WO2014024850A1 - GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME - Google Patents

GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME Download PDF

Info

Publication number
WO2014024850A1
WO2014024850A1 PCT/JP2013/071172 JP2013071172W WO2014024850A1 WO 2014024850 A1 WO2014024850 A1 WO 2014024850A1 JP 2013071172 W JP2013071172 W JP 2013071172W WO 2014024850 A1 WO2014024850 A1 WO 2014024850A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
solar cell
glass substrate
less
cigs
Prior art date
Application number
PCT/JP2013/071172
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 安間
裕 黒岩
朋美 安部
玲大 臼井
健 岡東
剛 富澤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR20147034799A priority Critical patent/KR20150040251A/en
Priority to JP2014529494A priority patent/JPWO2014024850A1/en
Publication of WO2014024850A1 publication Critical patent/WO2014024850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a glass substrate for a solar cell in which a photoelectric conversion layer is formed between glass substrates and a solar cell using the same. More specifically, the glass substrate typically includes a glass substrate and a cover glass, and a Cu— layer in which a photoelectric conversion layer mainly composed of a group 11, group 13, or group 16 element is formed on the glass substrate.
  • the present invention relates to a glass substrate for an In—Ga—Se solar cell and a solar cell using the same.
  • Group 11-13, 11-16 compound semiconductors having a chalcopyrite crystal structure and cubic or hexagonal 12-16 group compound semiconductors have a large absorption coefficient for light in the visible to near-infrared wavelength range. have. Therefore, it is expected as a material for high-efficiency thin film solar cells.
  • Typical examples include Cu (In, Ga) Se 2 (hereinafter referred to as “CIGS” or “Cu—In—Ga—Se”) and CdTe.
  • CIGS thin film solar cells (hereinafter also referred to as “CIGS solar cells”) are inexpensive and have an average thermal expansion coefficient close to that of CIGS compound semiconductors, soda lime glass is used as a substrate to obtain a solar cell. ing. In order to obtain an efficient solar cell, a glass material that can withstand a high heat treatment temperature has been proposed (see Patent Documents 1 to 5).
  • a CIGS photoelectric conversion layer (hereinafter also referred to as “CIGS layer”) is formed on the glass substrate.
  • CIGS layer A CIGS photoelectric conversion layer
  • a solar cell with high power generation efficiency is produced at a higher temperature. Heat treatment is preferred, and the glass substrate is required to withstand it and satisfy a predetermined average thermal expansion coefficient.
  • Patent Document 1 proposes a glass composition having a relatively high annealing point, but the invention described in Patent Document 1 does not necessarily have high power generation efficiency.
  • Patent Documents 2 and 3 solar cell glass having a high strain point and satisfying a predetermined average thermal expansion coefficient is proposed.
  • the problem of Patent Document 2 is to secure heat resistance and improve productivity
  • Patent Document 3 is to improve surface quality and improve devitrification resistance, both of which solve problems related to power generation efficiency. Not. Therefore, it cannot be said that the inventions described in Patent Documents 2 and 3 have high power generation efficiency.
  • Patent Documents 4 and 5 there are proposals for high strain point glass substrates, but these are mainly intended for plasma display applications and have different problems.
  • the inventions described in Patent Documents 4 and 5 have high power generation. It is not necessarily efficient.
  • Patent Document 3 proposes a glass containing a large amount of boron oxide and having a high strain point and satisfying a predetermined average thermal expansion coefficient.
  • boron diffuses into the CIGS layer, which is a p-type semiconductor, and acts as a donor, which may reduce power generation efficiency.
  • a boron removal facility is required, which tends to increase costs.
  • boron in the glass is reduced, but the power generation efficiency is insufficient with the glass composition specifically described, and there is room for improvement in terms of further improvement in power generation efficiency.
  • Patent Document 7 discloses a method of improving efficiency by diffusing Na in glass into a CIGS layer.
  • the glass substrate used in the CIGS solar cell has a good balance between high power generation efficiency, high glass transition temperature, predetermined average thermal expansion coefficient, solubility during plate glass production, formability, and devitrification prevention. Was difficult.
  • the present invention relates to a Cu—In—Ga—Se solar cell having a good balance of high power generation efficiency, high glass transition temperature, predetermined average coefficient of thermal expansion, solubility during plate glass production, formability, and devitrification prevention.
  • An object of the present invention is to provide a glass substrate for use and a solar cell using the same.
  • the inventors of the present application have found that a specific composition of the glass substrate for a Cu—In—Ga—Se solar cell enables high power generation efficiency, high glass transition temperature, predetermined It was found that a glass substrate for a Cu—In—Ga—Se solar cell having a good balance of the average thermal expansion coefficient, solubility during production of sheet glass, formability, and devitrification prevention properties can be obtained.
  • the glass substrate for a Cu—In—Ga—Se solar cell is expressed by a mass percentage based on the following oxide: 45 to 70% of SiO 2 10-20% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 0-6% MgO CaO 0-4%, 9.5-20% of SrO, BaO 0-5%, ZrO 2 0-8%, 3-10% Na 2 O, 2 to 9.5% of K 2 O, contains.
  • the glass substrate for a Cu—In—Ga—Se solar cell of the present invention has high power generation efficiency, high glass transition temperature, predetermined average thermal expansion coefficient, solubility during plate glass production, formability, and devitrification prevention characteristics. Can be provided in a balanced manner, and a solar cell with high power generation efficiency can be provided by using the glass substrate for CIGS solar cell of the present invention.
  • FIG. 1 is sectional drawing which represents typically an example of embodiment of the solar cell using the glass substrate for CIGS solar cells of this invention.
  • FIG. 2 shows a solar cell (a) produced on a glass substrate for evaluation in the example and a cross-sectional view (b) thereof.
  • FIG. 3 shows the top view of the several photovoltaic cell produced on the glass substrate for evaluation in an Example.
  • the glass substrate for a Cu—In—Ga—Se solar cell of the present invention is expressed by a mass percentage based on the following oxide, 45 to 70% of SiO 2 10-20% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 0-6% MgO CaO 0-4%, 9.5-20% of SrO, BaO 0-5%, ZrO 2 0-8%, 3-10% Na 2 O, 2 to 9.5% of K 2 O, contains.
  • CGS Cu—In—Ga—Se is hereinafter referred to as “CIGS”.
  • the glass transition temperature (Tg) of the glass substrate for CIGS solar cell of the present invention is 640 ° C. or higher and 700 ° C. or lower, which is higher than the glass transition temperature of soda lime glass.
  • the glass transition temperature (Tg) is preferably 645 ° C. or higher, more preferably 650 ° C. or higher, and further preferably 655 ° C. or higher in order to ensure the formation of the CIGS layer at a high temperature.
  • the temperature is preferably 690 ° C. or lower. More preferably, it is 685 degrees C or less, More preferably, it is 680 degrees C or less.
  • the average thermal expansion coefficient at 50 to 350 ° C. of the glass substrate for CIGS solar cell of the present invention is 60 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. If it is less than 60 ⁇ 10 ⁇ 7 / ° C. or more than 110 ⁇ 10 ⁇ 7 / ° C., the difference in thermal expansion from the CIGS layer becomes too large, and defects such as peeling tend to occur.
  • it is 65 ⁇ 10 ⁇ 7 / ° C. or more, more preferably 70 ⁇ 10 ⁇ 7 / ° C. or more, and further preferably 75 ⁇ 10 ⁇ 7 / ° C. or more.
  • the Mo (molybdenum) film that is a positive electrode it is preferably 100 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 95 ⁇ 10 ⁇ 7 / ° C. or less, and still more preferably 90 ⁇ 10 ⁇ 7 / ° C. or less.
  • the relationship between the temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s and the devitrification temperature (T L ) is T 4 ⁇ T L ⁇ ⁇ 30 ° C.
  • T 4 The -T L is lower than -30 ° C., devitrification is likely to occur at the time of sheet glass forming, there is a possibility that the molding of the glass plate becomes difficult.
  • T 4 -T L is preferably -10 ° C. or higher, more preferably 10 ° C. or higher, more preferably 30 ° C. or higher, particularly preferably 50 ° C. or higher.
  • the devitrification temperature refers to the maximum temperature at which crystals are not generated on the glass surface and inside when the glass is held at a specific temperature for 17 hours.
  • T 4 is 1230 ° C. or less.
  • T 4 is preferably 1220 ° C. or less, more preferably 1210 ° C. or less, more preferably 1200 ° C. or less, particularly preferably 1190 ° C. or less.
  • the glass substrate for CIGS solar cell of the present invention has a temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s at 1620 ° C. in consideration of solubility of glass, that is, improvement in homogeneity and productivity.
  • T 2 is preferably 1590 ° C. or lower, more preferably 1570 ° C. or lower, further preferably 1560 ° C. or lower, and particularly preferably 1550 ° C. or lower.
  • a glass substrate for a CIGS solar cell of the present invention has a density of 2.45 g / cm 3 or more and 2.9 g / cm 3 or less. When the density exceeds 2.9 g / cm 3 , the product mass becomes heavy, which is not preferable. Moreover, the glass substrate becomes brittle and easily broken, which is not preferable. Density is more preferably 2.85 g / cm 3 or less, more preferably 2.82 g / cm 3 or less, particularly preferably 2.8 g / cm 3 or less.
  • the density is less than 2.45 g / cm 3 , only light elements having a small atomic number can be used as constituent elements of the glass substrate, and there is a possibility that desired power generation efficiency and glass viscosity cannot be obtained. . More preferably 2.5 g / cm 3 or more, more preferably 2.55 g / cm 3 or more, and particularly preferably 2.6 g / cm 3 or more.
  • SiO 2 is a component that forms a glass skeleton. If it is less than 45% by mass (hereinafter, “mass%” is simply referred to as “%”), the heat resistance and chemical durability of the glass substrate decrease, and the average heat The expansion coefficient may increase. Preferably it is 48% or more, More preferably, it is 50% or more, More preferably, it is 52% or more. However, if it exceeds 70%, the high-temperature viscosity of the glass is increased, and there is a possibility that a problem of deterioration of solubility occurs. Preferably it is 65% or less, More preferably, it is 60% or less, More preferably, it is 58% or less.
  • Al 2 O 3 increases the glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. If the content is less than 10%, the glass transition temperature may be lowered. In addition, the average thermal expansion coefficient may be out of the predetermined range. Preferably it is 11% or more, More preferably, it is 14% or more, More preferably, it is 15% or more. However, if it exceeds 20%, the high-temperature viscosity of the glass is increased, and the solubility may be deteriorated. Further, the devitrification temperature is increased, and the moldability may be deteriorated. In addition, power generation efficiency may be reduced. Preferably it is 19% or less, More preferably, it is 18% or less, More preferably, it is 17% or less, Most preferably, it is 16% or less.
  • B 2 O 3 may be contained up to 0.5% in order to improve the solubility. If the content exceeds 0.5%, the glass transition temperature may decrease or the average thermal expansion coefficient may decrease, which is not preferable for the process of forming the CIGS layer. Moreover, devitrification temperature rises and it becomes easy to devitrify, and there exists a possibility that plate glass shaping
  • MgO may be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. Preferably it is 0.05% or more, More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. However, if it exceeds 6%, the devitrification temperature may increase. Furthermore, power generation efficiency may be reduced. Preferably it is 5% or less, More preferably, it is 4.5% or less, More preferably, it is 4% or less.
  • CaO may be contained because it has an effect of reducing the viscosity at the time of melting the glass and promoting the melting. Preferably it is 0.05% or more, More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. However, since it has an effect of inhibiting Na diffusion, it is contained in a range of less than 4%, preferably 3.5% or less, more preferably 3% or less.
  • SrO has the effect of lowering the viscosity during melting of the glass, maintaining the average thermal expansion coefficient at a predetermined value, and promoting melting. Furthermore, since there exists an effect which accelerates
  • BaO can be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. Preferably it is 0.1% or more, More preferably, it is 0.2% or more, More preferably, it is 0.5% or more. However, if the content exceeds 5%, the power generation efficiency decreases, the average thermal expansion coefficient of the glass substrate increases, the density increases, and the glass may become brittle. In addition, the Young's modulus may be reduced. Preferably it is 4% or less, More preferably, it is 3% or less, More preferably, it is 2% or less.
  • ZrO 2 can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if the content exceeds 8%, the average thermal expansion coefficient of the glass substrate decreases, the power generation efficiency decreases, the devitrification temperature rises, and devitrification easily occurs, making it difficult to form a sheet glass. Preferably it is 7% or less, More preferably, it is 6% or less, More preferably, it is 5.5% or less. Further, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 1.5% or more.
  • TiO 2 Since the inclusion of TiO 2 devitrification temperature increases, it is preferred that TiO 2 is not contained.
  • the glass substrate for a CIGS solar cell of the present invention is likely to generate a foam layer on the surface of the molten glass as compared with ordinary soda lime glass. When the foam layer is generated, the temperature of the molten glass does not rise, it becomes difficult to clarify, and the productivity tends to deteriorate.
  • a titanium compound may be supplied to the foam layer generated on the surface of the molten glass as an antifoaming agent. The titanium compound is taken into the molten glass and exists as TiO 2 .
  • This titanium compound may be an inorganic titanium compound (titanium tetrachloride, titanium oxide, etc.) or an organic titanium compound.
  • examples of the organic titanium compound include titanic acid esters or derivatives thereof, titanium chelates or derivatives thereof, titanium acylates or derivatives thereof, and oxalic acid titanates. For the above reason, TiO 2 is allowed to be contained in the glass by 0.2% or less as an impurity.
  • MgO, CaO, SrO and BaO are at least one selected from the group consisting of MgO, CaO, and BaO in order to lower the viscosity at the time of melting the glass, promote the melting, and bring the thermal expansion coefficient into a predetermined range.
  • the total amount of SrO and SrO (that is, (MgO + CaO + SrO + BaO)) is preferably 17% or more. 18% or more is more preferable, and 19% or more is more preferable. However, if the total amount exceeds 30%, the devitrification temperature rises and the moldability may be deteriorated. Therefore, 30% or less is preferable, 26% or less is more preferable, and 24% or less is more preferable.
  • the proportion of SrO in the MgO, CaO, SrO and BaO is preferably 0.6 or more. That is, the ratio of SrO to the total content of MgO, CaO, SrO and BaO (hereinafter, the total content of these alkaline earth metal oxides (RO) is also referred to as (MgO + CaO + SrO + BaO)), that is, SrO / (MgO + CaO + SrO + BaO) is preferably 0.6 or more.
  • the effect of promoting the diffusion of Na to the CIGS layer on the glass when the CIGS solar cell is produced can be further enhanced. More preferably, it is 0.65 or more, More preferably, it is 0.7 or more.
  • Na 2 O is a component that contributes to improving the power generation efficiency of CIGS solar cells, and is an essential component. Further, it has the effect of lowering the viscosity at the glass melting temperature and facilitating melting, so 3 to 10% is contained. Na diffuses into the CIGS layer formed on the glass substrate to increase the power generation efficiency. However, if the content is less than 3%, Na diffusion to the CIGS layer on the glass substrate becomes insufficient, and the power generation efficiency is also insufficient. There is a risk of becoming.
  • the content is preferably 3.5% or more, more preferably 4% or more, and even more preferably 4.5% or more. When the Na 2 O content exceeds 10%, the average thermal expansion coefficient is out of the predetermined range, and the glass transition temperature tends to decrease.
  • the Young's modulus may be reduced.
  • excessive Na may deteriorate the Mo (molybdenum) film formed as a positive electrode, leading to a decrease in power generation efficiency.
  • the content is preferably 9% or less, more preferably 8% or less, and even more preferably 7% or less.
