WO2014024556A1 - 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置 - Google Patents

微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置 Download PDF

Info

Publication number
WO2014024556A1
WO2014024556A1 PCT/JP2013/065586 JP2013065586W WO2014024556A1 WO 2014024556 A1 WO2014024556 A1 WO 2014024556A1 JP 2013065586 W JP2013065586 W JP 2013065586W WO 2014024556 A1 WO2014024556 A1 WO 2014024556A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminar flow
difference
light
region
detector
Prior art date
Application number
PCT/JP2013/065586
Other languages
English (en)
French (fr)
Inventor
尚 新田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201380040889.XA priority Critical patent/CN104508455B/zh
Priority to EP13828223.1A priority patent/EP2884257B1/en
Priority to US14/418,711 priority patent/US9417173B2/en
Priority to JP2014529338A priority patent/JP6274104B2/ja
Publication of WO2014024556A1 publication Critical patent/WO2014024556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/008Determining flow properties indirectly by measuring other parameters of the system optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1415Control of particle position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4792Polarisation of scatter light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6491Measuring fluorescence and transmission; Correcting inner filter effect
    • G01N2021/6493Measuring fluorescence and transmission; Correcting inner filter effect by alternating fluorescence/transmission or fluorescence/reflection

Definitions

  • the present technology relates to a laminar flow monitoring method, a microparticle analysis method, and a microparticle measurement device in a microparticle measurement device. More specifically, the present invention relates to a laminar flow monitoring method and the like for detecting a liquid feeding abnormality by determining a liquid feeding state of a laminar flow in a flow channel formed in a flow cell, a microchip, or the like in a microparticle measuring apparatus.
  • Microparticle measurement that detects the fluorescence and scattered light generated from microparticles by forming a laminar flow containing microparticles in a flow path formed in a flow cell, microchip, etc., and irradiating the microparticles in the laminar flow with light
  • the device is known.
  • the optical properties of microparticles such as cells and beads can be measured and analyzed based on the intensity or spectrum of the detected fluorescence or scattered light.
  • a laminar flow is formed so that microparticles flow in the approximate center of the flow path.
  • a method of focusing a liquid containing microparticles at the center of the flow path by forming a sheath flow an acoustic focusing method of concentrating the microparticles at the center of the flow path by sound energy, and a combination thereof Etc.
  • dust or bubbles enter the flow path, the laminar flow will be disturbed, and the flow positions of individual microparticles in the flow path will vary, making it impossible to perform accurate measurements, resulting in problems with data reliability. There was a case.
  • noise generated from dust and bubbles mixed in the flow path may reduce the accuracy of data.
  • Patent Literature 1 and Patent Literature 2 disclose technologies for suppressing measurement errors due to variations in the flow position of microparticles in a flow path.
  • detection light sintered light
  • detection light scattered light
  • side scattered light or back scattered light through a light splitter
  • a position shift between the center of the excitation light and the center of the sheath flow is detected from the detection position, and the position of the flow cell is adjusted so that the position shift falls within a predetermined range.
  • Patent Document 2 describes a technique for detecting position information of microparticles using a change in deflection angle generated in scattered light generated from the microparticles and adjusting the position of the flow cell or the focus position of the excitation light. Yes.
  • the main purpose of this technology is to provide a technology that can automatically determine the liquid feed state of the laminar flow in the flow path in order to ensure the reliability of the data.
  • the present technology receives an S-polarized component separated from an irradiation procedure for irradiating light on a laminar flow and scattered light generated from the laminar flow and given astigmatism by a detector, Laminar flow monitoring in a microparticle measuring apparatus, comprising: a position detection procedure for acquiring light reception position information of the S-polarized light component in the detector; and a determination procedure for determining the state of the laminar flow based on the light reception position information.
  • a position detection procedure a detector in which a light receiving surface is divided into a plurality of regions may be used as the detector.
  • a detector in which a light receiving surface is divided into four regions of region A, region B, region C, and region D as a detector is used as the detector, and the light receiving position
  • a difference ⁇ 1 (A ⁇ C) between detection values of the region A and the region C not adjacent to the region A may be acquired.
  • a + C)-(B + D) A quadrant photodiode is preferably used as the detector.
  • the state of the laminar flow can be determined based on the acquired difference ⁇ 1 and / or the difference ⁇ 2. More specifically, in the determination procedure, the laminar flow is determined to be abnormal when the difference ⁇ 1 and / or the difference ⁇ 2 is outside a predetermined range, and the difference ⁇ 1 and / or the difference ⁇ 2 is determined to be within the predetermined range. If it is included, the laminar flow is determined to be normal. More preferably, the laminar flow is determined to be abnormal when the acquisition frequency of the difference ⁇ 1 and / or the difference ⁇ 2 outside the predetermined range exceeds a predetermined frequency.
  • the laminar flow monitoring method includes a light detection procedure for detecting light generated from the laminar flow including microparticles, and an analysis of optical characteristics of the microparticles based on the light intensity information acquired in the light detection procedure.
  • An analysis procedure for obtaining a result, wherein, in the analysis procedure, only the intensity information acquired while the laminar flow is determined to be normal is extracted to obtain the analysis result. Is possible.
  • the present technology includes a light irradiation unit that irradiates light to the laminar flow, a first spectroscopic element that separates scattered light generated from the laminar flow into an S-polarized component and a P-polarized component, and receives the S-polarized component.
  • An S-polarized light detector an astigmatism element disposed between the first spectroscopic element and the S-polarized light detector, which gives astigmatism to the S-polarized light component, and an output from the S-polarized light detector
  • a determination unit that acquires light reception position information of the S-polarized component and determines the state of the laminar flow based on the light reception position information.
  • a cylindrical lens is preferably used for the astigmatism element.
  • the S-polarization detector has a light receiving surface divided into four regions of a region A, a region B, a region C, and a region D
  • the determination unit uses the light receiving position information as the light receiving position information.
  • a difference ⁇ 1 (A ⁇ C) between detection values of the area A and the area C not adjacent to the area A may be acquired.
  • the determination unit includes, as the light receiving position information, a sum of detection values of the areas A and C (A + C), a sum of detection values of the areas B and D (B + D), The difference ⁇ 2 ((A + C) ⁇ (B + D)) may be acquired.
  • the determination unit may determine the state of the laminar flow based on the acquired difference ⁇ 1 and / or the difference ⁇ 2. More specifically, the determination unit determines that the laminar flow is abnormal when the difference ⁇ 1 and / or the difference ⁇ 2 is outside a predetermined range, and the difference ⁇ 1 and / or the difference ⁇ 2 is the predetermined range. If it is included, the laminar flow may be determined to be normal.
  • the microparticle measurement apparatus according to the present technology preferably includes an output unit, and is configured to display information on the difference ⁇ 1 and / or the difference ⁇ 2 on the output unit.
  • the microparticle measurement device is configured to automatically stop when the determination unit presents the abnormality determination of the laminar flow by the output unit or when the determination unit determines abnormality of the laminar flow. It is preferable to make it.
  • the fine particle measuring apparatus detects a second spectroscopic element that separates light generated from the laminar flow into the scattered light and fluorescence, a P polarization detector that detects the P polarization component, and the fluorescence. And a fluorescence detector.
  • the microparticle measurement apparatus includes a plurality of independent light receiving devices that include a third spectroscopic element that splits the fluorescence, and that detects the fluorescence split by the third spectroscopic element in the fluorescence detector. By arranging the elements, it can be configured as a spectral microparticle measuring apparatus.
  • microparticles widely include living body-related microparticles such as cells, microorganisms, and liposomes, or synthetic particles such as latex particles, gel particles, and industrial particles.
  • Biologically relevant microparticles include chromosomes, liposomes, mitochondria, organelles (organelles) that constitute various cells.
  • Cells include animal cells (such as blood cells) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • biologically relevant microparticles may include biologically relevant polymers such as nucleic acids, proteins, and complexes thereof.
  • the industrial particles may be, for example, an organic or inorganic polymer material, a metal, or the like.
  • Organic polymer materials include polystyrene, styrene / divinylbenzene, polymethyl methacrylate, and the like.
  • Inorganic polymer materials include glass, silica, magnetic materials, and the like.
  • Metals include gold colloid, aluminum and the like.
  • the shape of these fine particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
  • This technology provides a technology that can automatically determine the state of the laminar flow in the flow path to ensure data reliability.
  • FIG. It is a figure for demonstrating the structure of the measurement part of the microparticle measuring apparatus which concerns on this technique. It is a figure for demonstrating the structure of the light-receiving surface of the S polarization detector 51.
  • FIG. It is a figure for demonstrating the laminar flow L which flows through the flow path C, and the laser spot S of the excitation light 1 irradiated to the laminar flow L.
  • FIG. It is a graph which illustrates the change of difference (DELTA) 1 and difference (DELTA) 2 when the flow position of the microparticle P is moved to a Z-axis direction. It is a graph which illustrates the change of difference delta 1 and difference delta 2 when the flow position of fine particle P is moved to the direction of the X-axis.
  • FIG. 1 is a diagram illustrating the configuration of the measuring unit of the microparticle measuring device according to the present technology.
  • the fine particle measuring apparatus according to the present technology is generally composed of a measuring unit shown in the figure and a determining unit (not shown).
  • the fine particle measurement apparatus may include a control unit including a CPU and the like for controlling the measurement unit, the determination unit, and the like.
  • the measurement unit includes a light irradiation unit that irradiates the laminar flow that flows through the flow path C with the excitation light 1 and a light detection unit that detects the scattered light 2 and the fluorescence 3 generated from the laminar flow.
  • the symbol P in the figure indicates the microparticles included in the laminar flow.
  • the light irradiation unit condenses the excitation light 11 with respect to the light source 11 that emits the excitation light 1 and the laminar flow that flows through the flow path C formed in the flow cell and the microchip.
  • the objective lens 11 is configured to include.
  • the light source 11 is appropriately selected from a laser diode, an SHG (Second Harmonic Generation) laser, a solid-state laser, a gas laser, a high-intensity LED (Light Emitting Diode), and the like according to the purpose of measurement.
