitué par l'acétone, méthyl éthyl acétone, diméthylsulfoxyde, diméthylformamide, acétonitrile, acétate d'éthyle et pyridine. Process according to Claim 4, characterized in that the aprotic polar solvent is chosen from the group consisting of acetone, methyl ethyl acetone, dimethyl sulphoxide, dimethylformamide, acetonitrile, ethyl acetate and pyridine.
Procédé selon la revendication 4 caractérisé en ce que la base est choisie parmi le groupe constitué par le carbonate de lithium, le carbonate de sodium, le carbonate de potassium et le carbonate de césium. Process according to Claim 4, characterized in that the base is chosen from the group consisting of lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate.
Procédé selon la revendication 4 caractérisé en ce que le catalyseur de transfert de phase est choisi parmi le groupe constitué des sels d'ammonium quaternaires et les sels de phosphoniums. En particulier ledit catalyseur de phase est le bromure de tetra- n-butylammonium ou le chlorure de triméthylbenzylammonium. Process according to Claim 4, characterized in that the phase transfer catalyst is chosen from the group consisting of quaternary ammonium salts and the phosphonium salts. In particular, said phase catalyst is tetra-n-butylammonium bromide or trimethylbenzylammonium chloride.
Procédé selon la revendication 4 caractérisé en ce que la quatérnisation est réalisée sous irradiation micro-onde pendant 30 minutes. Process according to Claim 4, characterized in that the quaterization is carried out under microwave irradiation for 30 minutes.
Procédé selon les revendications 1 à 8 caractérisé en ce que ledit procédé est réalisé à température ambiante. Process according to Claims 1 to 8, characterized in that the said process is carried out at room temperature.
PCT/MA2013/000024 2012-08-13 2013-08-08 Preparation of novel modified chitosan/clay bio-composites WO2014027873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA35149A MA34933B1 (en) 2012-08-13 2012-08-13 Prepare new chitosan-clay modified biomaterials
MA35149 2012-08-13

Publications (2)

Publication Number Publication Date
WO2014027873A1 true WO2014027873A1 (en) 2014-02-20
WO2014027873A4 WO2014027873A4 (en) 2014-05-15

Family

ID=49641823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2013/000024 WO2014027873A1 (en) 2012-08-13 2013-08-08 Preparation of novel modified chitosan/clay bio-composites

Country Status (2)

Country Link
MA (1) MA34933B1 (en)
WO (1) WO2014027873A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083141A1 (en) * 2014-11-27 2016-06-02 Ecomeris Highly mineral-filled adhesive patch or bandage
WO2019132639A1 (en) * 2017-12-29 2019-07-04 Moroccan Foundation For Advanced Science, Innovation And Research (Mascir) Ionic liquids derived from thiabendazolium and applications of same in the medical field
CN116656335A (en) * 2023-04-28 2023-08-29 京准化工技术(上海)有限公司 Drag reducer for fracturing fluid and preparation process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016034A2 (en) * 2008-08-08 2010-02-11 Università degli Studi di Salerno Polymeric materials for active food packagings able to protect and to enhance the quality of the contained food products and to reduce their preservation treatments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016034A2 (en) * 2008-08-08 2010-02-11 Università degli Studi di Salerno Polymeric materials for active food packagings able to protect and to enhance the quality of the contained food products and to reduce their preservation treatments