  • K 2 O has the same effect as Na 2 O, and also has a function of suppressing changes in the CIGS composition in the crystal growth of CIGS at a high temperature in the CIGS solar cell manufacturing process. It is contained in an amount of 2 to 9.5% to prevent the decrease. However, if it exceeds 9.5%, the glass transition temperature is lowered, and the average thermal expansion coefficient may be out of the predetermined range. Alternatively, the Young's modulus may be reduced. Preferably it is 3% or more, More preferably, it is 3.5% or more, More preferably, it is 4% or more. Further, it is preferably 9% or less, more preferably 8% or less, and further preferably 7% or less.
  • the glass substrate for CIGS solar cell of the present invention consists essentially of the above-mentioned mother composition, but other components within the range that does not impair the purpose of the present invention are divided by 1% or less in total with respect to the above-mentioned glass mother composition. Or 5% or less.
  • ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, refractive index, and the like.
  • P 2 O 5 or the like may be contained.
  • fining agents such as SO 3 , F, Cl, SnO 2 are divided into the glass matrix composition, and the total amount is 1% or less, respectively. You may add these raw materials to a mother composition raw material so that it may contain 2% or less. In order to improve the chemical durability of the glass substrate, Y 2 O 3 and La 2 O 3 may be contained in the glass substrate in a total amount of 2% or less.
  • the glass substrate for a CIGS solar cell of the present invention considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained.
  • the glass substrate for CIGS solar cell of the present invention may be manufactured not only by the float method but also by the fusion method.
  • the manufacturing method of the glass substrate for CIGS solar cells of this invention > Then, the one aspect
  • molding process are implemented similarly to the time of manufacturing the conventional glass substrate for solar cells.
  • the glass substrate for CIGS solar cells of the present invention is an alkali glass substrate containing an alkali metal oxide (Na 2 O, K 2 O), SO 3 can be effectively used as a fining agent, Suitable for the float method and fusion method (down draw method) as the molding method.
  • a float method capable of easily and stably forming a large-area glass substrate with the enlargement of the solar cell is used. preferable.
  • molten glass obtained by melting raw materials is formed into a plate shape.
  • raw materials are prepared so that the obtained glass substrate has the above composition, the raw materials are continuously charged into a melting furnace, and heated to 1500 to 1700 ° C. to obtain molten glass.
  • the molten glass is formed into a ribbon-like glass plate by applying, for example, a float process.
  • After pulling out the ribbon-shaped glass plate from the float forming furnace it is cooled to room temperature by a cooling means, and after cutting, a CIGS solar cell glass substrate is obtained.
  • the glass substrate for CIGS solar cell of the present invention is not limited to the glass substrate on which the CIGS layer is formed, but is also suitable as a glass substrate for cover glass that protects the surface side of the solar cell element on which the CIGS layer is formed.
  • the thickness of the glass substrate for CIGS solar cell of the present invention is preferably 3 mm or less, more preferably 2 mm or less, and still more preferably 1.5 mm or less.
  • a method for forming a CIGS layer on a glass substrate is not particularly limited, but a selenization method in which a metal laminated film containing Cu, In or the like is heat-treated in a selenium-based gas atmosphere is particularly preferable.
  • the heating temperature when forming the CIGS layer can be set to 500 to 700 ° C., preferably 600 to 650 ° C.
  • the cover glass of the solar cell element using the CIGS solar cell glass substrate of the present invention may use the above-described CIGS solar cell glass substrate of the present invention, but is not limited to such a glass substrate, soda lime glass. A plate may be used.
  • the CIGS solar cell glass substrate of the present invention is preferably used in combination with a CIGS layer forming glass substrate and a cover glass because the average thermal expansion coefficient is the same, so that no thermal deformation or the like occurs during solar cell assembly.
  • the solar cell in the present invention includes a glass substrate, a cover glass, and a CIGS layer disposed as a photoelectric conversion layer between the glass substrate and the cover glass, and a CIGS layer is formed thereon. Is at least the glass substrate for a Cu—In—Ga—Se solar cell of the present invention described above.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of a solar cell in the present invention.
  • the CIGS solar cell 1 in the present invention has a glass substrate 5, a cover glass 19, and a CIGS layer 9 between the glass substrate 5 and the cover glass 19.
  • the glass substrate 5 consists of the glass substrate for CIGS solar cells of this invention demonstrated above.
  • the solar cell 1 has the back electrode layer of Mo film which is the plus electrode 7 on the glass substrate 5, and has the CIGS layer 9 on it.
  • An example of the composition of the CIGS layer is Cu (In 1-x Ga x ) Se 2 .
  • x represents the composition ratio of In and Ga, and 0 ⁇ x ⁇ 1.
  • a CdS (cadmium sulfide) layer, a ZnS (zinc sulfide) layer, a ZnO (zinc oxide) layer, a Zn (OH) 2 (zinc hydroxide) layer as a buffer layer 11, or a mixture thereof. It has a crystal layer.
  • a transparent conductive film 13 such as ZnO, ITO, or Al-doped ZnO (AZO) is provided via a buffer layer, and an extraction electrode such as an Al electrode (aluminum electrode) that is a negative electrode 15 is provided thereon. .
  • An antireflection film may be provided at a necessary place between these layers. In FIG. 1, an antireflection film 17 is provided between the transparent conductive film 13 and the negative electrode 15.
  • a cover glass 19 may be provided on the minus electrode 15, and if necessary, the minus electrode and the cover glass are sealed with a resin or bonded with a transparent resin for bonding.
  • a cover glass a glass substrate used as a substrate for forming the CIGS layer of the present invention may be used.
  • the end of the CIGS layer or the end of the solar cell may be sealed.
  • a material for sealing the same material as the glass substrate for CIGS solar cells of this invention, other glass, and resin are mentioned, for example. Note that the thickness of each layer of the solar cell shown in the accompanying drawings is not limited to the drawings.
  • Example and a manufacture example demonstrate this invention in more detail, this invention is not limited to these Examples and a manufacture example.
  • Examples (Examples 1 to 9) and comparative examples (Examples 10 to 11) of the glass substrate for CIGS solar cell of the present invention are shown.
  • the raw materials of each component are prepared so as to have the compositions shown in Table 1 and Table 2, and 100 parts by mass of the mother composition raw material of the component for glass substrate, 0.1 parts by mass of sulfate in terms of SO 3 , It added to the raw material, and it melt
  • GPa specific elastic modulus E / d (unit: GPa ⁇ cm 3 / g), temperature at which viscosity becomes 10 4 dPa ⁇ s (T 4 ) (unit: ° C), temperature at which viscosity becomes 10 2 dPa ⁇ s (T 2 ) (unit: ° C.), devitrification temperature (T L ) (unit: ° C.), and power generation efficiency were measured and shown in Tables 1 and 2.
  • the measuring method of each physical property is shown below.
  • each physical property is the same value with a glass plate and a glass substrate. By processing and polishing the obtained glass plate, a glass substrate can be obtained.
  • Tg is a value measured using a differential thermal dilatometer (TMA), and was obtained according to the standard of JIS R3103-3 (FY2001).
  • TMA differential thermal dilatometer
  • Average thermal expansion coefficient at 50 to 350 ° C . The average coefficient of thermal expansion was measured using TMA and determined from the standard of JIS R3102 (1995).
  • Density The density was measured by Archimedes' method for about 20 g of glass lump that did not contain bubbles and was cut out from the glass plate.
  • Viscosity The viscosity is measured using a rotational viscometer, and the temperature T 2 when the viscosity ⁇ is 10 2 dPa ⁇ s and the temperature T when the viscosity ⁇ is 10 4 dPa ⁇ s. 4 (formability reference temperature) was measured.
  • Devitrification temperature (T L ) As for the devitrification temperature, 5 g of a glass lump cut out from a glass plate was placed on a platinum dish and kept in an electric furnace at a predetermined temperature for 17 hours. The maximum temperature at which crystals do not precipitate on the surface and inside of the glass lump after being held was defined as the devitrification temperature.
  • the amount of Na diffusion was evaluated by using the obtained glass plate as a solar cell substrate, producing a solar cell for evaluation as shown below, and using this to evaluate the amount of Na diffusion.
  • the production of the solar cell for evaluation will be described below with reference to FIGS.
  • the layer configuration of the solar cell for evaluation is substantially the same as the layer configuration of the solar cell shown in FIG. 1 except that it does not have the cover glass 19 and the antireflection film 17 of the solar cell in FIG.
  • the obtained glass plate was processed into a size of 3 cm ⁇ 3 cm and a thickness of 1.1 mm to obtain a glass substrate.
  • a Mo (molybdenum) film was formed as a plus electrode 7a by a sputtering apparatus.
  • Mo film formation was performed at room temperature to obtain a Mo film having a thickness of 500 nm.
  • a CuGa alloy layer is formed with a CuGa alloy target by a sputtering apparatus, and then an In layer is formed using an In target, whereby an In—CuGa precursor film is formed.
  • a film was formed.
  • Film formation was performed at room temperature. The thickness of each layer was adjusted so that the composition of the precursor film measured by fluorescent X-rays was Cu / (Ga + In) ratio of 0.8 and Ga / (Ga + In) ratio of 0.25. Obtained.
  • the precursor film was heat-treated using a RTA (Rapid Thermal Annealing) apparatus in a mixed atmosphere of argon and hydrogen selenide (hydrogen selenide is 5% by volume with respect to argon, referred to as “selenium atmosphere”).
  • RTA Rapid Thermal Annealing
  • the CIGS layer 9a was obtained by growing the CIGS crystal by holding at 580 ° C. for 30 minutes. The thickness of the obtained CIGS layer 9a was 2 ⁇ m.
  • a CdS layer was formed as the buffer layer 11a on the CIGS layer 9a by the CBD (Chemical Bath Deposition) method. Specifically, first, cadmium sulfate having a concentration of 0.01M, thiourea having a concentration of 1.0M, ammonia having a concentration of 15M, and pure water were mixed in a beaker. Next, the CIGS layer was immersed in the mixed solution, and the beaker was placed in a constant temperature bath with a water temperature of 70 ° C. in advance to form a CdS layer having a thickness of 50 to 80 nm. Further, a transparent conductive film 13a was formed on the CdS layer by a sputtering apparatus by the following method.
  • a ZnO layer was formed using a ZnO target, and then an AZO layer was formed using an AZO target (that is, a ZnO target containing 1.5 wt% Al 2 O 3 ).
  • AZO target that is, a ZnO target containing 1.5 wt% Al 2 O 3 .
  • Each layer was formed at room temperature to obtain a transparent conductive film 13a having a two-layer structure having a thickness of 480 nm.
  • An aluminum film having a thickness of 1 ⁇ m was formed as a U-shaped negative electrode 15a on the AZO layer of the transparent conductive film 13a by EB vapor deposition (where the U-shaped electrode length is 8 mm in length, 4 mm in width, electrode The width is 0.5 mm).
  • FIG. 2A is a view of one solar battery cell as viewed from above
  • FIG. 2B is a cross-sectional view taken along line AA ′ in FIG. 2A.
  • One cell has a width of 0.6 cm and a length of 1 cm, and the area excluding the negative electrode 15a is 0.5 cm 2.
  • FIG. 3 a total of eight cells are placed on one glass substrate 5a. Obtained.
  • a CIGS solar cell for evaluation (evaluation glass substrate 5a on which the above eight cells were prepared) was installed in a solar simulator (YSS-T80A manufactured by Yamashita Denso Co., Ltd.) and added to the positive electrode 7a previously coated with InGa solvent.
  • a terminal (not shown) was connected to the voltage generator at the lower end of the U-shape of the negative electrode 15a.
  • the temperature in the solar simulator was controlled at a constant temperature of 25 ° C. with a temperature controller. Pseudo sunlight was irradiated, and after 60 seconds, the voltage was changed from -1 V to +1 V at an interval of 0.015 V, and the current values of each of the eight cells were measured.
  • the power generation efficiency was calculated by the following formula (2) from the current and voltage characteristics during irradiation. Tables 1 and 2 show the value of the most efficient cell among the eight cells as the value of the power generation efficiency of each glass substrate.
  • the illuminance of the light source used for the test was 0.1 W / cm 2 .
  • the power generation efficiency is obtained by multiplying the open circuit voltage (V oc ), the short circuit current density (J sc ), and the fill factor (FF).
  • the open circuit voltage (V oc ) is an output when the terminal is opened, and the short circuit current (I sc ) is a current when the terminal is short circuited.
  • the short-circuit current density (J sc ) is I sc divided by the area of the cell excluding the negative electrode. The point that gives the maximum output is called the maximum output point, the voltage at that point is called the maximum voltage value (V max ), and the current is called the maximum current value (I max ).
  • a value obtained by dividing the product of the maximum voltage value (V max ) and the maximum current value (I max ) by the product of the open circuit voltage (V oc ) and the short circuit current (I sc ) is obtained as a fill factor (FF). It is done. Using the above values, the power generation efficiency was determined.
  • the amount of Na diffusion was measured in order to observe the effect of the glass substrate on the diffusion of the alkali metal element into the CIGS layer.
  • the measurement method is as follows. After completion of the second stage of heating by the RTA apparatus, the sample is measured for the integrated intensity of 23 Na in the CIGS film by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • Tables 1 and 2 are relative amounts when Example 10 is taken as 100. If Na diffusion amount compared with Example 10 is 60 or more, it can be said that it is a glass substrate suitable for a solar cell with much Na diffusion amount and high power generation efficiency.
  • the SO 3 remaining amount in the glass in this example was 100 to 500 ppm.
  • the residual amount of SO 3 in the glass composition was measured by measuring a glass lump cut out from a glass plate in a powder form and evaluating with fluorescent X-rays.
  • the glass substrates of Examples 45 to 70% of SiO 2 10-20% Al 2 O 3 B 2 O 3 from 0 to 0.5%, 0-6% MgO CaO 0-4%, 9.5-20% of SrO, BaO 0-5%, ZrO 2 0-8%, 3-10% Na 2 O, 2 to 9.5% of K 2 O,
  • the glass transition temperature Tg is as high as 640 ° C.
  • the average thermal expansion coefficient is 60 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., and the density is 2.9 g / cm 3 or lower. Therefore, it is possible to have a high power generation efficiency, a high glass transition temperature, and a predetermined average thermal expansion coefficient in a well-balanced manner. Therefore, the CIGS photoelectric conversion layer does not peel from the glass substrate with the Mo film, and when the solar cell in the present invention is further assembled (specifically, the glass substrate having the CIGS photoelectric conversion layer and the cover glass are heated). When bonding), the glass substrate is less likely to deform and has better power generation efficiency.
  • the glass substrate of the comparative example (Example 10) has a low Tg and is not suitable because the glass substrate is easily deformed during film formation at 600 ° C. or higher. Further, the glass substrate of the comparative example (Example 11) is not suitable because it has a small amount of SrO and has an insufficient effect of promoting the diffusion of Na into the CIGS layer, which contributes to high power generation efficiency.
  • the glass substrate for a Cu—In—Ga—Se solar cell of the present invention is suitable as a glass substrate for a CIGS solar cell.
  • the glass substrate for a Cu—In—Ga—Se solar cell of the present invention has high power generation efficiency, high glass transition temperature, predetermined average thermal expansion coefficient, high glass strength, low glass density, solubility during production of sheet glass, molding Therefore, it is possible to provide a solar cell with high power generation efficiency by using the CIGS solar cell glass substrate of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a glass substrate for a CIGS solar cell and a solar cell using the substrate. The substrate demonstrates high power generation efficiency, high glass transition temperature, a predetermined average thermal expansion coefficient, high glass strength, low glass density, and an excellent balance between solubility, moldability and devitrification prevention during plate glass production. A Cu-In-Ga-Se-solar-cell glass substrate containing 45 to 70% of SiO2, 11 to 20% of Al2O3, 0 to 0.5% of B2O3, 0 to 6% of MgO, 0 to less than 4% of CaO, 9.5 to 20% of SrO, 0 to 5% of BaO, 0 to 8% of ZrO2, 3 to 10% of Na2O, and 2 to 9.5% of K2O, the amounts indicating percentage by mass expressed in terms of oxides.