  • Optical elements other than the light source 11 and the objective lens 12 may be arranged in the light irradiation unit as necessary.
  • the light detection unit includes a condenser lens 21, spectral elements 22, 23, 31, a fluorescence detector 32, a P polarization detector 41, an S polarization detector 51, and an astigmatism element 52. It consists of
  • the condensing lens 11 condenses the scattered light 2 and the fluorescence 3 generated from the laminar flow irradiated with the excitation light 1 and / or the fine particles P in the laminar flow.
  • the scattered light 2 may be various kinds of scattered light such as forward scattered light, side scattered light, Rayleigh scattering, and Mie scattering.
  • the fluorescence 3 may be fluorescence generated from the microparticles P themselves or fluorescence generated from a fluorescent substance labeled on the microparticles P.
  • the spectroscopic element 22 separates the scattered light 2 and the fluorescence 3 collected by the condenser lens 11.
  • the spectroscopic element 22 uses a dichroic mirror that reflects only light of a specific wavelength and transmits other wavelength components. In the microparticle measuring apparatus according to the present embodiment, the scattered light 2 is reflected, and the fluorescence 3 Is used.
  • the spectroscopic element 31 is a prism, a grating mirror, or the like, and further splits the fluorescence 3 separated by the spectroscopic element 22 and projects it onto the fluorescence detector 32.
  • the fluorescence detector 32 detects the fluorescence 3 separated by the spectroscopic element 22.
  • a plurality of independent light receiving elements are arranged in the fluorescence detector 32, and each light receiving element detects light in a wavelength region that is spectrally projected from the spectroscopic element 31 and projected from the fluorescence 3.
  • a PMT array in which 32-channel PMTs (photo ⁇ ⁇ ⁇ ⁇ multiplier tubes) are arranged one-dimensionally as light receiving elements is used as the fluorescence detector 32.
  • the fluorescence detector 32 converts the detected intensity information of the fluorescence 3 into an electrical signal and outputs it to the calculation unit. In the calculation unit, the fluorescence characteristics of the microparticles P are analyzed based on the electric signal.
  • a photodiode array or a two-dimensional light receiving element such as a CCD and a CMOS may be used.
  • Fluorescence 3 generated from the fine particles P can be acquired as a spectrum by using a light receiving element array or a two-dimensional light receiving element for the fluorescence detector 32 in combination with the spectroscopic element 31.
  • the P polarization detector 41 detects the P polarization component 4 contained in the scattered light 2 separated by the spectroscopic element 22.
  • the P polarization detector 41 for example, a PD (Photo diode), a CCD (Charge Coupled Device), or a PMT (Photo-Multiplier Tube) can be used.
  • the P-polarized light detector 41 converts the detected intensity information of the P-polarized component 4 into an electric signal and outputs it to the calculation unit. In the calculation unit, the scattered light characteristics of the microparticles P are analyzed based on the electric signal. From the intensity information of the P-polarized component 4, analysis on the size, internal structure and the like of the microparticle P can be performed.
  • the spectroscopic element 23 separates incident non-polarized light into two polarized lights whose vibration directions are orthogonal to each other, and separates the scattered light 2 separated by the spectroscopic element 22 into a P-polarized component 4 and an S-polarized component 5. . Specifically, the spectroscopic element 23 transmits the P polarization component 4 and reflects the S polarization component 5 of the incident scattered light 2.
  • the S polarization detector 51 detects the S polarization component 5 separated by the spectroscopic element 23, and its light receiving surface is divided into a plurality of regions.
  • a quadrant photodiode in which the light receiving surface is divided into four regions of region A, region B, region C, and region D is used. Yes.
  • the astigmatism element 52 is a cylindrical lens disposed between the spectroscopic element 23 and the S-polarized light detector 51, and gives astigmatism to the S-polarized light component 5 transmitted toward the S-polarized light detector 51.
  • the detection signal of the S polarization detector 51 is output to the determination unit.
  • the determination unit receives the output and acquires information on the light receiving position (light receiving position information) on the light receiving surface of the S polarization detector 51 of the S polarization component 5 that has caused astigmatism.
  • the light receiving position (imaging pattern) of the S polarization component 5 on the light receiving surface of the S polarization detector 51 will be described in detail later.
  • the determination unit performs a process of determining a laminar flow state that flows through the flow path C based on the light reception position information of the S-polarized light component 5 on the light-receiving surface of the S-polarization detector 51.
  • the determination unit includes a hard disk, a CPU, a memory, and the like in which a program for executing this processing and an OS are stored.
  • the microparticle measuring apparatus which concerns on this technique is provided with the output part which shows a user the state of a laminar flow, and its determination result.
  • a conventionally known output device such as a display, a printer, or a speaker is used.
  • the determination unit determines whether a plurality of regions provided on the light-receiving surface of the S-polarization detector 51 are based on light-receiving position information of the S-polarized component 5 on the light-receiving surface of the S-polarization detector 51 To obtain the difference between the detected values. Specifically, the difference ⁇ 1 (AC) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) for the detection values in the regions A, B, C, and D of the quadrant photodiode shown in FIG. To get.
  • FIG. 3 shows a laminar flow L flowing through the channel C, fine particles P in the laminar flow L, and a laser spot S of the excitation light 1 irradiated to the laminar flow L.
  • the irradiation direction of the excitation light 1 with respect to the laminar flow L is defined as the X-axis direction
  • the liquid feeding direction of the laminar flow L is defined as the Y-axis direction.
  • a direction perpendicular to the X-axis direction and the Y-axis direction is taken as a Z-axis direction.
  • the present inventors can acquire the positional information of the microparticles P in the Z-axis direction from the difference ⁇ 1 (AC), and the microparticles P in the X-axis direction from the difference ⁇ 2 ((A + C) ⁇ (B + D)). It has been found that position information can be acquired.
  • the fine particle P indicates the center position of the laser spot S in FIG.
  • the imaging pattern is, for example, in FIG. The image is shown as a solid line.
  • the imaging pattern of the S-polarized component 5 changes corresponding to the flow position of the fine particles P, and the ratio of the S-polarized component 5 projected onto the areas A to D corresponds to the flow position of the fine particles P. And change. For this reason, the pattern of detection values of the S-polarized component 5 in the regions A to D directly reflects the flow position of the microparticles P.
  • FIG. 4 shows changes in the difference ⁇ 1 (A ⁇ C) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) when the flow cell through which the fine particles P flow is moved in the Z-axis direction by the stepping motor.
  • the vertical axis represents the average value of the differences ⁇ 1 and ⁇ 2.
  • the horizontal axis shows the amount of movement of the stepping motor in micrometer units.
  • the moving amount of the stepping motor can be calculated as an actual length (micrometer unit) from the number of pulses (driving amount).
  • the origin (zero) as the movement start position of the flow cell may be arbitrary, but is preferably a position where the particle can be most suitably measured under conditions where the laminar flow is normally formed.
  • a position where the intensity of scattered light or fluorescence detected from the particles P is highest, a position where the CV value of the intensity of scattered light or fluorescence is lowest, or the like can be used.
  • FIG. 4 shows a calculation straight line for calculating the position information of the microparticles P in the Z-axis direction from the difference ⁇ 1 in units of micrometers.
  • FIG. 5 shows changes in the difference ⁇ 1 (AC) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) when the flow cell through which the fine particles P flow is moved in the X-axis direction by the stepping motor. Only the difference ⁇ 2 changes in correlation with the amount of movement in the X-axis direction. From this, it can be seen that position information in the X-axis direction of the fine particles P can be obtained from the difference ⁇ 2. It can also be confirmed that there is a linear relationship between the amount of movement in the X-axis direction and the difference ⁇ 2.
  • FIG. 6B shows a calculation line for calculating the position information of the microparticles P in the X-axis direction from the difference ⁇ 2 in units of micrometers.
  • the flow positions of the fine particles P vary due to the disturbance of the laminar flow L. Therefore, the variation in the flow position of the fine particles P reflects the liquid feeding state of the laminar flow L. That is, the position information of the microparticles P obtained from the difference ⁇ 1 (A ⁇ C) and the difference ⁇ 2 ((A + C) ⁇ (B + D)) can be used as information representing the liquid feeding state of the laminar flow L.
  • various calculation processes such as the above-described difference between detection values and position information of the fine particles P can be performed by a unit including a CPU or the like that can perform such calculation processes. Examples of the unit that can include the CPU that can perform the calculation process include the measurement unit and the determination unit described above.
  • the difference ⁇ 1 and the difference ⁇ 2 are calculated from the detected values of the S-polarized light component 5 generated from the laminar flow L that are equal to or larger than a certain threshold, the flow position of the microparticles P is calculated, and plotted for a certain time. It is a graph.
  • the calculation of the flow position from the difference ⁇ 1 and the difference ⁇ 2 was performed using the calculation straight line shown in FIG.
  • the horizontal axis indicates time
  • the vertical axis indicates position information in the Z-axis or X-axis direction in units of micrometers.
  • FIG. C the horizontal axis indicates the Z-axis direction
  • the vertical axis indicates the position information in the X-axis direction in units of micrometers.
  • the color of the plot indicates the density (population) of the microparticles.
  • FIG. 7 shows an example in which an appropriate laminar flow L that is stable from the start to the end of measurement is formed. From FIG. C, it can be seen that each microparticle P flows in a concentrated manner in the vicinity of the origin. Moreover, it can be seen from FIGS. A and B that each microparticle P flows stably around the origin from the start to the end of measurement.
  • 8 and 9 show an example in which the laminar flow L is disturbed.
  • 8A and 8B show a certain tendency with respect to the time axis, but the flow positions of the microparticles P vary in the negative direction of the X axis.
  • FIG. 8C it turns out that the flow position of the microparticle P has spread
  • 9A and 9B show a certain tendency with respect to the time axis, but the flow positions of the fine particles P vary in the positive and negative directions of the Z axis.
  • FIG. 9C it turns out that the flow position of the microparticle P has spread
  • 10 and 11 show an example in which the laminar flow L is disturbed during measurement. 10 and 11, immediately before the end of the measurement, the flow positions of the fine particles P diverge over a wide range in the Z-axis and X-axis directions. Such divergence at the flow position occurs when air enters the flow path through which the laminar flow L flows to form bubbles, and the bubbles spread over the entire flow path, and scattered light generated on the surface of the bubbles. This is due to being detected.
  • the mixing of bubbles into the flow path may occur due to the supply of liquid (sheath liquid or sample liquid containing microparticles P) forming the laminar flow L to the flow path being cut off.
  • the determination unit performs abnormality determination when the ratio of the number of detected events in which the difference ⁇ 1 and the difference ⁇ 2 exceed a predetermined range with respect to the number of previous detection events reaches a predetermined value.
