WO2014024311A1 - 火花点火式内燃機関の排気浄化装置 - Google Patents

火花点火式内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2014024311A1
WO2014024311A1 PCT/JP2012/070522 JP2012070522W WO2014024311A1 WO 2014024311 A1 WO2014024311 A1 WO 2014024311A1 JP 2012070522 W JP2012070522 W JP 2012070522W WO 2014024311 A1 WO2014024311 A1 WO 2014024311A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
fuel ratio
air
catalyst
exhaust gas
Prior art date
Application number
PCT/JP2012/070522
Other languages
English (en)
French (fr)
Inventor
悠樹 美才治
吉田 耕平
櫻井 健治
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/070522 priority Critical patent/WO2014024311A1/ja
Publication of WO2014024311A1 publication Critical patent/WO2014024311A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust emission control device for a spark ignition type internal combustion engine.
  • An exhaust purification catalyst is arranged in the engine exhaust passage and a hydrocarbon supply valve is arranged in the engine exhaust passage upstream of the exhaust purification catalyst.
  • a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst and noble metal
  • a basic exhaust gas flow surface portion is formed around the catalyst, and when hydrocarbons are injected from the hydrocarbon supply valve at a predetermined cycle during engine operation, nitrogen compounds and hydrocarbons are formed on the exhaust purification catalyst.
  • a compression ignition type internal combustion engine in which an intermediate body which is a combined body is generated and NO x contained in exhaust gas is purified using this intermediate body is known (see, for example, Patent Document 1). In this internal combustion engine, a high NO x purification rate can be obtained even when the temperature of the exhaust purification catalyst becomes high.
  • the monoxide generated in the combustion chamber when switching to rich is made.
  • the carbon CO generates an intermediate that is a combined body of nitrogen and carbon monoxide CO on the exhaust purification catalyst, and NO x contained in the exhaust gas is purified using this intermediate.
  • the intermediate is a conjugate of nitrogen monoxide carbide CO is easily oxidized, so that these intermediates can not be sufficiently used for the purification of NO x, to purify enough NO x There is a problem that you can not.
  • An object of the present invention is to provide an exhaust emission control device for a spark ignition internal combustion engine that makes it possible to sufficiently use the produced intermediate for NO x purification, thereby obtaining a high NO x purification rate. There is.
  • the exhaust purification catalyst is disposed in the engine exhaust passage, the catalyst having an oxygen storage function is disposed in the engine exhaust passage upstream of the exhaust purification catalyst, and the noble metal is disposed on the exhaust gas distribution surface of the exhaust purification catalyst.
  • the catalyst is supported and a basic exhaust gas flow surface portion is formed around the noble metal catalyst.
  • the exhaust purification catalyst has an air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst within a predetermined range.
  • a high NO x purification rate can be secured even in a spark ignition type internal combustion engine.
  • FIG. 1 is an overall view of an internal combustion engine.
  • FIG. 2 is a diagram schematically showing a surface portion of a three-way catalyst substrate.
  • 3A and 3B are diagrams schematically showing a surface portion of the catalyst carrier of the exhaust purification catalyst.
  • 4A and 4B are views for explaining an adsorption reaction and the like in the exhaust purification catalyst.
  • FIG. 5 is a view showing another embodiment of the exhaust purification catalyst.
  • 6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • FIG. 7 is a diagram showing NO x release control.
  • FIG. 8 is a diagram showing a map of the exhausted NO x amount NOXA.
  • FIG. 9 is a diagram showing the NO x purification rate.
  • FIG. 1 is an overall view of an internal combustion engine.
  • FIG. 2 is a diagram schematically showing a surface portion of a three-way catalyst substrate.
  • 3A and 3B are diagrams schematically showing a surface portion
  • FIG. 10 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the three-way catalyst and the exhaust purification catalyst.
  • FIG. 11 is a graph showing the relationship between the lean-to-rich switching period ⁇ T of the air-fuel ratio and the NO x purification rate.
  • FIG. 12 is a diagram showing the NO x purification rate.
  • FIG. 13 is a diagram showing a map of the fuel injection amount.
  • FIG. 14 is a diagram showing a map of the switching cycle ⁇ T from the lean to rich air-fuel ratio.
  • 15A and 15B are diagrams for explaining the NO x absorption ability and NO adsorption ability.
  • 16A and 16B are diagrams for explaining the NO x absorption ability and NO adsorption ability.
  • FIG. 17A, 17B and 17C are time charts showing changes in the air-fuel ratio of the exhaust gas discharged from the engine.
  • FIG. 18 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the three-way catalyst and the exhaust purification catalyst.
  • FIG. 19 is a diagram showing an operation region of the engine.
  • FIG. 20 is a time chart showing changes in the fuel injection amount during engine operation.
  • FIG. 21 is a flowchart for performing engine operation control.
  • FIG. 1 shows an overall view of a spark ignition internal combustion engine using gasoline as fuel.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a cylinder head
  • 4 is a piston
  • 5 is a combustion chamber
  • 6 is a spark plug
  • 7 is an intake valve
  • 8 is an intake port
  • 9 is an exhaust valve
  • Reference numeral 10 denotes an exhaust port.
  • each cylinder injects fuel, i.e. gasoline, into the combustion chamber 2 and an electronically controlled fuel injection valve 11 for injecting fuel, i.e., gasoline, into the intake port 8.
  • a pair of fuel injection valves consisting of an electronically controlled fuel injection valve 12 for this purpose.
  • the intake port 8 of each cylinder is connected to a surge tank 14 via an intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake duct 15.
  • an intake air amount detector 17 and a throttle valve 18 driven by an actuator 18a are arranged.
  • the exhaust port 10 of each cylinder is connected to an inlet of a catalyst 20 having an oxygen storage function through an exhaust manifold 19, and an outlet of the catalyst 20 is connected to an inlet of an exhaust purification catalyst 22 through an exhaust pipe 21.
  • the catalyst 20 having the oxygen storage function is a three-way catalyst.
  • the outlet of the exhaust purification catalyst 22 is connected to the NO x selective reduction catalyst 23.
  • the exhaust pipe 21 and the surge tank 14 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 24.
  • EGR exhaust gas recirculation
  • An electronically controlled EGR control valve 25 is disposed in the EGR passage 24, and a cooling device 26 for cooling the exhaust gas flowing in the EGR passage 24 is disposed around the EGR passage 24.
  • the engine cooling water is guided into the cooling device 26, and the exhaust gas is cooled by the engine cooling water.
  • the electronic control unit 30 is composed of a digital computer and includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36 connected to each other by a bidirectional bus 31. It comprises.
  • An air-fuel ratio sensor 27 for detecting the air-fuel ratio of the exhaust gas discharged from the engine is attached upstream of the three-way catalyst 20, and the oxygen concentration in the exhaust gas is detected downstream of the three-way catalyst 20.
  • an oxygen concentration sensor 28 is attached.
  • Output signals of the air-fuel ratio sensor 27, the oxygen concentration sensor 28, and the intake air amount detector 17 are input to the input port 35 via corresponding AD converters 37, respectively.
  • a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the spark plug 6, the fuel injection valves 11 and 12, the throttle valve driving actuator 18 a and the EGR control valve 25 via the corresponding drive circuit 38.
  • FIG. 2 schematically shows the surface portion of the base 50 of the three-way catalyst 20.
  • an upper coat layer 51 and a lower coat layer 52 are formed on the catalyst carrier 50 in a laminated form.
  • the upper coat layer 51 is made of rhodium Rh and cerium Ce
  • the lower coat layer 52 is made of platinum Pt and cerium Ce.
  • the amount of cerium Ce contained in the upper coat layer 51 is smaller than the amount of cerium Ce contained in the lower coat layer 52.
  • the upper coat layer 51 can contain zirconia Zr soot
  • the lower coat layer 52 can contain palladium Pd soot.
  • the three-way catalyst 20 is contained in the exhaust gas when combustion is performed in the combustion chamber 5 under the stoichiometric air-fuel ratio, that is, when the air-fuel ratio of the exhaust gas discharged from the engine is the stoichiometric air-fuel ratio. It has a function of simultaneously reducing harmful components HC, CO and NO x contained therein. Therefore, when combustion is performed in the combustion chamber 5 under the stoichiometric air-fuel ratio, harmful components HC, CO and NO x contained in the exhaust gas are purified by the three-way catalyst 20.
  • the air-fuel ratio of the exhaust gas discharged from the combustion chamber 5 becomes almost the stoichiometric air-fuel ratio.
  • the injection amount from the fuel injection valves 11 and 12 is feedback controlled based on the detection signal of the air-fuel ratio sensor 27 so that the air-fuel ratio of the exhaust gas discharged from the combustion chamber 5 fluctuates around the stoichiometric air-fuel ratio. Is done.
  • FIG. 3A schematically shows the surface portion of the base 55 of the exhaust purification catalyst 22.
  • a coat layer 56 is formed on the base 55 also in the exhaust purification catalyst 22.
  • the coat layer 56 is made of, for example, an aggregate of powder
  • FIG. 3B shows an enlarged view of the powder.
  • noble metal catalysts 61 and 62 are supported on a catalyst carrier 60 made of alumina, for example, of this powder, and further, such as potassium K, sodium Na, and cesium Cs are supported on the catalyst carrier 60.
  • a basic layer 63 including one is formed. Since the exhaust gas flows along the catalyst carrier 60, it can be said that the noble metal catalysts 61 and 62 are supported on the exhaust gas flow surface of the exhaust purification catalyst 22. Further, since the surface of the basic layer 63 is basic, the surface of the basic layer 63 is referred to as a basic exhaust gas flow surface portion.
