WO2014024651A1 - Metal surface modifying liquid and method for metal surface modification - Google Patents

Metal surface modifying liquid and method for metal surface modification Download PDF

Info

Publication number
WO2014024651A1
WO2014024651A1 PCT/JP2013/069437 JP2013069437W WO2014024651A1 WO 2014024651 A1 WO2014024651 A1 WO 2014024651A1 JP 2013069437 W JP2013069437 W JP 2013069437W WO 2014024651 A1 WO2014024651 A1 WO 2014024651A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
metal surface
surface modification
zirconium
metal
Prior art date
Application number
PCT/JP2013/069437
Other languages
French (fr)
Japanese (ja)
Inventor
山本 真人
高久 粕川
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2014529405A priority Critical patent/JP6249948B2/en
Publication of WO2014024651A1 publication Critical patent/WO2014024651A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon

Definitions

  • the present invention relates to a metal surface modification solution containing no fluorine and a metal surface treatment method.
  • chromate treatment and phosphate treatment are generally performed to improve the corrosion resistance of metal surfaces.
  • the toxicity of chromium has become a social problem in recent years, and the surface treatment method using chromate has a problem of scattering of chromate fume in the treatment process and requires a large amount of cost for wastewater treatment equipment.
  • Patent Document 1 proposes a chemical conversion treatment agent for iron and / or zinc-based substrates that contains substantially no phosphate ions but contains zirconium ions and / or titanium ions and fluorine ions.
  • Patent Document 2 discloses (I) a compound containing at least one metal element selected from Ti, Zr, Hf and Si, and (II) a surface treatment of a metal containing a fluorine-containing compound as a source of fluorine ions.
  • a surface treatment film having excellent corrosion resistance can be deposited on the surface of a metal containing at least one of iron and zinc, and the surface adjustment (surface tone) step is not required, so that the treatment step is shortened. It is disclosed to save space.
  • Patent Document 1 and Patent Document 2 both contain fluorine as an essential component, and due to restrictions on the fluorine content in industrial wastewater in recent years, a great amount of capital investment has been made to overcome these. It was necessary.
  • Patent Document 3 in order to form a chemical conversion film having corrosion resistance and coating film adhesion on the surface of a metal substrate without containing fluorine, at least one selected from a water-soluble titanium compound and a water-soluble zirconium compound is used.
  • Compound (A), and an organic compound (B) having a plurality of functional groups as a stabilizer the content of compound (A) is 0.1 to 10 mmol / L, and the content of organic compound (B) is compound ( It has been proposed to use a chemical conversion treatment solution for metal surfaces having a metal content of 2.5 to 10 times mol of the metal content of A) and having a pH of 2.0 to 6.5.
  • the object of the present invention is to provide a metal surface modification that does not contain fluorine, particularly useful for chemical conversion treatment for iron-based materials, without causing the above-mentioned problems even when the treatment is performed continuously in chemical conversion treatment for iron-based materials.
  • the object is to provide a liquid and metal surface modification method.
  • the present inventors have determined that specific amounts of at least one element selected from Zr and Ti, oxycarboxylic acid, alkanoic acid having 1 to 7 carbon atoms, and nitrate ion are used. It has been found that the above-mentioned problems can be solved by the inclusion, and the present invention has been completed. That is, the present invention is as follows.
  • Item 1 10 to 500 ppm of at least one element selected from Zr and Ti, 20 to 3,000 ppm of oxycarboxylic acid, 1 to 10,000 ppm of alkanoic acid having 1 to 7 carbon atoms, and 1 to 10,000 ppm of nitrate ions And a molar ratio of at least one element selected from Zr and Ti to oxycarboxylic acid (at least one element selected from Zr and Ti / oxycarboxylic acid) is 1/10 to 1/2, pH 2
  • a metal surface modification solution containing no fluorine characterized by being an aqueous solution of 0.0 to 6.5.
  • Item 2 The metal surface modification solution according to Item 1, wherein the oxycarboxylic acid is at least one selected from lactic acid, malic acid, citric acid, tartaric acid, gluconic acid and glycolic acid.
  • the oxycarboxylic acid is at least one selected from lactic acid, malic acid, citric acid, tartaric acid, gluconic acid and glycolic acid.
  • Item 3. The metal surface modifying solution according to Item 1 or 2, wherein the alkanoic acid having 1 to 7 carbon atoms is at least one selected from formic acid, acetic acid, propionic acid, and butyric acid.
  • Zr is derived from at least one selected from zirconium oxynitrate, zirconium nitrate, zirconium oxyacetate, zirconium acetate, ammonium zirconium carbonate, ammonium zirconium nitrate, zirconium sulfate, zirconium oxysulfate, zirconium lactate and zirconium chloride.
  • the metal surface modification liquid according to any one of the above.
  • Item 5 The metal surface modification solution according to any one of Items 1 to 4, wherein Ti is derived from at least one selected from titanium nitrate, titanium oxynitrate, titanium sulfate, titanium oxysulfate and titanium ammonium nitrate.
  • Item 6. The metal surface modifying solution according to any one of Items 1 to 5, which has a pH buffering action and is an aqueous solution having a pH of 3.5 to 5.5.
  • At least one element selected from Zr and Ti is at least one of zirconium oxynitrate and titanium oxynitrate or titanium sulfate; the oxycarboxylic acid is selected from lactic acid, malic acid, and citric acid;
  • Item 8 The metal surface modifying solution according to Item 1, wherein the alkanoic acid of ⁇ 7 is selected from formic acid, acetic acid, and propionic acid.
  • Item 8 A metal surface modification method for modifying a surface of a metal material, the step of bringing the metal surface modification solution according to any one of Items 1 to 7 into contact with the metal material, and contacting the modification solution
  • a metal surface modification method comprising: a water washing step of washing the metal material that has undergone the step of causing the metal material to wash.
  • Item 9 The metal surface modification method according to Item 8, wherein the metal material is an iron-based material.
  • Item 10 The method for modifying a metal surface according to Item 8 or 9, further comprising a step of subjecting the metal material to pickling with an acidic aqueous solution containing acetic acid and nitric acid before contacting the modifying solution.
  • Item 11 A coating method of a metal material, wherein a baking paint is coated on a metal surface that has been surface-modified by the metal surface modification method according to any one of Items 8 to 10.
  • composition of the present invention in particular, when the treatment is continuously performed in the chemical conversion treatment for the iron-based material, no trouble occurs, and the corrosion resistance and the upper coating film are not formed on the surface of the metal substrate without containing fluorine.
  • a chemical conversion film having excellent adhesion can be formed.
  • the metal surface modification liquid of the present invention is particularly useful for chemical conversion treatment for iron-based materials.
  • the metal surface modification liquid of the present invention contains 10 to 500 ppm, preferably 25 to 300 ppm, of at least one element selected from Zr and Ti (the total when both Zr and Ti are included). If it is less than 10 ppm, sufficient corrosion resistance cannot be obtained, and if it exceeds 500 ppm, the corrosion resistance may be reduced, and the adhesion with the coating film formed on the treated film may also be reduced.
  • Zr can be supplied from, for example, zirconium oxynitrate, zirconium nitrate, zirconium oxyacetate, zirconium acetate, ammonium zirconium carbonate, ammonium zirconium nitrate, zirconium sulfate, zirconium oxysulfate, zirconium lactate, zirconium chloride and the like.
  • Ti can be supplied from, for example, titanium nitrate, titanium oxynitrate, titanium sulfate, titanium oxysulfate, and ammonium ammonium nitrate.
  • the metal surface modifying liquid of the present invention contains 20 to 3,000 ppm, preferably 50 to 1,000 ppm of oxycarboxylic acid. If it is less than 20 ppm, Zr and Ti in the reforming solution may not be stabilized and precipitates may be formed. If it exceeds 3,000 ppm, Zr and Ti will not easily precipitate from the reforming solution, and will form on the surface of the metal substrate. A treatment film may not be formed.
  • oxycarboxylic acid for example, lactic acid, malic acid, citric acid, tartaric acid, gluconic acid, glycolic acid and the like can be used, and lactic acid is particularly preferable.
  • the molar ratio (at least one element selected from Zr and Ti / oxygen) of at least one element selected from Zr and Ti to the oxycarboxylic acid (the sum of both when Zr and Ti are included).
  • Carboxylic acid) is preferably 1/10 to 1/2, and particularly preferably in the range of 1/8 to 1/3. If it is out of this range, the chemical conversion film may not be formed on the surface of the metal substrate.
  • the metal surface modification liquid of the present invention contains 1 to 10,000 ppm, preferably 25 to 3,000 ppm of alkanoic acid having 1 to 7 carbon atoms. If it is less than 1 ppm, the pH of the reforming solution will increase with time and it will be difficult to control the reforming solution, and the corrosion resistance will be reduced. If it exceeds 10,000 ppm, Zr and Ti will not easily precipitate from the modifying solution, and the surface of the metal substrate In some cases, the chemical conversion film may not be formed.
  • alkanoic acid having 1 to 7 carbon atoms for example, formic acid, acetic acid, propionic acid, butyric acid and the like can be used, and formic acid and acetic acid are particularly preferable.
  • the metal surface modification liquid of the present invention contains 1 to 10,000 ppm, preferably 25 to 5,000 ppm of nitrate ions. If it is less than 1 ppm, the oxidized layer on the surface of the metal base material cannot be dissolved, and a chemical conversion treatment film may not be formed on the surface of the metal base material. Adhesion with the coating film may be reduced.
  • the metal surface modification liquid of the present invention is further magnesium, zinc, calcium, aluminum, gallium, indium, copper, iron, manganese, nickel, cobalt, cerium, strontium, rare earth element, tin, It can contain at least one metal element selected from the group consisting of bismuth, yttrium, vanadium, barium, chromium, molybdenum, tungsten and silver.