  • the difference ⁇ 1 and the difference ⁇ 2 do not exceed the predetermined value, it is determined that the liquid feeding state of the laminar flow L is normal.
  • FIGS. 12 to 16 calculate the ratio of the microparticles P whose flow positions are out of a certain range from the graphs plotting the flow positions of the microparticles P shown in FIGS. Graphed as an axis.
  • the figure is plotted on the vertical axis where 1 is the particle outside the range of the origin ⁇ 20 micrometers, 0 is the particle flowing within the range, the horizontal axis is the measured time, and the kernel smoothing method for the result Is smoothed using FIG. A shows the result in the Z-axis direction, and FIG. B shows the result in the X-axis direction.
  • Averaging is not an essential process, and various methods such as moving average, exponential moving average, and spline smoothing may be used in addition to the kernel smoothing method.
  • a kernel smoothing method, a moving average method, or the like is applied to the plot, the horizontal axis of the plot is not limited to time, and may be the count number of detected particles.
  • the ratio of the fine particles P outside the range of the origin ⁇ 20 micrometers can be kept low in both the Z-axis and X-axis directions. ing.
  • the ratio is a large value.
  • the same ratio can be an indicator of the stability of the laminar flow liquid feeding state. For example, if an upper limit value of 0.5 is set as the same ratio, it is possible to determine that the laminar flow L is abnormal in liquid feeding when this value is exceeded.
  • a graph in which the flow positions of the microparticles P are plotted for a certain period of time (see FIGS. 7 to 11) and a graph showing the change in the ratio of the microparticles P outside the certain range (see FIGS. 12 to 16) are both visual and intuitive. In particular, it is useful for determining the state of the laminar flow L. Therefore, in the microparticle measurement device according to the present technology, information derived from the difference ⁇ 1 and the difference ⁇ 2 may be displayed on the output unit. Specifically, a graph in which the flow positions of the fine particles P are plotted for a certain period of time (see FIGS. 7 to 11) and a graph showing the change in the ratio of the minute particles P outside the certain range (see FIGS. 12 to 16).
  • the values of the difference ⁇ 1 and the difference ⁇ 2 may be used as they are for the axes used in each graph. In this case, it is desirable that the values of the difference ⁇ 1 and the difference ⁇ 2 at the optimal flow position of the fine particles P are acquired in advance and the origin (zero) is obtained.
  • the determination unit always performs determination of the liquid feeding state of the laminar flow L during the operation of the apparatus.
  • the determination unit executes the following processing.
  • the user can check the liquid feeding state of the laminar flow L in real time during measurement based on the information regarding the difference ⁇ 1 and the difference ⁇ 2 displayed on the output unit, and can deal with the abnormality.
  • the determination unit may present a warning (alert) to the user from the output unit.
  • the presentation mode may be presentation by an image on a display, presentation by characters or graphics by a printer, presentation by sound by a speaker, or the like. By presenting the alert, the user who has confirmed this can immediately stop the measurement, and waste of samples and time can be eliminated.
  • the user interrupts the measurement when the alert confirms the disturbance of the laminar flow L. Then, it is preferable to perform a return operation such as cleaning for removing foreign matters such as dust or bubbles from the inner wall of the flow path and adjusting the liquid feeding pressure of the laminar flow L. It is possible to eliminate waste of samples and time by restarting the measurement after confirming stable liquid feeding after the return operation. In addition, when it is confirmed that bubbles are mixed into the flow path, it is preferable to stop the measurement and prevent further inflow of bubbles. If a large amount of bubbles enters the flow path, it takes time to remove the bubbles, and there is a possibility that the measurement may be resumed while the bubbles are not completely removed.
  • a return operation such as cleaning for removing foreign matters such as dust or bubbles from the inner wall of the flow path and adjusting the liquid feeding pressure of the laminar flow L. It is possible to eliminate waste of samples and time by restarting the measurement after confirming stable liquid feeding after the return operation.
  • the apparatus may be automatically stopped instead of the above alert or together with the alert. This eliminates waste of sample and time, and prevents further inflow of bubbles into the flow path.
  • the microparticle measurement device determines the liquid feeding state of the laminar flow from the light receiving position information on the detector light receiving surface of the scattered light generated from the laminar flow, and automatically detects a liquid feeding abnormality. Detect.
  • the microparticle measurement apparatus when analyzing the optical characteristics of the microparticles after measurement, the liquidation state of the laminar flow at the time of the measurement is confirmed, so that there is no problem due to liquid supply abnormality. It is possible to know whether or not appropriate data is included in the analysis result, and the accuracy (reliability) of the analysis result can be evaluated.
  • the microparticle measurement device generates an alert or automatically stops when an abnormal liquid flow in the laminar flow is detected. You can eliminate wasted time. Furthermore, in the microparticle measurement apparatus according to the present technology, it is possible to obtain an analysis result of the optical characteristics of the microparticles by eliminating inappropriate data acquired at the time of liquid feeding abnormality, so that high-precision analysis is possible. .
  • the light detection unit is configured by combining the spectroscopic element 31 and the fluorescence detector 32 that is a light receiving element array or a two-dimensional light receiving element, An example in which the fluorescence 3 generated from the fine particles P is acquired as a spectrum has been described.
  • the light detection unit uses a plurality of wavelength selection elements (here, three reference numerals 31a, 31b, and 31c) to obtain a desired wavelength from the fluorescence 3 as shown in FIG.
  • a configuration may be adopted in which only a region is selected and detected by a fluorescence detector (here, three reference numerals 32a, 32b, and 32c).
  • a fluorescence detector here, three reference numerals 32a, 32b, and 32c.
  • a dichroic mirror or the like that reflects only light in a specific wavelength range and transmits other light may be used.
  • PD Photo diode
  • CCD Charge Coupled Device
  • PMT Photo-Multiplier Tube
  • the combination of a wavelength selection element and a fluorescence detector is not restricted to three shown here, It can be made into 1 or 2 or more.
  • Laminar flow monitoring method and laminar flow monitoring program A laminar flow monitoring method according to the present technology corresponds to a process executed by the determination unit of the above-described microparticle measurement device. Further, a laminar flow monitoring program for executing this method is stored in the determination unit of the fine particle measuring apparatus.
  • the program is stored and held in the hard disk, read into the memory under the control of the CPU and OS, and executes the above-described correction processing.
  • the program can be recorded on a computer-readable recording medium.
  • the recording medium is not particularly limited as long as it is a computer-readable recording medium. Specifically, for example, a disk-shaped recording medium such as a flexible disk or a CD-ROM is used. A tape-type recording medium such as a magnetic tape may be used.
  • the laminar flow monitoring method in the microparticle measurement apparatus can also have the following configuration.
  • An irradiation procedure for irradiating light to a laminar flow, and an S-polarized component separated from scattered light generated from the laminar flow and given astigmatism by a detector, and the S-polarized light in the detector A laminar flow monitoring method in a microparticle measuring apparatus, comprising: a position detection procedure for acquiring light reception position information of a component; and a determination procedure for determining a state of the laminar flow based on the light reception position information.
  • the laminar flow is determined to be abnormal when the difference ⁇ 1 and / or the difference ⁇ 2 is out of a predetermined range, and the difference ⁇ 1 and / or the difference ⁇ 2 is included in the predetermined range.
  • the laminar flow monitoring method according to the above (4) or (5) in which the laminar flow is determined to be normal when it is detected.
  • the laminar flow is determined to be abnormal (4) to (6)
  • the microparticle measuring apparatus can also be configured as follows. (10) A light irradiation unit for irradiating light to the laminar flow, a first spectroscopic element that separates scattered light generated from the laminar flow into an S-polarized component and a P-polarized component, and S-polarized light that receives the S-polarized component A detector, an astigmatism element disposed between the first spectroscopic element and the S-polarized light detector, which gives astigmatism to the S-polarized component; and an output from the S-polarized light detector; A fine particle measuring device comprising: a light receiving position information of the S-polarized component; and a determination unit that determines the state of the laminar flow based on the light receiving position information.
  • the light receiving surface is divided into four regions of region A, region B, region C, and region D, and the determination unit uses the region A and the region A as the light receiving position information.
  • the microparticle measurement apparatus according to (10), wherein a difference ⁇ 1 (AC) of a detection value from the region C that is not adjacent to the region A is acquired.
  • the determination unit may calculate, as the light reception position information, a difference between a sum of detection values of the areas A and C (A + C) and a sum of detection values of the areas B and D (B + D).
  • the microparticle measurement apparatus according to (11), wherein ⁇ 2 ((A + C) ⁇ (B + D)) is acquired.
  • the microparticle measurement apparatus determines the state of the laminar flow based on the difference ⁇ 1 and / or the difference ⁇ 2.
  • the determination unit determines that the laminar flow is abnormal when the difference ⁇ 1 and / or the difference ⁇ 2 is out of a predetermined range, and the difference ⁇ 1 and / or the difference ⁇ 2 is included in the predetermined range.
  • the fine particle measuring apparatus according to (12) or (13), wherein the laminar flow is determined to be normal when the laminar flow is normal.
  • the microparticle measurement apparatus according to any one of (12) to (14), further including an output unit, wherein the difference ⁇ 1 and / or the information regarding the difference ⁇ 2 is displayed as an image on the output unit.
  • the microparticle measurement apparatus according to (14) or (15), wherein the output unit presents the abnormality determination of the laminar flow by the determination unit.
  • the microparticle measurement apparatus according to any one of (14) to (16), which automatically stops when the determination unit determines that the laminar flow is abnormal.
  • the fine particle measuring apparatus according to any one of (10) to (17), wherein the astigmatism element is a cylindrical lens.
  • a second spectroscopic element that separates light generated from the laminar flow into the scattered light and fluorescence, a P-polarization detector that detects the P-polarized component, and a fluorescence detector that detects the fluorescence.
  • the fine particle measuring apparatus according to any one of (10) to (18) above.
  • a third spectroscopic element that splits the fluorescence is provided, and the fluorescence detector includes a plurality of independent light receiving elements that detect the fluorescence dispersed by the third spectroscopic element. 10) The fine particle measuring device according to any one of (19).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 データの信頼性を担保するため、流路中のラミナーフローの送液状態を自動的に判定可能な技術の提供。 ラミナーフローに光を照射する照射手順と、前記ラミナーフローから発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置情報を取得する位置検出手順と、前記受光位置情報に基づいて、前記ラミナーフローの状態を判定する判定手順と、を含む微小粒子測定装置におけるラミナーフローモニタリング方法を提供する。