  • the noble metal catalyst 61 is made of platinum Pt and the noble metal catalyst 62 is made of rhodium Rh.
  • any of the noble metal catalysts 61 and 62 can be made of platinum Pt.
  • palladium Pd can be supported on the catalyst carrier 60, or palladium Pd can be supported instead of rhodium Rh. That is, the noble metal catalysts 61 and 62 supported on the catalyst carrier 60 are composed of at least one of platinum Pt, rhodium Rh and palladium Pd.
  • the present inventors have repeatedly studied the NO x purification action when combustion is performed under a lean air-fuel ratio in a spark ignition internal combustion engine, and as a result, the NO x purification action in the spark ignition internal combustion engine. With regard to the above, it has been found that the NO adsorption action on the exhaust purification catalyst 13 has a great influence.
  • the new the NO x purification method the use of the adsorption of NO, following this new the NO x purification method, referred to as the NO x purification method of adsorbing NO use. Therefore, first, this NO x purification method using adsorbed NO will be described with reference to FIGS. 4A and 4B.
  • FIG. 4A and 4B show an enlarged view of FIG. 3B, that is, a surface portion of the catalyst carrier 60 of the exhaust purification catalyst 22.
  • FIG. 4A shows the time when combustion is performed under a lean air-fuel ratio
  • FIG. 4B shows the time when the air-fuel ratio in the combustion chamber 5 is made rich.
  • NO contained in the exhaust gas is purified by exhaust gas.
  • NO x contained in the exhaust gas is adsorbed by the catalyst 22 and reacted with the reducing intermediate NCO held or adsorbed on the surface of the basic layer 63 to be purified.
  • NO x adsorbed on the exhaust purification catalyst 22 is released from the exhaust purification catalyst 22 and reduced. Therefore, NO x contained in the exhaust gas can be purified by periodically enriching the air-fuel ratio in the combustion chamber 5 when combustion is performed under a lean air-fuel ratio.
  • a catalyst 20 having an oxygen storage function is disposed upstream of the exhaust purification catalyst 22 in order to prevent a large amount of oxygen from being sent to the exhaust purification catalyst 22 when combustion with a lean air-fuel ratio is started.
  • the catalyst 20 having an oxygen storage function is arranged upstream of the exhaust purification catalyst 22, a large amount of oxygen is stored in the catalyst 20 when combustion by the lean air-fuel ratio is started, and as a result, exhaust purification.
  • the amount of oxygen flowing into the catalyst 22 decreases. Therefore, most of the generated reducing intermediate NCO continues to be held or adsorbed on the surface of the basic layer 63, and as a result, the NO x contained in the exhaust gas is well purified.
  • the catalyst 20 having an oxygen storage function is composed of a three-way catalyst disposed upstream of the exhaust purification catalyst 22.
  • the upstream side portion 22a of the exhaust purification catalyst 22 can have an oxygen storage function. That is, a catalyst having an oxygen storage function can be integrally formed on the upstream side of the exhaust purification catalyst 22.
  • the downstream portion 22b of the NO x storage catalyst 22 may have a weaker oxygen storage function than the upstream portion 22a.
  • NO contained in the exhaust gas is platinum Pt as shown in FIG. 4A. Dissociates and adsorbs on the surface of 61. However, after a while from the start of the lean air-fuel ratio combustion, the NO x contained in the exhaust gas is absorbed by the exhaust purification catalyst 22.
  • the absorption and release action of the NO x in the exhaust purification catalyst 22, enlarged in Figure 3B This will be described with reference to FIGS. 6A and 6B.
  • the air-fuel ratio in the combustion chamber 5 is made rich, the oxygen concentration in the exhaust gas flowing into the exhaust purification catalyst 22 decreases, so that the reaction proceeds in the reverse direction (NO 3 ⁇ ⁇ NO 2 ).
  • the nitrate absorbed in the basic layer 63 is successively released as nitrate ions NO 3 ⁇ from the basic layer 63 in the form of NO 2 as shown in FIG. 6B.
  • the released NO 2 is then reduced by the hydrocarbons HC and CO contained in the exhaust gas.
  • the exhaust purification catalyst 22 When the air-fuel ratio of the exhaust gas flowing into the catalyst 22 is lean, NO x is stored, and when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 22 becomes rich, the stored NO x is released.
  • FIG. 7 shows the NO x release control when NO x is absorbed by the exhaust purification catalyst.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is temporarily increased. To be rich.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, that is, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 22 is made rich, combustion is performed under the lean air-fuel ratio.
  • NO x stored in the exhaust purification catalyst 22 is released from the exhaust purification catalyst 22 at once and reduced. As a result, NO x is purified.
  • Occluded amount of NO x ⁇ NOX is calculated from the amount of NO x exhausted from the engine, for example. Is stored in advance in the ROM32 in the form of a map as shown in FIG. 8 as a function of the discharge amount of NO x NOXA is required load L and engine speed N which is discharged from the engine per unit time in this embodiment of the present invention, The occluded NO x amount ⁇ NOX is calculated from this exhausted NO x amount NOXA. In this case, the period during which the air-fuel ratio in the combustion chamber 5 is made rich is usually 1 minute or more.
  • Figure 9 shows the NO x purification rate when so as to purify NO x by absorbing and releasing action of the NO x in such an exhaust purification catalyst 22 as shown in FIG.
  • the horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 22.
  • reduced catalyst temperature TC When it extremely high NO x purification rate is obtained catalyst temperature TC becomes a high temperature of at least 400 ° C. when the 300 ° C. of 400 ° C. the NO x purification rate To do. As described above, the NO x purification rate decreases when the catalyst temperature TC exceeds 400 ° C.
  • the NO x is not easily absorbed when the catalyst temperature TC exceeds 400 ° C., and the nitrate is thermally decomposed to form NO 2 . This is because it is discharged from the exhaust purification catalyst 22. That is, as long as NO x is absorbed in the form of nitrate, it is difficult to obtain a high NO x purification rate when the catalyst temperature TC is high.
  • the amount of NO adsorbed on the surface of platinum Pt 61 is hardly affected by the temperature TC of the exhaust purification catalyst 22. Therefore, if NO x contained in the exhaust gas is adsorbed on the surface of platinum Pt 61 without being absorbed in the form of nitrate in the exhaust purification catalyst 22, the stored amount of NO x is the exhaust purification catalyst 22. It is hardly affected by the temperature TC. By the way, as described above, after a while from the start of the lean air-fuel ratio combustion, the NO x absorption action to the exhaust purification catalyst 22 is started.
  • FIG. 10 shows the change in the air-fuel ratio (A / F) of the exhaust gas flowing into the exhaust purification catalyst 22 when the NO x purification action is performed by this NO x purification method using adsorbed NO.
  • (A / F) b indicates the base air-fuel ratio in the engine combustion chamber 5.
  • FIG. 12 shows the NO x purification rate when NO x is purified by the NO x purification method using adsorption NO. As shown in FIG. 12, in this case, it is understood that the NO x purification rate does not decrease even when the temperature TC of the exhaust purification catalyst 22 is increased to a high temperature of 400 ° C. or higher.
  • the richness of the air-fuel ratio in the combustion chamber 5 and the lean-to-rich switching cycle ⁇ T are changed by changing the fuel injection amount and the injection timing from the fuel injection valves 11 and 12. It is controlled so as to have an optimum value according to the operating state.
  • the fuel injection amount WT capable of obtaining this optimum rich air-fuel ratio is previously stored in the ROM 32 in the form of a map as shown in FIG. 13 as a function of the required load L and the engine speed N. It is remembered. Further, the optimum lean-to-rich switching period ⁇ T is also stored in advance in the ROM 32 as a function of the required load L and the engine speed N in the form of a map as shown in FIG.
  • the exhaust purification catalyst 22 is disposed in the engine exhaust passage, and the catalyst 20 having an oxygen storage function is disposed in the engine exhaust passage upstream of the exhaust purification catalyst 22.
  • Precious metal catalysts 61 and 62 are supported on the exhaust gas flow surface, and a basic exhaust gas flow surface portion is formed around the noble metal catalysts 61 and 62.
  • the exhaust purification catalyst 22 is an exhaust purification catalyst 22.
  • the air-fuel ratio of the exhaust gas flowing into the exhaust gas is temporarily switched from lean to rich with a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas and switching from lean to rich cycle has the property of absorption is increased in the predetermined NO contained in the exhaust gas to be longer than the range x, this air-fuel ratio in the combustion chamber 5 at the time of engine operation Rich temporarily switched from lean with a cycle of the predetermined range, thereby so as to purify the NO x contained in the exhaust gas.
  • FIG. 15A shows the NO x absorption ability and the NO adsorption ability when NO x is purified using the NO x storage / release action to the exhaust purification catalyst 22, as shown in FIG.
  • the vertical axis in FIG. 15A shows the storage capacity of the NO x which is the sum of the absorption capacity and NO adsorption capacity NO x
  • the horizontal axis shows the temperature TC of the exhaust purification catalyst 22.
  • the amount of NO quantity of NO contained in the exhaust gas is adsorbed on the surface of The more the more the platinum Pt 61 as compared to the amount of O 2 becomes more than the amount of O 2, on the contrary As the amount of O 2 contained in the exhaust gas increases as compared with the amount of NO, the amount of NO adsorbed on the surface of platinum Pt 61 decreases as compared with the amount of O 2 . Therefore, the NO adsorption capacity of the exhaust purification catalyst 22 decreases as the oxygen concentration in the exhaust gas increases, as shown in FIG. 16A.