  • the supply source of these metal elements is not particularly limited, and for example, it can be blended in the metal surface modification liquid as a nitrate, a sulfate or the like. When these metal elements are contained, the content is suitably in the range of 0.1 to 5,000 ppm in terms of metal elements.
  • the metal surface modification liquid of the present invention is further improved in terms of the corrosion resistance of the film and the adhesion to the coating film.
  • silane coupling agents such as aminosilane and epoxysilane; and epoxy resins, acrylic resins, polyester resins, poly Water-soluble or water-dispersible organic resins such as allylamine resin, polyvinylamine resin, polybutadiene resin, polyurethane resin, polyvinyl alcohol, and ethylene-vinyl acetate resin can be blended.
  • the content thereof is suitably in the range of 0.1 to 300,000 ppm, preferably 5 to 5,000 ppm in terms of solid content.
  • the metal surface modification liquid of the present invention can further contain a surfactant for the purpose of improving the stability and precipitation of the composition.
  • a surfactant for the purpose of improving the stability and precipitation of the composition.
  • the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • the content thereof is suitably in the range of 5 to 300,000 ppm, preferably 25 to 100,000 ppm in terms of solid content.
  • the metal surface modifying solution of the present invention is preferably an aqueous solution having a pH of 2.0 to 6.5, particularly 3.5 to 5.5.
  • the metal surface modification liquid of the present invention desirably has a pH buffering action in the pH range from the viewpoint of improving the liquid stability after the treatment.
  • the above-mentioned acidic compounds such as alkanoic acid such as formic acid and acetic acid and nitric acid, and basic compounds such as sodium hydroxide, potassium hydroxide and ammonia can be used.
  • the metal surface modification liquid contains 10 to 500 ppm of at least one of zirconium oxynitrate and titanium oxynitrate or titanium sulfate, and 20 to oxycarboxylic acid selected from lactic acid, malic acid, and citric acid.
  • the aqueous solution has a molar ratio of at least one element to oxycarboxylic acid of 1/10 to 1/2 and a pH of 2.0 to 6.5.
  • the metal surface modification liquid of the present invention obtained as described above is for forming a chemical conversion film containing Zr and / or Ti on the surface of the metal material.
  • the material iron is eluted, and the eluted iron ions form a complex with the oxycarboxylic acid, so that Zr and Ti are destabilized, and the hydroxide and / or oxide of Zr and / or Ti and the material metal It is possible to deposit a chemical conversion film layer containing a complex of (mainly Fe in the case of iron-based materials) and oxycarboxylic acid on the surface of the metal material.
  • the metal surface modification method of the present invention includes a step of bringing a metal surface modification solution obtained as described above into contact with a metal material (hereinafter referred to as a modification solution contact step), and washing the metal material that has undergone the modification solution contact step with water. And a water washing step.
  • the reforming liquid contact step is not particularly limited, and for example, a dipping method, a spray method, a roll coating method or the like can be employed. It is preferable to adjust the temperature of the treatment liquid to 20 to 70 ° C., particularly 30 to 55 ° C.
  • steel materials such as cold-rolled steel plates and hot-rolled steel plates, iron-based materials such as cast iron, sintered materials and iron-zinc alloy-plated steel plates; aluminum-based materials such as aluminum die-casting and aluminum alloy plates; zinc Examples thereof include system materials.
  • the metal surface modification method of the present invention is particularly useful for iron-based materials made of iron and / or alloys thereof.
  • These metal materials are preferably subjected to a degreasing treatment, a post-degreasing water washing treatment, a pickling treatment, and the like before the modifying liquid contacting step, and a water washing step after the modifying liquid contacting step.
  • the corrosion resistance can be improved by performing pickling with an acidic aqueous solution containing acetic acid and nitric acid before the modifying solution contacting step, and is usually performed after the pickling treatment. It is not necessary to remove the pickling solution.
  • the acidic aqueous solution preferably has a concentration range of 0.1 to 10 g of acetic acid and 0.1 to 10 g of nitric acid in 1 L.
  • a surfactant and a chelating agent can be further added to the acidic aqueous solution. When adding, if the kind of surfactant and / or chelating agent can be used in acidic aqueous solution, it will not be specifically limited.
  • the pickling treatment conditions are not particularly limited, but it is preferable to treat at 5 to 80 ° C. for 3 to 30 minutes.
  • the degreasing treatment is performed to remove oil and dirt adhering to the surface of the base material, and usually with a degreasing agent such as a phosphorus-free and nitrogen-free degreasing cleaning solution at 30 to 70 ° C. for several seconds. Immersion treatment is performed for about several minutes. If desired, a preliminary degreasing process can be performed before the degreasing process.
  • a degreasing agent such as a phosphorus-free and nitrogen-free degreasing cleaning solution
  • the water washing step after contact with the modifying liquid is carried out once or more so as not to adversely affect the adhesion, corrosion resistance, etc. after the various coatings.
  • the final water washing is performed with pure water.
  • This water washing treatment may be either spray water washing or immersion water washing, and these methods may be combined for water washing.
  • a drying step can be further employed after the water washing step.
  • cold air drying, hot air drying, etc. can be performed.
  • the film obtained by the method of the present invention has a coating amount of 0.1 to 100 mg / m 2 , particularly 1 to 50 mg / m 2 in terms of the metal element contained in the treatment agent, so that the corrosion resistance of the film is improved. This is preferable from the viewpoint of improving adhesion to the coating film.
  • a paint film layer may be appropriately formed by coating with a conventionally known paint, and an organic resin coating layer may be provided via an adhesive layer.
  • a conventionally known paint can be used without any particular limitation.
  • a baking paint such as an organic solvent-diluted paint, a water-based paint, and a powder paint can be applied.
  • Preparation Examples 1 to 20 and Comparative Examples 1 to 9 of Metal Surface Modification Liquid Zirconium oxynitrate, titanium oxynitrate, titanium sulfate, lactic acid, malic acid, citric acid, acetic acid, formic acid, propionic acid, nitric acid, ammonia, sodium hydroxide, etc. are used to modify the metal surface having the composition and pH shown in Table 1.
  • a fluid was prepared.
  • Table 1 the concentration of each metal component is shown in terms of metal element, and the concentration of the other components indicates the solid content concentration.
  • the content of nitrate ions when zirconium oxynitrate and titanium oxynitrate are used means the total amount of carry-in and the amount due to the addition of nitric acid.
  • Table 2 shows the liquid state of the metal surface modification liquid. Y is defined as no abnormality.
  • (Note 1) to (Note 3) indicate the following.
  • Surfactant “New Coal 1100”, trade name, manufactured by Nippon Emulsifier Co., Ltd.
  • Nonionic surfactant (Note 3) Organic resin: “Adekabon titer UX206”, trade name, manufactured by ADEKA, water-based polyurethane resin.
  • the substrate was immersed in a commercially available degreasing solution adjusted to 40 ° C. for 2 minutes for degreasing treatment, and then washed with tap water for 30 seconds.
  • the metal substrate after washing with water was immersed in the metal surface modification liquids of Examples and Comparative Examples adjusted for pH and temperature for 10 to 300 seconds.
  • the metal surface modifying solution was used by adjusting the pH to 3.2 to 4.2 using nitric acid or sodium hydroxide, and adjusting the temperature to 35 to 50 ° C.
  • test coating plate (1) On each surface-modified plate obtained above, “Magiclon # 1000” (manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin-based organic solvent dilution type paint) is adjusted to a dry film thickness of 30 ⁇ m. Each of the test coating plates was made by air spray coating and heating and baking at 160 ° C. for 30 minutes. Each obtained test coating board was used for the following evaluation test. The results are shown in Table 2.
  • Evaluation test 1 Corrosion resistance: Cross-cut flaws were made in the coating plate (1) of each example and comparative example with a knife so as to reach the substrate, and this was subjected to a salt spray corrosion test (SST: JIS Z-2371. Salt water temperature 35) C.) for 240 hours, and then the adhesive tape was attached to and peeled from the knife wound, and the peel width of the coating film on one side was measured from the cut wound.
  • SST JIS Z-2371. Salt water temperature 35
  • Adhesiveness The test coating plate (1) of each example and comparative example was immersed in warm water (40 ° C.) for 240 hours, and immediately after being pulled up, cuts of grids (10 ⁇ 10 pieces, 1 mm interval) were added. Then, adhesion and peeling with an adhesive tape were performed, and the number of peeling masses of the coating film was examined.
  • the evaluation criteria are as follows.
  • the iron ion concentration (ppm) of the modified liquid after the treatment was measured by ICP emission spectroscopic analysis, and then the modified liquid after the treatment was left at 40 ° C. for 1 day. Thereafter, one step using a commercially available cold-rolled steel plate (SPCC-SD, manufactured by Nippon Test Panel Co., Ltd., 70 mm ⁇ 150 mm ⁇ 0.8 mm) as a base material, the above-described process ( A metal surface modification treatment was performed under the conditions 1) to (4) and Table 1 to obtain a surface modification treatment plate. The amount of the metal film on each surface-modified plate was analyzed as a total amount (mg / m 2 ) of adhered metal using “XRF1700” (manufactured by Shimadzu Corporation, fluorescent X-ray analyzer).
  • test coating plate (2) “Magiclon # 1000” (manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin organic solvent dilution type paint) with a dry film thickness on each surface modified plate obtained by the above-mentioned continuous treatment.
  • Each test coating plate (2) was prepared by performing air spray coating to 30 ⁇ m, heating and baking at 160 ° C. for 30 minutes.
  • Each obtained test coated plate (2) was subjected to the above corrosion resistance test and (after water resistance) adhesion test. The results are shown in Table 2.

