WO2014024635A1 - Electric powertrain system - Google Patents

Electric powertrain system Download PDF

Info

Publication number
WO2014024635A1
WO2014024635A1 PCT/JP2013/069087 JP2013069087W WO2014024635A1 WO 2014024635 A1 WO2014024635 A1 WO 2014024635A1 JP 2013069087 W JP2013069087 W JP 2013069087W WO 2014024635 A1 WO2014024635 A1 WO 2014024635A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power train
motor
electric power
inverter
Prior art date
Application number
PCT/JP2013/069087
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 隆
宮崎 英樹
和人 大山
勝洋 星野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014024635A1 publication Critical patent/WO2014024635A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an electric powertrain system that drives an electric vehicle such as an electric vehicle or a hybrid electric vehicle by controlling an inverter and a motor by a motor control device.
  • a motor that is a rotary motor is mounted as a drive source of an electric vehicle or a hybrid electric vehicle, and an inverter that is a motor drive device is provided between a motor and a power supply device as a motor drive device that drives the motor.
  • a motor control device for controlling the motor torque and the like, and to drive a motor by sending a motor current as a motor drive signal by an inverter.
  • the inverter converts direct current power from the power supply device into alternating current determined according to the torque command value, and the motor is driven by the alternating current.
  • the motor control device transmits a control signal to the inverter to generate an alternating current for driving the motor, and controls the inverter.
  • the inverter of such a motor drive device includes a power module in which a large number of power semiconductors such as IGBTs are integrated, a smoothing capacitor (capacitor) provided between the power supply device and the power module, and a bus bar that joins the capacitor and the power module. It is configured.
  • a power module in which a large number of power semiconductors such as IGBTs are integrated
  • a smoothing capacitor capacitor
  • bus bar that joins the capacitor and the power module. It is configured.
  • the current for driving the motor is sent to the coil inside the motor, and the coil and magnet inside the motor generate heat, such as heat generation due to the electrical resistance of the coil and eddy current loss due to distortion of the current waveform. To do. Due to such heat generation, when the coil temperature rises, the insulation of the coil deteriorates or melts, and when the magnet temperature rises, the magnet demagnetizes and other deteriorations occur.
  • a cooling device is provided for dissipating heat to the cooling water or the outside air by providing a heat transfer path.
  • the bus bar that sends the current between the motor and the inverter described above is also a heat source
  • the bus bar is joined to the case of the motor or inverter via the insulator, and the insulator is interposed
  • a method of constructing a heat transfer path and transferring the heat of the bus bar to the case of the motor or inverter to cool the bus bar is used.
  • the insulator interposed for joining the case and the bus bar has both heat conduction and electrical insulation, and a sheet-like one (insulating sheet) is used.
  • the electric power train including the motor that is a rotating motor, the inverter that is a motor driving device, and the bus bar that sends current between the motor and the inverter transmits heat from a plurality of heat sources and a plurality of heat sources. It is comprised from the cooling device which suppresses the high temperature by several heat-transfer path
  • the heat from the heat source in the electric power train is radiated to the cooling unit by the cooling device through the contact surface between the component parts. Therefore, if the heat transfer as designed is performed by the joint surface, which is the heat transfer path between the heat source and the cooling unit, the motor, inverter, and bus bar of the electric power train are sufficiently cooled to achieve the desired function. Can be realized. Therefore, it is important to diagnose an abnormality in the cooling function by detecting an abnormality in the heat transfer path.
  • Patent Document 1 discloses a method of determining a junction abnormality related to a power semiconductor that is a main heat source in an inverter that is an element of an electric power train. Specifically, the heat generated in the power semiconductor part is radiated to the cooling part through the soldered substrate, and if the crack occurs in the solder joint, the power semiconductor part will not be radiated sufficiently. It describes that a solder joint abnormality is diagnosed based on the integration of the power applied to the semiconductor part and the amount of increase in the temperature sensor provided in the power semiconductor part.
  • Patent Document 2 in a configuration in which the power semiconductor part is joined to the heat dissipation device via the insulating substrate, a temperature sensor is provided at each joint, and the temperature measured by the temperature sensor is used for the inverter or converter.
  • Patent Document 1 and Patent Document 2 are for determining abnormality of the heat transfer path for one heat transfer path from the power semiconductor that is a heat source to the cooling unit. That is, it describes the abnormality of the heat transfer path in one heat source and one heat transfer path. In the case of one heat source and one heat transfer path, measure the amount of heat generated by one heat source and the temperature of a part of one heat transfer path. An abnormality in the transmission path can be determined.
  • there are a plurality of heat sources, and for a complex system in which these heat generation is transmitted through a plurality of transmission paths and cooled It is difficult to determine abnormalities in the heat transfer path simply from the calorific value and temperature rise.
  • the present invention has been made in view of such problems, and the object thereof is an abnormality in a heat transfer path in an electric powertrain system having a plurality of heat sources and a plurality of heat transfer paths, that is,
  • An object of the present invention is to provide an electric powertrain system for diagnosing abnormalities in joints. That is, the present invention comprises an electric powertrain system including a motor, an inverter, and the like and having a heat transfer path formed by a plurality of heat sources and a plurality of joints. The purpose is to provide an electric powertrain system that makes accurate judgments.
  • an electric powertrain system is an electric powertrain that is a drive system for an electric vehicle in which a plurality of parts having a heat source have a contact surface and are integrated.
  • a plurality of temperature sensors, and a diagnostic control unit including a heat transfer model of the electric powertrain that is simulated based on the temperature of the temperature sensor, the diagnosis control unit using the heat transfer model The temperature of these parts is estimated, and the presence or absence of heat transfer abnormality is determined in a plurality of operation diagnosis modes.
  • the electric power train includes an output device that outputs a determination result of the diagnosis control unit, and the diagnosis control unit compares the estimated temperatures of the plurality of parts with the measured temperatures of the plurality of temperature sensors. Then, it is determined that the joint portion serving as the heat transfer path in the vicinity of the portion where the deviation between the estimated value and the actually measured value is large is abnormal.
  • the electric power train according to the present invention has a plurality of operation diagnosis modes, even in the case where there are a plurality of heat sources and a plurality of heat transfer paths, the abnormality in joining of heat transfer paths of components having a relatively small heat capacity, and the heat capacity There is an effect that it is possible to diagnose both the joining abnormality of the heat transfer path of a relatively large component.
  • Example 1 It is explanatory drawing which showed the whole structure of one Embodiment of the electric powertrain system which concerns on this invention.
  • Example 1 1 It is explanatory drawing regarding the operation
  • Example 1 1 is a cross-sectional view schematically showing an integrated structure of a motor and an inverter which are an embodiment of an electric powertrain system according to the present invention.
  • a thermal circuit network model heat transfer model
  • the electric powertrain system according to the present invention is an explanatory diagram showing an example of temperature estimation error and diagnosis using the heat transfer model when there is no abnormality in a specific joint under different conditions. is there. It is explanatory drawing which showed the whole structure of another one Example of the electric powertrain system which concerns on this invention. It is explanatory drawing shown regarding the abnormality diagnosis timing of the electric powertrain system which concerns on this invention.
  • FIG. 1 is an example of an electric powertrain system 1000 according to this embodiment, and shows an overview of the entire system.
  • an electric powertrain system 1000 includes a motor 1200 that is a rotary motor, an inverter 1100 that is a motor driving device, a motor control device 1300 that outputs an inverter control command, and temperatures of components that constitute the motor 1200 and the inverter 1100.
  • a temperature sensor 1400 for measuring, a motor-inverter bus bar 1500 for sending current from the inverter to the motor, a cooling water path 700 for flowing cooling water for cooling the heat generating parts such as the motor 1200 and the inverter 1100, cooling for measuring the cooling water temperature
  • a water temperature sensor 800 is included. The cooling water flowing in the cooling water path 700 is cooled by the cooling device 600.
  • cooling device 600 may be configured to be a device that cools using a heat pump cycle as well as a radiator and a fan. In the case of a radiator and a fan, the cooling capacity of the cooling device can be controlled by the air volume of the fan. Further, the cooling medium such as cooling water is configured to circulate in the cooling water passage by a pump (not shown), and the ability to cool the electric power train 1000 can be changed by the circulating flow rate.
  • the motor control device 1300 includes at least a motor control unit 1320 that calculates a control command for controlling the inverter and a diagnosis control unit 1310 described in the present invention.
  • the motor control unit 1320 includes a torque command calculation 1321 that calculates a torque command generated by the motor based on a signal from the outside, and a motor that calculates a control command to the inverter based on the torque command. It consists of a control command 1322.
  • the motor torque command is limited according to the motor torque command output from the vehicle control device 300 that controls the entire vehicle or an abnormal state diagnosed by a diagnosis control unit described later.
  • a torque command for motor 1200 is determined based on the value.
  • Motor control command 1322 determines a control command to inverter 1100 based on the torque command determined in torque command calculation 1321.
  • the vehicle control device 300 takes in signals from the accelerator opening sensor 400 that detects the accelerator opening operated by the driver and the vehicle speed sensor 500 that detects the vehicle speed, and the electric powertrain system 1000 should be generated. Determine the driving force or torque.
  • the vehicle speed sensor 500 detects the vehicle speed by calculating the vehicle speed from the vehicle tire rotation speed (not shown).
  • the vehicle control device 300 outputs the result of diagnosis by a diagnosis control unit of the motor control device 1300 described later to the output device 100.
  • the output device 100 displays a warning when an abnormality is determined by the diagnosis control unit 1310 or issues a warning to notify the driver or the like. This warning or warning is preferably different depending on a plurality of driving diagnosis modes described later.
  • the diagnosis control unit 1310 which is an element constituting the motor control device 1300 will be described.
  • the diagnosis control unit 1310 includes a state determination unit 1311, a heat transfer model 1312, and an abnormality determination unit 1313.
  • the state determination unit 1311 includes the vehicle state sent from the vehicle control device 300, the measured value of the ambient temperature of the electric powertrain system 1000 sent from the ambient temperature sensor 900, and the electric powertrain system 1000 sent from the cooling water temperature sensor 800.
  • the state of the electric powertrain system 1000 is determined based on the measured temperature value and the motor control command or torque command value determined by the motor control unit 1320.
  • the state to be determined here is, for example, a state in which the temperature of the electric power train is high or low as a whole from the measured values of the temperature sensor 1400 and the cooling water temperature sensor 800, and further, there is little change in temperature and equilibrium.
  • a temperature state of the electric powertrain 1000 such as a temperature state.
  • the current command to the motor 1200 determined by the motor control unit 1320 may be large or small in proportion to the maximum current value to the motor 1200 determined in advance by the motor 1200 / inverter 1100.
  • the operating point (rotation speed and torque) at which the motor 1200 and the inverter 1100 of the electric powertrain system 1000 operate is the maximum output that the electric powertrain system 1000 has.
  • the maximum output generated by the motor 1200 for example, there are (1) a high torque region state, (2) a middle torque region state, and (3) a low torque region state as shown in FIG. .
  • the state determination unit 1311 configures an inverter 1100, a signal and a signal that are sent from the motor control unit 1320, such as a current command, a torque command, a motor rotation speed, and a motor current, and parts and cases that constitute the motor 1200 sent from the temperature sensor 1400.
  • the state determination unit 1310 is in a state of making a diagnosis, in the heat transfer model 1312, the command signal to the motor 1200 and the inverter 1100 determined by the motor control unit 1320, the temperature sensor 1400, the ambient temperature sensor 900, Using the temperature detected by the cooling water temperature sensor 800, the temperature of the parts and the case of the motor 1200, the parts and the case of the inverter 1100, the bus bar 1500 between the motor and the inverter, etc. It is estimated by a heat transfer model that takes into account the bonding between the two.
  • the temperature detected by the temperature sensor 1400, the ambient temperature sensor 900, and the cooling water temperature sensor 800, and the estimated temperature estimated by the heat transfer model 1312 (the portion corresponding to the temperature detected by the sensor). And compare. And the abnormality determination of the heat transfer path
  • the diagnosis control unit 1310 determines abnormality
  • the diagnosis result is sent to the vehicle control device 300, and the diagnosis result is sent from the vehicle control device 300 to the output device 100.
  • the result of diagnosis by the diagnosis control unit 1310 is sent to the output device 100 via the vehicle control device 300, but the diagnosis result of the diagnosis control unit 1310 is sent to the output device 100. You may make it send directly.
  • the temperature sensor 1400 is a generic term for a sensor group that measures the temperature of components such as the inverter 1100, the motor 1200, and the power supply device (battery) 200. Specifically, the temperature of the power module that is a component constituting the inverter 1100, the temperature of the bus bar that is the wiring in the inverter, the temperature of the capacitor in the inverter, the case temperature of the inverter 1100, the motor coil temperature, the motor case temperature, The temperature sensor which measures the module temperature etc. of the battery 200 is shown.
  • FIG. 3 is a cross-sectional view schematically showing an electric power train in which an inverter 1100 and a motor 1200 are integrated.
  • FIG. 3 shows an integrated structure when the inverter 1100 is connected and fixed to a part of the outer peripheral surface of the motor 1200.
  • the present invention is not limited to this structure, but is also applied to an integrated structure. Acts similarly.
  • the inverter 1100 includes a power module 1130, which is a main component, an AC bus bar 1110 for three-phase alternating current, a DC bus bar 1120 for direct current, and a capacitor 1140 that smoothes the current to the motor.
  • the motor control device 1300 is mounted on the top of the inverter 1100, and these are covered with an inverter case.
  • a heat transfer path is provided by bringing the power module 1130, the bus bars 1110, 1120, and the capacitor 1140 into direct or indirect contact with the cooling water path 700 through various electrical insulators or electrical insulating films. And cool.
  • the cooling path is a contact surface between the components, the cooling path is not necessarily a single heat transfer path, and a plurality of heat transfer paths are formed.
  • the motor 1200 includes a rotor 1210, a bearing 1220, a magnet 1230 embedded in the rotor 1210, a coil 1240, a motor stator 1250, a rotating shaft 1270, and a motor case covering these. 1260.
  • the current sent from the inverter 1100 is sent to the coil 1240, and the motor 1200 generates a loss (copper loss) due to the resistance of the coil 1240, and the coil 1240 becomes a heat source.
  • iron loss occurs due to the magnetic material characteristics of the cores of the rotor 1210 and the stator 1250, and the rotor 1210 and the stator 1250 serve as a heat source.
  • the magnet 1230 loss due to eddy current occurs, and the magnet 1230 can also be a heat generation source.
  • the motor 1200 and the inverter 1100 a current is sent by the current bus bar 1500 between the motor and the inverter, and the inverter 1100 drives the motor 1200.
  • the motor 1200 and the inverter 1100 have an integrated structure in which the cases (the motor case 1260 and the inverter case 1150) are joined.
  • the motor 1200 and the inverter 1100 are in contact with the cooling water flowing through the cooling water path 700 through the respective cases, and are cooled by the cooling water.
  • the heat generated in the motor 1200 is transmitted to the motor case 1260, and the heat generated in the inverter is transmitted to the inverter case 1150.
  • the heat of the motor 1200 is The inverter 1100 or the heat of the inverter 1100 is transmitted to the motor 1200.
  • temperature sensors 1410, 1420, 1430, and 1440 are installed as shown in FIG.
  • the temperature sensor 1410 measures the temperature of the inverter case 1150
  • the temperature sensor 1420 measures the temperature of the motor case 1260
  • the temperature sensor 1430 measures the temperature of the motor stator 1250
  • the temperature sensor 1440 measures the temperature of the capacitor 1140. The signal from the temperature sensor measured here is transmitted to the motor control device 1300.
  • FIG. 4 is an outline of a heat transfer model schematically showing heat transfer related to the electric powertrain system 1000 in which the motor 1200 and the inverter 1100 shown in FIG. 3 are integrated.
  • 4 represents the representative points of the parts of the motor 1200 and the inverter 1100 shown in FIG. 3, and has a contact surface where both are in contact with each other.
  • the representative points of the parts are connected by thermal resistance.
  • the representative point of each part is expressed by heat capacity and temperature, and the amount of heat generation is expressed depending on the part.
  • the heat transfer amount of each component representative point connected by thermal resistance is determined by the temperature difference between each component representative point and the thermal resistance.
  • the bus bar 1120 is described by one representative point, and the bus bar 1120 indicates that the capacitor 1140, the inverter case 1150, and the motor / inverter bus bar are in contact with each other.
  • the power module 1130 has a structure in contact with the cooling water path, and the capacitor 1140 has a structure in contact with the inverter case 1150 in addition to the bus bar 1120.
  • the inverter case 1150 includes the capacitor 1140, the bus bar 1120, and the cooling water path. It is in contact with the motor case 1260 and is represented as connected by thermal resistance.
  • the temperature sensors 1450, 1440, 1410, 1420, and 1430 are provided to measure the temperatures of the bus bar 1120, the capacitor 1140, the inverter case 1150, the motor case 1260, and the stator 1250, which are representative components. To do.
  • FIG. 5 shows an outline of the basic model of the heat transfer model.
  • FIG. 5 is a diagram showing heat transfer between two parts. It is assumed that the component A 2010 and the component B 2020 are in contact with each other through the joint surface 2030, and the component A 2010 has a heat generation source and outputs a heat generation amount Q1 (W). At this time, the heat generated in the component A 2010 is transmitted to the component B 2020 through the joint surface 2030.
  • the temperature of the part A2010 is T1
  • the heat capacity is C1
  • the temperature of the part B2020 is T2
  • the heat capacity is C2
  • the amount of heat transferred from the part A2010 to the part B2020 is Q12
  • the thermal resistance at the joint surface 2030 is R12
  • the heat transfer can be modeled by the following equation. However, t represents time.
  • FIG. 6 shows an embodiment of the diagnosis flow of the present invention.
  • the diagnosis of the present invention is carried out periodically or in response to an external request. For example, there is a case where the diagnosis of the present invention is performed by inputting diagnosis execution from the outside after the electric powertrain system 1000 is inspected.
  • FIG. 6 it is determined whether there is a diagnosis request from the start (SA00) (SA10). If there is no diagnosis request, the process proceeds to SA 70 and waits until there is a diagnosis request.
  • the process proceeds to SA20 to determine the state of the electric powertrain system 1000.
  • a temperature state is determined as to whether the average temperature of the entire electric powertrain is a cold state that is smaller than a predetermined value or a warming state that is larger than a predetermined value.
  • the operation region of the electric powertrain system 1000 is an operation in a high torque region, an operation in a low torque region, or an operation in a high output region as shown in FIG. It is determined whether the operation is in the output area.
  • the cold state is a state in which the temperature of the electric power train is substantially uniform and the difference between the electric power train temperature and the ambient temperature of the electric power train is small.
  • the motor and the inverter have an integrated structure.
  • the temperature of the motor and the inverter is substantially uniform, and the difference between the temperature of the motor and the inverter and the ambient temperature of the motor and the inverter is small.
  • the warm-up state is a state in which the temperature of the electric power train is substantially uniform and the electric power train temperature is higher than the ambient temperature of the electric power train.
  • the motor and the inverter have an integrated structure. In the example, the temperature of the motor and the inverter is substantially uniform, and the temperature of the motor and the inverter is higher than the ambient temperature of the motor and the inverter.
  • the electric power train state determination SA20 it is determined whether or not the electric power train state is set in advance.
  • the process proceeds to SA30. Further, if the state of the electric power train is a state 2 which is a different state set in advance, the process proceeds to SA50.
  • the process proceeds to SA70.
  • the first operation diagnosis mode determined in advance is performed at SA30.
  • the diagnosis is performed in the first operation diagnosis mode.
  • the process proceeds to the next SA40, and the result of the first operation diagnosis mode performed in SA30 is output.
  • the process proceeds to SA70 and the diagnosis is terminated.
  • the predetermined second operation diagnosis mode is performed at SA50.
  • the diagnosis is performed in the second operation diagnosis mode.
  • the process proceeds to the next SA60, and the result of the second operation diagnosis mode performed in SA50 is output.
  • the process proceeds to SA70 and the diagnosis is terminated.
  • FIG. 6 is an example of the diagnosis flow of the present invention, and an abnormality of the electric powertrain system 1000 is diagnosed in different operation diagnosis modes according to the state of the electric powertrain system 1000.
  • the state of the electric powertrain system 1000 is defined by the temperature state of cold state / warm state, and the operating point of the electric powertrain system 1000 is high output / low output / high torque.
  • the operation state such as low torque / high rotation / low rotation.
  • the state of the electric powertrain system 1000 defined in two states will be described.
  • FIG. 7 shows a state of the electric powertrain system 1000 using a heat transfer model schematically showing heat transfer related to the electric powertrain system 1000 in which the motor 1200 and the inverter 1100 shown in FIG. 4 are integrated. It is a figure.
  • FIG. 7 shows a case where the electric powertrain system 1000 is in the cold state and the operation state is low rotation / medium torque.
  • a specific determination method in which the temperature state of the electric power train 1000 is in the cold state will be described with reference to FIG. 11, but when the electric power train system 1000 is in the cold state, a group of parts constituting the electric power train 1000 is used.
  • the temperature of each part of a certain motor 1200, each part of the inverter 1100, the cooling water of the cooling water path 700, and the motor-inverter bus bar 1500 is approximately the same as the outside air temperature of about 25 ° C to 35 ° C. It is in the state.
  • the temperatures of the rotor 1210, the magnet 1230, the coil 1240, the stator 1250, and the motor case 1260, which are components of the motor 1200, and the temperature of the cooling water in the cooling water path 700 and the outside air temperature are substantially the same.
  • the DC bus bar 1120, the power module 1130, the capacitor 1140, and the inverter case 1150, which are the components of the inverter 1100 have substantially the same temperature as the temperature of the cooling water in the cooling water path 700 and the outside air temperature.
  • the temperature of each part is determined by the heat input and output to each part and the heat capacity of each part. This means that even if the same amount of heat is given and received, the response to the temperature rise differs depending on the heat capacity.
  • the heat capacity is larger when the volume and mass are larger.
  • the heat capacity of each component of the inverter 1100 is relatively small, and the heat capacity of each component of the motor 1200 is relatively large.
  • the heat capacity of the power module 1130 is very small, and the heat capacity of the bus bar 1120 and the capacitor 1140 is larger than that of the power module 1130, but is relatively smaller than that of the inverter case 1150 and cooling water.
  • the heat capacity of the coil 1240 is smaller than that of the stator 1250, the motor case 1260, cooling water, and the like.
  • the amount of heat transfer between the parts is determined by the temperature difference between the parts and the thermal resistance between the parts. That is, the heat transfer amount increases as the temperature difference increases, and the heat transfer amount increases as the thermal resistance decreases.
  • the temperature rise differs depending on the heat capacity of the component, it is necessary to consider the size of the heat capacity of each different component in order to determine the connection abnormality based on the temperature rise. For example, in the cold state as shown in FIG. 7, a relatively large heat is generated, and the temperature of a component having a small heat capacity is increased in a short time. As a result, the temperature rise of a component having a small heat capacity increases in a short time, and the temperature difference with other components in contact increases, increasing the amount of heat transfer to the components in contact.
  • the thermal resistance should be large even if the temperature difference is large Therefore, the amount of heat transfer becomes small, and the temperature rise of the heat source becomes larger than the design value, and the temperature rise of other parts in contact with the temperature becomes smaller than the design value. Therefore, it is possible to determine a bonding failure related to a component having a small heat capacity in the cold state.
  • the specific determination of the bonding failure will be described with reference to FIG. 13 to be described later.
  • the temperature measured by the temperature sensor 1400 is estimated using the heat transfer model based on the designed characteristics. Judgment abnormality is judged from the difference with the temperature.
  • the heat transfer model it is possible to estimate the temperature rise considering multiple heat sources and multiple heat transfer paths, and accurately determine the junction abnormality by comparing with the temperature rise when there is a junction abnormality. There is an effect that can be done.
  • the abnormality due to the bonding failure related to the components having a small heat capacity is determined based on whether the temperature state of the electric power train 1000 is a cold state or the operating state of the electric power train 1000 is.
  • a diagnosis with higher accuracy becomes possible.
  • the influence of the component having a large heat capacity can be reduced by performing a diagnosis in a short time.
  • the inverter 1100 is related to the inverter 1100 in a short time. It is preferable to determine an abnormality due to a poor connection of components.
  • FIG. 8 is a diagram of the electric powertrain system 1000 using the heat transfer model schematically showing heat transfer related to the electric powertrain system 1000 in which the motor 1200 and the inverter 1100 shown in FIG.
  • FIG. 8 is a diagram showing another state.
  • FIG. 8 shows a case where the electric powertrain system 1000 is in the warm-up state and the operation state is low / medium output.
  • a specific determination method in which the temperature state of the electric power train 1000 is in the warm-up state will be described with reference to FIG. 12, but when the electric power train system 1000 is in the warm-up state, the components constituting the electric power train 1000
  • the temperature of each part of the motor 1200 that is a group, each part of the inverter 1100, the cooling water of the cooling water path 700, and the bus bar 1500 between the motor and the inverter is higher than the outside air temperature of about 25 ° C to 35 ° C.
  • the so-called electric powertrain 1000 as a whole is in a warmed state.
  • the temperature of the rotor 1210, the magnet 1230, the coil 1240, the stator 1250, and the motor case 1260, which are components of the motor 1200, and the temperature of the cooling water in the cooling water path 700 are higher than the outside air temperature and are substantially the same temperature.
  • the temperature of the DC bus bar 1120, the power module 1130, the capacitor 1140, and the inverter case 1150, which are the components of the inverter 1100, and the temperature of the cooling water in the cooling water path 700 are higher than the outside air temperature and become substantially the same temperature. It is in a state.
  • the components that make up the inverter 1100 and the motor 1200 are relatively small heat sources.
  • the overall temperature is higher than the outside air temperature, heat transfer to the surroundings occurs. Since cooling due to the outside air temperature and cooling water are also cooled due to the outside air temperature, the electric powertrain system 1000 as a whole changes in the direction in which the temperature drops.
  • the temperature of each part is determined by the heat input / output to each part and the heat capacity of each part, and the amount of heat transfer between parts depends on the temperature difference between parts and the thermal resistance between parts. It is determined. Accordingly, since the temperature rise differs depending on the heat capacity of the component, it is necessary to consider the size of the heat capacity of each different component in order to determine the connection abnormality based on the temperature rise. Therefore, as described with reference to FIG. 7, diagnosis of a bonding failure related to a component having a small heat capacity in a short time with the temperature state of the electric powertrain system 1000 being a cold state and the operation state of the electric powertrain system 1000 being a medium torque state.
  • the determination of abnormality due to the bonding failure with respect to the components having a large heat capacity is based on the temperature state of the electric power train 1000 being in the warm-up state and the operating state of the electric power train 1000.
  • FIG. 9 is a diagram illustrating an example of a diagnosis flow in the electric powertrain system 1000.
  • the diagnosis of the present invention is performed periodically or is performed according to an external request. For example, there is a case where the diagnosis of the present invention is performed by inputting diagnosis execution from the outside after the electric powertrain system 1000 is inspected.
  • SB20 the state of the electric powertrain system 1000 is determined. It is determined whether or not the electric powertrain system 1000 is in a cold state. The determination of the cold machine state will be described later with reference to FIG. If it is determined that the electric powertrain system 1000 is in the cold state, the process proceeds to SB30. In SB30, it is determined whether or not the command to the electric powertrain system 1000 is a high output region as shown in FIG. Here, an example in which it is determined whether or not it is a high output region is shown, but different determinations such as whether or not the torque command is larger than a predetermined value may be used.
  • SB30 If it is determined in SB30 that the motor command is not high output, the process proceeds to SB100. If it is determined in SB30 that the motor command is a high output, the process proceeds to SB40. In SB40, a predetermined first driving diagnosis mode is performed. When the first operation diagnosis mode is executed in SB40, the process proceeds to SB50, and the result of the first operation diagnosis mode performed in SB40 is output. When the result of the first operation diagnosis mode is output, the process proceeds to SB100 and the diagnosis is terminated.
  • SB60 it is determined whether or not the electric powertrain system 1000 is in a warm-up state. The determination as to whether or not the engine is in the warm-up state will be described with reference to FIG. If it is determined at SB60 that the electric powertrain system 1000 is not warmed up, the process proceeds to SB100.
  • SB70 it is determined whether the motor command of the electric powertrain system 1000 is a continuous running command. As the continuous running command, the motor command is a region from low output to high output, and corresponds to a command that operates for a long time. If it is determined in SB70 that it is not a continuous running command, the process proceeds to SB100.
  • the process proceeds to SB80, and a predetermined second operation diagnosis mode is performed.
  • the diagnosis is performed in the second operation diagnosis mode at SB80, the process proceeds to SB90, and the result of the second operation diagnosis mode performed at SB80 is output.
  • the process proceeds to SB100 and the diagnosis is terminated.
  • SB20 and SB60 determine the temperature state as an initial condition for diagnosing the electric powertrain system 1000, and are performed before diagnosis.
  • SB30 and SB70 have determined the driving
  • FIG. 10 is a diagram showing another embodiment of the diagnosis flow in the electric powertrain system 1000.
  • the diagnosis of the present invention is performed periodically or is performed according to an external request. For example, there is a case where the diagnosis of the present invention is performed by inputting diagnosis execution from the outside after the electric powertrain system 1000 is inspected.
  • FIG. 10 it is determined whether there is a diagnosis request from the start (SC00) (SC10). If there is no diagnosis request, the process proceeds to SC120 and waits until there is a diagnosis request.
  • SC20 determines the state of the electric powertrain system 1000. It is determined whether or not the electric powertrain system 1000 is in a cold state. The determination of the cold machine state will be described later with reference to FIG. If it is determined that the electric powertrain system 1000 is in the cold state, the process proceeds to SC30. In SC30, it is determined whether or not the command to the electric powertrain system 1000 is a high output region as shown in FIG. Here, an example in which it is determined whether or not it is a high output region is shown, but different determinations such as whether or not the torque command is larger than a predetermined value may be used.
  • SC30 If it is determined in SC30 that the motor command is not high output, the process proceeds to SC120. If it is determined in SC30 that the motor command is a high output, the process proceeds to SC40. In SC40, a predetermined first driving diagnosis mode is performed. When the first operation diagnosis mode is executed in SC40, the process proceeds to SC50, and the result of the first operation diagnosis mode performed in SC40 is output. When the result of the first operation diagnosis mode is output, the process proceeds to SC120 and the diagnosis is terminated.
  • SC60 it is determined whether or not the electric powertrain system 1000 is in a warm-up state. The determination as to whether or not the engine is in the warm-up state will be described with reference to FIG. If it is determined in SC60 that the electric powertrain system 1000 is not warmed up, the process proceeds to SC120. If it is determined in SC60 that the electric powertrain system 1000 is in a warm-up state, the process proceeds to SC70. In SC70, it is determined whether the motor command of the electric powertrain system 1000 is a continuous running command. As the continuous running command, the motor command is a region from low output to high output, and corresponds to a command that operates for a long time. If it is determined in SC70 that it is not a continuous running command, the process proceeds to SC120.
  • SC80 it is determined whether or not the first driving diagnosis mode has been performed. If it is determined in SC80 that the first operation diagnosis mode is not implemented (not implemented), the second operation diagnosis mode is not performed and the process proceeds to SC120. If it is determined in SC80 that the first driving diagnosis mode has been implemented, the process proceeds to SC90. In SC90, it is determined whether or not there is an abnormality in the first driving diagnosis mode. If an abnormality has already occurred in the first operation diagnosis mode, the already determined abnormality affects the diagnosis in the second operation diagnosis mode. Without proceeding, go to SC120.
  • the process proceeds to SC100, and a predetermined second operation diagnosis mode is performed.
  • the diagnosis is performed in the second operation diagnosis mode in SC1000
  • the process proceeds to SC110, and the result of the second operation diagnosis mode performed in SC100 is output.
  • the process proceeds to SC120 and the diagnosis is terminated.
  • SC20 and SC60 determine the temperature state as an initial condition for diagnosing the electric powertrain system 1000, and are performed before diagnosis.
  • SC30 and SC70 determine an operating state for acquiring data for diagnosis. That is, the SC 30 determines that the data that can be executed in the first operation diagnosis mode can be acquired when the cold state is the initial temperature state and there is a short-term high-power motor command.
  • the SC 70 determines that the data that can be executed in the second operation diagnosis mode can be acquired when the warm-up state is the initial temperature state and there is a long-time motor command.
  • SC80 whether or not the first driving diagnosis mode is performed is determined. If the abnormality determined in the first driving diagnosis mode affects the diagnosis in the second driving diagnosis mode, As described above, only when it is confirmed that the first operation diagnosis mode has been performed, the second operation diagnosis mode is performed, thereby providing an effect that more accurate diagnosis can be performed.
  • FIG. 11 is a diagram illustrating an example of a flow for determining the temperature state of the electric power train in the diagnosis flow of the electric power train system 1000, and whether or not the electric power train in FIGS. 9 and 10 is in the cold state. It corresponds to the process (SB20, SC20) for performing the determination.
  • the average temperature of the cooling water is calculated from the cooling water temperature detected by the temperature sensor 800 in S201.
  • the average temperature can be calculated by, for example, averaging the detected cooling water temperature for a predetermined time. If the calculated average coolant temperature is equal to or lower than the predetermined threshold temperature TwC, the process proceeds to S202. When the temperature is higher than the threshold temperature TwC, the process proceeds to S204, where it is determined that the engine is not in the cold state, and the process ends.
  • the cooling water temperature threshold value TwC is stored as a table of ambient temperatures so as to have a plurality of values corresponding to the ambient temperature, and the average value of the ambient temperatures detected by the ambient temperature sensor 900 is stored. Corresponding to (for example, a time average value in a predetermined time), a threshold value is calculated from a table.
  • the average temperature of each part in which the temperature sensor 1400 is installed is calculated from the temperatures detected by the temperature sensor 1400 such as the bus bar 1120, the capacitor 1140, and the inverter case 1150 which are components in the inverter 1100.
  • the measured value of the temperature sensor 1450 that detects the temperature of the DC bus bar 1120 is time-averaged
  • the measured value of the temperature sensor 1440 that detects the temperature of the capacitor 1140 is time-averaged
  • the temperature of the inverter case 1150 is For example, the measured value of the temperature sensor 1410 to be detected is averaged over time.
  • a deviation between the average temperatures of the components constituting the inverter 1100 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold value ( ⁇ TwiC), and the inverter 1100 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value ( ⁇ TwiC). These threshold values may be values that change according to the ambient temperature. If the above two conditions are satisfied, the process proceeds to the next S203. On the other hand, if any of the conditions is not satisfied, the process proceeds to S204, where it is determined that the condition is not cold, and the process is terminated.
  • the average temperature of each part where the temperature sensor 1400 is installed is calculated from the temperatures detected by the temperature sensor 1400 such as the coil 1240, the stator 1260, and the motor case 1260 that are the components in the motor 1200. Specifically, the measured value of the temperature sensor 1460 that detects the temperature of the coil 1240 is averaged over time, the measured value of the temperature sensor 1430 that detects the temperature of the stator 1250 is averaged over time, or the temperature of the motor case 1260 is detected. The measured value of the temperature sensor 1420 is averaged over time.
  • a deviation between the average temperatures of the components constituting the motor 1200 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold ( ⁇ TmC), and the motor 1200 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value ( ⁇ TwmC). These threshold values may be values that change according to the ambient temperature. If the above two conditions are satisfied, the process proceeds to the next S205, where it is determined that the engine is in a cold state, and the process is terminated. On the other hand, if any of the conditions is not satisfied, the process proceeds to S204, where it is determined that the condition is not cold, and the process is terminated.
  • FIG. 12 is a diagram illustrating another example of the flow for determining the temperature state of the electric power train in the diagnosis flow of the electric power train system 1000, and the electric power train in FIGS. 9 and 10 is in a warm-up state. This corresponds to the process of determining whether or not (SB60, SC60).
  • the average temperature of the cooling water is calculated from the cooling water temperature detected by the temperature sensor 800.
  • the average temperature can be calculated by, for example, averaging the detected cooling water temperature for a predetermined time. If the calculated average coolant temperature is equal to or higher than the predetermined threshold temperature TwH, the process proceeds to S602. If the temperature is lower than the threshold temperature TwH, the process proceeds to S604, where it is determined that the engine is not warmed up, and the process is terminated.
  • the cooling water temperature threshold value TwH is stored as a table of ambient temperatures so as to have a plurality of values corresponding to the ambient temperature, and the average value of the ambient temperatures detected by the ambient temperature sensor 900 is stored. Corresponding to (for example, a time average value in a predetermined time), a threshold value is calculated from a table.
  • the average temperature of each part where the temperature sensor 1400 is installed is calculated from the temperature detected by the temperature sensor 1400 such as the bus bar 1120, the capacitor 1140, and the inverter case 1150 which are the components in the inverter 1100.
  • the measured value of the temperature sensor 1450 that detects the temperature of the DC bus bar 1120 is time-averaged
  • the measured value of the temperature sensor 1440 that detects the temperature of the capacitor 1140 is time-averaged
  • the temperature of the inverter case 1150 is For example, the measured value of the temperature sensor 1410 to be detected is averaged over time.
  • a deviation between the average temperatures of the components constituting the inverter 1100 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold value ( ⁇ TwiH), and the inverter 1100 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value ( ⁇ TwiH). These threshold values may be values that change according to the ambient temperature. When the above two conditions are satisfied, the process proceeds to the next S603. On the other hand, if either condition is not satisfied, the process proceeds to S604, where it is determined that the engine is not warmed up, and the process is terminated.
  • the average temperature of each part in which the temperature sensor 1400 is installed is calculated from the temperature detected by the temperature sensor 1400 such as the coil 1240, the stator 1250, and the motor case 1260 which are components in the motor 1200. Specifically, the measured value of the temperature sensor 1460 that detects the temperature of the coil 1240 is averaged over time, the measured value of the temperature sensor 1430 that detects the temperature of the stator 1250 is averaged over time, or the temperature of the motor case 1260 is detected. The measured value of the temperature sensor 1420 is averaged over time.
  • a deviation between the average temperatures of the parts constituting the motor 1200 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold ( ⁇ TmH), and the motor 1200 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value ( ⁇ TwmH). These threshold values may be values that change according to the ambient temperature. If the above two conditions are satisfied, the process proceeds to the next S605, where it is determined that the engine is warmed up, and the process is terminated. On the other hand, if either condition is not satisfied, the process proceeds to S604, where it is determined that the engine is not warmed up, and the process is terminated.
  • Steps S20 and S60 it is preferable to perform the determination of the cold state and the warm-up state performed in Steps S20 and S60 in a state where the electric power train 1000 is not driven. This is because when the electric power train 1000 is driven, current flows through the motor 1200 and the inverter 1100 and heat is generated due to loss, so that the temperature of a component having a small heat capacity may rise rapidly. Therefore, the cold state and the warm-up state are preferable as conditions because it is easy to determine the state that the electric power train 1000 is not driven or the operation region is in the low output state.
  • FIG. 13 shows a flow of an embodiment in which diagnosis is performed by calculating the temperature estimation of each part based on the heat transfer model of the electric power train 1000.
  • FIG. 13 is an example of a process in the first operation diagnosis mode performed based on the cold machine determination of SB40 and SC40 in the flow shown in FIGS.
  • step S401 when it is determined that the first operation diagnosis mode is performed, in step S401, the electric power train 1000 command signal, the coolant temperature sensor 800 detection signal, and the electric power train, which are data necessary for diagnosis, are processed.
  • the detection signal of the temperature sensor 1400 that detects the temperature of each of the 1000 components is captured (S401).
  • the above-mentioned signal is stored in a storage device (not shown) of the diagnosis control unit 1310 of the motor control device 1300 of the electric power train system 1000, and the electric power train 1000 that performs the first operation diagnosis mode.
  • the result of holding the state of the is fetched.
  • a command signal of the electric power train 1000 and a detection signal of the temperature sensor 1400 are directly taken in.
  • the temperature estimation of each part of the parts constituting the electric power train 1000 is calculated using the heat transfer model of the electric power train 1000 described with reference to FIGS. (S402).
  • the initial temperature of each part is required, but the initial temperature detected by the temperature sensor 1400 can be used as the initial temperature of each part.
  • the component where the temperature sensor 1400 is installed since the electric powertrain 1000 has already been determined to be in the cold state in the previous stage of this processing, the component where the temperature sensor 1400 is installed. It is also possible to set the temperature detected by the temperature sensor as an initial value for the component that is in contact with the component or a component in the vicinity thereof. Alternatively, since it is determined that the engine is in the cold state, it is possible to set the initial temperatures of all the components of the inverter 1100 as the same and the initial temperatures of all the components of the motor 1200 as the same.
  • the command for the electric power train 1000 corresponds to the current flowing through the components such as the motor 1200 and the inverter 1100, and the loss / heat generation amount of each component constituting the electric power train 1000 is calculated from this command to predict the temperature. I do.
  • calculation is performed using the temperature sensor measurement value of the component where the temperature sensor 1400 is installed in the components of the electric powertrain system 1000 and the heat transfer model of S402 corresponding to the component where the temperature sensor 1400 is installed.
  • Calculate the error from the estimated temperature value Specifically, the deviation between the temperature measurement value of the temperature sensor 1450 installed in the DC bus bar 1120 that is a component of the inverter 1100 and the estimated temperature value corresponding to the DC bus bar 1120 calculated by the heat transfer model is calculated.
  • the heat transfer model is a model that simulates heat transfer in a state where there is no abnormality in the joint portion of the electric power train system 1000. Therefore, if there is no abnormality such as a bonding failure in the components of the electric power train 1000, heat transfer is performed.
  • the estimated temperature value based on the model and the actual measured temperature value of the temperature sensor 1400 are substantially the same value.
  • the estimated temperature value based on the heat transfer model and the actual measured temperature value of the temperature sensor 1400 are different values.
  • the thermal resistance which is a parameter of the heat transfer model
  • the deviation between the estimated temperature value and the measured temperature value exceeds a predetermined determination value, it is determined to be abnormal, and otherwise, it is determined to be normal. Therefore, in S404, when the deviation between the estimated temperature value and the measured temperature value is equal to or smaller than the determination value ⁇ Tjudge1, the process proceeds to S405, and it is determined that there is no abnormality in the first operation diagnosis mode, and the process ends.
  • the deviation between the temperature measurement value of the temperature sensor 1440 of the capacitor 1140 of the inverter 1100 and the temperature estimation value, the difference between the temperature measurement value of the temperature sensor 1450 of the DC bus bar 1120 and the temperature estimation value, the temperature measurement of the temperature sensor 1410 of the inverter case 1150 Diagnosis is made by comparing the deviation between the value and the estimated temperature value with the judgment value.
  • the determination value ⁇ Tjudge1 is preferably provided for each component.
  • the process proceeds to S406 and it is determined that there is an abnormality in the first operation diagnosis mode. If it is determined in S406 that there is an abnormality, it is determined in S407 that the joint portion related to the installed part of the temperature sensor 1400, in which the deviation between the temperature estimation value and the temperature measurement value is determined to be greater than the determination value ⁇ Tjudge1, is determined. Determine the abnormal part.
  • the above is an example of the execution flow of the first operation diagnosis mode performed in the cold state. In this flow, as will be described later, an abnormality that is easily diagnosed in a cold state is determined.
  • FIG. 14 shows a flow of another embodiment in which diagnosis is performed by calculating the temperature estimation of each part based on the heat transfer model of the electric power train 1000.
  • FIG. 14 is an example of processing in the second operation diagnosis mode that is performed based on the warm-up determination of SB80 and SC100 in the flows shown in FIGS.
  • a command signal of the electric power train 1000, a detection signal of the cooling water temperature sensor 800, which is data necessary for diagnosis, and an electric power train are processed in S 1001.
  • the detection signal of the temperature sensor 1400 that detects the temperature of each of the 1000 components is captured.
  • the above-mentioned signal is stored in a storage device (not shown) of the diagnosis control unit 1310 of the motor control device 1300 of the electric power train system 1000, so that the electric power train 1000 that performs the second operation diagnosis mode is used.
  • the result of holding the state of the is fetched.
  • a command signal of the electric power train 1000 and a detection signal of the temperature sensor 1400 are directly taken in.
  • the temperature estimation of each part of the parts constituting the electric power train 1000 is calculated using the heat transfer model of the electric power train 1000 described with reference to FIGS. (S1102).
  • the initial temperature of each part is required, but the initial temperature detected by the temperature sensor 1400 can be used as the initial temperature of each part.
  • the temperature sensor 1400 is installed. It is also possible to set the temperature detected by the temperature sensor as an initial value for a component that is in contact with the component or a component in the vicinity thereof. Alternatively, since it is determined that the engine is in the warm-up state, it is possible to set the initial temperatures of all the components of the inverter 1100 as the same and the initial temperatures of all the components of the motor 1200 as the same.
  • the command for the electric power train 1000 corresponds to the current flowing through the components such as the motor 1200 and the inverter 1100, and the loss / heat generation amount of each component constituting the electric power train 1000 is calculated from this command to predict the temperature. I do.
  • the heat transfer model is a model that simulates heat transfer in a state where there is no abnormality in the joint portion of the electric power train system 1000. Therefore, if there is no abnormality such as a bonding failure in the components of the electric power train 1000, heat transfer is performed.
  • the estimated temperature value based on the model and the actual measured temperature value of the temperature sensor 1400 are substantially the same value.
  • the estimated temperature value based on the heat transfer model and the actual measured temperature value of the temperature sensor 1400 are different values.
  • the thermal resistance which is a parameter of the heat transfer model, it is difficult for the estimated temperature value and the measured temperature value to be exactly the same even when there is no bonding failure. Accordingly, when the deviation between the estimated temperature value and the measured temperature value exceeds a predetermined determination value, it is determined to be abnormal, and otherwise, it is determined to be normal.
  • the deviation between the temperature measurement value of the temperature sensor 1440 of the capacitor 1140 of the inverter 1100 and the temperature estimation value, the difference between the temperature measurement value of the temperature sensor 1450 of the DC bus bar 1120 and the temperature estimation value, the temperature measurement of the temperature sensor 1410 of the inverter case 1150 Diagnosis is made by comparing the deviation between the value and the estimated temperature value with the judgment value.
  • the determination value ⁇ Tjudge2 is preferably provided for each component.
  • the process proceeds to S1006 and it is determined that there is an abnormality in the second operation diagnosis mode. If it is determined in S1006 that there is an abnormality, it is determined in S1007 that the joint portion related to the installed part of the temperature sensor 1400, in which the deviation between the estimated temperature value and the measured temperature value is determined to be larger than the determination value ⁇ Tjudge2, is determined. Determine the abnormal part.
  • FIG. 15 is a diagram schematically showing the state of heat transfer when an abnormality occurs in the electric power train 1000.
  • FIG. 15 is an example in the case where there is an abnormality in the mold bonding between the DC (direct current) bus bar 1120 and the capacitor 1140 that are the components of the inverter 1100.
  • an abnormal mold joint is a component of the inverter 1100 and has a relatively small heat capacity. Therefore, in the present invention, the temperature state of the electric power train 1000 is a cold state, and the operating state of the electric power train 1000 is It is possible to diagnose an abnormality in the state of low rotation / high torque.
  • the bus bar / capacitor mold thermal resistance 1700 which is a thermal connection between them is abnormal and normal. This is a case where it is very large compared to the thermal resistance of the time. Since the electric power train 1000 is in the cold state, the entire temperature is low. In this state, a high torque command is given to the electric power train system 1000. As a result, the power module 1130 generates heat due to a large loss.
  • FIG. 16 shows a DC (direct current) bus bar 1120 that is a component of the inverter 1100 when the temperature state of the electric power train 1000 described in FIG. 15 is cold and the operation state of the electric power train 1000 is low rotation / high torque.
  • the conditions are a cold machine condition (cooling water temperature is 35 ° C.), and a command to the electric power train 1000 is a short time / low rotation / high torque (1000 rpm, 100 Nm, 30 seconds).
  • 16 shows, from the top, the estimated temperature of the motor 1200 of the electric powertrain 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat transfer model of the case 1150. And temperature sensors 1450, 1440, and 1410 are shown.
  • FIG. 16 The result of FIG. 16 is that, as described in FIG. 15, heat is generated due to loss due to the current flowing through the DC bus bar 1120 and capacitor 1140, and the temperature of the DC bus bar 1120 and capacitor 1140 rises. Since the thermal resistance 1700 is abnormal, the heat transfer between the bus bar 1120 and the capacitor 1140 becomes small, and the temperature rise of the bus bar 1120 and the capacitor 1140 caused by this heat transfer is different from the normal temperature listing.
  • the deviation between the estimated temperature value and the measured temperature value of the heat transfer model related to the capacitor 1140 is greatly increased as compared with other deviations.
  • the presence / absence of abnormality can be determined from a signal of about 25 seconds.
  • the deviation between the estimated temperature value and the measured temperature value of the capacitor 1140 is increased, it can be determined that the abnormality is in the joint portion related to the capacitor 1140.
  • FIG. 17 shows an example of the deviation between the estimated temperature value and the measured temperature value when there is no abnormality when the temperature state of the electric power train 1000 is cold and the operation state of the electric power train 1000 is low rotation / high torque. Show.
  • the conditions are a cold machine condition (cooling water temperature is 35 ° C.), and a command to the electric power train 1000 is a short time / low rotation / high torque (1000 rpm, 100 Nm, 30 seconds).
  • the graph of FIG. 17 is based on the heat transfer model of the motor 1200 of the electric power train 1000, the torque of the motor 1200, the torque command of the motor 1200, the bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the case 1150, as in FIG.
  • Deviations between the estimated temperature value and the temperature sensors 1450, 1440, and 1410 are shown.
  • the signal for diagnosis is a short-time signal. By using a short-time signal (temperature, command), it is possible to quickly determine, and furthermore, it is possible to determine a bonding abnormality related to a component having a small heat capacity.
  • FIG. 18 shows the above-described cold machine when there is an abnormal connection between the motor 1200 and the inverter 1100 when the temperature state of the electric power train 1000 is cold and the operation state of the electric power train 1000 is low rotation / high torque.
  • the conditions are a cold machine condition (cooling water temperature is 35 ° C.), and a command to the electric power train 1000 is a short time / low rotation / high torque (1000 rpm, 100 Nm, 30 seconds).
  • the motor 1200 and the inverter 1100 are joined by an inverter case 1150 and a motor case 1260, respectively, and in this example, there is an abnormality in this joined portion.
  • the graph in FIG. 18 is the same as in FIGS. 16 and 17, the rotational speed of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat of the case 1150. Deviations between the estimated temperature value by the transfer model and the temperature sensors 1450, 1440, and 1410 are shown.
  • the estimated temperature value and the temperature when the electric powertrain system 1000 is in the cold state and the short time high torque command is issued. It can be determined from the deviation of the measured value.
  • the joining abnormality related to a part having a relatively large heat capacity rather than a direct heat source the electric powertrain system 1000 is in a cold state and the deviation between the temperature estimated value and the temperature measured value at the time of a short high torque command is obtained. Judgment is difficult.
  • FIG. 19 is a diagram schematically showing the state of heat transfer when an abnormality different from that in FIG. 15 occurs in the electric power train 1000.
  • FIG. 19 is an example of a case where there is an abnormality in the joint between the inverter case 1150 of the inverter 1100 and the motor case 1260 of the motor 1200.
  • the inverter case 1150 and the motor case 1260 have relatively large heat capacities and are not direct heat sources. Therefore, in the present invention, the temperature state of the electric power train 1000 is a warm-up state and the operation state of the electric power train 1000 is long-term. It is possible to diagnose an abnormality in a normal medium output command state.
  • the motor / inverter junction thermal resistance 1750 which is a thermal connection between the inverter case 1150 and the motor case 1260, is abnormal. This is the case when it is getting bigger. Since the electric power train 1000 is in a warm-up state, the overall temperature is higher than the outside air temperature. In this state, a medium output command is given to the electric power train system 1000 for a long time. In this case, the medium output command includes a repetition of a drive command and a non-drive command over a long period of time.
  • the inside of the electric power train system 1000 The heat generated by the loss is relatively small, and the electric powertrain system 1000 as a whole changes in a direction in which the temperature decreases due to cooling by the outside air temperature or cooling by cooling the cooling water.
  • FIG. 20 shows an inverter case 1150 and a motor case 1260 when the temperature state of the electric power train 1000 described in FIG. 19 is a warm-up state and the operation state of the electric power train 1000 is a low / medium output operation state with a relatively small load. It is an example which determined the abnormality of the junction part in between.
  • the conditions are the warm-up condition (cooling water temperature is 65 ° C.), and the command to the electric power train 1000 is a mode travel pattern command called JC08 as a long-time low / medium output command.
  • the graph of FIG. 20 shows from the top the rotational speed of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, the inverter case 1150, and the heat transfer of the motor case 1260. Deviations between the estimated temperature value by the model and the temperature sensors 1450, 1440, 1410, and 1420 are shown.
  • the result of FIG. 20 is that the junction between the inverter case 1150 and the motor case 1260 has an abnormality. Therefore, the junction thermal resistance 1750 between the motor and the inverter is large, and the temperature of the inverter case 1150 is It shows a change different from the normal case. In addition, the temperature of the bus bar 1120 and the capacitor 1140 where heat transfer is performed in contact with the inverter case 1150 also changes in accordance with the temperature change of the inverter case 1150, and thus also shows a change different from the normal case. As a result, as shown in FIG. 20, the deviation between the estimated temperature value and the measured temperature value of the heat transfer model related to the inverter case 1150 is increased faster than the other deviations.
  • the presence / absence of abnormality can be determined from a signal of about 600 seconds.
  • the deviation between the estimated temperature value and the measured temperature value of the inverter case 1150 first expands and exceeds the abnormality determination threshold value, so that it can be determined that there is an abnormality in the joint portion related to the inverter case.
  • the motor case 1260 since the deviation between the estimated temperature value and the measured temperature value first increases, it can also be determined that there is an abnormality in the joint portion related to the motor case 1260.
  • FIG. 21 shows the junction between the inverter case 1150 and the motor case 1260 when the temperature state of the electric power train 1000 is a warm-up state and the operation state of the electric power train 1000 is a low / medium output operation state with a relatively small load.
  • the example of the deviation of the temperature estimated value and temperature measured value when there is no abnormality is shown.
  • the conditions are the warm-up condition (cooling water temperature is 65 ° C.), and the command to the electric power train 1000 is a mode travel pattern command called JC08 as a long-time low / medium output command.
  • the graph of FIG. 21 is similar to FIG. 20, the number of revolutions of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat transfer of the inverter case 1150. Deviations between the estimated temperature value by the model and the temperature sensors 1450, 1440, and 1410 are shown.
  • the signal for diagnosis is a relatively long time signal.
  • a long-time signal temperature, command
  • FIG. 22 shows an abnormality in the junction between the inverter case 1150 and the motor case 1260 when the temperature state of the electric power train 1000 is cold and the operation state of the electric power train 1000 is a low / medium output operation state with a relatively small load. It is an example when there is.
  • the conditions are a cold machine condition (cooling water temperature is 35 ° C.), and the command to the electric power train 1000 is a mode travel pattern command called JC08 as a long-time low / medium output command.
  • the graph of FIG. 22 shows the estimated temperature and temperature of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat transfer model of the inverter case 1150. Deviations from the sensors 1450, 1440, and 1410 are shown.
  • FIG. 22 shows that there is an abnormality in the joint between the inverter case 1150 and the motor case 1260, but the deviation between the estimated temperature value and the measured temperature value based on the heat transfer model of the inverter case 1150 is not increased significantly. If it is determined by the determination threshold value, it is determined that there is no abnormality, and it is difficult to determine abnormality. Similarly, the deviation between the estimated temperature value and the measured temperature value of the capacitor 1140 and the DC bus bar 1120 does not change greatly, and it is difficult to determine abnormality.
  • the motor / inverter junction thermal resistance 1750 due to an abnormality in the junction between the inverter case 1150 and the motor case 1260 is very large compared to the normal thermal resistance, but the electric power train 1000 is in a cold state. Therefore, the overall temperature is almost the same as the outside air temperature. In this state, unlike the warm-up state, since the cooling water is close to the outside air temperature, the heat transfer from the cooling water to the outside is small, and the cooling effect by the cooling water is smaller than that in the warm-up state.
  • a medium output command is given to the electric power train system 1000 in the long term, but since the output of the command is relatively small, heat generation due to loss inside the electric power train system 1000 is relatively small, and the temperature difference is small. The amount of heat transferred is small. For this reason, in a part having a relatively large heat capacity, such as the inverter case 1150 and the motor case 1260, even if the heat transfer between them is different from the normal time, the temperature change of the inverter case 1150 does not change much compared to the normal time. Furthermore, since it is joined to the inverter case 1150, the temperature change of the bus bar 1120 and the capacitor 1140 does not change greatly compared to the temperature change during normal operation.
  • the electric powertrain system 1000 is in a warm-up state, and a low / medium output for a relatively long time. It can be determined from the deviation between the estimated temperature value at the time of command and the measured temperature value.
  • the electric powertrain system 1000 is in the cold state, it is difficult to determine from the deviation between the estimated temperature value and the measured temperature value.
  • FIG. 23 is a diagram for explaining the outline of the second embodiment of the present invention.
  • FIG. 23 is an embodiment in which a display device 1800, a storage device 1850, and a communication device 1900 are added to the first embodiment shown in FIG. Except for the display device 1800, the storage device 1850, and the communication device 1900 added in FIG. 23, the flow is the same as that described in FIG. 1, and the diagnosis flow of the electric powertrain system 1000 is the same as the embodiment described so far. May be the same.
  • the result of diagnosis by the diagnosis control unit 1310 in the motor control device 1300 in the electric powertrain system 1000 is sent to the output device 100.
  • the output device 100 outputs the result diagnosed by the diagnosis control unit 1310.
  • the output of the diagnosis result is displayed on the display device 1800 of FIG.
  • the display device has a method of notifying a driver or the like by a display that is turned on when an abnormality occurs.
  • the vehicle is provided with a display lamp that lights up in the event of some abnormality, and the abnormality is notified by the lighting of the display lamp.
  • the display lamp when an abnormality is diagnosed is always lit, and as a result of diagnosis in the second operation diagnosis mode, an abnormality is diagnosed.
  • the indicator lamp in the case of flashing is displayed by blinking.
  • the diagnostic result sent to the output device 100 can be stored in the storage device 1850 as a past diagnostic result.
  • the storage device 1850 includes a diagnosis result performed by the diagnosis control unit 1310 and instructions to the electric power train system 1000 used for diagnosis, detected temperature signals such as the temperature sensor 1400, the cooling water temperature sensor 800, and the outside air temperature sensor 900,
  • the diagnosis control unit 1310 can store a temperature estimated value signal or the like based on a heat transfer model.
  • the vehicle equipped with the electric powertrain system 1000 accumulates abnormality data determined during normal driving, and the data of the storage device 1850 is read at the time of inspection. Can provide information such as inspections required for vehicles.
  • the data stored in the storage device 1850 is transmitted to an external data server or the like by the communication device 1900, and past data is accumulated in the external data server, whereby an abnormality database can be constructed.
  • the abnormality database is managed in the same manner as the abnormality data of other vehicles in the data center, and can be used for inspection as an abnormality database for similar vehicles.
  • FIG. 24 is a diagram for explaining the timing of performing the diagnosis of the present invention.
  • the horizontal axis indicates time
  • the vertical axis indicates the cooling water temperature.
  • the vehicle is keyed on at time t0 and is in a starting state.
  • the cooling water temperature is substantially the same as the outside air temperature
  • the entire electric powertrain system 1000 is substantially the same temperature as the cooling water temperature.
  • the first operation diagnosis mode is performed.
  • the first operation diagnosis mode is performed at the time of starting.
  • the motor 1200 and the inverter 1100 generate heat according to the loss, and the temperature rises. Along with this, the motor 1200 and the inverter 1100 are cooled by the cooling water.
  • the electric powertrain system 1000 operates in the high output operation region, the amount of heat generation increases, and the temperature rises as a whole.
  • the state determination of the electric powertrain system 1000 is performed.
  • the warm-up state is determined.
  • the second operation diagnosis mode is performed.
  • the second operation diagnosis mode is performed according to the operating state of the electric powertrain system 1000.
  • the second driving diagnosis mode is not performed until a predetermined travel distance and a predetermined time have elapsed since the previous second driving diagnosis mode was performed. It is also possible to make it. Thereby, there is an effect that the calculation load of the control device can be reduced without frequent diagnosis.
  • FIG. 25 is a diagram showing processing for limiting the output of the electric powertrain system 1000 based on the abnormality determination result of the electric powertrain system of the present invention.
  • the first half of FIG. 25, SAK10, SAK20, SAK30, SAK40, SAK50, and SAK60, is the same as the flow of the abnormality determination process shown in FIG.
  • the result of the first driving diagnosis mode is output at SAK 40. If an abnormality is determined based on the result, the output of electric power train system 1000 is limited at SAK 80.
  • the output restriction performed here is the first output restriction.
  • the result of the second operation diagnosis mode is output at SAK 60. If an abnormality is determined based on the result, the output of the electric power train system 1000 is limited at SAK 90.
  • the output restriction performed here is the second output restriction. However, if no abnormality is determined, output restriction is not performed.
  • the first output restriction and the second output restriction limit the output of the electric powertrain system 1000, and are based on the restriction based on the diagnosis result in the first operation diagnosis mode and the diagnosis result in the second operation diagnosis mode. Limits are set differently.
  • the command allowable output for the first output restriction is set smaller than the command allowable output for the second output restriction.
  • FIG. 26 is a diagram showing another process for limiting the output of the electric powertrain system 1000 based on the abnormality determination result of the electric powertrain system of the present invention.
  • the first half of FIG. 26, SBK10, SBK20, SBK30, SBK40, SBK50, SBK60, SBK70, SBK80, and SBK90 are the same as the flow of the abnormality determination process shown in FIG. In FIG. 26, the result of the first driving diagnosis mode is output at SBK50. If an abnormality is determined based on the result, the output of the electric powertrain system 1000 is limited at SBK110.
  • the output restriction performed here is the first output restriction. However, if no abnormality is determined, output restriction is not performed.
  • the result of the second operation diagnosis mode is output at SBK90.
  • the output restriction performed here is the second output restriction.
  • the first output restriction and the second output restriction limit the output of the electric powertrain system 1000, and are based on the restriction based on the diagnosis result in the first operation diagnosis mode and the diagnosis result in the second operation diagnosis mode. Limits are set differently.
  • a joint abnormality of a component having a small heat capacity that is, a heat transfer abnormality is determined.
  • a component having a small heat capacity and a heat source there is a possibility that cooling due to the joint abnormality is insufficient. Therefore, it is preferable to limit the allowable output area of the electric powertrain system 1000 narrowly. For example, there is an output restriction so that it cannot operate in the middle / high output operation region.
  • the second operation diagnosis mode there is a possibility of insufficient cooling due to abnormal joining of parts having a relatively large heat capacity.
  • the allowable output of the electric powertrain system 1000 The area is larger than the first output limit. For example, an output limit is provided so that only the high output operation area cannot be operated.
  • the output limit is tightened for abnormalities with high urgency, For abnormalities with a relatively large margin, it is possible to achieve both safety and drivability by relaxing the output limit. That is, it is possible to avoid a drastic decrease in drivability by abruptly limiting the output.
  • FIG. 27 shows another embodiment of the present invention, and is a configuration diagram of an electric power train when an inverter 1100 and a DC / DC converter 1600 are integrated. 27, except for the DC / DC converter 1600 and the auxiliary battery 1650, the configuration is the same as that of FIG.
  • the DC / DC converter is a power conversion device that supplies power to auxiliary equipment addition such as a small motor mounted on a vehicle and charges an auxiliary battery 1650.
  • FIG. 28 is a diagram showing details of a portion related to the DC / DC converter 1600 of FIG.
  • the DC / DC converter 1600 includes a control circuit unit 1610 and a power circuit unit 1620. Based on an instruction from the control circuit 1610, the power circuit unit 1620 inputs a voltage on the high voltage side of the power supply device 200, and the auxiliary battery 1650 Output as low voltage.
  • the power circuit unit 1620 includes a high voltage side module 1621, a transformer 1622, a low voltage side module 1623, and a smoothing circuit 1624.
  • the power circuit unit 1620 operates when voltage conversion is performed by the DC / DC converter 1600, and is caused by loss in each. An exotherm occurs.
  • the DC / DC converter 1600 has a plurality of heat sources in the same manner as the inverter 1100. In addition, each of them is configured to transfer heat to the case of the DC / DC converter 1600 and the cooling water path through a plurality of heat transfer paths realized by a plurality of contact surfaces.
  • the DC / DC converter 1600 has a structure integrally formed with the inverter 1100, a plurality of heat sources and a plurality of joint surfaces are formed as in the case where the motor 1200 and the inverter 1100 are integrally structured.
  • the heat transfer path and the plurality of parts having different heat capacities are included, and it is possible to determine the abnormality of the joint by the same concept.
  • a plurality of heat sources and a plurality of heat transfer paths are also configured for an electric power train in which a motor and a transmission are integrated in a hybrid electric vehicle. Abnormal diagnosis can be performed.
  • FIG. 29 shows another embodiment of the present invention, which is an example of an electric powertrain of a hybrid electric vehicle.
  • the electric powertrain of the hybrid electric vehicle of FIG. 29 controls the conventional internal combustion engine 2000, an engine control device 2050 for controlling the internal combustion engine 2000, a motor 1200, an inverter 1100 for driving the motor 1200, a motor 1200 and an inverter 1100.
  • the motor control device 1300 has a transmission 2100 that transmits the power of the internal combustion engine 2000 and the motor 1200 as an integral structure, and is joined and mounted to the transmission case 2150.
  • the configuration diagram of FIG. 29 is the same as that of FIG. 1 except for the internal combustion engine 2000, the engine control device 2050, the transmission 2100, and the transmission case 2150, and performs the same functions and operations.
  • the transmission case 2150 is joined to the internal combustion engine 2000, the transmission 2100, the motor 1200, and the inverter 1100 so that heat is transmitted to each other. Further, the internal combustion engine 2000, the transmission 2100, the motor 1200, and the inverter 1100 are also heat sources. Each of them is configured to release heat to the cooling water path 700 and a transmission cooling medium (not shown) through a plurality of heat transfer paths realized by a plurality of contact surfaces.
  • the transmission 2100, the inverter 1100, and the like are configured as an integral structure
  • a plurality of heat sources and a plurality of joint surfaces are used. It has a plurality of parts having different heat transfer paths and heat capacities, and it is possible to determine the abnormality of the joint by the same concept.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other. Two examples of the first operation diagnosis mode and the second operation diagnosis mode have been described as the plurality of diagnosis modes. However, three or more operation diagnosis modes may be provided.
  • the first operation diagnosis mode it is possible to diagnose a joint abnormality of a component having a relatively small heat capacity
  • the second operation diagnosis mode the first operation is performed. It is possible to diagnose abnormalities in the joints of parts with relatively large thermal resistance different from the diagnostic mode, and it is possible to diagnose abnormalities in different joints, as well as the joining of parts with low heat capacity diagnosed in the first operation diagnostic mode.
  • This is a heat transfer path that is important in terms of cooling function compared to the joints of parts with relatively large heat capacity that are diagnosed in the second operation diagnosis mode. Since the diagnosis is performed in the diagnosis mode and the others are diagnosed in the second operation diagnosis mode, there is an effect that the display of the diagnosis result can be changed according to the importance.
  • the output of the electric powertrain is limited based on the diagnosis results of the first operation diagnosis mode and the second operation diagnosis mode, so that the joint portion Temperature rise due to abnormalities can be suppressed and parts can be prevented from being destroyed.
  • important joints are diagnosed in the first operation diagnosis mode, and other diagnosis is performed in the second operation diagnosis mode.
  • it is more important from the viewpoint of the cooling function than when diagnosing an abnormality in the second operation diagnosis mode. If an abnormality is diagnosed in the second driving diagnosis mode, change the output limit according to the abnormal condition, such as setting the output limit of the electric powertrain relatively gently so that driving performance is important. Thus, there is an effect that both safety and drivability can be considered.
  • a hybrid vehicle can be configured using this electric powertrain system, and a gasoline engine or a diesel engine can be used as an internal combustion engine, which can also be applied to a hybrid railway vehicle.
  • 100 output device 200 power supply device (battery), 300 vehicle control device, 400 accelerator opening sensor, 500 vehicle speed sensor, 600 cooling device, 700 cooling water path, 800 cooling water temperature sensor, 900 ambient temperature sensor, 1000 electric powertrain system, 1100 Inverter, 1110 In-inverter AC bus bar, 1120 DC bus bar, 1130 power module, 1140 capacitor, 1150 inverter case, 1200 motor, 1210 rotor, 1220 bearing, 1230 magnet, 1240 coil, 1250 motor stator, 1260 motor case, 1270 Rotating shaft , 1300 motor control device, 1310 diagnosis control unit, 1320 motor control unit, 1400 temperature sensor, 1500 Bus bar between motor and inverter, 1600 DC / DC converter, 1650 auxiliary battery, 1700 Mold bar thermal resistance between bus bar and capacitor, 1750 Motor / inverter junction thermal resistance, 1800 display device, 1850 storage device, 1900 communication device, 2000 Internal combustion engine, 2050 Engine control device, 2100 Transmission, 2150 Transmission case

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

In order to provide an electric powertrain system having a plurality of heat generation sources and a plurality of heat transfer pathways, which diagnoses the abnormality of the heat transfer pathways and the joints in the powertrain system, the electric powertrain system, which is a drive system for an electric vehicle wherein a plurality of components having heat generation sources such as a motor (1200) and an inverter (1100) are integrally structured with an interface therebetween, includes a plurality of temperature sensors (1400) and a diagnosis control unit (1310) provided with a heat transfer model (1312) for the electric powertrain that is simulated on the basis of the temperature of the temperature sensors. The diagnosis control unit estimates the temperature of the plurality of components using the heat transfer model and determines the presence or absence of the abnormality in heat transfer in a plurality of operation diagnosis modes. The electric powertrain is provided with an output device (100) which outputs the determination results from the diagnosis control unit.