  • the higher the oxygen concentration in the exhaust gas the more NO oxidation in the exhaust gas is promoted and the NO x absorption into the exhaust purification catalyst 22 is promoted. Therefore, as shown in FIG. 16B, the NO x absorption capacity in the exhaust purification catalyst 22 increases as the oxygen concentration in the exhaust gas increases.
  • the region X is obtained under the lean air-fuel ratio when NO x is purified by using the NO x storage / release action to the exhaust purification catalyst 22, as shown in FIG. It shows when combustion is taking place. At this time, it can be seen that the NO adsorption capacity is low and the NO x absorption capacity is high.
  • FIG. 15A described above shows the NO adsorption capacity and the NO x absorption capacity at this time.
  • the oxygen concentration in the exhaust gas may be decreased.
  • the NO x absorption capacity decreases.
  • FIG. 15B shows the NO x absorption ability and NO adsorption ability when the oxygen concentration in the exhaust gas is lowered to the region Y in FIGS. 16A and 16B.
  • FIG. 17A shows the air-fuel ratio (A / F) in the combustion chamber 5 when NO x is purified using the NO x storage-release action to the exhaust purification catalyst 22, as in the case shown in FIG. Shows changes.
  • (A / F) b represents the base air-fuel ratio
  • ⁇ (A / F) r represents the richness of the air-fuel ratio
  • ⁇ T represents the switching of the air-fuel ratio from lean to rich.
  • FIG. 17B shows the change in the air-fuel ratio (A / F) in the combustion chamber 5 when NO x is purified using the NO adsorption action.
  • (A / F) b indicates the base air-fuel ratio
  • ⁇ (A / F) r indicates the richness of the air-fuel ratio
  • ⁇ T indicates the rich period of the air-fuel ratio.
  • FIG. 17C shows a change in the air-fuel ratio in the combustion chamber 5 when the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • FIG. 18 shows the change in the air-fuel ratio (A / F) in the combustion chamber 5 when the NO x is purified by utilizing the NO adsorption action and the exhaust purification catalyst 22 as shown in FIG. It shows the change in the air-fuel ratio (A / F) in of the inflowing exhaust gas.
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, the oxygen stored in the three-way catalyst 20 is released and maintained at the stoichiometric air-fuel ratio for a time t1, Thereby, HC, CO and NO x are simultaneously reduced. During this time, as shown in FIG.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 22 is maintained at the stoichiometric air-fuel ratio.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 22 becomes rich during the time t2.
  • NO dissociated and adsorbed on the surface of platinum Pt 61 becomes N 2 on the one hand and a reducing intermediate NCO on the other hand.
  • the reducing intermediate NCO continues to be held or adsorbed on the surface of the basic layer 63 for a while after the generation.
  • An engine medium load operation region II located between the load operation regions III is set in advance.
  • shaft L of FIG. 19 has shown the required load
  • the horizontal axis N has shown the engine speed.
  • the NO x purification action that purifies NO x by using the NO x storage and release action to the exhaust purification catalyst 22 is performed.
  • the middle-medium-load operation region II as shown in FIG.
  • the NO x purification action is performed in which NO x is purified using the NO adsorption action.
  • the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.
  • combustion should be performed in the combustion chamber 5 with the base air-fuel ratio lean, and NO x should be released from the exhaust purification catalyst 22.
  • the air-fuel ratio in the combustion chamber 5 is made rich, and in the predetermined engine high load operation region III, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio, so that the predetermined engine load operation region II is determined.
  • combustion in the combustion chamber 5 is performed under a base air-fuel ratio smaller than the base air-fuel ratio in the engine low-load operation region I, and the air-fuel ratio rich for NO x release in the engine low-load operation region I
  • the air-fuel ratio in the combustion chamber 5 is made rich with a cycle shorter than the cycle.
  • the base air-fuel ratio in the engine medium load operation region II is an intermediate value between the base air fuel ratio and the stoichiometric air fuel ratio in the engine low load operation region I.
  • the richness of the air-fuel ratio when the air-fuel ratio in the combustion chamber 5 is made rich is the richness of the air-fuel ratio in the engine low load operation region I when the air-fuel ratio in the combustion chamber 5 is made rich. Smaller than the degree.
  • FIG. 20 shows changes in the fuel injection amount into the combustion chamber 5, changes in the air-fuel ratio (A / F) in the combustion chamber 5, and changes in the stored NO x amount ⁇ NOX.
  • MAXI represents the first allowable NO x storage amount
  • MAX II represents the second allowable NO x storage amount.
  • the second allowable NO x storage amount MAXII is set to a smaller value than the first allowable NO x storage amount MAXI.
  • the first allowable NO x storage amount MAXI is the same as the allowable NO x storage amount MAXI in FIG.
  • the air-fuel ratio in the combustion chamber 5 is temporarily made rich.
  • the exhaust purification catalyst 22 is high, NO x is hardly absorbed into the exhaust purification catalyst 22, the majority of the NO x consists of adsorbing NO. Therefore, in other words, the NO adsorption amount adsorbed by the exhaust purification catalyst 22 is calculated, and when the engine is operating in the engine middle load operation region II, the NO adsorption amount ⁇ NOX is preliminarily determined.
  • the determined allowable NO adsorption amount MAXII is exceeded, the air-fuel ratio (A / F) in the combustion chamber 5 is made rich.
  • the engine low load operating region I which is occluded in the exhaust purifying catalyst 22, NO x
  • the occlusion amount ⁇ NOX exceeds a predetermined first allowable NO x occlusion amount MAXI
  • the air-fuel ratio (A / F) in the combustion chamber 5 is made rich, and the engine is operated in the engine middle load operation region II.
  • the air-fuel ratio (a / F) is made rich in the combustion chamber 5 when exceeding the second tolerance the NO x storage amount MAXII that the NO x storage amount ⁇ NOX is predetermined, the second The allowable NO x occlusion amount MAXII is smaller than the first allowable NO x occlusion amount MAXI.
  • the injection amounts from the fuel injection valves 11 and 12 are feedback-controlled based on the output signal of the air-fuel ratio sensor 27 so that the air-fuel ratio in the combustion chamber 5 becomes the stoichiometric air-fuel ratio. .
  • harmful components HC, CO and NO x contained in the exhaust gas are simultaneously purified in the three-way catalyst 20.
  • ammonia may be generated at this time.
  • this ammonia is adsorbed by the NO x selective reduction catalyst 23.
  • the ammonia adsorbed on the NO x selective reduction catalyst 23 reacts with NO x contained in the exhaust gas and is used to reduce NO x .
  • FIG. 21 shows an operation control routine. This routine is executed by interruption every predetermined time.
  • step 80 it is judged if the operating state of the engine is the engine high load operating region III shown in FIG.
  • the process proceeds to step 81, the discharge amount of NO x NOXA per unit time from the map shown in FIG. 8 is calculated.
  • occluded amount of NO x ⁇ NOX is calculated by adding the discharge amount of NO x NOXA to ⁇ NOX step 82.
  • step 83 it is judged if the operating state of the engine is an engine low load operating region I shown in FIG. When the engine operating state is in the engine low load operation region I shown in FIG.
  • step 84 the NO x storage amount ⁇ NOX is discriminated whether or not more than the first allowable the NO x storage amount MAXI is, when the NO x storage amount ⁇ NOX has not exceeded the first tolerance the NO x storage amount MAXI, the step Proceeding to 85, the air-fuel ratio in the combustion chamber 5 is set to a lean air-fuel ratio that is predetermined according to the operating state of the engine. At this time, combustion is performed with the base air-fuel ratio lean.
  • step 86 the routine proceeds to step 86, where the air-fuel ratio in the combustion chamber 5 becomes temporarily rich. ⁇ NOX is cleared. At this time, NO x stored in the exhaust purification catalyst 22 is released from the exhaust purification catalyst 22.
  • step 83 when it is determined in step 83 that the engine operating state is not the engine low load operating region I shown in FIG. 19, that is, the engine operating state is the engine medium load operating region II shown in FIG.
  • the routine proceeds to step 87, where it is determined whether or not the engine operating state has shifted from the engine low load operation region I to the engine middle load operation region II.
  • step 88 the routine proceeds to step 88 where the air-fuel ratio in the combustion chamber 5 is temporarily made rich.
  • the routine proceeds to step 89.
  • step 89 it is determined whether or not the NO x storage amount ⁇ NOX exceeds the second allowable NO x storage amount MAXII.
  • the routine proceeds to step 90, where the air-fuel ratio in the combustion chamber 5 is set to a lean air space that is predetermined according to the operating state of the engine. The fuel ratio is set. At this time, combustion is performed with the base air-fuel ratio lean. Note that the base air-fuel ratio at this time is smaller than the base air-fuel ratio in the engine low load operation region I.
  • step 89 when it is determined at step 89 that the NO x storage amount ⁇ NOX exceeds the second allowable NO x storage amount MAXII, the routine proceeds to step 91 where the air-fuel ratio in the combustion chamber 5 becomes temporarily rich. ⁇ NOX is cleared. At this time, NO x stored in the exhaust purification catalyst 22 is released from the exhaust purification catalyst 22.