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
A. CASARIEGO; B. W. S. SOUZA; M. A. CERQUEIRA; J. A. TEIXEIRA; L. CRUZ; R. DIAZ; A. A. VICENTE, FOOD HYDROCOLLOIDS, vol. 23, 2009, pages 1895 - 1902
A. EL KADIB; M. BOUSMINA, CHEM. EUR. J., vol. 18, 2012, pages 8264 - 8277
AZNAZ, R. HARRIS; A. HERAS, CURRENTORGANICCHEMISTRY, vol. 14, 2010, pages 308 - 330
C. CANCER; J. P. VERGANO; J. L. WILES, JOURNAL OF FOOD SCIENCE, vol. 63, 1998, pages 1049 - 1053
CHITOSANEDIBLE FILMS; COATING-A REVIEW; H. M. C. AZERDO; D. D. BRITTO; O. B. G. ASSISS: "Chitosan: Manufacture, Properties and Usage", pages: 179 - 194
E. HORNE; T. COYLE; M. O'KEEFEE; M. ALVINERIE; P. GALTIER; D. L. BRANDON, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 51, 2003, pages 5552 - 5555
F. J. PAVINATTO; L. CASELI; O. N. OLIVEIRA, BIOMACROMOLECULES, vol. 11, 2010, pages 1897 - 1908
H. ENNAJIH; R. BOUHFID; E. ESSASSI; M. BOUSMINA; A. EL KADIB, MICRO. MESO. MATER., vol. 152, 2012, pages 208 - 213
H. S. HSU; M. C. WANG; J. J. LIN, APPLIED CLAY SCIENCE, vol. 56, 2012, pages 53 - 62
HAMID ENNAJIH ET AL: "Intercalation of nickel and cobalt thiabendazole complexes into montmorillonite", APPLIED CLAY SCIENCE, vol. 65-66, 21 July 2012 (2012-07-21), pages 139 - 142, XP055096922, ISSN: 0169-1317, DOI: 10.1016/j.clay.2012.04.027 *
J. W. RHIM; S. 1. HONG; H. M. PARK; P. K. W. NG, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 54, 2006, pages 5814 - 5822
L. CROCETTI; A. MARESCA; C. TEMPERINI; R. A. HALL; A. SCOZZAFAVA; F. A. MUHLSCHLEGEL; C. T. SUPURAN, BIOORGANIC AND MEDICINALCHEMISTRYLETTERS, vol. 19, 2009, pages 1371 - 1375
L. N. LUDUENA; V. A. ALVAREZ; A. VASQUEZ, MATERIALS SCIENCE AND ENGINNERING : A, vol. 460-461, 2007, pages 121 - 129
LOMBARDI ET AL: "Interaction of thiabendazole and benzimidazole with montmorillonite", APPLIED CLAY SCIENCE, ELSEVIER SCIENCE, NL, vol. 33, no. 1, 1 June 2006 (2006-06-01), pages 59 - 65, XP005477934, ISSN: 0169-1317, DOI: 10.1016/J.CLAY.2006.03.010 *
M. N. V. RAVI KUMAR; R. A. A. MUZZARELLI; C. MUZZARELLI; H. SASHIWA; A. J. DOMB, CHEMICALREVIEW, vol. 104, 2004, pages 6017 - 6084
N. BORDENAVE; S. GRELIER; V. COMA, AGRICULTURAL AND FOOD CHEMISTRY, vol. 55, 2007, pages 9479 - 9488
N. S. PAWAR; D. S. DALAL; S. R. SHIMPI; P. P. MAHULIKAR, EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCE, vol. 21, 2004, pages 115 - 118
R. A. A. MUZZARELLI; A. MUZZARELLI, ADVANCES IN POLYMER SCIENCE, vol. 186, 2005, pages 151 - 209
T. BARROSO; A. C. A. ROQUE; A. A.-RICARDO, RSCADVANCES
Y. XU; M. A. HANNA, JOURNAL OF APPLIEDPOLYMER SCIENCE, vol. 99, 2006, pages 1684 - 1691