Description

電動パワートレインシステムElectric powertrain system
 本発明は、モータ制御装置によってインバータとモータを制御して、電気自動車やハイブリッド電気自動車のような電動車両を駆動する電動パワートレインシステムに関するものである。 The present invention relates to an electric powertrain system that drives an electric vehicle such as an electric vehicle or a hybrid electric vehicle by controlling an inverter and a motor by a motor control device.
 従来から、例えば、電気自動車やハイブリッド電気自動車の駆動源として、回転電動機であるモータを搭載し、モータを駆動するモータ駆動装置として、モータと電源装置との間に、モータ駆動装置であるインバータとモータのトルク等を制御するモータ制御装置を設け、インバータによってモータの駆動信号であるモータ電流を送り、モータを駆動することが知られている。インバータは、電源装置からの直流の電力をトルク指令値に応じて決定される交流電流に変換し、交流電流によってモータが駆動される。モータ制御装置は、モータを駆動するための交流電流を生成するために制御信号をインバータへ送信し、インバータを制御する。 Conventionally, for example, a motor that is a rotary motor is mounted as a drive source of an electric vehicle or a hybrid electric vehicle, and an inverter that is a motor drive device is provided between a motor and a power supply device as a motor drive device that drives the motor. It is known to provide a motor control device for controlling the motor torque and the like, and to drive a motor by sending a motor current as a motor drive signal by an inverter. The inverter converts direct current power from the power supply device into alternating current determined according to the torque command value, and the motor is driven by the alternating current. The motor control device transmits a control signal to the inverter to generate an alternating current for driving the motor, and controls the inverter.
 このようなモータ駆動装置のインバータは、IGBT等の多数のパワー半導体が集積されているパワーモジュール、電源装置とパワーモジュール間に設けられる平滑コンデンサ(キャパシタ)、キャパシタとパワーモジュールを接合するバスバーなどから構成されている。モータ駆動する際、特に、モータに高出力を要求する場合、モータへ送る電流は、大電流となり、IGBT等のパワー半導体が集積されるパワーモジュール、キャパシタ、バスバーは、スイッチング損失、抵抗損失などによって発熱する。このような発熱によって、各部の温度が上昇すると、パワー半導体の破壊、絶縁材の劣化などが発生し、本来の機能を実現できないことになるため、発熱箇所から熱伝達経路を設けて、冷却水や外気などへ放熱する冷却装置が設けられている。 The inverter of such a motor drive device includes a power module in which a large number of power semiconductors such as IGBTs are integrated, a smoothing capacitor (capacitor) provided between the power supply device and the power module, and a bus bar that joins the capacitor and the power module. It is configured. When driving a motor, especially when the motor requires high output, the current sent to the motor becomes a large current, and power modules, capacitors, and bus bars in which power semiconductors such as IGBTs are integrated are subject to switching loss, resistance loss, etc. Fever. If the temperature of each part rises due to such heat generation, the power semiconductor will be destroyed, the insulating material will be deteriorated, etc., and the original functions cannot be realized. A cooling device that dissipates heat to the outside air or the like is provided.
 また、モータに関しても、モータを駆動するための電流は、モータ内部のコイルへ送られ、コイルのもつ電気抵抗による発熱、電流波形のひずみによる渦電流損失など、モータ内部のコイルや磁石などは発熱する。このような発熱によって、コイルの温度が上昇するとコイルの絶縁材が劣化・溶解する場合や、磁石の温度が上昇すると磁石の減磁等の劣化が生じるため、インバータと同様にモータにおいても発熱箇所から熱伝達経路を設けて冷却水や外気へ放熱する冷却装置が設けられている。 As for the motor, the current for driving the motor is sent to the coil inside the motor, and the coil and magnet inside the motor generate heat, such as heat generation due to the electrical resistance of the coil and eddy current loss due to distortion of the current waveform. To do. Due to such heat generation, when the coil temperature rises, the insulation of the coil deteriorates or melts, and when the magnet temperature rises, the magnet demagnetizes and other deteriorations occur. A cooling device is provided for dissipating heat to the cooling water or the outside air by providing a heat transfer path.
 一方、インバータからモータへ送る電流のための配線を削減することで小型化すると共にコストを削減できるので、モータとインバータを一体構造にしたモータ・インバータが知られている。この場合、インバータとモータは、接合されたような一体構造となっているため、モータからの発熱はインバータへ、インバータの発熱はモータへ熱伝達される構造となる。また、モータとインバータが別々の場合は、インバータからモータへの電流は、ケーブル(電線)によって送られていたが、交流電流用のバスバーによってインバータからモータへ電流が送られる構造となり、これがインバータとモータの一体構造内に設けられることになる。このように一体構造内に設けられたバスバーでは、要求される駆動力に応じて電流が流れ、高出力を要求される場合には大電流が流れることになり、バスバーからの発熱も一体構造となったモータ・インバータの新たな発熱源として作用する。 On the other hand, it is possible to reduce the size and cost by reducing the wiring for the current sent from the inverter to the motor. Therefore, a motor / inverter in which the motor and the inverter are integrated is known. In this case, since the inverter and the motor have an integrated structure such as being joined, the heat generated from the motor is transferred to the inverter, and the heat generated from the inverter is transferred to the motor. In addition, when the motor and the inverter are separate, the current from the inverter to the motor was sent by cable (electric wire), but the current is sent from the inverter to the motor by the bus bar for alternating current. It will be provided in the integral structure of the motor. Thus, in the bus bar provided in the integrated structure, a current flows according to the required driving force, and a large current flows when a high output is required. Acts as a new heat source for motors and inverters.
 上記に述べたモータとインバータ間の電流を送るバスバーも発熱源となることから、バスバーを冷却するために、絶縁体を介してバスバーをモータやインバータのケースと接合して、絶縁体を介した熱伝達経路を構築し、バスバーの熱をモータやインバータのケースへ伝達させてバスバーを冷却するような方法が用いられる。ケースとバスバーを接合するために介在する絶縁体は、熱伝導と電気的絶縁を両立するものであり、シート状のもの(絶縁シート)が用いられる。バスバーが高温状態になると、絶縁シートが劣化・融解し、電気的絶縁状態が破壊される可能性もあり、バスバーの温度を高温にさせないことが必要となる。 Since the bus bar that sends the current between the motor and the inverter described above is also a heat source, in order to cool the bus bar, the bus bar is joined to the case of the motor or inverter via the insulator, and the insulator is interposed A method of constructing a heat transfer path and transferring the heat of the bus bar to the case of the motor or inverter to cool the bus bar is used. The insulator interposed for joining the case and the bus bar has both heat conduction and electrical insulation, and a sheet-like one (insulating sheet) is used. When the bus bar is in a high temperature state, the insulating sheet is deteriorated and melted, and the electrical insulation state may be destroyed. Therefore, it is necessary not to raise the temperature of the bus bar.
 以上のように回転電動機であるモータ、モータ駆動装置であるインバータ、モータとインバータ間の電流を送るバスバーから構成される電動パワートレインは、複数の発熱源、複数の発熱源からの熱を伝達する複数の熱伝達経路、複数の発熱源による高温化を抑制する冷却装置から構成されることになる。 As described above, the electric power train including the motor that is a rotating motor, the inverter that is a motor driving device, and the bus bar that sends current between the motor and the inverter transmits heat from a plurality of heat sources and a plurality of heat sources. It is comprised from the cooling device which suppresses the high temperature by several heat-transfer path | routes and several heat-generation sources.
 そして、上記に述べたように、電動パワートレインを構成するモータ、インバータ、モータ・インバータ間バスバーが高温化するとそれぞれ所望の機能を実現することができなくなり、場合によっては、モータ、インバータなどが壊れることになるため、電動パワートレインにおいて、モータ、インバータなどを高温化しないような冷却が重要な機能となり、冷却機能の異常を診断することは電動パワートレインシステムにおいて重要な役割となる。 As described above, when the motor, the inverter, and the bus bar between the motor and the inverter constituting the electric power train are heated, the desired functions cannot be realized. In some cases, the motor, the inverter, etc. are broken. Therefore, in the electric power train, cooling that does not increase the temperature of the motor, the inverter, and the like is an important function, and diagnosing an abnormality in the cooling function is an important role in the electric power train system.
 電動パワートレインにおける発熱源からの熱は、構成要素の部品間の接触面を通して、冷却装置による冷却部へ放熱される。従って、発熱源と冷却部の間の熱伝達経路である接合面によって設計とおりの熱伝達が行われていれば、電動パワートレインのモータ、インバータ、バスバーは、十分に冷却され、所望の機能を実現することができる。そこで、熱伝達経路の異常を検出して、冷却機能の異常を診断することが重要となる。 The heat from the heat source in the electric power train is radiated to the cooling unit by the cooling device through the contact surface between the component parts. Therefore, if the heat transfer as designed is performed by the joint surface, which is the heat transfer path between the heat source and the cooling unit, the motor, inverter, and bus bar of the electric power train are sufficiently cooled to achieve the desired function. Can be realized. Therefore, it is important to diagnose an abnormality in the cooling function by detecting an abnormality in the heat transfer path.
 このような例としては、特許文献1には、電動パワートレインの要素であるインバータにおける主要な発熱源であるパワー半導体に関する接合異常を判定する方法が開示されている。具体的には、パワー半導体部の発熱は、はんだ接合した基板を介して冷却部へ放熱している場合に、はんだ接合においてクラックが発生するとパワー半導体部の放熱が不十分になることから、パワー半導体部へ印加する電力の積分とパワー半導体部に設けられた温度センサの上昇変化量に基いて、はんだ接合異常を診断することが記載されている。 As such an example, Patent Document 1 discloses a method of determining a junction abnormality related to a power semiconductor that is a main heat source in an inverter that is an element of an electric power train. Specifically, the heat generated in the power semiconductor part is radiated to the cooling part through the soldered substrate, and if the crack occurs in the solder joint, the power semiconductor part will not be radiated sufficiently. It describes that a solder joint abnormality is diagnosed based on the integration of the power applied to the semiconductor part and the amount of increase in the temperature sensor provided in the power semiconductor part.
 また、特許文献2には、同様にパワー半導体部が絶縁基板を介して放熱装置へ接合されている構成において、各接合部に温度センサを設け、温度センサにて計測した温度からインバータやコンバータに組込まれた各スイッチング素子の構成部材間の熱抵抗を求めることで、当該構成部材の繰り返し熱応力履歴に起因する劣化度、ひいてはこの構成部材が組込まれたスイッチング素子の劣化度を、高い精度で評価できる内容が記載されている。 Similarly, in Patent Document 2, in a configuration in which the power semiconductor part is joined to the heat dissipation device via the insulating substrate, a temperature sensor is provided at each joint, and the temperature measured by the temperature sensor is used for the inverter or converter. By obtaining the thermal resistance between the constituent members of each incorporated switching element, the degree of deterioration due to the repeated thermal stress history of the constituent member, and hence the degree of deterioration of the switching element in which this constituent member is incorporated, can be obtained with high accuracy. Contents that can be evaluated are described.
特開2010-136472号公報JP 2010-136472 A 特開2009-225541号公報JP 2009-225541 A
 特許文献1および特許文献2に記載された技術は、発熱源であるパワー半導体から冷却部までの一つの熱伝達経路を対象として、熱伝達経路の異常を判定する内容となっている。つまり、一つの発熱源と一つの熱伝達経路における熱伝達経路の異常について記載している。一つの発熱源と一つの熱伝達経路の場合は、一つの発熱源の発熱量と一つの熱伝達経路の一部の温度を計測し、発熱源の発熱量と温度の上昇の大小から概ね熱伝達経路の異常を判定できる。しかし、特許文献1および特許文献2に記載された技術では、複数の発熱源が存在し、これらの発熱が複数の伝達経路にて伝達され、冷却されるような複雑なシステムに対しては、単純に発熱量と温度上昇のみから熱伝達経路の異常を判定すること難しい。 The techniques described in Patent Document 1 and Patent Document 2 are for determining abnormality of the heat transfer path for one heat transfer path from the power semiconductor that is a heat source to the cooling unit. That is, it describes the abnormality of the heat transfer path in one heat source and one heat transfer path. In the case of one heat source and one heat transfer path, measure the amount of heat generated by one heat source and the temperature of a part of one heat transfer path. An abnormality in the transmission path can be determined. However, in the techniques described in Patent Document 1 and Patent Document 2, there are a plurality of heat sources, and for a complex system in which these heat generation is transmitted through a plurality of transmission paths and cooled, It is difficult to determine abnormalities in the heat transfer path simply from the calorific value and temperature rise.
 本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、複数の発熱源と複数の熱伝達経路を有する電動パワートレインシステムにおける熱伝達経路の異常、つまり、接合部の異常を診断する電動パワートレインシステムを提供することにある。すなわち、本発明は、モータとインバータなどから構成され、複数の発熱源と複数の接合部によって形成される熱伝達経路を有する電動パワートレインシステムにおいて、複数の接合部の接合異常などの異常劣化を精度よく判定する電動パワートレインシステムの提供を目的とする。 The present invention has been made in view of such problems, and the object thereof is an abnormality in a heat transfer path in an electric powertrain system having a plurality of heat sources and a plurality of heat transfer paths, that is, An object of the present invention is to provide an electric powertrain system for diagnosing abnormalities in joints. That is, the present invention comprises an electric powertrain system including a motor, an inverter, and the like and having a heat transfer path formed by a plurality of heat sources and a plurality of joints. The purpose is to provide an electric powertrain system that makes accurate judgments.
 前記目的を達成すべく、本発明に係る電動パワートレインシステムは、発熱源を有する複数の部品が、接触面を有して一体構造となった電動車両の駆動システムである電動パワートレインであって、複数の温度センサと、該温度センサの温度に基づいて模擬した前記電動パワートレインの熱伝達モデルを備える診断制御部とを有し、前記診断制御部は、前記熱伝達モデルを用いて前記複数の部品の温度を推定し、複数の運転診断モードで熱伝達の異常の有無を判定することを特徴とする。そして、前記電動パワートレインは、前記診断制御部の判定結果を出力する出力装置を備え、前記診断制御部は、推定した前記複数の部品の温度と、前記複数の温度センサの計測温度とを比較し推定値と実測値の偏差が大きい部位近傍の熱伝達経路となる接合部が異常であるとの判定を行う。 In order to achieve the above object, an electric powertrain system according to the present invention is an electric powertrain that is a drive system for an electric vehicle in which a plurality of parts having a heat source have a contact surface and are integrated. A plurality of temperature sensors, and a diagnostic control unit including a heat transfer model of the electric powertrain that is simulated based on the temperature of the temperature sensor, the diagnosis control unit using the heat transfer model The temperature of these parts is estimated, and the presence or absence of heat transfer abnormality is determined in a plurality of operation diagnosis modes. The electric power train includes an output device that outputs a determination result of the diagnosis control unit, and the diagnosis control unit compares the estimated temperatures of the plurality of parts with the measured temperatures of the plurality of temperature sensors. Then, it is determined that the joint portion serving as the heat transfer path in the vicinity of the portion where the deviation between the estimated value and the actually measured value is large is abnormal.
 本発明に係る電動パワートレインは、複数の運転診断モードを有するため、複数の熱源と複数の熱伝達経路が存在する場合においても、熱容量が比較的小さい部品の熱伝達経路の接合異常と、熱容量が比較的大きい部品の熱伝達経路の接合異常の両方を診断することができるという効果がある。 Since the electric power train according to the present invention has a plurality of operation diagnosis modes, even in the case where there are a plurality of heat sources and a plurality of heat transfer paths, the abnormality in joining of heat transfer paths of components having a relatively small heat capacity, and the heat capacity There is an effect that it is possible to diagnose both the joining abnormality of the heat transfer path of a relatively large component.
本発明に係る電動パワートレインシステムの一実施形態の全体構成を示した説明図である。(実施例1)It is explanatory drawing which showed the whole structure of one Embodiment of the electric powertrain system which concerns on this invention. Example 1 図1の電動パワートレインシステムにおける動作領域に関する説明図である。(実施例1)It is explanatory drawing regarding the operation | movement area | region in the electric powertrain system of FIG. Example 1 本発明に係る電動パワートレインシステムの一実施例であるモータとインバータが一体構造を概略的に示す断面図である。1 is a cross-sectional view schematically showing an integrated structure of a motor and an inverter which are an embodiment of an electric powertrain system according to the present invention. 図3のモータとインバータが一体構造となった電動パワートレインシステムにおいて、各部の温度を推定するために用いる複数の発熱源と熱伝達経路の一例を表現した熱回路網モデル(熱伝達モデル)を示した説明図である。In the electric powertrain system in which the motor and the inverter of FIG. 3 are integrated, a thermal circuit network model (heat transfer model) expressing an example of a plurality of heat sources and heat transfer paths used to estimate the temperature of each part It is explanatory drawing shown. 本発明に係る電動パワートレインシステムの接合部異常の診断に用いる熱回路網モデル(熱伝達モデル)の基本的な関係を示した説明図である。It is explanatory drawing which showed the basic relationship of the thermal network model (heat transfer model) used for the diagnosis of the junction abnormality of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの接合部異常の診断を行うフローチャートを示した説明図である。It is explanatory drawing which showed the flowchart which diagnoses the junction abnormality of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムのある条件における熱伝達の様子を熱伝達モデルにて模式的に示した説明図である。It is explanatory drawing which showed typically the mode of the heat transfer in a certain condition of the electric powertrain system which concerns on this invention with the heat transfer model. 本発明に係る電動パワートレインシステムの別の異なる条件における熱伝達の様子を熱伝達モデルにて模式的に示した説明図である。It is explanatory drawing which showed typically the mode of the heat transfer in another different conditions of the electric powertrain system which concerns on this invention with the heat transfer model. 本発明に係る電動パワートレインシステムの接合部異常の診断を行う別のフローチャートを示した説明図である。It is explanatory drawing which showed another flowchart which diagnoses the junction abnormality of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの接合部異常の診断を行う更に別のフローチャートを示した説明図である。It is explanatory drawing which showed another flowchart which diagnoses the junction abnormality of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの接合部異常の診断を行うにあたり、電動パワートレインの状態判定を行うフローチャートを示した説明図である。It is explanatory drawing which showed the flowchart which performs the state determination of an electric power train in diagnosing the junction part abnormality of the electric power train system which concerns on this invention. 本発明に係る電動パワートレインシステムの接合部異常の診断を行うにあたり、電動パワートレインの別の状態判定を行うフローチャートを示した説明図である。It is explanatory drawing which showed the flowchart which performs another state determination of an electric power train in diagnosing the junction part abnormality of the electric power train system which concerns on this invention. 本発明に係る電動パワートレインシステムの接合部異常の診断を行う詳細なフローチャートを示した説明図である。It is explanatory drawing which showed the detailed flowchart which diagnoses the junction abnormality of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの接合部異常の診断を行う別の詳細なフローチャートを示した説明図である。It is explanatory drawing which showed another detailed flowchart which diagnoses the junction part abnormality of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムにおいて、ある特定の接合部に異常が発生した場合の熱伝達モデルにおける熱伝達の様子の一例について示した説明図である。It is explanatory drawing shown about the example of the state of the heat transfer in the heat transfer model when abnormality generate | occur | produces in a certain specific junction part in the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムのある特定の接合部に異常がある場合における、熱伝達モデルを用いた温度推定誤差とそれを用いた診断の一例について示した説明図である。It is explanatory drawing shown about the temperature estimation error using a heat transfer model, and an example of the diagnosis using it in the case where there exists abnormality in the specific junction part of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムのある特定の接合部に異常がない場合における、熱伝達モデルを用いた温度推定誤差とそれを用いた診断の一例について示した説明図である。It is explanatory drawing shown about the temperature estimation error using a heat transfer model in case there is no abnormality in the specific junction part of the electric powertrain system which concerns on this invention, and an example of the diagnosis using it. 本発明に係る電動パワートレインシステムの別のある特定の接合部に異常が発生した場合における熱伝達モデルを用いた場合の温度推定誤差とそれを用いた診断の一例について示した説明図である。It is explanatory drawing which showed an example of the temperature estimation error at the time of using the heat transfer model in case an abnormality generate | occur | produces in another specific junction part of the electric powertrain system which concerns on this invention, and a diagnosis using the same. 本発明に係る電動パワートレインシステムにおいて、別のある特定の接合部に異常がある場合の熱伝達モデルにおける熱伝達の様子の一例について示した説明図である。In the electric powertrain system according to the present invention, it is an explanatory diagram showing an example of a state of heat transfer in a heat transfer model when there is an abnormality in another specific joint. 本発明に係る電動パワートレインシステムの別のある特定の接合部に異常がある場合における熱伝達モデルを用いた場合の別の温度推定誤差とそれを用いた診断の一例について示した説明図である。It is explanatory drawing shown about another temperature estimation error at the time of using the heat transfer model in case there exists abnormality in another specific junction part of the electric powertrain system which concerns on this invention, and an example of the diagnosis using it. . 本発明に係る電動パワートレインシステムの別のある特定の接合部に異常がない場合における熱伝達モデルを用いた場合の別の温度推定誤差とそれを用いた診断の一例について示した説明図である。It is explanatory drawing shown about another temperature estimation error at the time of using the heat transfer model in case there is no abnormality in another specific junction of the electric powertrain system which concerns on this invention, and an example of the diagnosis using it. . 本発明に係る電動パワートレインシステムが別の条件で、ある特定の接合部に異常がない場合における熱伝達モデルを用いた場合の温度推定誤差とそれを用いた診断の一例について示した説明図である。The electric powertrain system according to the present invention is an explanatory diagram showing an example of temperature estimation error and diagnosis using the heat transfer model when there is no abnormality in a specific joint under different conditions. is there. 本発明に係る電動パワートレインシステムの別の一実施例の全体構成を示した説明図である。It is explanatory drawing which showed the whole structure of another one Example of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの異常診断タイミングに関して示した説明図である。It is explanatory drawing shown regarding the abnormality diagnosis timing of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの異常判定結果に基づいて、モータ・インバータの出力制限のフローに関して示した説明図である。It is explanatory drawing shown regarding the output restriction | limiting flow of a motor and an inverter based on the abnormality determination result of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの異常判定結果に基づいて、モータ・インバータの出力制限のフローに関して示した別の説明図である。It is another explanatory drawing shown about the output restriction | limiting flow of a motor and an inverter based on the abnormality determination result of the electric powertrain system which concerns on this invention. 本発明に係る電動パワートレインシステムの図1とは異なる一実施例の全体構成を示した説明図である。(実施例2)It is explanatory drawing which showed the whole structure of one Example different from FIG. 1 of the electric powertrain system which concerns on this invention. (Example 2) 本発明に係る電動パワートレインシステムにおけるDC/DCコンバータの概要を示した説明図である。It is explanatory drawing which showed the outline | summary of the DC / DC converter in the electric powertrain system which concerns on this invention. 本発明に係る別の実施例であり、ハイブリッド電気自動車の電動パワートレインの例である。It is another Example which concerns on this invention, and is an example of the electric powertrain of a hybrid electric vehicle.
 以下、本発明に係る電動パワートレインシステムの一実施形態を図面に基づき詳細に説明する。図1は、本実施形態に係る電動パワートレインシステム1000の一実施例であり、システム全体の概要を示している。 Hereinafter, an embodiment of an electric powertrain system according to the present invention will be described in detail with reference to the drawings. FIG. 1 is an example of an electric powertrain system 1000 according to this embodiment, and shows an overview of the entire system.
 図1において、電動パワートレインシステム1000は、回転電動機であるモータ1200、モータ駆動装置であるインバータ1100、インバータの制御指令を出力するモータ制御装置1300、モータ1200とインバータ1100を構成する部品の温度を計測する温度センサ1400、インバータからモータへ電流を送るモータ・インバータ間バスバー1500、モータ1200とインバータ1100などの発熱部品を冷却するための冷却水を流す冷却水経路700、冷却水温度を計測する冷却水温度センサ800から構成される。冷却水経路700にて流れる冷却水は、冷却装置600によって冷却される。 In FIG. 1, an electric powertrain system 1000 includes a motor 1200 that is a rotary motor, an inverter 1100 that is a motor driving device, a motor control device 1300 that outputs an inverter control command, and temperatures of components that constitute the motor 1200 and the inverter 1100. A temperature sensor 1400 for measuring, a motor-inverter bus bar 1500 for sending current from the inverter to the motor, a cooling water path 700 for flowing cooling water for cooling the heat generating parts such as the motor 1200 and the inverter 1100, cooling for measuring the cooling water temperature A water temperature sensor 800 is included. The cooling water flowing in the cooling water path 700 is cooled by the cooling device 600.
 なお、発熱部品を冷却するものとして、以下では冷却水を用いることで詳細を述べるが、冷却水以外の冷却媒体を用いることも可能である。また、冷却装置600は、ラジエータとファンから構成される場合のみならず、ヒートポンプサイクルを利用して冷却する装置であるなどの構成であってもよい。ラジエータとファンから構成される場合は、ファンの風量によって冷却装置の冷却能力を制御することも可能である。また、冷却水などの冷却媒体は、図示していないポンプによって冷却水路内を循環させる構成となっており、循環する流量によって電動パワートレイン1000を冷却する能力を変更することも可能である。 In addition, although it mentions in detail below by using cooling water as what cools a heat-emitting component, it is also possible to use cooling media other than cooling water. In addition, the cooling device 600 may be configured to be a device that cools using a heat pump cycle as well as a radiator and a fan. In the case of a radiator and a fan, the cooling capacity of the cooling device can be controlled by the air volume of the fan. Further, the cooling medium such as cooling water is configured to circulate in the cooling water passage by a pump (not shown), and the ability to cool the electric power train 1000 can be changed by the circulating flow rate.
 モータ制御装置1300は、少なくともインバータを制御する制御指令を演算するモータ制御部1320と本発明にて説明する診断制御部1310から構成される。 The motor control device 1300 includes at least a motor control unit 1320 that calculates a control command for controlling the inverter and a diagnosis control unit 1310 described in the present invention.
 モータ制御部1320は、例えば、図1に示すように外部からの信号に基づき、モータにて発生するトルク指令を演算するトルク指令算出1321とトルク指令に基づき、インバータへの制御指令を演算するモータ制御指令1322から構成される。トルク指令算出1321では、図1に示すように車両全体を制御する車両制御装置300から出力されるモータトルク指令や後で述べる診断制御部にて診断された異常状態に応じてモータトルク指令の制限値に基づいてモータ1200のトルク指令を決定する。モータ制御指令1322は、トルク指令算出1321にて決定されたトルク指令に基づいてインバータ1100への制御指令を決定する。 For example, as shown in FIG. 1, the motor control unit 1320 includes a torque command calculation 1321 that calculates a torque command generated by the motor based on a signal from the outside, and a motor that calculates a control command to the inverter based on the torque command. It consists of a control command 1322. In the torque command calculation 1321, as shown in FIG. 1, the motor torque command is limited according to the motor torque command output from the vehicle control device 300 that controls the entire vehicle or an abnormal state diagnosed by a diagnosis control unit described later. A torque command for motor 1200 is determined based on the value. Motor control command 1322 determines a control command to inverter 1100 based on the torque command determined in torque command calculation 1321.
 ここで、車両制御装置300は、ドライバが操作するアクセルの開度を検出するアクセル開度センサ400と車両の速度を検出する車速度センサ500の信号を取り込み、電動パワートレインシステム1000が発生すべき駆動力もしくはトルクを決定する。車速度センサ500は、図示しない、例えば車両のタイヤ回転数から車両の速度を演算するなどによって検出する方法がある。 Here, the vehicle control device 300 takes in signals from the accelerator opening sensor 400 that detects the accelerator opening operated by the driver and the vehicle speed sensor 500 that detects the vehicle speed, and the electric powertrain system 1000 should be generated. Determine the driving force or torque. For example, the vehicle speed sensor 500 detects the vehicle speed by calculating the vehicle speed from the vehicle tire rotation speed (not shown).
 また、車両制御装置300は、後述するモータ制御装置1300の診断制御部にて診断した結果を、出力装置100へ出力する。出力装置100は、診断制御部1310で異常判定されたとき警告を表示するか、警報を発して運転者等に知らせる。この警告や警報は、後述する複数の運転診断モードにより、異なるものであることが好ましい。 Further, the vehicle control device 300 outputs the result of diagnosis by a diagnosis control unit of the motor control device 1300 described later to the output device 100. The output device 100 displays a warning when an abnormality is determined by the diagnosis control unit 1310 or issues a warning to notify the driver or the like. This warning or warning is preferably different depending on a plurality of driving diagnosis modes described later.
 次に、モータ制御装置1300を構成する要素である診断制御部1310について述べる。診断制御部1310は、状態判定部1311と熱伝達モデル1312と異常判定部1313から構成される。 Next, the diagnosis control unit 1310 which is an element constituting the motor control device 1300 will be described. The diagnosis control unit 1310 includes a state determination unit 1311, a heat transfer model 1312, and an abnormality determination unit 1313.
 状態判定部1311は、車両制御装置300から送られてくる車両状態、周辺温度センサ900から送られる電動パワートレインシステム1000の周辺温度の計測値、冷却水温度センサ800から送られる電動パワートレインシステム1000の冷却を行う冷却水温度の計測値、温度センサ1400から送られる一体構造となったモータ1200の部品およびケース温度、インバータ1100の部品およびケース温度、モータ・インバータ間バスバー1500の温度などの各部の温度計測値と、モータ制御部1320にて決定したモータ制御指令あるいはトルク指令値に基づき、電動パワートレインシステム1000の状態を判定する。 The state determination unit 1311 includes the vehicle state sent from the vehicle control device 300, the measured value of the ambient temperature of the electric powertrain system 1000 sent from the ambient temperature sensor 900, and the electric powertrain system 1000 sent from the cooling water temperature sensor 800. The measured values of the cooling water temperature for cooling the motor, the parts and case temperature of the motor 1200 that are integrated from the temperature sensor 1400, the parts and case temperature of the inverter 1100, the temperature of the motor-inverter bus bar 1500, etc. The state of the electric powertrain system 1000 is determined based on the measured temperature value and the motor control command or torque command value determined by the motor control unit 1320.
 ここで判定する状態としては、例えば、温度センサ1400と冷却水温度センサ800の計測値から電動パワートレインの温度が全体として高い温度状態にある状態もしくは低い温度状態、更には、温度変化が少なく平衡温度状態であるなど、電動パワートレイン1000の温度状態がある。あるいは、モータ制御部1320にて決定したモータ1200への電流指令が、モータ1200・インバータ1100によって予め定められたモータ1200への最大電流値に対する比率で大きい状態や小さい状態がある。 The state to be determined here is, for example, a state in which the temperature of the electric power train is high or low as a whole from the measured values of the temperature sensor 1400 and the cooling water temperature sensor 800, and further, there is little change in temperature and equilibrium. There is a temperature state of the electric powertrain 1000, such as a temperature state. Alternatively, the current command to the motor 1200 determined by the motor control unit 1320 may be large or small in proportion to the maximum current value to the motor 1200 determined in advance by the motor 1200 / inverter 1100.
 さらに、図2に示すようなモータ1200の回転数ートルク特性の場合、電動パワートレインシステム1000のモータ1200とインバータ1100が動作する動作点(回転数とトルク)が電動パワートレインシステム1000が有する最大出力と比較して、例えば、図2に示すような(A)高出力領域の状態、(B)中出力領域の状態、(C)低出力領域の状態がある。また、モータ1200の発生トルクが最大トルクに対して、例えば、図2に示すような(1)高トルク領域の状態、(2)中トルク領域の状態、(3)低トルク領域の状態がある。 Further, in the case of the rotation speed-torque characteristic of the motor 1200 as shown in FIG. 2, the operating point (rotation speed and torque) at which the motor 1200 and the inverter 1100 of the electric powertrain system 1000 operate is the maximum output that the electric powertrain system 1000 has. For example, there are (A) a high output region state, (B) a medium output region state, and (C) a low output region state as shown in FIG. Further, with respect to the maximum torque generated by the motor 1200, for example, there are (1) a high torque region state, (2) a middle torque region state, and (3) a low torque region state as shown in FIG. .
 状態判定部1311は、モータ制御部1320から送られる電流指令、トルク指令、モータ回転数およびモータ電流などの信号と、温度センサ1400から送られるモータ1200を構成する部品およびケース、インバータ1100を構成する部品およびケースおよびモータ・インバータ間バスバー1500などの検出温度信号と、周辺温度センサ900から送られる検出温度信号に基づいて電動パワートレイン1000の状態を判定し、その状態が予め設定した診断を行う条件に対応した状態であると判定すると、診断制御部1310にて異常診断を行う。 The state determination unit 1311 configures an inverter 1100, a signal and a signal that are sent from the motor control unit 1320, such as a current command, a torque command, a motor rotation speed, and a motor current, and parts and cases that constitute the motor 1200 sent from the temperature sensor 1400. Conditions for determining the state of the electric power train 1000 based on the detected temperature signals of the parts, the case, the motor / inverter bus bar 1500, and the like and the detected temperature signal sent from the ambient temperature sensor 900, and performing the diagnosis in which the state is set in advance If it is determined that the state corresponds to the above, the diagnosis control unit 1310 performs an abnormality diagnosis.
 状態判定部1310にて診断を行う状態であると判定すると、熱伝達モデル1312では、モータ制御部1320にて決定したモータ1200とインバータ1100への指令信号、および温度センサ1400と周辺温度センサ900と冷却水温度センサ800にて検出した温度を用いて、電動パワートレインシステム1000における一体構造であるモータ1200の部品およびケース、インバータ1100の部品およびケース、モータ・インバータ間バスバー1500などの温度を各部品間の接合を考慮した熱伝達モデルにて推定する。 If it is determined that the state determination unit 1310 is in a state of making a diagnosis, in the heat transfer model 1312, the command signal to the motor 1200 and the inverter 1100 determined by the motor control unit 1320, the temperature sensor 1400, the ambient temperature sensor 900, Using the temperature detected by the cooling water temperature sensor 800, the temperature of the parts and the case of the motor 1200, the parts and the case of the inverter 1100, the bus bar 1500 between the motor and the inverter, etc. It is estimated by a heat transfer model that takes into account the bonding between the two.
 異常判定部1313では、温度センサ1400、周辺温度センサ900、冷却水温度センサ800にて検出した温度と、熱伝達モデル1312にて推定した(センサにて検出した温度に相当する部分の)推定温度と比較を行う。そして、このセンサにて検出した実際の温度と、熱伝達モデルにて推定した温度との比較結果から、接合部異常による熱伝達経路の異常判定を行う。例えば、推定値と実測値の偏差が大きい部位近傍の、熱伝達経路となる接合部が異常であるなどの判定を行う。 In the abnormality determination unit 1313, the temperature detected by the temperature sensor 1400, the ambient temperature sensor 900, and the cooling water temperature sensor 800, and the estimated temperature estimated by the heat transfer model 1312 (the portion corresponding to the temperature detected by the sensor). And compare. And the abnormality determination of the heat transfer path | route by a junction part abnormality is performed from the comparison result of the actual temperature detected with this sensor, and the temperature estimated with the heat transfer model. For example, it is determined that the joint portion serving as a heat transfer path in the vicinity of a portion where the deviation between the estimated value and the actually measured value is large is abnormal.