Abstract

Provided is a fluorine-free metal surface modifying liquid which is characterized by being an aqueous liquid having a pH of 2.0 to 6.5, and comprising 10 to 500 ppm of at least one element selected from Zr and Ti, 20 to 3000 ppm of oxycarboxylic acid, 1 to 10000 ppm of alkanoic acid having 1 to 7 carbon atoms and 1 to 10000 ppm of nitric acid ion, where the molar ratio of the at least one element selected from Zr and Ti to the oxycarboxylic acid is 1/10 to 1/2 in terms of former/latter ratio.

Description

金属表面改質液及び金属表面改質方法Metal surface modification liquid and metal surface modification method
(関連分野の相互参照)
 本願は、2012年8月7日に出願した特願2012-175200号明細書(その全体が参照により本明細書中に援用される)の優先権の利益を主張するものである。
(技術分野)
 本発明は、フッ素を含有しない金属表面改質液及び金属表面処理方法に関する。
(Cross-reference of related fields)
This application claims the benefit of priority of Japanese Patent Application No. 2012-175200 filed on August 7, 2012, the entirety of which is incorporated herein by reference.
(Technical field)
The present invention relates to a metal surface modification solution containing no fluorine and a metal surface treatment method.
 従来、金属表面の耐食性を向上させるためクロム酸塩処理及びリン酸塩処理が一般に行われている。しかしながら近年クロムの毒性が社会問題になっており、クロム酸塩を使用する表面処理方法は、処理工程でのクロム酸塩ヒュ-ムの飛散の問題、排水処理設備に多大な費用を要すること、さらには化成処理皮膜からクロム酸の溶出による問題などがある。 Conventionally, chromate treatment and phosphate treatment are generally performed to improve the corrosion resistance of metal surfaces. However, the toxicity of chromium has become a social problem in recent years, and the surface treatment method using chromate has a problem of scattering of chromate fume in the treatment process and requires a large amount of cost for wastewater treatment equipment. Furthermore, there is a problem due to elution of chromic acid from the chemical conversion coating.
 またリン酸塩処理では、リン酸亜鉛系、リン酸鉄系の表面処理が通常行われているが、耐食性を付与する目的でリン酸塩処理後、通常クロム酸によるリンス処理を行うためクロム処理の問題とともにリン酸塩処理剤中の反応促進剤や金属イオンなどの排水処理、被処理金属からの金属イオンの溶出によるスラッジ処理などの問題がある。 Also, in phosphate treatment, zinc phosphate and iron phosphate surface treatments are usually performed, but in order to provide corrosion resistance, chrome treatment is usually performed after phosphating for rinsing with chromic acid. In addition to these problems, there are problems such as waste water treatment of reaction accelerators and metal ions in the phosphate treatment agent, and sludge treatment by elution of metal ions from the metal to be treated.
 これに対しクロム酸塩処理やリン酸亜鉛処理以外の処理方法としては、ジルコニウム系やチタン系の表面処理剤が知られている。例えば特許文献1には、実質的にリン酸イオンを含有せず、ジルコニウムイオン及び/又はチタニウムイオン、並びにフッ素イオンを含有してなる鉄及び/又は亜鉛系基材用化成処理剤が提案されている。特許文献2には、(I)Ti、Zr、Hf及びSiから選ばれる少なくとも1種の金属元素を含む化合物と、(II)フッ素イオンの供給源としてフッ素含有化合物を含有する金属の表面処理用組成物を用いることにより、鉄又は亜鉛の少なくとも1種を含む金属の表面に耐食性に優れる表面処理皮膜を析出させることができ、且つ表面調整(表調)工程を必要としないため処理工程の短縮、省スペース化を図ることが開示されている。 On the other hand, zirconium-based and titanium-based surface treatment agents are known as treatment methods other than chromate treatment and zinc phosphate treatment. For example, Patent Document 1 proposes a chemical conversion treatment agent for iron and / or zinc-based substrates that contains substantially no phosphate ions but contains zirconium ions and / or titanium ions and fluorine ions. Yes. Patent Document 2 discloses (I) a compound containing at least one metal element selected from Ti, Zr, Hf and Si, and (II) a surface treatment of a metal containing a fluorine-containing compound as a source of fluorine ions. By using the composition, a surface treatment film having excellent corrosion resistance can be deposited on the surface of a metal containing at least one of iron and zinc, and the surface adjustment (surface tone) step is not required, so that the treatment step is shortened. It is disclosed to save space.
 しかしながら特許文献1や特許文献2に開示の表面処理剤では、いずれもフッ素を必須として含むものであり、近年の工業廃水におけるフッ素含有量の規制から、これらを克服するために多大な設備投資が必要であった。 However, the surface treatment agents disclosed in Patent Document 1 and Patent Document 2 both contain fluorine as an essential component, and due to restrictions on the fluorine content in industrial wastewater in recent years, a great amount of capital investment has been made to overcome these. It was necessary.
 これに対し特許文献3では、フッ素を含有せずに金属基材表面に耐食性および塗膜密着性を有する化成処理皮膜を形成するため、水溶性チタン化合物および水溶性ジルコニウム化合物から選ばれる少なくとも1種の化合物(A)と、安定化剤として官能基を複数有する有機化合物(B)を、化合物(A)の含有量が0.1~10mmol/L、有機化合物(B)の含有量が化合物(A)の金属含有量の2.5~10倍molで含有し、pHが2.0~6.5である金属表面用化成処理液を用いることを提案している。 On the other hand, in Patent Document 3, in order to form a chemical conversion film having corrosion resistance and coating film adhesion on the surface of a metal substrate without containing fluorine, at least one selected from a water-soluble titanium compound and a water-soluble zirconium compound is used. Compound (A), and an organic compound (B) having a plurality of functional groups as a stabilizer, the content of compound (A) is 0.1 to 10 mmol / L, and the content of organic compound (B) is compound ( It has been proposed to use a chemical conversion treatment solution for metal surfaces having a metal content of 2.5 to 10 times mol of the metal content of A) and having a pH of 2.0 to 6.5.
 しかしながら特許文献3に開示の金属表面用化成処理液では、特に鉄系材料に対する化成処理において連続して処理を行った場合、被処理基材から溶出した金属(鉄)イオンが処理液中に蓄積されて化成処理性が低下し、結果として耐食性や上層塗膜との密着性が低下する恐れがあり、溶出金属(鉄)イオンを処理液中から定期的に除去しなければならないという不具合が生じる場合があった。 However, in the chemical conversion treatment liquid for metal surface disclosed in Patent Document 3, metal (iron) ions eluted from the substrate to be treated accumulate in the treatment liquid particularly when the treatment is performed continuously in the chemical conversion treatment for the iron-based material. As a result, there is a risk that the chemical conversion treatment performance is lowered, and as a result, the corrosion resistance and the adhesion with the upper layer coating film may be lowered, and the elution metal (iron) ions must be periodically removed from the treatment liquid. There was a case.
特開2003-155578号公報JP 2003-155578 A 国際公開第2002/103080号パンフレットInternational Publication No. 2002/103080 Pamphlet 国際公開第2011/002040号パンフレットInternational Publication No. 2011/002040 Pamphlet
 本発明の目的は、特に鉄系材料に対する化成処理において連続して処理を行った場合でも、上述の不具合が生じることなく、特に鉄系材料に対する化成処理に有用なフッ素を含有しない金属表面改質液及び金属表面改質方法を提供することにある。 The object of the present invention is to provide a metal surface modification that does not contain fluorine, particularly useful for chemical conversion treatment for iron-based materials, without causing the above-mentioned problems even when the treatment is performed continuously in chemical conversion treatment for iron-based materials. The object is to provide a liquid and metal surface modification method.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、Zr及びTiから選択される少なくとも1つの元素、オキシカルボン酸、炭素数1~7のアルカン酸及び硝酸イオンを特定量含有させることにより、上記課題を解決することができることを見出し、本発明を完成するに至った。
すなわち本発明は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that specific amounts of at least one element selected from Zr and Ti, oxycarboxylic acid, alkanoic acid having 1 to 7 carbon atoms, and nitrate ion are used. It has been found that the above-mentioned problems can be solved by the inclusion, and the present invention has been completed.
That is, the present invention is as follows.
 項1.Zr及びTiから選択される少なくとも1つの元素を10~500ppm、オキシカルボン酸を20~3,000ppm、炭素数1~7のアルカン酸を1~10,000ppm、及び硝酸イオンを1~10,000ppm含有し、且つZr及びTiから選択される少なくとも1つの元素のオキシカルボン酸に対するモル比(Zr及びTiから選択される少なくとも1つの元素/オキシカルボン酸)が1/10~1/2で、pH2.0~6.5の水溶液であることを特徴とするフッ素を含有しない金属表面改質液。 Item 1. 10 to 500 ppm of at least one element selected from Zr and Ti, 20 to 3,000 ppm of oxycarboxylic acid, 1 to 10,000 ppm of alkanoic acid having 1 to 7 carbon atoms, and 1 to 10,000 ppm of nitrate ions And a molar ratio of at least one element selected from Zr and Ti to oxycarboxylic acid (at least one element selected from Zr and Ti / oxycarboxylic acid) is 1/10 to 1/2, pH 2 A metal surface modification solution containing no fluorine, characterized by being an aqueous solution of 0.0 to 6.5.
 項2.オキシカルボン酸が、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸及びグリコール酸から選ばれる少なくとも1種である項1に記載の金属表面改質液。 Item 2. Item 2. The metal surface modification solution according to Item 1, wherein the oxycarboxylic acid is at least one selected from lactic acid, malic acid, citric acid, tartaric acid, gluconic acid and glycolic acid.