Description

Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
 本発明は、ガラス基板の間に光電変換層が形成されている太陽電池用ガラス基板およびそれを用いた太陽電池に関する。より詳しくは、ガラス基板として、典型的にはガラス基板とカバーガラスとを有し、ガラス基板上に11族、13族、16族元素を主成分とした光電変換層が形成されているCu-In-Ga-Se太陽電池用ガラス基板、およびそれを用いた太陽電池に関するものである。 The present invention relates to a glass substrate for a solar cell in which a photoelectric conversion layer is formed between glass substrates and a solar cell using the same. More specifically, the glass substrate typically includes a glass substrate and a cover glass, and a Cu— layer in which a photoelectric conversion layer mainly composed of a group 11, group 13, or group 16 element is formed on the glass substrate. The present invention relates to a glass substrate for an In—Ga—Se solar cell and a solar cell using the same.
 カルコパイライト結晶構造を持つ11-13族、11-16族化合物半導体や立方晶系あるいは六方晶系の12-16族化合物半導体は、可視から近赤外の波長範囲の光に対して大きな吸収係数を有している。そのために、高効率薄膜太陽電池の材料として期待されている。代表的な例としてCu(In,Ga)Se(以下、「CIGS」または「Cu-In-Ga-Se」と記述する。)やCdTeがあげられる。 Group 11-13, 11-16 compound semiconductors having a chalcopyrite crystal structure and cubic or hexagonal 12-16 group compound semiconductors have a large absorption coefficient for light in the visible to near-infrared wavelength range. have. Therefore, it is expected as a material for high-efficiency thin film solar cells. Typical examples include Cu (In, Ga) Se 2 (hereinafter referred to as “CIGS” or “Cu—In—Ga—Se”) and CdTe.
 CIGS薄膜太陽電池(以下、「CIGS太陽電池」ともいう)では、安価であることと平均熱膨張係数がCIGS化合物半導体のそれに近いことから、ソーダライムガラスが基板として用いられ、太陽電池が得られている。
 また、効率の良い太陽電池を得るため、高温の熱処理温度に耐えうるガラス材料の提案もされている(特許文献1~5参照)。
CIGS thin film solar cells (hereinafter also referred to as “CIGS solar cells”) are inexpensive and have an average thermal expansion coefficient close to that of CIGS compound semiconductors, soda lime glass is used as a substrate to obtain a solar cell. ing.
In order to obtain an efficient solar cell, a glass material that can withstand a high heat treatment temperature has been proposed (see Patent Documents 1 to 5).
日本特開平11-135819号公報Japanese Unexamined Patent Publication No. 11-135819 日本特開2010-118505号公報Japanese Unexamined Patent Publication No. 2010-118505 日本特開2008-280189号公報Japanese Unexamined Patent Publication No. 2008-280189 日本特開平8-290938号公報Japanese Unexamined Patent Publication No. 8-290938 日本特開平10-25129号公報Japanese Unexamined Patent Publication No. 10-25129 日本特開2010-267965号公報Japanese Unexamined Patent Publication No. 2010-267965 国際公開第2011/158841号International Publication No. 2011/158841
 ガラス基板にはCIGS光電変換層(以下、「CIGS層」ともいう)が形成されるが、特許文献1に開示されているように、発電効率の良い太陽電池を作製するにはより高温での熱処理が好ましく、ガラス基板にはそれに耐えうること、および、所定の平均熱膨張係数を満たすことが要求される。特許文献1では比較的徐冷点の高いガラス組成物が提案されているが、特許文献1に記載された発明が高い発電効率を有するとは必ずしもいえない。 A CIGS photoelectric conversion layer (hereinafter also referred to as “CIGS layer”) is formed on the glass substrate. However, as disclosed in Patent Document 1, a solar cell with high power generation efficiency is produced at a higher temperature. Heat treatment is preferred, and the glass substrate is required to withstand it and satisfy a predetermined average thermal expansion coefficient. Patent Document 1 proposes a glass composition having a relatively high annealing point, but the invention described in Patent Document 1 does not necessarily have high power generation efficiency.
 特許文献2、3に記載の発明では、歪点が高く所定の平均熱膨張係数を満たす太陽電池用ガラスが提案されている。しかし、特許文献2の課題は耐熱性の確保と生産性の改善であり、特許文献3の課題は表面品位の向上と耐失透性の改善であり、いずれも発電効率に関する課題を解決するものでは無い。そのため、特許文献2、3に記載された発明が高い発電効率を有するとは必ずしもいえない。
 また、特許文献4、5では、高歪点ガラス基板の提案があるが、これらはプラズマディスプレイ用途を主眼としているもので、課題が異なるものであり、特許文献4、5記載の発明が高い発電効率を有するとは必ずしもいえない。
In the inventions described in Patent Documents 2 and 3, solar cell glass having a high strain point and satisfying a predetermined average thermal expansion coefficient is proposed. However, the problem of Patent Document 2 is to secure heat resistance and improve productivity, and the problem of Patent Document 3 is to improve surface quality and improve devitrification resistance, both of which solve problems related to power generation efficiency. Not. Therefore, it cannot be said that the inventions described in Patent Documents 2 and 3 have high power generation efficiency.
Further, in Patent Documents 4 and 5, there are proposals for high strain point glass substrates, but these are mainly intended for plasma display applications and have different problems. The inventions described in Patent Documents 4 and 5 have high power generation. It is not necessarily efficient.
 さらに、特許文献3では、酸化ホウ素を多く含有し、歪点が高く所定の平均熱膨張係数を満たすガラスが提案されている。しかしながら、ガラス中にホウ素が多く存在すると、特許文献6に記載されているように、p型半導体であるCIGS層中にホウ素が拡散してドナーとして働き、発電効率を低下させるおそれがある。さらに、ホウ素の除去設備が必要で、コスト増となりやすいという問題があった。
 特許文献6では、ガラス中のホウ素を低減させているが、具体的に記載されているガラス組成では発電効率は不十分であり、さらなる発電効率の向上という点では改善の余地がある。
Furthermore, Patent Document 3 proposes a glass containing a large amount of boron oxide and having a high strain point and satisfying a predetermined average thermal expansion coefficient. However, when a large amount of boron is present in the glass, as described in Patent Document 6, boron diffuses into the CIGS layer, which is a p-type semiconductor, and acts as a donor, which may reduce power generation efficiency. Furthermore, there is a problem in that a boron removal facility is required, which tends to increase costs.
In Patent Document 6, boron in the glass is reduced, but the power generation efficiency is insufficient with the glass composition specifically described, and there is room for improvement in terms of further improvement in power generation efficiency.
 さらに特許文献7では、ガラス中のNaをCIGS層に拡散させることで効率を向上させるという方法が開示されている。 Further, Patent Document 7 discloses a method of improving efficiency by diffusing Na in glass into a CIGS layer.
 このようにCIGS太陽電池に使用されるガラス基板において高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、板ガラス生産時の溶解性、成形性、失透防止の特性をバランスよく有することは困難であった。 As described above, the glass substrate used in the CIGS solar cell has a good balance between high power generation efficiency, high glass transition temperature, predetermined average thermal expansion coefficient, solubility during plate glass production, formability, and devitrification prevention. Was difficult.
 本発明は、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、板ガラス生産時の溶解性、成形性、および失透防止の特性をバランスよく有するCu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池を提供することを目的とする。 The present invention relates to a Cu—In—Ga—Se solar cell having a good balance of high power generation efficiency, high glass transition temperature, predetermined average coefficient of thermal expansion, solubility during plate glass production, formability, and devitrification prevention. An object of the present invention is to provide a glass substrate for use and a solar cell using the same.
 本願発明者等は、上記課題を解決する上で鋭意検討した結果、Cu-In-Ga-Se太陽電池用ガラス基板において、特定の組成とすることで高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、板ガラス生産時の溶解性、成形性、および失透防止の特性をバランスよく有するCu-In-Ga-Se太陽電池用ガラス基板とすることができることを見出した。 As a result of intensive investigations to solve the above problems, the inventors of the present application have found that a specific composition of the glass substrate for a Cu—In—Ga—Se solar cell enables high power generation efficiency, high glass transition temperature, predetermined It was found that a glass substrate for a Cu—In—Ga—Se solar cell having a good balance of the average thermal expansion coefficient, solubility during production of sheet glass, formability, and devitrification prevention properties can be obtained.
 すなわち、本発明の一態様に係るCu-In-Ga-Se太陽電池用ガラス基板は、下記酸化物基準の質量百分率表示で、
   SiOを45~70%、
   Alを10~20%、
   Bを0~0.5%、
   MgOを0~6%、
   CaOを0~4%未満、
   SrOを9.5~20%、
   BaOを0~5%、
   ZrOを0~8%、
   NaOを3~10%、
   KOを2~9.5%、
含有する。
That is, the glass substrate for a Cu—In—Ga—Se solar cell according to one embodiment of the present invention is expressed by a mass percentage based on the following oxide:
45 to 70% of SiO 2
10-20% Al 2 O 3
B 2 O 3 from 0 to 0.5%,
0-6% MgO
CaO 0-4%,
9.5-20% of SrO,
BaO 0-5%,
ZrO 2 0-8%,
3-10% Na 2 O,
2 to 9.5% of K 2 O,
contains.
 本発明のCu-In-Ga-Se太陽電池用ガラス基板は、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、板ガラス生産時の溶解性、成形性、および失透防止の特性をバランスよく有することができ、本発明のCIGS太陽電池用ガラス基板を用いることで発電効率の高い太陽電池を提供できる。 The glass substrate for a Cu—In—Ga—Se solar cell of the present invention has high power generation efficiency, high glass transition temperature, predetermined average thermal expansion coefficient, solubility during plate glass production, formability, and devitrification prevention characteristics. Can be provided in a balanced manner, and a solar cell with high power generation efficiency can be provided by using the glass substrate for CIGS solar cell of the present invention.
図1は、本発明のCIGS太陽電池用ガラス基板を用いた太陽電池の実施形態の一例を模式的に表す断面図である。FIG. 1: is sectional drawing which represents typically an example of embodiment of the solar cell using the glass substrate for CIGS solar cells of this invention. 図2は、実施例において評価用ガラス基板上に作製した太陽電池セル(a)とその断面図(b)を示す。FIG. 2 shows a solar cell (a) produced on a glass substrate for evaluation in the example and a cross-sectional view (b) thereof. 図3は、実施例において評価用ガラス基板上に作製した複数の太陽電池セルの平面図を示す。FIG. 3: shows the top view of the several photovoltaic cell produced on the glass substrate for evaluation in an Example.
<本発明のCu-In-Ga-Se太陽電池用ガラス基板>
 以下、本発明のCu-In-Ga-Se太陽電池用ガラス基板について説明する。
 本発明のCu-In-Ga-Se太陽電池用ガラス基板は、下記酸化物基準の質量百分率表示で、
   SiOを45~70%、
   Alを10~20%、
   Bを0~0.5%、
   MgOを0~6%、
   CaOを0~4%未満、
   SrOを9.5~20%、
   BaOを0~5%、
   ZrOを0~8%、
   NaOを3~10%、
   KOを2~9.5%、
含有する。なお、Cu-In-Ga-Seを以下「CIGS」と記載する。
<Glass substrate for Cu—In—Ga—Se solar cell of the present invention>
Hereinafter, the glass substrate for a Cu—In—Ga—Se solar cell of the present invention will be described.
The glass substrate for a Cu—In—Ga—Se solar cell of the present invention is expressed by a mass percentage based on the following oxide,
45 to 70% of SiO 2
10-20% Al 2 O 3
B 2 O 3 from 0 to 0.5%,
0-6% MgO
CaO 0-4%,
9.5-20% of SrO,
BaO 0-5%,
ZrO 2 0-8%,
3-10% Na 2 O,
2 to 9.5% of K 2 O,
contains. Note that Cu—In—Ga—Se is hereinafter referred to as “CIGS”.
 本発明のCIGS太陽電池用ガラス基板のガラス転移点温度(Tg)は、640℃以上、700℃以下であり、ソーダライムガラスのガラス転移点温度より高い。ガラス転移点温度(Tg)は、高温におけるCIGS層の形成を担保するため645℃以上であるのが好ましく、650℃以上がより好ましく、655℃以上がさらに好ましい。一方、溶解時の粘性を上げ過ぎないようにするために、690℃以下とするのが好ましい。より好ましくは685℃以下、さらに好ましくは680℃以下である。 The glass transition temperature (Tg) of the glass substrate for CIGS solar cell of the present invention is 640 ° C. or higher and 700 ° C. or lower, which is higher than the glass transition temperature of soda lime glass. The glass transition temperature (Tg) is preferably 645 ° C. or higher, more preferably 650 ° C. or higher, and further preferably 655 ° C. or higher in order to ensure the formation of the CIGS layer at a high temperature. On the other hand, in order not to increase the viscosity at the time of dissolution, the temperature is preferably 690 ° C. or lower. More preferably, it is 685 degrees C or less, More preferably, it is 680 degrees C or less.
 本発明のCIGS太陽電池用ガラス基板の50~350℃における平均熱膨張係数は、60×10-7~110×10-7/℃である。60×10-7/℃未満または110×10-7/℃超ではCIGS層との熱膨張差が大きくなりすぎ、剥がれ等の欠点が生じやすくなる。好ましくは65×10-7/℃以上、より好ましくは70×10-7/℃以上、さらに好ましくは75×10-7/℃以上である。また、プラス電極であるMo(モリブデン)膜との膨張差による反りを低減するために、好ましくは100×10-7/℃以下、より好ましくは95×10-7/℃以下、さらに好ましくは90×10-7/℃以下である。 The average thermal expansion coefficient at 50 to 350 ° C. of the glass substrate for CIGS solar cell of the present invention is 60 × 10 −7 to 110 × 10 −7 / ° C. If it is less than 60 × 10 −7 / ° C. or more than 110 × 10 −7 / ° C., the difference in thermal expansion from the CIGS layer becomes too large, and defects such as peeling tend to occur. Preferably it is 65 × 10 −7 / ° C. or more, more preferably 70 × 10 −7 / ° C. or more, and further preferably 75 × 10 −7 / ° C. or more. Further, in order to reduce warpage due to a difference in expansion from the Mo (molybdenum) film that is a positive electrode, it is preferably 100 × 10 −7 / ° C. or less, more preferably 95 × 10 −7 / ° C. or less, and still more preferably 90 × 10 −7 / ° C. or less.
 本発明のCIGS太陽電池用ガラス基板は、粘度が10dPa・sとなる温度(T)と失透温度(T)との関係がT-T≧-30℃である。T-Tが-30℃未満では、板ガラス成形時に失透が生じやすく、ガラス板の成形が困難になるおそれがある。T-Tは、好ましくは-10℃以上、より好ましくは10℃以上、さらに好ましくは30℃以上、特に好ましくは50℃以上である。ここで、失透温度とは、ガラスを特定の温度で17時間保持するときに、ガラス表面および内部に結晶が生成しない最大温度を指す。ガラス板の成形性、即ち、平坦性向上、および生産性向上を考慮すると、Tは1230℃以下である。Tは1220℃以下が好ましく、1210℃以下がより好ましく、1200℃以下がさらに好ましく、1190℃以下が特に好ましい。 In the CIGS solar cell glass substrate of the present invention, the relationship between the temperature (T 4 ) at which the viscosity is 10 4 dPa · s and the devitrification temperature (T L ) is T 4 −T L ≧ −30 ° C. T 4 The -T L is lower than -30 ° C., devitrification is likely to occur at the time of sheet glass forming, there is a possibility that the molding of the glass plate becomes difficult. T 4 -T L is preferably -10 ° C. or higher, more preferably 10 ° C. or higher, more preferably 30 ° C. or higher, particularly preferably 50 ° C. or higher. Here, the devitrification temperature refers to the maximum temperature at which crystals are not generated on the glass surface and inside when the glass is held at a specific temperature for 17 hours. In consideration of moldability of the glass plate, that is, improvement in flatness and productivity, T 4 is 1230 ° C. or less. T 4 is preferably 1220 ° C. or less, more preferably 1210 ° C. or less, more preferably 1200 ° C. or less, particularly preferably 1190 ° C. or less.
 また、本発明のCIGS太陽電池用ガラス基板は、ガラスの溶解性、即ち、均質性向上、および生産性向上を考慮して、粘度が10dPa・sとなる温度(T)を1620℃以下とする。Tは1590℃以下が好ましく、1570℃以下がより好ましく、1560℃以下がさらに好ましく、1550℃以下が特に好ましい。 In addition, the glass substrate for CIGS solar cell of the present invention has a temperature (T 2 ) at which the viscosity becomes 10 2 dPa · s at 1620 ° C. in consideration of solubility of glass, that is, improvement in homogeneity and productivity. The following. T 2 is preferably 1590 ° C. or lower, more preferably 1570 ° C. or lower, further preferably 1560 ° C. or lower, and particularly preferably 1550 ° C. or lower.
 本発明のCIGS太陽電池用ガラス基板は、密度が2.45g/cm以上、2.9g/cm以下である。密度が2.9g/cmを超えると、製品質量が重くなり好ましくない。また、ガラス基板が脆くなり破壊しやすくなり好ましくない。密度はより好ましくは2.85g/cm以下、さらに好ましくは2.82g/cm以下、特に好ましくは2.8g/cm以下である。
 また、密度が2.45g/cm未満であると、ガラス基板の構成元素として、原子番号の小さい軽元素しか使用することができず、所望の発電効率、ガラス粘度を得られないおそれがある。より好ましくは2.5g/cm以上、さらに好ましくは2.55g/cm以上、特に好ましくは2.6g/cm以上である。
A glass substrate for a CIGS solar cell of the present invention has a density of 2.45 g / cm 3 or more and 2.9 g / cm 3 or less. When the density exceeds 2.9 g / cm 3 , the product mass becomes heavy, which is not preferable. Moreover, the glass substrate becomes brittle and easily broken, which is not preferable. Density is more preferably 2.85 g / cm 3 or less, more preferably 2.82 g / cm 3 or less, particularly preferably 2.8 g / cm 3 or less.
Further, if the density is less than 2.45 g / cm 3 , only light elements having a small atomic number can be used as constituent elements of the glass substrate, and there is a possibility that desired power generation efficiency and glass viscosity cannot be obtained. . More preferably 2.5 g / cm 3 or more, more preferably 2.55 g / cm 3 or more, and particularly preferably 2.6 g / cm 3 or more.
 本発明のCIGS太陽電池用ガラス基板において上記組成(以下、「母組成」ともいう)範囲に限定する理由は以下のとおりである。
 SiO
 SiOは、ガラスの骨格を形成する成分で、45質量%(以下、「質量%」を単に「%」と記載する)未満ではガラス基板の耐熱性および化学的耐久性が低下し、平均熱膨張係数が増大するおそれがある。好ましくは48%以上であり、より好ましくは50%以上であり、さらに好ましくは52%以上である。
 しかし、70%超ではガラスの高温粘度が上昇し、溶解性が悪化する問題が生じるおそれがある。好ましくは65%以下であり、より好ましくは60%以下であり、さらに好ましくは58%以下である。
The reason why the glass substrate for CIGS solar cell of the present invention is limited to the above composition (hereinafter also referred to as “mother composition”) is as follows.
SiO 2 :
SiO 2 is a component that forms a glass skeleton. If it is less than 45% by mass (hereinafter, “mass%” is simply referred to as “%”), the heat resistance and chemical durability of the glass substrate decrease, and the average heat The expansion coefficient may increase. Preferably it is 48% or more, More preferably, it is 50% or more, More preferably, it is 52% or more.
However, if it exceeds 70%, the high-temperature viscosity of the glass is increased, and there is a possibility that a problem of deterioration of solubility occurs. Preferably it is 65% or less, More preferably, it is 60% or less, More preferably, it is 58% or less.
 Al
 Alは、ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性および化学的耐久性を向上し、ヤング率を上げる。その含有量が10%未満では、ガラス転移点温度が低下するおそれがある。また平均熱膨張係数が所定の範囲から外れるおそれがある。好ましくは11%以上であり、より好ましくは14%以上、さらに好ましくは15%以上である。
 しかし、20%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度が上昇し、成形性が悪くなるおそれがある。また発電効率が低下するおそれがある。好ましくは19%以下、より好ましくは18%以下、さらに好ましくは17%以下、特に好ましくは16%以下である。
Al 2 O 3 :
Al 2 O 3 increases the glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. If the content is less than 10%, the glass transition temperature may be lowered. In addition, the average thermal expansion coefficient may be out of the predetermined range. Preferably it is 11% or more, More preferably, it is 14% or more, More preferably, it is 15% or more.
However, if it exceeds 20%, the high-temperature viscosity of the glass is increased, and the solubility may be deteriorated. Further, the devitrification temperature is increased, and the moldability may be deteriorated. In addition, power generation efficiency may be reduced. Preferably it is 19% or less, More preferably, it is 18% or less, More preferably, it is 17% or less, Most preferably, it is 16% or less.
 B
 Bは、溶解性を向上させる等のために0.5%まで含有してもよい。含有量が0.5%を超えると、ガラス転移点温度が下がるおそれ、または平均熱膨張係数が小さくなるおそれがあり、CIGS層を形成するプロセスにとって好ましくない。また失透温度が上昇して失透しやすくなり、板ガラス成形が難しくなるおそれがある。さらに、大規模なホウ素の除去設備が必要となり、環境負荷が大きくなるため好ましくない。
 また、p型半導体であるCIGS層中にB(ホウ素)が拡散してドナーとして働き、発電効率を低下させるおそれがあり好ましくない。好ましくは含有量が0.3%以下である。実質的に含有しないことがより好ましい。
 なお、本発明において「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。以下、同様である。
B 2 O 3 :
B 2 O 3 may be contained up to 0.5% in order to improve the solubility. If the content exceeds 0.5%, the glass transition temperature may decrease or the average thermal expansion coefficient may decrease, which is not preferable for the process of forming the CIGS layer. Moreover, devitrification temperature rises and it becomes easy to devitrify, and there exists a possibility that plate glass shaping | molding may become difficult. Furthermore, a large-scale boron removal facility is required, which increases the environmental load, which is not preferable.
Further, B (boron) diffuses into the CIGS layer, which is a p-type semiconductor, and acts as a donor, which is not preferable because power generation efficiency may be reduced. The content is preferably 0.3% or less. More preferably, it does not contain substantially.
In the present invention, “substantially does not contain” means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained. The same applies hereinafter.
 MgO:
 MgOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有してもよい。好ましくは0.05%以上であり、より好ましくは0.1%以上であり、さらに好ましくは0.2%以上である。
 しかし、6%超では、失透温度が上昇するおそれがある。さらに、発電効率が低下するおそれがある。好ましくは5%以下、より好ましくは4.5%以下、さらに好ましくは4%以下である。
MgO:
MgO may be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. Preferably it is 0.05% or more, More preferably, it is 0.1% or more, More preferably, it is 0.2% or more.
However, if it exceeds 6%, the devitrification temperature may increase. Furthermore, power generation efficiency may be reduced. Preferably it is 5% or less, More preferably, it is 4.5% or less, More preferably, it is 4% or less.
 CaO:
 CaOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有してもよい。好ましくは0.05%以上であり、より好ましくは0.1%以上であり、さらに好ましくは0.2%以上である。しかし、Na拡散を阻害する効果があるため、4%未満の範囲で含有させ、好ましくは3.5%以下、より好ましくは3%以下である。
CaO:
CaO may be contained because it has an effect of reducing the viscosity at the time of melting the glass and promoting the melting. Preferably it is 0.05% or more, More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. However, since it has an effect of inhibiting Na diffusion, it is contained in a range of less than 4%, preferably 3.5% or less, more preferably 3% or less.
 SrO:
 SrOは、ガラスの溶解時の粘性を下げ、平均熱膨張係数を所定の値に維持し、溶解を促進する効果がある。さらに、CIGS層へのNaの拡散を促進する効果があるので、9.5%以上含有させる。好ましくは10%以上、より好ましくは10.5%以上、さらに好ましくは11%以上である。しかし、20%超含有するとガラス基板の平均熱膨張係数が増大するとともに密度が増大し、ガラスが脆くなるおそれがある。好ましくは19%以下、より好ましくは18%以下、さらに好ましくは16%以下、特に好ましくは15%以下である。
SrO:
SrO has the effect of lowering the viscosity during melting of the glass, maintaining the average thermal expansion coefficient at a predetermined value, and promoting melting. Furthermore, since there exists an effect which accelerates | stimulates the spreading | diffusion of Na to a CIGS layer, it contains 9.5% or more. Preferably it is 10% or more, More preferably, it is 10.5% or more, More preferably, it is 11% or more. However, if the content exceeds 20%, the average thermal expansion coefficient of the glass substrate increases, the density increases, and the glass may become brittle. Preferably it is 19% or less, More preferably, it is 18% or less, More preferably, it is 16% or less, Most preferably, it is 15% or less.
 BaO:
 BaOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。好ましくは0.1%以上、より好ましくは0.2%以上、さらに好ましくは0.5%以上である。しかし、5%超含有すると発電効率が低下し、またガラス基板の平均熱膨張係数が増大するとともに密度が増大し、ガラスが脆くなるおそれがある。また、ヤング率が低下するおそれがある。好ましくは4%以下、より好ましくは3%以下、さらに好ましくは2%以下である。
BaO:
BaO can be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. Preferably it is 0.1% or more, More preferably, it is 0.2% or more, More preferably, it is 0.5% or more. However, if the content exceeds 5%, the power generation efficiency decreases, the average thermal expansion coefficient of the glass substrate increases, the density increases, and the glass may become brittle. In addition, the Young's modulus may be reduced. Preferably it is 4% or less, More preferably, it is 3% or less, More preferably, it is 2% or less.
 ZrO
 ZrOは、ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、8%超含有するとガラス基板の平均熱膨張係数が低下し、発電効率が低下し、また失透温度が上昇して失透しやすくなり板ガラス成形が難しくなる。好ましくは7%以下、より好ましくは6%以下、さらに好ましくは5.5%以下である。また、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上である。
ZrO 2 :
ZrO 2 can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if the content exceeds 8%, the average thermal expansion coefficient of the glass substrate decreases, the power generation efficiency decreases, the devitrification temperature rises, and devitrification easily occurs, making it difficult to form a sheet glass. Preferably it is 7% or less, More preferably, it is 6% or less, More preferably, it is 5.5% or less. Further, it is preferably 0.5% or more, more preferably 1% or more, and further preferably 1.5% or more.
 TiO
 TiOを含有させると失透温度が上昇するため、TiOは含有しないことが好ましい。ただし本発明のCIGS太陽電池用ガラス基板は、通常のソーダライムガラスに比べて溶融ガラス表面に泡層が生成しやすい。泡層が生成すると、溶融ガラスの温度が上がらず、清澄しづらくなり、生産性が悪化する傾向がある。溶融ガラス表面に生成した泡層を薄化ないし消失させるために消泡剤としてチタン化合物が、溶融ガラス表面に生成した泡層に供給されることがある。チタン化合物は、溶融ガラス中に取り込まれ、TiOとして存在する。このチタン化合物は、無機チタン化合物(四塩化チタン、酸化チタン等)であってもよく、有機チタン化合物であってもよい。有機チタン化合物としては、チタン酸エステルまたはその誘導体、チタンキレートまたはその誘導体、チタンアシレートまたはその誘導体、シュウ酸チタネート等が挙げられる。上記の理由により、TiOは、不純物として0.2%以下ガラス中に含有することが許容される。
TiO 2 :
Since the inclusion of TiO 2 devitrification temperature increases, it is preferred that TiO 2 is not contained. However, the glass substrate for a CIGS solar cell of the present invention is likely to generate a foam layer on the surface of the molten glass as compared with ordinary soda lime glass. When the foam layer is generated, the temperature of the molten glass does not rise, it becomes difficult to clarify, and the productivity tends to deteriorate. In order to make the foam layer generated on the surface of the molten glass thin or disappear, a titanium compound may be supplied to the foam layer generated on the surface of the molten glass as an antifoaming agent. The titanium compound is taken into the molten glass and exists as TiO 2 . This titanium compound may be an inorganic titanium compound (titanium tetrachloride, titanium oxide, etc.) or an organic titanium compound. Examples of the organic titanium compound include titanic acid esters or derivatives thereof, titanium chelates or derivatives thereof, titanium acylates or derivatives thereof, and oxalic acid titanates. For the above reason, TiO 2 is allowed to be contained in the glass by 0.2% or less as an impurity.
 MgO、CaO、SrOおよびBaO:
 MgO、CaO、SrOおよびBaOは、ガラスの溶解時の粘性を下げ、溶解を促進させ、熱膨張係数を所定の範囲にするために、MgO、CaO、およびBaOからなる群から選ばれる少なくとも1種とSrOとの合量(すなわち、(MgO+CaO+SrO+BaO))は、17%以上が好ましい。18%以上がより好ましく,19%以上がさらに好ましい。しかし、合量が30%超では失透温度が上昇し、成形性が悪くなる恐れがある。そのため、30%以下が好ましく、26%以下がより好ましく、24%以下がさらに好ましい。
MgO, CaO, SrO and BaO:
MgO, CaO, SrO, and BaO are at least one selected from the group consisting of MgO, CaO, and BaO in order to lower the viscosity at the time of melting the glass, promote the melting, and bring the thermal expansion coefficient into a predetermined range. The total amount of SrO and SrO (that is, (MgO + CaO + SrO + BaO)) is preferably 17% or more. 18% or more is more preferable, and 19% or more is more preferable. However, if the total amount exceeds 30%, the devitrification temperature rises and the moldability may be deteriorated. Therefore, 30% or less is preferable, 26% or less is more preferable, and 24% or less is more preferable.
 さらに、上記MgO、CaO、SrOおよびBaOのうちSrOの占める割合は、0.6以上が好ましい。すなわち、MgO、CaO、SrOおよびBaOのそれぞれの含有量の合量(以下、これらのアルカリ土類金属酸化物(RO)の合量を(MgO+CaO+SrO+BaO)とも記す。)に対するSrOの占める割合、すなわち、SrO/(MgO+CaO+SrO+BaO)は0.6以上であることが好ましい。0.6以上にすることによって、CIGS太陽電池を作製した時にNaがガラス上のCIGS層へ拡散するのを促進する効果をより強めることができる。より好ましくは0.65以上であり、さらに好ましくは0.7以上である。 Furthermore, the proportion of SrO in the MgO, CaO, SrO and BaO is preferably 0.6 or more. That is, the ratio of SrO to the total content of MgO, CaO, SrO and BaO (hereinafter, the total content of these alkaline earth metal oxides (RO) is also referred to as (MgO + CaO + SrO + BaO)), that is, SrO / (MgO + CaO + SrO + BaO) is preferably 0.6 or more. By making it 0.6 or more, the effect of promoting the diffusion of Na to the CIGS layer on the glass when the CIGS solar cell is produced can be further enhanced. More preferably, it is 0.65 or more, More preferably, it is 0.7 or more.
 NaO:
 NaOは、CIGSの太陽電池の発電効率向上に寄与するための成分であり、必須成分である。また、ガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので3~10%含有させる。Naは、ガラス基板上に構成されたCIGS層中に拡散し、発電効率を高めるが、含有量が3%未満ではガラス基板上のCIGS層へのNa拡散が不十分となり、発電効率も不十分となるおそれがある。含有量が3.5%以上であると好ましく、含有量が4%以上であるとより好ましく、4.5%以上であるとさらに好ましい。
 NaO含有量が10%を超えると、平均熱膨張係数が所定の範囲から外れ、ガラス転移点温度が低下する傾向がある。または化学的耐久性が劣化する。または、ヤング率が低下するおそれがある。または、過剰なNaにより、プラス電極として形成されるMo(モリブデン)膜を劣化させて発電効率の低下につながるおそれがある。含有量が9%以下であると好ましく、8%以下であるとより好ましく、7%以下であるとさらに好ましい。
Na 2 O:
Na 2 O is a component that contributes to improving the power generation efficiency of CIGS solar cells, and is an essential component. Further, it has the effect of lowering the viscosity at the glass melting temperature and facilitating melting, so 3 to 10% is contained. Na diffuses into the CIGS layer formed on the glass substrate to increase the power generation efficiency. However, if the content is less than 3%, Na diffusion to the CIGS layer on the glass substrate becomes insufficient, and the power generation efficiency is also insufficient. There is a risk of becoming. The content is preferably 3.5% or more, more preferably 4% or more, and even more preferably 4.5% or more.
When the Na 2 O content exceeds 10%, the average thermal expansion coefficient is out of the predetermined range, and the glass transition temperature tends to decrease. Or chemical durability deteriorates. Alternatively, the Young's modulus may be reduced. Alternatively, excessive Na may deteriorate the Mo (molybdenum) film formed as a positive electrode, leading to a decrease in power generation efficiency. The content is preferably 9% or less, more preferably 8% or less, and even more preferably 7% or less.
 KO:
 KOは、NaOと同様の効果があるため、また、CIGS太陽電池の製造工程における高温でのCIGSの結晶成長において、CIGS組成の変化を抑える働きがあり、それにより、短絡電流の低下が抑えられるため2~9.5%含有させる。
 しかし、9.5%超ではガラス転移点温度が低下し、平均熱膨張係数が所定の範囲から外れるおそれがある。または、ヤング率が低下するおそれがある。好ましくは3%以上、より好ましくは3.5%以上、さらに好ましくは4%以上である。また、好ましくは9%以下、より好ましくは8%以下、さらに好ましくは7%以下である。 
K 2 O:
K 2 O has the same effect as Na 2 O, and also has a function of suppressing changes in the CIGS composition in the crystal growth of CIGS at a high temperature in the CIGS solar cell manufacturing process. It is contained in an amount of 2 to 9.5% to prevent the decrease.
However, if it exceeds 9.5%, the glass transition temperature is lowered, and the average thermal expansion coefficient may be out of the predetermined range. Alternatively, the Young's modulus may be reduced. Preferably it is 3% or more, More preferably, it is 3.5% or more, More preferably, it is 4% or more. Further, it is preferably 9% or less, more preferably 8% or less, and further preferably 7% or less.
 本発明のCIGS太陽電池用ガラス基板は本質的に上記母組成からなるが、本発明の目的を損なわない範囲でその他の成分を、上記ガラス母組成に対し内割りで、それぞれ1%以下、合計で5%以下含有してもよい。例えば、耐候性、溶解性、失透性、紫外線遮蔽、屈折率等の改善を目的に、ZnO、LiO、WO、Nb、V、Bi、MoO、P等を含有してもよい場合がある。 The glass substrate for CIGS solar cell of the present invention consists essentially of the above-mentioned mother composition, but other components within the range that does not impair the purpose of the present invention are divided by 1% or less in total with respect to the above-mentioned glass mother composition. Or 5% or less. For example, ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, refractive index, and the like. , P 2 O 5 or the like may be contained.
 また、ガラスの溶解性、清澄性を改善するため、ガラス基板中にSO、F、Cl、SnOなどの清澄剤を上記ガラス母組成に対し外割りで、それぞれ1%以下、合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。
 また、ガラス基板の化学的耐久性向上のため、ガラス基板中にY、Laを合量で2%以下含有させてもよい。
In addition, in order to improve the solubility and fining of the glass, fining agents such as SO 3 , F, Cl, SnO 2 are divided into the glass matrix composition, and the total amount is 1% or less, respectively. You may add these raw materials to a mother composition raw material so that it may contain 2% or less.
In order to improve the chemical durability of the glass substrate, Y 2 O 3 and La 2 O 3 may be contained in the glass substrate in a total amount of 2% or less.
 また、ガラスの色調を調整するため、ガラス中にFe等の着色剤を含有してもよい。このような着色剤の含有量は、合量で1%以下が好ましい。より好ましくは0.1%以下、さらに好ましくは0.05%以下である。また好ましくは0.005%以上、より好ましくは0.01%以上である。
 また、本発明のCIGS太陽電池用ガラス基板は、環境負荷を考慮すると、As、Sbを実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。しかし、本発明のCIGS太陽電池用ガラス基板は、フロート法による成形に限らず、フュージョン法等による成形により製造してもよい。
Further, in order to adjust the color tone of the glass, it may contain a colorant such as Fe 2 O 3 in the glass. The total content of such colorants is preferably 1% or less. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less. Further, it is preferably 0.005% or more, more preferably 0.01% or more.
Further, the glass substrate for a CIGS solar cell of the present invention, considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained. However, the glass substrate for CIGS solar cell of the present invention may be manufactured not only by the float method but also by the fusion method.
<本発明のCIGS太陽電池用ガラス基板の製造方法>
 続いて、本発明のCIGS太陽電池用ガラス基板の製造方法の一態様について説明する。
 本発明のCIGS太陽電池用ガラス基板を製造する場合、従来の太陽電池用ガラス基板を製造する際と同様に、溶解・清澄工程および成形工程を実施する。なお、本発明のCIGS太陽電池用ガラス基板は、アルカリ金属酸化物(NaO、KO)を含有するアルカリガラス基板であるため、清澄剤としてSOを効果的に用いることができ、成形方法としてフロート法およびフュージョン法(ダウンドロー法)に適している。
 太陽電池用のガラス基板の製造工程において、ガラスを板状に成形する方法としては、太陽電池の大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが好ましい。
<The manufacturing method of the glass substrate for CIGS solar cells of this invention>
Then, the one aspect | mode of the manufacturing method of the glass substrate for CIGS solar cells of this invention is demonstrated.
When manufacturing the glass substrate for CIGS solar cells of this invention, a melt | dissolution and clarification process and a shaping | molding process are implemented similarly to the time of manufacturing the conventional glass substrate for solar cells. In addition, since the glass substrate for CIGS solar cells of the present invention is an alkali glass substrate containing an alkali metal oxide (Na 2 O, K 2 O), SO 3 can be effectively used as a fining agent, Suitable for the float method and fusion method (down draw method) as the molding method.
In the manufacturing process of a glass substrate for a solar cell, as a method for forming glass into a plate shape, a float method capable of easily and stably forming a large-area glass substrate with the enlargement of the solar cell is used. preferable.
 以下、本発明のCIGS太陽電池用ガラス基板の製造方法の好ましい態様について説明する。
 初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス基板が上記組成となるように原料を調製し、上記原料を溶解炉に連続的に投入し、1500~1700℃に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状のガラス板に成形する。
 次に、リボン状のガラス板をフロート成形炉から引出した後に、冷却手段によって室温状態まで冷却し、切断後、CIGS太陽電池用ガラス基板を得る。
Hereinafter, the preferable aspect of the manufacturing method of the glass substrate for CIGS solar cells of this invention is demonstrated.
First, molten glass obtained by melting raw materials is formed into a plate shape. For example, raw materials are prepared so that the obtained glass substrate has the above composition, the raw materials are continuously charged into a melting furnace, and heated to 1500 to 1700 ° C. to obtain molten glass. The molten glass is formed into a ribbon-like glass plate by applying, for example, a float process.
Next, after pulling out the ribbon-shaped glass plate from the float forming furnace, it is cooled to room temperature by a cooling means, and after cutting, a CIGS solar cell glass substrate is obtained.
<本発明のCIGS太陽電池用ガラス基板の用途>
 本発明のCIGS太陽電池用ガラス基板は、CIGS層を形成するガラス基板に限らず、CIGS層が形成された太陽電池素子の表面側を保護するカバーガラス用のガラス基板としても好適である。
 本発明のCIGS太陽電池用ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。またガラス基板上にCIGS層を形成する方法は特に制限されないが、Cu、In等を含む金属積層膜をセレン系ガス雰囲気中で熱処理するセレン化法による方法が特に好ましい。本発明のCIGS太陽電池用ガラス基板を用いることで、CIGS層を形成する際の加熱温度を500~700℃、好ましくは600~650℃とすることができる。
 本発明のCIGS太陽電池用ガラス基板を使用した太陽電池素子のカバーガラスは、上記した本発明のCIGS太陽電池用ガラス基板を用いてもよいが、この様なガラス基板に限らず、ソーダライムガラス板を用いてもよい。
<Application of CIGS Solar Cell Glass Substrate of the Present Invention>
The glass substrate for CIGS solar cell of the present invention is not limited to the glass substrate on which the CIGS layer is formed, but is also suitable as a glass substrate for cover glass that protects the surface side of the solar cell element on which the CIGS layer is formed.
The thickness of the glass substrate for CIGS solar cell of the present invention is preferably 3 mm or less, more preferably 2 mm or less, and still more preferably 1.5 mm or less. A method for forming a CIGS layer on a glass substrate is not particularly limited, but a selenization method in which a metal laminated film containing Cu, In or the like is heat-treated in a selenium-based gas atmosphere is particularly preferable. By using the glass substrate for CIGS solar cell of the present invention, the heating temperature when forming the CIGS layer can be set to 500 to 700 ° C., preferably 600 to 650 ° C.
The cover glass of the solar cell element using the CIGS solar cell glass substrate of the present invention may use the above-described CIGS solar cell glass substrate of the present invention, but is not limited to such a glass substrate, soda lime glass. A plate may be used.
 なお、本発明のCIGS太陽電池用ガラス基板を、CIGS層形成用のガラス基板およびカバーガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。 The CIGS solar cell glass substrate of the present invention is preferably used in combination with a CIGS layer forming glass substrate and a cover glass because the average thermal expansion coefficient is the same, so that no thermal deformation or the like occurs during solar cell assembly.
<本発明におけるCIGS太陽電池>
 次に、本発明における太陽電池について説明する。
 本発明における太陽電池は、ガラス基板と、カバーガラスと、上記ガラス基板と上記カバーガラスとの間に、光電変換層として配置されるCIGS層と、を有し、CIGS層が形成されるガラス基板が少なくとも、上記した本発明のCu-In-Ga-Se太陽電池用ガラス基板である。
<CIGS solar cell in the present invention>
Next, the solar cell in this invention is demonstrated.
The solar cell in the present invention includes a glass substrate, a cover glass, and a CIGS layer disposed as a photoelectric conversion layer between the glass substrate and the cover glass, and a CIGS layer is formed thereon. Is at least the glass substrate for a Cu—In—Ga—Se solar cell of the present invention described above.
 以下、添付の図面を使用して本発明における太陽電池を詳細に説明する。なお本発明は添付の図面に限定されない。
 図1は本発明における太陽電池の実施形態の一例を模式的に表す断面図である。
 図1において、本発明におけるCIGS太陽電池1は、ガラス基板5、カバーガラス19、およびガラス基板5とカバーガラス19との間にCIGS層9を有する。ガラス基板5は、上記で説明した本発明のCIGS太陽電池用ガラス基板からなる。太陽電池1は、ガラス基板5上にプラス電極7であるMo膜の裏面電極層を有し、その上にCIGS層9を有する。CIGS層の組成は、Cu(In1-xGax)Seが例示できる。xはInとGaの組成比を示すもので、0<x<1である。
 CIGS層9上には、バッファ層11としてのCdS(硫化カドミウム)層、ZnS(亜鉛硫化物)層、ZnO(酸化亜鉛)層、Zn(OH)(水酸化亜鉛)層、またはこれらの混晶層を有する。バッファ層を介して、ZnOまたはITO、またはAlをドープしたZnO(AZO)等の透明導電膜13を有し、さらにその上にマイナス電極15であるAl電極(アルミニウム電極)等の取出し電極を有する。これらの層の間の必要な場所には反射防止膜を設けてもよい。図1においては、透明導電膜13とマイナス電極15との間に反射防止膜17が設けられている。
Hereinafter, a solar cell according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the attached drawings.
FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of a solar cell in the present invention.
In FIG. 1, the CIGS solar cell 1 in the present invention has a glass substrate 5, a cover glass 19, and a CIGS layer 9 between the glass substrate 5 and the cover glass 19. The glass substrate 5 consists of the glass substrate for CIGS solar cells of this invention demonstrated above. The solar cell 1 has the back electrode layer of Mo film which is the plus electrode 7 on the glass substrate 5, and has the CIGS layer 9 on it. An example of the composition of the CIGS layer is Cu (In 1-x Ga x ) Se 2 . x represents the composition ratio of In and Ga, and 0 <x <1.
On the CIGS layer 9, a CdS (cadmium sulfide) layer, a ZnS (zinc sulfide) layer, a ZnO (zinc oxide) layer, a Zn (OH) 2 (zinc hydroxide) layer as a buffer layer 11, or a mixture thereof. It has a crystal layer. A transparent conductive film 13 such as ZnO, ITO, or Al-doped ZnO (AZO) is provided via a buffer layer, and an extraction electrode such as an Al electrode (aluminum electrode) that is a negative electrode 15 is provided thereon. . An antireflection film may be provided at a necessary place between these layers. In FIG. 1, an antireflection film 17 is provided between the transparent conductive film 13 and the negative electrode 15.
 また、マイナス電極15上にカバーガラス19を設けてもよく、必要な場合はマイナス電極とカバーガラスとの間は、樹脂封止される、または接着用の透明樹脂で接着される。カバーガラスには、本発明のCIGS層の形成用基板として用いたガラス基板を用いてもよい。
 本発明において、CIGS層の端部または太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば本発明のCIGS太陽電池用ガラス基板と同じ材料、そのほかのガラス、樹脂が挙げられる。
 なお添付の図面に示す太陽電池の各層の厚さは図面に限定されない。
Further, a cover glass 19 may be provided on the minus electrode 15, and if necessary, the minus electrode and the cover glass are sealed with a resin or bonded with a transparent resin for bonding. As the cover glass, a glass substrate used as a substrate for forming the CIGS layer of the present invention may be used.
In the present invention, the end of the CIGS layer or the end of the solar cell may be sealed. As a material for sealing, the same material as the glass substrate for CIGS solar cells of this invention, other glass, and resin are mentioned, for example.
Note that the thickness of each layer of the solar cell shown in the accompanying drawings is not limited to the drawings.
 以下、実施例および製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例および製造例に限定されない。
 本発明のCIGS太陽電池用ガラス基板の実施例(例1~9)および比較例(例10~11)を示す。
EXAMPLES Hereinafter, although an Example and a manufacture example demonstrate this invention in more detail, this invention is not limited to these Examples and a manufacture example.
Examples (Examples 1 to 9) and comparative examples (Examples 10 to 11) of the glass substrate for CIGS solar cell of the present invention are shown.
 表1及び表2で表示した組成になるように各成分の原料を調合し、該ガラス基板用成分の母組成原料100質量部に対し、硫酸塩をSO換算で0.1質量部、前記原料に添加し、白金坩堝を用いて1600℃の温度で3時間加熱し溶解した。溶解にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後冷却し、ガラス板を得た。
 こうして得られたガラス板の平均熱膨張係数(単位:×10-7/℃)、ガラス転移点温度Tg(単位:℃)、密度d(単位:g/cm)、ヤング率E(単位:GPa)、比弾性率E/d(単位:GPa・cm/g)、粘度が10dPa・sとなる温度(T)(単位:℃)、粘度が10dPa・sとなる温度(T)(単位:℃)、失透温度(T)(単位:℃)、発電効率を測定し、表1及び表2に示した。以下に各物性の測定方法を示す。
 なお、実施例では、ガラス板について測定しているが、各物性は、ガラス板とガラス基板とで同じ値である。得られたガラス板を加工、研磨を施すことで、ガラス基板とすることができる。
The raw materials of each component are prepared so as to have the compositions shown in Table 1 and Table 2, and 100 parts by mass of the mother composition raw material of the component for glass substrate, 0.1 parts by mass of sulfate in terms of SO 3 , It added to the raw material, and it melt | dissolved by heating at the temperature of 1600 degreeC for 3 hours using the platinum crucible. In melting, a platinum stirrer was inserted and stirred for 1 hour to homogenize the glass. Next, the molten glass was poured out, formed into a plate shape, and then cooled to obtain a glass plate.
The average thermal expansion coefficient (unit: × 10 −7 / ° C.), glass transition temperature Tg (unit: ° C.), density d (unit: g / cm 3 ), Young's modulus E (unit: unit) of the glass plate thus obtained. GPa), specific elastic modulus E / d (unit: GPa · cm 3 / g), temperature at which viscosity becomes 10 4 dPa · s (T 4 ) (unit: ° C), temperature at which viscosity becomes 10 2 dPa · s (T 2 ) (unit: ° C.), devitrification temperature (T L ) (unit: ° C.), and power generation efficiency were measured and shown in Tables 1 and 2. The measuring method of each physical property is shown below.
In addition, although measured about the glass plate in the Example, each physical property is the same value with a glass plate and a glass substrate. By processing and polishing the obtained glass plate, a glass substrate can be obtained.
(1)Tg:
Tgは、示差熱膨張計(TMA)を用いて測定した値であり、JIS R3103-3(2001年度)の規格により求めた。
(2)50~350℃の平均熱膨張係数:
平均熱膨張係数は、TMAを用いて測定し、JIS R3102(1995年度)の規格より求めた。
(1) Tg:
Tg is a value measured using a differential thermal dilatometer (TMA), and was obtained according to the standard of JIS R3103-3 (FY2001).
(2) Average thermal expansion coefficient at 50 to 350 ° C .:
The average coefficient of thermal expansion was measured using TMA and determined from the standard of JIS R3102 (1995).
(3)密度:
密度は、ガラス板から切り出した、泡を含まない約20gのガラス塊をアルキメデス法によって測定した。
(3) Density:
The density was measured by Archimedes' method for about 20 g of glass lump that did not contain bubbles and was cut out from the glass plate.
(4)粘度:
粘度は、回転粘度計を用いて測定し、粘度ηが10dPa・sとなるときの温度T(溶解性の基準温度)と、粘度ηが10dPa・sとなるときの温度T(成形性の基準温度)を測定した。
(5)失透温度(T):
失透温度は、ガラス板から切り出したガラス塊5gを白金皿に置き、所定温度で17時間電気炉中で保持した。保持した後のガラス塊表面および内部に結晶が析出しない温度の最大値を失透温度とした。
(6)Na拡散量:
Na拡散量は、得られたガラス板を太陽電池の基板に用い、以下に示すように評価用太陽電池を作製し、これを用いてNa拡散量について評価を行った。
 評価用太陽電池の作製について、図2、3およびその符号を用いて以下説明している。なお、評価用太陽電池の層構成は、図1の太陽電池のカバーガラス19および反射防止膜17を有さない以外は、図1に示す太陽電池の層構成とほぼ同様である。
 得られたガラス板を、大きさ3cm×3cm、厚さ1.1mmに加工し、ガラス基板を得た。ガラス基板5aの上に、スパッタ装置にて、プラス電極7aとしてMo(モリブデン)膜を成膜した。成膜は室温にて実施し、厚み500nmのMo膜を得た。
 プラス電極7a(Mo膜)上にスパッタ装置にて、CuGa合金ターゲットでCuGa合金層を成膜し、続いてInターゲットを使用してIn層を成膜することで、In-CuGaのプリカーサ膜を成膜した。成膜は室温にて実施した。蛍光X線によって測定したプリカーサ膜の組成が、Cu/(Ga+In)比が0.8、Ga/(Ga+In)比が0.25となるように各層の厚みを調整し、厚み650nmのプリカーサ膜を得た。
(4) Viscosity:
The viscosity is measured using a rotational viscometer, and the temperature T 2 when the viscosity η is 10 2 dPa · s and the temperature T when the viscosity η is 10 4 dPa · s. 4 (formability reference temperature) was measured.
(5) Devitrification temperature (T L ):
As for the devitrification temperature, 5 g of a glass lump cut out from a glass plate was placed on a platinum dish and kept in an electric furnace at a predetermined temperature for 17 hours. The maximum temperature at which crystals do not precipitate on the surface and inside of the glass lump after being held was defined as the devitrification temperature.
(6) Na diffusion amount:
The amount of Na diffusion was evaluated by using the obtained glass plate as a solar cell substrate, producing a solar cell for evaluation as shown below, and using this to evaluate the amount of Na diffusion.
The production of the solar cell for evaluation will be described below with reference to FIGS. The layer configuration of the solar cell for evaluation is substantially the same as the layer configuration of the solar cell shown in FIG. 1 except that it does not have the cover glass 19 and the antireflection film 17 of the solar cell in FIG.
The obtained glass plate was processed into a size of 3 cm × 3 cm and a thickness of 1.1 mm to obtain a glass substrate. On the glass substrate 5a, a Mo (molybdenum) film was formed as a plus electrode 7a by a sputtering apparatus. Film formation was performed at room temperature to obtain a Mo film having a thickness of 500 nm.
On the positive electrode 7a (Mo film), a CuGa alloy layer is formed with a CuGa alloy target by a sputtering apparatus, and then an In layer is formed using an In target, whereby an In—CuGa precursor film is formed. A film was formed. Film formation was performed at room temperature. The thickness of each layer was adjusted so that the composition of the precursor film measured by fluorescent X-rays was Cu / (Ga + In) ratio of 0.8 and Ga / (Ga + In) ratio of 0.25. Obtained.
 プリカーサ膜をRTA(Rapid Thermal Annealing)装置を用いてアルゴンおよびセレン化水素混合雰囲気(セレン化水素はアルゴンに対し5体積%、「セレン雰囲気」と呼ぶ)にて加熱処理した。 The precursor film was heat-treated using a RTA (Rapid Thermal Annealing) apparatus in a mixed atmosphere of argon and hydrogen selenide (hydrogen selenide is 5% by volume with respect to argon, referred to as “selenium atmosphere”).
 条件としては、まず、第1段階としてセレン雰囲気で500℃で10分保持を行い、CuおよびInおよびGaとSeとを反応させて、その後、第2段階として硫化水素雰囲気(硫化水素はアルゴンに対し5体積%)に置換した後、さらに580℃で30分保持してCIGS結晶を成長させることでCIGS層9aを得た。得られたCIGS層9aの厚みは2μmであった。 As conditions, first, hold at 500 ° C. for 10 minutes in a selenium atmosphere as a first stage, react Cu, In, Ga and Se, and then a hydrogen sulfide atmosphere (hydrogen sulfide into argon as a second stage). Then, the CIGS layer 9a was obtained by growing the CIGS crystal by holding at 580 ° C. for 30 minutes. The thickness of the obtained CIGS layer 9a was 2 μm.
 CIGS層9a上にCBD(Chemical Bath Deposition)法にて、バッファ層11aとしてCdS層を成膜した。具体的には、まず、ビーカー内で、濃度0.01Mの硫酸カドミウム、濃度1.0Mのチオウレア、濃度15Mのアンモニア、および純水を混合させた。次に、CIGS層を前記混合液に浸し、ビーカーごと予め水温を70℃にしておいた恒温バス槽に入れ、CdS層を50~80nm成膜した。
 さらにCdS層上にスパッタ装置にて、透明導電膜13aを以下の方法で成膜した。まず、ZnOターゲットを使用してZnO層を成膜し、次に、AZOターゲット(すなわち、Alを1.5wt%含有するZnOターゲット)を使用してAZO層を成膜した。各層の成膜は室温にて実施し、厚み480nmの2層構成の透明導電膜13aを得た。
 透明導電膜13aのAZO層上にEB蒸着法により、U字型のマイナス電極15aとして膜厚1μmのアルミ膜を成膜した(ここにおいて、U字の電極長は、縦8mm、横4mm、電極幅は、0.5mm)。
A CdS layer was formed as the buffer layer 11a on the CIGS layer 9a by the CBD (Chemical Bath Deposition) method. Specifically, first, cadmium sulfate having a concentration of 0.01M, thiourea having a concentration of 1.0M, ammonia having a concentration of 15M, and pure water were mixed in a beaker. Next, the CIGS layer was immersed in the mixed solution, and the beaker was placed in a constant temperature bath with a water temperature of 70 ° C. in advance to form a CdS layer having a thickness of 50 to 80 nm.
Further, a transparent conductive film 13a was formed on the CdS layer by a sputtering apparatus by the following method. First, a ZnO layer was formed using a ZnO target, and then an AZO layer was formed using an AZO target (that is, a ZnO target containing 1.5 wt% Al 2 O 3 ). Each layer was formed at room temperature to obtain a transparent conductive film 13a having a two-layer structure having a thickness of 480 nm.
An aluminum film having a thickness of 1 μm was formed as a U-shaped negative electrode 15a on the AZO layer of the transparent conductive film 13a by EB vapor deposition (where the U-shaped electrode length is 8 mm in length, 4 mm in width, electrode The width is 0.5 mm).
 最後に、メカニカルスクライブによって透明導電膜13a側からCIGS層9aまでを削り、図2に示すようなセル化を行った。図2(a)は、1つの太陽電池セルを上面から見た図であり、図2(b)は、図2(a)中のA-A’の断面図である。一つのセルは幅0.6cm、長さ1cmで、マイナス電極15aを除いた面積が0.5cmであり、図3に示すように、合計8個のセルが1枚のガラス基板5a上に得られた。
 ソーラーシミュレータ(山下電装株式会社製、YSS-T80A)に、評価用CIGS太陽電池(上記8個のセルを作製した評価用ガラス基板5a)を設置し、あらかじめInGa溶剤を塗布したプラス電極7aにプラス端子を(不図示)、マイナス電極15aのU字の下端にマイナス端子16aをそれぞれ電圧発生器に接続した。ソーラーシミュレータ内の温度は25℃一定に温度調節機にて制御した。疑似太陽光を照射し、60秒後に、電圧を-1Vから+1Vまで0.015V間隔で変化させ、8個のセルのそれぞれの電流値を測定した。
Finally, from the transparent conductive film 13a side to the CIGS layer 9a was scraped by mechanical scribing, and a cell was formed as shown in FIG. 2A is a view of one solar battery cell as viewed from above, and FIG. 2B is a cross-sectional view taken along line AA ′ in FIG. 2A. One cell has a width of 0.6 cm and a length of 1 cm, and the area excluding the negative electrode 15a is 0.5 cm 2. As shown in FIG. 3, a total of eight cells are placed on one glass substrate 5a. Obtained.
A CIGS solar cell for evaluation (evaluation glass substrate 5a on which the above eight cells were prepared) was installed in a solar simulator (YSS-T80A manufactured by Yamashita Denso Co., Ltd.) and added to the positive electrode 7a previously coated with InGa solvent. A terminal (not shown) was connected to the voltage generator at the lower end of the U-shape of the negative electrode 15a. The temperature in the solar simulator was controlled at a constant temperature of 25 ° C. with a temperature controller. Pseudo sunlight was irradiated, and after 60 seconds, the voltage was changed from -1 V to +1 V at an interval of 0.015 V, and the current values of each of the eight cells were measured.
 この照射時の電流と電圧特性から発電効率を下記式(2)により算出した。8個のセルのうち最も効率の良いセルの値を、各ガラス基板の発電効率の値として表1、2に示す。試験に用いた光源の照度は0.1W/cmであった。 The power generation efficiency was calculated by the following formula (2) from the current and voltage characteristics during irradiation. Tables 1 and 2 show the value of the most efficient cell among the eight cells as the value of the power generation efficiency of each glass substrate. The illuminance of the light source used for the test was 0.1 W / cm 2 .
  発電効率[%]=Voc[V]×Jsc[A/cm2]×FF[無次元]×100/試験に用いる光源の照度[W/cm2]    …… 式(2) Power generation efficiency [%] = V oc [V] × J sc [A / cm 2 ] × FF [dimensionless] × 100 / illuminance [W / cm 2 ] of the light source used in the test (2)
 発電効率は、開放電圧(Voc)と短絡電流密度(Jsc)と曲線因子(FF)の掛け算で求められる。
 なお、開放電圧(Voc)は、端子を開放した時の出力であり、短絡電流(Isc)は短絡した時の電流である。短絡電流密度(Jsc)は、Iscをマイナス電極を除いたセルの面積で割ったものである。
 また最大の出力を与える点が最大出力点と呼ばれ、その点の電圧が最大電圧値(Vmax)、電流が最大電流値(Imax)と呼ばれる。最大電圧値(Vmax)と最大電流値(Imax)の掛け算の値を、開放電圧(Voc)と短絡電流(Isc)の掛け算の値で割った値が曲線因子(FF)として求められる。上記の値を使用し、発電効率を求めた。
The power generation efficiency is obtained by multiplying the open circuit voltage (V oc ), the short circuit current density (J sc ), and the fill factor (FF).
The open circuit voltage (V oc ) is an output when the terminal is opened, and the short circuit current (I sc ) is a current when the terminal is short circuited. The short-circuit current density (J sc ) is I sc divided by the area of the cell excluding the negative electrode.
The point that gives the maximum output is called the maximum output point, the voltage at that point is called the maximum voltage value (V max ), and the current is called the maximum current value (I max ). A value obtained by dividing the product of the maximum voltage value (V max ) and the maximum current value (I max ) by the product of the open circuit voltage (V oc ) and the short circuit current (I sc ) is obtained as a fill factor (FF). It is done. Using the above values, the power generation efficiency was determined.
 ここで、CIGS層へのアルカリ金属元素の拡散に対するガラス基板の効果を観察するために、Na拡散量を測定した。測定方法は以下のとおりである。
 上記RTA装置による加熱の第2段階終了後、試料を二次イオン質量分析法(SIMS)にてCIGS膜中の23Naの積分強度を測定する。なお、表1及び表2に記載した値は、例10を100とした時の相対量である。例10と比較したNa拡散量が60以上であればNa拡散量が多く、高い発電効率を有する太陽電池に適したガラス基板であるということができる。
Here, the amount of Na diffusion was measured in order to observe the effect of the glass substrate on the diffusion of the alkali metal element into the CIGS layer. The measurement method is as follows.
After completion of the second stage of heating by the RTA apparatus, the sample is measured for the integrated intensity of 23 Na in the CIGS film by secondary ion mass spectrometry (SIMS). The values listed in Tables 1 and 2 are relative amounts when Example 10 is taken as 100. If Na diffusion amount compared with Example 10 is 60 or more, it can be said that it is a glass substrate suitable for a solar cell with much Na diffusion amount and high power generation efficiency.
 本実施例におけるガラス中のSO残存量は100~500ppmであった。
 なお、ガラス組成物中のSOの残存量は、ガラス板から切り出したガラスの塊を粉末状にして蛍光X線で評価し、測定した。
The SO 3 remaining amount in the glass in this example was 100 to 500 ppm.
In addition, the residual amount of SO 3 in the glass composition was measured by measuring a glass lump cut out from a glass plate in a powder form and evaluating with fluorescent X-rays.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より明らかなように、実施例(例1~9)のガラス基板は、
   SiOを45~70%、
   Alを10~20%、
   Bを0~0.5%、
   MgOを0~6%、
   CaOを0~4%未満、
   SrOを9.5~20%、
   BaOを0~5%、
   ZrOを0~8%、
   NaOを3~10%、
   KOを2~9.5%、
含有する組成を満たしているためCIGS太陽電池を作製した時に、ガラス上のCIGS層へ拡散するNa量が多く、太陽電池用ガラス基板の特性をバランスよく有している。
 加えて、ガラス転移点温度Tgが640℃以上と高く、平均熱膨張係数が60×10-7~110×10-7/℃であり、密度が2.9g/cm以下である。
 したがって、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、をバランスよく有することができる。そのため、CIGS光電変換層がMo膜付ガラス基板から剥離することがなく、さらに本発明における太陽電池を組立てる際(具体的にはCIGSの光電変換層を有するガラス基板とカバーガラスとを加熱してはりあわせる際)、ガラス基板が変形しにくく発電効率により優れる。
As is clear from Tables 1 and 2, the glass substrates of Examples (Examples 1 to 9)
45 to 70% of SiO 2
10-20% Al 2 O 3
B 2 O 3 from 0 to 0.5%,
0-6% MgO
CaO 0-4%,
9.5-20% of SrO,
BaO 0-5%,
ZrO 2 0-8%,
3-10% Na 2 O,
2 to 9.5% of K 2 O,
When the CIGS solar cell is manufactured because the composition contained is satisfied, the amount of Na diffused into the CIGS layer on the glass is large, and the characteristics of the glass substrate for solar cell are well balanced.
In addition, the glass transition temperature Tg is as high as 640 ° C. or higher, the average thermal expansion coefficient is 60 × 10 −7 to 110 × 10 −7 / ° C., and the density is 2.9 g / cm 3 or lower.
Therefore, it is possible to have a high power generation efficiency, a high glass transition temperature, and a predetermined average thermal expansion coefficient in a well-balanced manner. Therefore, the CIGS photoelectric conversion layer does not peel from the glass substrate with the Mo film, and when the solar cell in the present invention is further assembled (specifically, the glass substrate having the CIGS photoelectric conversion layer and the cover glass are heated). When bonding), the glass substrate is less likely to deform and has better power generation efficiency.
 一方、表1が示すように比較例(例10)のガラス基板はTgが低く、600℃以上での成膜時にガラス基板が変形しやすいため適していない。
 また、比較例(例11)のガラス基板はSrOが少なく、発電効率の高さの一因となるCIGS層へのNaの拡散を促進する効果が不十分であるため適していない。
On the other hand, as shown in Table 1, the glass substrate of the comparative example (Example 10) has a low Tg and is not suitable because the glass substrate is easily deformed during film formation at 600 ° C. or higher.
Further, the glass substrate of the comparative example (Example 11) is not suitable because it has a small amount of SrO and has an insufficient effect of promoting the diffusion of Na into the CIGS layer, which contributes to high power generation efficiency.
 本発明のCu-In-Ga-Se太陽電池用ガラス基板は、CIGSの太陽電池用のガラス基板として好適である。 The glass substrate for a Cu—In—Ga—Se solar cell of the present invention is suitable as a glass substrate for a CIGS solar cell.
 本発明のCu-In-Ga-Se太陽電池用ガラス基板は、高い発電効率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス生産時の溶解性、成形性、および失透防止の特性をバランスよく有することができ、本発明のCIGS太陽電池用ガラス基板を用いることで発電効率の高い太陽電池を提供できる。
 なお、2012年8月6日に出願された日本特許出願2012-173698号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The glass substrate for a Cu—In—Ga—Se solar cell of the present invention has high power generation efficiency, high glass transition temperature, predetermined average thermal expansion coefficient, high glass strength, low glass density, solubility during production of sheet glass, molding Therefore, it is possible to provide a solar cell with high power generation efficiency by using the CIGS solar cell glass substrate of the present invention.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-173698 filed on August 6, 2012 are incorporated herein by reference. .
1 太陽電池
5、5a ガラス基板
7、7a プラス電極
9、9a CIGS層
11、11a バッファ層
13、13a 透明導電膜
15、15a マイナス電極
17 反射防止膜
19 カバーガラス
DESCRIPTION OF SYMBOLS 1 Solar cell 5, 5a Glass substrate 7, 7a Positive electrode 9, 9a CIGS layer 11, 11a Buffer layer 13, 13a Transparent conductive film 15, 15a Negative electrode 17 Antireflection film 19 Cover glass

Claims (9)

  1.  酸化物基準の質量百分率表示で、
       SiOを45~70%、
       Alを10~20%、
       Bを0~0.5%、
       MgOを0~6%、
       CaOを0~4%未満、
       SrOを9.5~20%、
       BaOを0~5%、
       ZrOを0~8%、
       NaOを3~10%、
       KOを2~9.5%、
    含有するCu-In-Ga-Se太陽電池用ガラス基板。
    In mass percentage display based on oxide,
    45 to 70% of SiO 2
    10-20% Al 2 O 3
    B 2 O 3 from 0 to 0.5%,
    0-6% MgO
    CaO 0-4%,
    9.5-20% of SrO,
    BaO 0-5%,
    ZrO 2 0-8%,
    3-10% Na 2 O,
    2 to 9.5% of K 2 O,
    A glass substrate for a Cu—In—Ga—Se solar cell containing the glass substrate.
  2.  ガラス転移点温度が640℃~700℃である、請求項1に記載のCu-In-Ga-Se太陽電池用ガラス基板。 The glass substrate for a Cu-In-Ga-Se solar cell according to claim 1, having a glass transition temperature of 640 ° C to 700 ° C.
  3.  平均熱膨張係数が60×10-7~110×10-7/℃である、請求項1または2に記載のCu-In-Ga-Se太陽電池用ガラス基板。 3. The glass substrate for a Cu—In—Ga—Se solar cell according to claim 1, wherein an average coefficient of thermal expansion is 60 × 10 −7 to 110 × 10 −7 / ° C.
  4.  密度が2.9g/cm以下である、請求項1~3のいずれか1項に記載のCu-In-Ga-Se太陽電池用ガラス基板。 The glass substrate for a Cu-In-Ga-Se solar cell according to any one of claims 1 to 3, wherein the density is 2.9 g / cm 3 or less.
  5.  酸化物基準の質量百分率表示で、SrO/(MgO+CaO+SrO+BaO)が0.6以上である請求項1~4のいずれか1項に記載のCu-In-Ga-Se太陽電池用ガラス基板。 The glass substrate for a Cu-In-Ga-Se solar cell according to any one of claims 1 to 4, wherein SrO / (MgO + CaO + SrO + BaO) is 0.6 or more in terms of oxide-based mass percentage.
  6.  前記ガラス基板の母組成原料100質量部に対し、TiOの含有量が0.2%以下である請求項1~5のいずれか1項に記載のCu-In-Ga-Se太陽電池用ガラス基板。 The glass for a Cu-In-Ga-Se solar cell according to any one of claims 1 to 5, wherein a content of TiO 2 is 0.2% or less with respect to 100 parts by mass of a mother composition raw material of the glass substrate. substrate.
  7.  酸化物基準の質量百分率表示で、MgO+CaO+SrO+BaOの含有量の和が17%以上、30%以下である請求項1~6のいずれか1項に記載のCu-In-Ga-Se太陽電池用ガラス基板。 The glass substrate for a Cu-In-Ga-Se solar cell according to any one of claims 1 to 6, wherein the sum of the contents of MgO + CaO + SrO + BaO is 17% or more and 30% or less in terms of mass percentage based on oxide. .
  8.  ガラス基板と、カバーガラスと、前記ガラス基板と前記カバーガラスとの間に配置されるCu-In-Ga-Seの光電変換層と、を有し、前記ガラス基板が、請求項1~7のいずれか1項に記載のCu-In-Ga-Se太陽電池用ガラス基板であるCu-In-Ga-Se太陽電池。 8. A glass substrate, a cover glass, and a Cu—In—Ga—Se photoelectric conversion layer disposed between the glass substrate and the cover glass, wherein the glass substrate comprises: A Cu—In—Ga—Se solar cell, which is the glass substrate for a Cu—In—Ga—Se solar cell according to any one of the items.
  9.  前記カバーガラスが請求項1~7のいずれか1項に記載のCu-In-Ga-Se太陽電池用ガラス基板である請求項8に記載のCu-In-Ga-Se太陽電池。 The Cu-In-Ga-Se solar cell according to claim 8, wherein the cover glass is a glass substrate for a Cu-In-Ga-Se solar cell according to any one of claims 1 to 7.
PCT/JP2013/071172 2012-08-06 2013-08-05 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME WO2014024850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20147034799A KR20150040251A (en) 2012-08-06 2013-08-05 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
JP2014529494A JPWO2014024850A1 (en) 2012-08-06 2013-08-05 Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173698 2012-08-06
JP2012-173698 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024850A1 true WO2014024850A1 (en) 2014-02-13

Family

ID=50068074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071172 WO2014024850A1 (en) 2012-08-06 2013-08-05 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME

Country Status (4)

Country Link
JP (1) JPWO2014024850A1 (en)
KR (1) KR20150040251A (en)
TW (1) TW201412677A (en)
WO (1) WO2014024850A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683231B2 (en) 2015-03-26 2020-06-16 Pilkington Group Limited Glasses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054419A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited Glass composition for substrate and method for producing the same
JP2010143790A (en) * 2008-12-19 2010-07-01 Nippon Electric Glass Co Ltd Method for producing glass substrate for solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054419A1 (en) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited Glass composition for substrate and method for producing the same
JP2010143790A (en) * 2008-12-19 2010-07-01 Nippon Electric Glass Co Ltd Method for producing glass substrate for solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683231B2 (en) 2015-03-26 2020-06-16 Pilkington Group Limited Glasses

Also Published As

Publication number Publication date
TW201412677A (en) 2014-04-01
JPWO2014024850A1 (en) 2016-07-25
KR20150040251A (en) 2015-04-14

Similar Documents

Publication Publication Date Title
WO2012102346A1 (en) GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELLS AND SOLAR CELL USING SAME
WO2011049146A1 (en) Glass sheet for cu-in-ga-se solar cells, and solar cells using same
JP6004048B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
WO2012053549A1 (en) Glass substrate for cu-in-ga-se solar cells and solar cell using same
JP6048490B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
JP6003904B2 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
JP6210136B2 (en) Glass substrate
JP6128128B2 (en) Glass substrate for solar cell and solar cell using the same
JP2016102058A (en) Glass substrate for solar cells and solar cell prepared therewith
WO2014024850A1 (en) GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
WO2015076208A1 (en) Glass sheet
JP2016084247A (en) Glass sheet
JP2016171158A (en) Cu-In-Ga-Se SOLAR CELL
TW201544481A (en) Glass plate
JP2014067903A (en) Glass substrate for solar battery use, solar battery, and method for manufacturing solar battery
JP2018177592A (en) Cigs solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529494

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147034799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828388

Country of ref document: EP

Kind code of ref document: A1