 診断制御部1310にて異常の判定が行われると、診断結果は、車両制御装置300へ送られ、車両制御装置300から出力装置100へ診断結果を送る。なお、図1の実施例では、診断制御部1310にて診断した結果は、車両制御装置300を介して、出力装置100へ送っているが、診断制御部1310の診断結果を、出力装置100へ直接送るようにしてもよい。 When the diagnosis control unit 1310 determines abnormality, the diagnosis result is sent to the vehicle control device 300, and the diagnosis result is sent from the vehicle control device 300 to the output device 100. In the embodiment of FIG. 1, the result of diagnosis by the diagnosis control unit 1310 is sent to the output device 100 via the vehicle control device 300, but the diagnosis result of the diagnosis control unit 1310 is sent to the output device 100. You may make it send directly.
 なお、温度センサ1400は、インバータ1100、モータ1200、電源装置(バッテリ)200などの部品温度を計測するセンサ群を総称している。具体的には、インバータ1100を構成する部品であるパワーモジュールの温度、インバータ内の配線であるバスバーの温度、インバータ内のキャパシタの温度、インバータ1100のケース温度、モータコイル温度、モータのケース温度、バッテリ200のモジュール温度などを計測する温度センサを示す。 The temperature sensor 1400 is a generic term for a sensor group that measures the temperature of components such as the inverter 1100, the motor 1200, and the power supply device (battery) 200. Specifically, the temperature of the power module that is a component constituting the inverter 1100, the temperature of the bus bar that is the wiring in the inverter, the temperature of the capacitor in the inverter, the case temperature of the inverter 1100, the motor coil temperature, the motor case temperature, The temperature sensor which measures the module temperature etc. of the battery 200 is shown.
 図3は、インバータ1100とモータ1200が一体構造となっている電動パワートレインを概略的に示す断面図である。図3は、モータ1200の外周面の一部にインバータ1100を連結固定して接合した場合の一体構造であるが、本発明は、本構造によらず、一体構造となった構造に対しても同様に作用する。 FIG. 3 is a cross-sectional view schematically showing an electric power train in which an inverter 1100 and a motor 1200 are integrated. FIG. 3 shows an integrated structure when the inverter 1100 is connected and fixed to a part of the outer peripheral surface of the motor 1200. However, the present invention is not limited to this structure, but is also applied to an integrated structure. Acts similarly.
 図3に示すように、インバータ1100は、主な構成部品であるパワーモジュール1130、三相交流用のACバスバー1110、直流電流用のDCバスバー1120、モータへの電流を平滑化するキャパシタ1140から構成され、本実施例では、モータ制御装置1300をインバータ1100の上部に搭載し、これらをインバータケースにて覆われる構造となっている。 As shown in FIG. 3, the inverter 1100 includes a power module 1130, which is a main component, an AC bus bar 1110 for three-phase alternating current, a DC bus bar 1120 for direct current, and a capacitor 1140 that smoothes the current to the motor. In this embodiment, the motor control device 1300 is mounted on the top of the inverter 1100, and these are covered with an inverter case.
 インバータ1100の主要構成部品であるパワーモジュール1130、ACバスバー1110、DCバスバー1120およびキャパシタ1140は、モータ1200を駆動する上で電流が流れ、それに伴う損失が発生するため、発熱源となる。これらの発熱によって、各部品の温度が上昇するため、各部品の耐熱温度以下に保つために、各部品は、冷却水経路700内に流れる冷却水によって冷却される構造となっている。 The power module 1130, the AC bus bar 1110, the DC bus bar 1120, and the capacitor 1140, which are the main components of the inverter 1100, serve as heat generation sources because current flows when the motor 1200 is driven, and losses are generated accordingly. Since the temperature of each component rises due to these heat generations, each component is cooled by the cooling water flowing in the cooling water path 700 in order to keep the temperature below the heat resistance temperature of each component.
 具体的にはパワーモジュール1130、バスバー1110、1120、キャパシタ1140を各種電気絶縁体や電気絶縁膜などを介して冷却水経路700へ直接的に、あるいは間接的に接触させることで熱伝達経路を設けて、冷却をおこなう。この際、冷却経路は、部品間の接触面になるため、必ずしも一つの熱伝達経路となることはなく、複数の熱伝達経路が構成される。また、冷却水経路700以外にもインバータケース1150を介して外気へ冷却される経路も有しており、インバータ1100内の構成部品をインバータケース1100へ直接的もしくは間接的に接触させる経路を設けて冷却することが可能である。 Specifically, a heat transfer path is provided by bringing the power module 1130, the bus bars 1110, 1120, and the capacitor 1140 into direct or indirect contact with the cooling water path 700 through various electrical insulators or electrical insulating films. And cool. At this time, since the cooling path is a contact surface between the components, the cooling path is not necessarily a single heat transfer path, and a plurality of heat transfer paths are formed. In addition to the cooling water path 700, there is also a path that is cooled to the outside air via the inverter case 1150, and a path that directly or indirectly contacts the components in the inverter 1100 with the inverter case 1100 is provided. It is possible to cool.
 一方、図3の実施例においてモータ1200は、主要な部品であるロータ1210、軸受1220、ロータ1210内に埋め込まれた磁石1230、コイル1240、モータステータ1250、回転軸1270、およびこれらを覆うモータケース1260から構成される。 On the other hand, in the embodiment of FIG. 3, the motor 1200 includes a rotor 1210, a bearing 1220, a magnet 1230 embedded in the rotor 1210, a coil 1240, a motor stator 1250, a rotating shaft 1270, and a motor case covering these. 1260.
 駆動時には、モータ1200は、インバータ1100から送られてくる電流がコイル1240へ送られ、コイル1240の有する抵抗によって損失(銅損)が発生し、コイル1240が発熱源となる。また、ロータ1210やステータ1250のコアの磁性材料特性によって鉄損が発生し、ロータ1210やステータ1250が発熱源となる。さらに、磁石1230では、渦電流による損失が発生し、同様に磁石1230も発熱源となりえる。 During driving, the current sent from the inverter 1100 is sent to the coil 1240, and the motor 1200 generates a loss (copper loss) due to the resistance of the coil 1240, and the coil 1240 becomes a heat source. Further, iron loss occurs due to the magnetic material characteristics of the cores of the rotor 1210 and the stator 1250, and the rotor 1210 and the stator 1250 serve as a heat source. Further, in the magnet 1230, loss due to eddy current occurs, and the magnet 1230 can also be a heat generation source.
 モータ1200とインバータ1100は、モータ・インバータ間で電流バスバー1500によって電流が送られ、インバータ1100は、モータ1200を駆動する。さらに、モータ1200とインバータ1100は、各ケース(モータケース1260とインバータケース1150)が接合された形で一体化構造となっている。ここでは、モータ1200、インバータ1100は、冷却水経路700に流れる冷却水と各ケースによって接触しており、冷却水によって冷却される。また、モータ1200内部の発熱は、モータケース1260へ伝達され、インバータ内部の発熱は、インバータケース1150へ伝達されており、モータケース1260とインバータケース1150が接合されることで、モータ1200の熱はインバータ1100へ、あるいは、インバータ1100の熱はモータ1200へ伝達される構造となっている。 In the motor 1200 and the inverter 1100, a current is sent by the current bus bar 1500 between the motor and the inverter, and the inverter 1100 drives the motor 1200. Furthermore, the motor 1200 and the inverter 1100 have an integrated structure in which the cases (the motor case 1260 and the inverter case 1150) are joined. Here, the motor 1200 and the inverter 1100 are in contact with the cooling water flowing through the cooling water path 700 through the respective cases, and are cooled by the cooling water. Further, the heat generated in the motor 1200 is transmitted to the motor case 1260, and the heat generated in the inverter is transmitted to the inverter case 1150. By joining the motor case 1260 and the inverter case 1150, the heat of the motor 1200 is The inverter 1100 or the heat of the inverter 1100 is transmitted to the motor 1200.
 モータ1200とインバータ1100の各部品の温度を計測するために、例えば、図3に示すように温度センサ1410、1420、1430、1440が設置される。温度センサ1410はインバータケース1150の温度、温度センサ1420はモータケース1260の温度、温度センサ1430はモータステータ1250の温度、温度センサ1440はキャパシタ1140の温度をそれぞれ計測する。ここで計測された温度センサからの信号は、モータ制御装置1300へ送信される。 In order to measure the temperature of each component of the motor 1200 and the inverter 1100, for example, temperature sensors 1410, 1420, 1430, and 1440 are installed as shown in FIG. The temperature sensor 1410 measures the temperature of the inverter case 1150, the temperature sensor 1420 measures the temperature of the motor case 1260, the temperature sensor 1430 measures the temperature of the motor stator 1250, and the temperature sensor 1440 measures the temperature of the capacitor 1140. The signal from the temperature sensor measured here is transmitted to the motor control device 1300.
 図4は、図3に示したモータ1200とインバータ1100が一体構造となった電動パワートレインシステム1000に関する熱伝達を模式的に示した熱伝達モデルの概要である。図4にて四角で囲まれた部分が、図3に示したモータ1200とインバータ1100の各部品の代表点を示しており、両者が接触している接触面を有して連結固定され、接触している各部品の代表点は、熱抵抗で連結される。各部品の代表点は、熱容量と温度で表現され、部品に応じては、発熱量を表現する。また、熱抵抗で連結された各部品代表点は、各部品代表点の温度差と熱抵抗によって熱伝達量が決定される。 FIG. 4 is an outline of a heat transfer model schematically showing heat transfer related to the electric powertrain system 1000 in which the motor 1200 and the inverter 1100 shown in FIG. 3 are integrated. 4 represents the representative points of the parts of the motor 1200 and the inverter 1100 shown in FIG. 3, and has a contact surface where both are in contact with each other. The representative points of the parts are connected by thermal resistance. The representative point of each part is expressed by heat capacity and temperature, and the amount of heat generation is expressed depending on the part. In addition, the heat transfer amount of each component representative point connected by thermal resistance is determined by the temperature difference between each component representative point and the thermal resistance.
 図4では、例えば、バスバー1120を一つの代表点で記述し、バスバー1120は、キャパシタ1140とインバータケース1150、モータ・インバータ間バスバーと接触された構造であることを示している。また、パワーモジュール1130は、冷却水経路と接触した構造であり、キャパシタ1140は、バスバー1120以外にインバータケース1150と接触した構造であり、インバータケース1150は、キャパシタ1140とバスバー1120と冷却水経路とモータケース1260と接触しており、熱抵抗でつながったように表現される。ここで、代表的な部品であるバスバー1120、キャパシタ1140、インバータケース1150、モータケース1260、ステータ1250の温度を計測するために、温度センサ1450、1440、1410、1420、1430が設けられているとする。 In FIG. 4, for example, the bus bar 1120 is described by one representative point, and the bus bar 1120 indicates that the capacitor 1140, the inverter case 1150, and the motor / inverter bus bar are in contact with each other. The power module 1130 has a structure in contact with the cooling water path, and the capacitor 1140 has a structure in contact with the inverter case 1150 in addition to the bus bar 1120. The inverter case 1150 includes the capacitor 1140, the bus bar 1120, and the cooling water path. It is in contact with the motor case 1260 and is represented as connected by thermal resistance. Here, the temperature sensors 1450, 1440, 1410, 1420, and 1430 are provided to measure the temperatures of the bus bar 1120, the capacitor 1140, the inverter case 1150, the motor case 1260, and the stator 1250, which are representative components. To do.
 図5は、熱伝達モデルの基本モデルの概要を示している。図5は、2つの部品間の熱伝達を示した図である。部品A2010と部品B2020が、接合面2030を介して接触しており、部品A2010では、発熱源を有しており、発熱量Q1(W)を出力しているとする。この際、部品A2010にて発生した熱は、接合面2030を介して、部品B2020へ伝達される。ここで、部品A2010の温度をT1、熱容量をC1とし、部品B2020の温度をT2、熱容量をC2、部品A2010から部品B2020への伝達熱量をQ12、接合面2030における熱抵抗をR12とすると、下記の式にて熱伝達をモデル化することができる。ただし、tは時間を表わすものとする。
  dT1/dt=(Q1-Q12)/C1・・・(数1)
  dT2/dt=Q12/C2・・・(数2)
  Q12=(T1-T2)/R12・・・(数3)
 上記(数1)、(数2)、(数3)を回路モデルで表現すると図5のようになる。
FIG. 5 shows an outline of the basic model of the heat transfer model. FIG. 5 is a diagram showing heat transfer between two parts. It is assumed that the component A 2010 and the component B 2020 are in contact with each other through the joint surface 2030, and the component A 2010 has a heat generation source and outputs a heat generation amount Q1 (W). At this time, the heat generated in the component A 2010 is transmitted to the component B 2020 through the joint surface 2030. Here, assuming that the temperature of the part A2010 is T1, the heat capacity is C1, the temperature of the part B2020 is T2, the heat capacity is C2, the amount of heat transferred from the part A2010 to the part B2020 is Q12, and the thermal resistance at the joint surface 2030 is R12, The heat transfer can be modeled by the following equation. However, t represents time.
dT1 / dt = (Q1-Q12) / C1 (Equation 1)
dT2 / dt = Q12 / C2 (Expression 2)
Q12 = (T1-T2) / R12 (Equation 3)
When the above (Equation 1), (Equation 2), and (Equation 3) are expressed by a circuit model, they are as shown in FIG.
 以下では、本発明のフローについて説明を行う。図6は、本発明の診断フローの一実施例を示している。本発明の診断は、定期的にまたは外部からの要求応じて診断を実施する。例えば、電動パワートレインシステム1000の検査が行われた後に、診断実行を外部から入力することで、本発明の診断を実施する場合などがある。図6では、開始(SA00)から診断要求の有無を判定する(SA10)。ここで、診断要求がない場合は、SA70へ進み、診断要求があるまで待つことになる。 Hereinafter, the flow of the present invention will be described. FIG. 6 shows an embodiment of the diagnosis flow of the present invention. The diagnosis of the present invention is carried out periodically or in response to an external request. For example, there is a case where the diagnosis of the present invention is performed by inputting diagnosis execution from the outside after the electric powertrain system 1000 is inspected. In FIG. 6, it is determined whether there is a diagnosis request from the start (SA00) (SA10). If there is no diagnosis request, the process proceeds to SA 70 and waits until there is a diagnosis request.
 診断要求があると、SA20へ進み、電動パワートレインシステム1000の状態を判定する。電動パワートレインシステム1000の状態判定としては、例えば、電動パワートレイン全体の平均温度が所定値よりも小さい冷機状態であるか、あるいは、所定値よりも大きい暖機状態であるかという温度状態を判定する場合がある。または、電動パワートレインシステム1000の動作領域が図2に示したように高トルク領域での動作であるか、低トルク領域での動作であるか、あるいは高出力領域での動作であるか、低出力領域での動作であるかなどを判定する。 If there is a diagnosis request, the process proceeds to SA20 to determine the state of the electric powertrain system 1000. As the state determination of the electric powertrain system 1000, for example, a temperature state is determined as to whether the average temperature of the entire electric powertrain is a cold state that is smaller than a predetermined value or a warming state that is larger than a predetermined value. There is a case. Alternatively, the operation region of the electric powertrain system 1000 is an operation in a high torque region, an operation in a low torque region, or an operation in a high output region as shown in FIG. It is determined whether the operation is in the output area.
 ここで、前記冷機状態及び暖機状態について説明する。冷機状態とは、前記電動パワートレインの温度がほぼ一様であり、該電動パワートレイン温度と前記電動パワートレインの周辺温度との差が小さい状態であり、例えば、モータとインバータが一体構造となった例では、前記モータと前記インバータの温度がほぼ一様であり、前記モータと前記インバータの温度と前記モータと前記インバータの周辺温度との差が小さい状態であることをいう。また、暖機状態とは、前記電動パワートレインの温度がほぼ一様であり、該電動パワートレイン温度が前記電動パワートレインの周辺温度よりも高い状態であり、例えば、モータとインバータが一体構造となった例では、前記モータと前記インバータの温度がほぼ一様であり、前記モータと前記インバータの温度が前記モータと前記インバータの周辺温度よりも高い状態であることをいう。 Here, the cold state and the warm-up state will be described. The cold state is a state in which the temperature of the electric power train is substantially uniform and the difference between the electric power train temperature and the ambient temperature of the electric power train is small. For example, the motor and the inverter have an integrated structure. In this example, the temperature of the motor and the inverter is substantially uniform, and the difference between the temperature of the motor and the inverter and the ambient temperature of the motor and the inverter is small. The warm-up state is a state in which the temperature of the electric power train is substantially uniform and the electric power train temperature is higher than the ambient temperature of the electric power train. For example, the motor and the inverter have an integrated structure. In the example, the temperature of the motor and the inverter is substantially uniform, and the temperature of the motor and the inverter is higher than the ambient temperature of the motor and the inverter.
 電動パワートレインの状態判定SA20にて、予め設定した電動パワートレイン状態であるか否かを判定する。ここで、電動パワートレインの状態が予め設定した状態1に相当する場合であると、SA30へ進む。また、電動パワートレインの状態が予め設定した異なる状態である状態2であると、SA50へ進む。電動パワートレインの状態が予め設定した状態1、状態2以外の場合は、SA70へ進む。 In the electric power train state determination SA20, it is determined whether or not the electric power train state is set in advance. Here, if the state of the electric power train corresponds to the state 1 set in advance, the process proceeds to SA30. Further, if the state of the electric power train is a state 2 which is a different state set in advance, the process proceeds to SA50. When the state of the electric power train is other than the preset state 1 and state 2, the process proceeds to SA70.
 電動パワートレインの状態が予め設定した状態1の場合、SA30にて、予め定められた第一運転診断モードを実施する。SA30にて第一運転診断モードにて診断を実施する、次のSA40へ進み、SA30にて行った第一運転診断モードの結果を出力する。第一運転診断モードの結果を出力するとSA70へ進み、診断を終了する。 When the state of the electric powertrain is the preset state 1, the first operation diagnosis mode determined in advance is performed at SA30. In SA30, the diagnosis is performed in the first operation diagnosis mode. The process proceeds to the next SA40, and the result of the first operation diagnosis mode performed in SA30 is output. When the result of the first operation diagnosis mode is output, the process proceeds to SA70 and the diagnosis is terminated.
 一方、電動パワートレインの状態が予め設定した状態2の場合、SA50にて、予め定められた第二運転診断モードを実施する。SA50にて第二運転診断モードにて診断を実施する、次のSA60へ進み、SA50にて行った第二運転診断モードの結果を出力する。第二運転診断モードの結果を出力するとSA70へ進み、診断を終了する。 On the other hand, if the state of the electric power train is the preset state 2, the predetermined second operation diagnosis mode is performed at SA50. In SA50, the diagnosis is performed in the second operation diagnosis mode. The process proceeds to the next SA60, and the result of the second operation diagnosis mode performed in SA50 is output. When the result of the second operation diagnosis mode is output, the process proceeds to SA70 and the diagnosis is terminated.
 図6では、本発明の診断フローの一実施例であり、電動パワートレインシステム1000の状態に応じて、異なる運転診断モードにて電動パワートレインシステム1000の異常を診断する。電動パワートレインシステム1000の状態としては、既に述べたように、冷機状態・暖機状態という温度状態にて規定することと、電動パワートレインシステム1000の動作点が、高出力・低出力/高トルク・低トルク/高回転・低回転といった動作状態にて規定することの2つがある。ここで、2つの状態で規定した電動パワートレインシステム1000の状態について説明する。 FIG. 6 is an example of the diagnosis flow of the present invention, and an abnormality of the electric powertrain system 1000 is diagnosed in different operation diagnosis modes according to the state of the electric powertrain system 1000. As described above, the state of the electric powertrain system 1000 is defined by the temperature state of cold state / warm state, and the operating point of the electric powertrain system 1000 is high output / low output / high torque. -There are two things to be specified in the operation state such as low torque / high rotation / low rotation. Here, the state of the electric powertrain system 1000 defined in two states will be described.
 図7は、図4にて示したモータ1200とインバータ1100が一体構造となった電動パワートレインシステム1000に関する熱伝達を模式的に示した熱伝達モデルを用いた電動パワートレインシステム1000の状態を示した図である。 FIG. 7 shows a state of the electric powertrain system 1000 using a heat transfer model schematically showing heat transfer related to the electric powertrain system 1000 in which the motor 1200 and the inverter 1100 shown in FIG. 4 are integrated. It is a figure.
 図7は、電動パワートレインシステム1000が、温度状態が冷機状態であり、動作状態が低回転・中トルクである場合である。電動パワートレイン1000の温度状態が冷機状態である具体的な判定方法は、図11にて説明するが、電動パワートレインシステム1000が冷機状態である場合は、電動パワートレイン1000を構成する部品群であるモータ1200の各部品、インバータ1100の各部品、冷却水経路700の冷却水、モータ・インバータ間バスバー1500の温度が、外気温度である25℃から35℃程度とほぼ同じ温度であり、いわゆる冷えた状態である。具体的には、モータ1200の構成部品であるロータ1210、磁石1230、コイル1240、ステータ1250、モータケース1260の温度と冷却水経路700の冷却水の温度と外気温度がほぼ同じ温度になっており、インバータ1100の構成部品であるDCバスバー1120、パワーモジュール1130、キャパシタ1140、インバータケース1150の温度と冷却水経路700の冷却水の温度と外気温度がほぼ同じ温度になっている状態である。 FIG. 7 shows a case where the electric powertrain system 1000 is in the cold state and the operation state is low rotation / medium torque. A specific determination method in which the temperature state of the electric power train 1000 is in the cold state will be described with reference to FIG. 11, but when the electric power train system 1000 is in the cold state, a group of parts constituting the electric power train 1000 is used. The temperature of each part of a certain motor 1200, each part of the inverter 1100, the cooling water of the cooling water path 700, and the motor-inverter bus bar 1500 is approximately the same as the outside air temperature of about 25 ° C to 35 ° C. It is in the state. Specifically, the temperatures of the rotor 1210, the magnet 1230, the coil 1240, the stator 1250, and the motor case 1260, which are components of the motor 1200, and the temperature of the cooling water in the cooling water path 700 and the outside air temperature are substantially the same. In this state, the DC bus bar 1120, the power module 1130, the capacitor 1140, and the inverter case 1150, which are the components of the inverter 1100, have substantially the same temperature as the temperature of the cooling water in the cooling water path 700 and the outside air temperature.
 このような冷機状態の電動パワートレインシステム1000を動作させて、動作状態である低回転/中トルクの動作状態とすると、トルク指令に基づいて、バスバー1120、パワーモジュール1130、キャパシタ1140へ電流が流れ、さらに、モータ・インバータ間バスバー1500を介して、モータ1200のコイル1240へ電流が流れ、ロータ1210が回転する。電動パワートレイン1000の駆動指令は、中トルク領域であり、比較的大きい電流が流れることになり、インバータ1100のDCバスバー1120、パワーモジュール1130、キャパシタ1140の各部品にて、損失が発生し、比較的大きな発熱源となる。また、モータ1200のコイル1240へも比較的大きい電流が流れることで、コイル1240の有する電気抵抗に応じて損失が発生し、比較的大きな発熱源となる。以上のように、インバータ1100、モータ1200を構成する部品が比較的大きな発熱源となることから、DCバスバー1120、パワーモジュール1130、キャパシタ1140、コイル1240の温度が上昇し、それに伴い、発熱している部品に接触しているその他の部品が、接触面に応じた熱抵抗と温度差によって熱伝達が行われ、温度が上昇する。ここで、各部品の温度(Ta)は、下記の数式にて表現される。
 dTa/dt=(Qin-Qout)/Ca・・・(数4)
Ta:部品Aの温度、t:時間、Qin:部品Aへの入る熱量、Qout:部品Bから出る熱量、Ca:熱容量
When such an electric powertrain system 1000 in the cold state is operated to be in an operation state of low rotation / medium torque that is an operation state, a current flows to the bus bar 1120, the power module 1130, and the capacitor 1140 based on the torque command. Furthermore, current flows to the coil 1240 of the motor 1200 via the motor-inverter bus bar 1500, and the rotor 1210 rotates. The drive command of the electric power train 1000 is in the middle torque region, and a relatively large current flows, and loss occurs in each component of the DC bus bar 1120, the power module 1130, and the capacitor 1140 of the inverter 1100. It becomes a big heat source. In addition, since a relatively large current flows through the coil 1240 of the motor 1200, a loss is generated according to the electric resistance of the coil 1240, which becomes a relatively large heat generation source. As described above, since the components constituting the inverter 1100 and the motor 1200 become a relatively large heat source, the temperature of the DC bus bar 1120, the power module 1130, the capacitor 1140, and the coil 1240 rises and heat is generated accordingly. Other parts that are in contact with the part being in contact with each other heat transfer due to the thermal resistance and temperature difference corresponding to the contact surface, and the temperature rises. Here, the temperature (Ta) of each component is expressed by the following mathematical formula.
dTa / dt = (Qin−Qout) / Ca (Equation 4)
Ta: temperature of component A, t: time, Qin: amount of heat entering component A, Qout: amount of heat emitted from component B, Ca: heat capacity
 また、部品間の熱伝達は、下記の数式にて表現される。
 Qab =(Ta-Tb)/Rab・・・(数5)
Qab:部品A-B間の熱伝達量、Ta:部品Aの温度、Tb:部品Bの温度m、
Rab:部品A-B間の熱抵抗
Moreover, the heat transfer between components is expressed by the following mathematical formula.
Qab = (Ta−Tb) / Rab (Equation 5)
Qab: heat transfer amount between parts A and B, Ta: temperature of part A, Tb: temperature m of part B,
Rab: Thermal resistance between parts A and B
 数4からわかるように、各部品の温度は、各部品への入熱、出熱と各部品の熱容量によって決定される。これは、同じ熱量の授受があっても、熱容量の大きさに応じて、温度上昇の応答が異なることを意味している。一般的には、同様な材質である場合は、体積や質量が大きいものの方が、熱容量が大きくなる。電動パワートレインシステム1000の場合では、インバータ1100の各部品の熱容量は、相対的に小さく、モータ1200の各部品の熱容量は、相対的に大きい。特に、パワーモジュール1130の熱容量が非常に小さく、バスバー1120やキャパシタ1140の熱容量は、パワーモジュール1130よりも大きいが、インバータケース1150や冷却水などに比べると相対的に小さい。また、モータ1200では、コイル1240の熱容量は、ステータ1250、モータケース1260、冷却水などに比べると小さい。 As can be seen from Equation 4, the temperature of each part is determined by the heat input and output to each part and the heat capacity of each part. This means that even if the same amount of heat is given and received, the response to the temperature rise differs depending on the heat capacity. In general, when the same material is used, the heat capacity is larger when the volume and mass are larger. In the case of the electric powertrain system 1000, the heat capacity of each component of the inverter 1100 is relatively small, and the heat capacity of each component of the motor 1200 is relatively large. In particular, the heat capacity of the power module 1130 is very small, and the heat capacity of the bus bar 1120 and the capacitor 1140 is larger than that of the power module 1130, but is relatively smaller than that of the inverter case 1150 and cooling water. In the motor 1200, the heat capacity of the coil 1240 is smaller than that of the stator 1250, the motor case 1260, cooling water, and the like.
 また、数5から分かるように、部品間の熱伝達量は、部品間の温度差と部品間の熱抵抗によって決定される。つまり、温度差が大きいほど熱伝達量は増加し、熱抵抗が小さいほど、熱伝達量が増加する。 Also, as can be seen from Equation 5, the amount of heat transfer between the parts is determined by the temperature difference between the parts and the thermal resistance between the parts. That is, the heat transfer amount increases as the temperature difference increases, and the heat transfer amount increases as the thermal resistance decreases.
 このように温度上昇は、部品の熱容量に応じて異なることから、温度上昇に基づいて接続異常を判定するには、異なる各部品の熱容量の大きさを考慮する必要がある。例えば、図7のような冷機状態において、比較的大きい発熱を発生させて、熱容量の小さい部品を短い時間でその温度を上昇させる。これによって、熱容量の小さい部品の温度上昇は、短い時間で温度が上昇して、接触している他の部品との温度差が大きくなり、接触している部品への熱伝達量を増加する。 As described above, since the temperature rise differs depending on the heat capacity of the component, it is necessary to consider the size of the heat capacity of each different component in order to determine the connection abnormality based on the temperature rise. For example, in the cold state as shown in FIG. 7, a relatively large heat is generated, and the temperature of a component having a small heat capacity is increased in a short time. As a result, the temperature rise of a component having a small heat capacity increases in a short time, and the temperature difference with other components in contact increases, increasing the amount of heat transfer to the components in contact.
 ここで、接触している他の部品との接合面が不良となって、熱抵抗が所定の設計値よりも、非常に大きくなっている場合、温度差が大きくなっても熱抵抗が大きいことから熱伝達量は小さくなり、発熱源の温度上昇は設計値よりも大きくなったり、接触している他の部品の温度上昇が設計値よりも小さくなったりするなどの現象が発生する。そこで、冷機状態において、熱容量の小さい部品に関する接合不良を判定することが可能となる。具体的な接合不良の判定に関しては、後述する図13にて説明するが、接合不良がない場合、つまり設計とおりの特性による温度を熱伝達モデルにて推定し、温度センサ1400によって計測される実際の温度との差から接合異常を判定する。熱伝達モデルを用いることで、複数の熱源と複数の熱伝達経路を考慮した温度上昇を推定することが可能となり、接合異常が存在する場合の温度上昇との比較によって、接合異常を精度良く判定できるという効果がある。 Here, if the joint surface with other parts in contact is defective and the thermal resistance is much larger than the predetermined design value, the thermal resistance should be large even if the temperature difference is large Therefore, the amount of heat transfer becomes small, and the temperature rise of the heat source becomes larger than the design value, and the temperature rise of other parts in contact with the temperature becomes smaller than the design value. Therefore, it is possible to determine a bonding failure related to a component having a small heat capacity in the cold state. The specific determination of the bonding failure will be described with reference to FIG. 13 to be described later. In the case where there is no bonding failure, that is, the temperature measured by the temperature sensor 1400 is estimated using the heat transfer model based on the designed characteristics. Judgment abnormality is judged from the difference with the temperature. By using the heat transfer model, it is possible to estimate the temperature rise considering multiple heat sources and multiple heat transfer paths, and accurately determine the junction abnormality by comparing with the temperature rise when there is a junction abnormality. There is an effect that can be done.
 以上のことをまとめると、電動パワートレイン1000を構成する部品のうち、熱容量が小さい部品に関する接合不良による異常の判定は、電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が中トルク状態で短時間にて行うことで、より高い精度の診断が可能となる。特に、熱容量の大きい部品は、温度上昇が遅いことから短時間にて診断を行うことで、熱容量の大きい部品の影響を小さくすることが可能となる。一般的には、インバータ1100の構成部品の熱容量が小さいことから、電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が中トルク状態で短時間にて、インバータ1100に関連する部品の接合不良による異常を判定することが好ましい。 Summarizing the above, among the components constituting the electric power train 1000, the abnormality due to the bonding failure related to the components having a small heat capacity is determined based on whether the temperature state of the electric power train 1000 is a cold state or the operating state of the electric power train 1000 is. By performing it in a short time in a medium torque state, a diagnosis with higher accuracy becomes possible. In particular, since the temperature rise of a component having a large heat capacity is slow, the influence of the component having a large heat capacity can be reduced by performing a diagnosis in a short time. Generally, since the heat capacity of the components of the inverter 1100 is small, the temperature state of the electric power train 1000 is cold, the operation state of the electric power train 1000 is medium torque, and the inverter 1100 is related to the inverter 1100 in a short time. It is preferable to determine an abnormality due to a poor connection of components.
 図8は、図4にて示したモータ1200とインバータ1100が一体構造となった電動パワートレインシステム1000に関する熱伝達を模式的に示した熱伝達モデルを用いた電動パワートレインシステム1000の図7とは別の状態を示した図である。 FIG. 8 is a diagram of the electric powertrain system 1000 using the heat transfer model schematically showing heat transfer related to the electric powertrain system 1000 in which the motor 1200 and the inverter 1100 shown in FIG. FIG. 8 is a diagram showing another state.
 図8は、電動パワートレインシステム1000が、温度状態が暖機状態であり、動作状態が低・中出力である場合である。電動パワートレイン1000の温度状態が暖機状態である具体的な判定方法は、図12にて説明するが、電動パワートレインシステム1000が暖機状態である場合は、電動パワートレイン1000を構成する部品群であるモータ1200の各部品、インバータ1100の各部品、冷却水経路700の冷却水、モータ・インバータ間バスバー1500の温度が、外気温度である25℃から35℃程度に対して高い温度であり、いわゆる電動パワートレイン1000全体が暖まった状態である。具体的には、モータ1200の構成部品であるロータ1210、磁石1230、コイル1240、ステータ1250、モータケース1260の温度と冷却水経路700の冷却水の温度が、外気温度よりも高く、ほぼ同じ温度になっており、インバータ1100の構成部品であるDCバスバー1120、パワーモジュール1130、キャパシタ1140、インバータケース1150の温度と冷却水経路700の冷却水の温度が、外気温度より高く、ほぼ同じ温度になっている状態である。 FIG. 8 shows a case where the electric powertrain system 1000 is in the warm-up state and the operation state is low / medium output. A specific determination method in which the temperature state of the electric power train 1000 is in the warm-up state will be described with reference to FIG. 12, but when the electric power train system 1000 is in the warm-up state, the components constituting the electric power train 1000 The temperature of each part of the motor 1200 that is a group, each part of the inverter 1100, the cooling water of the cooling water path 700, and the bus bar 1500 between the motor and the inverter is higher than the outside air temperature of about 25 ° C to 35 ° C. The so-called electric powertrain 1000 as a whole is in a warmed state. Specifically, the temperature of the rotor 1210, the magnet 1230, the coil 1240, the stator 1250, and the motor case 1260, which are components of the motor 1200, and the temperature of the cooling water in the cooling water path 700 are higher than the outside air temperature and are substantially the same temperature. The temperature of the DC bus bar 1120, the power module 1130, the capacitor 1140, and the inverter case 1150, which are the components of the inverter 1100, and the temperature of the cooling water in the cooling water path 700 are higher than the outside air temperature and become substantially the same temperature. It is in a state.
 このような暖機状態の電動パワートレインシステム1000を動作させて、動作状態である低・中出力の動作状態とすると、トルク指令に基づいて、バスバー1120、パワーモジュール1130、キャパシタ1140へ電流が流れ、さらに、モータ・インバータ間バスバー1500を介して、モータ1200のコイル1240へ電流が流れ、ロータ1210が回転する。電動パワートレインシステム1000の駆動指令は、低・中出力領域であり、比較的小さい電流から大きい電流まで流れることになり、インバータ1100のDCバスバー1120、パワーモジュール1130、キャパシタ1140の各部品にて、損失が発生し、比較的小さい発熱源となる。 When the electric powertrain system 1000 in such a warm-up state is operated to be in an operation state of low / medium output which is an operation state, current flows to the bus bar 1120, the power module 1130, and the capacitor 1140 based on the torque command. Furthermore, current flows to the coil 1240 of the motor 1200 via the motor-inverter bus bar 1500, and the rotor 1210 rotates. The drive command of the electric powertrain system 1000 is a low / medium output region and flows from a relatively small current to a large current. In each component of the DC bus bar 1120, the power module 1130, and the capacitor 1140 of the inverter 1100, Loss occurs and becomes a relatively small heat source.
 また、モータ1200のコイル1240へも比較的小さい電流から大きい電流が流れることで、コイル1240の有する電気抵抗に応じて損失が発生し、比較的小さい発熱源となる。以上のように、インバータ1100、モータ1200を構成する部品が比較的小さい発熱源となるが、外気温に対して全体的に高い温度状態となっているため、周辺への熱伝達が発生して外気温による冷却や冷却水も外気温度によって冷却されることによる温度低下が発生するので、電動パワートレインシステム1000全体は温度が低下する方向に変化する。 In addition, since a large current flows from the relatively small current to the coil 1240 of the motor 1200, a loss is generated according to the electric resistance of the coil 1240, and a relatively small heat source is generated. As described above, the components that make up the inverter 1100 and the motor 1200 are relatively small heat sources. However, since the overall temperature is higher than the outside air temperature, heat transfer to the surroundings occurs. Since cooling due to the outside air temperature and cooling water are also cooled due to the outside air temperature, the electric powertrain system 1000 as a whole changes in the direction in which the temperature drops.
 既に述べたように、各部品の温度は、各部品への入熱、出熱と各部品の熱容量によって決定され、部品間の熱伝達量は、部品間の温度差と部品間の熱抵抗によって決定される。従って、温度上昇は、部品の熱容量に応じて異なることから、温度上昇に基づいて接続異常を判定するには、異なる各部品の熱容量の大きさを考慮する必要がある。そこで、図7にて説明したように、電動パワートレインシステム1000の温度状態が冷機状態、電動パワートレインシステム1000の動作状態が中トルク状態で短時間にて、熱容量が小さい部品に関する接合不良の診断を行うことができるので、比較的熱容量の大きい部品に関する接合不良の診断を行うことができれば、熱容量の小さい部品から熱容量の大きい部品までの診断を行うことができる。熱容量が大きい部品の場合は、温度変化が遅いことから、図7のように短時間の変化では診断が困難であるため、比較的長い時間の温度変化から診断することが必要である。 As described above, the temperature of each part is determined by the heat input / output to each part and the heat capacity of each part, and the amount of heat transfer between parts depends on the temperature difference between parts and the thermal resistance between parts. It is determined. Accordingly, since the temperature rise differs depending on the heat capacity of the component, it is necessary to consider the size of the heat capacity of each different component in order to determine the connection abnormality based on the temperature rise. Therefore, as described with reference to FIG. 7, diagnosis of a bonding failure related to a component having a small heat capacity in a short time with the temperature state of the electric powertrain system 1000 being a cold state and the operation state of the electric powertrain system 1000 being a medium torque state. Therefore, if it is possible to diagnose a bonding failure regarding a component having a relatively large heat capacity, a diagnosis from a component having a small heat capacity to a component having a large heat capacity can be performed. In the case of a component having a large heat capacity, since the temperature change is slow, it is difficult to make a diagnosis with a short time change as shown in FIG. 7, and thus it is necessary to make a diagnosis from a relatively long time temperature change.
 図8の状態では、暖機状態で全体的に温度が高いため、逆に外部から冷却されることになるが、冷却水やモータケース1260、インバータケース1150など比較的熱容量がある部分の温度は、緩やかに変化する。この結果、全体としての熱伝達は緩やかに行われるが、熱容量の大きい部品に係る接合部の異常による熱抵抗の増大化がある場合、その接合部からの熱伝達が少ない影響が蓄積して、長い時間経過後に大きく差が発生する可能性がある。 In the state of FIG. 8, since the temperature is generally high in the warm-up state, the cooling is performed from the outside. However, the temperature of the portion having relatively heat capacity such as the cooling water, the motor case 1260, and the inverter case 1150 is It changes slowly. As a result, heat transfer as a whole is performed slowly, but if there is an increase in thermal resistance due to abnormalities in the joints related to parts with large heat capacity, the effect of less heat transfer from the joints accumulates, Large differences may occur after a long time.
 これに対して、冷機状態では、冷却水温度は低い状態であるため、冷却水への熱伝達が支配的となり、冷却水への直接の熱伝達がある熱容量の大きい部品に関する接合不良が判定しにくい可能性がある。具体的な接合不良の判定に関しては、後述する図14にて説明するが、接合不良がない場合、つまり設計とおりの特性による温度を熱伝達モデルにて推定し、温度センサ1400によって計測される実際の温度との差から接合異常を判定する。熱伝達モデルを用いることで、複数の熱源と複数の熱伝達経路を考慮した温度変化を推定することが可能となり、接合異常が存在する場合の温度変化との比較によって、接合異常を精度良く判定できるという効果がある。以上のことをまとめると、電動パワートレイン1000を構成する部品のうち、熱容量が大きい部品に関する接合不良による異常の判定は、電動パワートレイン1000の温度状態が暖機状態、電動パワートレイン1000の動作状態が小・中トルク状態の長い期間の信号から、より高い精度の診断が可能となる。 On the other hand, since the cooling water temperature is low in the cold machine state, heat transfer to the cooling water becomes dominant, and it is determined that there is a joint failure related to a part with a large heat capacity that has direct heat transfer to the cooling water. May be difficult. The specific determination of the bonding failure will be described with reference to FIG. 14 to be described later. In the case where there is no bonding failure, that is, the actual temperature measured by the temperature sensor 1400 is estimated using the heat transfer model based on the designed characteristics. Judgment abnormality is judged from the difference with the temperature. By using a heat transfer model, it is possible to estimate temperature changes that take into account multiple heat sources and multiple heat transfer paths, and accurately detect junction abnormalities by comparing with temperature changes in the presence of joint abnormalities. There is an effect that can be done. To summarize the above, among the components constituting the electric power train 1000, the determination of abnormality due to the bonding failure with respect to the components having a large heat capacity is based on the temperature state of the electric power train 1000 being in the warm-up state and the operating state of the electric power train 1000. However, it is possible to perform diagnosis with higher accuracy from a long-term signal in a small / medium torque state.
 図9は、電動パワートレインシステム1000における診断フローの一実施例を示す図である。本発明の診断は、定期的に実行されたり、外部からの要求応じて診断を実施する。例えば、電動パワートレインシステム1000の検査が行われた後に、診断実行を外部から入力することで、本発明の診断を実施する場合などがある。図9では、開始(SB00)から診断要求の有無を判定する(SB10)。ここで、診断要求がない場合は、SB100へ進み、診断要求があるまで待つことになる。 FIG. 9 is a diagram illustrating an example of a diagnosis flow in the electric powertrain system 1000. The diagnosis of the present invention is performed periodically or is performed according to an external request. For example, there is a case where the diagnosis of the present invention is performed by inputting diagnosis execution from the outside after the electric powertrain system 1000 is inspected. In FIG. 9, it is determined whether there is a diagnosis request from the start (SB00) (SB10). If there is no diagnosis request, the process proceeds to SB100 and waits until there is a diagnosis request.
 診断要求があると、SB20へ進み、電動パワートレインシステム1000の状態を判定する。電動パワートレインシステム1000の状態が冷機状態であるか否かを判定する。冷機状態の判定は、後述の図11で説明する。電動パワートレインシステム1000が冷機状態であると判定されると、SB30へ進む。SB30では、電動パワートレインシステム1000への指令が図2に示したように高出力領域であるか否かを判定する。ここでは、高出力領域であるか否かを判定する例を示しているが、トルク指令が所定値よりも大きいか否かなどの異なる判定でもよい。 If there is a diagnosis request, the process proceeds to SB20, and the state of the electric powertrain system 1000 is determined. It is determined whether or not the electric powertrain system 1000 is in a cold state. The determination of the cold machine state will be described later with reference to FIG. If it is determined that the electric powertrain system 1000 is in the cold state, the process proceeds to SB30. In SB30, it is determined whether or not the command to the electric powertrain system 1000 is a high output region as shown in FIG. Here, an example in which it is determined whether or not it is a high output region is shown, but different determinations such as whether or not the torque command is larger than a predetermined value may be used.
 SB30にてモータ指令が高出力でいないと判定されると、SB100へ進む。SB30にてモータ指令が高出力であると判定されると、SB40へ進む。SB40では、予め定められた第一運転診断モードを実施する。SB40にて第一運転診断モードが実施されると、SB50へ進み、SB40にて行った第一運転診断モードの結果を出力する。第一運転診断モードの結果を出力するとSB100へ進み、診断を終了する。 If it is determined in SB30 that the motor command is not high output, the process proceeds to SB100. If it is determined in SB30 that the motor command is a high output, the process proceeds to SB40. In SB40, a predetermined first driving diagnosis mode is performed. When the first operation diagnosis mode is executed in SB40, the process proceeds to SB50, and the result of the first operation diagnosis mode performed in SB40 is output. When the result of the first operation diagnosis mode is output, the process proceeds to SB100 and the diagnosis is terminated.
 一方、SB20にて電動パワートレインシステム1000が冷機状態でないと判定されると、SB60へ進む。SB60では、電動パワートレインシステム1000が暖機状態であるか否かを判定する。暖機状態であるか否かの判定は、後述の図12で説明する。SB60にて電動パワートレインシステム1000が暖機状態でないと判定すると、SB100へ進む。 On the other hand, if it is determined in SB20 that the electric powertrain system 1000 is not in the cold state, the process proceeds to SB60. In SB60, it is determined whether or not the electric powertrain system 1000 is in a warm-up state. The determination as to whether or not the engine is in the warm-up state will be described with reference to FIG. If it is determined at SB60 that the electric powertrain system 1000 is not warmed up, the process proceeds to SB100.
 SB60にて電動パワートレインシステム1000が暖機状態であると判定すると、SB70へ進む。SB70では、電動パワートレインシステム1000のモータ指令が連続走行指令であるか否かを判定する。連続走行指令としては、モータ指令は低出力から高出力までの領域であり、長時間動作する指令などが該当する。SB70にて連続走行指令でないと判定されると、SB100へ進む。 If it is determined at SB60 that the electric powertrain system 1000 is in the warm-up state, the process proceeds to SB70. In SB70, it is determined whether the motor command of the electric powertrain system 1000 is a continuous running command. As the continuous running command, the motor command is a region from low output to high output, and corresponds to a command that operates for a long time. If it is determined in SB70 that it is not a continuous running command, the process proceeds to SB100.
 一方、SB70にて連続走行指令であると判定されると、SB80へ進み、予め定められた第二運転診断モードを実施する。SB80にて第二運転診断モードで診断が実施されると、SB90へ進み、SB80にて行った第二運転診断モードの結果を出力する。第二運転診断モードの結果を出力するとSB100へ進み、診断を終了する。 On the other hand, if it is determined in SB70 that the command is a continuous running command, the process proceeds to SB80, and a predetermined second operation diagnosis mode is performed. When the diagnosis is performed in the second operation diagnosis mode at SB80, the process proceeds to SB90, and the result of the second operation diagnosis mode performed at SB80 is output. When the result of the second operation diagnosis mode is output, the process proceeds to SB100 and the diagnosis is terminated.
 ここで、SB20、SB60は、電動パワートレインシステム1000の診断を行う初期条件として、温度状態を判定しており、診断前に実施される。一方、SB30、SB70は、診断を行うデータを取得するための運転状態を判定している。つまり、SB30は、冷機状態が初期温度状態の場合で、短期間の高出力モータ指令があった場合に、第一運転診断モードが実施可能なデータを取得することができることを判定している。同様に、SB70は、暖機状態が初期温度状態の場合で、長時間のモータ指令があった場合に、第二運転診断モードが実施可能なデータを取得することができることを判定している。 Here, SB20 and SB60 determine the temperature state as an initial condition for diagnosing the electric powertrain system 1000, and are performed before diagnosis. On the other hand, SB30 and SB70 have determined the driving | running state for acquiring the data which diagnose. That is, the SB 30 determines that the data that can be executed in the first operation diagnosis mode can be acquired when the cold state is the initial temperature state and there is a short-term high-output motor command. Similarly, the SB 70 determines that data that can be executed in the second operation diagnosis mode can be acquired when the warm-up state is the initial temperature state and there is a long-time motor command.
 図10は、電動パワートレインシステム1000における診断フローの別の一実施例を示す図である。本発明の診断は、定期的に実行されたり、外部からの要求応じて診断を実施する。例えば、電動パワートレインシステム1000の検査が行われた後に、診断実行を外部から入力することで、本発明の診断を実施する場合などがある。図10では、開始(SC00)から診断要求の有無を判定する(SC10)。ここで、診断要求がない場合は、SC120へ進み、診断要求があるまで待つことになる。 FIG. 10 is a diagram showing another embodiment of the diagnosis flow in the electric powertrain system 1000. FIG. The diagnosis of the present invention is performed periodically or is performed according to an external request. For example, there is a case where the diagnosis of the present invention is performed by inputting diagnosis execution from the outside after the electric powertrain system 1000 is inspected. In FIG. 10, it is determined whether there is a diagnosis request from the start (SC00) (SC10). If there is no diagnosis request, the process proceeds to SC120 and waits until there is a diagnosis request.
 診断要求があると、SC20へ進み、電動パワートレインシステム1000の状態を判定する。電動パワートレインシステム1000の状態が冷機状態であるか否かを判定する。冷機状態の判定は、後述の図11で説明する。電動パワートレインシステム1000が冷機状態であると判定されると、SC30へ進む。SC30では、電動パワートレインシステム1000への指令が図2に示したように高出力領域であるか否かを判定する。ここでは、高出力領域であるか否かを判定する例を示しているが、トルク指令が所定値よりも大きいか否かなどの異なる判定でもよい。 If there is a diagnosis request, the process proceeds to SC20 to determine the state of the electric powertrain system 1000. It is determined whether or not the electric powertrain system 1000 is in a cold state. The determination of the cold machine state will be described later with reference to FIG. If it is determined that the electric powertrain system 1000 is in the cold state, the process proceeds to SC30. In SC30, it is determined whether or not the command to the electric powertrain system 1000 is a high output region as shown in FIG. Here, an example in which it is determined whether or not it is a high output region is shown, but different determinations such as whether or not the torque command is larger than a predetermined value may be used.
 SC30にてモータ指令が高出力でいないと判定されると、SC120へ進む。SC30にてモータ指令が高出力であると判定されると、SC40へ進む。SC40では、予め定められた第一運転診断モードを実施する。SC40にて第一運転診断モードが実施されると、SC50へ進み、SC40にて行った第一運転診断モードの結果を出力する。第一運転診断モードの結果を出力するとSC120へ進み、診断を終了する。 If it is determined in SC30 that the motor command is not high output, the process proceeds to SC120. If it is determined in SC30 that the motor command is a high output, the process proceeds to SC40. In SC40, a predetermined first driving diagnosis mode is performed. When the first operation diagnosis mode is executed in SC40, the process proceeds to SC50, and the result of the first operation diagnosis mode performed in SC40 is output. When the result of the first operation diagnosis mode is output, the process proceeds to SC120 and the diagnosis is terminated.
 一方、SC20にて電動パワートレインシステム1000が冷機状態でないと判定されると、SC60へ進む。SC60では、電動パワートレインシステム1000が暖機状態であるか否かを判定する。暖機状態であるか否かの判定は、後述の図12で説明する。SC60にて電動パワートレインシステム1000が暖機状態でないと判定すると、SC120へ進む。SC60にて電動パワートレインシステム1000が暖機状態であると判定すると、SC70へ進む。SC70では、電動パワートレインシステム1000のモータ指令が連続走行指令であるか否かを判定する。連続走行指令としては、モータ指令は低出力から高出力までの領域であり、長時間動作する指令などが該当する。SC70にて連続走行指令でないと判定されると、SC120へ進む。 On the other hand, if it is determined in SC20 that the electric powertrain system 1000 is not in the cold state, the process proceeds to SC60. In SC60, it is determined whether or not the electric powertrain system 1000 is in a warm-up state. The determination as to whether or not the engine is in the warm-up state will be described with reference to FIG. If it is determined in SC60 that the electric powertrain system 1000 is not warmed up, the process proceeds to SC120. If it is determined in SC60 that the electric powertrain system 1000 is in a warm-up state, the process proceeds to SC70. In SC70, it is determined whether the motor command of the electric powertrain system 1000 is a continuous running command. As the continuous running command, the motor command is a region from low output to high output, and corresponds to a command that operates for a long time. If it is determined in SC70 that it is not a continuous running command, the process proceeds to SC120.
 一方、SC70にて連続走行指令であると判定されると、SC80へ進む。SC80では、第一の運転診断モードを実施済みであるか否かを判定する。SC80にて第一の運転診断モードが実施されていない(未実施)と判定すると、第二の運転診断モードを行わず、SC120へ進む。SC80にて第一の運転診断モードを実施済みであると判定すると、SC90へ進む。SC90では、第一の運転診断モードにて異常があったか否かを判定する。第一の運転診断モードにて既に、異常が発生している場合は、既に判定した異常が、第二の運転診断モードでの診断に影響を及ぼすことから、第二の運転診断モードの実施を行わず、SC120へ進む。 On the other hand, if it is determined in SC70 that it is a continuous running command, the process proceeds to SC80. In SC80, it is determined whether or not the first driving diagnosis mode has been performed. If it is determined in SC80 that the first operation diagnosis mode is not implemented (not implemented), the second operation diagnosis mode is not performed and the process proceeds to SC120. If it is determined in SC80 that the first driving diagnosis mode has been implemented, the process proceeds to SC90. In SC90, it is determined whether or not there is an abnormality in the first driving diagnosis mode. If an abnormality has already occurred in the first operation diagnosis mode, the already determined abnormality affects the diagnosis in the second operation diagnosis mode. Without proceeding, go to SC120.
 SC90にて、第一の運転診断モードにて異常がなかったと判定すると、SC100へ進み、予め定められた第二運転診断モードを実施する。SC1000にて第二運転診断モードで診断が実施されると、SC110へ進み、SC100にて行った第二運転診断モードの結果を出力する。第二運転診断モードの結果を出力するとSC120へ進み、診断を終了する。 If it is determined in SC90 that there is no abnormality in the first operation diagnosis mode, the process proceeds to SC100, and a predetermined second operation diagnosis mode is performed. When the diagnosis is performed in the second operation diagnosis mode in SC1000, the process proceeds to SC110, and the result of the second operation diagnosis mode performed in SC100 is output. When the result of the second operation diagnosis mode is output, the process proceeds to SC120 and the diagnosis is terminated.
 ここで、SC20、SC60は、電動パワートレインシステム1000の診断を行う初期条件として、温度状態を判定しており、診断前に実施される。一方、SC30、SC70は、診断を行うデータを取得するための運転状態を判定している。つまり、SC30は、冷機状態が初期温度状態の場合で、短期間の高出力モータ指令があった場合に、第一運転診断モードが実施可能なデータを取得することができることを判定している。同様に、SC70は、暖機状態が初期温度状態の場合で、長時間のモータ指令があった場合に、第二運転診断モードが実施可能なデータを取得することができることを判定している。 Here, SC20 and SC60 determine the temperature state as an initial condition for diagnosing the electric powertrain system 1000, and are performed before diagnosis. On the other hand, SC30 and SC70 determine an operating state for acquiring data for diagnosis. That is, the SC 30 determines that the data that can be executed in the first operation diagnosis mode can be acquired when the cold state is the initial temperature state and there is a short-term high-power motor command. Similarly, the SC 70 determines that the data that can be executed in the second operation diagnosis mode can be acquired when the warm-up state is the initial temperature state and there is a long-time motor command.
 また、SC80にて第一運転診断モードの実施の有無を判定しているが、第一運転診断モードで判定される異常の有無が、第二運転診断モードの診断に影響を及ぼす場合は、このように、第一運転診断モードの実施済みを確認した場合のみに、第二運転診断モードを実施することで、より精度の高い診断を行うことができるという効果がある。 In addition, in SC80, whether or not the first driving diagnosis mode is performed is determined. If the abnormality determined in the first driving diagnosis mode affects the diagnosis in the second driving diagnosis mode, As described above, only when it is confirmed that the first operation diagnosis mode has been performed, the second operation diagnosis mode is performed, thereby providing an effect that more accurate diagnosis can be performed.
 図11は、電動パワートレインシステム1000の診断フローにおける電動パワートレインの温度状態を判定するフローの一実施例を示す図であり、図9、図10における電動パワートレインは冷機状態であるか否かの判定を行う処理(SB20、SC20)に相当する。 FIG. 11 is a diagram illustrating an example of a flow for determining the temperature state of the electric power train in the diagnosis flow of the electric power train system 1000, and whether or not the electric power train in FIGS. 9 and 10 is in the cold state. It corresponds to the process (SB20, SC20) for performing the determination.
 図11の冷機状態の判定では、先ず、S201において、温度センサ800にて検出した冷却水温度から冷却水の平均温度を演算する。平均温度の計算としては、検出した冷却水温度の所定時間における時間平均などによって求めることができる。演算した冷却水平均温度がある定められたしきい値温度TwCと比較して、しきい値温度TwC以下である場合は、S202へ進む。しきい値温度TwCよりも大きい場合は、S204へ進み、冷機状態ではないと判定し、処理を終了する。なお、冷却水温度のしきい値TwCは、周辺温度に対応して、複数の値をもつように、周辺温度のテーブルとして記憶しておき、周辺温度センサ900によって検出された周辺温度の平均値(例えば、所定時間における時間平均値)に対応して、テーブルからしきい値を演算するなどが行われる。 11, first, in S201, the average temperature of the cooling water is calculated from the cooling water temperature detected by the temperature sensor 800 in S201. The average temperature can be calculated by, for example, averaging the detected cooling water temperature for a predetermined time. If the calculated average coolant temperature is equal to or lower than the predetermined threshold temperature TwC, the process proceeds to S202. When the temperature is higher than the threshold temperature TwC, the process proceeds to S204, where it is determined that the engine is not in the cold state, and the process ends. The cooling water temperature threshold value TwC is stored as a table of ambient temperatures so as to have a plurality of values corresponding to the ambient temperature, and the average value of the ambient temperatures detected by the ambient temperature sensor 900 is stored. Corresponding to (for example, a time average value in a predetermined time), a threshold value is calculated from a table.
 S202では、例えば、インバータ1100内の構成部品であるバスバー1120、キャパシタ1140、インバータケース1150など温度センサ1400によって検出した温度から、温度センサ1400が設置された各部の平均温度を演算する。具体的には、DCバスバー1120の温度を検出する温度センサ1450の計測値を時間平均したり、キャパシタ1140の温度を検出する温度センサ1440の計測値を時間平均したり、インバータケース1150の温度を検出する温度センサ1410の計測値を時間平均するなどを行う。 In S202, for example, the average temperature of each part in which the temperature sensor 1400 is installed is calculated from the temperatures detected by the temperature sensor 1400 such as the bus bar 1120, the capacitor 1140, and the inverter case 1150 which are components in the inverter 1100. Specifically, the measured value of the temperature sensor 1450 that detects the temperature of the DC bus bar 1120 is time-averaged, the measured value of the temperature sensor 1440 that detects the temperature of the capacitor 1140 is time-averaged, or the temperature of the inverter case 1150 is For example, the measured value of the temperature sensor 1410 to be detected is averaged over time.
 次に、インバータ1100を構成する各部品の平均温度間の偏差を演算し、その平均温度間の偏差が所定のしきい値(ΔTwiC)以下であるかを判定し、更に、インバータ1100を構成する各部品の平均温度の平均値と冷却水温度の平均値が所定のしきい値(ΔTwiC)以下であるかを判定する。なお、これらのしきい値は、周辺温度に応じて変化する値であってもよい。上記の2つの条件が満足されると次のS203へ進む。一方、いずれかの条件が満足しない場合は、S204へ進み、冷機状態でないと判定し、処理を終了する。 Next, a deviation between the average temperatures of the components constituting the inverter 1100 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold value (ΔTwiC), and the inverter 1100 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value (ΔTwiC). These threshold values may be values that change according to the ambient temperature. If the above two conditions are satisfied, the process proceeds to the next S203. On the other hand, if any of the conditions is not satisfied, the process proceeds to S204, where it is determined that the condition is not cold, and the process is terminated.
 S203では、例えば、モータ1200内の構成部品であるコイル1240、ステータ1260、モータケース1260など温度センサ1400によって検出した温度から、温度センサ1400が設置された各部の平均温度を演算する。具体的には、コイル1240の温度を検出する温度センサ1460の計測値を時間平均したり、ステータ1250の温度を検出する温度センサ1430の計測値を時間平均したり、モータケース1260の温度を検出する温度センサ1420の計測値を時間平均するなどを行う。 In S203, for example, the average temperature of each part where the temperature sensor 1400 is installed is calculated from the temperatures detected by the temperature sensor 1400 such as the coil 1240, the stator 1260, and the motor case 1260 that are the components in the motor 1200. Specifically, the measured value of the temperature sensor 1460 that detects the temperature of the coil 1240 is averaged over time, the measured value of the temperature sensor 1430 that detects the temperature of the stator 1250 is averaged over time, or the temperature of the motor case 1260 is detected. The measured value of the temperature sensor 1420 is averaged over time.
 次に、モータ1200を構成する各部品の平均温度間の偏差を演算し、その平均温度間の偏差が所定のしきい値(ΔTmC)以下であるかを判定し、更に、モータ1200を構成する各部品の平均温度の平均値と冷却水温度の平均値が所定のしきい値(ΔTwmC)以下であるかを判定する。なお、これらのしきい値は、周辺温度に応じて変化する値であってもよい。上記の2つの条件が満足されると次のS205へ進み、冷機状態であると判定し、処理を終了する。一方、いずれかの条件が満足しない場合は、S204へ進み、冷機状態でないと判定し、処理を終了する。 Next, a deviation between the average temperatures of the components constituting the motor 1200 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold (ΔTmC), and the motor 1200 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value (ΔTwmC). These threshold values may be values that change according to the ambient temperature. If the above two conditions are satisfied, the process proceeds to the next S205, where it is determined that the engine is in a cold state, and the process is terminated. On the other hand, if any of the conditions is not satisfied, the process proceeds to S204, where it is determined that the condition is not cold, and the process is terminated.
 図12は、電動パワートレインシステム1000の診断フローにおける電動パワートレインの温度状態を判定するフローの別の一実施例を示す図であり、図9、図10における電動パワートレインは暖機状態であるか否かの判定を行う処理(SB60、SC60)に相当する。 FIG. 12 is a diagram illustrating another example of the flow for determining the temperature state of the electric power train in the diagnosis flow of the electric power train system 1000, and the electric power train in FIGS. 9 and 10 is in a warm-up state. This corresponds to the process of determining whether or not (SB60, SC60).
 図12の暖機状態の判定では、先ず、S601において、温度センサ800にて検出した冷却水温度から冷却水の平均温度を演算する。平均温度の計算としては、検出した冷却水温度の所定時間における時間平均などによって求めることができる。演算した冷却水平均温度がある定められたしきい値温度TwHと比較して、しきい値温度TwH以上である場合は、S602へ進む。しきい値温度TwHよりも小さい場合は、S604へ進み、暖機状態ではないと判定し、処理を終了する。なお、冷却水温度のしきい値TwHは、周辺温度に対応して、複数の値をもつように、周辺温度のテーブルとして記憶しておき、周辺温度センサ900によって検出された周辺温度の平均値(例えば、所定時間における時間平均値)に対応して、テーブルからしきい値を演算するなどが行われる。 In the determination of the warm-up state in FIG. 12, first, in S601, the average temperature of the cooling water is calculated from the cooling water temperature detected by the temperature sensor 800. The average temperature can be calculated by, for example, averaging the detected cooling water temperature for a predetermined time. If the calculated average coolant temperature is equal to or higher than the predetermined threshold temperature TwH, the process proceeds to S602. If the temperature is lower than the threshold temperature TwH, the process proceeds to S604, where it is determined that the engine is not warmed up, and the process is terminated. The cooling water temperature threshold value TwH is stored as a table of ambient temperatures so as to have a plurality of values corresponding to the ambient temperature, and the average value of the ambient temperatures detected by the ambient temperature sensor 900 is stored. Corresponding to (for example, a time average value in a predetermined time), a threshold value is calculated from a table.
 S602では、例えば、インバータ1100内の構成部品であるバスバー1120、キャパシタ1140、インバータケース1150など温度センサ1400によって検出した温度から、温度センサ1400が設置された各部の平均温度を演算する。具体的には、DCバスバー1120の温度を検出する温度センサ1450の計測値を時間平均したり、キャパシタ1140の温度を検出する温度センサ1440の計測値を時間平均したり、インバータケース1150の温度を検出する温度センサ1410の計測値を時間平均するなどを行う。 In S602, for example, the average temperature of each part where the temperature sensor 1400 is installed is calculated from the temperature detected by the temperature sensor 1400 such as the bus bar 1120, the capacitor 1140, and the inverter case 1150 which are the components in the inverter 1100. Specifically, the measured value of the temperature sensor 1450 that detects the temperature of the DC bus bar 1120 is time-averaged, the measured value of the temperature sensor 1440 that detects the temperature of the capacitor 1140 is time-averaged, or the temperature of the inverter case 1150 is For example, the measured value of the temperature sensor 1410 to be detected is averaged over time.
 次に、インバータ1100を構成する各部品の平均温度間の偏差を演算し、その平均温度間の偏差が所定のしきい値(ΔTwiH)以下であるかを判定し、更に、インバータ1100を構成する各部品の平均温度の平均値と冷却水温度の平均値が所定のしきい値(ΔTwiH)以下であるかを判定する。なお、これらのしきい値は、周辺温度に応じて変化する値であってもよい。上記の2つの条件が満足されると次のS603へ進む。一方、いずれかの条件が満足しない場合は、S604へ進み、暖機状態でないと判定し、処理を終了する。 Next, a deviation between the average temperatures of the components constituting the inverter 1100 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold value (ΔTwiH), and the inverter 1100 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value (ΔTwiH). These threshold values may be values that change according to the ambient temperature. When the above two conditions are satisfied, the process proceeds to the next S603. On the other hand, if either condition is not satisfied, the process proceeds to S604, where it is determined that the engine is not warmed up, and the process is terminated.
 S603では、例えば、モータ1200内の構成部品であるコイル1240、ステータ1250、モータケース1260など温度センサ1400によって検出した温度から、温度センサ1400が設置された各部の平均温度を演算する。具体的には、コイル1240の温度を検出する温度センサ1460の計測値を時間平均したり、ステータ1250の温度を検出する温度センサ1430の計測値を時間平均したり、モータケース1260の温度を検出する温度センサ1420の計測値を時間平均するなどを行う。 In S603, for example, the average temperature of each part in which the temperature sensor 1400 is installed is calculated from the temperature detected by the temperature sensor 1400 such as the coil 1240, the stator 1250, and the motor case 1260 which are components in the motor 1200. Specifically, the measured value of the temperature sensor 1460 that detects the temperature of the coil 1240 is averaged over time, the measured value of the temperature sensor 1430 that detects the temperature of the stator 1250 is averaged over time, or the temperature of the motor case 1260 is detected. The measured value of the temperature sensor 1420 is averaged over time.
 次に、モータ1200を構成する各部品の平均温度間の偏差を演算し、その平均温度間の偏差が所定のしきい値(ΔTmH)以下であるかを判定し、更に、モータ1200を構成する各部品の平均温度の平均値と冷却水温度の平均値が所定のしきい値(ΔTwmH)以下であるかを判定する。なお、これらのしきい値は、周辺温度に応じて変化する値であってもよい。上記の2つの条件が満足されると次のS605へ進み、暖機状態であると判定し、処理を終了する。一方、いずれかの条件が満足しない場合は、S604へ進み、暖機状態でないと判定し、処理を終了する。 Next, a deviation between the average temperatures of the parts constituting the motor 1200 is calculated, it is determined whether the deviation between the average temperatures is equal to or less than a predetermined threshold (ΔTmH), and the motor 1200 is further configured. It is determined whether the average value of the average temperature of each component and the average value of the cooling water temperature are equal to or less than a predetermined threshold value (ΔTwmH). These threshold values may be values that change according to the ambient temperature. If the above two conditions are satisfied, the process proceeds to the next S605, where it is determined that the engine is warmed up, and the process is terminated. On the other hand, if either condition is not satisfied, the process proceeds to S604, where it is determined that the engine is not warmed up, and the process is terminated.
 なお、処理S20、S60にて行う冷機状態および暖機状態の判定は、電動パワートレイン1000が駆動していない状態で行うことが好ましい。電動パワートレイン1000が駆動している場合は、モータ1200、インバータ1100に電流が流れ、損失に伴う発熱が生じるため、熱容量の小さい部品は急速に温度が上昇する可能せいがあるからである。よって、冷機状態及び暖機状態は、電動パワートレイン1000が駆動していない状態あるいは、動作領域が低出力状態で行うことが状態判定しやすく、条件としては好ましい。 In addition, it is preferable to perform the determination of the cold state and the warm-up state performed in Steps S20 and S60 in a state where the electric power train 1000 is not driven. This is because when the electric power train 1000 is driven, current flows through the motor 1200 and the inverter 1100 and heat is generated due to loss, so that the temperature of a component having a small heat capacity may rise rapidly. Therefore, the cold state and the warm-up state are preferable as conditions because it is easy to determine the state that the electric power train 1000 is not driven or the operation region is in the low output state.
 図13は、電動パワートレイン1000の熱伝達モデルによる各部の温度推定を演算して、診断を行う一実施例のフローを示している。特に、図13は、図9、図10に示したフローのSB40、SC40の冷機判定に基づいて行う第一運転診断モードの処理の一実施例である。 FIG. 13 shows a flow of an embodiment in which diagnosis is performed by calculating the temperature estimation of each part based on the heat transfer model of the electric power train 1000. In particular, FIG. 13 is an example of a process in the first operation diagnosis mode performed based on the cold machine determination of SB40 and SC40 in the flow shown in FIGS.
 図13では、第一運転診断モード実施の判定が行われると、S401の処理にて、診断に必要なデータである電動パワートレイン1000の指令信号、冷却水温度センサ800の検出信号、電動パワートレイン1000の各部品の温度を検出する温度センサ1400の検出信号を取り込む(S401)。ここで、上記信号は、電動パワートレインシステム1000のモータ制御装置1300の診断制御部1310の記憶装置(図示していない)に記憶しておくなどで、第一運転診断モードを行う電動パワートレイン1000の状態を保持しておいた結果を取り込むなどがある。あるいは、電動パワートレイン1000の指令信号と温度センサ1400の検出信号を直接取り込むなどがある。 In FIG. 13, when it is determined that the first operation diagnosis mode is performed, in step S401, the electric power train 1000 command signal, the coolant temperature sensor 800 detection signal, and the electric power train, which are data necessary for diagnosis, are processed. The detection signal of the temperature sensor 1400 that detects the temperature of each of the 1000 components is captured (S401). Here, the above-mentioned signal is stored in a storage device (not shown) of the diagnosis control unit 1310 of the motor control device 1300 of the electric power train system 1000, and the electric power train 1000 that performs the first operation diagnosis mode. The result of holding the state of the is fetched. Alternatively, a command signal of the electric power train 1000 and a detection signal of the temperature sensor 1400 are directly taken in.
 指令信号と温度センサの検出信号が取り込まれると、図4、図5にて説明した電動パワートレイン1000の熱伝達モデルを用いて、電動パワートレイン1000を構成する部品の各部の温度推定を演算する(S402)。熱伝達モデルを用いて温度を演算する場合は、各部の初期温度が必要となるが、各部の初期温度は、温度センサ1400にて検出した初期温度を利用することが可能である。 When the command signal and the detection signal of the temperature sensor are taken in, the temperature estimation of each part of the parts constituting the electric power train 1000 is calculated using the heat transfer model of the electric power train 1000 described with reference to FIGS. (S402). When calculating the temperature using the heat transfer model, the initial temperature of each part is required, but the initial temperature detected by the temperature sensor 1400 can be used as the initial temperature of each part.
 また、温度センサ1400が設置されていない部品の温度に関しては、本処理の前段階で、既に、電動パワートレイン1000は、冷機状態であると判定されているため、温度センサ1400が設置された部品に接触している部品やその近傍部品は、温度センサにて検出された温度を初期値として設定することも可能である。あるいは、冷機状態であると判定されているため、インバータ1100の部品全ての初期温度は同じ、モータ1200の部品全ての初期温度は同じとして設定することも可能である。 In addition, regarding the temperature of the component where the temperature sensor 1400 is not installed, since the electric powertrain 1000 has already been determined to be in the cold state in the previous stage of this processing, the component where the temperature sensor 1400 is installed. It is also possible to set the temperature detected by the temperature sensor as an initial value for the component that is in contact with the component or a component in the vicinity thereof. Alternatively, since it is determined that the engine is in the cold state, it is possible to set the initial temperatures of all the components of the inverter 1100 as the same and the initial temperatures of all the components of the motor 1200 as the same.
 なお、電動パワートレイン1000の指令は、モータ1200、インバータ1100などの構成部品に流れる電流に対応し、この指令から電動パワートレイン1000を構成する各部品の損失・発熱量を演算して、温度予測を行う。 The command for the electric power train 1000 corresponds to the current flowing through the components such as the motor 1200 and the inverter 1100, and the loss / heat generation amount of each component constituting the electric power train 1000 is calculated from this command to predict the temperature. I do.
 次に、S403では、電動パワートレインシステム1000の構成部品で温度センサ1400が設置された部品の温度センサ計測値と、温度センサ1400が設置された部品に相当するS402の熱伝達モデルにて演算した温度推定値との誤差を演算する。具体的には、インバータ1100の構成部品であるDCバスバー1120に設置された温度センサ1450の温度計測値と、熱伝達モデルにて演算したDCバスバー1120に相当する温度推定値の偏差を演算する。 Next, in S403, calculation is performed using the temperature sensor measurement value of the component where the temperature sensor 1400 is installed in the components of the electric powertrain system 1000 and the heat transfer model of S402 corresponding to the component where the temperature sensor 1400 is installed. Calculate the error from the estimated temperature value. Specifically, the deviation between the temperature measurement value of the temperature sensor 1450 installed in the DC bus bar 1120 that is a component of the inverter 1100 and the estimated temperature value corresponding to the DC bus bar 1120 calculated by the heat transfer model is calculated.
 S404では、温度計測値と温度推定値の偏差の絶対値が判定値ΔTjudge1より大きいか否かを判定する。熱伝達モデルは、電動パワートレインシステム1000の接合部に異常がない状態での熱伝達を模擬したモデルであるため、電動パワートレイン1000の構成部品に接合不良などの異常がない場合は、熱伝達モデルによる温度推定値と実際の温度センサ1400の温度計測値はほぼ同じ値となる。 In S404, it is determined whether or not the absolute value of the deviation between the temperature measurement value and the temperature estimation value is greater than the determination value ΔTjudge1. The heat transfer model is a model that simulates heat transfer in a state where there is no abnormality in the joint portion of the electric power train system 1000. Therefore, if there is no abnormality such as a bonding failure in the components of the electric power train 1000, heat transfer is performed. The estimated temperature value based on the model and the actual measured temperature value of the temperature sensor 1400 are substantially the same value.
 逆に、電動パワートレイン1000の構成部品に接合不良などの異常がある場合は、熱伝達モデルによる温度推定値と実際の温度センサ1400の温度計測値は、異なる値となる。ただし、実際には、熱伝達モデルのパラメータである熱抵抗などには、誤差が存在するため、接合不良がない場合でも、温度推定値と温度計測値が全く同じになることは困難である。従って、温度推定値と温度計測値の偏差がある所定の判定値を超えた場合は異常で、超えない場合は正常であると判定する。従って、S404にて、温度推定値と温度計測値の偏差が判定値ΔTjudge1以下である場合は、S405へ進み、第一運転診断モードでは異常無しと判定し、終了する。 Conversely, when there is an abnormality such as a bonding failure in the components of the electric power train 1000, the estimated temperature value based on the heat transfer model and the actual measured temperature value of the temperature sensor 1400 are different values. However, in reality, since there is an error in the thermal resistance, which is a parameter of the heat transfer model, it is difficult for the estimated temperature value and the measured temperature value to be exactly the same even when there is no bonding failure. Accordingly, when the deviation between the estimated temperature value and the measured temperature value exceeds a predetermined determination value, it is determined to be abnormal, and otherwise, it is determined to be normal. Therefore, in S404, when the deviation between the estimated temperature value and the measured temperature value is equal to or smaller than the determination value ΔTjudge1, the process proceeds to S405, and it is determined that there is no abnormality in the first operation diagnosis mode, and the process ends.
 なお、電動パワートレインシステム1000の構成部品に設置された温度センサ1400は、複数あるため、各部品に設置された温度センサ1400の温度計測値とそれに対応した熱伝達モデルの温度推定値も複数存在する。そこで、温度センサ1400が設置された各部について、温度推定値と温度計測値の偏差を演算し、その偏差から異常判定を行う。例えば、インバータ1100のキャパシタ1140の温度センサ1440の温度計測値と温度推定値の偏差、DCバスバー1120の温度センサ1450の温度計測値と温度推定値の偏差、インバータケース1150の温度センサ1410の温度計測値と温度推定値の偏差などを判定値と比較して診断を行う。また、判定値ΔTjudge1は、各部品毎に設けることが好ましい。 Since there are a plurality of temperature sensors 1400 installed in the components of the electric powertrain system 1000, there are a plurality of temperature measurement values of the temperature sensor 1400 installed in each component and a corresponding temperature estimation value of the heat transfer model. To do. Therefore, for each part where the temperature sensor 1400 is installed, a deviation between the estimated temperature value and the measured temperature value is calculated, and an abnormality is determined from the deviation. For example, the deviation between the temperature measurement value of the temperature sensor 1440 of the capacitor 1140 of the inverter 1100 and the temperature estimation value, the difference between the temperature measurement value of the temperature sensor 1450 of the DC bus bar 1120 and the temperature estimation value, the temperature measurement of the temperature sensor 1410 of the inverter case 1150 Diagnosis is made by comparing the deviation between the value and the estimated temperature value with the judgment value. The determination value ΔTjudge1 is preferably provided for each component.
 一方、S404にて、温度推定値と温度計測値の偏差が判定値ΔTjudge1より大きい場合は、S406へ進み、第一運転診断モードでは異常有りと判定する。S406にて異常有りと判定されると、S407にて、温度推定値と温度計測値の偏差が判定値ΔTjudge1より大きいと判定された温度センサ1400の設置部品に関する接合部が異常であると判定し、異常個所の判定を行う。以上が、冷機状態にて行われる第一運転診断モードの実施フローの例である。本フローでは、後述するが、冷機状態で診断しやすい異常を判定する。 On the other hand, if the deviation between the estimated temperature value and the measured temperature value is larger than the determination value ΔTjudge1 in S404, the process proceeds to S406 and it is determined that there is an abnormality in the first operation diagnosis mode. If it is determined in S406 that there is an abnormality, it is determined in S407 that the joint portion related to the installed part of the temperature sensor 1400, in which the deviation between the temperature estimation value and the temperature measurement value is determined to be greater than the determination value ΔTjudge1, is determined. Determine the abnormal part. The above is an example of the execution flow of the first operation diagnosis mode performed in the cold state. In this flow, as will be described later, an abnormality that is easily diagnosed in a cold state is determined.
 次に、図14は、電動パワートレイン1000の熱伝達モデルによる各部の温度推定を演算して、診断を行う別の一実施例のフローを示している。特に、図14は、図9、図10に示したフローのSB80、SC100の暖機判定に基づいて行う第二運転診断モードの処理の一実施例である。 Next, FIG. 14 shows a flow of another embodiment in which diagnosis is performed by calculating the temperature estimation of each part based on the heat transfer model of the electric power train 1000. In particular, FIG. 14 is an example of processing in the second operation diagnosis mode that is performed based on the warm-up determination of SB80 and SC100 in the flows shown in FIGS.
 図14では、第二運転診断モード実施の判定が行われると、S1001の処理にて、診断に必要なデータである電動パワートレイン1000の指令信号、冷却水温度センサ800の検出信号、電動パワートレイン1000の各部品の温度を検出する温度センサ1400の検出信号を取り込む。ここで、上記信号は、電動パワートレインシステム1000のモータ制御装置1300の診断制御部1310の記憶装置(図示していない)に記憶しておくなどで、第二運転診断モードを行う電動パワートレイン1000の状態を保持しておいた結果を取り込むなどがある。あるいは、電動パワートレイン1000の指令信号と温度センサ1400の検出信号を直接取り込むなどがある。 In FIG. 14, when it is determined that the second operation diagnosis mode is to be performed, a command signal of the electric power train 1000, a detection signal of the cooling water temperature sensor 800, which is data necessary for diagnosis, and an electric power train are processed in S 1001. The detection signal of the temperature sensor 1400 that detects the temperature of each of the 1000 components is captured. Here, the above-mentioned signal is stored in a storage device (not shown) of the diagnosis control unit 1310 of the motor control device 1300 of the electric power train system 1000, so that the electric power train 1000 that performs the second operation diagnosis mode is used. The result of holding the state of the is fetched. Alternatively, a command signal of the electric power train 1000 and a detection signal of the temperature sensor 1400 are directly taken in.
 指令信号と温度センサの検出信号が取り込まれると、図4、図5にて説明した電動パワートレイン1000の熱伝達モデルを用いて、電動パワートレイン1000を構成する部品の各部の温度推定を演算する(S1102)。熱伝達モデルを用いて温度を演算する場合は、各部の初期温度が必要となるが、各部の初期温度は、温度センサ1400にて検出した初期温度を利用することが可能である。 When the command signal and the detection signal of the temperature sensor are taken in, the temperature estimation of each part of the parts constituting the electric power train 1000 is calculated using the heat transfer model of the electric power train 1000 described with reference to FIGS. (S1102). When calculating the temperature using the heat transfer model, the initial temperature of each part is required, but the initial temperature detected by the temperature sensor 1400 can be used as the initial temperature of each part.
 また、温度センサ1400が設置されていない部品の温度に関しては、本処理の前段階で、既に、電動パワートレイン1000は、暖機状態であると判定されているため、温度センサ1400が設置された部品に接触している部品やその近傍部品は、温度センサにて検出された温度を初期値として設定することも可能である。あるいは、暖機状態であると判定されているため、インバータ1100の部品全ての初期温度は同じ、モータ1200の部品全ての初期温度は同じとして設定することも可能である。なお、電動パワートレイン1000の指令は、モータ1200、インバータ1100などの構成部品に流れる電流に対応し、この指令から電動パワートレイン1000を構成する各部品の損失・発熱量を演算して、温度予測を行う。 In addition, regarding the temperature of the parts for which the temperature sensor 1400 is not installed, since the electric power train 1000 has already been determined to be in the warm-up state in the previous stage of this processing, the temperature sensor 1400 is installed. It is also possible to set the temperature detected by the temperature sensor as an initial value for a component that is in contact with the component or a component in the vicinity thereof. Alternatively, since it is determined that the engine is in the warm-up state, it is possible to set the initial temperatures of all the components of the inverter 1100 as the same and the initial temperatures of all the components of the motor 1200 as the same. The command for the electric power train 1000 corresponds to the current flowing through the components such as the motor 1200 and the inverter 1100, and the loss / heat generation amount of each component constituting the electric power train 1000 is calculated from this command to predict the temperature. I do.
 次に、S1003では、電動パワートレインシステム1000の構成部品で温度センサ1400が設置された部品の温度センサ計測値と、温度センサ1400が設置された部品に相当するS1002の熱伝達モデルにて演算した温度推定値との誤差を演算する。具体的には、インバータ1100の構成部品であるDCバスバー1120に設置された温度センサ1450の温度計測値と、熱伝達モデルにて演算したDCバスバー1120に相当する温度推定値の偏差を演算する。 Next, in S1003, calculation is performed using the temperature sensor measurement value of the component where the temperature sensor 1400 is installed in the components of the electric powertrain system 1000 and the heat transfer model of S1002 corresponding to the component where the temperature sensor 1400 is installed. Calculate the error from the estimated temperature value. Specifically, the deviation between the temperature measurement value of the temperature sensor 1450 installed in the DC bus bar 1120 that is a component of the inverter 1100 and the estimated temperature value corresponding to the DC bus bar 1120 calculated by the heat transfer model is calculated.
 S1004では、温度計測値と温度推定値の偏差の絶対値が判定値ΔTjudge2より大きいか否かを判定する。熱伝達モデルは、電動パワートレインシステム1000の接合部に異常がない状態での熱伝達を模擬したモデルであるため、電動パワートレイン1000の構成部品に接合不良などの異常がない場合は、熱伝達モデルによる温度推定値と実際の温度センサ1400の温度計測値はほぼ同じ値となる。 In S1004, it is determined whether or not the absolute value of the deviation between the measured temperature value and the estimated temperature value is greater than the determination value ΔTjudge2. The heat transfer model is a model that simulates heat transfer in a state where there is no abnormality in the joint portion of the electric power train system 1000. Therefore, if there is no abnormality such as a bonding failure in the components of the electric power train 1000, heat transfer is performed. The estimated temperature value based on the model and the actual measured temperature value of the temperature sensor 1400 are substantially the same value.
 逆に、電動パワートレイン1000の構成部品に接合不良などの異常がある場合は、熱伝達モデルによる温度推定値と実際の温度センサ1400の温度計測値は、異なる値となる。ただし、実際には、熱伝達モデルのパラメータである熱抵抗などには、誤差が存在するため、接合不良がない場合でも、温度推定値と温度計測値が全く同じになることは困難である。従って、温度推定値と温度計測値の偏差がある所定の判定値を超えた場合は異常で、超えない場合は正常であると判定する。従って、S1004にて、温度推定値と温度計測値の偏差が判定値ΔTjudge2以下である場合は、S1005へ進み、第二運転診断モードでは異常無しと判定し、終了する。 Conversely, when there is an abnormality such as a bonding failure in the components of the electric power train 1000, the estimated temperature value based on the heat transfer model and the actual measured temperature value of the temperature sensor 1400 are different values. However, in reality, since there is an error in the thermal resistance, which is a parameter of the heat transfer model, it is difficult for the estimated temperature value and the measured temperature value to be exactly the same even when there is no bonding failure. Accordingly, when the deviation between the estimated temperature value and the measured temperature value exceeds a predetermined determination value, it is determined to be abnormal, and otherwise, it is determined to be normal. Therefore, if the deviation between the estimated temperature value and the measured temperature value is equal to or smaller than the determination value ΔTjudge2 in S1004, the process proceeds to S1005, and it is determined that there is no abnormality in the second operation diagnosis mode, and the process ends.
 なお、電動パワートレインシステム1000の構成部品に設置された温度センサ1400は、複数あるため、各部品に設置された温度センサ1400の温度計測値とそれに対応した熱伝達モデルの温度推定値も複数存在する。そこで、温度センサ1400が設置された各部について、温度推定値と温度計測値の偏差を演算し、その偏差から異常判定を行う。例えば、インバータ1100のキャパシタ1140の温度センサ1440の温度計測値と温度推定値の偏差、DCバスバー1120の温度センサ1450の温度計測値と温度推定値の偏差、インバータケース1150の温度センサ1410の温度計測値と温度推定値の偏差などを判定値と比較して診断を行う。また、判定値ΔTjudge2は、各部品毎に設けることが好ましい。 Since there are a plurality of temperature sensors 1400 installed in the components of the electric powertrain system 1000, there are a plurality of temperature measurement values of the temperature sensor 1400 installed in each component and a corresponding temperature estimation value of the heat transfer model. To do. Therefore, for each part where the temperature sensor 1400 is installed, a deviation between the estimated temperature value and the measured temperature value is calculated, and an abnormality is determined from the deviation. For example, the deviation between the temperature measurement value of the temperature sensor 1440 of the capacitor 1140 of the inverter 1100 and the temperature estimation value, the difference between the temperature measurement value of the temperature sensor 1450 of the DC bus bar 1120 and the temperature estimation value, the temperature measurement of the temperature sensor 1410 of the inverter case 1150 Diagnosis is made by comparing the deviation between the value and the estimated temperature value with the judgment value. The determination value ΔTjudge2 is preferably provided for each component.
 一方、S1004にて、温度推定値と温度計測値の偏差が判定値ΔTjudge2より大きい場合は、S1006へ進み、第二運転診断モードでは異常有りと判定する。S1006にて異常有りと判定されると、S1007にて、温度推定値と温度計測値の偏差が判定値ΔTjudge2より大きいと判定された温度センサ1400の設置部品に関する接合部が異常であると判定し、異常個所の判定を行う。以上が、暖機状態にて行われる第二運転診断モードの実施フローの例である。本フローでは、後述するが、暖機状態で診断しやすい異常を判定する。 On the other hand, if the deviation between the estimated temperature value and the measured temperature value is larger than the determination value ΔTjudge2 in S1004, the process proceeds to S1006 and it is determined that there is an abnormality in the second operation diagnosis mode. If it is determined in S1006 that there is an abnormality, it is determined in S1007 that the joint portion related to the installed part of the temperature sensor 1400, in which the deviation between the estimated temperature value and the measured temperature value is determined to be larger than the determination value ΔTjudge2, is determined. Determine the abnormal part. The above is an example of an execution flow of the second operation diagnosis mode performed in the warm-up state. In this flow, as will be described later, an abnormality that is easy to diagnose in a warm-up state is determined.
 図15は、電動パワートレイン1000において異常が発生した場合の熱伝達の様子を模式的に示した図である。図15は、インバータ1100の構成部品であるDC(直流)バスバー1120とキャパシタ1140間のモールド接合に異常がある場合の一例である。この例では、異常のあるモールド接合部分はインバータ1100の構成部品であり、熱容量が比較的小さいことから、本発明では、電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が低回転/高トルクの状態において異常を診断することが可能である。 FIG. 15 is a diagram schematically showing the state of heat transfer when an abnormality occurs in the electric power train 1000. FIG. 15 is an example in the case where there is an abnormality in the mold bonding between the DC (direct current) bus bar 1120 and the capacitor 1140 that are the components of the inverter 1100. In this example, an abnormal mold joint is a component of the inverter 1100 and has a relatively small heat capacity. Therefore, in the present invention, the temperature state of the electric power train 1000 is a cold state, and the operating state of the electric power train 1000 is It is possible to diagnose an abnormality in the state of low rotation / high torque.
 インバータ1100の構成部品であるDC(直流)バスバー1120とキャパシタ1140間のモールド接合に異常があるため、その間を熱的なつながりであるバスバー/キャパシタ間モールド熱抵抗1700が異常となっており、正常時の熱抵抗と比べて非常に大きくなっている場合である。電動パワートレイン1000は、冷機状態であることから全体の温度は低い状態になっており、この状態で、高トルク指令が電動パワートレインシステム1000へ与えられる。その結果、パワーモジュール1130にて大きな損失に伴う発熱が生じる。 Since there is an abnormality in the mold joint between the DC (direct current) bus bar 1120 which is a component of the inverter 1100 and the capacitor 1140, the bus bar / capacitor mold thermal resistance 1700 which is a thermal connection between them is abnormal and normal. This is a case where it is very large compared to the thermal resistance of the time. Since the electric power train 1000 is in the cold state, the entire temperature is low. In this state, a high torque command is given to the electric power train system 1000. As a result, the power module 1130 generates heat due to a large loss.
 また、DCバスバー1120、キャパシタ1140にも大電流が流れることから同様に損失に伴う発熱が生じる。ここで、バスバー/キャパシタ間モールド熱抵抗1700が異常であるため、DCバスバー1120とキャパシタ1140間の熱伝達は小さくなり、この熱伝達によって生じるDCバスバー1120とキャパシタ1140の温度上昇は、正常時の温度上昇と異なる。 Also, since a large current flows through the DC bus bar 1120 and the capacitor 1140, similarly heat is generated due to loss. Here, since the bus bar / capacitor mold thermal resistance 1700 is abnormal, the heat transfer between the DC bus bar 1120 and the capacitor 1140 is reduced, and the temperature rise of the DC bus bar 1120 and the capacitor 1140 caused by this heat transfer is normal. Different from temperature rise.
 図16は、図15に説明した電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が低回転/高トルクの状態において、インバータ1100の構成部品であるDC(直流)バスバー1120とキャパシタ1140間のモールド接合の異常を判定した一例である。条件としては、冷機条件(冷却水温度が35℃)、電動パワートレイン1000への指令が短時間・低回転/高トルク(1000rpm、100Nm、30秒)である。図16のグラフは、上から、電動パワートレイン1000のモータ1200の回転数、モータ1200のトルク指令、インバータ1100の構成部品であるDCバスバー1120、キャパシタ1140、ケース1150の熱伝達モデルによる温度推定値と温度センサ1450、1440、1410との偏差を示している。 FIG. 16 shows a DC (direct current) bus bar 1120 that is a component of the inverter 1100 when the temperature state of the electric power train 1000 described in FIG. 15 is cold and the operation state of the electric power train 1000 is low rotation / high torque. This is an example in which an abnormality in mold bonding between the capacitor 1140 and the capacitor 1140 is determined. The conditions are a cold machine condition (cooling water temperature is 35 ° C.), and a command to the electric power train 1000 is a short time / low rotation / high torque (1000 rpm, 100 Nm, 30 seconds). The graph of FIG. 16 shows, from the top, the estimated temperature of the motor 1200 of the electric powertrain 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat transfer model of the case 1150. And temperature sensors 1450, 1440, and 1410 are shown.
 図16の結果は、図15にて説明したように、DCバスバー1120、キャパシタ1140に流れる電流による損失に伴う発熱が生じ、DCバスバー1120、キャパシタ1140の温度が上昇するが、バスバー/キャパシタ間モールド熱抵抗1700が異常であるため、バスバー1120とキャパシタ1140間の熱伝達は小さくなり、この熱伝達によって生じるバスバー1120とキャパシタ1140の温度上昇は、正常時の温度上場と異なる。 The result of FIG. 16 is that, as described in FIG. 15, heat is generated due to loss due to the current flowing through the DC bus bar 1120 and capacitor 1140, and the temperature of the DC bus bar 1120 and capacitor 1140 rises. Since the thermal resistance 1700 is abnormal, the heat transfer between the bus bar 1120 and the capacitor 1140 becomes small, and the temperature rise of the bus bar 1120 and the capacitor 1140 caused by this heat transfer is different from the normal temperature listing.
 その結果、図16に示すように、キャパシタ1140に関する熱伝達モデルの温度推定値と温度計測値の偏差が、他の偏差と比較して大きく増加している。ここで、例えば、-0.5℃を異常判定しきい値と設定した場合、約25秒程度の信号から異常の有無を判定することができる。この例では、キャパシタ1140の温度推定値と温度計測値の偏差が拡大していることから、キャパシタ1140に係る接合部の異常であると判定できる。 As a result, as shown in FIG. 16, the deviation between the estimated temperature value and the measured temperature value of the heat transfer model related to the capacitor 1140 is greatly increased as compared with other deviations. Here, for example, when −0.5 ° C. is set as the abnormality determination threshold, the presence / absence of abnormality can be determined from a signal of about 25 seconds. In this example, since the deviation between the estimated temperature value and the measured temperature value of the capacitor 1140 is increased, it can be determined that the abnormality is in the joint portion related to the capacitor 1140.
 図17は、電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が低回転/高トルクの状態において、異常が存在しない場合における温度推定値と温度計測値の偏差の例を示している。条件としては、冷機条件(冷却水温度が35℃)、電動パワートレイン1000への指令が短時間・低回転/高トルク(1000rpm、100Nm、30秒)である。 FIG. 17 shows an example of the deviation between the estimated temperature value and the measured temperature value when there is no abnormality when the temperature state of the electric power train 1000 is cold and the operation state of the electric power train 1000 is low rotation / high torque. Show. The conditions are a cold machine condition (cooling water temperature is 35 ° C.), and a command to the electric power train 1000 is a short time / low rotation / high torque (1000 rpm, 100 Nm, 30 seconds).
 図17のグラフは、図16と同じように、電動パワートレイン1000のモータ1200の回転数、モータ1200のトルク指令、インバータ1100の構成部品であるバスバー1120、キャパシタ1140、ケース1150の熱伝達モデルによる温度推定値と温度センサ1450、1440、1410との偏差を示している。この結果から分かるように、電動パワートレイン1000に異常が存在しない場合は、熱伝達モデルの温度推定値と温度計測値の偏差は、大幅に増加することなく、異常判定しきい値を用いることで、異常の有無を判定できる。ここで、診断するための信号は、短時間の信号にて行うことが望ましい。短時間の信号(温度、指令)を用いることで、早急に判定でき、更に、熱容量が小さい部品に関連する接合異常を判定可能となる。 The graph of FIG. 17 is based on the heat transfer model of the motor 1200 of the electric power train 1000, the torque of the motor 1200, the torque command of the motor 1200, the bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the case 1150, as in FIG. Deviations between the estimated temperature value and the temperature sensors 1450, 1440, and 1410 are shown. As can be seen from this result, when there is no abnormality in the electric power train 1000, the deviation between the estimated temperature value and the measured temperature value of the heat transfer model does not increase significantly, and the abnormality determination threshold value is used. The presence or absence of abnormality can be determined. Here, it is desirable that the signal for diagnosis is a short-time signal. By using a short-time signal (temperature, command), it is possible to quickly determine, and furthermore, it is possible to determine a bonding abnormality related to a component having a small heat capacity.
 図18は、電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が低回転/高トルクの状態において、モータ1200とインバータ1100間の接合異常が存在する場合に、前記の冷機状態の短時間で異常判定が困難である一例を示している。条件としては、冷機条件(冷却水温度が35℃)、電動パワートレイン1000への指令が短時間・低回転/高トルク(1000rpm、100Nm、30秒)である。また、モータ1200とインバータ1100は、それぞれ、インバータケース1150とモータケース1260にて接合されており、本例では、この接合部に異常が存在する場合である。 FIG. 18 shows the above-described cold machine when there is an abnormal connection between the motor 1200 and the inverter 1100 when the temperature state of the electric power train 1000 is cold and the operation state of the electric power train 1000 is low rotation / high torque. An example is shown in which it is difficult to determine abnormality in a short period of time. The conditions are a cold machine condition (cooling water temperature is 35 ° C.), and a command to the electric power train 1000 is a short time / low rotation / high torque (1000 rpm, 100 Nm, 30 seconds). Further, the motor 1200 and the inverter 1100 are joined by an inverter case 1150 and a motor case 1260, respectively, and in this example, there is an abnormality in this joined portion.
 図18のグラフは、図16、図17と同じように、電動パワートレイン1000のモータ1200の回転数、モータ1200のトルク指令、インバータ1100の構成部品であるバスバー1120、キャパシタ1140、ケース1150の熱伝達モデルによる温度推定値と温度センサ1450、1440、1410との偏差を示している。 The graph in FIG. 18 is the same as in FIGS. 16 and 17, the rotational speed of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat of the case 1150. Deviations between the estimated temperature value by the transfer model and the temperature sensors 1450, 1440, and 1410 are shown.
 この結果から分かるように、電動パワートレイン1000のモータケース1260とインバータケース1150間に接合異常が存在しても、インバータケース1150の熱伝達モデルによる温度推定値と温度計測値の偏差は、大幅に増加することなく、異常判定しきい値にて判定すると、異常がない状態と判定してしまい、異常判定困難となる。モータケース1260とインバータケース1150は、それぞれ発熱源ではないため、インバータ1100を構成する発熱源である各部品と比較して、温度変化が緩やかであり、短時間では診断が困難である。 As can be seen from this result, even if a junction abnormality exists between the motor case 1260 of the electric power train 1000 and the inverter case 1150, the deviation between the estimated temperature value and the measured temperature value based on the heat transfer model of the inverter case 1150 is greatly increased. If it is determined by the abnormality determination threshold without increasing, it is determined that there is no abnormality, and it is difficult to determine abnormality. Since the motor case 1260 and the inverter case 1150 are not heat sources, respectively, the temperature change is gentle compared to the components that are the heat sources constituting the inverter 1100, and diagnosis is difficult in a short time.
 以上の図16、図18の結果から、発熱源、あるいは、熱容量が小さい部品に係る接合異常に関しては、電動パワートレインシステム1000が冷機状態で、短時間の高トルク指令時の温度推定値と温度計測値の偏差から判定可能である。一方、直接の発熱源ではなく、比較的熱容量が大きい部品に係る接合異常に関しては、電動パワートレインシステム1000が冷機状態で、短時間の高トルク指令時の温度推定値と温度計測値の偏差から判定は困難である。 From the results shown in FIGS. 16 and 18, regarding the joining abnormality related to the heat generation source or the parts having a small heat capacity, the estimated temperature value and the temperature when the electric powertrain system 1000 is in the cold state and the short time high torque command is issued. It can be determined from the deviation of the measured value. On the other hand, regarding the joining abnormality related to a part having a relatively large heat capacity rather than a direct heat source, the electric powertrain system 1000 is in a cold state and the deviation between the temperature estimated value and the temperature measured value at the time of a short high torque command is obtained. Judgment is difficult.
 図19は、電動パワートレイン1000において、図15とは異なる異常が発生した場合の熱伝達の様子を模式的に示した図である。図19は、インバータ1100のインバータケース1150とモータ1200のモータケース1260間の接合部に異常がある場合の一例である。この例では、インバータケース1150とモータケース1260は、熱容量が比較的大きく、直接熱源ではないので、本発明では、電動パワートレイン1000の温度状態が暖機状態、電動パワートレイン1000の動作状態が長期的な中出力の指令状態において異常を診断することが可能である。 FIG. 19 is a diagram schematically showing the state of heat transfer when an abnormality different from that in FIG. 15 occurs in the electric power train 1000. FIG. 19 is an example of a case where there is an abnormality in the joint between the inverter case 1150 of the inverter 1100 and the motor case 1260 of the motor 1200. In this example, the inverter case 1150 and the motor case 1260 have relatively large heat capacities and are not direct heat sources. Therefore, in the present invention, the temperature state of the electric power train 1000 is a warm-up state and the operation state of the electric power train 1000 is long-term. It is possible to diagnose an abnormality in a normal medium output command state.
 インバータケース1150とモータケース1260間の接合部に異常があるため、その間を熱的なつながりであるモータ/インバータ間接合熱抵抗1750が異常となっており、正常時の熱抵抗と比べて非常に大きくなっている場合である。電動パワートレイン1000が、暖機状態であることから全体の温度は外気温度に比べて高い状態になっており、この状態で、長期的に中出力の指令が電動パワートレインシステム1000へ与えられる。この際の中出力指令は、長時間にわたり、駆動指令と非駆動の指令の繰り返しなどが電動パワートレインシステム1000に加えられるが、指令の出力が比較的小さいことから、電動パワートレインシステム1000内部の損失による発熱は比較的小さく、外気温による冷却や冷却水が冷却されることによる冷却によって、電動パワートレインシステム1000全体は温度が低下する方向に変化する。 Since there is an abnormality in the junction between the inverter case 1150 and the motor case 1260, the motor / inverter junction thermal resistance 1750, which is a thermal connection between the inverter case 1150 and the motor case 1260, is abnormal. This is the case when it is getting bigger. Since the electric power train 1000 is in a warm-up state, the overall temperature is higher than the outside air temperature. In this state, a medium output command is given to the electric power train system 1000 for a long time. In this case, the medium output command includes a repetition of a drive command and a non-drive command over a long period of time. However, since the output of the command is relatively small, the inside of the electric power train system 1000 The heat generated by the loss is relatively small, and the electric powertrain system 1000 as a whole changes in a direction in which the temperature decreases due to cooling by the outside air temperature or cooling by cooling the cooling water.
 ここで、図19では、インバータケース1150とモータケース1260間の接合部に異常があり、モータ/インバータ間接合熱抵抗1750が正常時の熱抵抗と比べて非常に大きくなっている。このため、インバータケース1150とモータケース1260間の熱伝達が正常時とは異なり、インバータケース1150の温度変化も異なる。更に、例えば、熱容量の比較的小さいバスバー1120やキャパシタ1140は、インバータケース1150に接合されていることから、バスバー1120やキャパシタ1140の温度変化も正常時の温度変化と異なる。 Here, in FIG. 19, there is an abnormality in the junction between the inverter case 1150 and the motor case 1260, and the motor / inverter junction thermal resistance 1750 is much larger than the thermal resistance in the normal state. For this reason, unlike the case where the heat transfer between the inverter case 1150 and the motor case 1260 is normal, the temperature change of the inverter case 1150 is also different. Furthermore, for example, since the bus bar 1120 and the capacitor 1140 having a relatively small heat capacity are joined to the inverter case 1150, the temperature change of the bus bar 1120 and the capacitor 1140 is also different from the temperature change at the normal time.
 図20は、図19に説明した電動パワートレイン1000の温度状態が暖機状態、電動パワートレイン1000の動作状態が比較的負荷の小さい低・中出力の運転状態において、インバータケース1150とモータケース1260間の接合部の異常を判定した一例である。条件としては、暖機条件(冷却水温度が65℃)、電動パワートレイン1000への指令は、長時間の低・中出力指令として、JC08と呼ばれるモード走行パターンの指令の場合である。 FIG. 20 shows an inverter case 1150 and a motor case 1260 when the temperature state of the electric power train 1000 described in FIG. 19 is a warm-up state and the operation state of the electric power train 1000 is a low / medium output operation state with a relatively small load. It is an example which determined the abnormality of the junction part in between. The conditions are the warm-up condition (cooling water temperature is 65 ° C.), and the command to the electric power train 1000 is a mode travel pattern command called JC08 as a long-time low / medium output command.
 図20のグラフは、上から、電動パワートレイン1000のモータ1200の回転数、モータ1200のトルク指令、インバータ1100の構成部品であるDCバスバー1120、キャパシタ1140、インバータケース1150、モータケース1260の熱伝達モデルによる温度推定値と温度センサ1450、1440、1410、1420との偏差を示している。 The graph of FIG. 20 shows from the top the rotational speed of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, the inverter case 1150, and the heat transfer of the motor case 1260. Deviations between the estimated temperature value by the model and the temperature sensors 1450, 1440, 1410, and 1420 are shown.
 図20の結果は、図19にて説明したように、インバータケース1150とモータケース1260間の接合部に異常があるため、モータ・インバータ間の接合熱抵抗1750が大きく、インバータケース1150の温度は、正常時の場合と異なる変化を示す。また、インバータケース1150に接触して熱伝達が行われるバスバー1120とキャパシタ1140の温度も、インバータケース1150の温度変化に応じて変化していくため、やはり、正常時の場合と異なる変化を示す。その結果、図20に示すように、インバータケース1150に関する熱伝達モデルの温度推定値と温度計測値の偏差が、他の偏差と比較して早く増加している。 As shown in FIG. 19, the result of FIG. 20 is that the junction between the inverter case 1150 and the motor case 1260 has an abnormality. Therefore, the junction thermal resistance 1750 between the motor and the inverter is large, and the temperature of the inverter case 1150 is It shows a change different from the normal case. In addition, the temperature of the bus bar 1120 and the capacitor 1140 where heat transfer is performed in contact with the inverter case 1150 also changes in accordance with the temperature change of the inverter case 1150, and thus also shows a change different from the normal case. As a result, as shown in FIG. 20, the deviation between the estimated temperature value and the measured temperature value of the heat transfer model related to the inverter case 1150 is increased faster than the other deviations.