  • step 80 when it is determined in step 80 that the engine operating state is the engine high load operating region III shown in FIG. 19, the routine proceeds to step 92, where the engine operating state is now changed from the engine medium load operating region II. It is determined whether or not the engine has shifted to the high engine load operation region III. Now, when the engine operating state shifts from the engine middle load operation region II to the engine high load operation region III, the routine proceeds to step 93 where the air-fuel ratio in the combustion chamber 5 is temporarily made rich. In contrast, when the engine operating state has already shifted from the engine middle load operation region II to the engine high load operation region III, the routine proceeds to step 94. In step 94, the air-fuel ratio in the combustion chamber 5 is feedback-controlled to the stoichiometric air-fuel ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 機関排気通路内に酸素貯蔵機能を有する三元触媒(20)と、排気浄化触媒(22)とが配置される。排気浄化触媒(22)の排気ガス流通表面上には貴金属触媒(61,62)が担持されていると共に貴金属触媒(61,62)周りには塩基性の排気ガス流通表面部分が形成されている。機関運転時に燃焼室(5)内における空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換え、それによって排気ガス中に含まれるNOxを浄化する。

Description

火花点火式内燃機関の排気浄化装置
 本発明は火花点火式内燃機関の排気浄化装置に関する。
 機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に炭化水素供給弁を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、機関運転時に炭化水素供給弁から予め定められた周期でもって炭化水素を噴射すると排気浄化触媒上において窒素化合物と炭化水素との結合体である中間体が生成され、この中間体を用いて排気ガス中に含まれるNOxを浄化するようにした圧縮着火式内燃機関が公知である(例えば特許文献1を参照)。この内燃機関では排気浄化触媒の温度が高温になっても高いNOx浄化率を得ることができる。
WO2011/114499A1
 一方、火花点火式内燃機関においても、燃焼室内の空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えると、リッチに切換えられたときに燃焼室内で発生した一酸化炭素COによって排気浄化触媒上には窒素と一酸化炭素COとの結合体である中間体が生成され、この中間体を用いて排気ガス中に含まれるNOxが浄化される。しかしながら、窒素と一酸化炭化COとの結合体である中間体は酸化されやすく、その結果これら中間体をNOxの浄化のために十分に使用できないために、十分にNOxを浄化することができないという問題がある。
 本発明の目的は、生成された中間体をNOxの浄化のために十分に使用できるようにし、それによって高いNO浄化率を得ることのできる火花点火式内燃機関の排気浄化装置を提供することにある。
 本発明によれば、機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に酸素貯蔵機能を有する触媒を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒は、排気浄化触媒に流入する排気ガスの空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えると排気ガス中に含まれるNOを還元する性質を有すると共に、リーンからリッチへの切換え周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸収量が増大する性質を有しており、機関運転時に燃焼室内における空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換え、それによって排気ガス中に含まれるNOxを浄化するようにした火花点火式内燃機関の排気浄化装置が提供される。
 火花点火式内燃機関においても高いNOx浄化率を確保することができる。
図1は内燃機関の全体図である。 図2は三元触媒の基体の表面部分を図解的に示す図である。 図3Aおよび3Bは排気浄化触媒の触媒担体の表面部分等を図解的に示す図である。 図4Aおよび4Bは排気浄化触媒における吸着反応等を説明するための図である。 図5は排気浄化触媒の別の実施例を示す図である。 図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。 図7はNOx放出制御を示す図である。 図8は排出NOx量NOXAのマップを示す図である。 図9はNOx浄化率を示す図である。 図10は三元触媒および排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。 図11は空燃比のリーンからリッチへの切換え周期ΔTとNOx浄化率との関係を示す図である。 図12はNOx浄化率を示す図である。 図13は燃料噴射量のマップを示す図である。 図14は空燃比のリーンからリッチへの切換え周期ΔTのマップを示す図である。 図15Aおよび15BはNOx吸収能およびNO吸着能を説明するための図である。 図16Aおよび16Bは NOx吸収能およびNO吸着能を説明するための図である。 図17A,17Bおよび17Cは機関から排出される排気ガスの空燃比の変化を示すタイムチャートである。 図18は三元触媒および排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。 図19は機関の運転領域を示す図である。 図20は機関運転時における燃料噴射量等の変化を示すタイムチャートである。 図21は機関の運転制御を行うためのフローチャートである。
 図1に、燃料としてガソリンを用いた火花点火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。図1に示されるように、各気筒は燃焼室2内に向けて燃料、即ちガソリンを噴射するための電子制御式燃料噴射弁11と、吸気ポート8内に向けて燃料、即ちガソリンを噴射するための電子制御式燃料噴射弁12からなる一対の燃料噴射弁を具備する。各気筒の吸気ポート8は吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気ダクト15を介してエアクリーナ16に連結される。吸気ダクト15内には吸入空気量検出器17と、アクチュエータ18aより駆動されるスロットル弁18とが配置される。
 一方、各気筒の排気ポート10は排気マニホルド19を介して酸素貯蔵機能を有する触媒20の入口に連結され、この触媒20の出口は排気管21を介して排気浄化触媒22の入口に連結される。なお、図1に示される実施例では、この酸素貯蔵機能を有する触媒20は三元触媒からなる。排気浄化触媒22の出口はNOx選択還元触媒23に連結される。一方、排気管21とサージタンク14とは排気ガス再循環(以下、EGRと称す)通路24を介して互いに連結される。EGR通路24内には電子制御式EGR制御弁25が配置され、更にEGR通路24周りにはEGR通路24内を流れる排気ガスを冷却するための冷却装置26が配置される。図1に示される実施例では機関冷却水が冷却装置26内に導かれ、機関冷却水によって排気ガスが冷却される。
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。三元触媒20の上流には機関から排出される排気ガスの空燃比を検出するための空燃比センサ27が取り付けられており、三元触媒20の下流には排気ガス中の酸素濃度を検出するための酸素濃度センサ28が取付けられている。これら空燃比センサ27、酸素濃度センサ28および吸入空気量検出器17の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁11,12、スロットル弁駆動用アクチュエータ18aおよびEGR制御弁25に接続される。
 図2は三元触媒20の基体50の表面部分を図解的に示している。図2に示されるように、触媒担体50上には上部コート層51と下部コート層52とが積層状に形成されている。上部コート層51はロジウムRh とセリウムCe からなり、下部コート層52は白金Pt とセリウムCe からなる。なお、この場合、上部コート層51に含まれるセリウムCe の量は下部コート層52に含まれるセリウムCe の量よりも少ない。また、上部コート層51内にはジルコニアZr を含有せしめることができるし、下部コート層52内にはパラジウムPd を含有せしめることもできる。
  この三元触媒20は、燃焼室5内において理論空燃比のもとで燃焼が行われているとき、即ち機関から排出される排気ガスの空燃比が理論空燃比のときに、排気ガス中に含まれる有害成分HC、COおよびNOxを同時に低減する機能を有している。従って、燃焼室5内において理論空燃比のもとで燃焼が行われているときには、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において浄化されることになる。
 なお、燃焼室5内における空燃比を完全に理論空燃比に保持し続けることは不可能であり、従って実際には、燃焼室5から排出された排気ガスの空燃比がほぼ理論空燃比となるように、即ち燃焼室5から排出される排気ガスの空燃比が理論空燃比を中心して振れるように、燃料噴射弁11,12からの噴射量が空燃比センサ27の検出信号に基づいてフィードバック制御される。また、この場合,排気ガスの空燃比の変動の中心が理論空燃比からずれたときには、酸素濃度センサ28の出力信号に基づいて排気ガスの空燃比の変動の中心が理論空燃比に戻るように調整される。このように燃焼室5から排出される排気ガスの空燃比が理論空燃比を中心して振れたとしても、セリウムCe による三元触媒20の酸素貯蔵能力により、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において良好に浄化される。