 項3.炭素数1~7のアルカン酸が、ギ酸、酢酸、プロピオン酸、酪酸から選ばれる少なくとも1種である項1又は2に記載の金属表面改質液。 Item 3. Item 3. The metal surface modifying solution according to Item 1 or 2, wherein the alkanoic acid having 1 to 7 carbon atoms is at least one selected from formic acid, acetic acid, propionic acid, and butyric acid.
 項4.Zrが、オキシ硝酸ジルコニウム、硝酸ジルコニウム、オキシ酢酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、乳酸ジルコニウム及び塩化ジルコニウムから選ばれる少なくとも1種に由来する項1ないし3のいずれか1項に記載の金属表面改質液。 Item 4. Terms 1 to 3 wherein Zr is derived from at least one selected from zirconium oxynitrate, zirconium nitrate, zirconium oxyacetate, zirconium acetate, ammonium zirconium carbonate, ammonium zirconium nitrate, zirconium sulfate, zirconium oxysulfate, zirconium lactate and zirconium chloride. The metal surface modification liquid according to any one of the above.
 項5.Tiが、硝酸チタン、オキシ硝酸チタン、硫酸チタン、オキシ硫酸チタン及び硝酸チタンアンモニウムから選ばれる少なくとも1種に由来する項1ないし4のいずれか1項に記載の金属表面改質液。 Item 5. Item 5. The metal surface modification solution according to any one of Items 1 to 4, wherein Ti is derived from at least one selected from titanium nitrate, titanium oxynitrate, titanium sulfate, titanium oxysulfate and titanium ammonium nitrate.
 項6.pH緩衝作用を有し、pH3.5~5.5の水溶液である項1ないし5のいずれか1項に記載の金属表面改質液。 Item 6. Item 6. The metal surface modifying solution according to any one of Items 1 to 5, which has a pH buffering action and is an aqueous solution having a pH of 3.5 to 5.5.
 項7. Zr及びTiから選択される少なくとも1つの元素が、オキシ硝酸ジルコニウムと、オキシ硝酸チタン又は硫酸チタンとの少なくとも一方であり、オキシカルボン酸が乳酸、リンゴ酸、及びクエン酸から選択され、炭素数1~7のアルカン酸が、ギ酸、酢酸、及びプロピオン酸から選択される項1に記載の金属表面改質液。 Item 7. At least one element selected from Zr and Ti is at least one of zirconium oxynitrate and titanium oxynitrate or titanium sulfate; the oxycarboxylic acid is selected from lactic acid, malic acid, and citric acid; Item 8. The metal surface modifying solution according to Item 1, wherein the alkanoic acid of ˜7 is selected from formic acid, acetic acid, and propionic acid.
 項8.金属材料の表面を改質する金属表面改質方法であって、項1ないし7のいずれか1項に記載の金属表面改質液を前記金属材料に接触させる工程と、前記改質液を接触させる工程を経た金属材料を水洗する水洗工程と、を含む金属表面改質方法。 Item 8. A metal surface modification method for modifying a surface of a metal material, the step of bringing the metal surface modification solution according to any one of Items 1 to 7 into contact with the metal material, and contacting the modification solution A metal surface modification method comprising: a water washing step of washing the metal material that has undergone the step of causing the metal material to wash.
 項9.金属材料が鉄系材料である項8に記載の金属表面改質方法。 Item 9. Item 9. The metal surface modification method according to Item 8, wherein the metal material is an iron-based material.
 項10.前記改質液を接触させる前に、酢酸及び硝酸を含有する酸性水溶液による酸洗を金属材料に行なう工程をさらに含む項8又は9に記載の金属表面改質方法。 Item 10. Item 10. The method for modifying a metal surface according to Item 8 or 9, further comprising a step of subjecting the metal material to pickling with an acidic aqueous solution containing acetic acid and nitric acid before contacting the modifying solution.
 項11.項8ないし10のいずれか1項に記載の金属表面改質方法によって表面改質された金属表面上に焼付け塗料を塗装することを特徴とする金属材料の塗装方法。 Item 11. Item 11. A coating method of a metal material, wherein a baking paint is coated on a metal surface that has been surface-modified by the metal surface modification method according to any one of Items 8 to 10.
 本発明組成物によれば、特に鉄系材料に対する化成処理において連続して処理を行った場合でも不具合が生じることなく、しかもフッ素を含有せずに金属基材表面に耐食性および上層塗膜との密着性に優れた化成処理皮膜を形成することができる。 According to the composition of the present invention, in particular, when the treatment is continuously performed in the chemical conversion treatment for the iron-based material, no trouble occurs, and the corrosion resistance and the upper coating film are not formed on the surface of the metal substrate without containing fluorine. A chemical conversion film having excellent adhesion can be formed.
 従って本発明の金属表面改質液は、特に鉄系材料に対する化成処理に有用である。 Therefore, the metal surface modification liquid of the present invention is particularly useful for chemical conversion treatment for iron-based materials.
 本発明の金属表面改質液は、Zr及びTiから選択される少なくとも1つの元素(Zr及びTiの両者を含む場合はその総和)を10~500ppm、好ましくは25~300ppm含有する。10ppm未満では、十分な耐食性能が得られず、500ppmを超えると、耐食性能が低下し、処理膜上に形成される塗膜との密着性も低下する恐れがある。 The metal surface modification liquid of the present invention contains 10 to 500 ppm, preferably 25 to 300 ppm, of at least one element selected from Zr and Ti (the total when both Zr and Ti are included). If it is less than 10 ppm, sufficient corrosion resistance cannot be obtained, and if it exceeds 500 ppm, the corrosion resistance may be reduced, and the adhesion with the coating film formed on the treated film may also be reduced.
 Zrは、例えば、オキシ硝酸ジルコニウム、硝酸ジルコニウム、オキシ酢酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、乳酸ジルコニウム、塩化ジルコニウムなどを供給源とすることができる。 Zr can be supplied from, for example, zirconium oxynitrate, zirconium nitrate, zirconium oxyacetate, zirconium acetate, ammonium zirconium carbonate, ammonium zirconium nitrate, zirconium sulfate, zirconium oxysulfate, zirconium lactate, zirconium chloride and the like.
 Tiは、例えば、硝酸チタン、オキシ硝酸チタン、硫酸チタン、オキシ硫酸チタン及び硝酸チタンアンモニウムなどを供給源とすることができる。 Ti can be supplied from, for example, titanium nitrate, titanium oxynitrate, titanium sulfate, titanium oxysulfate, and ammonium ammonium nitrate.
 本発明の金属表面改質液は、オキシカルボン酸を20~3,000ppm、好ましくは50~1,000ppm含有する。20ppm未満では、改質液中のZrやTiを安定化できず沈殿物を生じる場合があり、3,000ppmを超えるとZrやTiが改質液中から析出し難くなり金属基材表面に化成処理皮膜が形成されない場合がある。 The metal surface modifying liquid of the present invention contains 20 to 3,000 ppm, preferably 50 to 1,000 ppm of oxycarboxylic acid. If it is less than 20 ppm, Zr and Ti in the reforming solution may not be stabilized and precipitates may be formed. If it exceeds 3,000 ppm, Zr and Ti will not easily precipitate from the reforming solution, and will form on the surface of the metal substrate. A treatment film may not be formed.
 オキシカルボン酸としては、例えば、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸、グリコール酸などが使用でき、特に乳酸が好適である。 As the oxycarboxylic acid, for example, lactic acid, malic acid, citric acid, tartaric acid, gluconic acid, glycolic acid and the like can be used, and lactic acid is particularly preferable.
 本発明では、上記Zr及びTiから選択される少なくとも1つの元素(Zr及びTiの両者を含む場合はその総和)のオキシカルボン酸に対するモル比(Zr及びTiから選択される少なくとも1つの元素/オキシカルボン酸)が、1/10~1/2であり、特に1/8~1/3の範囲内であることが好ましい。この範囲を外れると金属基材表面に化成処理皮膜が形成されない場合がある。 In the present invention, the molar ratio (at least one element selected from Zr and Ti / oxygen) of at least one element selected from Zr and Ti to the oxycarboxylic acid (the sum of both when Zr and Ti are included). Carboxylic acid) is preferably 1/10 to 1/2, and particularly preferably in the range of 1/8 to 1/3. If it is out of this range, the chemical conversion film may not be formed on the surface of the metal substrate.
 本発明の金属表面改質液は、炭素数1~7のアルカン酸を1~10,000ppm、好ましくは25~3,000ppm含有する。1ppm未満では、経時で改質液のpHが上昇し改質液の制御が困難となり耐食性が低下し、10,000ppmを超えるとZrやTiが改質液中から析出し難くなり金属基材表面に化成処理皮膜が形成されない場合がある。 The metal surface modification liquid of the present invention contains 1 to 10,000 ppm, preferably 25 to 3,000 ppm of alkanoic acid having 1 to 7 carbon atoms. If it is less than 1 ppm, the pH of the reforming solution will increase with time and it will be difficult to control the reforming solution, and the corrosion resistance will be reduced. If it exceeds 10,000 ppm, Zr and Ti will not easily precipitate from the modifying solution, and the surface of the metal substrate In some cases, the chemical conversion film may not be formed.
 炭素数1~7のアルカン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸などが使用でき、特にギ酸、酢酸が好適である。 As the alkanoic acid having 1 to 7 carbon atoms, for example, formic acid, acetic acid, propionic acid, butyric acid and the like can be used, and formic acid and acetic acid are particularly preferable.
 本発明の金属表面改質液は、硝酸イオンを1~10,000ppm、好ましくは25~5,000ppm含有する。1ppm未満では、金属基材表面の酸化層を溶解できず金属基材表面に化成処理皮膜が形成されない場合があり、10,000ppmを超えると金属基材からの溶出金属量が多くなり耐食性や上層塗膜との密着性が低下する場合がある。 The metal surface modification liquid of the present invention contains 1 to 10,000 ppm, preferably 25 to 5,000 ppm of nitrate ions. If it is less than 1 ppm, the oxidized layer on the surface of the metal base material cannot be dissolved, and a chemical conversion treatment film may not be formed on the surface of the metal base material. Adhesion with the coating film may be reduced.