Description

微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置
 本技術は、微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置に関する。より詳しくは、微小粒子測定装置において、フローセル及びマイクロチップなどに形成された流路中のラミナーフローの送液状態を判定して送液の異常を検知するラミナーフローモニタリング方法等に関する。
 フローセル及びマイクロチップなどに形成された流路内に微小粒子を含むラミナーフローを形成し、ラミナーフロー中の微小粒子に光を照射して微小粒子から発生する蛍光及び散乱光を検出する微小粒子測定装置が知られている。例えばフローサイトメータでは、検出される蛍光又は散乱光の強度又はスペクトルに基づいて細胞及びビーズなどの微小粒子の光学特性を測定し、分析できる。
 微小粒子測定装置では、流路の概ね中央に微小粒子が通流するようにラミナーフローを形成している。この手段としては、シースフローを形成して微小粒子を含む液体を流路中央にフォーカスさせる方法や、音のエネルギーで微小粒子を流路中心に集約させるアコースティック・フォーカシング法、及びこれらの組み合わせによる方法などが挙げられる。しかし、流路中にゴミや泡が混入するとラミナーフローに乱れが生じ、個々の微小粒子の流路内の通流位置にばらつきが生じて正確な測定が行えず、データの信頼性に問題を生じる場合があった。また、流路中に混入したゴミや泡からの発生するノイズがデータの精度を低下させる場合があった。
 本技術に関連して、特許文献1及び特許文献2には、流路内の微小粒子の通流位置のばらつきによる測定誤差を抑制するための技術が開示されている。特許文献1に記載の流動粒子分析装置では、前方散乱光、側方散乱光又は後方散乱光から光分割器を介して取りだした検出光(散乱光)を、4分割フォトダイオード及びエリアCCDなどによって検出している。そして、その検出位置から、励起光の中心とシースフローの中心との位置ずれを検出し、この位置ずれが所定の範囲内に入るようにフローセルの位置を調節している。また、特許文献2には、微小粒子から発生する散乱光に生じる偏向角変化を利用して微小粒子の位置情報を検出し、フローセルの位置又は励起光の焦点位置を調整する技術が記載されている。
特開平9-166541号公報 特開2011-149822号公報
 本技術は、データの信頼性を担保するため、流路中のラミナーフローの送液状態を自動的に判定可能な技術を提供することを主な目的とする。
 上記課題解決のため、本技術は、ラミナーフローに光を照射する照射手順と、前記ラミナーフローから発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置情報を取得する位置検出手順と、前記受光位置情報に基づいて、前記ラミナーフローの状態を判定する判定手順と、を含む微小粒子測定装置におけるラミナーフローモニタリング方法を提供する。
 前記位置検出手順では、前記検出器として、受光面が複数領域に分割された検出器が用いられてもよい。より具体的には、前記位置検出手順では、前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、前記受光位置情報として、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)を取得してもよい。また、併せて、前記受光位置情報として、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))を取得する。前記検出器として、4分割フォトダイオードが好適に用いられる。
 本技術に係るラミナーフローモニタリング方法では、前記判定手順において、取得された差分Δ1及び/又は前記差分Δ2に基づいて、前記ラミナーフローの状態を判定することができる。より具体的には、前記判定手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲を外れた場合に前記ラミナーフローを異常と判定し、前記差分Δ1及び/又は前記差分Δ2が前記所定範囲内に含まれる場合に前記ラミナーフローを正常と判定する。より好ましくは、前記所定範囲を外れた前記差分Δ1及び/又は前記差分Δ2の取得頻度が所定頻度を超えた場合に、前記ラミナーフローを異常と判定する。
 このラミナーフローモニタリング方法は、微小粒子を含む前記ラミナーフローから発生する光を検出する光検出手順と、該光検出手順において取得された前記光の強度情報に基づき、前記微小粒子の光学特性の分析結果を得る解析手順と、を含み、前記解析手順において、前記ラミナーフローが正常と判定された間に取得された前記強度情報のみを抽出して前記分析結果を得る微小粒子分析方法への応用が可能である。
 また、本技術は、ラミナーフローに光を照射する光照射部と、前記ラミナーフローから発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、前記S偏光成分を受光するS偏光検出器と、前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、前記S偏光検出器からの出力を受けて前記S偏光成分の受光位置情報を取得し、該受光位置情報に基づいて前記ラミナーフローの状態を判定する判定部と、を備える微小粒子測定装置も提供する。前記非点収差素子にはシリンドリカルレンズが好適に用いられる。
 この微小粒子測定装置では、前記S偏光検出器は、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割され、前記判定部は、前記受光位置情報として、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)を取得してもよい。また、併せて、前記判定部は、前記受光位置情報として、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))を取得してもよい。
 本技術に係る微小粒子測定装置において、前記判定部は、取得された差分Δ1及び/又は前記差分Δ2に基づいて、前記ラミナーフローの状態を判定してもよい。より具体的には、前記判定部は、前記差分Δ1及び/又は前記差分Δ2が所定範囲を外れた場合に前記ラミナーフローを異常と判定し、前記差分Δ1及び/又は前記差分Δ2が前記所定範囲内に含まれる場合に前記ラミナーフローを正常と判定してもよい。
 本技術に係る微小粒子測定装置は、出力部を備え、前記差分Δ1及び/又は前記差分Δ2に関する情報を前記出力部に画像表示するよう構成されることが好ましい。また、本技術に係る微小粒子測定装置は、前記判定部による前記ラミナーフローの異常判定を前記出力部により提示したり、前記判定部により前記ラミナーフローの異常が判定された場合、自動停止するようにしたりされることが好ましい。
 本技術に係る微小粒子測定装置は、前記ラミナーフローから発生する光を前記散乱光と蛍光に分離する第二分光素子と、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を備えていてもよい。また、本技術に係る微小粒子測定装置は、前記蛍光を分光する第三分光素子を設け、前記蛍光検出器に、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子を配列することで、スペクトル型微小粒子測定装置として構成できる。
 本技術において、「微小粒子」には、細胞や微生物、リポソームなどの生体関連微小粒子、あるいはラテックス粒子やゲル粒子、工業用粒子などの合成粒子などが広く含まれるものとする。
 生体関連微小粒子には、各種細胞を構成する染色体、リポソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(血球系細胞など)および植物細胞が含まれる。微生物には、大腸菌などの細菌類、タバコモザイクウイルスなどのウイルス類、イースト菌などの菌類などが含まれる。さらに、生体関連微小粒子には、核酸やタンパク質、これらの複合体などの生体関連高分子も包含され得るものとする。また、工業用粒子は、例えば有機もしくは無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれる。金属には、金コロイド、アルミなどが含まれる。これら微小粒子の形状は、一般には球形であるのが普通であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
 本技術により、データの信頼性を担保するため、流路中のラミナーフローの送液状態を自動的に判定可能な技術が提供される。
本技術に係る微小粒子測定装置の測定部の構成を説明するための図である。 S偏光検出器51の受光面の構成を説明するための図である。 流路Cを通流するラミナーフローLと、ラミナーフローLに照射される励起光1のレーザスポットSを説明するための図である。 微小粒子Pの通流位置をZ軸方向に移動させたときの差分Δ1及び差分Δ2の変化を例示するグラフである。 微小粒子Pの通流位置をX軸方向に移動させたときの差分Δ1及び差分Δ2の変化を例示するグラフである。 差分Δ1及び差分Δ2から微小粒子PのZ軸方向及びX軸方向における位置情報をマイクロメートル単位で算出するための算出直線を例示するグラフである。 微小粒子Pの通流位置を一定時間プロットしたグラフである。 微小粒子Pの通流位置を一定時間プロットしたグラフである。 微小粒子Pの通流位置を一定時間プロットしたグラフである。 微小粒子Pの通流位置を一定時間プロットしたグラフである。 微小粒子Pの通流位置を一定時間プロットしたグラフである。 通流位置が原点から一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフである。 通流位置が原点から一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフである。 通流位置が原点から一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフである。 通流位置が原点から一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフである。 通流位置が原点から一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフである。 光検出部の変形例の構成を説明するための図である。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。
 