 ここで、例えば、-0.5℃を異常判定しきい値と設定した場合、約600秒程度の信号から異常の有無を判定することができる。この例では、インバータケース1150の温度推定値と温度計測値の偏差が最初に拡大して、異常判定しきい値を超えることから、インバータケースに係る接合部の異常であると判定できる。また、モータケース1260に関しても、温度推定値と温度計測値の偏差が最初に拡大していくことから、モータケース1260に係る接合部の異常であると判断することも可能である。 Here, for example, when −0.5 ° C. is set as the abnormality determination threshold, the presence / absence of abnormality can be determined from a signal of about 600 seconds. In this example, the deviation between the estimated temperature value and the measured temperature value of the inverter case 1150 first expands and exceeds the abnormality determination threshold value, so that it can be determined that there is an abnormality in the joint portion related to the inverter case. Also, regarding the motor case 1260, since the deviation between the estimated temperature value and the measured temperature value first increases, it can also be determined that there is an abnormality in the joint portion related to the motor case 1260.
 図21は、電動パワートレイン1000の温度状態が暖機状態、電動パワートレイン1000の動作状態が比較的負荷の小さい低・中出力の運転状態において、インバータケース1150とモータケース1260間の接合部に異常がない場合における温度推定値と温度計測値の偏差の例を示している。条件としては、暖機条件(冷却水温度が65℃)、電動パワートレイン1000への指令は、長時間の低・中出力指令として、JC08と呼ばれるモード走行パターンの指令の場合である。 FIG. 21 shows the junction between the inverter case 1150 and the motor case 1260 when the temperature state of the electric power train 1000 is a warm-up state and the operation state of the electric power train 1000 is a low / medium output operation state with a relatively small load. The example of the deviation of the temperature estimated value and temperature measured value when there is no abnormality is shown. The conditions are the warm-up condition (cooling water temperature is 65 ° C.), and the command to the electric power train 1000 is a mode travel pattern command called JC08 as a long-time low / medium output command.
 図21のグラフは、図20と同じように、電動パワートレイン1000のモータ1200の回転数、モータ1200のトルク指令、インバータ1100の構成部品であるDCバスバー1120、キャパシタ1140、インバータケース1150の熱伝達モデルによる温度推定値と温度センサ1450、1440、1410との偏差を示している。 The graph of FIG. 21 is similar to FIG. 20, the number of revolutions of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat transfer of the inverter case 1150. Deviations between the estimated temperature value by the model and the temperature sensors 1450, 1440, and 1410 are shown.
 図21の結果から分かるように、電動パワートレイン1000に異常が存在しない場合は、熱伝達モデルの温度推定値と温度計測値の偏差は、大幅に増加することなく、異常判定しきい値を用いることで、異常の有無を判定できる。ここで、診断するための信号は、比較的長い時間の信号にて行うことが望ましい。長時間の信号(温度、指令)を用いることで、熱容量が比較的大きい部品に関連する接合異常を判定可能となる。 As can be seen from the result of FIG. 21, when there is no abnormality in the electric power train 1000, the deviation between the estimated temperature value and the measured temperature value of the heat transfer model does not increase significantly, and the abnormality determination threshold value is used. Thus, the presence or absence of abnormality can be determined. Here, it is desirable that the signal for diagnosis is a relatively long time signal. By using a long-time signal (temperature, command), it is possible to determine a bonding abnormality related to a component having a relatively large heat capacity.
 図22は、電動パワートレイン1000の温度状態が冷機状態、電動パワートレイン1000の動作状態が比較的負荷の小さい低・中出力の運転状態において、インバータケース1150とモータケース1260間の接合部の異常がある場合の一例である。条件としては、冷機条件(冷却水温度が35℃)、電動パワートレイン1000への指令は、長時間の低・中出力指令として、JC08と呼ばれるモード走行パターンの指令の場合である。 FIG. 22 shows an abnormality in the junction between the inverter case 1150 and the motor case 1260 when the temperature state of the electric power train 1000 is cold and the operation state of the electric power train 1000 is a low / medium output operation state with a relatively small load. It is an example when there is. The conditions are a cold machine condition (cooling water temperature is 35 ° C.), and the command to the electric power train 1000 is a mode travel pattern command called JC08 as a long-time low / medium output command.
 図22のグラフは、電動パワートレイン1000のモータ1200の回転数、モータ1200のトルク指令、インバータ1100の構成部品であるDCバスバー1120、キャパシタ1140、インバータケース1150の熱伝達モデルによる温度推定値と温度センサ1450、1440、1410との偏差を示している。 The graph of FIG. 22 shows the estimated temperature and temperature of the motor 1200 of the electric power train 1000, the torque command of the motor 1200, the DC bus bar 1120 that is a component of the inverter 1100, the capacitor 1140, and the heat transfer model of the inverter case 1150. Deviations from the sensors 1450, 1440, and 1410 are shown.
 図22の結果は、インバータケース1150とモータケース1260間の接合部に異常があるが、インバータケース1150の熱伝達モデルによる温度推定値と温度計測値の偏差は、大幅に増加することなく、異常判定しきい値にて判定すると、異常がない状態と判定してしまい、異常判定困難となる。同様に、キャパシタ1140、DCバスバー1120の温度推定値と温度計測値の偏差に関しても大きく変化することなく、異常の判定は困難である。 The result of FIG. 22 shows that there is an abnormality in the joint between the inverter case 1150 and the motor case 1260, but the deviation between the estimated temperature value and the measured temperature value based on the heat transfer model of the inverter case 1150 is not increased significantly. If it is determined by the determination threshold value, it is determined that there is no abnormality, and it is difficult to determine abnormality. Similarly, the deviation between the estimated temperature value and the measured temperature value of the capacitor 1140 and the DC bus bar 1120 does not change greatly, and it is difficult to determine abnormality.
 これは、インバータケース1150とモータケース1260間の接合部の異常によるモータ/インバータ間接合熱抵抗1750が正常時の熱抵抗と比べて非常に大きくなっているが、電動パワートレイン1000が、冷機状態であることから全体の温度は外気温度とほぼ同じ温度の状態である。この状態は、暖機状態とは異なり、冷却水は外気温度と近いことから冷却水から外部への熱伝達は小さく、冷却水による冷却の効果が暖機状態の場合と比較して小さい。 This is because the motor / inverter junction thermal resistance 1750 due to an abnormality in the junction between the inverter case 1150 and the motor case 1260 is very large compared to the normal thermal resistance, but the electric power train 1000 is in a cold state. Therefore, the overall temperature is almost the same as the outside air temperature. In this state, unlike the warm-up state, since the cooling water is close to the outside air temperature, the heat transfer from the cooling water to the outside is small, and the cooling effect by the cooling water is smaller than that in the warm-up state.
 また、長期的に中出力の指令が電動パワートレインシステム1000へ与えられるが、指令の出力が比較的小さいことから、電動パワートレインシステム1000内部の損失による発熱は比較的小さく、温度差は小さく、熱伝達される量も小さい。このため、インバータケース1150やモータケース1260のように比較的熱容量が大きい部品では、その間の熱伝達が正常時とは異なる場合でも、インバータケース1150の温度変化は正常時と比べて大きく変化しない。更に、インバータケース1150に接合されているため、バスバー1120やキャパシタ1140の温度変化も正常時の温度変化と比べ大きな変化はしない。 In addition, a medium output command is given to the electric power train system 1000 in the long term, but since the output of the command is relatively small, heat generation due to loss inside the electric power train system 1000 is relatively small, and the temperature difference is small. The amount of heat transferred is small. For this reason, in a part having a relatively large heat capacity, such as the inverter case 1150 and the motor case 1260, even if the heat transfer between them is different from the normal time, the temperature change of the inverter case 1150 does not change much compared to the normal time. Furthermore, since it is joined to the inverter case 1150, the temperature change of the bus bar 1120 and the capacitor 1140 does not change greatly compared to the temperature change during normal operation.
 以上の図20、21、22の結果から、発熱源でなく、あるいは、熱容量が大きい部品に係る接合異常に関しては、電動パワートレインシステム1000が暖機状態で、比較的長い時間の低・中出力指令時の温度推定値と温度計測値の偏差から判定可能である。一方、同じような異常に関して、電動パワートレインシステム1000が冷機状態では、温度推定値と温度計測値の偏差から判定は困難である。 From the results of FIGS. 20, 21, and 22 described above, regarding the joining abnormality related to a part that is not a heat source or a large heat capacity, the electric powertrain system 1000 is in a warm-up state, and a low / medium output for a relatively long time. It can be determined from the deviation between the estimated temperature value at the time of command and the measured temperature value. On the other hand, regarding the same abnormality, when the electric powertrain system 1000 is in the cold state, it is difficult to determine from the deviation between the estimated temperature value and the measured temperature value.
 図23は、本発明の第二の実施例の概要を説明する図である。図23は、図1に示す第一の実施例に、表示装置1800、記憶装置1850、通信装置1900を追加した実施例である。図23にて追加した表示装置1800、記憶装置1850、通信装置1900以外は、図1に説明したものと同様であり、電動パワートレインシステム1000の診断のフローは、今まで説明してきた実施例と同じであってよい。 FIG. 23 is a diagram for explaining the outline of the second embodiment of the present invention. FIG. 23 is an embodiment in which a display device 1800, a storage device 1850, and a communication device 1900 are added to the first embodiment shown in FIG. Except for the display device 1800, the storage device 1850, and the communication device 1900 added in FIG. 23, the flow is the same as that described in FIG. 1, and the diagnosis flow of the electric powertrain system 1000 is the same as the embodiment described so far. May be the same.
 電動パワートレインシステム1000におけるモータ制御装置1300内の診断制御部1310にて診断した結果は、出力装置100へ送られる。出力装置100は、診断制御部1310にて診断した結果を出力する。ここで、診断結果の出力は、図23の表示装置1800によって、診断結果を表示する。表示装置は、例えば、電動パワートレインシステム1000を搭載する車両において、異常時に点灯する表示にてドライバなどへ通知する方法がある。 The result of diagnosis by the diagnosis control unit 1310 in the motor control device 1300 in the electric powertrain system 1000 is sent to the output device 100. The output device 100 outputs the result diagnosed by the diagnosis control unit 1310. Here, the output of the diagnosis result is displayed on the display device 1800 of FIG. For example, in a vehicle equipped with the electric powertrain system 1000, the display device has a method of notifying a driver or the like by a display that is turned on when an abnormality occurs.
 具体的には、何らかの異常時に点灯する表示ランプが、車両には設けられており、表示ランプの点灯によって、異常を通知する。例えば、診断制御部1310にて、第一運転診断モードで診断した結果、異常と診断された場合の表示ランプは、常時点灯するようにし、第二運転診断モードで診断した結果、異常と診断された場合の表示ランプは、点滅によって表示する。このように、複数の運転診断モードで診断した結果を異なる表示方法で、ドライバや点検者に通知することで、異なる異常であること、異常度合いなどをドライバや点検者へ通知することができ、異常の緊急度なども同時に通知できるという効果がある。 Specifically, the vehicle is provided with a display lamp that lights up in the event of some abnormality, and the abnormality is notified by the lighting of the display lamp. For example, as a result of diagnosis in the first operation diagnosis mode by the diagnosis control unit 1310, the display lamp when an abnormality is diagnosed is always lit, and as a result of diagnosis in the second operation diagnosis mode, an abnormality is diagnosed. The indicator lamp in the case of flashing is displayed by blinking. In this way, by notifying the driver and the inspector of the results of diagnosis in a plurality of driving diagnosis modes in different display methods, it is possible to notify the driver and the inspector that the abnormality is different and the degree of abnormality, There is an effect that the urgent level of abnormality can be notified at the same time.
 また、出力装置100に送られた診断結果は、記憶装置1850に過去の診断結果として記憶することができる。記憶装置1850には、診断制御部1310にて実施した診断結果と診断に用いた電動パワートレインシステム1000への指令、温度センサ1400や冷却水温度センサ800、外気温度センサ900などの検出温度信号、診断制御部1310にて有する熱伝達モデルによる温度推定値信号などを記憶することが可能である。 Also, the diagnostic result sent to the output device 100 can be stored in the storage device 1850 as a past diagnostic result. The storage device 1850 includes a diagnosis result performed by the diagnosis control unit 1310 and instructions to the electric power train system 1000 used for diagnosis, detected temperature signals such as the temperature sensor 1400, the cooling water temperature sensor 800, and the outside air temperature sensor 900, The diagnosis control unit 1310 can store a temperature estimated value signal or the like based on a heat transfer model.
 記憶装置1850には、電動パワートレインシステム1000を搭載した車両が、通常の走行時に判定した異常のデータを蓄積し、点検時に記憶装置1850のデータを読み込むことで、過去の異常の経緯を点検者へ提供でき、車両に必要な点検などの情報を提供することができる。 In the storage device 1850, the vehicle equipped with the electric powertrain system 1000 accumulates abnormality data determined during normal driving, and the data of the storage device 1850 is read at the time of inspection. Can provide information such as inspections required for vehicles.
 また、記憶装置1850に記憶されたデータは、通信装置1900にて、外部データサーバなどにデータを送信し、過去のデータを外部データサーバに蓄積することで、異常データベースを構築することができる。異常データベースは、データセンタで他の車両の異常データと同様に管理され、同じような車両に対する異常データベースとして点検に役立てることができる。 Further, the data stored in the storage device 1850 is transmitted to an external data server or the like by the communication device 1900, and past data is accumulated in the external data server, whereby an abnormality database can be constructed. The abnormality database is managed in the same manner as the abnormality data of other vehicles in the data center, and can be used for inspection as an abnormality database for similar vehicles.
 図24は、本発明の診断を行うタイミングに関して説明する図である。図23は、横軸は時間を示しており、縦軸は冷却水温度を示している。図23において、時刻t0にて車両がキーオンされ、始動状態となった場合である。この場合、車両が長い間放置されていた場合、冷却水温度は、外気温とほぼ同じ状態であり、電動パワートレインシステム1000全体が冷却水温度とほぼ同じ温度状態である。この段階では、電動パワートレインシステム1000の状態判定では、冷機状態であると判断され、電動パワートレインシステム1000が駆動されると、第一運転診断モードが実施される。このように、通常は、始動時の段階で、第一運転診断モードが実施される。 FIG. 24 is a diagram for explaining the timing of performing the diagnosis of the present invention. In FIG. 23, the horizontal axis indicates time, and the vertical axis indicates the cooling water temperature. In FIG. 23, the vehicle is keyed on at time t0 and is in a starting state. In this case, when the vehicle is left for a long time, the cooling water temperature is substantially the same as the outside air temperature, and the entire electric powertrain system 1000 is substantially the same temperature as the cooling water temperature. At this stage, in the state determination of the electric powertrain system 1000, when it is determined that the electric powertrain system 1000 is driven and the electric powertrain system 1000 is driven, the first operation diagnosis mode is performed. Thus, normally, the first operation diagnosis mode is performed at the time of starting.
 次に、電動パワートレインシステム1000が駆動していると、モータ1200、インバータ1100は、損失に応じた発熱が生じて、温度が上昇する。これに伴い、冷却水によってモータ1200、インバータ1100は冷却されるが、高出力動作領域で、電動パワートレインシステム1000が動作すると発熱量が増加し、全体的に温度が上昇する。 Next, when the electric powertrain system 1000 is driven, the motor 1200 and the inverter 1100 generate heat according to the loss, and the temperature rises. Along with this, the motor 1200 and the inverter 1100 are cooled by the cooling water. However, when the electric powertrain system 1000 operates in the high output operation region, the amount of heat generation increases, and the temperature rises as a whole.
 図24では、例えば、時刻t2において、冷却水温度が所定温度以上になり、電動パワートレインシステム1000を構成する部品温度も冷却水温度に近い温度状態になると、電動パワートレインシステム1000の状態判定では、暖機状態であると判定する。暖機状態と判定されると、第二運転診断モードが実施される。 In FIG. 24, for example, when the cooling water temperature becomes equal to or higher than a predetermined temperature at time t2 and the temperature of the components constituting the electric powertrain system 1000 is also close to the cooling water temperature, the state determination of the electric powertrain system 1000 is performed. The warm-up state is determined. When it is determined that the engine is warming up, the second operation diagnosis mode is performed.
 このように、車両が動作中に、暖機状態であると判定されると、電動パワートレインシステム1000の動作状態に応じて第二運転診断モードを実施する。なお、第二運転診断モードを行うタイミングは複数存在するが、前回の第二運転診断モード実施から所定の走行距離、所定の時間が経過するまでは、次の第二運転診断モードを実施しないようにすることも可能である。これにより、頻繁に診断を行うことなく、制御装置の計算負荷を低減できるという効果がある。図23では、時刻t3にて車両は停止し、その後、車両が放置されることで、温度が低下していく。 Thus, when it is determined that the vehicle is warming up while the vehicle is operating, the second operation diagnosis mode is performed according to the operating state of the electric powertrain system 1000. Although there are a plurality of timings for performing the second driving diagnosis mode, the second driving diagnosis mode is not performed until a predetermined travel distance and a predetermined time have elapsed since the previous second driving diagnosis mode was performed. It is also possible to make it. Thereby, there is an effect that the calculation load of the control device can be reduced without frequent diagnosis. In FIG. 23, the vehicle stops at time t3, and then the temperature is lowered by leaving the vehicle unattended.
 図25は、本発明の電動パワートレインシステムの異常判定結果に基づいて、電動パワートレインシステム1000の出力制限を行う処理に関して示した図である。図25の前半の処理、SAK10、SAK20、SAK30、SAK40、SAK50、SAK60は、図6に示した異常判定処理のフローと同じである。図25では、SAK40にて第一運転診断モードの結果を出力するが、その結果に基づいて異常が判定されると、SAK80にて、電動パワートレインシステム1000の出力制限を行う。ここで行う出力制限を第一出力制限とする。 FIG. 25 is a diagram showing processing for limiting the output of the electric powertrain system 1000 based on the abnormality determination result of the electric powertrain system of the present invention. The first half of FIG. 25, SAK10, SAK20, SAK30, SAK40, SAK50, and SAK60, is the same as the flow of the abnormality determination process shown in FIG. In FIG. 25, the result of the first driving diagnosis mode is output at SAK 40. If an abnormality is determined based on the result, the output of electric power train system 1000 is limited at SAK 80. The output restriction performed here is the first output restriction.
 ただし、異常が判定されないと、出力制限は行わない。また、SAK60にて第二運転診断モードの結果を出力するが、その結果に基づいて異常が判定されると、SAK90にて、電動パワートレインシステム1000の出力制限を行う。ここで行う出力制限を第二出力制限とする。ただし、異常が判定されないと、出力制限は行わない。ここで、第一出力制限と第二出力制限は、電動パワートレインシステム1000の出力を制限するものであり、第一運転診断モードの診断結果に基づく制限と第二運転診断モードの診断結果に基づく制限は、異なるように設定する。好ましくは、第一出力制限の指令許容出力は、第二出力制限の指令許容出力よりも小さく設定する。 However, output is not restricted unless an abnormality is determined. Further, the result of the second operation diagnosis mode is output at SAK 60. If an abnormality is determined based on the result, the output of the electric power train system 1000 is limited at SAK 90. The output restriction performed here is the second output restriction. However, if no abnormality is determined, output restriction is not performed. Here, the first output restriction and the second output restriction limit the output of the electric powertrain system 1000, and are based on the restriction based on the diagnosis result in the first operation diagnosis mode and the diagnosis result in the second operation diagnosis mode. Limits are set differently. Preferably, the command allowable output for the first output restriction is set smaller than the command allowable output for the second output restriction.
 図26は、本発明の電動パワートレインシステムの異常判定結果に基づいて、電動パワートレインシステム1000の出力制限を行う別の処理に関して示した図である。図26の前半の処理、SBK10、SBK20、SBK30、SBK40、SBK50、SBK60、SBK70、SBK80、SBK90は、図9に示した異常判定処理のフローと同じである。図26では、SBK50にて第一運転診断モードの結果を出力するが、その結果に基づいて異常が判定されると、SBK110にて、電動パワートレインシステム1000の出力制限を行う。ここで行う出力制限を第一出力制限とする。ただし、異常が判定されないと、出力制限は行わない。 FIG. 26 is a diagram showing another process for limiting the output of the electric powertrain system 1000 based on the abnormality determination result of the electric powertrain system of the present invention. The first half of FIG. 26, SBK10, SBK20, SBK30, SBK40, SBK50, SBK60, SBK70, SBK80, and SBK90 are the same as the flow of the abnormality determination process shown in FIG. In FIG. 26, the result of the first driving diagnosis mode is output at SBK50. If an abnormality is determined based on the result, the output of the electric powertrain system 1000 is limited at SBK110. The output restriction performed here is the first output restriction. However, if no abnormality is determined, output restriction is not performed.
 また、SBK90にて第二運転診断モードの結果を出力するが、その結果に基づいて異常が判定されると、SBK120にて、電動パワートレインシステム1000の出力制限を行う。ここで行う出力制限を第二出力制限とする。ただし、異常が判定されないと、出力制限は行わない。ここで、第一出力制限と第二出力制限は、電動パワートレインシステム1000の出力を制限するものであり、第一運転診断モードの診断結果に基づく制限と第二運転診断モードの診断結果に基づく制限は、異なるように設定する。 Further, the result of the second operation diagnosis mode is output at SBK90. When an abnormality is determined based on the result, the output of the electric powertrain system 1000 is limited at SBK120. The output restriction performed here is the second output restriction. However, if no abnormality is determined, output restriction is not performed. Here, the first output restriction and the second output restriction limit the output of the electric powertrain system 1000, and are based on the restriction based on the diagnosis result in the first operation diagnosis mode and the diagnosis result in the second operation diagnosis mode. Limits are set differently.
 特に、第一運転診断モードでは、熱容量の小さい部品の接合異常、つまり熱伝達異常を判定するが、熱容量の小さい部品で、発熱源の場合は、接合異常による冷却が不十分である可能性が高い、そのため、電動パワートレインシステム1000の許容出力領域を狭く制限することが好ましい。例えば、中・高出力動作領域で動作できないように、出力制限を設けるなどがある。一方、第二運転診断モードでは、比較的熱容量の大きい部品の接合異常による冷却不足の可能性はあるが、熱容量の小さい部品と比較して、余裕があるため、電動パワートレインシステム1000の許容出力領域は、第一出力制限よりも大きくし、例えば、高出力動作領域のみ動作できないように出力制限を設けなるなどがある。 In particular, in the first operation diagnosis mode, a joint abnormality of a component having a small heat capacity, that is, a heat transfer abnormality is determined. However, in the case of a component having a small heat capacity and a heat source, there is a possibility that cooling due to the joint abnormality is insufficient. Therefore, it is preferable to limit the allowable output area of the electric powertrain system 1000 narrowly. For example, there is an output restriction so that it cannot operate in the middle / high output operation region. On the other hand, in the second operation diagnosis mode, there is a possibility of insufficient cooling due to abnormal joining of parts having a relatively large heat capacity. However, since there is a margin compared to parts having a small heat capacity, the allowable output of the electric powertrain system 1000 The area is larger than the first output limit. For example, an output limit is provided so that only the high output operation area cannot be operated.
 以上のように、第一運転診断モードと第二運転診断モードの異なる接合部の異常判定結果に基づき、異なる出力制限を変更することで、緊急性の高い異常には、出力制限を厳しくし、比較的余裕のある異常には、出力制限を緩やかにすることで、安全性と運転性の両立を図ることが可能となる。つまり、急激に出力制限をかけることで、運転性を急激に低下することを避けることが可能となる。 As described above, by changing the different output limit based on the abnormality determination results of the different joints in the first operation diagnosis mode and the second operation diagnosis mode, the output limit is tightened for abnormalities with high urgency, For abnormalities with a relatively large margin, it is possible to achieve both safety and drivability by relaxing the output limit. That is, it is possible to avoid a drastic decrease in drivability by abruptly limiting the output.
 本発明の別の実施例としては、インバータとDC/DCコンバータを一体化構造とした電動パワートレインへの適用もある。図27は、本発明の別の実施例であり、インバータ1100とDC/DCコンバータ1600が一体構造となった場合の電動パワートレインの構成図である。図27において、DC/DCコンバータ1600と補助バッテリ1650以外は、図1の構成と同じである。DC/DCコンバータは、車両に搭載された小型モータなど補機付加に電力を供給するとともに補助バッテリ1650を充電する電力変換装置である。 As another embodiment of the present invention, there is application to an electric power train in which an inverter and a DC / DC converter are integrated. FIG. 27 shows another embodiment of the present invention, and is a configuration diagram of an electric power train when an inverter 1100 and a DC / DC converter 1600 are integrated. 27, except for the DC / DC converter 1600 and the auxiliary battery 1650, the configuration is the same as that of FIG. The DC / DC converter is a power conversion device that supplies power to auxiliary equipment addition such as a small motor mounted on a vehicle and charges an auxiliary battery 1650.
 図28は、図27のDC/DCコンバータ1600関連部分の詳細を示す図である。DC/DCコンバータ1600は、制御回路部1610とパワー回路部1620から構成され、制御回路1610の指令に基づき、パワー回路部1620は、電源装置200の高圧側の電圧を入力して、補助バッテリ1650へ低電圧として出力する。また、パワー回路部1620は、高圧側モジュール1621、トランス1622、低圧側モジュール1623、平滑回路1624を有しており、DC/DCコンバータ1600にて電圧変換する際に動作し、それぞれにて損失による発熱が生じる。このように、DC/DCコンバータ1600は、インバータ1100と同じように複数の発熱源を有している。また、それぞれは、複数の接触面によって実現される複数の熱伝達経路を介し、DC/DCコンバータ1600のケースや冷却水経路へ熱伝達するようになっている。 FIG. 28 is a diagram showing details of a portion related to the DC / DC converter 1600 of FIG. The DC / DC converter 1600 includes a control circuit unit 1610 and a power circuit unit 1620. Based on an instruction from the control circuit 1610, the power circuit unit 1620 inputs a voltage on the high voltage side of the power supply device 200, and the auxiliary battery 1650 Output as low voltage. The power circuit unit 1620 includes a high voltage side module 1621, a transformer 1622, a low voltage side module 1623, and a smoothing circuit 1624. The power circuit unit 1620 operates when voltage conversion is performed by the DC / DC converter 1600, and is caused by loss in each. An exotherm occurs. As described above, the DC / DC converter 1600 has a plurality of heat sources in the same manner as the inverter 1100. In addition, each of them is configured to transfer heat to the case of the DC / DC converter 1600 and the cooling water path through a plurality of heat transfer paths realized by a plurality of contact surfaces.
 以上のように、DC/DCコンバータ1600をインバータ1100と一体構造の構成とした場合も、モータ1200とインバータ1100を一体構造とした構成の場合と同じように、複数の発熱源、接合面による複数の熱伝達経路、熱容量の異なる複数の部品を有しており、同様の考え方によって、接合部の異常を判定することが可能となる。 As described above, when the DC / DC converter 1600 has a structure integrally formed with the inverter 1100, a plurality of heat sources and a plurality of joint surfaces are formed as in the case where the motor 1200 and the inverter 1100 are integrally structured. The heat transfer path and the plurality of parts having different heat capacities are included, and it is possible to determine the abnormality of the joint by the same concept.
 本発明の別の実施例としては、ハイブリッド電気自動車におけるモータと変速機を一体構造とした電動パワートレインに関しても、複数の発熱源と複数の熱伝達経路を構成しており、同様な考え方で熱異常診断を行うことが可能である。 As another embodiment of the present invention, a plurality of heat sources and a plurality of heat transfer paths are also configured for an electric power train in which a motor and a transmission are integrated in a hybrid electric vehicle. Abnormal diagnosis can be performed.
 図29は、本発明の別の実施例であり、ハイブリッド電気自動車の電動パワートレインの例である。図29のハイブリッド電気自動車の電動パワートレインは、従来の内燃機関2000、内燃機関2000を制御するエンジン制御装置2050と、モータ1200、モータ1200を駆動するインバータ1100、モータ1200・インバータ1100の制御を行うモータ制御装置1300が内燃機関2000とモータ1200の動力を伝達する変速装置2100が一体構造となっており、変速機ケース2150に接合されて搭載した例である。図29の構成図は、内燃機関2000、エンジン制御装置2050、変速機2100、変速機ケース2150以外は、図1と同じ構成で、同じような機能・動作を行う。 FIG. 29 shows another embodiment of the present invention, which is an example of an electric powertrain of a hybrid electric vehicle. The electric powertrain of the hybrid electric vehicle of FIG. 29 controls the conventional internal combustion engine 2000, an engine control device 2050 for controlling the internal combustion engine 2000, a motor 1200, an inverter 1100 for driving the motor 1200, a motor 1200 and an inverter 1100. This is an example in which the motor control device 1300 has a transmission 2100 that transmits the power of the internal combustion engine 2000 and the motor 1200 as an integral structure, and is joined and mounted to the transmission case 2150. The configuration diagram of FIG. 29 is the same as that of FIG. 1 except for the internal combustion engine 2000, the engine control device 2050, the transmission 2100, and the transmission case 2150, and performs the same functions and operations.
 図29にて分かるように、変速機ケース2150は、内燃機関2000、変速装置2100、モータ1200、インバータ1100と互いに接合された形態となり、互いに熱伝達されるようになっている。また、内燃機関2000、変速装置2100、モータ1200、インバータ1100は、それぞれ発熱源ともなっている。そして、それぞれは、複数の接触面によって実現される複数の熱伝達経路を介し、冷却水経路700や変速機の冷却媒体(図示していない)へ熱を逃がすようになっている。 29, the transmission case 2150 is joined to the internal combustion engine 2000, the transmission 2100, the motor 1200, and the inverter 1100 so that heat is transmitted to each other. Further, the internal combustion engine 2000, the transmission 2100, the motor 1200, and the inverter 1100 are also heat sources. Each of them is configured to release heat to the cooling water path 700 and a transmission cooling medium (not shown) through a plurality of heat transfer paths realized by a plurality of contact surfaces.
 以上のように、変速装置2100、インバータ1100などを一体構造の構成とした場合も、モータ1200とインバータ1100を一体構造とした構成の場合と同じように、複数の発熱源、接合面による複数の熱伝達経路、熱容量の異なる複数の部品を有しており、同様の考え方によって、接合部の異常を判定することが可能となる。 As described above, when the transmission 2100, the inverter 1100, and the like are configured as an integral structure, as in the configuration where the motor 1200 and the inverter 1100 are configured as an integral structure, a plurality of heat sources and a plurality of joint surfaces are used. It has a plurality of parts having different heat transfer paths and heat capacities, and it is possible to determine the abnormality of the joint by the same concept.
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、例えば、前記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。複数の診断モードとして、第一運転診断モードと、第二運転診断モードの二つの例について述べたが、三つ以上の運転診断モードを有するように構成してもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other. Two examples of the first operation diagnosis mode and the second operation diagnosis mode have been described as the plurality of diagnosis modes. However, three or more operation diagnosis modes may be provided.
 さらに、本発明の電動パワートレインシステムによれば、前記第一の運転診断モードでは、熱容量が比較的小さい部品の接合部の異常が診断でき、前記第二の運転診断モードでは、第一の運転診断モードとは異なる熱抵抗が比較的大きい部品の接合部の異常を診断でき、それぞれ異なる接合部の異常を診断することができるとともに、第一の運転診断モードで診断する熱容量が小さい部品の接合部は、第二の運転診断モードで診断する比較的熱容量の大きい部品の接合部と比較すると冷却機能の観点では重要な熱伝達経路であり、冷却機能の観点で重要な異常を第一の運転診断モードで診断し、それ以外を第二の運転診断モードで診断するため、重要度に応じて診断結果の表示を変更することができるという効果がある。 Furthermore, according to the electric powertrain system of the present invention, in the first operation diagnosis mode, it is possible to diagnose a joint abnormality of a component having a relatively small heat capacity, and in the second operation diagnosis mode, the first operation is performed. It is possible to diagnose abnormalities in the joints of parts with relatively large thermal resistance different from the diagnostic mode, and it is possible to diagnose abnormalities in different joints, as well as the joining of parts with low heat capacity diagnosed in the first operation diagnostic mode. This is a heat transfer path that is important in terms of cooling function compared to the joints of parts with relatively large heat capacity that are diagnosed in the second operation diagnosis mode. Since the diagnosis is performed in the diagnosis mode and the others are diagnosed in the second operation diagnosis mode, there is an effect that the display of the diagnosis result can be changed according to the importance.
 さらに、本発明の電動パワートレインシステムによれば、前記第一の運転診断モードと前記第二の運転診断モードのそれぞれの診断結果に基づき、前記電動パワートレインの出力制限を行うことで、接合部異常による温度上昇を抑制し、部品の破壊を防ぐことができる。つまり、冷却機能の観点で、重要な接合部は、第一の運転診断モードで診断され、それ以外は第二の運転診断モードで診断することから、第一の運転診断モードで異常と診断した場合は、第二の運転診断モードで異常と診断した場合と比較して、冷却機能の観点で重要であり、発熱を抑えるために、より厳しい出力制限をかけることで、安全性を重視することができ、第二の運転診断モードで異常と診断した場合は、運転性を重視するように電動パワートレインの出力制限を比較的緩やかに設定するなど、異常の状態に応じた出力制限を変更して、安全性と運転性の両者を考慮することができるという効果がある。 Furthermore, according to the electric powertrain system of the present invention, the output of the electric powertrain is limited based on the diagnosis results of the first operation diagnosis mode and the second operation diagnosis mode, so that the joint portion Temperature rise due to abnormalities can be suppressed and parts can be prevented from being destroyed. In other words, from the viewpoint of the cooling function, important joints are diagnosed in the first operation diagnosis mode, and other diagnosis is performed in the second operation diagnosis mode. In this case, it is more important from the viewpoint of the cooling function than when diagnosing an abnormality in the second operation diagnosis mode. If an abnormality is diagnosed in the second driving diagnosis mode, change the output limit according to the abnormal condition, such as setting the output limit of the electric powertrain relatively gently so that driving performance is important. Thus, there is an effect that both safety and drivability can be considered.
 本発明の活用例として、この電動パワートレインシステムを用いてハイブリッド車両を構成することができ、内燃機関としてガソリンエンジンやディーゼルエンジンを用いることができ、ハイブリッド鉄道車両の用途にも適用できる。 As an application example of the present invention, a hybrid vehicle can be configured using this electric powertrain system, and a gasoline engine or a diesel engine can be used as an internal combustion engine, which can also be applied to a hybrid railway vehicle.
 100 出力装置、200 電源装置(バッテリ)、300 車両制御装置、400 アクセル開度センサ、500 車速度センサ、600 冷却装置、700 冷却水経路、800 冷却水温度センサ、900 周辺温度センサ、
1000 電動パワートレインシステム、
1100 インバータ、1110 インバータ内ACバスバー、1120 DCバスバー、1130 パワーモジュール、1140 キャパシタ、1150 インバータケース、1200 モータ、1210 ロータ、1220 軸受、1230 磁石、1240 コイル、1250 モータステータ、1260 モータケース、1270 回転軸、
1300 モータ制御装置、1310 診断制御部、1320 モータ制御部、
1400 温度センサ、
1500 モータ・インバータ間バスバー、
1600 DC/DCコンバータ、1650 補助バッテリ、
1700 バスバー/キャパシタ間モールド熱抵抗、1750 モータ/インバータ間接合熱抵抗、
1800 表示装置、1850 記憶装置、
1900 通信装置、
2000 内燃機関、2050 エンジン制御装置、
2100 変速装置、2150 変速機ケース
100 output device, 200 power supply device (battery), 300 vehicle control device, 400 accelerator opening sensor, 500 vehicle speed sensor, 600 cooling device, 700 cooling water path, 800 cooling water temperature sensor, 900 ambient temperature sensor,
1000 electric powertrain system,
1100 Inverter, 1110 In-inverter AC bus bar, 1120 DC bus bar, 1130 power module, 1140 capacitor, 1150 inverter case, 1200 motor, 1210 rotor, 1220 bearing, 1230 magnet, 1240 coil, 1250 motor stator, 1260 motor case, 1270 Rotating shaft ,
1300 motor control device, 1310 diagnosis control unit, 1320 motor control unit,
1400 temperature sensor,
1500 Bus bar between motor and inverter,
1600 DC / DC converter, 1650 auxiliary battery,
1700 Mold bar thermal resistance between bus bar and capacitor, 1750 Motor / inverter junction thermal resistance,
1800 display device, 1850 storage device,
1900 communication device,
2000 Internal combustion engine, 2050 Engine control device,
2100 Transmission, 2150 Transmission case

Claims (15)

  1.  発熱源を有する複数の部品が、接触面を有して一体構造となった電動車両の駆動システムである電動パワートレインであって、
     複数の温度センサと、該温度センサの温度に基づいて前記複数の部品の熱伝達経路を模擬した前記電動パワートレインの熱伝達モデルを備える診断制御部とを有し、
     前記診断制御部は、前記熱伝達モデルを用いて前記複数の部品の温度を推定し、複数の運転診断モードで熱伝達の異常の有無を判定することを特徴とする電動パワートレインシステム。
    An electric powertrain that is a drive system for an electric vehicle in which a plurality of components having a heat source has a contact surface and has an integrated structure,
    A plurality of temperature sensors, and a diagnostic control unit including a heat transfer model of the electric power train that simulates heat transfer paths of the plurality of parts based on the temperature of the temperature sensors;
    The electric powertrain system, wherein the diagnosis control unit estimates temperatures of the plurality of parts using the heat transfer model and determines whether there is an abnormality in heat transfer in a plurality of operation diagnosis modes.
  2.  前記電動パワートレインは、前記診断制御部の判定結果を出力する出力装置を備えることを特徴とする請求項1に記載の電動パワートレイン。 The electric power train according to claim 1, wherein the electric power train includes an output device that outputs a determination result of the diagnosis control unit.
  3.  前記診断制御部は、推定した前記複数の部品の温度と、前記複数の温度センサの計測温度とを比較し推定値と実測値の偏差が大きい部位近傍の熱伝達経路となる接合部が異常であるとの判定を行うことを特徴とする請求項1に記載の電動パワートレイン。 The diagnosis control unit compares the estimated temperatures of the plurality of parts with the measured temperatures of the plurality of temperature sensors, and the joint portion serving as a heat transfer path in the vicinity of a portion where the deviation between the estimated value and the actual measurement value is large is abnormal. The electric power train according to claim 1, wherein it is determined that the electric power train is present.
  4.  前記複数の運転診断モードの一つは、前記電動パワートレインが冷機状態の第一運転診断モードであることを特徴とする請求項1に記載の電動パワートレインシステム。 The electric powertrain system according to claim 1, wherein one of the plurality of operation diagnosis modes is a first operation diagnosis mode in which the electric powertrain is in a cold state.
  5.  前記複数の運転診断モードの一つは、前記第一運転診断モードであり、前記電動パワートレインへの駆動指令が前記電動パワートレインの連続運転可能な駆動指令よりも大きい出力を含むことを特徴とする請求項4に記載の電動パワートレインシステム。 One of the plurality of operation diagnosis modes is the first operation diagnosis mode, wherein a drive command to the electric power train includes an output larger than a drive command capable of continuously operating the electric power train. The electric powertrain system according to claim 4.
  6.  前記複数の運転診断モードの他の一つは、前記電動パワートレインが暖機状態の第二運転診断モードであるであることを特徴とする請求項1に記載の電動パワートレインシステム。 The electric powertrain system according to claim 1, wherein the other one of the plurality of operation diagnosis modes is a second operation diagnosis mode in which the electric powertrain is in a warm-up state.
  7.  前記複数の運転診断モードの他の一つは、前記第二運転診断モードであり、前記電動パワートレインへの駆動指令が前記電動パワートレインの連続運転可能な駆動指令以下の出力であることを特徴とする請求項6に記載の電動パワートレインシステム。 Another one of the plurality of operation diagnosis modes is the second operation diagnosis mode, wherein a drive command to the electric power train is an output equal to or lower than a drive command capable of continuously operating the electric power train. The electric powertrain system according to claim 6.
  8.  前記複数の部品の一つは、モータとインバータが少なくとも一つ以上の接触面を有して連結固定され一体構造となったことを特徴とする請求項1に記載の電動パワートレイン。 2. The electric power train according to claim 1, wherein one of the plurality of parts has an integrated structure in which a motor and an inverter are connected and fixed with at least one contact surface.
  9.  前記複数の温度センサは、少なくとも前記電動パワートレインの周辺温度と、前記電動パワートレインを冷却する冷媒温度と、前記電動パワートレインを構成する前記複数の部品の温度を検出することを特徴とする請求項1に記載の電動パワートレインシステム。 The plurality of temperature sensors detect at least an ambient temperature of the electric power train, a refrigerant temperature that cools the electric power train, and temperatures of the parts that constitute the electric power train. Item 4. The electric powertrain system according to Item 1.
  10.  前記複数の温度センサは、前記電動パワートレインを構成する前記インバータの構成部品であるキャパシタ温度、バスバー温度、インバータケース温度、前記モータの構成部品であるコイル温度、ステータ温度、モータケース温度を測定することを特徴とする請求項1に記載の電動パワートレインシステム。 The plurality of temperature sensors measure a capacitor temperature, a bus bar temperature, an inverter case temperature, a coil temperature, a stator temperature, and a motor case temperature, which are component parts of the inverter constituting the electric power train. The electric powertrain system according to claim 1.
  11.  前記冷機状態の第一運転診断モードは、前記暖機状態の第二運転診断モードよりも短時間で診断を行うことを特徴とする請求項4に記載の電動パワートレインシステム。 The electric powertrain system according to claim 4, wherein the first operation diagnosis mode in the cold state performs diagnosis in a shorter time than the second operation diagnosis mode in the warm-up state.
  12.  前記診断制御部による異常判定結果に基づき、前記電動パワートレインへの指令を制限することを特徴とする請求項1に記載の電動パワートレインシステム。 The electric power train system according to claim 1, wherein a command to the electric power train is limited based on an abnormality determination result by the diagnosis control unit.
  13.  前記出力装置は、前記診断制御部による異常判定結果に基づき、警告を表示する、あるいは警報を発することを特徴とする請求項2に記載の電動パワートレインシステム。 3. The electric powertrain system according to claim 2, wherein the output device displays a warning or issues a warning based on an abnormality determination result by the diagnosis control unit.
  14.  前記熱伝達モデルは、前記電動パワートレインへの駆動指令を入力とし、前記電動パワートレインの各部分の温度を推定することを特徴とする請求項1に記載の電動パワートレインシステム。 The electric powertrain system according to claim 1, wherein the heat transfer model receives a drive command to the electric powertrain and estimates a temperature of each part of the electric powertrain.
  15.  前記複数の運転診断モードによる異常判定結果に基づき、前記電動パワートレインへの指令を制限することを特徴とする請求項1に記載の電動パワートレインシステム。 The electric power train system according to claim 1, wherein a command to the electric power train is limited based on an abnormality determination result in the plurality of driving diagnosis modes.
PCT/JP2013/069087 2012-08-08 2013-07-12 Electric powertrain system WO2014024635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-175619 2012-08-08
JP2012175619A JP2014036475A (en) 2012-08-08 2012-08-08 Electric power train system

Publications (1)

Publication Number Publication Date
WO2014024635A1 true WO2014024635A1 (en) 2014-02-13

Family

ID=50067871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069087 WO2014024635A1 (en) 2012-08-08 2013-07-12 Electric powertrain system

Country Status (2)

Country Link
JP (1) JP2014036475A (en)
WO (1) WO2014024635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096663A (en) * 2014-11-14 2016-05-26 日産自動車株式会社 Rotary electric machine system
WO2016143679A1 (en) * 2015-03-11 2016-09-15 日立オートモティブシステムズ株式会社 Battery management device, battery monitoring circuit, control system
CN111510049A (en) * 2019-01-29 2020-08-07 三菱电机株式会社 Temperature estimation device and temperature estimation method
CN115406558A (en) * 2022-07-22 2022-11-29 中国第一汽车股份有限公司 Method and device for determining the temperature of a drive train of a vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862714B2 (en) * 2016-08-08 2021-04-21 横浜ゴム株式会社 Mold monitoring device
JP7006157B2 (en) 2017-11-13 2022-01-24 株式会社デンソー Motor control device
JP6697794B1 (en) * 2018-12-26 2020-05-27 三菱電機株式会社 Control device
JP7113972B2 (en) * 2019-06-03 2022-08-05 三菱電機株式会社 motor device
JP7492022B2 (en) 2020-10-20 2024-05-28 ファナック株式会社 Parameter setting device for setting the parameters of the electric motor model
WO2022153587A1 (en) * 2021-01-12 2022-07-21 日立Astemo株式会社 Control device and control method for dynamo-electric machine
JP7418666B1 (en) 2023-02-08 2024-01-19 三菱電機株式会社 Cooling system and cooling control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JP2005269832A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Temperature-detecting device and program for temperature detection
JP2007112188A (en) * 2005-10-18 2007-05-10 Mitsubishi Electric Corp Electric power steering device
JP2008005615A (en) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd Motor output control unit of electric vehicle
JP2009225541A (en) * 2008-03-14 2009-10-01 Toshiba Elevator Co Ltd Life diagnosis apparatus of power conversion apparatus
JP2010074988A (en) * 2008-09-19 2010-04-02 Toyota Motor Corp Controller for in-wheel motor
JP2011097812A (en) * 2009-11-02 2011-05-12 Toshiba Corp Inverter device
JP2011216718A (en) * 2010-03-31 2011-10-27 Toshiba Corp Power supply device for electric vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654572A (en) * 1992-07-31 1994-02-25 Omron Corp Heat protection apparatus for motor
JP2005269832A (en) * 2004-03-19 2005-09-29 Nissan Motor Co Ltd Temperature-detecting device and program for temperature detection
JP2007112188A (en) * 2005-10-18 2007-05-10 Mitsubishi Electric Corp Electric power steering device
JP2008005615A (en) * 2006-06-22 2008-01-10 Nissan Motor Co Ltd Motor output control unit of electric vehicle
JP2009225541A (en) * 2008-03-14 2009-10-01 Toshiba Elevator Co Ltd Life diagnosis apparatus of power conversion apparatus
JP2010074988A (en) * 2008-09-19 2010-04-02 Toyota Motor Corp Controller for in-wheel motor
JP2011097812A (en) * 2009-11-02 2011-05-12 Toshiba Corp Inverter device
JP2011216718A (en) * 2010-03-31 2011-10-27 Toshiba Corp Power supply device for electric vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096663A (en) * 2014-11-14 2016-05-26 日産自動車株式会社 Rotary electric machine system
WO2016143679A1 (en) * 2015-03-11 2016-09-15 日立オートモティブシステムズ株式会社 Battery management device, battery monitoring circuit, control system
JPWO2016143679A1 (en) * 2015-03-11 2017-11-30 日立オートモティブシステムズ株式会社 Battery management device, battery monitoring circuit, control system
CN107430165A (en) * 2015-03-11 2017-12-01 日立汽车***株式会社 Cell managing device, battery monitor circuit, control system
US10386419B2 (en) 2015-03-11 2019-08-20 Hitachi Automotive Systems, Ltd. Battery management device, battery monitoring circuit, and control system
CN107430165B (en) * 2015-03-11 2020-01-07 日立汽车***株式会社 Battery management device, battery monitoring circuit, and control system
CN111510049A (en) * 2019-01-29 2020-08-07 三菱电机株式会社 Temperature estimation device and temperature estimation method
CN111510049B (en) * 2019-01-29 2024-01-05 三菱电机株式会社 Temperature estimation device and temperature estimation method
CN115406558A (en) * 2022-07-22 2022-11-29 中国第一汽车股份有限公司 Method and device for determining the temperature of a drive train of a vehicle

Also Published As

Publication number Publication date
JP2014036475A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2014024635A1 (en) Electric powertrain system
JP4591246B2 (en) Power converter
JP6239020B2 (en) Control device and control method for electric vehicle
US7484377B2 (en) Method and apparatus for cooling system failure detection
CN103022975B (en) The coil overheat protection device of motor and the control device of motor
CN109935867B (en) Method and system for diagnosing a temperature sensor failure of a fuel cell
JP5378264B2 (en) Electric vehicle inverter cooling system
US20140067323A1 (en) Battery thermal system and diagnostic method
WO2014083963A1 (en) Motor, control device and motor drive device
JP4634942B2 (en) Electric vehicle control device
US20140062373A1 (en) Motor driving device and method of protecting motor driving device
JP2014187789A (en) Motor drive device having abnormality detection function
JP2003134795A (en) Fault sensing system
WO2015029686A1 (en) Sensor abnormality determining apparatus
BR102014006156B1 (en) ELECTRIC MOTOR DRIVING SYSTEM UNDERSTANDING FAN AND PROCESSOR AND METHOD FOR THE AUTOMATIC IMPLEMENTATION OF DIAGNOSTICS AND PROGNOSTICS FOR DRIVES
JP6012506B2 (en) Cooling fan motor / inverter system for vehicle, control method and program thereof
CN108548570B (en) Coolant flow estimation method, coolant temperature estimation device, coolant temperature estimation system and vehicle
CN101373921A (en) Generator-motor apparatus, drive system including generator-motor apparatus, and computer-readable recording medium
JP6299368B2 (en) Semiconductor device temperature estimation device
JP5303457B2 (en) Electric drivetrain thermal protection system
JP2018117400A (en) Driving device for vehicle, and vehicle
CN113655356A (en) Method and system for estimating junction temperature of power semiconductor device of power module
WO2012079390A1 (en) Method for measuring temperature of permanent magnet synchronous motor of hybrid power automobile
KR20180134189A (en) Plug-in vehicle and method of controlling thereof
US9935527B2 (en) Temperature estimation apparatus for rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828113

Country of ref document: EP

Kind code of ref document: A1