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083141A1 (en) * 2014-11-27 2016-06-02 Ecomeris Highly mineral-filled adhesive patch or bandage
FR3029103A1 (en) * 2014-11-27 2016-06-03 Ecomeris SOLUBLE ADHESIVE DRESSING BASED ON MINERALS
US11547650B2 (en) 2014-11-27 2023-01-10 Silab S.A Highly mineral-filled adhesive bandage or patch
WO2019132639A1 (en) * 2017-12-29 2019-07-04 Moroccan Foundation For Advanced Science, Innovation And Research (Mascir) Ionic liquids derived from thiabendazolium and applications of same in the medical field
CN116656335A (en) * 2023-04-28 2023-08-29 京准化工技术(上海)有限公司 Drag reducer for fracturing fluid and preparation process thereof
CN116656335B (en) * 2023-04-28 2024-02-09 京准化工技术(上海)有限公司 Drag reducer for fracturing fluid and preparation process thereof

Also Published As

Publication number Publication date
WO2014027873A4 (en) 2014-05-15
MA34933B1 (en) 2014-03-01

Similar Documents

Publication Publication Date Title
Zawadzki et al. Thermal treatment of chitosan in various conditions
Mohamed et al. Novel aminohydrazide cross-linked chitosan filled with multi-walled carbon nanotubes as antimicrobial agents
Ifuku et al. Preparation of highly regioselective chitosan derivatives via “click chemistry”
BR112020005508A2 (en) ionic polymer, ionic polymer network, solid support, polymeric membrane, use of ionic polymers, method for producing one or more fine chemicals and method for producing sugars
WO2014027873A1 (en) Preparation of novel modified chitosan/clay bio-composites
JP6276431B2 (en) Polymer based on maltodextrin for encapsulating organic compounds
FR2967677A1 (en) POLYSACCHARIDE DERIVATIVES COMPRISING ALKENOUS PATTERN AND THIO-CLICK CHEMICAL COUPLING REACTION
FR2903987A1 (en) NOVEL AMPHIPHILIC CYCLODEXTRIN DERIVATIVES, THEIR USE IN THE PHARMACEUTICAL, COSMETIC, FOOD SECTORS AND THEIR APPLICATION TO THE PRODUCTION OF NEW NANOSYSTEMS
Toomari et al. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent
JP2007513977A (en) High fullerenes useful as radical scavengers
Parveen et al. Supramolecular Gels by Design: Towards the Development of Topical Gels for Self‐Delivery Application
EP2806958A1 (en) Hydrogel-based decontamination of aqueous samples containing nanoparticles
Raja et al. Functionalized cellulose nanocrystals for cellular labeling and bioimaging
Jindal Cyclodextrin mediated controlled release of edaravone from pH-responsive sodium alginate and chitosan based nanocomposites
Petrelli et al. Oligosaccharide-based block copolymers: Metal-free thiol–maleimide click conjugation and self-assembly into nanoparticles
US10307486B2 (en) Surface modified nanocrystalline cellulose and uses thereof
EP2346875B1 (en) Metalloporphyrin derivatives, nanoparticles comprising the same, and use thereof for photodynamic therapy
Ganske et al. Evaluation of the synthesis of soluble aromatic cellulose carbonates of low degree of substitution
Fardioui et al. Bionanocomposite materials based on chitosan reinforced with nanocrystalline cellulose and organo-modified montmorillonite
FR2736056A1 (en) CYCLODEXTRIN DERIVATIVES, THEIR PREPARATION AND THEIR USE FOR INCORPORATING HYDROPHOBIC MOLECULES IN ORGANIZED SURFACE SYSTEMS
DE4401618A1 (en) New or known amino-functional cyclodextrin deriv. prepn.
RU2619934C2 (en) Hydrophilic concentrate of derivative starch, and 2,6-diizzbornil-4-methylphenol and method for production thereof
Hassan et al. Valuation of rice straw residues: Production of silylated methylcellulose containing propylamine and propylethylenediamine for use as anticorrosion and antibacterial
Ungurenasu et al. Syntheses and characterization of water‐soluble C60–curdlan sulfates for biological applications
FR3078705A1 (en) FUNCTIONALIZED MATERIAL DERIVED FROM CELLULOSE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13795598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13795598

Country of ref document: EP

Kind code of ref document: A1