 図3Aは排気浄化触媒22の基体55の表面部分を図解的に示している。図3Aに示されるように、排気浄化触媒22においても基体55上にはコート層56が形成されている。このコート層56は例えば粉体の集合体からなり、図3Bはこの粉体の拡大図を示している。図3Bを参照すると、この粉体の例えばアルミナからなる触媒担体60上には貴金属触媒61,62が担持されており、更にこの触媒担体60上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層63が形成されている。排気ガスは触媒担体60上に沿って流れるので貴金属触媒61,62は排気浄化触媒22の排気ガス流通表面上に担持されていると言える。また、塩基性層63の表面は塩基性を呈するので塩基性層63の表面は塩基性の排気ガス流通表面部分と称される
 一方、図3Bにおいて貴金属触媒61は白金Pt からなり、貴金属触媒62はロジウムRh からなる。なおこの場合、いずれの貴金属触媒61,62も白金Pt から構成することができる。また、触媒担体60上には白金Pt およびロジウムRh に加えて更にパラジウムPd を担持させることができるし、或いはロジウムRh に代えてパラジウムPd を担持させることができる。即ち、触媒担体60に担持されている貴金属触媒61,62は白金Pt、ロジウムRh およびパラジウムPd の少なくとも一つにより構成される。
 さて、リーン空燃比のもとで燃焼が行われているときには、理論空燃比のもとで燃焼が行われているときに比べて、燃料消費量が少なくなる。従って、燃料消費量を低減するには、できる限り、リーン空燃比のもとで燃焼を行うことが好ましい。そこで、本発明者は、火花点火式内燃機関においてリーン空燃比のもとで燃焼を行ったときのNOxの浄化作用について検討を重ね、その結果、火花点火式内燃機関におけるNOxの浄化作用については、排気浄化触媒13へのNOの吸着作用が大きな影響を与えていることを見出したのである。
 即ち、従来より、排気浄化触媒22にNOが吸着していることはわかっている。しかしながら、吸着NOの挙動については、これまでほとんど追求されることはなかった。そこで、本発明者等は、この吸着NOの挙動を追求し、この吸着NOの吸着特性を利用すると、排気浄化触媒22の温度TCが低いときにリーン空燃比のもとで燃焼を行ったときはもとより、排気浄化触媒22の温度TCが高いときにリーン空燃比のもとで燃焼を行ったとしても、高いNOx浄化率を確保し得ることを突き止めたのである。この新たなNOx浄化方法は、NOの吸着作用を利用しているので、以下この新たなNOx浄化方法を、吸着NO利用のNOx浄化方法と称する.そこで、まず初めに、この吸着NO利用のNOx浄化方法について、図4Aおよび図4Bを参照しつつ説明する。
 図4Aおよび4Bは、図3Bの拡大図、即ち排気浄化触媒22の触媒担体60の表面部分を示している。また、図4Aは、リーン空燃比のもとで燃焼が行われているときを示しており、図4Bは、燃焼室5内における空燃比がリッチにされたときを示している。さて、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、排気ガス中に含まれるNOは図4Aに示されるように、白金Pt 61の表面に解離して吸着する。この白金Pt 61の表面へのNOの吸着量は時間の経過と共に増大し、従って時間の経過と共に排気浄化触媒22へのNO吸着量は増大することになる。
 一方、燃焼室5内における空燃比がリッチにされると、燃焼室5からは多量の一酸化炭素COが排出され、従って排気浄化触媒22に流入する排気ガス中には多量の一酸化炭素COが含まれることになる。この一酸化炭素COは図4Bに示されるように、白金Pt 61の表面上に解離吸着しているNOと反応し、このNOは、一方ではN2となり、他方では還元性中間体NCOとなる。この還元性中間体NCOは生成後、暫らくの間、塩基性層63の表面上に保持又は吸着され続ける。従って、塩基性層63の表面上に保持又は吸着されている還元性中間体NCOの量は、時間の経過と共に次第に増大していくことになる。この還元性中間体NCOは排気ガス中に含まれるNOxと反応し、それによって排気ガス中に含まれるNOxが浄化される。
 このように、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、図4Aに示されるように、一方では排気ガス中に含まれるNOは排気浄化触媒22に吸着され、他方では排気ガス中に含まれるNOxが塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応して浄化される。これに対し、燃焼室5内における空燃比がリッチにされると、排気浄化触媒22に吸着されていたNOxが排気浄化触媒22から放出され、還元される。従って、リーン空燃比のもとで燃焼が行われているときに燃焼室5内における空燃比を周期的にリッチにすることによって、排気ガス中に含まれるNOxを浄化できることになる。
 このように、リーン空燃比のもとで燃焼が行われているときには、排気ガス中に含まれるNOxは塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応し浄化される。従って、NOxの浄化率を高めるには、還元性中間体NCOの生成量をできる限り増大させることが必要となる。しかしながら、この還元性中間体NCOは酸化されやすい。従って燃焼室5内における空燃比がリッチにされて還元性中間体NCOが生成された後、リーン空燃比による燃焼が開始されたときに多量の酸素が排気浄化触媒22に送り込まれると、せっかく生成された還元性中間体NCOが酸化されてしまい、高いNOx浄化率が得られなくなってしまう。
 そこで本発明では、リーン空燃比による燃焼が開始されたときに多量の酸素が排気浄化触媒22に送り込まれるのを阻止するために、排気浄化触媒22の上流に酸素貯蔵機能を有する触媒20が配置されている。このように、排気浄化触媒22の上流に酸素貯蔵機能を有する触媒20が配置されていると、リーン空燃比による燃焼が開始されたときに多量の酸素が触媒20に貯蔵され、その結果排気浄化触媒22に流入する酸素量が減少する。従って、生成された還元性中間体NCOの大部分が塩基性層63の表面上に保持又は吸着され続け、その結果排気ガス中に含まれるNOxが良好に浄化されることになる。
 前述したように、図1に示される実施例では、酸素貯蔵機能を有する触媒20が排気浄化触媒22の上流に配置された三元触媒からなる。この場合、触媒20を設ける代わりに、図5に示される如く、排気浄化触媒22の上流側部分22aに酸素貯蔵機能を持たせることもできる。即ち、酸素貯蔵機能を有する触媒を排気浄化触媒22の上流側に一体的に形成することもできる。なお、この場合、上流側部分22aに比べて弱い酸素貯蔵機能をNOx吸蔵触媒22の下流側部分22bに持たせることもできる。
 さて、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、上述したように、排気ガス中に含まれるNOは図4Aに示される如く、白金Pt 61の表面に解離して吸着する。しかしながら、リーン空燃比による燃焼が開始されてから暫らくすると、排気ガス中に含まれるNOxは排気浄化触媒22に吸収される。
ここで、図4Aおよび図4Bを参照しつつ説明した吸着NO利用のNOx浄化方法の特徴を明確にするために、次に排気浄化触媒22のNOxの吸収放出作用について、図3Bの拡大図を示す図6Aおよび6Bを参照しつつ説明する。
 さて、リーン空燃比のもとで燃焼が行われているときには、即ち排気ガスの空燃比がリーンのときには、排気ガス中の酸素濃度が高く、従ってこのとき排気ガス中に含まれるNOは図6Aに示されるように、白金Pt 61上において酸化されてNO2となる。次いで、リーン空燃比による燃焼が開始されてから暫らくすると、白金Pt 61上のNO2は塩基性層63内に吸収されて硝酸イオンNO3 -の形で塩基性層63内に拡散し、硝酸塩となる。このようにして排気ガス中のNOxが硝酸塩の形で塩基性層63内に吸収されることになる。リーン空燃比による燃焼が開始されてから暫らくした後は、排気ガス中の酸素濃度が高い限り白金Pt 61の表面でNO2が生成され、塩基性層63のNOx吸収能力が飽和しない限りNOxが塩基性層63内に吸収されて硝酸塩が生成される。
 これに対し、燃焼室5内における空燃比がリッチにされると、排気浄化触媒22に流入する排気ガス中の酸素濃度が低下するために、反応が逆方向(NO3 -→NO2)に進み、斯くして塩基性層63内に吸収されている硝酸塩は順次硝酸イオンNO3 -となって図6Bに示されるようにNO2の形で塩基性層63から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
 なお、リーン空燃比のもとで燃焼が行われているときには、上述したように、NOが白金Pt 61の表面に吸着し、従って排気ガス中のNOはこの吸着作用によっても排気浄化触媒22に保持されることになる。この白金Pt 61の表面に吸着したNOは、燃焼室5内における空燃比がリッチにされると、白金Pt 61の表面から脱離せしめられる。従って吸収および吸着の双方を含む用語として吸蔵という用語を用いると、塩基性層63はNOxを一時的に吸蔵するためのNOx吸蔵剤の役目を果していることになる。従って、機関吸気通路、燃焼室5および排気浄化触媒22上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒22は、排気浄化触媒22に流入する排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気浄化触媒22に流入する排気ガスの空燃比がリッチになると吸蔵したNOxを放出することになる。
 上述したように、リーン空燃比による燃焼が開始されてから暫らくすると、排気ガス中のNOxが排気浄化触媒22に吸収され始める。しかしながら、リーン空燃比のもとでの燃焼が継続して行われると、その間に排気浄化触媒22のNOx吸蔵能力が飽和してしまい、その結果排気浄化触媒22によりNOxを吸蔵できなくなってしまう。従って、排気浄化触媒22のNOx吸蔵能力が飽和する前に燃焼室5内における空燃比を一時的にリッチにし、それによって排気浄化触媒22からNOxを放出させるようにしている。
 図7は、排気浄化触媒にNOxを吸収させるようにした場合のNOx放出制御を示している。図7を参照すると、排気浄化触媒22に吸蔵された吸蔵NOx量ΣNOXが予め定められた許容NOx吸蔵量MAXIを越えたときに燃焼室5内における空燃比(A/F)が一時的にリッチにされる。燃焼室5内における空燃比(A/F)がリッチにされると、即ち排気浄化触媒22に流入する排気ガスの空燃比がリッチにされると、リーン空燃比のもとで燃焼が行われているときに、排気浄化触媒22に吸蔵されたNOxが排気浄化触媒22から一気に放出されて還元される。それによってNOxが浄化される。
 吸蔵NOx量ΣNOXは例えば機関から排出されるNOx量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOx量NOXAが要求負荷Lおよび機関回転数Nの関数として図8に示すようなマップの形で予めROM32内に記憶されており、この排出NOx量NOXAから吸蔵NOx量ΣNOXが算出される。この場合、燃焼室5内における空燃比がリッチにされる周期は通常1分以上である。