1.微小粒子測定装置の構成
(1)測定部
 (1-1)光照射部
 (1-2)光検出部
(2)判定部
(3)出力部
2.微小粒子側手装置におけるラミナーフローモニタリング処理
(1)受光位置検出ステップ
(2)判定ステップ
(3)異常検出時の動作
3.変形例
(1)光検出部
(2)S偏光検出器
4.ラミナーフローモニタリング方法及びラミナーフローモニタリングプログラム
 
1.微小粒子測定装置の構成
(1)測定部
 図1は、本技術に係る微小粒子測定装置の測定部の構成を説明する図である。本技術に係る微小粒子測定装置は、大略、図に示される測定部と、不図示の判定部とから構成されている。微小粒子測定装置は、測定部及び判定部等を制御するための、CPU等を含む制御部を設けてもよい。測定部は、流路Cを通流するラミナーフローに励起光1を照射する光照射部と、ラミナーフローから発生する散乱光2及び蛍光3を検出する光検出部と、を含む。図中符号Pは、ラミナーフロー中に含まれる微小粒子を示している。
(1-1)光照射部
 光照射部は、励起光1を出射する光源11と、フローセル及びマイクロチップなどに形成された流路Cを通流するラミナーフローに対して励起光11を集光する対物レンズ11とを含んで構成されている。光源11は、測定の目的に応じてレーザダイオード、SHG(Second Harmonic Generation)レーザ、固体レーザ、ガスレーザ及び高輝度LED(Light Emitting Diode:発光ダイオード)などから適宜選択される。光照射部には、必要に応じて、光源11及び対物レンズ12以外の光学素子が配されていてもよい。
(1-2)光検出部
 光検出部は、集光レンズ21、分光素子22,23,31、蛍光検出器32、P偏光検出器41、S偏光検出器51及び非点収差素子52を含んで構成されている。
 集光レンズ11は、励起光1を照射されたラミナーフロー及び/又はラミナーフロー中の微小粒子Pから発生する散乱光2及び蛍光3を集光する。散乱光2は、前方散乱光、側方散乱光、レイリー散乱及びミー散乱などの各種散乱光であってよい。また、蛍光3は、微小粒子Pそのものから発生する蛍光又は微小粒子Pに標識された蛍光物質から発生する蛍光であってよい。
 分光素子22は、集光レンズ11により集光された散乱光2と蛍光3とを分離する。分光素子22には、特定波長の光のみを反射し、それ以外の波長成分を透過するダイクロックミラーが用いられ、本実施形態に係る微小粒子測定装置では、散乱光2を反射し、蛍光3を透過するものが使用されている。
 分光素子31は、プリズム及びグレーティングミラーなどとされ、分光素子22により分離された蛍光3をさらに分光して蛍光検出器32に投影する。蛍光検出器32は、分光素子22により分光された蛍光3を検出する。蛍光検出器32には、複数の独立した受光素子が配列されており、各受光素子が蛍光3のうち分光素子31から分光されて投影されてくる波長域の光を検出する。本実施形態に係る微小粒子測定装置では、蛍光検出器32として、受光素子として32チャネルのPMT(photo multiplier tube)を一次元に配列したPMTアレイを用いている。蛍光検出器32は、検出された蛍光3の強度情報を電気信号に変換して演算部に出力する。演算部では、電気信号に基づいて微小粒子Pの蛍光特性の解析が行われる。なお、蛍光検出器32として、フォトダイオードアレイや、CCD及びCMOSなどの2次元受光素子を用いてもよい。
 分光素子31と組み合わせて、受光素子アレイ又は2次元受光素子を蛍光検出器32に用いることにより、微小粒子Pから発生する蛍光3をスペクトルとして取得することができる。
 P偏光検出器41は、分光素子22により分離された散乱光2に含まれるP偏光成分4を検出する。P偏光検出器41には、例えばPD(Photo diode)、CCD(Charge Coupled Device)又はPMT(Photo-Multiplier Tube)などを使用することができる。P偏光検出器41は、検出されたP偏光成分4の強度情報を電気信号に変換して演算部に出力する。演算部では、電気信号に基づいて微小粒子Pの散乱光特性の解析が行われる。P偏光成分4の強度情報からは、微小粒子Pの大きさ、内部構造等に関する分析を行うことができる。
 分光素子23は、入射する非偏光を、振動方向が直交する2つの偏光に分離するものであり、分光素子22により分離された散乱光2をP偏光成分4とS偏光成分5とに分離する。具体的には、分光素子23は、入射した散乱光2のうちP偏光成分4を透過し、S偏光成分5を反射する。
 S偏光検出器51は、分光素子23により分離されたS偏光成分5を検出するものであり、その受光面が複数の領域に分割されている。本実施形態に係る微小粒子測定装置では、図2に示すように、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された4分割フォトダイオードを用いている。
 非点収差素子52は、分光素子23とS偏光検出器51との間に配設されたシリンドリカルレンズであり、S偏光検出器51へ向かって透過するS偏光成分5に非点収差を与える。S偏光検出器51の検出信号は判定部に出力される。判定部は該出力を受けて、非点収差を生じたS偏光成分5のS偏光検出器51の受光面における受光位置に関する情報(受光位置情報)を取得する。S偏光成分5のS偏光検出器51の受光面における受光位置(結像パターン)については詳しく後述する。
(2)判定部
 判定部は、S偏光検出器51の受光面におけるS偏光成分5の受光位置情報に基づいて流路Cを通流するラミナーフローの状態を判定する処理を行う。判定部は、この処理を実行するためのプログラムとOSが格納されたハードディスク、CPU及びメモリなどにより構成される。
(3)出力部
 また、本技術に係る微小粒子測定装置は、ラミナーフローの状態及びその判定結果をユーザに提示する出力部を備える。出力部には、ディスプレイやプリンタ、スピーカなどの従来公知の出力装置が用いられる。
2.微小粒子測定装置におけるラミナーフローモニタリング方法
 次に、判定部によるラミナーフローの送液状態の判定処理について説明する。
(1)受光位置検出ステップ
 判定部は、まず、S偏光検出器51の受光面におけるS偏光成分5の受光位置情報に基づいて、S偏光検出器51の受光面に設けられた複数の領域間で検出値の差分を取得する。具体的には、図2に示した4分割フォトダイオードの領域A、領域B、領域C及び領域Dにおける検出値について、差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))を取得する。
 図3に、流路Cを通流するラミナーフローL、ラミナーフローL中の微小粒子P及びラミナーフローLに照射される励起光1のレーザスポットSを示す。図中、ラミナーフローLに対する励起光1の照射方向をX軸方向、ラミナーフローLの送液方向をY軸方向とする。また、X軸方向及びY軸方向に垂直な方向をZ軸方向とする。本発明者らは、上記差分Δ1(A-C)からZ軸方向における微小粒子Pの位置情報を取得でき、上記差分Δ2((A+C)-(B+D))からX軸方向における微小粒子Pの位置情報を取得できることを見出している。
 非点収差素子52により非点収差を与えられたS偏光成分5のS偏光検出器51の受光面における結像パターン(受光位置)は、微小粒子Pが図3のレーザスポットSの中心位置を通流し、励起光1の焦点位置が微小粒子Pの通流位置に一致するとき、図2中点線で示す像となる。一方、微小粒子PがレーザスポットSの中心を外れた周辺位置を通流し、励起光1の焦点位置が微小粒子Pの通流位置に不一致の場合には、結像パターンは、例えば図2中実線で示す像となる。すなわち、微小粒子Pの通流位置に対応してS偏光成分5の結像パターンは変化し、S偏光成分5のうち領域A~Dに投影される割合が微小粒子Pの通流位置に対応して変化する。このため、領域A~DにおけるS偏光成分5の検出値のパターンは、微小粒子Pの通流位置を直接反映する。
 微小粒子Pが通流するフローセルをステッピングモータによりZ軸方向に移動させたときの差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))の変化を図4に示す。縦軸は、差分Δ1、Δ2の平均値を示す。横軸は、ステッピングモータの移動量をマイクロメートル単位で示す。なお、ステッピングモータの移動量は、パルス数(駆動量)から実長(マイクロメートル単位)を算出することが可能である。
 フローセルの移動開始位置となる原点(ゼロ)は、任意であってよいが、ラミナーフローが正常に形成された条件下で最も好適に粒子の計測が行える位置であることが望ましく、例えば個々の微小粒子Pより検出される散乱光又は蛍光の強度が最も高くなる位置や、散乱光又は蛍光の強度のCV値が最も低くなる位置などとできる。
 図4に示されるように、Z軸方向の移動量に相関して差分Δ1(A-C)のみが変化する。このことから、差分Δ1から微小粒子PのZ軸方向における位置情報が得られることが分かる。さらにZ軸方向への移動量と差分Δ1との間には、線形な関係があることも確認できる。図6Aに、差分Δ1から微小粒子PのZ軸方向における位置情報をマイクロメートル単位で算出するための算出直線を示す。
 また、微小粒子Pが通流するフローセルをステッピングモータによりX軸方向に移動させたときの差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))の変化を図5に示す。X軸方向の移動量に相関して差分Δ2のみが変化する。このことから、差分Δ2から微小粒子PのX軸方向における位置情報が得られることが分かる。さらにX軸方向への移動量と差分Δ2との間には、線形な関係があることも確認できる。図6Bに、差分Δ2から微小粒子PのX軸方向における位置情報をマイクロメートル単位で算出するための算出直線を示す。
 既に説明したように、微小粒子Pの通流位置は、ラミナーフローLの乱れによってばらつきを生じる。従って、微小粒子Pの通流位置のばらつきは、ラミナーフローLの送液状態を反映するものである。すなわち、差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))から得られる微小粒子Pの位置情報は、ラミナーフローLの送液状態を表す情報として利用できる。
 なお、上述の検出値の差分及び微小粒子Pの位置情報等の各種算出処理は、このような算出処理が可能なCPU等を備えた部で行うことが可能である。この算出処理可能なCPU等を備えることが可能な部としては、例えば、上述の測定部及び判定部等が挙げられる。
 図7~11を参照して具体的に説明する。図は、ラミナーフローLから発生したS偏光成分5の検出値のうち一定の閾値以上であるものから差分Δ1及び差分Δ2を算出し、微小粒子Pの通流位置を算出して一定時間プロットしたグラフである。差分Δ1及び差分Δ2からの通流位置の算出は、図6に示した算出直線を用いて行った。図A及び図Bにおいて、横軸は時間を示し、縦軸はZ軸又はX軸方向における位置情報をマイクロメートル単位で示している。また、図Cの横軸はZ軸方向、縦軸はX軸方向の位置情報をマイクロメートル単位で示している。各図において、プロットの色は、微小粒子の密度(ポピュレーション)を示している。
 図7は、計測開始から終了まで安定した適切なラミナーフローLが形成された例を示している。図Cから、各微小粒子Pがほぼ原点付近に集中して流れていることが分かる。また、図A及び図Bから、各微小粒子Pが計測開始から終了まで安定して原点付近を流れていることが分かる。
 図8及び図9は、ラミナーフローLが乱れている例を示している。図8A及び図8Bから、時間軸に対しては一定の傾向を示しているものの、X軸負方向に微小粒子Pの通流位置がばらついている。また、図8Cでは、微小粒子Pの通流位置がX軸方向に拡散していることが分かる。また、図9A及び図9Bから、時間軸に対しては一定の傾向を示しているものの、Z軸正及び負方向に微小粒子Pの通流位置がばらついている。また、図9Cでは、微小粒子Pの通流位置がZ軸正及び負方向に拡散していることが分かる。このような微小粒子Pの通流位置のずれは、ラミナーフローLが通流する流路の内壁にゴミなどの異物や泡が付着し、安定した送液が阻害された場合に生じる。また、ラミナーフローLの送液圧が、機器の設定間違いや故障(空気漏れ)などによって不適な圧となっているために、通流位置がずれる場合もある。
 図10及び図11は、計測中にラミナーフローLの乱れが生じた例を示している。図10及び図11では、計測終了直前に、微小粒子Pの通流位置がZ軸及びX軸方向の広い範囲に発散している。このような通流位置の発散は、ラミナーフローLが通流する流路に空気が入り込んで泡となった場合に生じ、泡が流路全体に広がって流れ、泡の表面で発生した散乱光が検出されることに起因する。流路への泡の混入は、ラミナーフローLを形成する液体(シース液、あるいは微小粒子Pを含むサンプル液)の流路への供給が断絶することなどにより生じる場合がある。
(2)判定ステップ
 図7~11で説明したように、差分Δ1(A-C)及び差分Δ2((A+C)-(B+D))に基づけばラミナーフローLの送液状態を判定することが可能である。図8及び図9に示されるようなラミナーフローLの乱れが生じている間は、微小粒子Pの光学特性の測定が適切に行われていないと考えられる。このため、この間に取得されたデータは、解析に用いられないようにすることが好ましい。また、図10及び図11で説明したような流路への泡の混入が生じた後に取得されたデータも、通常のデータではないので解析に用いられないようにすることが望ましい。
 判定部は、ラミナーフローLからのS偏光成分5の検出値から算出された差分Δ1及び差分Δ2が、所定範囲を超えて拡散あるいは発散している場合(図8~図11参照)には、ラミナーフローLが送液異常であると判定する。例えば、判定部は、前検出イベント数に対する、差分Δ1及び差分Δ2が所定範囲を超えた検出イベント数の比率が、所定値に達すると異常判定を行う。なお、差分Δ1及び差分Δ2が所定値を超えない場合には、ラミナーフローLの送液状態は正常と判定される。
 図12~16を参照し、検出イベント数の比率に基づく異常判定のための処理を具体的に説明する。図12~16は、それぞれ図7~11に示した微小粒子Pの通流位置を一定時間プロットしたグラフから、通流位置が一定範囲を外れた微小粒子Pの比率を算出し、時間を横軸としてグラフ化している。図は、原点±20マイクロメートルの範囲を外れた粒子を1、範囲内を流れた粒子を0として縦軸にプロットし、横軸は計測された時間として、その結果に対してカーネル平滑化法を用いて平滑化したものである。図AはZ軸方向、図BはX軸方向の結果を示す。なお、平均化は、必須の処理とはならず、カーネル平滑化法以外にも移動平均、指数移動平均、スプライン平滑化など各種の方法を用いてもよい。なお、プロットに対してカーネル平滑化法や移動平均法などを適用する場合、プロットの横軸は時間に限定されず、検出された粒子のカウント数などとしても良い。
 計測開始から終了まで安定した適切なラミナーフローLが形成されている図12の例では、原点±20マイクロメートルの範囲を外れた微小粒子Pの比率は、Z軸及びX軸方向ともに低く抑えられている。一方、ラミナーフローLが乱れている図13及び図14の例では、同比率が大きな値となっている。また、流路への泡の混入を生じている図15及び図16の例でも、計測終了直前に、同比率の急激な上昇が確認できる。従って、同比率はラミナーフローの送液状態の安定性の指標となり得るといえる。例えば同比率として0.5の上限値を設定すれば、この値を超えた場合にラミナーフローLが送液異常であると判定することが可能となる。
 なお、図10及び図11に示した微小粒子Pの通流位置を一定時間プロットしたグラフにおいて、原点から過度に離れた(例えば100マイクロメートル)プロットでは、図6に示したような差分Δ1又は差分Δ2と微小粒子Pの位置情報との線形性が保たれていない可能性がある。しかし、この場合にも、上記の例(原点±20マイクロメートル)のように一定の範囲条件を設定することで、送液異常の判定を有効に行うことができる。なお、ここでは原点±20マイクロメートルの範囲条件を例示したが、この範囲条件は計測時の送液条件や流路の形状などに応じて適宜設定され得る。
 微小粒子Pの通流位置を一定時間プロットしたグラフ(図7~11参照)及び一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフ(図12~16参照)は、視覚的かつ直観的にラミナーフローLの状態を判定するために有用である。従って、本技術に係る微小粒子測定装置では、これらの差分Δ1及び差分Δ2から導き出される情報を出力部に表示するようにしてもよい。具体的には、微小粒子Pの通流位置を一定時間プロットしたグラフ(図7~11参照)及び一定範囲を外れた微小粒子Pの比率の時間変化を表すグラフ(図12~16参照)を出力部に画像表示することで、ラミナーフローLの送液状態を視覚的にリアルタイムでユーザに提示することも可能である。なお、各グラフに用いる軸には、差分Δ1及び差分Δ2から算出される位置情報(マイクロメートル)に替えて、差分Δ1及び差分Δ2の値をそのまま用いてもよい。この場合、微小粒子Pの最適な通流位置における差分Δ1及び差分Δ2の値を事前に取得しておき、そこを原点(ゼロ)することが望ましい。
(3)異常検出時の動作
 判定部は、装置動作中にラミナーフローLの送液状態の判定を常時行うようにすることが好ましい。送液状態が異常と判定された場合、判定部は以下の処理を実行する。
[アラート]
 ユーザは、出力部に表示される差分Δ1及び差分Δ2に関する情報により計測中リアルタイムにラミナーフローLの送液状態を確認し、異常に対処することができる。加えて、判定部が、出力部からユーザに対して警告(アラート)を提示するようにしてもよい。提示の態様は、ディスプレイ上への画像による提示、プリンタによる文字や図形による提示、スピーカによる音での提示などあってよい。アラートの提示により、これを確認したユーザが計測を直ちに中断することができ、サンプルや時間の無駄をなくすことができる。
 ユーザは、アラートによりラミナーフローLの乱れを確認した場合には、計測を中断することが望ましい。そして、流路の内壁へのゴミなどの異物や泡の付着を取り除くための洗浄や、ラミナーフローLの送液圧の調整などの復帰作業を行うことが好ましい。復帰作業後、安定した送液が確認された後に計測を再開することでサンプルや時間の無駄をなくすことができる。また、流路への泡の混入が確認された場合には、計測を中断し、一層の泡の流入を防止することが好ましい。大量の泡が流路内に入ってしまうと、泡の除去に手間がかかり、泡の除去が不完全なまま計測を再開してしまうおそれがある。
[自動停止]
 送液状態が異常と判定された場合、上記のアラートに替えて、あるいはアラートともに、装置を自動停止するようにしてもよい。これにより、サンプルや時間の無駄をなくし、流路への一層の泡の流入を防止できる。
[データ除外]
 さらに、判定部は、微小粒子Pから発生する蛍光3及びP偏光成分4の強度情報に基づいて微小粒子Pの光学特性の分析結果を得る際に、ラミナーフローLの送液状態が異常であった間に取得された強度情報を除外する処理を行うようにしてもよい。正常時に取得された強度情報のみを抽出して用い、微小粒子Pの光学特性を解析することで、送液異常時に取得された不適切なデータを排除して、正確な分析結果を得ることができデータの信頼性を高めることができる。
 以上のように、本技術に係る微小粒子測定装置は、ラミナーフローから発生する散乱光の検出器受光面における受光位置情報からラミナーフローの送液状態を判定し、送液の異常を自動的に検知する。本技術に係る微小粒子測定装置によれば、計測後に微小粒子の光学特性を解析する際に、当該計測が行われた際のラミナーフローの送液状態を確認することで、送液異常による不適切なデータが解析結果に含まれていないかどうかを知ることができ、解析結果の確からしさ(信頼性)の評価が可能である。
 また、本技術に係る微小粒子測定装置は、ラミナーフローの送液異常が検知された場合に、アラートを発したり自動停止したりするため、送液が異常なまま計測が続けられることによるサンプルや時間の無駄をなくすことができる。さらに、本技術に係る微小粒子測定装置では、送液異常時に取得された不適切なデータを排除して微小粒子の光学特性の解析結果を得ることができるので、精度の高い分析が可能である。
3.変形例
(1)光検出部
 上述の実施形態に係る微小粒子測定装置では、分光素子31と、受光素子アレイ又は2次元受光素子とした蛍光検出器32とを組み合わせて光検出部を構成し、微小粒子Pから発生する蛍光3をスペクトルとして取得する例を説明した。本技術に係る微小粒子測定装置において、光検出部は、図17に示すように、複数の波長選択素子(ここでは符号31a、31b、31cの3つ)を用いて、蛍光3から所望の波長域のみを選択して蛍光検出器(ここでは符号32a、32b、32cの3つ)によって検出する構成であってもよい。波長選択素子31a、31b、31cには、特定の波長域の光のみを反射し、それ以外の光を透過するダイクロイックミラー等を使用すればよい。また、蛍光検出器32a、32b、32cには、PD(Photo diode)、CCD(Charge Coupled Device)又はPMT(Photo-Multiplier Tube)などを使用することができる。なお、波長選択素子及び蛍光検出器の組み合わせはここで示した3つに限られず、1又は2以上とできる。
(2)S偏光検出器
 上述の実施形態に係る微小粒子測定装置では、S偏光検出器51として4分割フォトダイオードを用い、非点収差を生じたS偏光成分5の偏光検出器51の受光面における結像パターン(受光位置)を微小粒子Pの位置情報として取得する例を説明した。本技術に係る微小粒子測定装置では、高速カメラを用いて、流路Cを通流する微小粒子Pを直接撮影し、画像処理によって微小粒子Pの位置情報を取得することも考えられる。
4.ラミナーフローモニタリング方法及びラミナーフローモニタリングプログラム
 本技術に係るラミナーフローモニタリング方法は、上述の微小粒子測定装置の判定部によって実行される処理に対応するものである。また、微小粒子測定装置の判定部には、この方法を実行するためのラミナーフローモニタリングプログラムが格納されている。
 プログラムは、ハードディスクに格納・保持され、CPUおよびOSの制御の下でメモリに読み込まれて、上述の補正処理を実行する。プログラムは、コンピュータ読み取り可能な記録媒体に記録されたものとできる。記録媒体としては、コンピュータ読み取り可能な記録媒体であれば特に制限はないが、具体的には、例えば、フレキシブルディスクやCD-ROM等の円盤形記録媒体が用いられる。また、磁気テープ等のテープ型記録媒体を用いてもよい。
 本技術に係る微小粒子測定装置におけるラミナーフローモニタリング方法は以下のような構成をとることもできる。
(1)ラミナーフローに光を照射する照射手順と、前記ラミナーフローから発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置情報を取得する位置検出手順と、前記受光位置情報に基づいて、前記ラミナーフローの状態を判定する判定手順と、を含む微小粒子測定装置におけるラミナーフローモニタリング方法。
(2)前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いる上記(1)記載のラミナーフローモニタリング方法。
(3)前記位置検出手順において、前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、前記受光位置情報として、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)を取得する上記(2)記載のラミナーフローモニタリング方法。
(4)前記受光位置情報として、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))を取得する上記(3)記載のラミナーフローモニタリング方法。
(5)前記判定手順において、前記差分Δ1及び/又は前・BR>L差分Δ2に基づいて、前記ラミナーフローの状態を判定する上記(4)記載のラミナーフローモニタリング方法。
(6)前記判定手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲を外れた場合に前記ラミナーフローを異常と判定し、前記差分Δ1及び/又は前記差分Δ2が前記所定範囲内に含まれる場合に前記ラミナーフローを正常と判定する上記(4)又は(5)記載のラミナーフローモニタリング方法。
(7)前記判定手順において、前記所定範囲外れた前記差分Δ1及び/又は前記差分Δ2の取得頻度が所定頻度を超えた場合に、前記ラミナーフローを異常と判定する上記(4)~(6)のいずれかに記載のラミナーフローモニタリング方法。
(8)前記位置検出手順において、前記検出器として、4分割フォトダイオードを用いる上記(2)~(7)のいずれかに記載のラミナーフローモニタリング方法。
 また、本技術に係る微小粒子測定装置は以下のような構成をとることもできる。
(10)ラミナーフローに光を照射する光照射部と、前記ラミナーフローから発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、前記S偏光成分を受光するS偏光検出器と、前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、前記S偏光検出器からの出力を受けて前記S偏光成分の受光位置情報を取得し、該受光位置情報に基づいて前記ラミナーフローの状態を判定する判定部と、を備える微小粒子測定装置。
(11)前記S偏光検出器は、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割され、前記判定部は、前記受光位置情報として、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)を取得する上記(10)記載の微小粒子測定装置。
(12)前記判定部は、前記受光位置情報として、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))を取得する上記(11)記載の微小粒子測定装置。
(13)前記判定部は、前記差分Δ1及び/又は前記差分Δ2に基づいて、前記ラミナーフローの状態を判定する上記(12)記載の微小粒子測定装置。
(14)前記判定部は、前記差分Δ1及び/又は前記差分Δ2が所定範囲を外れた場合に前記ラミナーフローを異常と判定し、前記差分Δ1及び/又は前記差分Δ2が前記所定範囲内に含まれる場合に前記ラミナーフローを正常と判定する上記(12)又は(13)記載の微小粒子測定装置。
(15)出力部を備え、前記差分Δ1及び/又は前記差分Δ2に関する情報を前記出力部に画像表示する上記(12)~(14)のいずれかに記載の微小粒子測定装置。
(16)前記判定部による前記ラミナーフローの異常判定を前記出力部により提示する上記(14)又は(15)記載の微小粒子測定装置。
(17)前記判定部により前記ラミナーフローの異常が判定された場合、自動停止する上記(14)~(16)のいずれかに記載の微小粒子測定装置。
(18)前記非点収差素子がシリンドリカルレンズである上記(10)~(17)のいずれかに記載の微小粒子測定装置。
(19)前記ラミナーフローから発生する光を前記散乱光と蛍光に分離する第二分光素子と、前記P偏光成分を検出するP偏光検出器と、前記蛍光を検出する蛍光検出器と、を備える上記(10)~(18)のいずれかに記載の微小粒子測定装置。
(20)前記蛍光を分光する第三分光素子を備え、前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されている上記(10)~(19)のいずれかに記載の微小粒子測定装置。
1:励起光、11:光源、12:対物レンズ、2:散乱光、21:集光レンズ、22:分光素子、23:分光素子、3:蛍光、31:分光素子、31a,31b,31c:波長選択素子、32,32a,32b,32c:蛍光検出器、4:P偏光成分、41:P偏光検出器、5:S偏光成分、51:S偏光検出器、52:非点収差素子、C:流路、L:ラミナーフロー、P:微小粒子、S:レーザスポット

Claims (20)

  1.  ラミナーフローに光を照射する照射手順と、
    前記ラミナーフローから発生する散乱光から分離され、非点収差を与えられたS偏光成分を検出器により受光し、該検出器における前記S偏光成分の受光位置情報を取得する位置検出手順と、
    前記受光位置情報に基づいて、前記ラミナーフローの状態を判定する判定手順と、
    を含む微小粒子測定装置におけるラミナーフローモニタリング方法。
  2.  前記位置検出手順において、前記検出器として、受光面が複数領域に分割された検出器を用いる請求項1記載のラミナーフローモニタリング方法。
  3.  前記位置検出手順において、前記検出器として、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割された検出器を用い、
    前記受光位置情報として、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)を取得する請求項2記載のラミナーフローモニタリング方法。
  4.  前記受光位置情報として、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))を取得する請求項3記載のラミナーフローモニタリング方法。
  5.  前記判定手順において、前記差分Δ1及び/又は前記差分Δ2に基づいて、前記ラミナーフローの状態を判定する請求項4記載のラミナーフローモニタリング方法。
  6.  前記判定手順において、前記差分Δ1及び/又は前記差分Δ2が所定範囲を外れた場合に前記ラミナーフローを異常と判定し、前記差分Δ1及び/又は前記差分Δ2が前記所定範囲内に含まれる場合に前記ラミナーフローを正常と判定する請求項5記載のラミナーフローモニタリング方法。
  7.  前記判定手順において、前記所定範囲を外れた前記差分Δ1及び/又は前記差分Δ2の取得頻度が所定頻度を超えた場合に、前記ラミナーフローを異常と判定する請求項6記載のラミナーフローモニタリング方法。
  8.  前記位置検出手順において、前記検出器として、4分割フォトダイオードを用いる請求項7記載のラミナーフローモニタリング方法。
  9.  微小粒子を含む前記ラミナーフローから発生する光を検出する光検出手順と、
    該光検出手順において取得された前記光の強度情報に基づき、前記微小粒子の光学特性の
    分析結果を得る解析手順と、を含み、
    請求項6~8のいずれか一項に記載のラミナーフローモニタリング方法を実施する手順と、を含み、
    前記解析手順において、前記ラミナーフローが正常と判定された間に取得された前記強度情報のみを抽出して前記分析結果を得る微小粒子分析方法。
  10.  ラミナーフローに光を照射する光照射部と、
    前記ラミナーフローから発生する散乱光をS偏光成分とP偏光成分とに分離する第一分光素子と、
    前記S偏光成分を受光するS偏光検出器と、
    前記第一分光素子と前記S偏光検出器との間に配設され、前記S偏光成分に非点収差を与える非点収差素子と、
    前記S偏光検出器からの出力を受けて前記S偏光成分の受光位置情報を取得し、該受光位置情報に基づいて前記ラミナーフローの状態を判定する判定部と、
    を備える微小粒子測定装置。
  11.  前記S偏光検出器は、受光面が領域A、領域B、領域C、領域Dの4つの領域に格子状に分割され、
    前記判定部は、前記受光位置情報として、前記領域Aと、前記領域Aに隣接しない前記領域Cと、の検出値の差分Δ1(A-C)を取得する請求項10記載の微小粒子測定装置。
  12.  前記判定部は、前記受光位置情報として、前記領域Aと前記領域Cの検出値の和(A+C)と、前記領域Bと前記領域Dの検出値の和(B+D)と、の差分Δ2((A+C)-(B+D))を取得する請求項11記載の微小粒子測定装置。
  13.  前記判定部は、前記差分Δ1及び/又は前記差分Δ2に基づいて、前記ラミナーフローの状態を判定する請求項12記載の微小粒子測定装置。
  14.  前記判定部は、前記差分Δ1及び/又は前記差分Δ2が所定範囲を外れた場合に前記ラミナーフローを異常と判定し、前記差分Δ1及び/又は前記差分Δ2が前記所定範囲内に含まれる場合に前記ラミナーフローを正常と判定する請求項13記載の微小粒子測定装置。
  15.  出力部を備え、
    前記差分Δ1及び/又は前記差分Δ2に関する情報を前記出力部に画像表示する請求項14記載の微小粒子測定装置。
  16.  前記判定部による前記ラミナーフローの異常判定を前記出力部により提示する請求項15記載の微小粒子測定装置。
  17.  前記判定部により前記ラミナーフローの異常が判定された場合、自動停止する請求項16記載の微小粒子測定装置。
  18.  前記非点収差素子がシリンドリカルレンズである請求項17記載の微小粒子測定装置。
  19.  前記ラミナーフローから発生する光を前記散乱光と蛍光に分離する第二分光素子と、
    前記P偏光成分を検出するP偏光検出器と、
    前記蛍光を検出する蛍光検出器と、
    を備える請求項18記載の微小粒子測定装置。
  20.  前記蛍光を分光する第三分光素子を備え、
    前記蛍光検出器には、前記第三分光素子により分光された前記蛍光を検出する、複数の独立した受光素子が配列されている請求項19記載の微小粒子測定装置。
PCT/JP2013/065586 2012-08-07 2013-06-05 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置 WO2014024556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380040889.XA CN104508455B (zh) 2012-08-07 2013-06-05 用于细颗粒测量设备的层流监控方法、细颗粒分析方法以及细颗粒测量设备
EP13828223.1A EP2884257B1 (en) 2012-08-07 2013-06-05 Laminar flow monitoring method for microparticle measurement device, microparticle analysis method, and microparticle measurement device
US14/418,711 US9417173B2 (en) 2012-08-07 2013-06-05 Fine particle measurement device, and laminar flow monitoring method and fine particle analysis method in fine particle measurement device
JP2014529338A JP6274104B2 (ja) 2012-08-07 2013-06-05 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-175214 2012-08-07
JP2012175214 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024556A1 true WO2014024556A1 (ja) 2014-02-13

Family

ID=50067798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065586 WO2014024556A1 (ja) 2012-08-07 2013-06-05 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置

Country Status (5)

Country Link
US (1) US9417173B2 (ja)
EP (1) EP2884257B1 (ja)
JP (1) JP6274104B2 (ja)
CN (1) CN104508455B (ja)
WO (1) WO2014024556A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047442A1 (ja) * 2016-09-12 2018-03-15 ソニー株式会社 微小粒子測定装置及び微小粒子測定方法
JP2020512540A (ja) * 2017-02-27 2020-04-23 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 光検出システム及びその使用方法
WO2020189166A1 (ja) * 2019-03-19 2020-09-24 ソニーセミコンダクタソリューションズ株式会社 光学測定装置及び光学測定システム
JP2022538260A (ja) * 2019-06-26 2022-09-01 クー.アント ゲー・エム・ベー・ハー 粒子を特徴付けるためのセンサ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718444B (zh) * 2012-10-15 2017-09-08 索尼公司 微粒测量装置
US10078254B2 (en) 2014-05-14 2018-09-18 Sony Corporation Imaging device and imaging method
HU230997B1 (hu) * 2015-11-12 2019-09-30 Norma Instruments Zrt Javított mérési jellemzőkkel rendelkező mérőegység
KR20210016716A (ko) 2019-08-05 2021-02-17 삼성전자주식회사 미세먼지 측정 장치 및 방법
DE112021004910T5 (de) 2020-11-30 2023-07-13 Fanuc Corporation Anzeigevorrichtung, Computerprogramm und Speichermedium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236541A (ja) * 1985-08-09 1987-02-17 Canon Inc 粒子解析装置
JPH02304333A (ja) * 1989-05-18 1990-12-18 Hitachi Ltd 流動細胞分析装置
JPH08304263A (ja) * 1995-05-10 1996-11-22 Hitachi Ltd 粒子解析装置
JPH09166541A (ja) 1995-12-18 1997-06-24 Sumitomo Electric Ind Ltd 流動粒子分析装置
JP2011149822A (ja) 2010-01-21 2011-08-04 Sony Corp 光学的測定装置及び光学的測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533055B2 (ja) 2010-03-10 2014-06-25 ソニー株式会社 光学的測定装置及び光学的測定方法
JP2012047464A (ja) 2010-08-24 2012-03-08 Sony Corp 微小粒子測定装置及び光軸補正方法
CN102564929A (zh) 2012-01-17 2012-07-11 南京理工大学 一种具有新型光敏区结构的大流量尘埃粒子计数传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236541A (ja) * 1985-08-09 1987-02-17 Canon Inc 粒子解析装置
JPH02304333A (ja) * 1989-05-18 1990-12-18 Hitachi Ltd 流動細胞分析装置
JPH08304263A (ja) * 1995-05-10 1996-11-22 Hitachi Ltd 粒子解析装置
JPH09166541A (ja) 1995-12-18 1997-06-24 Sumitomo Electric Ind Ltd 流動粒子分析装置
JP2011149822A (ja) 2010-01-21 2011-08-04 Sony Corp 光学的測定装置及び光学的測定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047442A1 (ja) * 2016-09-12 2018-03-15 ソニー株式会社 微小粒子測定装置及び微小粒子測定方法
JPWO2018047442A1 (ja) * 2016-09-12 2019-07-18 ソニー株式会社 微小粒子測定装置及び微小粒子測定方法
US10690583B2 (en) 2016-09-12 2020-06-23 Sony Corporation Microparticle measuring device and microparticle measuring method
JP2020512540A (ja) * 2017-02-27 2020-04-23 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 光検出システム及びその使用方法
JP7173978B2 (ja) 2017-02-27 2022-11-17 ベクトン・ディキンソン・アンド・カンパニー 光検出システム及びその使用方法
WO2020189166A1 (ja) * 2019-03-19 2020-09-24 ソニーセミコンダクタソリューションズ株式会社 光学測定装置及び光学測定システム
JP2022538260A (ja) * 2019-06-26 2022-09-01 クー.アント ゲー・エム・ベー・ハー 粒子を特徴付けるためのセンサ装置
JP7311645B2 (ja) 2019-06-26 2023-07-19 クー.アント ゲー・エム・ベー・ハー 粒子を特徴付けるためのセンサ装置

Also Published As

Publication number Publication date
EP2884257A4 (en) 2016-03-30
JP6274104B2 (ja) 2018-02-07
CN104508455A (zh) 2015-04-08
US9417173B2 (en) 2016-08-16
EP2884257B1 (en) 2019-11-13
JPWO2014024556A1 (ja) 2016-07-25
CN104508455B (zh) 2017-10-03
EP2884257A1 (en) 2015-06-17
US20150177113A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6274104B2 (ja) 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置
JP6428883B2 (ja) 微小粒子測定装置におけるデータ補正方法及び微小粒子測定装置
JP5381741B2 (ja) 光学的測定装置及び光学的測定方法
JP6299600B2 (ja) 微小粒子測定装置
US20120257192A1 (en) Microbial detection apparatus and method
JP6971259B2 (ja) 流体中の個々の流動粒子の検出および/または構造的解析の方法および装置
JP2011185879A (ja) 光学的測定装置及び光学的測定方法
JP2010085194A (ja) 試料分析装置
JP2004125602A (ja) 花粉センサ
JP2022172075A (ja) 落射蛍光測定用の光学フローサイトメータ
CN112334755A (zh) 粒子检测装置
JPH0486546A (ja) 検体検査装置
JP2006258776A (ja) 粒子分類装置
JPS61167838A (ja) 粒子解析装置
JP2015138002A (ja) 粒子径測定装置、粒子径測定方法及び粒子径測定プログラム
US20240230507A1 (en) Feature value calculation device, feature value calculation method, and program
JP3874047B2 (ja) レーザ回折・散乱式粒度分布測定装置
JP4002818B2 (ja) 測定装置
JPH0226054Y2 (ja)
JPH0552897B2 (ja)
JPH0552896B2 (ja)
JPH0660869B2 (ja) 粒子解析装置
JP2002310884A (ja) 散乱式粒子径分布測定装置
JPH10274617A (ja) 粒度分布測定装置
JPH01308945A (ja) 液体中微粒子測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529338

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013828223

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14418711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE