WO2014027761A1 - 표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치 - Google Patents

표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치 Download PDF

Info

Publication number
WO2014027761A1
WO2014027761A1 PCT/KR2013/006394 KR2013006394W WO2014027761A1 WO 2014027761 A1 WO2014027761 A1 WO 2014027761A1 KR 2013006394 W KR2013006394 W KR 2013006394W WO 2014027761 A1 WO2014027761 A1 WO 2014027761A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
display device
matrix
resin
reinforcing material
Prior art date
Application number
PCT/KR2013/006394
Other languages
English (en)
French (fr)
Inventor
김태호
곽병도
김영권
김태정
이상걸
이우진
임성한
정은환
최석원
김성국
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014027761A1 publication Critical patent/WO2014027761A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/017Glass ceramic coating, e.g. formed on inorganic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display

Definitions

  • the present invention relates to a flexible substrate for a display device, a method of manufacturing the same, and a display device using the same.
  • plastic substrate materials such as polyester (polyethylene terephthalate) or polyethylene naphthalate (PEN), polycarbonate, polyether sulfone, cyclic olefin resin, epoxy resin or acrylic resin are used.
  • polyester polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polycarbonate polyethylene naphthalate
  • polyether sulfone polyether sulfone
  • cyclic olefin resin epoxy resin or acrylic resin
  • acrylic resin acrylic resin
  • these materials have a high coefficient of thermal expansion, which may cause problems such as warpage of the product and disconnection of wiring.
  • a technique of applying a resin having a low coefficient of thermal expansion such as polyamide-based resin
  • polyamide-based resin is not suitable as a substrate material due to its very low transparency and high birefringence and hygroscopicity.
  • a silicone fiber reinforced plastic (FRP) composite sheet having low thermal expansion and providing flexibility, heat resistance and transparency by using a low anisotropic silicone rubber (rubber) as a matrix with glass fiber cloth was developed.
  • a low anisotropic silicone rubber (rubber) as a matrix with glass fiber cloth.
  • an inorganic membrane barrier layer for preventing moisture permeability required for manufacturing a substrate and preventing gas passage to the outside of the composite sheet should be secured.
  • such an inorganic membrane barrier layer has a high elastic modulus, different mechanical properties from the resin matrix, and a weak interfacial adhesion between the two layers, which may cause cracks, warpage, and the like. And durability can be reduced.
  • the silicon fiber reinforced plastic (FRP) composite sheet has a high surface roughness, which makes it difficult to be used as a flexible substrate for a liquid crystal display device or an organic EL display device.
  • the surface roughness is applied to both sides of the core layer by applying a core resin or a heterogeneous liquid crude liquid used for manufacturing the composite sheet. Is improving.
  • a resin or a liquid crude liquid the viscosity, the thickness of the coating film, the physical properties of the liquid crude liquid and the like have to be controlled.
  • the silicon FRP composite sheet may cause deformation of the entire substrate due to heat or the like when the planarization layer is applied.
  • An object of the present invention is to provide a flexible substrate for a display device with improved surface roughness and a method of manufacturing the same.
  • Another object of the present invention is to provide a flexible substrate for a display device having excellent moisture permeability, low thermal expansion coefficient, flexibility and durability, and a method of manufacturing the same.
  • Still another object of the present invention is to provide a flexible substrate for a display device and a method of manufacturing the same, which do not generate cracks and have excellent flatness without controlling the viscosity, the thickness of the coating film, the physical properties of the liquid crude liquid, and the like.
  • the display substrate flexible substrate may include a matrix; Reinforcing material impregnated in the matrix; And a buffer layer formed on at least one surface of the matrix, wherein a rod having a crack during the Mandrel Bend Test has a diameter of 7 mm or less.
  • the flexible substrate for the display device may have an elastic modulus of 100 MPa or more.
  • the flexible substrate for the display device may have an elastic modulus of 1 GPa or more.
  • the matrix may comprise a silicone rubber.
  • a gas barrier layer may be further formed on the buffer layer.
  • the surface roughness Ra of the flexible substrate for the display device may be 40 nm or less.
  • the buffer layer may have a thickness of 0.01 to 50 ⁇ m.
  • the buffer layer may include at least one of (meth) acrylic resin, polyimide resin, polyester resin, polycarbonate resin, epoxy resin, and urethane resin.
  • the reinforcing material is one of glass fiber, glass fiber cloth, glass fabric, glass nonwoven fabric, glass mesh, glass beads, glass flake, silica particles, and colloidal silica. It may contain the above.
  • the gas barrier layer may include at least one of silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, aluminum nitride, aluminum oxide, tantalum oxide, titanium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • the gas barrier layer may have an elastic modulus of about 10 to about 500 GPa at 25 ° C.
  • the flexible substrate for the display device may have a moisture permeability of about 0.15 g / m 2 / day or less, for example, 0.10 g / m 2 / day or less.
  • the method is a method of manufacturing a flexible substrate for a display device, which comprises forming a laminated sheet by laminating a buffer layer on at least one surface of a matrix including a silicon-based rubber impregnated with a reinforcing material, and the display device flexible substrate is a Mandrel Bend Test.
  • the diameter of the rod where the crack occurs may be 7 mm or less.
  • the laminated sheet, the reinforcing material on one surface of the buffer layer is characterized in that it comprises a step of coating and curing the resin for forming the matrix on the reinforcing material.
  • the laminated sheet is formed by applying a matrix forming resin to a reinforcing material to form a matrix impregnated with the reinforcing material; And applying and curing a resin for forming a buffer layer on at least one surface of the matrix impregnated with the reinforcing material.
  • the laminate sheet has a reinforcing material on one side of the first buffer layer; Applying a matrix forming resin to the reinforcing material to form a matrix; And laminating the second buffer layer on the matrix to cure the same.
  • the method may further include forming a gas barrier layer on the buffer layer.
  • the display device includes a substrate; An organic light emitting device formed on the substrate; And an encapsulation member encapsulating the organic light emitting device, and the substrate may be a flexible substrate for a display device.
  • the present invention provides a display device having improved surface roughness, excellent moisture permeability, low coefficient of thermal expansion, flexibility and durability, no cracking, and excellent flatness without controlling the viscosity, thickness of the coating film, or physical properties of the liquid crude liquid. It is to provide a flexible substrate and a method of manufacturing the same.
  • FIG. 1 is a schematic cross-sectional view of a flexible substrate for a display device according to an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a flexible substrate for a display device according to another exemplary embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of a display device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a portion of a display device according to another embodiment of the present invention.
  • the flexible substrate 100 for a display device of the present invention includes a matrix 10; Reinforcing material (15) impregnated in the matrix (10); And buffer layers 21 and 22 formed on at least one surface of the matrix 10.
  • the flexible substrate 200 for a display device of the present invention includes a matrix 10; Reinforcing material (15) impregnated in the matrix (10); And buffer layers 21 and 22 formed on at least one surface of the matrix 10. And gas barrier layers 31 and 32 formed on the buffer layers 21 and 22.
  • the matrix 10 used in the present invention a matrix having excellent high temperature processability, flexibility, and the like may be used.
  • a matrix including a silicone rubber, a matrix including an acrylic resin, a matrix including an epoxy resin, and a urethane type A matrix containing a resin can be used, and for example, a matrix containing the silicone rubber can be used.
  • the matrix may be a matrix having an elastic modulus of about 0.01 to about 20 MPa, for example, about 1 to about 15 MPa at 25 ° C.
  • the flexible substrate for the display device may have excellent flexibility, heat resistance, moisture permeability, durability, and flatness.
  • the glass transition temperature of the matrix 10 may be about -150 to about 30 °C, for example, about -40 to about 10 °C. It is excellent in flexibility and rigidity in the above range and has a small coefficient of thermal expansion.
  • a matrix comprising a silicone rubber may be applied to maintain a low coefficient of thermal expansion.
  • the elastic modulus of the matrix and the buffer layer is measured at 25 ° C. using an MTS Alliance RT / 5 test frame based on a 100N load cell. Specifically, the specimens were weighted with two air grips spaced 25 mm apart and pulled at a crosshead speed of 1 mm / min. This is obtained by continuously collecting load and displacement data and taking the maximum slope of the initial part of the load displacement curve as a Young's modulus.
  • a resin for forming a matrix may be used, and for example, may include silicone rubber, acrylic resin, epoxy resin, urethane resin, and the like. Silicone-based rubber may be included.
  • silicone rubber an organopolysiloxane having an average degree of polymerization of about 5 to about 2,000 may be used. Examples of the organopolysiloxanes include polydimethylsiloxane, polymethylphenylsiloxane, polyalkylarylsiloxane, polyalkylalkylsiloxane, and the like. These are three-dimensional molecules of the network structure.
  • the number of the net bond points is about 5 to about 500 may have a structure containing one per R 2 SiO.
  • Organopolysiloxanes having a viscosity of about 5 to about 500,000 Cst at 25 ° C. may be used. Within this range, the composite sheet may have excellent flexibility, heat resistance, moisture permeability, durability and flatness.
  • the viscosity of the silicone rubber can be, for example, from about 5 to about 120,000 Cst, in embodiments from about 100 to about 100,000 Cst, in embodiments from about 1,000 to about 80,000 Cst at 25 ° C.
  • the matrix together with the silicone rubber is styrene-butadiene rubber (SBR), butadiene rubber, isoprene rubber, chloroprene rubber, neoprene rubber, ethylene-propylene-diene terpolymer, styrene-ethylene-butylene- Styrene (SEBS) block copolymer, Styrene-ethylene-propylene-styrene (SEPS) block copolymer, Acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (NBR), Flori It may further comprise one or more selected from the group consisting of fluorinated rubber, and plasticized polyvinylchloride rubber.
  • SBR styrene-butadiene rubber
  • SEBS styrene-ethylene-butylene- Styrene
  • SEBS styrene-ethylene-butylene- Styrene
  • SEPS Styrene-ethylene-propylene-
  • the reinforcing material 15 used in the present invention may be impregnated in the matrix 10 and exist inside the matrix to impart heat resistance stability to the substrates 100 and 200.
  • the reinforcement 15 may be dispersed in the matrix 10 or may be impregnated in a woven form, or may be impregnated with the matrix 10 arranged in a uni-direction.
  • the reinforcing material 15 may be formed of a single layer or a plurality of layers.
  • the reinforcing material 15 is glass fiber, glass fiber cloth (glass fiber cloth), glass fabric (glass fabric), glass nonwoven fabric, glass mesh (glass mesh), glass beads, glass flake (glass flake), silica particles, colloidal silica And the like can be used. These may be used alone or in combination of two or more thereof.
  • the reinforcing material 15 may have a refractive index difference of about 0.01 or less from the matrix 10. Within this range, it may have excellent transparency and light transmittance. In embodiments, the refractive index difference from the matrix 10 may be about 0.0001 to about 0.007.
  • the resin constituting the matrix 10 after the resin constituting the matrix 10 is impregnated with the reinforcing material 15, it can be produced in the form of a sheet by crosslinking or curing the resin.
  • the thickness of the matrix 10 impregnated with the reinforcing material 15 may be about 10 to about 200 ⁇ m, for example, about 50 to about 100 ⁇ m. Handling can be easy in the above range.
  • the buffer layers 21 and 22 used in the present invention may be formed on at least one surface of the matrix 10.
  • the buffer layers 21 and 22 are formed on both surfaces of the matrix 10, but may be formed only on one surface thereof.
  • the buffer layers 21, 22 may have an elastic modulus of greater than about 100 MPa at 25 ° C., for example, greater than 100 MPa and less than or equal to about 10 GPa.
  • the elastic modulus of the buffer layers 21 and 22 is in the above range, the crack characteristics are excellent.
  • the matrix 10 and the gas barrier layers 31 and 32 are less than about 100 MPa or more than about 10 GPa.
  • the glass transition temperature of the buffer layers 21 and 22 may be about 30 to about 400 °C. If the glass transition temperature is less than about 30 ° C., the heat resistance may be inferior when the gas barrier layers 31 and 32 are formed, and thermal deformation may occur in the entire substrate, and the glass transition temperature may exceed about 400 ° C. In this case, there is a fear that the surface roughness may not be improved.
  • the elastic modulus at 25 ° C. of the buffer layers 21, 22 may be, for example, about 500 MPa to about 7 GPa, in particular about 1 to about 5 GPa.
  • the glass transition temperatures of the buffer layers 21 and 22 may be, for example, about 50 to about 350 ° C, and in some embodiments, about 150 to about 300 ° C.
  • the buffer layers 21 and 22 may have a surface roughness Ra of about 100 nm or less, for example, about 10 nm or less, and in embodiments, about 0.001 to about 5 nm. It is possible to improve the surface roughness in the above range and can be applied to a flexible substrate for a display device.
  • the buffer layers 21 and 22 may have a thickness of about 0.01 to about 50 ⁇ m, for example, about 1 to about 30 ⁇ m. In the above range can be expressed without improving the surface roughness without inhibiting the intrinsic properties of the matrix.
  • the buffer layers 21 and 22 may include (meth) acrylic resins, polyimide resins, polyester resins, and resins such as polycarbonate resins, epoxy resins, urethane resins, and the like, or two or more of them. It can be applied in combination.
  • the buffer layers 21 and 22 may be formed using a film made of the resin, or a film formed by applying and curing the resin composition on the matrix 10.
  • the gas barrier layers 31 and 32 of the present invention may be formed on the buffer layers 21 and 22.
  • the gas barrier layers 31 and 32 are formed on both surfaces of the buffer layers 21 and 22, but the present invention is not limited thereto.
  • the gas barrier layers 31 and 32 may be formed only on one surface of the buffer layers 21 and 22.
  • the gas barrier layers 31 and 32 may be formed of a material used for a flexible substrate for a conventional display device.
  • silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, aluminum nitride, aluminum oxide, tantalum oxide, Titanium oxide, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) may include one or more.
  • the gas barrier layer may form a single layer or two or more kinds of barrier layers may be stacked to form a plurality of layers.
  • the gas barrier layers 31 and 32 may have an elastic modulus of about 10 to about 500 GPa, for example, about 15 to about 350 GPa at 25 ° C. In the above range, the flexible substrate for the display device may have excellent flexibility, moisture permeability, mechanical properties, and durability, and at the same time, lower flatness and moisture permeability.
  • the thickness of the gas barrier layers 31 and 32 may be about 0.01 ⁇ m to about 1.0 ⁇ m, but is not limited thereto.
  • the flexible substrates 100 and 200 for display devices of the present invention may have a moisture permeability of about 0.01 to about 0.15 g / m 2 / day, for example, about 0.05 to about 0.10 g / m 2 / day.
  • the flexible substrates 100 and 200 for the display device may have a thermal expansion coefficient of about 1 to about 6 ppm / ° C, for example, about 2 to about 5 ppm / ° C.
  • the display substrate flexible substrates 100 and 200 may have a surface roughness of about 40 nm or less, for example, about 0.01 to about 35 nm, in some embodiments, about 0.1 to about 30 nm, and in other embodiments, about 0.1 to about 10 nm. nm can be achieved.
  • the flexible substrates 100 and 200 for the display element may be cracked when the cracks are evaluated by the Mandrel Bend Test using respective rods having a diameter of 5 to 20 mm according to ASTM D522-93a.
  • the rod may have a diameter of about 7 mm or less, for example about 5 to about 6 mm.
  • the flexible substrates 100 and 200 for the display device may have an elastic modulus of about 100 MPa or more, for example about 1 GPa or more, and in some embodiments, about 1.2 to 10 Gpa at 25 ° C.
  • the elastic modulus of the substrate is a value obtained by applying pressure with a force of 1000 mN using Fischer MH500 Micro indentation equipment.
  • Another aspect of the present invention relates to a method of manufacturing a flexible substrate for a display element.
  • a method of manufacturing the flexible substrate 100 for a display device may include stacking buffer layers 21 and 22 on at least one surface of a matrix 10 including the silicon-based rubber impregnated with a reinforcing material 15. Forming a step.
  • a method of manufacturing the flexible substrate 200 for the display device may include buffer layers 21 and 22 stacked on at least one surface of the matrix 10 including the silicon-based rubber impregnated with the reinforcing material 15 and the buffer layer ( Forming a laminated sheet by forming gas barrier layers 31 and 32 on the substrates 21 and 22.
  • the buffer layers 21 and 22 may have an elastic modulus of greater than about 100 MPa and less than or equal to about 10 GPa and a glass transition temperature of about 30 to about 400 degrees Celsius at 25 ° C.
  • the manufactured flexible substrate for the display device may have a diameter of about 7 mm or less, in which a crack occurs in a mandrel bend test.
  • the laminated sheet, the reinforcing material 15 is placed on one surface of the buffer layer 21 or 22 having a film form, and the matrix forming resin is applied to the reinforcing material 15 and cured. It can be prepared by forming a.
  • the buffer layers 21 and 22 are formed on both surfaces of the matrix 10 in which the reinforcing material 15 is impregnated, it will be described below.
  • the reinforcing material 15 is placed on one surface of the first buffer layer 21, and the matrix forming resin is applied to the reinforcing material 15 to form the matrix 10.
  • the matrix forming resin is applied to the reinforcing material 15 to form the matrix 10.
  • the matrix 10 to the second impregnated with the reinforcing material 15 and the second buffer layer 22 are shown in FIG. 1.
  • a laminate sheet in which the buffer layers 22 are sequentially stacked is formed.
  • the first and second buffer layers 21 and 22 have an elastic modulus of about 100 MPa to about 10 GPa and a glass transition temperature of about 30 to about 400 ° C. at 25 ° C. do.
  • the laminated sheet is cured by heat or ultraviolet rays as it is, and forms gas barrier layers 31 and 32 on the first and second buffer layers 21 and 22, respectively.
  • the gas barrier layers 31 and 32 may be physically deposited, chemically deposited, coated, sputtered, evaporated, ion plated, wet coated, or organic inorganic multilayer coating on the surfaces of the buffer layers 21 and 22. It can be formed as.
  • the laminated sheet is formed by applying a matrix forming resin to the reinforcing material (15) to form a matrix (10) impregnated with the reinforcing material (15); (Meth) acrylic resins, polyimide resins, polyester resins and resins for buffer layer formation such as polycarbonate, epoxy, urethane, etc. are applied to at least one surface of the matrix 10 impregnated with the reinforcing material 15 and cured. It can be produced by forming the buffer layer (21, 22).
  • gas barrier layers 31 and 32 may be formed on the buffer layers 21 and 22.
  • the gas barrier layers 31 and 32 may be physically deposited, chemically deposited, coated, sputtered, evaporated, ion plated, wet coated, or organic inorganic multilayer coating on the surfaces of the buffer layers 21 and 22. It can be formed as.
  • Another aspect of the invention relates to a display device including the flexible substrate.
  • the display device may include a liquid crystal display device, an organic light emitting diode display device, a touch panel, and the like, but are not limited thereto.
  • the flexible substrate of the present invention may be applied to the substrate of the display device.
  • the display device includes a substrate and an organic light emitting element formed on the substrate.
  • 3 is a cross-sectional view of a display device according to an embodiment of the present invention.
  • the display apparatus includes a substrate 100 and an organic light emitting diode formed on the substrate 100, and the organic light emitting diode includes a first electrode 111 and the first electrode 111. ) And a second electrode 113 formed on the light emitting layer 112.
  • the organic light emitting diode may be encapsulated by the encapsulation member 114.
  • the emission layer 112 includes an organic compound that may emit light when voltage is applied from the first and second electrodes 111 and 113.
  • the flexible substrate of the present invention may be applied to the substrate 100.
  • the display apparatus includes a substrate 300, a protective film 120 formed under the substrate 300, a buffer layer 25 formed on the substrate 300, and an upper portion of the buffer layer 25.
  • the gate insulating layer 40 may be formed between the gate electrode 41, the gate electrode 41, and the buffer layer 25.
  • An active layer 135 including source and drain regions 131 and 133 is formed in the gate insulating layer 40.
  • the passivation layer 61 including the contact hole 62 is formed on the interlayer insulating layer 51, and the interlayer insulating layer 51 on which the source and drain electrodes 52 and 53 are formed is formed on the gate insulating layer 40.
  • the first electrode 70 and the pixel defining layer 80 are formed.
  • the organic emission layer 71 and the second electrode 72 are formed on the pixel defining layer 80.
  • the substrate 300 may be a flexible substrate according to embodiments of the present invention, and the buffer layer 25 may be replaced with a buffer layer included in the flexible substrate according to embodiments of the present invention as needed.
  • Matrix Silicone rubber (polydimethylsiloxane (PDMS), product name: Sylgard 184, manufacturer: Dow Corning) with an elastic modulus of 10 MPa and a glass transition temperature of -30 ° C was used.
  • PDMS polydimethylsiloxane
  • c2 A polycarbonate film (product name: Lexan, manufactured by Dupont teijin) having an elastic modulus of 2.0 to 2.4 GPa, a glass transition temperature of 150 ° C., and a surface roughness of 5 nm was used.
  • Silicone rubber polydimethylsiloxane (PDMS), product name: Sylgard 184, manufactured by Dow Corning
  • silica particles product name: Aerosil, manufactured by Evonik having an elastic modulus of 50 MPa and a glass transition temperature of -30 ° C. The composition which mixed Degussa company) was used.
  • c9 A silicone rubber (polydimethylsiloxane (PDMS), product name: Sylgard 184, manufactured by Dow Corning) with an elastic modulus of 10 MPa and a glass transition temperature of -30 ° C was used.
  • PDMS polydimethylsiloxane
  • Gas barrier layer Silicon oxide and silicon nitride were used.
  • the elastic modulus of the matrix or buffer layer is the value measured at 25 ° C. using an MTS Alliance RT / 5 test frame based on 100 N load cells, each of which is made into a film form. Specifically, the specimens were weighted with two air grips spaced 25 mm apart and pulled at a crosshead speed of 1 mm / min. Load and displacement data can be collected continuously and obtained by taking the maximum slope of the initial part of the load displacement curve as a Young's modulus.
  • a transparent imide film (c1) having a thickness of 10 ⁇ m was placed on a glass substrate, and a reinforcing material (b) was placed thereon, and then a matrix resin (a) was applied onto the reinforcing material.
  • a 10 ⁇ m-thick transparent imide film (c1) was placed on the matrix resin, and a glass substrate was placed. Then, the matrix resin was impregnated with a reinforcing material through lamination. After thermal curing, the glass substrate was removed to prepare a laminated sheet having a thickness of 100 ⁇ m with a reinforcing material impregnated into the matrix.
  • Example 2 The same procedure as in Example 1 was carried out except that a transparent imide film (c1) having a thickness of 30 ⁇ m was used instead of the transparent imide film having a thickness of 10 ⁇ m.
  • Example 2 The same procedure as in Example 1 was carried out except that a polycarbonate film (c2) having a thickness of 30 ⁇ m was used instead of the transparent imide film having a thickness of 10 ⁇ m.
  • Example 2 The same procedure as in Example 1 was performed except that a 30 ⁇ m-thick polyethylene terephthalate film (c3) was used instead of a 10 ⁇ m-thick transparent imide film.
  • a matrix resin (a) was applied on the reinforcing material (b) to prepare a matrix (silicon FRP) impregnated with a reinforcing material having a thickness of 90 ⁇ m.
  • the laminated sheet having a thickness of 100 ⁇ m was prepared by applying and curing an acrylic curable resin (c4) to both surfaces of the matrix resin impregnated with the reinforcing material to form a buffer layer (c).
  • a flexible substrate for a display device was manufactured by forming a gas barrier layer (d) having a thickness of 100 nm using alternating silicon oxide and silicon nitride by sputtering on the laminated sheet.
  • a matrix resin (a) was applied on the reinforcing material. After placing the glass substrate on the matrix resin, the matrix resin was impregnated with the reinforcing material through lamination. After thermal curing, the glass substrate was removed to prepare a sheet having a thickness of 90 ⁇ m in which the matrix was impregnated with a reinforcing material.
  • a flexible substrate for a display device was manufactured by forming a gas barrier layer (d) having a thickness of 100 nm by alternately using silicon oxide and silicon nitride by sputtering on the sheet.
  • a matrix resin (a) was applied on the reinforcing material. After placing the glass substrate on the matrix resin, the matrix resin was impregnated with the reinforcing material through lamination. After thermal curing, the glass substrate was removed to prepare a sheet having a thickness of 90 ⁇ m in which the matrix was impregnated with a reinforcing material. Plasma treatment of the surface of the sheet was performed by coating a silicone rubber (c9) on both sides with a thickness of 5 ⁇ m and ultraviolet curing to form a buffer layer (c), thereby preparing a laminated sheet having a thickness of 100 ⁇ m.
  • a flexible substrate for a display device was manufactured by forming a gas barrier layer (d) having a thickness of 100 nm using alternating silicon oxide and silicon nitride by sputtering on the laminated sheet.
  • Moisture permeability (unit: g / m 2 / day): Measured using the ASTM F 1249 method using the MOCON equipment. The prepared specimens were cut to a size of 30 mm x 40 mm and then measured by inserting them into a jig having a central portion. Water vapor pressure at 25 ° C. was treated at 100% relative humidity.
  • Elastic modulus The modulus of the substrate was measured by applying a pressure of 1000 mN to the substrate prepared in Examples and Comparative Examples using Fischer MH500 Micro indentation equipment.
  • Examples 1 to 7 in which the high heat resistance and high flatness buffer layer according to the present invention are applied to the silicon matrix (silicon FRP) are excellent in moisture permeability, low thermal expansion coefficient, and surface roughness, and crack and peeling phenomenon. It can be seen that this does not occur.
  • Comparative Example 1 which does not use the buffer layer
  • Comparative Examples 2 to 4 which use the buffer layer whose elastic modulus and / or glass transition temperature is out of the range of the present invention, have a large surface roughness value, and crack and peeling phenomenon may occur to display devices. It can be seen that it is not suitable as a flexible substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명의 표시소자용 플렉서블 기판은 매트릭스; 상기 매트릭스에 함침된 보강재; 및 상기 매트릭스의 적어도 일면에 형성된 버퍼층을 포함하며, Mandrel Bend Test시 크랙이 발생하는 봉의 지름이 7 mm 이하이다.

Description

표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치
본 발명은 표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치에 관한 것이다.
액정 표시소자 또는 유기 EL 표시소자용 기판, 컬러필터 기판, 태양전지 기판 등으로, 내열성과 투명성이 우수하고 선팽창계수가 낮은 유리가 사용되고 있다. 최근에는 표시소자용 기판 소재, 특히, 플렉서블(flexible) 표시소자용 기판 소재로 소형화, 박형화, 경량화, 내충격성 및 유연성이 요구됨에 따라, 유리 기판을 대체하기 위한 소재로서 플라스틱 기판이 각광을 받고 있다.
플라스틱 기판으로 PET(polyethylene terephthalate) 또는 PEN(polyethylene naphthalate) 등과 같은 폴리에스테르, 폴리카보네이트, 폴리에테르술폰, 고리형 올레핀 수지, 에폭시계 수지나 아크릴계 수지 등의 소재가 사용되고 있다. 그러나, 이들 소재들은 열팽창계수가 상당히 높아 제품의 휘어짐과 배선의 단선 등의 문제점을 일으킬 수 있다. 또한, 폴리아미드계 수지와 같이 낮은 열팽창계수를 갖는 수지를 기판으로 적용하는 기술이 개발된 바 있으나, 폴리아미드계 수지는 투명성이 매우 낮고 높은 복굴절성, 흡습성 등으로 인해 기판 소재로 적합하지 않다.
이러한 문제점을 해결하기 위해, 유리 섬유포와 함께 이방성이 낮은 실리콘계 고무(rubber)를 매트릭스로 이용하여 열팽창성이 매우 낮고, 유연성, 내열성 및 투명성이 제공되는 실리콘 FRP(fiber reinforced plastic) 복합시트가 개발된 바 있다. 그러나, 이러한 복합시트를 디스플레이용으로 기판으로 사용하기 위해서는 기판 제조에 필요한 투습성의 방지 및 복합시트 외부에 대해 가스 통과를 막는 무기막 배리어층이 확보되어야 한다. 그런데, 이러한 무기막 배리어층은 탄성 모듈러스가 높고, 수지 매트릭스와의 기계적 물성이 상이할 뿐만 아니라 두 층간의 계면 접착력이 약해서 크랙(crack), 뒤틀림(warpage) 등이 발생할 수 있고, 내굴곡성, 유연성 및 내구성을 저하시킬 수 있다. 또한, 상기 실리콘 FRP(fiber reinforced plastic) 복합시트는 표면조도가 높아 액정 표시소자 또는 유기 EL 표시소자용 플렉서블 기판으로 사용되기 어려운 문제가 있다.
일본 공개공보 2009-012288에 개시된 바와 같이, 기존 복합시트를 이용한 표시소자용 기판에서는 표면조도를 개선하기 위해서 복합시트 제조에 사용되는 코어 수지 또는 이종의 액상 조액을 코어 층의 양측에 도포하여 표면조도를 개선하고 있다. 그러나, 수지 또는 액상 조액을 도포하여 표면조도를 개선하기 위해서는 점도, 도포 막의 두께, 액상 조액의 물성 등을 제어해야 하기 때문에 번거로울 뿐더러 생산성이 저하되는 문제가 있다.
더욱이, 상기 실리콘 FRP 복합시트는 평탄화층 도포 시, 열 등에 의해 기판 전체에 변형이 발생할 수 있다.
따라서, 상기 실리콘 FRP 복합시트에 배리어층 등을 추가 코팅할 때 안정적인 물성을 확보할 수 있도록 하는 실리콘 FRP 복합시트용 고내열, 고평탄도 버퍼층의 개발이 요구되고 있다.
본 발명의 목적은 표면조도가 개선된 표시소자용 플렉서블 기판 및 그 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 내투습성, 저열팽창계수, 유연성 및 내구성이 우수한 표시소자용 플렉서블 기판 및 그 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 크랙이 발생하지 않으며, 점도, 도포 막의 두께, 액상 조액의 물성 등을 제어하지 않아도 우수한 평탄성을 갖는 표시소자용 플렉서블 기판 및 그 제조방법을 제공하는 것이다.
본 발명의 하나의 관점은 표시소자용 플렉서블 기판에 관한 것이다. 상기 표시소자용 플렉서블 기판은 매트릭스; 상기 매트릭스에 함침된 보강재; 및 상기 매트릭스의 적어도 일면에 형성된 버퍼층을 포함하며, Mandrel Bend Test 시 크랙이 발생하는 봉의 지름이 7 mm 이하이다.
상기 표시소자용 플렉서블 기판은 탄성 모듈러스가 100 MPa 이상일 수 있다.
상기 표시소자용 플렉서블 기판은 탄성 모듈러스가 1GPa 이상일 수 있다.
상기 매트릭스는 실리콘계 고무를 포함할 수 있다.
상기 표시소자용 플렉서블 기판은 상기 버퍼층상에 가스 배리어층이 더 형성될 수 있다.
상기 표시소자용 플렉서블 기판은 표면조도(Ra)가 40 nm 이하일 수 있다.
상기 버퍼층은 두께가 0.01 내지 50 ㎛일 수 있다.
상기 버퍼층은 (메타)아크릴계 수지, 폴리이미드계 수지, 폴리에스테르계 수지, 폴리카보네이트계 수지, 에폭시계 수지 및 우레탄계 수지 중 1종 이상을 포함할 수 있다.
상기 보강재는 유리섬유, 유리섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(glass mesh), 유리 비드, 유리 플레이크(glass flake), 실리카 입자 및 콜로이달 실리카 중 1종 이상을 포함할 수 있다.
가스 배리어층은 질화규소, 산화규소, 산화질화규소, 탄화규소, 질화알루미늄, 산화알루미늄, 산화탄탈륨, 산화티타늄, ITO(Indium Tin Oxide) 및 IZO(Indium Zinc Oxide) 중 1종 이상을 포함할 수 있다.
상기 가스 배리어층은 25℃에서 탄성 모듈러스가 약 10 내지 약 500 GPa일 수 있다.
상기 표시소자용 플렉서블 기판은 투습성이 약 0.15 g/m2/day 이하, 예를 들면, 0.10 g/m2/day 이하일 수 있다.
본 발명의 다른 관점은 표시소자용 플렉서블 기판 제조방법에 관한 것이다. 상기 방법은 보강재가 함침된, 실리콘계 고무를 포함하는 매트릭스의 적어도 일면에 버퍼층을 적층하여 적층시트를 형성하는 것을 포함하는 표시소자용 플렉서블 기판 제조방법이며, 상기 표시소자용 플렉서블 기판은 Mandrel Bend Test 시 크랙이 발생하는 봉의 지름이 7 mm 이하일 수 있다.
상기 적층시트는, 버퍼층의 일면에 보강재를 놓고; 그리고 상기 보강재에 매트릭스 형성용 수지를 도포하고 경화시키는 단계를 포함하여 제조되는 것을 특징으로 한다.
한 구체예에서 상기 적층시트는, 보강재에 매트릭스 형성용 수지를 도포하여 상기 보강재가 함침된 매트릭스를 형성하고; 그리고 상기 보강재가 함침된 매트릭스의 적어도 일면에 버퍼층 형성용 수지를 도포하고 경화시키는 단계를 포함하여 제조될 수 있다.
다른 구체예에서 상기 적층시트는 제1 버퍼층의 일면에 보강재를 놓고; 상기 보강재에 매트릭스 형성용 수지를 도포하여 매트릭스를 형성하고; 상기 매트릭스 위에 제2 버퍼층을 라미네이션하여 경화시키는 단계를 포함하여 제조될 수 있다.
또 다른 구체예에서 상기 버퍼층 상에 가스 배리어층을 형성하는 것을 더 포함할 수 있다.
본 발명의 다른 관점은 디스플레이 장치에 관한 것이다. 상기 디스플레이 장치는 기판; 상기 기판 위에 형성된 유기발광소자; 및 상기 유기발광소자를 봉지하는 봉지부재를 포함하며, 상기 기판은 상기 표시소자용 플렉서블 기판이 사용될 수 있다.
본 발명은 표면조도가 개선되고, 내투습성, 저열팽창계수, 유연성 및 내구성이 우수하고, 크랙이 발생하지 않으며, 점도, 도포 막의 두께, 액상 조액의 물성 등을 제어하지 않아도 우수한 평탄성을 갖는 표시소자용 플렉서블 기판 및 그 제조방법을 제공하는 것이다.
도 1은 본 발명의 한 구체예에 따른 표시소자용 플렉서블 기판의 단면을 개략적으로 도시한 것이다.
도 2는 본 발명의 다른 구체예에 따른 표시소자용 플렉서블 기판의 단면을 개략적으로 도시한 것이다.
도 3은 본 발명의 한 구체예에 따른 디스플레이 장치의 개략적인 단면도이다.
도 4는 본 발명의 다른 구체예에 따른 디스플레이 장치의 일부의 단면도이다.
이하, 첨부한 도면을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명하고자 한다. 그러나, 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 또한, 설명의 편의를 위하여 구성요소의 일부만을 도시하기도 하였으나, 당업자라면 구성요소의 나머지 부분에 대하여도 용이하게 파악할 수 있을 것이다. 전체적으로 도면 설명 시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 기술적 사상을 벗어나지 않는 범위 내에서 본 출원의 사상을 다양한 다른 형태로 구현할 수 있을 것이다.
도 1은 본 발명의 한 구체예에 따른 표시소자용 플렉서블 기판의 단면을 개략적으로 도시한 것이다. 도 1에 도시된 바와 같이, 본 발명의 표시소자용 플렉서블 기판(100)은 매트릭스(10); 상기 매트릭스(10)에 함침된 보강재(15); 및 상기 매트릭스(10)의 적어도 일면에 형성된 버퍼층(21, 22)을 포함한다.
도 2는 본 발명의 다른 구체예에 따른 표시소자용 플렉서블 기판의 단면을 개략적으로 도시한 것이다. 도 2에 도시된 바와 같이, 본 발명의 표시소자용 플렉서블 기판(200)은 매트릭스(10); 상기 매트릭스(10)에 함침된 보강재(15); 및 상기 매트릭스(10)의 적어도 일면에 형성된 버퍼층(21, 22); 및 상기 버퍼층(21, 22) 상에 형성된 가스 배리어층(31, 32)을 포함한다.
본 발명에 사용되는 매트릭스(10)로는 고온 공정성, 유연성 등이 우수한 매트릭스를 사용할 수 있으며, 예를 들면, 실리콘계 고무를 포함하는 매트릭스, 아크릴계 수지를 포함하는 매트릭스, 에폭시계 수지를 포함하는 매트릭스, 우레탄계 수지를 포함하는 매트릭스 등을 사용할 수 있으며, 예를 들면, 상기 실리콘계 고무를 포함하는 매트릭스를 사용할 수 있다. 구체예에서는 상기 매트릭스는 25℃에서 탄성 모듈러스(modulus)가 약 0.01 내지 약 20 MPa, 예를 들면 약 1 내지 약 15 MPa인 매트릭스가 사용될 수 있다. 상기 탄성 모듈러스 범위에서 표시소자용 플렉서블 기판이 우수한 유연성, 내열성, 투습성, 내구성 및 평탄도를 가질 수 있다. 또한, 상기 매트릭스(10)의 유리전이온도는 약 -150 내지 약 30℃, 예를 들면, 약 -40 내지 약 10℃일 수 있다. 상기 범위에서 유연성과 강성이 우수하며 열팽창계수가 작다.
구체예에서는 낮은 열팽창계수를 유지하기 위해 실리콘계 고무를 포함하는 매트릭스를 적용할 수 있다. 본 발명에서 매트릭스와 버퍼층의 탄성 모듈러스는 100N 하중 셀을 기준으로 MTS 얼라이언스(Alliance) RT/5 시험 프레임을 사용하여 25℃에서 측정한 값이다. 구체적으로, 시험편을 25 mm 떨어진 간격의 2개의 공기 그립으로 가중시키고 1 mm/분의 크로스헤드 속도에서 끌어당겼다. 하중 및 변위 데이타를 연속적으로 수집하고, 하중 변위 곡선의 초기 부분의 최대 경사를 영률로 취하여 구한 값이다.
상기 매트릭스를 형성할 수 있는 매트릭스 형성용 수지는 통상의 매트릭스 형성용 수지를 사용할 수 있으며, 예를 들면, 실리콘계 고무, 아크릴계 수지, 에폭시계 수지, 우레탄계 수지 등을 포함하는 것일 수 있고, 구체예에서는 실리콘계 고무를 포함할 수 있다. 상기 실리콘계 고무로는 평균중합도 약 5 내지 약 2,000인 오르가노폴리실록산이 사용될 수 있다. 상기 오르가노폴리실록산의 예로는 폴리디메틸실록산, 폴리메틸페닐실록산, 폴리알킬아릴실록산, 폴리알킬알킬실록산 등이 있다. 이들은 3 차원 적으로 망상 구조의 분자로 되어 있다. 구체예에서는 그물 결합점의 수가 약 5 내지 약 500개로 R2SiO마다 1개씩 포함된 구조를 가질 수 있다. 상기 실리콘 고무의 점도는 25℃에서 약 5 내지 약 50만 Cst인 오르가노폴리실록산이 사용될 수 있다. 상기 범위 내에서, 복합시트는 우수한 유연성, 내열성, 투습성, 내구성 및 평탄도를 가질 수 있다. 상기 실리콘 고무의 점도는 예를 들면 25℃에서 약 5 내지 약 120,000 Cst, 구체예에서는 약 100 내지 약 100,000 Cst, 구체예에서는 약 1,000 내지 약 80,000 Cst일 수 있다.
다른 구체예에서 상기 매트릭스는 상기 실리콘계 고무와 함께 스티렌-부타디엔 고무(SBR), 부타디엔계 고무, 이소프렌계 고무, 클로로프렌 고무, 네오프렌 고무, 에틸렌-프로필렌-디엔 삼원 공중합체, 스티렌-에틸렌-부틸렌-스티렌(SEBS) 블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌(SEPS) 블록 공중합체, 아크릴로니트릴-부타디엔 고무(Acrylonitrile-butadiene rubber, NBR), 수소화된 니트릴 고무(hydrogenated nitrile rubber, NBR), 플로리네이티드 고무(fluorinated rubber), 및 가소화된 폴리비닐클로라이드 고무로 이루어진 군으로부터 선택되는 1종 이상을 더 포함할 수 있다.
본 발명에 사용되는 보강재(15)는 기판(100, 200)에 내열 안정성을 부여하기 위하여, 상기 매트릭스(10)에 함침되어 매트릭스 내부에 존재할 수 있다. 도면에는 도시되어 있지 않으나, 보강재(15)는 매트릭스(10)에 분산되어 있거나, 직조된 형태로 함침될 수 있으며, 매트릭스(10)에 일방향(Uni-direction)으로 배열되어 함침될 수도 있다. 또한 보강재(15)는 단일층 혹은 복수층으로도 형성될 수 있다.
상기 보강재(15)로는 유리섬유, 유리 섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(glass mesh), 유리 비드, 유리 플레이크(glass flake), 실리카 입자, 콜로이달 실리카 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 조합하여 사용될 수 있다.
상기 보강재(15)는 매트릭스(10)와의 굴절률 차이가 약 0.01 이하가 될 수 있다. 상기 범위 내에서, 우수한 투명성과 투광성을 가질 수 있다. 구체예에서, 상기 매트릭스(10)와의 굴절률 차이가 약 0.0001 내지 약 0.007이 될 수 있다.
본 발명에서는 상기 매트릭스(10)를 구성하는 수지에 상기 보강재(15)를 함침시킨 후, 상기 수지를 가교 혹은 경화시킴으로써 시트 형태로 제조할 수 있다.
상기 보강재(15)가 함침된 매트릭스(10)의 두께는 약 10 내지 약 200 ㎛, 예를 들면 약 50 내지 약 100 ㎛일 수 있다. 상기 범위에서 취급이 용이할 수 있다.
본 발명에 사용되는 버퍼층(21, 22)은 상기 매트릭스(10)의 적어도 일면에 형성될 수 있다. 도 1에는 버퍼층(21, 22)이 매트릭스(10)의 양면에 형성되어 있으나, 일면에만 형성되어도 무방하다. 버퍼층(21, 22)은 25℃에서 탄성 모듈러스가 약 100 MPa 를 초과할 수 있으며 예를 들어, 100MPa을 초과하고 약 10 GPa이하일 수 있다. 상기 버퍼층(21, 22)의 탄성 모듈러스가 상기 범위에 있는 경우 크랙 특성이 우수하며, 약 100 MPa 이하이거나 약 10 GPa을 초과할 경우, 상기 매트릭스(10) 및 상기 가스 배리어층(31, 32)의 탄성 모듈러스 등의 물성 차이로 인하여, 크랙(crack), 뒤틀림(warpage) 등이 발생할 우려가 있다. 또한, 상기 버퍼층(21, 22)의 유리전이온도가 약 30 내지 약 400℃일 수 있다. 유리전이온도가 약 30℃ 미만일 경우, 내열성이 떨어져 상기 가스 배리어층(31, 32) 등의 형성 시, 기판 전체에 열 변형 등이 일어날 우려가 있고, 상기 유리전이온도가 약 400℃를 초과할 경우, 표면조도를 개선하지 못할 우려가 있다. 상기 버퍼층(21, 22)의 25℃에서 탄성 모듈러스는 예를 들면 약 500 MPa 내지 약 7 GPa, 구체예에서는 약 1 내지 약 5 GPa일 수 있다. 상기 버퍼층(21, 22)의 유리전이온도는 예를 들면 약 50 내지 약 350℃, 구체예에서는 약 150 내지 약 300℃일 수 있다.
구체예에서, 상기 버퍼층(21, 22)은 표면조도(Ra)가 약 100 nm 이하, 예를 들면 약 10 nm 이하, 구체예에서는 약 0.001 내지 약 5 nm인 것이 사용될 수 있다. 상기 범위에서 표면조도를 개선할 수 있고 표시소자용 플렉서블 기판에 적용될 수 있다.
상기 버퍼층(21, 22)은 두께가 약 0.01 내지 약 50 ㎛, 예를 들면 약 1 내지 약 30 ㎛일 수 있다. 상기 범위에서 표면조도 개선과 함께 매트릭스 고유의 물성을 저해하지 않고 발현할 수 있다.
상기 버퍼층(21, 22)은 (메타)아크릴계 수지, 폴리이미드계 수지, 폴리에스테르계 수지 및 폴리카보네이트계 수지, 에폭시계 수지, 우레탄계 수지 등의 수지를 포함할 수 있으며, 이들은 단독 또는 2종 이상 조합하여 적용될 수 있다. 또한, 상기 버퍼층(21, 22)은 상기 수지로 제조된 필름이 사용되거나, 상기 수지 조성물을 상기 매트릭스(10) 상에 도포하고 경화시켜 필름을 형성한 것일 수 있다.
본 발명의 가스 배리어층(31, 32)은 버퍼층(21, 22) 상에 형성될 수 있다. 도 2에는 가스 배리어층(31, 32)이 버퍼층(21, 22)의 양면에 형성된 경우를 도시하였으나, 이에 한정되는 것은 아니며, 버퍼층(21, 22)의 일면에만 형성되어도 무방하다. 가스 배리어층(31, 32)은 통상의 표시소자용 플렉서블 기판에 사용되는 물질로 형성될 수 있으며, 예를 들면, 질화규소, 산화규소, 산화질화규소, 탄화규소, 질화알루미늄, 산화알루미늄, 산화탄탈륨, 산화티타늄, ITO(Indium Tin Oxide) 및 IZO(Indium Zinc Oxide) 등을 1종 이상을 포함할 수 있다. 상기 가스 배리어층은 단일층을 형성하거나 2종 이상의 배리어층이 적층하여 복수층을 형성할 수 있다.
상기 가스 배리어층(31, 32)은 25℃에서 탄성 모듈러스가 약 10 내지 약 500 GPa, 예를 들면 약 15 내지 약 350 GPa일 수 있다. 상기 범위에서 표시소자용 플렉서블 기판이 우수한 유연성, 내투습성, 기계적 물성 및 내구성을 가짐과 동시에 평탄도와 투습성을 낮출 수 있다.
상기 가스 배리어층(31, 32)의 두께는 약 0.01 내지 약 1.0 ㎛일 수 있으나, 이에 제한되지 않는다.
본 발명의 표시소자용 플렉서블 기판(100, 200)은 투습성이 약 0.01 내지 약 0.15 g/m2/day, 예를 들면, 약 0.05 내지 약 0.10 g/m2/day 일 수 있다. 또한, 상기 표시소자용 플렉서블 기판(100, 200)은 열팽창계수가 약 1 내지 약 6 ppm/℃, 예를 들면 약 2 내지 약 5 ppm/℃ 일 수 있다. 상기 표시소자용 플렉서블 기판(100, 200)은 표면조도가 약 40 nm 이하, 예를 들면, 약 0.01 내지 약 35 nm, 구체예에서는 약 0.1 내지 약 30 nm, 다른 구체예에서는 약 0.1 내지 약 10 nm를 달성할 수 있다.
또한, 상기 표시소자용 플렉서블 기판(100, 200)은 ASTM D522-93a에 의거하여, 5 내지 20 mm의 지름을 가지는 각각의 봉을 사용하여, Mandrel Bend Test로 크랙을 평가 시, 크랙이 발생하는 봉의 지름이 약 7 mm 이하, 예를 들면 약 5 내지 약 6 mm일 수 있다.
상기 표시소자용 플렉서블 기판(100, 200)은 25℃에서 탄성 모듈러스(modulus)가 약 100 MPa 이상, 예를 들면 약 1 GPa 이상, 구체예에서는 약 1.2 내지 10 Gpa 일 수 있다. 상기 기판의 탄성 모듈러스는 Fischer사 MH500 Micro indentation 장비를 이용하여 1000 mN 의 힘으로 압력을 가해 측정하여 구한 값이다.
본 발명의 다른 관점은 표시소자용 플렉서블 기판의 제조방법에 관한 것이다.
하나의 구체예에 의한 표시소자용 플렉서블 기판(100)의 제조방법은 보강재(15)가 함침된 상기 실리콘계 고무를 포함하는 매트릭스(10)의 적어도 일면에 버퍼층(21, 22)을 적층하여 적층시트를 형성하는 단계를 포함한다.
다른 구체예에 의한 표시소자용 플렉서블 기판(200)의 제조방법은 보강재(15)가 함침된 상기 실리콘계 고무를 포함하는 매트릭스(10)의 적어도 일면에 버퍼층(21, 22)을 적층하고 상기 버퍼층(21, 22) 상에 가스 배리어층(31, 32)을 형성하여 적층시트를 형성하는 단계를 포함한다.
이때, 상기 버퍼층(21, 22)은 상기 언급한 바와 같이, 25℃에서 탄성 모듈러스가 약 100 MPa 초과 약 10 GPa 이하이고, 유리전이온도가 약 30 내지 약 400℃일 수 있다. 제조된 표시소자용 플렉서블 기판은 Mandrel Bend Test 시 크랙이 발생하는 봉의 지름이 약 7 mm 이하일 수 있다.
일 구체예에서, 상기 적층시트는, 필름 형태를 갖는 버퍼층(21 또는 22)의 일면에 보강재(15)를 놓고, 그리고 상기 보강재(15)에 매트릭스 형성용 수지를 도포하고 경화시켜 매트릭스(10)를 형성함으로써 제조될 수 있다.
상기 버퍼층(21, 22)이 상기 보강재(15)가 함침된 매트릭스(10)의 양면에 형성될 경우를 구체적으로 예시하면 다음과 같다. 우선, 제1 버퍼층(21)의 일면에 보강재(15)를 놓고, 상기 보강재(15)에 상기 매트릭스 형성용 수지를 도포하여 매트릭스(10)를 형성한다. 이와 같이, 매트릭스(10)를 형성한 후 제2 버퍼층(22)을 라미네이션하면, 도 1에 도시된 바와 같이, 제1 버퍼층(21)-보강재(15)가 함침된 매트릭스(10)-제2 버퍼층(22)이 순차적으로 적층된 적층시트가 형성된다. 이때, 상기 제1 및 제2 버퍼층(21, 22)은 상기 언급한 바와 같이, 25℃에서 탄성 모듈러스가 약 100 MPa 내지 약 10 GPa이고, 유리전이온도가 약 30 내지 약 400℃인 것을 특징으로 한다. 상기 적층시트는 그대로 열 또는 자외선에 의해 경화되고, 상기 제1 및 제2 버퍼층(21, 22) 상에 각각 가스 배리어층(31, 32)을 형성한다. 상기 가스 배리어층(31, 32)은 상기 버퍼층(21, 22)의 표면에 물리적 증착, 화학적 증착, 코팅, 스퍼터링, 증발법, 이온 도금법, 습식 코팅법, 유기무기 다층 코팅법 등의 통상의 방법으로 형성될 수 있다.
다른 구체예에서, 상기 적층시트는, 보강재(15)에 매트릭스 형성용 수지를 도포하여 상기 보강재(15)가 함침된 매트릭스(10)를 형성하고; 상기 보강재(15)가 함침된 매트릭스(10)의 적어도 일면에 (메타)아크릴계 수지, 폴리이미드계 수지, 폴리에스테르계 수지 및 폴리카보네이트, 에폭시계, 우레탄계 등의 버퍼층 형성용 수지를 도포하고 경화시켜 버퍼층(21, 22)을 형성함으로써 제조될 수 있다.
다음으로, 상기 버퍼층(21, 22) 상에 가스 배리어층(31, 32)을 형성할 수 있다. 상기 가스 배리어층(31, 32)은 상기 버퍼층(21, 22)의 표면에 물리적 증착, 화학적 증착, 코팅, 스퍼터링, 증발법, 이온 도금법, 습식 코팅법, 유기무기 다층 코팅법 등의 통상의 방법으로 형성될 수 있다.
본 발명의 다른 관점은 상기 플렉서블 기판을 포함하는 디스플레이 장치에 관한 것이다. 상기 디스플레이 장치의 구체적인 예로는 액정디스플레이 장치, 유기발광소자 디스플레이 장치, 터치패널 등을 예시할 수 있으나, 반드시 이에 제한되는 것은 아니다. 상기 디스플레이 장치의 기판으로 본 발명의 플렉서블 기판이 적용될 수 있다.
하나의 구체예에서, 상기 디스플레이 장치는 기판 및 상기 기판의 상부에 형성된 유기발광소자를 포함한다. 도 3은 본 발명의 하나의 구체예에 따른 디스플레이 장치의 단면도이다. 도 3에 도시된 바와 같이, 상기 디스플레이 장치는 기판(100), 및 상기 기판(100) 위에 형성된 유기발광소자를 포함하며, 상기 유기발광소자는 제1 전극(111), 상기 제1 전극(111) 상에 형성된 발광층(112), 및 상기 발광층(112) 상에 형성된 제2 전극(113)을 포함한다. 상기 유기발광소자는 봉지부재(114)에 의해 봉지될 수 있다. 상기 발광층(112)은 제1 및 제2 전극(111, 113)으로부터 전압이 인가되었을 때 발광할 수 있는 유기화합물을 포함한다. 상기 기판(100)으로는 본 발명의 플렉서블 기판이 적용될 수 있다.
도 4는 본 발명의 다른 구체예에 따른 OLED 디스플레이 장치의 일부의 단면도이다. 도 4에 도시된 바와 같이, 상기 디스플레이 장치는 기판(300), 기판(300)의 하부에 형성된 보호필름(120), 기판(300)의 상부에 형성된 버퍼층(25), 버퍼층(25)의 상부에 형성된 게이트 전극(41), 게이트 전극(41)과 상기 버퍼층(25) 사이에 형성된 게이트 절연막(40)을 포함할 수 있다. 게이트 절연막(40) 내부에는 소스 및 드레인 영역(131,133)을 포함하는 활성층(135)이 형성되어 있다. 게이트 절연막(40)의 상부에는 소스 및 드레인 전극(52,53)이 형성된 층간 절연막(51)이 형성되어 있고, 층간 절연막(51) 상부에는 콘택홀(62)을 포함하는 패시베이션층(61), 제1 전극(70), 및 화소 정의막(80)이 형성되어 있다. 화소 정의막(80) 상부에는 유기 발광층(71)과 제2 전극(72)이 형성되어 있다. 여기서, 기판(300)은 본 발명의 구체예들에 따른 플렉서블 기판일 수 있으며, 버퍼층(25)은 필요에 따라 본 발명의 구체예들에 따른 플렉서블 기판에 포함된 버퍼층으로 대체될 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
하기 실시예와 비교예에서 사용된 구체적인 성분의 사양은 다음과 같다.
(a) 매트릭스: 탄성 모듈러스가 10 MPa이고, 유리전이온도가 -30℃인 실리콘 고무(폴리디메틸실록산(PDMS), 제품명: Sylgard 184, 제조사: Dow Corning사)를 사용하였다.
(b) 보강재: 유리 섬유포(제품명: 3313, 제조사: Nittobo사)를 사용하였다.
(c) 버퍼층
(c1) 탄성모듈러스가 2 GPa이고, 유리전이온도가 350℃이며, 표면조도가 6 nm인 폴리이미드 필름(제품명: LaRC™-CP1, 제조사: ManTech)를 사용하였다.
(c2) 탄성모듈러스가 2.0~2.4 GPa이고, 유리전이온도가 150℃이며, 표면조도가 5 nm인 폴리카보네이트 필름(제품명: Lexan, 제조사: Dupont teijin)를 사용하였다.
(c3) 탄성모듈러스가 2.0~2.4 GPa이고, 유리전이온도가 75℃이며, 표면조도가 6 nm인 폴리에틸렌테레프탈레이트 필름(제품명: Skyrol , 제조사: SKC)를 사용하였다.
(c4) 탄성 모듈러스가 4.0~4.5 GPa이고, 유리전이온도가 200℃인 아크릴계 경화 수지(제품명: EA-HG011, 제조사: 오사카가스)를 사용하였다.
(c5) 탄성 모듈러스가 2.0~2.5 GPa이고, 유리전이온도가 100℃인 아크릴계 경화 수지(제품명: OER09, 제조사: 미뉴타텍)를 사용하였다.
(c6) 탄성 모듈러스가 1.0~1.5 GPa이고, 유리전이온도가 50℃인 아크릴계 경화 수지(제품명: CK, 제조사: 노루표페인트)를 사용하였다.
(c7) 탄성 모듈러스가 50 MPa이고, 유리전이온도가 -30℃인 실리콘 고무(폴리디메틸실록산(PDMS), 제품명: Sylgard 184, 제조사: Dow Corning사)와 실리카 입자(제품명: Aerosil, 제조사: Evonik Degussa사)를 혼합한 조성물을 사용하였다.
(c8) 탄성 모듈러스가 100 MPa이고, 유리전이온도가 -30℃인 실리콘 고무(폴리디메틸실록산(PDMS), 제품명: Sylgard 184, 제조사: Dow Corning사)와 실리카 입자(제품명: Aerosil380, 제조사: Evonik Degussa사)를 혼합한 조성물을 사용하였다.
(c9) 탄성 모듈러스가 10 MPa이고, 유리전이온도가 -30℃인 실리콘 고무(폴리디메틸실록산(PDMS), 제품명: Sylgard 184, 제조사: Dow Corning사)를 사용하였다.
(d) 가스 배리어층: 산화규소 및 질화규소를 사용하였다.
상기 매트릭스 또는 버퍼층의 탄성 모듈러스(elastic modulus)는 이들 각각을 필름 형태로 만들어 100N 하중 셀을 기준으로 MTS 얼라이언스(Alliance) RT/5 시험 프레임을 사용하여 25℃에서 측정한 값이다. 구체적으로, 시험편을 25 mm 떨어진 간격의 2개의 공기 그립으로 가중시키고 1 mm/분의 크로스헤드 속도에서 끌어당겼다. 하중 및 변위 데이타를 연속적으로 수집하고, 하중 변위 곡선의 초기 부분의 최대 경사를 영률로 취하여 구할 수 있다.
실시예 1
유리 기판 위에 10 ㎛ 두께의 투명 이미드 필름(c1)을 놓고 그 위에 보강재(b)를 놓은 후, 상기 보강재 위에 매트릭스 수지(a)를 도포하였다. 상기 매트릭스 수지 위에 다시 10 ㎛ 두께의 투명 이미드 필름(c1)을 놓고 유리 기판을 놓은 다음, 라미네이션(lamination)을 통해 매트릭스 수지에 보강재를 함침시켰다. 열경화시킨 후 유리 기판을 제거하여 매트릭스에 보강재가 함침된 두께 100 ㎛의 적층시트를 제조하였다.
실시예 2
10 ㎛ 두께의 투명 이미드 필름 대신에 30 ㎛ 두께의 투명 이미드 필름(c1)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 3
10 ㎛ 두께의 투명 이미드 필름 대신에 30 ㎛ 두께의 폴리카보네이트 필름(c2)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 4
10 ㎛ 두께의 투명 이미드 필름 대신에 30 ㎛ 두께의 폴리에틸렌테레프탈레이트 필름(c3)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다.
실시예 5
상기 보강재(b) 위에 매트릭스 수지(a)를 도포하여 두께 90 ㎛의 보강재가 함침된 매트릭스(실리콘 FRP)를 제조하였다. 상기 보강재가 함침된 매트릭스 수지의 양면에 아크릴계 경화수지(c4)를 도포하고 경화시켜 버퍼층(c)을 형성함으로써, 두께 100 ㎛의 적층시트를 제조하였다. 상기 적층시트에 스퍼터링 방법으로 산화규소와 질화규소를 번갈아서 사용하여 100 nm 두께의 가스 배리어층(d)을 형성함으로써 표시소자용 플렉서블 기판을 제조하였다.
실시예 6
상기 아크릴계 경화수지(c4) 대신에 아크릴계 경화수지(c5)를 사용한 것을 제외하고는 상기 실시예 5와 동일하게 수행하였다.
실시예 7
상기 아크릴계 경화수지(c4) 대신에 아크릴계 경화수지(c6)를 사용한 것을 제외하고는 상기 실시예 5와 동일하게 수행하였다.
비교예 1
유리 기판 위에 보강재(b)를 놓은 후, 상기 보강재 위에 매트릭스 수지(a)를 도포하였다. 상기 매트릭스 수지 위에 유리 기판을 놓은 다음, 라미네이션(lamination)을 통해 매트릭스 수지에 보강재를 함침시켰다. 열경화시킨 후 유리 기판을 제거하여 매트릭스에 보강재가 함침된 두께 90 ㎛의 시트를 제조하였다. 상기 시트에 스퍼터링 방법으로 산화규소와 질화규소를 번갈아서 사용하여 100 nm 두께의 가스 배리어층(d)을 형성함으로써 표시소자용 플렉서블 기판을 제조하였다.
비교예 2
유리 기판 위에 보강재(b)를 놓은 후, 상기 보강재 위에 매트릭스 수지(a)를 도포하였다. 상기 매트릭스 수지 위에 유리 기판을 놓은 다음, 라미네이션(lamination)을 통해 매트릭스 수지에 보강재를 함침시켰다. 열경화시킨 후 유리 기판을 제거하여 매트릭스에 보강재가 함침된 두께 90 ㎛의 시트를 제조하였다. 상기 시트의 표면을 플라즈마 처리하고 실리콘 고무(c9)를 양면에 각각 5 ㎛ 두께로 코팅하고 자외선 경화시켜 버퍼층(c)을 형성함으로써, 100 ㎛ 두께의 적층시트를 제조하였다. 상기 적층시트에 스퍼터링 방법으로 산화규소와 질화규소를 번갈아서 사용하여 100 nm 두께의 가스 배리어층(d)을 형성함으로써 표시소자용 플렉서블 기판을 제조하였다.
비교예 3
상기 실리콘 고무(c9) 대신에 조성물(c7)을 사용한 것을 제외하고는 상기 비교예 2와 동일하게 수행하였다.
비교예 4
상기 실리콘 고무(c9) 대신에 조성물(c8)을 사용한 것을 제외하고는 상기 비교예 2와 동일하게 수행하였다.
상기 실시예 및 비교예에서 제조한 표시소자용 플렉서블 기판에 대한 구체적인 조성은 하기 표 1과 같다.
표 1
매트릭스 수지 버퍼층(두께) 배리어층
실시예 1 실리콘 고무(a) 투명 이미드(c1)(10㎛) -
실시예 2 실리콘 고무 (a) 투명 이미드(c1) (30㎛) -
실시예 3 실리콘 고무 (a) PC(c2) (30㎛) -
실시예 4 실리콘 고무 (a) PET(c3) (30㎛) -
실시예 5 실리콘 고무 (a) 아크릴 경화 수지(c4) (5㎛) SiO2/SiN
실시예 6 실리콘 고무 (a) 아크릴 경화 수지(c5) (5㎛) SiO2/SiN
실시예 7 실리콘 고무 (a) 아크릴 경화 수지(c6) (5㎛) SiO2/SiN
비교예 1 실리콘 고무 (a) - SiO2/SiN
비교예 2 실리콘 고무 (a) 실리콘 고무(c9) (5㎛) SiO2/SiN
비교예 3 실리콘 고무 (a) 실리콘 고무(c7) (5㎛) SiO2/SiN
비교예 4 실리콘 고무 (a) 실리콘 고무(c8) (5㎛) SiO2/SiN
상기 실시예와 비교예에서 제조한 표시소자용 플렉서블 기판에 대해 투습성, 열팽창계수, 표면조도, 크랙 및 박리 발생 유무, 및 탄성 모듈러스를 측정하고 그 결과를 하기 표 2에 나타내었다.
물성 평가 방법
(1) 투습성(단위: g/m2/day): MOCON 장비를 사용하여 ASTM F 1249 방법을 사용하여 측정하였다. 준비된 시편을 30mm x 40mm 크기로 자른 후 중앙 부위가 뚫린 지그에 끼워 측정하였다. 25℃에서 수증기압은 상대습도 100%에서 처리하였다.
(2) 열팽창계수(단위: ppm/℃): TMA(Texas Instrument, Q40) 장비를 사용하고 ASTM E 831 방법을 사용하여 측정하였다.
(3) 표면조도(표면조도, 단위: nm): Optical Surface Profiler(ZYGO, 700s) 장비를 사용하여 평탄도(Ra)를 측정하였다.
(4) 크랙 및 박리 발생 유무: ASTM D522-93a에 의거하여, 5 내지 20 mm의 지름을 가지는 각각의 봉을 사용하여, Mandrel Bend Test로 크랙을 평가하였다. 이 때 크랙이 발생했을 때의 봉의 지름을 측정하였다. 박리발생 유무는 가로(1mm)×세로(1mm)로 표면에 총 100개의 흠집을 내고 3M 테이프를 탈부착하여 박리 발생 개수로 평가하였다.
(5) 탄성 모듈러스: 기판의 모듈러스는 Fischer사 MH500 Micro indentation 장비를 이용하여 상기 실시예 및 비교예에서 제조한 기판에 1000 mN 의 힘으로 압력을 가해 측정하였다.
표 2
투습성(g/m2/day) 열팽창계수(ppm/℃) 표면 조도(nm) 크랙 발생 봉의 지름(mm) 박리 발생(개수) 탄성 모듈러스(GPa)
실시예 1 0.1 3~5 9 6 0 1.8
실시예 2 0.08 3~5 5 6 0 2.0
실시예 3 0.1 3~5 8 6 0 2.1
실시예 4 0.1 3~5 9 6 0 2.1
실시예 5 0.1 3~5 20 5 0 4.3
실시예 6 0.1 3~5 22 6 0 2.0
실시예 7 0.1 3~5 34 6 0 1.3
비교예 1 2.5 3~5 520 11 100 0.01
비교예 2 2.5 3~5 121 11 100 0.01
비교예 3 2.4 3~5 118 8 100 0.05
비교예 4 2.3 3~5 87 8 100 0.09
상기 표 2의 결과로부터, 실리콘계 매트릭스(실리콘 FRP)에 본 발명에 따른 고내열성 및 고평탄도 버퍼층을 적용한 실시예 1 내지 7은 투습성, 저열팽창계수, 표면조도가 모두 우수하고, 크랙 및 박리 현상이 일어나지 않음을 알 수 있다.
반면, 버퍼층을 사용하지 않은 비교예 1과 탄성모듈러스 및/또는 유리전이온도가 본 발명의 범위를 벗어나는 버퍼층을 사용한 비교예 2 내지 4는 표면조도 값이 크고, 크랙 및 박리 현상이 발생하여 표시소자용 플렉서블 기판으로 적합하지 않음을 알 수 있다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.

Claims (18)

  1. 매트릭스;
    상기 매트릭스에 함침된 보강재; 및
    상기 매트릭스의 적어도 일면에 형성된 버퍼층;을 포함하며,
    Mandrel Bend Test시 크랙이 발생하는 봉의 지름이 7 mm 이하인 표시소자용 플렉서블 기판.
  2. 제1항에 있어서, 상기 표시소자용 플렉서블 기판은 탄성 모듈러스가 100 MPa 이상인 표시소자용 플렉서블 기판.
  3. 제1항에 있어서, 상기 표시소자용 플렉서블 기판은 탄성 모듈러스가 1GPa 이상인 표시소자용 플렉서블 기판.
  4. 제1항에 있어서, 상기 매트릭스는 실리콘계 고무를 포함하는 표시소자용 플렉서블 기판.
  5. 제1항에 있어서, 상기 표시소자용 플렉서블 기판은 상기 버퍼층상에 배리어층이 더 형성된 표시소자용 플렉서블 기판.
  6. 제1항에 있어서, 상기 표시소자용 플렉서블 기판은 표면조도(Ra)가 40 nm 이하인 것을 특징으로 하는 표시소자용 플렉서블 기판.
  7. 제1항에 있어서, 상기 버퍼층은 두께가 0.01 내지 50 ㎛인 것을 특징으로 하는 표시소자용 플렉서블 기판.
  8. 제1항에 있어서, 상기 버퍼층은 (메타)아크릴계 수지, 폴리이미드계 수지, 폴리에스테르계 수지, 폴리카보네이트계 수지, 에폭시계 수지 및 우레탄계 수지 중 1종 이상을 포함하는 것을 특징으로 하는 표시소자용 플렉서블 기판.
  9. 제1항에 있어서, 상기 보강재는 유리섬유, 유리섬유포(glass fiber cloth), 유리 직물(glass fabric), 유리 부직포, 유리 메쉬(glass mesh), 유리 비드, 유리 플레이크(glass flake), 실리카 입자 및 콜로이달 실리카 중 1종 이상을 포함하는 것을 특징으로 하는 표시소자용 플렉서블 기판.
  10. 제1항에 있어서, 상기 가스 배리어층은 질화규소, 산화규소, 산화질화규소, 탄화규소, 질화알루미늄, 산화알루미늄, 산화탄탈륨, 산화티타늄, ITO(Indium Tin Oxide) 및 IZO(Indium Zinc Oxide) 중 1종 이상을 포함하는 것을 특징으로 하는 표시소자용 플렉서블 기판.
  11. 제1항에 있어서, 상기 가스 배리어층은 25℃에서 탄성 모듈러스가 약 10 내지 약 500 GPa인 것을 특징으로 하는 표시소자용 플렉서블 기판.
  12. 제1항에 있어서, 상기 표시소자용 플렉서블 기판은 투습성이 약 0.1 g/m2/day 이하인 표시소자용 플렉서블 기판.
  13. 보강재가 함침된, 실리콘계 고무를 포함하는 매트릭스의 적어도 일면에 버퍼층을 적층하여 적층시트를 형성하는 것을 포함하는 표시소자용 플렉서블 기판 제조방법이며,
    상기 표시소자용 플렉서블 기판은 Mandrel Bend Test 시 크랙이 발생하는 봉의 지름이 7 mm 이하인 것을 특징으로 하는 표시소자용 플렉서블 기판 제조방법.
  14. 제13항에 있어서, 상기 적층시트는,
    버퍼층의 일면에 보강재를 놓고; 그리고
    상기 보강재에 매트릭스 형성용 수지를 도포하고 경화시키는 단계를 포함하여 제조되는 것을 특징으로 하는 표시소자용 플렉서블 기판 제조방법.
  15. 제13항에 있어서, 상기 적층시트는,
    보강재에 매트릭스 형성용 수지를 도포하여 상기 보강재가 함침된 매트릭스를 형성하고; 그리고
    상기 보강재가 함침된 매트릭스의 적어도 일면에 버퍼층 형성용 수지를 도포하고 경화시키는 단계를 포함하여 제조되는 것을 특징으로 하는 표시소자용 플렉서블 기판 제조방법.
  16. 제13항에 있어서, 상기 적층시트는
    제1 버퍼층의 일면에 보강재를 놓고;
    상기 보강재에 매트릭스 형성용 수지를 도포하여 매트릭스를 형성하고;
    상기 매트릭스 위에 제2 버퍼층을 라미네이션하여 경화시키는 단계를 포함하여 제조되는 것을 특징으로 하는 표시소자용 플렉서블 기판 제조방법.
  17. 제13항에 있어서, 상기 버퍼층 상에 가스 배리어층을 형성하는 것을 더 포함하는 표시소자용 플렉서블 기판 제조방법.
  18. 기판; 상기 기판 위에 형성된 유기발광소자; 및 상기 유기발광소자를 봉지하는 봉지부재를 포함하며, 상기 기판은 제1항 내지 제12항 중 어느 한 항의 표시소자용 플렉서블 기판인 것인 디스플레이 장치.
PCT/KR2013/006394 2012-08-17 2013-07-17 표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치 WO2014027761A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120090247 2012-08-17
KR10-2012-0090247 2012-08-17

Publications (1)

Publication Number Publication Date
WO2014027761A1 true WO2014027761A1 (ko) 2014-02-20

Family

ID=50269292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006394 WO2014027761A1 (ko) 2012-08-17 2013-07-17 표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치

Country Status (2)

Country Link
KR (1) KR101669317B1 (ko)
WO (1) WO2014027761A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430428A (zh) * 2020-04-10 2020-07-17 京东方科技集团股份有限公司 柔性显示面板及其制作方法、显示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160112600A (ko) * 2015-03-20 2016-09-28 동우 화인켐 주식회사 필름 터치 센서 및 이의 제조 방법
KR102094450B1 (ko) 2015-08-03 2020-03-27 주식회사 엘지화학 플렉시블 플라스틱 필름
KR101862252B1 (ko) 2015-08-03 2018-05-29 주식회사 엘지화학 플렉시블 플라스틱 필름
KR102107736B1 (ko) 2015-08-03 2020-05-07 주식회사 엘지화학 플렉시블 플라스틱 필름용 코팅 조성물
KR102185633B1 (ko) * 2018-01-18 2020-12-02 포항공과대학교 산학협력단 유연 기판, 이의 제조방법, 및 이를 포함하는 유연 전자 장치
KR102545950B1 (ko) 2018-07-12 2023-06-23 삼성디스플레이 주식회사 표시 장치
KR102176819B1 (ko) * 2019-04-08 2020-11-10 한국화학연구원 신축성 기판 및 이를 포함하는 신축성 인쇄 회로기판
KR20230036010A (ko) * 2021-09-06 2023-03-14 엘지이노텍 주식회사 탄성 부재 및 이를 포함하는 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060041696A (ko) * 2004-02-06 2006-05-12 주식회사 엘지화학 다층 플라스틱 기판 및 그 제조방법
KR20090074998A (ko) * 2008-01-03 2009-07-08 주식회사 엘지화학 치수 안정성과 가스차단 특성이 우수한 다층 구조의플라스틱 기판 및 그 제조방법
KR101097431B1 (ko) * 2009-04-28 2011-12-23 제일모직주식회사 디스플레이 패널용 플렉서블 기판 및 그 제조 방법
JP2012509212A (ja) * 2008-11-19 2012-04-19 エルジー・ケム・リミテッド 多層フィルム及びその製造方法
JP2012509213A (ja) * 2008-11-19 2012-04-19 エルジー・ケム・リミテッド 多層プラスチック基板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060041696A (ko) * 2004-02-06 2006-05-12 주식회사 엘지화학 다층 플라스틱 기판 및 그 제조방법
KR20090074998A (ko) * 2008-01-03 2009-07-08 주식회사 엘지화학 치수 안정성과 가스차단 특성이 우수한 다층 구조의플라스틱 기판 및 그 제조방법
JP2012509212A (ja) * 2008-11-19 2012-04-19 エルジー・ケム・リミテッド 多層フィルム及びその製造方法
JP2012509213A (ja) * 2008-11-19 2012-04-19 エルジー・ケム・リミテッド 多層プラスチック基板及びその製造方法
KR101097431B1 (ko) * 2009-04-28 2011-12-23 제일모직주식회사 디스플레이 패널용 플렉서블 기판 및 그 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430428A (zh) * 2020-04-10 2020-07-17 京东方科技集团股份有限公司 柔性显示面板及其制作方法、显示装置
CN111430428B (zh) * 2020-04-10 2023-02-07 京东方科技集团股份有限公司 柔性显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
KR101669317B1 (ko) 2016-10-25
KR20140024216A (ko) 2014-02-28

Similar Documents

Publication Publication Date Title
WO2014027761A1 (ko) 표시소자용 플렉서블 기판, 그 제조방법 및 이를 이용한 디스플레이 장치
WO2018135866A1 (ko) Oled 패널 하부 보호필름 및 이를 포함하는 유기발광표시장치
WO2013042938A2 (ko) 복합시트, 이를 포함하는 표시소자용 기판 및 이를 포함하는 디스플레이 장치
WO2014168423A1 (en) Polyimide cover substrate
WO2013062246A1 (ko) 그라핀층을 포함하는 가스 배리어 필름, 이를 포함하는 플렉시블 기판 및 그 제조방법
WO2012157960A2 (ko) 다층 플라스틱 기판 및 이의 제조방법
EP2981413A1 (en) Polyimide cover substrate
WO2010058988A2 (ko) 다층 플라스틱 기판 및 이의 제조방법
WO2015076505A1 (ko) 복합 편광판 일체형 터치 감지 전극 및 이를 구비한 터치 스크린 패널
WO2015080346A1 (ko) 점착제 조성물, 이로부터 형성된 점착 필름 및 이를 포함하는 광학표시장치
WO2017188683A1 (ko) 터치센서 일체형 컬러필터 및 그 제조 방법
WO2014204165A9 (ko) 편광판 및 이를 포함하는 디스플레이 장치
WO2013089389A1 (ko) 유리기판 대용으로 사용할 수 있는 고강도 투명 플라스틱 시트 및 그 제조 방법
WO2018135865A1 (ko) Oled 패널 하부 보호필름 및 이를 포함하는 유기발광표시장치
WO2012067285A1 (ko) 투명 플렉시블 필름 및 이의 제조방법
WO2016021862A1 (en) Touch window
WO2016093557A1 (ko) 필름 터치 센서 및 그의 제조 방법
WO2018143594A1 (ko) 투명 적층체
WO2016153192A1 (ko) 필름 터치 센서 제조 방법 및 제조 장치
WO2017052177A1 (ko) 필름 터치 센서 및 그 제조 방법
WO2019083246A2 (ko) 광학 필름, 광학 필름 제조 방법 및 유기 발광 전자 장치 제조 방법
WO2013103259A1 (ko) 시인성이 우수한 양면 투명 전도성 필름 및 그 제조 방법
WO2015020336A1 (ko) 터치 감지 전극 및 이를 포함하는 터치 스크린 패널
WO2020013660A1 (ko) 터치패널용 저유전 점착필름
WO2016018030A1 (ko) 필름 터치 센서 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879595

Country of ref document: EP

Kind code of ref document: A1