 図9は、図7に示すような、排気浄化触媒22のNOxの吸蔵放出作用によりNOxを浄化するようにした場合のNOx浄化率を示している。なお、図9の横軸は排気浄化触媒22の触媒温度TCを示している。この場合には、図9からわかるように、触媒温度TCが300℃から400℃のときには極めて高いNOx浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOx浄化率が低下する。このように触媒温度TCが400℃以上になるとNOx浄化率が低下するのは、触媒温度TCが400℃以上になるとNOxが吸収されづらくなり、また硝酸塩が熱分解してNO2の形で排気浄化触媒22から放出されるからである。即ち、NOxを硝酸塩の形で吸収している限り、触媒温度TCが高いときに高いNOx浄化率を得るのは困難となる。
 これに対し、白金Pt 61の表面へのNOの吸着量は排気浄化触媒22の温度TCの影響をほとんど受けない。従って、排気ガス中に含まれるNOxを、排気浄化触媒22において、硝酸塩の形で吸収することなく、白金Pt 61の表面に吸着させるようにすれば、NOxの吸蔵量は排気浄化触媒22の温度TCの影響をほとんど受けないことになる。ところで、前述したように、リーン空燃比による燃焼が開始されてから暫らくすると、排気浄化触媒22へのNOx吸収作用が開始される。従って、リーン空燃比による燃焼が開始された後、排気浄化触媒22へのNOx吸収作用が開始される前に、燃焼室5内における空燃比をリッチにすると、排気ガス中に含まれるNOxは排気浄化触媒22に吸収されることなく、NOxを浄化できることになる。
 このように、リーン空燃比による燃焼が開始された後、排気浄化触媒22へのNOx吸収作用が開始される前に、燃焼室5内における空燃比をリッチにし、それにより排気ガス中に含まれるNOxを排気浄化触媒22に吸収させることなく、NOxを浄化するようにしたNOxの浄化方法が、図4Aおよび4Bを参照しつつ説明した吸着NO利用のNOx浄化方法である。図10は、この吸着NO利用のNOx浄化方法によりNOxの浄化作用を行っているときの排気浄化触媒22への流入排気ガスの空燃比(A/F)の変化を表している。なお、図10において(A/F)bは、機関燃焼室5内におけるベース空燃比を示している。
 図10からわかるように、吸着NO利用のNOx浄化方法によりNOxの浄化が行われているときには、燃焼室5内における空燃比がΔTで示される周期でもってリーンからリッチに切換えられる。この場合、排気ガスの空燃比がリーンのときには、図4Aに示されるように、一方では排気ガス中に含まれるNOが排気浄化触媒22に吸着され、他方では排気ガス中に含まれるNOxが塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応して浄化される。これに対し、燃焼室5内における空燃比がリッチにされると、排気浄化触媒22に吸着されていたNOxが排気浄化触媒22から放出され、還元される。
 とここで、排気浄化触媒22への流入排気ガスの空燃比(A/F)がリーンからリッチに切換えられる周期ΔTが長くなると、排気浄化触媒22にNOxが硝酸塩の形で吸収され始める。この場合、排気浄化触媒22への流入排気ガスの空燃比(A/F)のリーンからリッチへの切換え周期ΔTが5秒程度よりも長くなるとNOxが硝酸塩の形で塩基性層63内に吸収され始め、従って図11に示されるようにこのリーンからリッチへの切換え周期ΔTが5秒程度よりも長くなるとNOx浄化率が低下することになる。従ってこのリーンからリッチへの切換え周期ΔTは5秒以下とする必要がある。
 図12は、吸着NO利用のNOx浄化方法によりNOxを浄化するようにした場合のNOx浄化率を示している。図12に示されるように、この場合には、排気浄化触媒22の温度TCが高くなって400 ℃以上の高温になっても、NOx浄化率が低下しないことがわかる。
 さて、本発明による実施例では、燃料噴射弁11,12からの燃料噴射量および噴射時期を変化させることによって燃焼室5内における空燃比のリッチ度合いおよびリーンからリッチへの切換え周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、本発明による実施例ではこの最適なリッチ空燃比を得ることのできる燃料噴射量WTが要求負荷Lおよび機関回転数Nの関数として図13に示すようなマップの形で予めROM32内に記憶されている。また、最適なリーンからリッチへの切換え周期ΔTも要求負荷Lおよび機関回転数Nの関数として図14に示すようなマップの形で予めROM32内に記憶されている。
  従って、機関運転時に、図13に示すマップから算出された燃料噴射量WTと図14に示すマップから算出されたリーンからリッチへの切換え周期ΔTとに従い燃料噴射弁11,12から燃料噴射を行うと、吸着NO利用のNOx浄化方法によりNOxの浄化作用が実行され、このときには排気浄化触媒22の温度TCが高くなっても、高いNOx浄化率が得られることになる。
 このように、本発明によれば、機関排気通路内に排気浄化触媒22を配置すると共に排気浄化触媒22上流の機関排気通路内に酸素貯蔵機能を有する触媒20を配置し、排気浄化触媒22の排気ガス流通表面上には貴金属触媒61,62が担持されていると共に貴金属触媒61,62周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒22は、排気浄化触媒22に流入する排気ガスの空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えると排気ガス中に含まれるNOを還元する性質を有すると共に、リーンからリッチへの切換え周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸収量が増大する性質を有しており、機関運転時に燃焼室5内における空燃比をこの予め定められた範囲内の周期でもってリーンからリッチに一時的に切換え、それによって排気ガス中に含まれるNOxを浄化するようにしている。
 次に、通常は、排気浄化触媒22へのNOxの吸蔵放出作用を利用したNOxの浄化方法を用い、必要に応じて吸着NO利用のNOx浄化方法を用いるようにした実施例について説明する。この場合、排気浄化触媒22へのNO吸収能とNO吸着能とについて考慮する必要があり、従ってまず初めに、排気浄化触媒22へのNO吸収能とNO吸着能について説明することとする。
 図15Aは、図7に示す如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるNO吸収能とNO吸着能とを示している。なお、図15Aにおいて縦軸は、NOx吸収能とNO吸着能の和であるNOxの吸蔵能を示しており、横軸は排気浄化触媒22の温度TCを示している。図15Aからわかるように、排気浄化触媒22の温度TCがほぼ400℃よりも低いときには、排気浄化触媒22の温度TCにかかわらずに、NOx吸収能およびNO吸着能は一定であり、従って、NOx吸収能とNO吸着能の和であるNOxの吸蔵能も、排気浄化触媒22の温度TCにかかわらずに一定となる。
 一方、排気浄化触媒22の温度TCが高くなると、白金Pt 61の表面上におけるNOxの酸化反応(NO→NO2)は速くなる。しかしながら、排気浄化触媒22の温度TCが高くなると、NO2が硝酸イオンNO3 -となる反応(NO2+Ba(CO32→Ba(NO32+CO2)が遅くなり、その結果、NOxが排気浄化触媒22に吸収されづらくなる。また、排気浄化触媒22の温度TCが高くなると、硝酸塩が熱分解してNO2の形で排気浄化触媒22から放出される。従って、図15Aに示されるように、排気浄化触媒22の温度TCが高くなって400℃以上の高温になるとNOx吸収能が急激に低下する。これに対し、白金Pt 61の表面へのNOの吸着量は排気浄化触媒22の温度TCの影響をほとんど受けない。従って、図9Aに示されるように、NO吸着能は排気浄化触媒22の温度TCが高くなってもほとんど変化しない。
 次に、図16Aおよび16Bを参照しつつ、リーン空燃比のもとで燃焼が行われているときの排気ガス中の酸素濃度と、NO吸着能、NOx吸収能との関係について説明する。最初に、白金Pt 61の表面への吸着について考えてみると、白金Pt 61の表面にはNOとO2とが競争吸着する。即ち、排気ガス中に含まれるNOの量がO2の量に比べて多くなればなるほど白金Pt 61の表面に吸着するNOの量は O2の量に比べて多くなり、これとは逆に、排気ガス中に含まれるO2の量がNOの量に比べて多くなればなるほど白金Pt 61の表面に吸着するNOの量はO2の量に比べて少なくなる。従って、排気浄化触媒22におけるNO吸着能は、図16Aに示されるように、排気ガス中の酸素濃度が高くなるほど低下する。
 一方、排気ガス中の酸素濃度が高くなればなるほど、排気ガス中のNOの酸化作用が促進され、排気浄化触媒22へのNOxの吸収が促進される。従って、図16Bに示されるように、排気浄化触媒22におけるNOx吸収能は、排気ガス中の酸素濃度が高くなればなるほど、高くなる。なお、図16Aおよび16Bにおいて、領域Xは、図7に示す如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合においてリーン空燃比のもとで燃焼が行われているときを示している。このときには、NO吸着能が低く、NOx吸収能が高いことがわかる。前述した図15Aは、このときのNO吸着能とNOx吸収能を示している。
 さて、図15Aを参照しつつ既に説明したように、排気浄化触媒22の温度TCが高くなって400℃以上の高温になるとNOx吸収能が急激に低下する。これに対し、NO吸着能は排気浄化触媒22の温度TCが高くなってもほとんど変化しない。従って、排気浄化触媒22の温度TCが高くなって400℃以上の高温になったときには、NOxの吸収作用を利用したNOx浄化方法を取りやめ、それに代えてNOの吸着作用を利用したNOx浄化方法を用いると、NOxを浄化し得るのではないかということが推測される。しかしながら、図15Aからわかるように、NO吸着能は低く、燃料消費量の増大を招くことなくNOの吸着作用を利用してNOxを浄化するには、NO吸着能を増大させる必要がある。
 この場合、NO吸着能を増大させるには、図16Aからわかるように、排気ガス中の酸素濃度を低下させればよいことになる。このときには、図16Bに示されるように、NOx吸収能は低下する。図16Aおよび16Bにおいて排気ガス中の酸素濃度を領域Yまで低下させたときのNOx吸収能およびNO吸着能が図15Bに示されている。このように排気ガス中の酸素濃度を低下させることによって、NO吸着能を増大させることができる。排気ガス中の酸素濃度を低下させるということは、リーン空燃比のもとで燃焼が行われているときの空燃比(ベース空燃比)を低下させることを意味しており、従ってベース空燃比を低下させることによってNO吸着能を増大させることができる。
 そこでこの実施例では、NOの吸着作用を利用してNOxを浄化するときには、即ち吸着NO利用のNOx浄化方法においては、ベース空燃比を低下させるようにしている。次に、このことについて、図17Aから図17Cを参照しつつ説明する。図17Aは、図7に示す場合と同様に、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合の燃焼室5内における空燃比(A/F)の変化を示している。なお、図17Aにおいて、(A/F)bはベース空燃比を示しており、Δ(A/F)rは空燃比のリッチ度合いを示しており、ΔTは空燃比のリーンからリッチへの切換え周期を示している。一方、図17Bは、NOの吸着作用を利用してNOxを浄化するようにした場合の燃焼室5内における空燃比(A/F)の変化を示している。なお、図17Bにおいても、(A/F)bはベース空燃比を示しており、Δ(A/F)rは空燃比のリッチ度合いを示しており、ΔTは空燃比のリッチ周期を示している。