 本発明の金属表面改質液は、皮膜の耐食性向上の点から、さらにマグネシウム、亜鉛、カルシウム、アルミニウム、ガリウム、インジウム、銅、鉄、マンガン、ニッケル、コバルト、セリウム、ストロンチウム、希土類元素、スズ、ビスマス、イットリウム、バナジウム、バリウム、クロム、モリブデン、タングステン及び銀よりなる群から選ばれる少なくとも1種の金属元素を含有することができる。これら金属元素の供給源としては特に限定されず、例えば、硝酸化物、硫酸化物等として金属表面改質液に配合することができる。これら金属元素を含有させる場合に、その含有量は、金属元素換算で0.1~5,000ppmの範囲内であることが適当である。 From the point of improving the corrosion resistance of the film, the metal surface modification liquid of the present invention is further magnesium, zinc, calcium, aluminum, gallium, indium, copper, iron, manganese, nickel, cobalt, cerium, strontium, rare earth element, tin, It can contain at least one metal element selected from the group consisting of bismuth, yttrium, vanadium, barium, chromium, molybdenum, tungsten and silver. The supply source of these metal elements is not particularly limited, and for example, it can be blended in the metal surface modification liquid as a nitrate, a sulfate or the like. When these metal elements are contained, the content is suitably in the range of 0.1 to 5,000 ppm in terms of metal elements.
 本発明の金属表面改質液は、皮膜の耐食性向上、塗膜との付着性向上等の点から、さらにアミノシランやエポキシシラン等のシランカップリング剤;及びエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアリルアミン樹脂、ポリビニルアミン樹脂、ポリブタジエン樹脂、ポリウレタン樹脂、ポリビニルアルコール、エチレン-酢酸ビニル樹脂等の水溶性又は水分散性有機樹脂を配合することができる。これらを使用する場合には、その含有量は、固形分濃度で0.1~300,000ppm、好ましくは5~5,000ppmの範囲内であることが適当である。 The metal surface modification liquid of the present invention is further improved in terms of the corrosion resistance of the film and the adhesion to the coating film. In addition, silane coupling agents such as aminosilane and epoxysilane; and epoxy resins, acrylic resins, polyester resins, poly Water-soluble or water-dispersible organic resins such as allylamine resin, polyvinylamine resin, polybutadiene resin, polyurethane resin, polyvinyl alcohol, and ethylene-vinyl acetate resin can be blended. When these are used, the content thereof is suitably in the range of 0.1 to 300,000 ppm, preferably 5 to 5,000 ppm in terms of solid content.
 本発明の金属表面改質液は、さらに組成物の安定性及び析出性の向上を目的として界面活性剤を含有することができる。界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、及び両性界面活性剤が挙げられる。これら界面活性剤を使用する場合には、その含有量は、固形分濃度で5~300,000ppm、好ましくは25~100,000ppmの範囲内での範囲内であることが適当である。 The metal surface modification liquid of the present invention can further contain a surfactant for the purpose of improving the stability and precipitation of the composition. Examples of the surfactant include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant. When these surfactants are used, the content thereof is suitably in the range of 5 to 300,000 ppm, preferably 25 to 100,000 ppm in terms of solid content.
 本発明の金属表面改質液は、pH2.0~6.5、特に3.5~5.5の水溶液であることが好ましい。本発明の金属表面改質液は、処理後の液安定性向上の点から、前記pH範囲でpH緩衝作用を有することが望ましい。pHの調整には、前述のギ酸、酢酸等のアルカン酸や硝酸等の酸性化合物、及び水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基性化合物を使用することができる。 The metal surface modifying solution of the present invention is preferably an aqueous solution having a pH of 2.0 to 6.5, particularly 3.5 to 5.5. The metal surface modification liquid of the present invention desirably has a pH buffering action in the pH range from the viewpoint of improving the liquid stability after the treatment. For adjusting the pH, the above-mentioned acidic compounds such as alkanoic acid such as formic acid and acetic acid and nitric acid, and basic compounds such as sodium hydroxide, potassium hydroxide and ammonia can be used.
 好ましい実施形態では、金属表面改質液は、オキシ硝酸ジルコニウムと、オキシ硝酸チタン又は硫酸チタンとの少なくとも一方を10~500ppm、乳酸、リンゴ酸、及びクエン酸から選択されたオキシカルボン酸を20~3,000ppm、ギ酸、酢酸、及びプロピオン酸から選択された炭素数1~7のアルカン酸を1~10,000ppm、及び硝酸イオンを1~10,000ppm含有し、且つZr及びTiから選択される少なくとも1つの元素のオキシカルボン酸に対するモル比が1/10~1/2で、pH2.0~6.5の水溶液である。 In a preferred embodiment, the metal surface modification liquid contains 10 to 500 ppm of at least one of zirconium oxynitrate and titanium oxynitrate or titanium sulfate, and 20 to oxycarboxylic acid selected from lactic acid, malic acid, and citric acid. 3,000 ppm, 1 to 10,000 ppm of alkanoic acid having 1 to 7 carbon atoms selected from formic acid, acetic acid, and propionic acid, and 1 to 10,000 ppm of nitrate ion, and selected from Zr and Ti The aqueous solution has a molar ratio of at least one element to oxycarboxylic acid of 1/10 to 1/2 and a pH of 2.0 to 6.5.
 上記の通り得られる本発明の金属表面改質液は、金属材料表面にZr及び/又はTiを含む化成皮膜を形成するためのものであり、該金属表面改質液を金属材料に接触させると、素材の鉄が溶出し、その溶出した鉄イオンがオキシカルボン酸と錯体をつくることで、ZrおよびTiが不安定化し、Zr及び/又はTiの水酸化物及び/又は酸化物と、素材金属(鉄系材料の場合は主にFe)とオキシカルボン酸との錯体とを含む化成皮膜層を金属材料表面に析出させることが可能である。その作用機構は十分解明されていないが、素材金属の溶出時に水素イオンの還元がおきるため界面でのpH上昇を生じるものの、アルカン酸があると緩衝効果によりpH上昇を抑えることが可能となり、連続処理時でも素材金属のエッチングを損なうことがなく、またZr及び/又はTiとオキシカルボン酸との錯体がpH上昇により安定性を増し、素材金属である鉄イオンによる不安定化がおきにくくなるが、アルカン酸の緩衝効果によりpH上昇を抑えることと何らかの作用により、一定の析出性が確保できたものと推定している。 The metal surface modification liquid of the present invention obtained as described above is for forming a chemical conversion film containing Zr and / or Ti on the surface of the metal material. When the metal surface modification liquid is brought into contact with the metal material, The material iron is eluted, and the eluted iron ions form a complex with the oxycarboxylic acid, so that Zr and Ti are destabilized, and the hydroxide and / or oxide of Zr and / or Ti and the material metal It is possible to deposit a chemical conversion film layer containing a complex of (mainly Fe in the case of iron-based materials) and oxycarboxylic acid on the surface of the metal material. Although its mechanism of action has not been fully elucidated, the reduction of hydrogen ions occurs during the elution of the raw material metal, resulting in an increase in pH at the interface. However, if there is an alkanoic acid, it is possible to suppress the increase in pH by the buffering effect. Even during processing, the etching of the material metal is not impaired, and the complex of Zr and / or Ti and oxycarboxylic acid increases the stability due to the increase in pH, and destabilization due to iron ions as the material metal is difficult to occur. It is presumed that a certain degree of precipitation can be secured by suppressing the increase in pH by the buffering effect of alkanoic acid and by some action.
 本発明の金属表面改質方法は、上記の通り得られる金属表面改質液を金属材料に接触させる工程(以下、改質液接触工程)と、前記改質液接触工程を経た金属材料を水洗する水洗工程と、を含む。 The metal surface modification method of the present invention includes a step of bringing a metal surface modification solution obtained as described above into contact with a metal material (hereinafter referred to as a modification solution contact step), and washing the metal material that has undergone the modification solution contact step with water. And a water washing step.
 改質液接触工程は特に限定されず、例えば、浸漬法、スプレー法、ロールコート法等の方法を採用することができる。処理液の温度を20~70℃、特に30~55℃の範囲内に調整することによって行うことが好ましい。 The reforming liquid contact step is not particularly limited, and for example, a dipping method, a spray method, a roll coating method or the like can be employed. It is preferable to adjust the temperature of the treatment liquid to 20 to 70 ° C., particularly 30 to 55 ° C.
 金属材料としては、通常、冷間圧延鋼板、熱間圧延鋼板等の鋼板、鋳鉄、焼結材、鉄亜鉛合金メッキ鋼板等の鉄系材料;アルミニウムダイカスト、アルミニウム合金板等のアルミニウム系材料;亜鉛系材料等を挙げることができる。本発明の金属表面改質方法は、特に鉄及び/又はその合金からなる鉄系材料に有用である。 As metal materials, steel materials such as cold-rolled steel plates and hot-rolled steel plates, iron-based materials such as cast iron, sintered materials and iron-zinc alloy-plated steel plates; aluminum-based materials such as aluminum die-casting and aluminum alloy plates; zinc Examples thereof include system materials. The metal surface modification method of the present invention is particularly useful for iron-based materials made of iron and / or alloys thereof.
 これら金属材料は、上記改質液接触工程前に脱脂処理、脱脂後水洗処理、酸洗処理等を行い、改質液接触工程後に水洗工程を行うことが好ましい。 These metal materials are preferably subjected to a degreasing treatment, a post-degreasing water washing treatment, a pickling treatment, and the like before the modifying liquid contacting step, and a water washing step after the modifying liquid contacting step.
 特に本発明の金属表面改質方法では、改質液接触工程前に酢酸及び硝酸を含有する酸性水溶液による酸洗を行なうことで、耐食性能を向上させることができ、また酸洗処理後に通常行なわれる酸洗液の除去を行なわなくとも良い。上記酸性水溶液は、1L中に酢酸0.1~10g、硝酸0.1~10gの濃度範囲が好適である。該酸性水溶液には界面活性剤やキレート剤をさらに添加することができる。添加する場合、界面活性剤および/またはキレート剤の種類は、酸性水溶液中で使用可能なものであれば、特に限定されない。酸洗の処理条件としては特に限定しないが、5~80℃で、3~30分間処理することが好ましい。 In particular, in the metal surface modification method of the present invention, the corrosion resistance can be improved by performing pickling with an acidic aqueous solution containing acetic acid and nitric acid before the modifying solution contacting step, and is usually performed after the pickling treatment. It is not necessary to remove the pickling solution. The acidic aqueous solution preferably has a concentration range of 0.1 to 10 g of acetic acid and 0.1 to 10 g of nitric acid in 1 L. A surfactant and a chelating agent can be further added to the acidic aqueous solution. When adding, if the kind of surfactant and / or chelating agent can be used in acidic aqueous solution, it will not be specifically limited. The pickling treatment conditions are not particularly limited, but it is preferable to treat at 5 to 80 ° C. for 3 to 30 minutes.
 上記脱脂処理は、基材表面に付着している油分や汚れを除去するために行われるものであり、無リン及び無窒素の脱脂洗浄液等の脱脂剤により、通常、30~70℃において数秒間~数分間程度の浸漬処理がなされる。所望により、脱脂処理の前に、予備脱脂処理を行うことも可能である。 The degreasing treatment is performed to remove oil and dirt adhering to the surface of the base material, and usually with a degreasing agent such as a phosphorus-free and nitrogen-free degreasing cleaning solution at 30 to 70 ° C. for several seconds. Immersion treatment is performed for about several minutes. If desired, a preliminary degreasing process can be performed before the degreasing process.
 上記改質液接触後の水洗工程は、その後の各種塗装後の密着性、耐食性等に悪影響を及ぼさないようにするために、1回又はそれ以上により行われるものである。この場合、最終の水洗は、純水で行われることが適当である。この水洗処理は、スプレー水洗又は浸漬水洗のどちらでもよく、これらの方法を組み合わせて水洗することもできる。 The water washing step after contact with the modifying liquid is carried out once or more so as not to adversely affect the adhesion, corrosion resistance, etc. after the various coatings. In this case, it is appropriate that the final water washing is performed with pure water. This water washing treatment may be either spray water washing or immersion water washing, and these methods may be combined for water washing.
 上記水洗工程の後に、乾燥工程をさらに採用することができる。乾燥工程を行う場合は、冷風乾燥、熱風乾燥等を行うことができる。 A drying step can be further employed after the water washing step. When performing a drying process, cold air drying, hot air drying, etc. can be performed.
 本発明方法により得られる皮膜は、金属材料への付着量が処理剤に含まれる金属元素換算で0.1~100mg/m、特に1~50mg/mであることが皮膜の耐食性向上、塗膜との付着性向上等の点から好ましい。 The film obtained by the method of the present invention has a coating amount of 0.1 to 100 mg / m 2 , particularly 1 to 50 mg / m 2 in terms of the metal element contained in the treatment agent, so that the corrosion resistance of the film is improved. This is preferable from the viewpoint of improving adhesion to the coating film.
 本発明方法によって表面改質された金属表面上には、適宜、従来公知の塗料によって塗装がなされ塗膜層が形成されてよく、また接着剤層を介して有機樹脂被覆層を設けても良い。塗料としては、従来公知の塗料が特に制限なく使用でき、例えば有機溶剤希釈型塗料、水性塗料、粉体塗料等の焼付け塗料を塗装することができる。 On the metal surface that has been surface-modified by the method of the present invention, a paint film layer may be appropriately formed by coating with a conventionally known paint, and an organic resin coating layer may be provided via an adhesive layer. . As the paint, a conventionally known paint can be used without any particular limitation. For example, a baking paint such as an organic solvent-diluted paint, a water-based paint, and a powder paint can be applied.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、「部」及び「%」は、別記しない限り、それぞれ、「質量部」及び「質量%」を示す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples. Note that “part” and “%” indicate “part by mass” and “% by mass”, respectively, unless otherwise specified.
 金属表面改質液の作製
 実施例1~20及び比較例1~9
 オキシ硝酸ジルコニウム、オキシ硝酸チタン、硫酸チタン、乳酸、リンゴ酸、クエン酸、酢酸、ギ酸、プロピオン酸、硝酸、アンモニア、水酸化ナトリウム等を用いて、表1に示す組成及びpHを有する金属表面改質液を作製した。表1において、各金属成分の濃度は金属元素換算で示し、それ以外の成分の濃度は固形分濃度を示す。また表1において、オキシ硝酸ジルコニウム、オキシ硝酸チタンを用いた場合の硝酸イオン含有量は、これらを用いたことに由来する持ち込み量と硝酸添加による量の総量を意味する。
また金属表面改質液の液状態を表2に示す。異常の無いものをYとする。尚、表1中の(注1)~(注3)は下記を示す。
(注1)シランカップリング剤:「KBM403」、商品名、信越化学社製、エポキシ基含有シランカップリング剤
(注2)界面活性剤:「ニューコール1100」、商品名、日本乳化剤社製、ノニオン系界面活性剤
(注3)有機樹脂:「アデカボンタイターUX206」、商品名、ADEKA社製、水性ポリウレタン樹脂。
Preparation Examples 1 to 20 and Comparative Examples 1 to 9 of Metal Surface Modification Liquid
Zirconium oxynitrate, titanium oxynitrate, titanium sulfate, lactic acid, malic acid, citric acid, acetic acid, formic acid, propionic acid, nitric acid, ammonia, sodium hydroxide, etc. are used to modify the metal surface having the composition and pH shown in Table 1. A fluid was prepared. In Table 1, the concentration of each metal component is shown in terms of metal element, and the concentration of the other components indicates the solid content concentration. In Table 1, the content of nitrate ions when zirconium oxynitrate and titanium oxynitrate are used means the total amount of carry-in and the amount due to the addition of nitric acid.
Table 2 shows the liquid state of the metal surface modification liquid. Y is defined as no abnormality. In Table 1, (Note 1) to (Note 3) indicate the following.
(Note 1) Silane coupling agent: “KBM403”, trade name, manufactured by Shin-Etsu Chemical Co., Ltd., epoxy group-containing silane coupling agent (Note 2) Surfactant: “New Coal 1100”, trade name, manufactured by Nippon Emulsifier Co., Ltd. Nonionic surfactant (Note 3) Organic resin: “Adekabon titer UX206”, trade name, manufactured by ADEKA, water-based polyurethane resin.
 金属表面改質処理
 市販の冷間圧延鋼板(SPCC-SD、日本テストパネル社製、70mm×150mm×0.8mm)を基材として、下記に示す工程及び表1の条件で表面改質処理を行なった。
Metal surface modification treatment Using a commercially available cold-rolled steel sheet (SPCC-SD, manufactured by Nippon Test Panel Co., Ltd., 70 mm × 150 mm × 0.8 mm) as a base material, the surface modification treatment was performed under the conditions shown in Table 1 and Table 1 below. I did it.
 (1)上記基材を40℃に調整した市販の脱脂液に2分間浸漬して脱脂処理を行なった後、水道水で30秒間水洗処理を行なった。 (1) The substrate was immersed in a commercially available degreasing solution adjusted to 40 ° C. for 2 minutes for degreasing treatment, and then washed with tap water for 30 seconds.
 (2)次いで、水洗後の金属基材を、酢酸 1g/L、硝酸 1g/Lの濃度で、35℃に調整した酸洗液に2分間浸漬して酸洗処理を行なった後、水道水で30秒間水洗処理を行なった。 (2) Next, the metal substrate after water washing was dipped in a pickling solution adjusted to 35 ° C. at a concentration of 1 g / L of acetic acid and 1 g / L of nitric acid for 2 minutes to perform pickling, and then tap water The substrate was washed with water for 30 seconds.
 (3)次いで、水洗後の金属基材を、表1に示すとおりに、pH及び温度を調整した各実施例及び比較例の金属表面改質液に10~300秒間浸漬処理した。金属表面改質液は、pHを硝酸又は水酸化ナトリウムを用いて3.2~4.2に調整し、また温度は35~50℃に調整して使用した。 (3) Next, as shown in Table 1, the metal substrate after washing with water was immersed in the metal surface modification liquids of Examples and Comparative Examples adjusted for pH and temperature for 10 to 300 seconds. The metal surface modifying solution was used by adjusting the pH to 3.2 to 4.2 using nitric acid or sodium hydroxide, and adjusting the temperature to 35 to 50 ° C.
 (4)上記処理後の各基材を水道水で30秒間水洗後、さらにイオン交換水で30秒間水洗処理を行なった。次いで熱風乾燥炉を用いて80℃で5分間乾燥させて各表面改質処理板とした。 (4) Each substrate after the above treatment was washed with tap water for 30 seconds, and further washed with ion-exchanged water for 30 seconds. Subsequently, it was made to dry at 80 degreeC for 5 minute (s) using the hot air drying furnace, and it was set as each surface modification process board.
 各表面改質処理板の金属皮膜量は、「XRF1700」(島津製作所社製、蛍光X線分析装置)を用いて付着金属の合計量(mg/m)として分析した。結果を表2に示す。尚、表1において酸洗「無」は、上記工程の(2)を行なわないことを意味する。 The amount of the metal film on each surface-modified plate was analyzed as a total amount (mg / m 2 ) of adhered metal using “XRF1700” (manufactured by Shimadzu Corporation, fluorescent X-ray analyzer). The results are shown in Table 2. In Table 1, “No pickling” means that (2) of the above step is not performed.
 試験塗板(1)の作成
 上記で得た各表面改質板上に、「マジクロン#1000」(関西ペイント社製、アクリル/メラミン樹脂系有機溶剤希釈型塗料)を乾燥膜厚で30μmとなるようにエアスプレー塗装を行い、160℃で30分間加熱して焼き付けて、各試験塗板を作成した。得られた各試験塗板を下記評価試験に供した。結果を表2に示す。
Preparation of test coating plate (1) On each surface-modified plate obtained above, “Magiclon # 1000” (manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin-based organic solvent dilution type paint) is adjusted to a dry film thickness of 30 μm. Each of the test coating plates was made by air spray coating and heating and baking at 160 ° C. for 30 minutes. Each obtained test coating board was used for the following evaluation test. The results are shown in Table 2.
 評価試験
1.耐食性:各実施例及び比較例の試験塗板(1)に、素地に達するよう塗膜にナイフでクロスカット傷を入れ、これを塩水噴霧腐食試験(SST:JIS Z-2371に準ずる。塩水温度35℃)に240時間供し、その後ナイフ傷部に接着テープによる貼着及び剥離を行い、カット傷から片側の塗膜の剥離幅を測定した。評価基準は以下のとおりである。
Evaluation test 1. Corrosion resistance: Cross-cut flaws were made in the coating plate (1) of each example and comparative example with a knife so as to reach the substrate, and this was subjected to a salt spray corrosion test (SST: JIS Z-2371. Salt water temperature 35) C.) for 240 hours, and then the adhesive tape was attached to and peeled from the knife wound, and the peel width of the coating film on one side was measured from the cut wound. The evaluation criteria are as follows.
 S:剥離なし
 A:剥離幅3mm以内
 B:剥離幅3mmを超えて5mm以内
 C:剥離幅5mmを超える。
2.(耐水後)付着性:各実施例及び比較例の試験塗板(1)を温水(40℃)中に240時間浸漬し、引き上げ後に直ちに碁盤目(10×10個、1mm間隔)のカットを入れて接着テープによる貼着及び剥離を行い、塗膜の剥れマスの数を調べた。評価基準は以下のとおりである。
S: No peeling A: Peeling width within 3 mm B: Peeling width exceeding 3 mm and within 5 mm C: Peeling width exceeding 5 mm
2. (After water resistance) Adhesiveness: The test coating plate (1) of each example and comparative example was immersed in warm water (40 ° C.) for 240 hours, and immediately after being pulled up, cuts of grids (10 × 10 pieces, 1 mm interval) were added. Then, adhesion and peeling with an adhesive tape were performed, and the number of peeling masses of the coating film was examined. The evaluation criteria are as follows.
 S:剥れマスなし
 A:剥れマス5個以内
 B:剥れマス6~10個
 C:剥れマス11個以上。
3.連続処理:各実施例および比較例1の金属表面改質液1リットルを用いて、上記に示す工程(1)~(4)及び表1の金属表面改質処理の条件で、市販の冷間圧延鋼板(SPCC-SD、日本テストパネル社製、70mm×150mm×0.8mm)を基材として、25枚連続処理を行った。処理による改質液の持ち出し分については、適宜、初期濃度を保つように改質液成分を補給した。そして処理後の改質液の鉄イオン濃度(ppm)をICP発光分光分析により測定した後、処理後の改質液を40℃で1日放置した。その後、市販の冷間圧延鋼板(SPCC-SD、日本テストパネル社製、70mm×150mm×0.8mm)を基材として1枚、当該処理後の改質液を用いて、上記に示す工程(1)~(4)及び表1の条件で金属表面改質処理を行い、表面改質処理板とした。各表面改質処理板の金属皮膜量は、「XRF1700」(島津製作所社製、蛍光X線分析装置)を用いて付着金属の合計量(mg/m)として分析した。
S: No peeling mass A: Within 5 peeling masses B: 6-10 peeling masses C: 11 or more peeling masses
3. Continuous treatment: 1 liter of the metal surface modification solution of each Example and Comparative Example 1 was used for the commercial cold treatment under the conditions of the steps (1) to (4) and the metal surface modification treatment shown in Table 1 above. Using a rolled steel plate (SPCC-SD, Nippon Test Panel, 70 mm × 150 mm × 0.8 mm) as a base material, 25 sheets were continuously processed. As for the part of the reforming liquid taken out by the treatment, the reforming liquid component was appropriately replenished so as to keep the initial concentration. Then, the iron ion concentration (ppm) of the modified liquid after the treatment was measured by ICP emission spectroscopic analysis, and then the modified liquid after the treatment was left at 40 ° C. for 1 day. Thereafter, one step using a commercially available cold-rolled steel plate (SPCC-SD, manufactured by Nippon Test Panel Co., Ltd., 70 mm × 150 mm × 0.8 mm) as a base material, the above-described process ( A metal surface modification treatment was performed under the conditions 1) to (4) and Table 1 to obtain a surface modification treatment plate. The amount of the metal film on each surface-modified plate was analyzed as a total amount (mg / m 2 ) of adhered metal using “XRF1700” (manufactured by Shimadzu Corporation, fluorescent X-ray analyzer).
 試験塗板(2)の作成
 上記の連続処理で得られた各表面改質処理板上に「マジクロン#1000」(関西ペイント社製、アクリル/メラミン樹脂系有機溶剤希釈型塗料)を乾燥膜厚で30μmとなるようにエアスプレー塗装を行い、160℃で30分間加熱して焼き付けて、各試験塗板(2)を作成した。得られた各試験塗板(2)を上記耐食性試験及び(耐水後)付着性試験に供した。結果を表2に示す。
Preparation of test coating plate (2) “Magiclon # 1000” (manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin organic solvent dilution type paint) with a dry film thickness on each surface modified plate obtained by the above-mentioned continuous treatment. Each test coating plate (2) was prepared by performing air spray coating to 30 μm, heating and baking at 160 ° C. for 30 minutes. Each obtained test coated plate (2) was subjected to the above corrosion resistance test and (after water resistance) adhesion test. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  Zr及びTiから選択される少なくとも1つの元素を10~500ppm、オキシカルボン酸を20~3,000ppm、炭素数1~7のアルカン酸を1~10,000ppm、及び硝酸イオンを1~10,000ppm含有し、且つZr及びTiから選択される少なくとも1つの元素のオキシカルボン酸に対するモル比が1/10~1/2で、pH2.0~6.5の水溶液であることを特徴とするフッ素を含有しない金属表面改質液。 10 to 500 ppm of at least one element selected from Zr and Ti, 20 to 3,000 ppm of oxycarboxylic acid, 1 to 10,000 ppm of alkanoic acid having 1 to 7 carbon atoms, and 1 to 10,000 ppm of nitrate ions A fluorine, which is an aqueous solution having a molar ratio of at least one element selected from Zr and Ti to oxycarboxylic acid of 1/10 to 1/2 and a pH of 2.0 to 6.5. Metal surface modification liquid that does not contain.
  2.  オキシカルボン酸が、乳酸、リンゴ酸、クエン酸、酒石酸、グルコン酸及びグリコール酸から選ばれる少なくとも1種である請求項1に記載の金属表面改質液。 The metal surface modifying solution according to claim 1, wherein the oxycarboxylic acid is at least one selected from lactic acid, malic acid, citric acid, tartaric acid, gluconic acid and glycolic acid.
  3.  炭素数1~7のアルカン酸が、ギ酸、酢酸、プロピオン酸、酪酸から選ばれる少なくとも1種である請求項1に記載の金属表面改質液。 2. The metal surface modification solution according to claim 1, wherein the alkanoic acid having 1 to 7 carbon atoms is at least one selected from formic acid, acetic acid, propionic acid, and butyric acid.
  4.  Zrが、オキシ硝酸ジルコニウム、硝酸ジルコニウム、オキシ酢酸ジルコニウム、酢酸ジルコニウム、炭酸ジルコニウムアンモニウム、硝酸ジルコニウムアンモニウム、硫酸ジルコニウム、オキシ硫酸ジルコニウム、乳酸ジルコニウム及び塩化ジルコニウムから選ばれる少なくとも1種に由来する請求項1に記載の金属表面改質液。 Zr is derived from at least one selected from zirconium oxynitrate, zirconium nitrate, zirconium oxyacetate, zirconium acetate, ammonium zirconium carbonate, ammonium zirconium nitrate, zirconium sulfate, zirconium oxysulfate, zirconium lactate and zirconium chloride. Metal surface modification liquid of description.
  5.  Tiが、硝酸チタン、オキシ硝酸チタン、硫酸チタン、オキシ硫酸チタン及び硝酸チタンアンモニウムから選ばれる少なくとも1種に由来する請求項1に記載の金属表面改質液。 The metal surface modification liquid according to claim 1, wherein Ti is derived from at least one selected from titanium nitrate, titanium oxynitrate, titanium sulfate, titanium oxysulfate and titanium ammonium nitrate.
  6.  pH緩衝作用を有し、pH3.5~5.5の水溶液である請求項1に記載の金属表面改質液。 2. The metal surface modification solution according to claim 1, wherein the metal surface modification solution has a pH buffering action and is an aqueous solution having a pH of 3.5 to 5.5.
  7.  Zr及びTiから選択される少なくとも1つの元素が、オキシ硝酸ジルコニウムとオキシ硝酸チタン又は硫酸チタンとの少なくとも一方であり、オキシカルボン酸が乳酸、リンゴ酸、及びクエン酸から選択され、炭素数1~7のアルカン酸が、ギ酸、酢酸、及びプロピオン酸から選択される請求項1に記載の金属表面改質液。 At least one element selected from Zr and Ti is at least one of zirconium oxynitrate and titanium oxynitrate or titanium sulfate, the oxycarboxylic acid is selected from lactic acid, malic acid, and citric acid, The metal surface modification solution according to claim 1, wherein the alkanoic acid of 7 is selected from formic acid, acetic acid, and propionic acid.
  8.  金属材料の表面を改質する金属表面改質方法であって、
     請求項1に記載の金属表面改質液を前記金属材料に接触させる工程と、
     前記改質液を接触させる工程を経た金属材料を水洗する水洗工程と、
    を含む金属表面改質方法。
    A metal surface modification method for modifying the surface of a metal material,
    Contacting the metal surface modifying liquid according to claim 1 with the metal material;
    A water washing step of washing the metal material that has undergone the step of contacting the reforming liquid;
    A metal surface modification method comprising:
  9.  金属材料が鉄系材料である請求項8に記載の金属表面改質方法。 The metal surface modification method according to claim 8, wherein the metal material is an iron-based material.
  10.  前記改質液を接触させる前に、酢酸及び硝酸を含有する酸性水溶液による酸洗を金属材料に行なう工程をさらに含む請求項8に記載の金属表面改質方法。 The metal surface modification method according to claim 8, further comprising a step of subjecting the metal material to pickling with an acidic aqueous solution containing acetic acid and nitric acid before contacting the reforming solution.
  11.  請求項8に記載の金属表面改質方法によって表面改質された金属表面上に焼付け塗料を塗装することを特徴とする金属材料の塗装方法。 A coating method of a metal material, characterized in that a baking paint is applied on a metal surface whose surface has been modified by the metal surface modification method according to claim 8.
PCT/JP2013/069437 2012-08-07 2013-07-17 Metal surface modifying liquid and method for metal surface modification WO2014024651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529405A JP6249948B2 (en) 2012-08-07 2013-07-17 Metal surface modification liquid and metal surface modification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-175200 2012-08-07
JP2012175200 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024651A1 true WO2014024651A1 (en) 2014-02-13

Family

ID=50067886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069437 WO2014024651A1 (en) 2012-08-07 2013-07-17 Metal surface modifying liquid and method for metal surface modification

Country Status (2)

Country Link
JP (1) JP6249948B2 (en)
WO (1) WO2014024651A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003347A (en) * 2014-06-16 2016-01-12 関西ペイント株式会社 Metal surface modifying liquid, metal surface modifying method, painting method, and painted article
JP2018104759A (en) * 2016-12-26 2018-07-05 日本ペイント・サーフケミカルズ株式会社 Composition for metal surface treatment and metal surface treatment method
WO2020129306A1 (en) * 2018-12-21 2020-06-25 第一稀元素化学工業株式会社 Zirconium-containing alcohol solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264088A (en) * 1998-03-17 1999-09-28 Sumitomo Light Metal Ind Ltd Pretreating method of surface treatment of aluminum alloy member
JP2009263732A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Surface treatment method of aluminum-based base material
WO2010064659A1 (en) * 2008-12-05 2010-06-10 ユケン工業株式会社 Composition for chemical conversion treatment, and process for production of members provided with anticorrosive coatings
WO2011002040A1 (en) * 2009-07-02 2011-01-06 日本パーカライジング株式会社 Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155578A (en) * 2001-11-20 2003-05-30 Toyota Motor Corp Chemical conversion treatment agent for iron and/or zinc
JP2005290459A (en) * 2004-03-31 2005-10-20 Ngk Insulators Ltd Method for elongating service life of electroless nickel plating liquid and electroless nickel plating liquid
JP5201916B2 (en) * 2006-09-08 2013-06-05 日本ペイント株式会社 Metal surface treatment method carried out as pretreatment for cationic electrodeposition coating, metal surface treatment composition used therefor, metal material excellent in throwing power of electrodeposition coating, and method for coating metal substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264088A (en) * 1998-03-17 1999-09-28 Sumitomo Light Metal Ind Ltd Pretreating method of surface treatment of aluminum alloy member
JP2009263732A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Surface treatment method of aluminum-based base material
WO2010064659A1 (en) * 2008-12-05 2010-06-10 ユケン工業株式会社 Composition for chemical conversion treatment, and process for production of members provided with anticorrosive coatings
WO2011002040A1 (en) * 2009-07-02 2011-01-06 日本パーカライジング株式会社 Chromium- and fluorine-free chemical conversion treatment solution for metal surfaces, metal surface treatment method, and metal surface coating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003347A (en) * 2014-06-16 2016-01-12 関西ペイント株式会社 Metal surface modifying liquid, metal surface modifying method, painting method, and painted article
JP2018104759A (en) * 2016-12-26 2018-07-05 日本ペイント・サーフケミカルズ株式会社 Composition for metal surface treatment and metal surface treatment method
WO2020129306A1 (en) * 2018-12-21 2020-06-25 第一稀元素化学工業株式会社 Zirconium-containing alcohol solution
JPWO2020129306A1 (en) * 2018-12-21 2021-05-20 第一稀元素化学工業株式会社 Zirconium-containing alcohol solution
JP7076575B2 (en) 2018-12-21 2022-05-27 第一稀元素化学工業株式会社 Zirconium-containing alcohol solution

Also Published As

Publication number Publication date
JPWO2014024651A1 (en) 2016-07-25
JP6249948B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2006126560A1 (en) Chemical treating liquid for metal and treating method
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
EP0804633B1 (en) Process and solution for providing a conversion coating on a metal surface
KR20060126752A (en) Chrome-free passivating solution
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
CN105803437B (en) Trivalent chromium chemical conversion coating treatment liquid and method for treating metal substrate
JP2006265578A (en) Galvanized steel sheet for chemical conversion, its manufacturing method, and chemically treated steel sheet
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
JP2007023353A (en) Non-chromium reactive chemical conversion treatment of galvanized member
JP2011068930A (en) Composition for metal surface treatment and metal surface treatment method
EP2649219B1 (en) Metal pretreatment composition containing zirconium, copper, and metal chelating agents and related coatings on metal substrates
JP2011042834A (en) Treatment liquid of chemical conversion, and method for manufacturing chemical-converted steel plate
JP2006316334A (en) Non-chromate chemical conversion treatment liquid for aluminum alloy, and aluminum alloy chemical conversion treatment method by the same
NZ273541A (en) Cleaning metal surfaces by treatment with alkaline cleaning solution and then with rare earth ion-containing, acidic solution; metal surfaces coated with rare earth (compounds)
JP6249948B2 (en) Metal surface modification liquid and metal surface modification method
JP5290079B2 (en) Metal surface treatment liquid and metal material surface treatment method
JP2005325402A (en) Surface treatment method for tin or tin based alloy plated steel
WO2004032594A2 (en) Chrome free final rinse for phosphated metal surfaces
JP2004263240A (en) Black plating system free from hexavalent chromium
JP4992385B2 (en) Organic resin-coated phosphate-treated zinc-based plated steel sheet and method for producing the same
JP2004232047A (en) Treatment agent for forming highly corrosion resistant chromium-free chemical conversion film on aluminum and aluminum alloy, method of forming the chemical conversion film, and aluminum and aluminum alloy with the chemical conversion film formed
JP2016003347A (en) Metal surface modifying liquid, metal surface modifying method, painting method, and painted article
JP2008121101A (en) Rust-preventing liquid for metal surface plated with zinc or zinc alloy, and method for forming rust-preventing film on the metal surface
JP2968127B2 (en) Acid displacement plating solution for zinc or galvanized steel sheet
WO2002079539A2 (en) Treatment of zinc and zinc alloy surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828369

Country of ref document: EP

Kind code of ref document: A1