 図17Aと図17Bとを比較するとわかるように、図17Bに示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合には、図17Aに示される如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるベース空燃比(A/F)bよりも小さいベース空燃比(A/F)bのもとで燃焼室5内における燃焼が行われると共に、図17Aに示される如く、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化している場合におけるNO放出のための空燃比のリーンからリッチへの切換え周期ΔTよりも短い周期でもって燃焼室5内における空燃比がリーンからリッチに切換えられる。一方、図17Cは、燃焼室5内における空燃比が理論空燃比にフィードバック制御されている場合の燃焼室5内における空燃比の変化を示している。
 図18は、図17Bに示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合の燃焼室5内における空燃比(A/F)の変化と、排気浄化触媒22に流入する排気ガスの空燃比(A/F)in の変化とを示している。この場合には、燃焼室5内における空燃比(A/F)がリッチにされると、三元触媒20では貯蔵されている酸素が放出されて時間t1の間、理論空燃比に維持され、それによって、HC、COおよびNOxが同時に低減される。この間、図18に示されるように、排気浄化触媒22に流入する排気ガスの空燃比(A/F)in は理論空燃比に維持される。次いで、三元触媒20の貯蔵酸素が消費されると、排気浄化触媒22に流入する排気ガスの空燃比(A/F)in が、時間t2の間、リッチとなる。このとき図4Bに示されるように、白金Pt 61の表面上に解離吸着しているNOは、一方ではN2となり、他方では還元性中間体NCOとなる。この還元性中間体NCOは生成後、暫らくの間、塩基性層63の表面上に保持又は吸着され続ける。
 次いで、燃焼室5内における空燃比(A/F)が再びリーンに戻されると、今度は三元触媒20に酸素が貯蔵される。このとき三元触媒20の触媒表面では空燃比が、時間t3の間、理論空燃比に維持され、それによりこのときも、HC、COおよびNOxが同時に低減される。次いで、時間t4の間、排気ガス中に含まれているNOxは、塩基性層63の表面上に保持又は吸着されている還元性中間体NCOと反応して還元性中間体NCOにより還元される。次いで、時間t5の間、排気ガス中に含まれるNOは、図4Aに示されるように、白金Pt 61の表面に解離して吸着する。
 このように、図17Bに示される如く、NOの吸着作用を利用してNOxを浄化するようにした場合には、NOの吸着作用を利用したNOxの浄化作用と、三元触媒20での酸素貯蔵機能を利用したNOxの浄化作用との二つの浄化作用が行われる。
 次に、機関の運転制御の概要について説明する。この実施例では、図19に示されるように、機関低負荷運転側の機関低負荷運転領域Iと、機関高負荷運転側の機関高負荷運転領域IIIと、機関低負荷運転領域Iおよび機関高負荷運転領域IIIの間に位置する機関中負荷運転領域IIとが予め設定されている。なお、図19の縦軸Lは要求負荷を示しており、横軸Nは機関回転数を示している。この場合、機関低負荷運転領域Iでは、図17Aに示されるように、排気浄化触媒22へのNOxの吸蔵放出作用を利用してNOxを浄化するようにしたNOxの浄化作用が行われ、機関中負荷運転領域IIでは、図17Bに示されるように、NOの吸着作用を利用してNOxを浄化するようにしたNOxの浄化作用が行われる。なお、機関高負荷運転領域IIIでは、図17Cに示されるように、燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 即ち、本発明による実施例では、予め定められた機関低負荷運転領域Iでは燃焼室5内においてベース空燃比がリーンのもとで燃焼が行われると共に排気浄化触媒22からNOを放出すべきときには燃焼室5内における空燃比がリッチとされ、予め定められた機関高負荷運転領域IIIでは燃焼室5内における空燃比が理論空燃比にフィードバック制御され、予め定められた機関中負荷運転領域IIでは、機関低負荷運転領域Iにおけるベース空燃比よりも小さいベース空燃比のもとで燃焼室5内における燃焼が行われると共に、機関低負荷運転領域IにおけるNO放出のための空燃比のリッチ周期よりも短い周期でもって燃焼室5内における空燃比がリッチとされる。
 なお、図17Aから図17Cからわかるように、機関中負荷運転領域IIにおけるベース空燃比は、機関低負荷運転領域Iにおけるベース空燃比と理論空燃比との中間値であり、機関中負荷運転領域IIにおいて燃焼室5内における空燃比がリッチにされたときの空燃比のリッチの度合は、機関低負荷運転領域Iにおいて燃焼室5内における空燃比がリッチにされたときの空燃比のリッチの度合に比べて小さい。
 次に、低負荷運転から高負荷運転に移行するときを示す図20を参照しつつ、NOx浄化方法について説明する。なお、図20には、燃焼室5内への燃料噴射量の変化と、燃焼室5内における空燃比(A/F)の変化と、吸蔵NOx量ΣNOXの変化を示している。また、図20において、MAXIは第一の許容NOx吸蔵量を示しており、MAXIIは第二の許容NOx吸蔵量を示している。図20から明らかなように、第二の許容NOx吸蔵量MAXIIは第一の許容NOx吸蔵量MAXIに比べて小さな値とされている。なお、この第一の許容NOx吸蔵量MAXIは図7における許容NOx吸蔵量MAXIと同じものである。
 さて、図20において、機関低負荷運転領域Iにおいては、吸蔵NOx量ΣNOXが第一の許容NOx吸蔵量MAXIを超えると、燃焼室5内における空燃比が一時的にリッチにされる。一方、排気浄化触媒22にNOが吸蔵されている状態で、図17Bに示される、NOの吸着作用を利用したNOxの浄化方法に切替えられると、NOの吸着作用を利用したNOxの浄化に切替えられた直後に、排気浄化触媒22に吸蔵されているNOの一部が還元されることなく放出される。そこで本発明による実施例では、図20に示されているように、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したときには、燃焼室5内における空燃比(A/F)が一時的にリッチにされる。
 機関中負荷運転領域IIでは図20に示されるように、吸蔵NOx量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えると、燃焼室5内における空燃比が一時的にリッチにされる。この機関中負荷運転領域IIでは排気浄化触媒22の温度が高いために、排気浄化触媒22にNOxがほとんど吸収されず、大部分のNOxは吸着NOからなる。従って、別の言い方をすると、排気浄化触媒22に吸着されているNO吸着量が算出されており、機関中負荷運転領域IIにおいて機関の運転が行われているときに、NO吸着量ΣNOXが予め定められた許容NO吸着量MAXIIを超えたときに燃焼室5内における空燃比(A/F)がリッチとされる。
 このように本発明による実施例では、排気浄化触媒22に吸蔵されているNOx吸蔵量ΣNOXが算出されており、機関低負荷運転領域Iにおいて機関の運転が行われているときに、NOx吸蔵量ΣNOXが予め定められた第一の許容NOx吸蔵量MAXIを超えたときに燃焼室5内における空燃比(A/F)がリッチとされ、機関中負荷運転領域IIにおいて機関の運転が行われているときに、NOx吸蔵量ΣNOXが予め定められた第二の許容NOx吸蔵量MAXIIを超えたときに燃焼室5内における空燃比(A/F)がリッチとされ、第二の許容NOx吸蔵量MAXIIは第一の許容NOx吸蔵量MAXIに比べて小さな値とされている。
 一方、排気浄化触媒22にNOが吸蔵されている状態で、図17Cに示される、理論空燃比へのフィードバック制御によるNOxの浄化方法に切替えられると、理論空燃比へのフィードバック制御によるNOxの浄化方法に切替えられた直後に、排気浄化触媒22に吸蔵されているNOの一部が還元されることなく放出される。そこで本発明による実施例では、図20に示されているように、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したときには、燃焼室5内における空燃比(A/F)が一時的にリッチにされる。
 機関高負荷運転領域IIIでは、燃焼室5内における空燃比が理論空燃比となるように、空燃比センサ27の出力信号に基づいて各燃料噴射弁11,12からの噴射量がフィードバック制御される。このときには、排気ガス中に含まれる有害成分HC、COおよびNOxは三元触媒20において同時に浄化される。
  なお、図20に示されるように空燃比がリッチにされると、このときアンモニアが発生する場合がある。しかしながら、本発明による実施例では、このアンモニアはNOx選択還元触媒23に吸着される。このNOx選択還元触媒23に吸着されたアンモニアは排気ガス中に含まれるNOxと反応し、NOxを還元するために使用される。
 図21に運転制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
 図21を参照すると、まず初めにステップ80において、機関の運転状態が図19に示される機関高負荷運転領域IIIであるか否かが判別される。機関の運転状態が機関高負荷運転領域IIIでないときにはステップ81に進み、図8に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ82ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いで、ステップ83では、機関の運転状態が図19に示される機関低負荷運転領域Iであるか否かが判別される。機関の運転状態が図19に示される機関低負荷運転領域Iであるときにはステップ84に進む。
 ステップ84では、NOx吸蔵量ΣNOXが第一の許容NOx吸蔵量MAXIを超えたか否かが判別され、NOx吸蔵量ΣNOXが第一の許容NOx吸蔵量MAXIを超えていないときには、ステップ85に進んで、燃焼室5内における空燃比が、機関の運転状態に応じて予め定められているリーン空燃比とされる。このときには、ベース空燃比がリーンのもとで燃焼が行われる。これに対し、ステップ84において、NOx吸蔵量ΣNOXが第一の許容NOx吸蔵量MAXIを超えたと判断されたときには、ステップ86に進んで、燃焼室5内における空燃比が一時的にリッチとされ、ΣNOXがクリアされる。このとき、排気浄化触媒22に吸蔵されていたNOxが排気浄化触媒22から放出される。
 一方、ステップ83において、機関の運転状態が図19に示される機関低負荷運転領域Iではないと判断されたとき、即ち機関の運転状態が図19に示される機関中負荷運転領域IIであると判断されたときには、ステップ87に進んで、今、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したか否かが判別される。今、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行したときにはステップ88に進んで燃焼室5内における空燃比が一時的にリッチにされる。これに対し、既に、機関の運転状態が機関低負荷運転領域Iから機関中負荷運転領域IIに移行しているときには
ステップ89に進む。
 ステップ89では、NOx吸蔵量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えたか否かが判別される。NOx吸蔵量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えていないときには、ステップ90に進んで、燃焼室5内における空燃比が、機関の運転状態に応じて予め定められているリーン空燃比とされる。このとき、ベース空燃比がリーンのもとで燃焼が行われる。なお、このときのベース空燃比は機関低負荷運転領域Iにおけるベース空燃比よりも小さい。これに対し、ステップ89において、NOx吸蔵量ΣNOXが第二の許容NOx吸蔵量MAXIIを超えたと判断されたときには、ステップ91に進んで、燃焼室5内における空燃比が一時的にリッチとされ、ΣNOXがクリアされる。このとき、排気浄化触媒22に吸蔵されていたNOxが排気浄化触媒22から放出される。
 一方、ステップ80において、機関の運転状態が図19に示される機関高負荷運転領域IIIであると判断されたときには、ステップ92に進んで、今、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したか否かが判別される。今、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行したときにはステップ93に進んで燃焼室5内における空燃比が一時的にリッチにされる。これに対し、既に、機関の運転状態が機関中負荷運転領域IIから機関高負荷運転領域IIIに移行しているときにはステップ94に進む。ステップ94では、燃焼室5内における空燃比が理論空燃比にフィードバック制御される。
 5  燃焼室
 6  点火栓
 11,12  燃料噴射弁
 14  サージタンク
 19  排気マニホルド
 20  三元触媒
 22  排気浄化触媒

Claims (10)

  1.  機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に酸素貯蔵機能を有する触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する排気ガスの空燃比を予め定められた範囲内の周期でもってリーンからリッチに一時的に切換えると排気ガス中に含まれるNOを還元する性質を有すると共に、該リーンからリッチへの切換え周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸収量が増大する性質を有しており、機関運転時に燃焼室内における空燃比を該予め定められた範囲内の周期でもってリーンからリッチに一時的に切換え、それによって排気ガス中に含まれるNOxを浄化するようにした火花点火式内燃機関の排気浄化装置。
  2.  上記酸素貯蔵機能を有する触媒が三元触媒からなる請求項1に記載の火花点火式内燃機関の排気浄化装置。
  3.  上記酸素貯蔵機能を有する触媒が排気浄化触媒の上流側に一体的に形成されている請求項1に記載の火花点火式内燃機関の排気浄化装置。
  4.  機関の運転領域が、機関低負荷運転側の予め定められた機関低負荷運転領域と、機関高負荷運転側の予め定められた機関高負荷運転領域と、該機関低負荷運転領域および該機関高負荷運転領域の間に位置する予め定められた機関中負荷運転領域からなり、該予め定められた機関低負荷運転領域では燃焼室内においてベース空燃比がリーンのもとで燃焼が行われると共に排気浄化触媒からNOを放出すべきときには燃焼室内における空燃比がリッチとされ、該予め定められた機関高負荷運転領域では燃焼室内における空燃比が理論空燃比にフィードバック制御され、該予め定められた機関中負荷運転領域では、該機関低負荷運転領域におけるベース空燃比よりも小さいベース空燃比のもとで燃焼室内における燃焼が行われると共に、該機関低負荷運転領域におけるNO放出のための空燃比のリッチ周期よりも短い周期でもって燃焼室内における空燃比がリッチとされる請求項1に記載の火花点火式内燃機関の排気浄化装置。
  5.  排気浄化触媒に吸着されているNOx吸着量が算出されており、上記機関中負荷運転領域において機関の運転が行われているときに、該NOx吸着量が予め定められた許容NOx吸着量を超えたときに燃焼室内における空燃比がリッチとされる請求項4に記載の火花点火式内燃機関の排気浄化装置。
  6.  排気浄化触媒に吸蔵されているNOx吸蔵量が算出されており、上記機関低負荷運転領域において機関の運転が行われているときに、該NOx吸蔵量が予め定められた第一の許容NOx吸蔵量を超えたときに燃焼室内における空燃比がリッチとされ、上記機関中負荷運転領域において機関の運転が行われているときに、該NOx吸蔵量が予め定められた第二の許容NOx吸蔵量を超えたときに燃焼室内における空燃比がリッチとされ、該第二の許容NOx吸蔵量は該第一の許容NOx吸蔵量に比べて小さな値とされている請求項4に記載の火花点火式内燃機関の排気浄化装置。
  7.  上記機関中負荷運転領域におけるベース空燃比は、上記機関低負荷運転領域におけるベース空燃比と理論空燃比との中間値である請求項4に記載の火花点火式内燃機関の排気浄化装置。
  8.  機関の運転状態が上記機関低負荷運転領域から上記機関中負荷運転領域に移行したときには、燃焼室内における空燃比が一時的にリッチにされる請求項4に記載の火花点火式内燃機関の排気浄化装置。
  9.  機関の運転状態が上記機関中負荷運転領域から上記機関高負荷運転領域に移行したときには、燃焼室内における空燃比が一時的にリッチにされる請求項4に記載の火花点火式内燃機関の排気浄化装置。
  10.  排気浄化触媒の触媒担体上には、貴金属触媒担持がされており、更にこの触媒担体上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層が形成されている請求項4に記載の火花点火式内燃機関の排気浄化装置。
PCT/JP2012/070522 2012-08-10 2012-08-10 火花点火式内燃機関の排気浄化装置 WO2014024311A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070522 WO2014024311A1 (ja) 2012-08-10 2012-08-10 火花点火式内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070522 WO2014024311A1 (ja) 2012-08-10 2012-08-10 火花点火式内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2014024311A1 true WO2014024311A1 (ja) 2014-02-13

Family

ID=50067591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070522 WO2014024311A1 (ja) 2012-08-10 2012-08-10 火花点火式内燃機関の排気浄化装置

Country Status (1)

Country Link
WO (1) WO2014024311A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845756B2 (en) 2012-07-27 2017-12-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
CN110529274A (zh) * 2018-05-25 2019-12-03 丰田自动车株式会社 内燃机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118044A1 (ja) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012014330A1 (ja) * 2010-07-28 2012-02-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012111171A1 (ja) * 2011-02-18 2012-08-23 トヨタ自動車株式会社 内燃機関の排気浄化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118044A1 (ja) * 2010-03-23 2011-09-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012014330A1 (ja) * 2010-07-28 2012-02-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2012111171A1 (ja) * 2011-02-18 2012-08-23 トヨタ自動車株式会社 内燃機関の排気浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845756B2 (en) 2012-07-27 2017-12-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
CN110529274A (zh) * 2018-05-25 2019-12-03 丰田自动车株式会社 内燃机

Similar Documents

Publication Publication Date Title
KR101339523B1 (ko) 내연 기관의 배기 정화 장치
JP5131391B2 (ja) 内燃機関の排気浄化装置
JP4868097B1 (ja) 内燃機関の排気浄化装置
WO2012108059A1 (ja) 内燃機関の排気浄化装置
JP6015760B2 (ja) 火花点火式内燃機関の排気浄化装置
JP5664801B2 (ja) 火花点火式内燃機関の排気浄化装置
JP5152415B2 (ja) 内燃機関の排気浄化装置
JP4868096B2 (ja) 内燃機関の排気浄化装置
JP5748005B2 (ja) 内燃機関の排気浄化装置
JP5673861B2 (ja) 内燃機関の排気浄化装置
JP5835488B2 (ja) 内燃機関の排気浄化装置
JP5994931B2 (ja) 内燃機関の排気浄化装置
JP5880776B2 (ja) 内燃機関の排気浄化装置
JP5177302B2 (ja) 内燃機関の排気浄化装置
WO2014024311A1 (ja) 火花点火式内燃機関の排気浄化装置
JP5168410B2 (ja) 内燃機関の排気浄化装置
WO2014167650A1 (ja) 内燃機関の排気浄化装置
JP6183537B2 (ja) 内燃機関の排気浄化装置
JP5811286B2 (ja) 内燃機関の排気浄化装置
JP5741643B2 (ja) 内燃機関の排気浄化装置
JP5354104B1 (ja) 内燃機関の排気浄化装置
JP5811290B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP