WO2014023035A1 - 一种带防冻溶液再生装置的空调热泵机组 - Google Patents

一种带防冻溶液再生装置的空调热泵机组 Download PDF

Info

Publication number
WO2014023035A1
WO2014023035A1 PCT/CN2012/080016 CN2012080016W WO2014023035A1 WO 2014023035 A1 WO2014023035 A1 WO 2014023035A1 CN 2012080016 W CN2012080016 W CN 2012080016W WO 2014023035 A1 WO2014023035 A1 WO 2014023035A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
heat pump
temperature
heat source
gas
Prior art date
Application number
PCT/CN2012/080016
Other languages
English (en)
French (fr)
Inventor
李志明
石文星
王宝龙
张勇
李先庭
何卫国
李筱
李宁
Original Assignee
广州市华德工业有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市华德工业有限公司, 清华大学 filed Critical 广州市华德工业有限公司
Publication of WO2014023035A1 publication Critical patent/WO2014023035A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • Air conditioning heat pump unit with antifreeze solution regeneration device Air conditioning heat pump unit with antifreeze solution regeneration device
  • the invention relates to the technical field of heat pump units for air conditioning, and in particular to an air conditioning heat pump unit with an antifreeze solution regeneration device. Background technique
  • the object of the present invention is to overcome the deficiencies of the prior art, to provide an air conditioning heat pump unit with an antifreeze solution regeneration device which is safe and reliable, can stably increase the concentration of the antifreeze solution, and can realize heat recovery, and the use of the unit can effectively reduce the refrigeration air conditioner. Initial investment and operating costs of the system.
  • An air conditioning heat pump unit with an antifreeze solution regeneration device comprising a compressor, an evaporative condenser, a throttling device, an evaporator and a blower; wherein the unit further comprises an antifreeze solution regeneration device, the regeneration device comprising a high temperature heat source Zone, antifreeze solution collecting tray, low temperature cold source zone, condensate collecting pan, shower, gas circulation fan and gas circulation duct; wherein the high temperature heat source zone is provided with a high temperature heat source, and the shower is The inlet is connected to a low-concentration antifreeze solution channel communicating with the evaporative condenser, and the low-concentration antifreeze solution flowing out of the sprinkler flows through the high-temperature heat source region, evaporates and concentrates, and undergoes mass transfer with the circulating gas to lower The moisture of the concentration antifreeze solution is transferred to the circulating gas, and the concentrated antifreeze solution enters the antifreeze solution collecting tray, and
  • the relative position arrangement of the gas circulation fan, the high temperature heat source area and the low temperature cold source area is: high temperature heat source area - gas circulation fan - low temperature cold source area, gas circulation fan - high temperature heat source area - low temperature cold source area or High temperature heat source area - low temperature cold source area - gas circulation fan.
  • the carrier of the high temperature heat source and the low temperature cold source is a refrigerant used in an air conditioning heat pump unit.
  • the high temperature heat source is disposed between the shower and the antifreeze solution collecting tray; or the high temperature heat source is disposed at a circulating gas inlet of the high temperature heat source region and outside of the shower, Allowing the circulating gas to be heated and then performing heat exchange through the lower portion of the shower; or the high temperature heat source is disposed before the inlet of the shower so that the low concentration antifreeze solution is heated and then enters the shower Heat exchange with the recycle gas.
  • the inlet and the outlet of the sprinkler are respectively provided with a control valve; the inlet and the outlet of the high-temperature heat source are respectively communicated with the refrigerant exhaust port of the compressor and the refrigerant suction port through the control valve; The inlet and outlet of the low-temperature cold source are respectively communicated with the liquid pipe and the gas pipe of the evaporative condenser through a control valve.
  • the high temperature heat source is disposed between the shower and the antifreeze solution collecting tray; the refrigerant flows in a high temperature heat source and a low temperature cold source of the coil structure.
  • a spray circulation pump is arranged between the shower and the antifreeze solution collecting tray, and the prevention
  • the frozen solution tray is also connected to a low concentration antifreeze solution channel in the air conditioning system.
  • a solution pump is disposed on the high concentration solution channel.
  • the heat pump unit is provided with a first refrigerating valve, a second refrigerating valve, a first heat pump valve and a second heat pump valve; wherein the first refrigerating valve is disposed at an exhaust port of the compressor a connecting line of the gas pipe of the evaporative condenser, the second refrigerating valve is disposed on a connecting pipe of the suction port of the compressor and the gas pipe of the evaporator, the first heat pump valve Provided on a connecting line of an exhaust port of the compressor and a gas pipe of the evaporator, the second heat pump valve is disposed at an air inlet of the compressor and a gas pipe of the evaporative condenser On the connecting line, the liquid pipe of the evaporative condenser is connected to the liquid pipe of the evaporator through the throttling device.
  • the first refrigerating valve is disposed at an exhaust port of the compressor a connecting line of the gas pipe of the evaporative condenser
  • the exhaust port of the compressor is provided with a first reversing valve
  • the suction port of the compressor is provided with a second reversing valve
  • the two outlets of the first reversing valve are respectively associated with the
  • the gas tube of the evaporative condenser is connected to the gas tube of the evaporator, and the two inlets of the second reversing valve are simultaneously connected to the gas tube of the evaporative condenser and the gas tube of the evaporator, respectively.
  • the heat pump unit is provided with a four-way reversing valve, four ports of the four-way reversing valve and the compressor exhaust port, the gas pipe of the evaporative condenser, and the The gas pipe of the evaporator is connected to the suction port of the compressor.
  • the inlet and the outlet of the shower are provided with a control valve; the inlet of the high-temperature heat source communicates with the refrigerant exhaust port of the compressor through a control valve, and the outlet passes through the second throttle device and The inlet of the low temperature cold source communicates; the outlet of the low temperature cold source communicates with the gas tube of the evaporative condenser through a control valve.
  • the carrier of the high-temperature heat source is a refrigerant used in an air-conditioning heat pump unit, and the carrier of the low-temperature cold source is a fresh air;
  • the inlet and the outlet of the shower are provided with a control valve;
  • the inlet of the high-temperature heat source, The outlet is respectively connected to the refrigerant exhaust port of the compressor and the refrigerant suction port through a control valve;
  • the low temperature cold source area is provided with a heat exchanger, and the heat exchanger is provided with a fresh air inlet connected to the outside fresh air.
  • a fresh air outlet connected to the evaporative condenser, so that the fresh air preheated by the circulating gas is discharged through the pipeline to the evaporative condenser and the antifreeze solution for heat exchange.
  • the evaporator 4 is in a plurality of parallel ways.
  • the invention has the following beneficial effects:
  • the solution regeneration is realized, and the antifreeze solution is prevented from being frozen: the low concentration antifreeze solution in the evaporative condenser exchanges heat with the high temperature heat source and the circulating gas, and the water in the low concentration antifreeze solution is circulated. The gas is taken away to increase the concentration of the low concentration solution and continue to meet the antifreeze requirements of the system operation.
  • the high-temperature and high-humidity circulating gas exchanges heat with the low-temperature and low-pressure refrigerant of the low-temperature cold source, and condensed water is precipitated, and the condensation heat in the regeneration process is recovered, thereby improving the energy utilization rate of the system.
  • the frost-free operation of the heat pump is realized: the low-concentration antifreeze solution in the evaporative condenser passes through the antifreeze solution regeneration device, which improves the concentration of the solution, and avoids frosting or icing of the evaporative condenser and its components during the heat pump operation. , so that the heat pump conditions can be achieved without continuous operation of defrost.
  • the fresh water discharged from the condensate outlet can be used as a source of water for domestic water and indoor humidification, thus realizing the recycling of water resources.
  • the antifreeze solution regeneration device provides technical support for the efficient, continuous and stable heating of the air conditioning heat pump unit from the outdoor air through the evaporative condenser, and effectively expands the air source heat pump using the evaporative condenser at a low temperature.
  • FIG. 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a regenerating device according to Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural view of a reproducing apparatus in Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a regenerating device according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural view of Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural view of Embodiment 7 of the present invention.
  • FIG. 8 is a schematic structural view of Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural view of Embodiment 9 of the present invention.
  • FIG. 10 is a schematic structural view of Embodiment 10 of the present invention. Concrete implementation
  • an air conditioning heat pump unit with an antifreeze solution regeneration device has a refrigeration cycle mode and Heat pump cycle mode.
  • the compressor 1, the evaporative condenser 2, the throttling device 3, the evaporator 4, and the blower 4' are included; the unit further includes an antifreeze solution regenerating device, and the antifreeze solution regenerating device is disposed in the evaporative condensation In the cooling water system.
  • the unit is provided with a first refrigeration valve 17, a second refrigeration valve 18, a first heat pump valve 19 and a second heat pump valve 20;
  • the first refrigeration valve is disposed at the exhaust port la of the compressor and the gas of the evaporative condenser
  • the second refrigerating valve is disposed on the connecting pipe of the suction port lb of the compressor and the gas pipe 4b of the evaporator
  • the first heat pump valve is disposed at the exhaust port of the compressor and the gas of the evaporator
  • the second heat pump valve is disposed on the connecting pipe of the suction port of the compressor and the gas pipe of the evaporating condenser, and the liquid pipe 2b of the evaporating condenser passes through the liquid of the throttling device 3 and the evaporator
  • the tube 4a is connected.
  • the antifreeze solution regeneration device comprises: a high temperature heat source 5a, a solution collecting tray 6a, a low temperature cold source 5b, a condensate collecting tray 6b, a shower 7, a gas circulation fan 8 and a gas circulation duct 9, and the gas circulation fan 8 is disposed at In the gas circulation duct 9 connecting the high-temperature heat source region and the low-temperature cold source region, the circulating gas is driven from the high-temperature heat source region through the low-temperature cold source region, the water is absorbed in the high-temperature heat source region, and the condensed water is precipitated in the low-temperature heat source region, and then circulated. The gas continues to flow back along the gas circulation duct to the high temperature heat source zone.
  • the circulating gas can be a gas such as air or nitrogen.
  • the relative positional arrangement of the gas circulation fan, the high temperature heat source zone and the low temperature cold source zone is preferably: a high temperature heat source zone - a gas circulation fan - a low temperature cold source zone.
  • the high temperature heat source zone and the low temperature cold source zone are respectively provided with corresponding heat exchange zones, and respectively have a high temperature heat source and a low temperature cold source.
  • the mass transfer mode of the circulating gas and the antifreeze solution may be a downstream, a countercurrent, a mixed flow or a cross flow.
  • the carrier of the high temperature heat source and the low temperature cold source is a refrigerant used in the operation of the air conditioning heat pump unit, and the refrigerant preferably flows in a high temperature heat source and a low temperature cold source of the coil structure.
  • the inlet of the shower 7 is connected to the low-concentration solution passage 13 of the evaporative condenser 2 through the third heat pump valve 21, and the high-temperature heat source 5a is disposed below the shower 7, and the low-concentration antifreeze sprayed in the shower 7 After the solution flows through the high temperature heat source 5a in the high temperature heat source zone, the antifreeze solution is evaporated and concentrated into the antifreeze solution collecting pan 6a.
  • the concentrated solution outlet 12a in the solution collecting tray 6a is connected to the high-concentration solution passage of the evaporative condenser 2 through the fourth heat pump valve 22, and the condensed water collecting tray 6b is disposed below the low-temperature cold-source area and provided with a condensing water outlet 12b, Condensate can be collected for use in the corresponding air conditioning system or for other purposes.
  • the gas circulation fan is disposed in a gas circulation duct connecting the high temperature heat source and the low temperature cold source; the inlet 10a of the high temperature heat source is connected to the gas pipe of the evaporator through the fifth heat pump valve 23, and the outlet 11a of the high temperature heat source passes the sixth heat pump valve 24 connected to the liquid pipe of the evaporator, the inlet 10b of the low-temperature cold source passes the seventh
  • the heat pump valve 25 is connected to the liquid pipe of the evaporative condenser, and the outlet l ib of the low temperature cold source is connected to the gas pipe of the evaporative condenser through the eighth heat pump valve 26.
  • the first refrigeration valve 17 and the second refrigeration valve 18, the first heat pump valve 19, the second heat pump valve 20, the third heat pump valve 21, the fourth heat pump valve 22, the fifth heat pump valve 23, and the first The six heat pump valve 24, the seventh heat pump valve 25, and the eighth heat pump valve 26 may each be an electric valve or a manual valve.
  • a heat exchange filler 14 may be optionally provided in the lower layer of the shower.
  • the principle of use is: in the refrigeration cycle mode, the first refrigeration valve 17 and the second refrigeration valve 18 are opened, and the first heat pump valve 19, the second heat pump valve 20, the third heat pump valve 21, and the fourth heat pump valve 22 are closed.
  • the refrigerant liquid is vaporized in the evaporator 4 and sucked away by the compressor 1 to complete the refrigeration cycle mode; in the heat pump cycle mode, the first heat pump valve 19, the second heat pump valve 20, and the third heat pump valve 21 are opened.
  • the fourth heat pump valve 22, the fifth heat pump valve 23, the sixth heat pump valve 24, the seventh heat pump valve 25, and the eighth heat pump valve 26 close the first refrigeration valve 17 and the second refrigeration valve 18, and cool
  • the agent is compressed by the compressor 1 to become a high temperature
  • the high-pressure gas enters the evaporator 4 from the refrigeration system pipe, exchanges heat with the air to produce hot air, and at the same time, the high-temperature and high-pressure gas is cooled into a low-temperature high-pressure liquid, and a low-temperature low-pressure liquid is formed through the throttling device 3 to evaporate.
  • the condenser 2 is then vaporized by the refrigerant liquid in the evaporative condenser and sucked away by the compressor 1 to complete the heat pump cycle mode.
  • the principle of the antifreeze solution regeneration device is: a heat pump circulation mode, the shower device 7 sprays a low concentration solution to the high temperature heat source 5a, and the gas circulation fan drives the circulating gas to flow through the high temperature heat source 5a, from the inlet of the high temperature heat source 5a.
  • the high-temperature refrigerant exchanges heat with the spray solution and the circulating gas. After the heat is released from the refrigerant, the refrigerant flows away from the outlet of the high-temperature heat source 5a, and the temperature and moisture content of the gas increase after the circulating gas absorbs the water in the solution.
  • the concentration rises and falls into the solution collecting tray 6a, and then flows out from the concentrated solution outlet; the high-temperature and high-humidity circulating gas continues to flow through the low-temperature cold source 5b, and the low temperature coming from the inlet of the low-temperature cold source 5b
  • the refrigerant undergoes heat exchange, the temperature of the circulating gas drops and the condensed water is precipitated, and the condensed water flows away from the water outlet 12b of the condensate collecting tray 6b, and the refrigerant of the low-temperature cold source 5b absorbs heat and then exits from the low-temperature cold source 5b.
  • the gas is returned to the high-temperature heat source 5a along the circulation duct 9 by the gas circulation fan 8 to continue to circulate.
  • This embodiment provides another air conditioning heat pump unit with an antifreeze solution regeneration device. As shown in FIG. 2, compared with the first embodiment, the difference is that the high concentration solution is returned to the evaporative condenser more smoothly.
  • the concentrated solution outlet 12a in the solution collecting tray 6a is increased by the solution pump 15, so that the high-concentration solution is pressurized by the solution pump 15 and returned to the evaporative condenser 2.
  • This embodiment is an improvement of the embodiment 1.
  • the difference is that the spray is increased.
  • a circulation pump 16 an inlet of the spray circulation pump 16 is connected to the solution collecting tray 6a, an outlet of the spray circulation pump 16 is connected to the shower 7, and a low concentration solution passage 13 is connected to the solution collecting tray 6a, so that The spray solution is circulated through the high-temperature heat source 5a a plurality of times, thereby realizing the requirement of increasing the concentration of the solution after the water is evaporated more.
  • Embodiment 1 is an improvement of Embodiment 1, as shown in FIG. 4, which is different from Embodiment 1 in that the present regenerative apparatus uses the high-temperature heat source for heating the circulating gas, and the high-temperature heat source 5a is located in the spray.
  • the outside of the shower (7) is disposed at the inlet of the circulating gas, and the carrier of the high-temperature heat source 5a also employs a refrigerant in the air conditioning system, and the high-temperature heat source 5a can be designed to facilitate any structure for heating the circulating gas.
  • a heat exchange filler 14 is disposed below the shower 7.
  • the circulating gas flows through the high-temperature heat source 5a, the temperature of the gas rises, and then the high-temperature gas exchanges heat with the spray solution.
  • the high-temperature gas absorbs the water in the solution, the moisture content of the gas increases, and the concentration of the solution after evaporation of the water rises.
  • the circulating gas exchanges heat with the low-temperature cold source 5b.
  • Embodiment 1 is an improvement of Embodiment 1, as shown in FIG. 5, which is different from Embodiment 1 in that the present regenerative device uses the high-temperature heat source for heating a low-concentration solution, and the high-temperature heat source 5a is set.
  • the carrier of the high temperature heat source 5a Prior to the inlet of the shower 7, the carrier of the high temperature heat source 5a also employs a refrigerant in the air conditioning system, and the high temperature heat source 5a can be designed to facilitate any structure that heats the high temperature heat source carrier, such as a tube jacket structure.
  • a heat exchange filler 14 is disposed below the shower 7. After the low concentration solution flows through the high temperature heat source 5a, the temperature of the solution increases, and then the high temperature and low concentration solution exchanges heat with the circulating gas.
  • the circulating gas absorbs the water in the solution, the temperature and the moisture content of the gas are increased, and at the same time, the water of the solution evaporates and the concentration rises and falls into the solution collecting tray, and then flows out from the concentrated solution outlet 12a, and then the circulating gas and the low temperature
  • the cold source 5b performs heat exchange.
  • Embodiment 6 is an improvement of Embodiment 1, as shown in Fig. 6, which is different from Embodiment 1 in that the control valves of the exhaust port and the intake port of the compressor are improved.
  • the exhaust port of the compressor is provided with a first reversing valve 27, and the intake port of the compressor is provided with a second reversing valve 28; the two outlets of the first reversing valve are respectively connected with the evaporative condenser
  • the gas tube is connected to the gas tube of the evaporator, and the two inlets of the second reversing valve are simultaneously connected to the gas tube of the evaporative condenser and the gas tube of the evaporator, respectively.
  • the first reversing valve 27 and the second reversing valve 28 are electric or manual two-position three-way reversing valves.
  • the present embodiment is a modification of the embodiment 1, as shown in FIG. 7, which is different from the embodiment 1 in that, as a modification, the heat pump unit is provided with a four-way reversing valve 29, The four ports of the four-way reversing valve are respectively connected to the compressor exhaust port, the gas pipe of the evaporative condenser, the gas pipe of the evaporator, and the suction port of the compressor.
  • This embodiment is an improvement of Embodiment 1, as shown in FIG. 8, compared with Embodiment 1, except that, as a modification, the outlet 11a of the high-temperature heat source passes through the second throttle device. 3 'Connect the inlet 10b of the cold source.
  • the first heat pump valve 19, the second heat pump valve 20, the third heat pump valve 21, the fourth heat pump valve 22, the fifth heat pump valve 23, and the eighth heat pump valve 26 are opened to close the first The refrigerating valve 17 and the second refrigerating valve 18, the high-temperature refrigerant from the inlet 10a of the high-temperature heat source 5a discharges heat from the high-temperature heat source, and then flows away from the outlet 11a of the high-temperature heat source, and then the refrigerant passes through the second throttling device 3'
  • the inlet 10b of the low-temperature cold source 5b enters the low-temperature cold source, and absorbs heat from the low-temperature cold source, and then flows away from the outlet l ib of the low-temperature cold source; at the same time, the shower 7 is sprayed to the high-temperature heat source 5a
  • Embodiment 1 is an improvement of Embodiment 1, as shown in FIG. 9, compared with Embodiment 1, which is not The same is that, as an improvement, the fresh air is preheated by the low temperature cold source heat exchanger 5b, and then enters the evaporative condenser 2 to exchange heat with the solution.
  • the carrier of the high temperature heat source is the refrigerant used in the air conditioning heat pump unit
  • the carrier of the low temperature cold source is the outside fresh air
  • the low temperature cold source area is provided with the heat exchanger 5b as the low temperature cold source
  • the heat exchanger 5b is provided with the fresh air.
  • the inlet 30a and the outlet 30b, and the outlet 30b of the heat exchanger 5b are in communication with the evaporative condenser 2 through a line.
  • the first heat pump valve 19, the second heat pump valve 20, the third heat pump valve 21, the fourth heat pump valve 22, the fifth heat pump valve 23, and the sixth heat pump valve 24 are opened to close the first The refrigerating valve 17 and the second refrigerating valve 18, the sprinkler 7 sprays a low-concentration solution to the high-temperature heat source 5a, and the fan 8 drives the circulating gas to flow through the high-temperature heat source 5a, and the high-temperature refrigerant from the inlet 10a of the high-temperature heat source 5a After releasing heat in the high-temperature heat source, it flows away from the outlet 11a of the high-temperature heat source, and the temperature and moisture content of the gas increase after the circulating gas absorbs the moisture in the anti-freezing solution, and the concentration of the anti-freezing solution rises and falls after evaporation of the water.
  • the fan 8 drives the circulating gas to flow through the low-temperature cold source area, and exchanges condensed water after heat exchange with the outside fresh air, and the circulating gas continues along the gas circulation air passage. 9 Return to the high temperature heat source area to circulate. At the same time, the outside fresh air is warmed up by the low temperature cold source 5b, and enters the evaporative condenser 2 to exchange heat with the antifreeze solution.
  • This embodiment can improve the heat exchange effect of the evaporative condenser.
  • Embodiment 1 is an improvement of Embodiment 1, as shown in Fig. 10, which is different from Embodiment 1 in that, as a modification, the evaporator 4 is employed in a plurality of parallel manners.
  • the present invention can be better implemented, and the above-described embodiments are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; that is, all changes and modifications made in accordance with the present invention are It is covered by the scope of the claims as claimed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种带防冻溶液再生装置的空调热泵机组,包括压缩机(1)、蒸发式冷凝器(2)、节流装置(3)、蒸发器(4)和送风机(4')、以及防冻溶液再生装置,该再生装置包括高温热源区、防冻溶液集液盘(6a)、低温冷源区、冷凝水集液盘(6b)、喷淋器(7)、气体循环风机(8)和气体循环风道(9);喷淋器(7)中流出的低浓度防冻溶液经过与循环气体接触析出水份后进入防冻溶液集液盘(6a),从而使防冻溶液再生。

Description

Figure imgf000003_0001
一种带防冻溶液再生装置的空调热泵机组 技术领域
本发明涉及空调用的热泵机组技术领域,特别涉及一种带防冻溶液再生装 置的空调热泵机组。 背景技术
采用蒸发式冷凝器向室外空气中取热并为冬季的空调热泵机组提供热能, 是实现高效、 稳定供热的重要途径, 与空气源热泵相比, 其换热效率高, 节省 换热器材料, 可实现连续供热, 具有显著的节能减排前景。 但是, 目前常用的 空调热泵机组中, 当蒸发式冷凝器中的载冷剂 (冷却水) 温度低于 o°c时, 载 冷剂就会冻结成冰, 蒸发式冷凝器及其连接的部件可能存在被膨胀裂损的危 险, 这时若能得到合适浓度的防冻溶液, 可以保证各部件在低温下正常工作。 此外, 在热泵工况时, 蒸发式冷凝器向空气取热后, 空气的温度降低, 会使空 气中的水分冷凝, 此部分冷凝水进入防冻溶液中, 又将导致防冻溶液稀释, 随 着防冻溶液浓度降低, 防冻溶液的冰点会提高, 如不及时提高防冻溶液的浓度 (或称溶液再生), 蒸发式冷凝器的溶液池、 水泵等部件仍有膨胀裂损风险。 为解决这个问题, 目前多将被稀释的溶液添加高浓度的防冻剂,将溢流出来的 被稀释的防冻溶液存放在室内或地下的溶液储存罐内, 待室外温度升高后, 再 将稀溶液泵入蒸发式冷凝器内, 利用空气中的能量实现溶液再生, 该方法必然 需要很高浓度的防冻剂、大容量的浓溶液与稀溶液储存罐, 导致防冻剂使用量 大、 溶液储存空间庞大、初投资极高和增加防冻剂的运行费用, 极大地限制了 蒸发式冷凝器作为热泵取热装置的空调热泵机组在低温地区的适用地域。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种安全可靠、可稳定提高 防冻溶液浓度, 并且能实现热量回收的带防冻溶液再生装置的空调热泵机组, 该机组的使用可以有效降低制冷空调***的初投资和运行成本。
为实现上述目的, 本发明的技术方案为: 一种带防冻溶液再生装置的空调热泵机组, 包括压缩机、 蒸发式冷凝器、 节流装置、 蒸发器和送风机; 其特征在于: 该机组还包括防冻溶液再生装置, 所述再生装置包括高温热源区、防冻溶液集液盘、低温冷源区、冷凝水集液盘、 喷淋器、气体循环风机和气体循环风道;其中,所述高温热源区设有高温热源, 所述喷淋器的进口连接于与蒸发式冷凝器相通的低浓度防冻溶液通道,所述喷 淋器中流出的低浓度防冻溶液流经高温热源区后蒸发浓缩,经过与所述循环气 体发生传质作用,把低浓度防冻溶液的水份传递给循环气体, 同时浓缩后的防 冻溶液进入防冻溶液集液盘,所述防冻溶液集液盘中的溶液进入与蒸发式冷凝 器相通的高浓度溶液通道; 所述低温冷源区设有低温冷源,所述冷凝水集液盘 设置于低温冷源区下方, 并设有冷凝水出口; 所述气体循环风机设置于连通高 温热源区和低温冷源区的气体循环风道中,以驱动循环气体从高温热源区流过 低温冷源区,在高温热源区吸收水份并在低温热源区析出冷凝水后,循环气体 继续沿着所述气体循环风道返回至高温热源区循环流动。
进一步地,所述气体循环风机、高温热源区和低温冷源区的相对位置布置 方式为: 高温热源区-气体循环风机-低温冷源区、 气体循环风机-高温热源区- 低温冷源区或高温热源区-低温冷源区-气体循环风机。
进一步地,所述高温热源和低温冷源的载体为空调热泵机组中使用的制冷 剂。
进一步地,所述高温热源设置于所述喷淋器与防冻溶液集液盘之间; 或者 所述高温热源设置于所述高温热源区的循环气体进口处且所述喷淋器的外侧, 以使循环气体经过加热后通过所述喷淋器的下方进行热交换;或者所述高温热 源设置于所述喷淋器的进口之前,以使低浓度防冻溶液先经过加热再进入所述 喷淋器与循环气体进行热交换。
进一步地,所述喷淋器的进口和出口均设有控制阀门; 所述高温热源的进 口、出口分别通过控制阀门与所述压缩机的制冷剂排气口、制冷剂吸气口相通; 所述低温冷源的进口、 出口分别通过控制阀门与蒸发式冷凝器的液体管、气体 管相通。
优选地,所述高温热源设置于所述喷淋器与防冻溶液集液盘之间; 所述制 冷剂在盘管结构的高温热源和低温冷源内流动。
优选地,所述喷淋器与所述防冻溶液集液盘之间设有喷淋循环泵,所述防 冻溶液集液盘还与空调***中的低浓度防冻溶液通道连接。
优选地, 所述高浓度溶液通道上设有溶液泵。
优选地, 所述热泵机组设置有第一制冷阀、第二制冷阀、第一热泵阀和第 二热泵阀;其中,所述第一制冷阀设置在所述压缩机的排气口与所述蒸发式冷 凝器的气体管的连接管路上,所述第二制冷阀设置在所述压缩机的吸气口与所 述蒸发器的气体管的连接管路上,所述第一热泵阀设置在所述压缩机的排气口 与所述蒸发器的气体管的连接管路上,所述第二热泵阀设置在所述压缩机的吸 气口与所述蒸发式冷凝器的气体管的连接管路上,所述蒸发式冷凝器的液体管 通过所述节流装置与所述蒸发器的液体管连接。
优选地,所述压缩机的排气口设有第一换向阀,所述压缩机的吸气口设有 第二换向阀;所述第一换向阀的两个出口分别与所述蒸发式冷凝器的气体管和 所述蒸发器的气体管连接,所述第二换向阀的两个进口同时分别与所述蒸发式 冷凝器的气体管和所述蒸发器的气体管连接。
更为优选地,所述热泵机组设置有四通换向阀,所述四通换向阀的四个接 口分别与所述压缩机排气口、所述蒸发式冷凝器的气体管、所述蒸发器的气体 管和所述压缩机的吸气口连接。
优选地,所述喷淋器的进口和出口均设有控制阀门; 所述高温热源的进口 通过控制阀门与所述压缩机的制冷剂排气口相通,出口通过第二节流装置与所 述低温冷源的进口相通;所述低温冷源的出口通过控制阀门与蒸发式冷凝器的 气体管相通。
优选地,所述高温热源的载体为空调热泵机组中使用的制冷剂,低温冷源 的载体为外界新风; 所述喷淋器的进口和出口均设有控制阀门; 所述高温热源 的进口、 出口分别通过控制阀门与所述压缩机的制冷剂排气口、制冷剂吸气口 相通; 所述低温冷源区设有热交换器,所述热交换器设有与外界新风相通的新 风入口及与所述蒸发式冷凝器连通的新风出口,以使经循环气体预热后的新风 通过管路排出至所述蒸发式冷凝器与防冻溶液进行热质交换。
优选地, 所述蒸发器 4采用多个并联的方式。
本发明相对于现有技术, 具有以下有益效果:
1、 实现了溶液再生, 避免了防冻溶液被冻结: 蒸发式冷凝器中的低浓度 防冻溶液与高温热源及循环气体进行热交换,低浓度防冻溶液中的水份被循环 气体带走, 使低浓度溶液的浓度升高, 持续满足***运行的防冻需求。
2、 实现了能源的回收利用: 高温高湿的循环气体与低温冷源的低温低压 制冷剂进行热交换, 并析出冷凝水, 回收了再生过程中的冷凝热, 提高了*** 的能源利用率。
3、 实现了热泵无霜运行: 蒸发式冷凝器中的低浓度防冻溶液经过防冻溶 液再生装置, 提高了溶液浓度, 可避免热泵工况时蒸发式冷凝器及其部件发生 结霜或结冰现象, 使热泵工况实现无需融霜连续运行。
4、由冷凝水出口排出的淡水可作为生活用水以及室内加湿等设备的水源, 实现了水资源循环利用。
5、 本防冻溶液再生装置为空调热泵机组通过蒸发式冷凝器从室外空气中 取热实现高效、 连续、 稳定供热提供了技术保障, 并且有效拓展了采用蒸发式 冷凝器的空气源热泵在低温地区的适用范围。 附图说明
图 1为本发明实施例一的结构示意图。
图 2为本发明实施例二的结构示意图。
图 3为本发明实施例三中再生装置的结构示意图。
图 4为本发明实施例四中再生装置的结构示意图。
图 5为本发明实施例五中再生装置的结构示意图。
图 6为本发明实施例六的结构示意图。
图 7为本发明实施例七的结构示意图。
图 8为本发明实施例八的结构示意图。
图 9为本发明实施例九的结构示意图。
图 10为本发明实施例十的结构示意图。 具体实舫式
下面结合实施例及附图, 对本发明作进一步的详细说明, 但本发明的实 施方式不限于此。
实施例 1
本实施例一种带防冻溶液再生装置的空调热泵机组,具有制冷循环模式和 热泵循环模式。 如图 1所示, 包括压缩机 1、 蒸发式冷凝器 2、 节流装置 3、 蒸发器 4和送风机 4';本机组还包括防冻溶液再生装置,所述防冻溶液再生装 置设置在蒸发式冷凝器的冷却水***中 。
该机组设置有第一制冷阀 17、第二制冷阀 18、第一热泵阀 19和第二热泵 阀 20; 第一制冷阀设置在压缩机的排气口 la与蒸发式冷凝器的气体管 2a的 连接管路上,第二制冷阀设置在压缩机的吸气口 lb与蒸发器的气体管 4b的连 接管路上, 第一热泵阀设置在压缩机的排气口与蒸发器的气体管的连接管路 上, 第二热泵阀设置在压缩机的吸气口与蒸发式冷凝器的气体管的连接管路 上, 蒸发式冷凝器的液体管 2b通过节流装置 3与蒸发器的液体管 4a连接。
防冻溶液再生装置包括: 高温热源 5a、 溶液集液盘 6a、 低温冷源 5b、 冷凝 水集液盘 6b、 喷淋器 7、 气体循环风机 8和气体循环风道 9, 气体循环风机 8设 置于连通高温热源区和低温冷源区的气体循环风道 9中,以驱动循环气体从高 温热源区流过低温冷源区, 在高温热源区吸收水份并在低温热源区析出冷凝 水后, 循环气体继续沿着所述气体循环风道返回至高温热源区循环流动。 循 环气体可以采用空气或氮气等气体。 本实施例中, 优选气体循环风机、 高温 热源区和低温冷源区的相对位置布置方式为: 高温热源区 -气体循环风机-低 温冷源区。
高温热源区和低温冷源区分别设有相应的热交换区, 并分别设有高温热 源和低温冷源。 在高温热源区, 循环气体和防冻溶液的传质交换方式可以是 顺流、 逆流、 混流或错流。 高温热源和低温冷源的载体为空调热泵机组运行 中所使用的制冷剂,该制冷剂优选在盘管结构的高温热源和低温冷源内流动。 喷淋器 7的进口通过第三热泵阀 21连接蒸发式冷凝器 2的低浓度溶液通道 13, 喷淋器 7的下方设有高温热源 5a, 喷淋器 7中喷淋出的低浓度防冻溶液 流经高温热源区中的高温热源 5a后,防冻溶液蒸发浓缩进入防冻溶液集液盘 6a。 该溶液集液盘 6a中的浓溶液出口 12a通过第四热泵阀 22连接蒸发式冷 凝器 2的高浓度溶液通道,冷凝水集液盘 6b设置于低温冷源区下方且设有冷 凝出水口 12b, 冷凝水可以经收集后可用于相应的空调***或做其它用途。 气体循环风机设置于连通高温热源和低温冷源的气体循环风道中; 所述高温 热源的进口 10a通过第五热泵阀 23 连接蒸发器的气体管, 高温热源的出口 11a通过第六热泵阀 24连接蒸发器的液体管, 低温冷源的进口 10b通过第七 热泵阀 25连接蒸发式冷凝器的液体管,低温冷源的出口 l ib通过第八热泵阀 26连接蒸发式冷凝器的气体管。
上述的第一制冷阀 17和第二制冷阀 18, 第一热泵阀 19、 第二热泵阀 20、 第三热泵阀 21、 第四热泵阀 22、 第五热泵阀 23、 第六热泵阀 24、 第七热泵阀 25和第八热泵阀 26, 均可采用电动阀或手动阀。 为了增加换热面积, 喷淋器 下层还可选择设有换热填料 14。
使用原理是: 制冷循环模式时, 打开第一制冷阀 17和第二制冷阀 18, 关 闭第一热泵阀 19、 第二热泵阀 20、 第三热泵阀 21、 第四热泵阀 22、 第五热泵 阀 23、 第六热泵阀 24、 第七热泵阀 25和第八热泵阀 26, 制冷剂经压缩机 1 压缩后成高温高压状态的气体时由制冷***管道进入蒸发式冷凝器 2, 经过蒸 发式冷凝器 2后, 高温高压状态的气体被冷却成低温高压液体, 并经节流装置 3形成低温低压液体进入蒸发器 4中与空气进行热交换, 制取冷风, 然后在蒸 发器 4中制冷剂液体蒸发汽化并被压缩机 1吸走, 完成制冷循环模式; 热泵循 环模式时, 打开第一热泵阀 19、 第二热泵阀 20、 第三热泵阀 21、 第四热泵阀 22、 第五热泵阀 23、 第六热泵阀 24、 第七热泵阀 25和第八热泵阀 26, 关闭 第一制冷阀 17和第二制冷阀 18, 制冷剂经压缩机 1压缩后成高温高压状态的 气体时由制冷***管道进入蒸发器 4, 与空气进行热交换, 制取热风, 同时, 高温高压状态的气体被冷却成低温高压液体,并经节流装置 3形成低温低压液 体进入蒸发式冷凝器 2, 然后在蒸发式冷凝器中制冷剂液体蒸发汽化并被压缩 机 1吸走, 完成热泵循环模式。
其中, 防冻溶液再生装置的原理是: 热泵循环模式,所述喷淋器 7向高温热 源 5a喷淋低浓度溶液, 同时气体循环风机驱动循环气体流过高温热源 5a, 从高 温热源 5a的进口过来的高温制冷剂与喷淋溶液及循环气体进行热交换,制冷剂 放出热量后从高温热源 5a的出口流走,循环气体吸收溶液中的水份后气体的温 度和含湿量均升高,同时溶液的水份蒸发后浓度升高并落入溶液集液盘 6a后从 浓溶液出口流出;所述高温高湿循环气体继续流过低温冷源 5b, 与从低温冷源 5b的进口过来的低温制冷剂进行热交换, 循环气体的温度下降并析出冷凝水, 冷凝水从冷凝水集液盘 6b的出水口 12b流走, 同时低温冷源 5b的制冷剂吸收热 量后从低温冷源 5b的出口流走, 所述气体在气体循环风机 8的驱动下沿着循环 风道 9返回至高温热源 5a继续循环流动。 实施例 2
本实施例提供另一种带防冻溶液再生装置的空调热泵机组, 如图 2所示, 与实施例 1相比较,其不同之处在于, 为了使高浓度溶液更顺畅返回至蒸发式 冷凝器 2, 溶液集液盘 6a中的浓溶液出口 12a增加了溶液泵 15, 使得高浓度 溶液经溶液泵 15增压后返回至蒸发式冷凝器 2。
实施例 3
本实施例作为实施例 1的一种改进, 如图 3所示, 与实施例 1相比较, 为 了有利于低浓度防冻溶液蒸发水份并形成浓溶液,其不同之处在于, 增加了喷 淋循环泵 16, 所述喷淋循环泵 16的进口连接溶液集液盘 6a, 喷淋循环泵 16 的出口连接喷淋器 7, 而低浓度溶液通道 13则连接溶液集液盘 6a, 这样可使 喷淋溶液多次循环经过高温热源 5a, 从而实现水份蒸发更多后溶液浓度升高 的要求。
实施例 4
本实施例作为实施例 1的一种改进, 如图 4所示, 与实施例 1相比较, 其 不同之处在于, 本再生装置将所述高温热源用于加热循环气体, 高温热源 5a 位于喷淋器 7外侧, 即设置于循环气体的进口处, 高温热源 5a的载体同样采 用空调***中的制冷剂, 将所述高温热源 5a可以设计成有利于加热循环气体 的任何结构。 喷淋器 7的下方设置换热填料 14。
循环气体流经高温热源 5a后气体温度升高, 而后高温气体与喷淋溶液进 行热交换, 高温气体吸收溶液中的水份后气体的含湿量升高, 同时溶液的水份 蒸发后浓度升高并落入溶液集液盘后从浓溶液出口 12a流出,而后循环气体与 低温冷源 5b进行热交换。
实施例 5
本实施例作为实施例 1的一种改进, 如图 5所示, 与实施例 1相比较, 其 不同之处在于, 本再生装置将所述高温热源用于加热低浓度溶液, 高温热源 5a设置于所述喷淋器 7的进口之前, 高温热源 5a的载体同样采用空调***中 的制冷剂, 将所述高温热源 5a可以设计成有利于加热高温热源载体的任何结 构, 比如管夹套结构。 喷淋器 7的下方设置换热填料 14。 低浓度溶液流经高 温热源 5a后溶液温度升高, 而后高温低浓度溶液再与循环气体进行热交换, 循环气体吸收溶液中的水份后气体的温度和含湿量均升高,同时溶液的水份蒸 发后浓度升高并落入溶液集液盘后从浓溶液出口 12a流出,而后循环气体与低 温冷源 5b进行热交换。
实施例 6
本实施例作为实施例 1的一种改进, 如图 6所示, 与实施例 1相比较, 其不 同之处在于, 对压缩机的排气口和吸气口的控制阀门进行了改进。 具体为, 所 述压缩机的排气口设有第一换向阀 27,压缩机的吸气口设有第二换向阀 28; 第 一换向阀的两个出口分别与蒸发式冷凝器的气体管和蒸发器的气体管连接,第 二换向阀的两个进口同时分别与蒸发式冷凝器的气体管和蒸发器的气体管连 接。 该第一换向阀 27、 第二换向阀 28为电动或手动二位三通换向阀。
实施例 7
本实施例作为实施例 1的一种改进, 如图 7所示, 与实施例 1相比较, 其不 同之处在于, 作为一种改进方案, 所述热泵机组设置有四通换向阀 29, 四通换 向阀的四个接口分别与压缩机排气口、蒸发式冷凝器的气体管、蒸发器的气体 管和压缩机的吸气口连接。
实施例 8
本实施例作为实施例 1的一种改进, 如图 8所示, 与实施例 1相比较, 其不 同之处在于, 作为一种改进方案, 所述高温热源的出口 11a通过第二节流装置 3 '连接低温冷源的进口 10b。
热泵循环模式, 打开第一热泵阀 19、 第二热泵阀 20、 第三热泵阀 21、 第四 热泵阀 22、第五热泵阀 23和第八热泵阀 26,关闭第一制冷阀 17和第二制冷阀 18, 从高温热源 5a的进口 10a过来的高温制冷剂在高温热源中放出热量后从高温热 源的出口 11a流走,而后,制冷剂通过第二节流装置 3 '、 低温冷源 5b的进口 10b 进入低温冷源中, 并在低温冷源中吸收热量后从低温冷源的出口 l ib流走; 与 此同时,所述喷淋器 7向高温热源 5a喷淋低浓度溶液, 同时风机 8驱动循环气体 从高温热源区流过低温冷源区, 在高温热源区吸收水份并在低温热源区析出 冷凝水后, 循环气体继续沿着所述气体循环风道 9返回至高温热源区循环流 动。
实施例 9
本实施例作为实施例 1的一种改进, 如图 9所示, 与实施例 1相比较, 其不 同之处在于, 作为一种改进方案, 新风通过低温冷源的热交换器 5b进行预热后 进入蒸发式冷凝器 2与溶液进行热质交换。 其中, 高温热源的载体为空调热泵 机组中使用的制冷剂,低温冷源的载体为外界新风; 所述低温冷源区设有热交 换器 5b作为低温冷源, 该热交换器 5b设有新风入口 30a和出口 30b, 热交换器 5b 的出口 30b与蒸发式冷凝器 2通过管路连通。
热泵循环模式, 打开第一热泵阀 19、 第二热泵阀 20、 第三热泵阀 21、 第四 热泵阀 22、第五热泵阀 23和第六热泵阀 24,关闭第一制冷阀 17和第二制冷阀 18, 所述喷淋器 7向高温热源 5a喷淋低浓度溶液,同时风机 8驱动循环气体流过高温 热源 5a, 从高温热源 5a的进口 10a过来的高温制冷剂在高温热源中放出热量后 从高温热源的出口 11a流走, 循环气体吸收防冻溶液中的水份后气体的温度和 含湿量均升高,同时防冻溶液的水份蒸发后浓度升高并落入防冻溶液集液盘 6a 后从浓溶液出口流出; 而后, 风机 8驱动循环气体流过低温冷源区, 与外界新 风进行热交换后析出冷凝水,循环气体继续沿着所述气体循环风道 9返回至高 温热源区循环流动。 与此同时, 外界新风通过低温冷源 5b进行预热后温度升 高, 并进入蒸发式冷凝器 2与防冻溶液进行热质交换。 该实施例可提高蒸发式 冷凝器的换热效果。
实施例 10
本实施例作为实施例 1的一种改进, 如图 10所示, 与实施例 1相比较, 其不 同之处在于, 作为一种改进方案, 所述蒸发器 4采用多个并联的方式。 如上所述,便可较好地实现本发明,上述实施例仅为本发明的较佳实施例, 并非用来限定本发明的实施范围; 即凡依本发明内容所作的均等变化与修饰, 都为本发明权利要求所要求保护的范围所涵盖。

Claims

权 利 要 求 书
1、一种带防冻溶液再生装置的空调热泵机组, 其特征在于, 包括压缩机、 蒸发式冷凝器、 节流装置、 蒸发器和送风机; 其特征在于: 该机组还包括防冻 溶液再生装置,所述再生装置包括高温热源区、防冻溶液集液盘、低温冷源区、 冷凝水集液盘、 喷淋器、 气体循环风机和气体循环风道; 其中,
所述高温热源区设有高温热源,所述喷淋器的进口连接于与蒸发式冷凝器 相通的低浓度防冻溶液通道,所述喷淋器中流出的低浓度防冻溶液流经高温热 源区后蒸发浓缩进入防冻溶液集液盘,所述防冻溶液集液盘中的溶液进入与蒸 发式冷凝器相通的高浓度溶液通道;
所述低温冷源区设有低温冷源, 所述冷凝水集液盘设置于低温冷源区下 方, 并设有冷凝水出口;
所述气体循环风机设置于连通高温热源区和低温冷源区的气体循环风道 中, 以驱动循环气体从高温热源区流过低温冷源区,在高温热源区吸收水份并 在低温热源区析出冷凝水后,循环气体继续沿着所述气体循环风道返回至高温 热源区循环流动。
2、 如权利要求 1所述的空调热泵机组, 其特征在于: 所述气体循环风机、 高温热源区和低温冷源区的相对位置布置方式为: 高温热源区 -气体循环风机- 低温冷源区、气体循环风机 -高温热源区 -低温冷源区或高温热源区 -低温冷源区 -气体循环风机。
3、 如权利要求 1或 2所述的空调热泵机组, 其特征在于, 所述高温热源设 置于所述喷淋器与防冻溶液集液盘之间;或者所述高温热源设置于所述高温热 源区的循环气体进口处且所述喷淋器的外侧,以使循环气体经过加热后通过所 述喷淋器的下方进行热交换; 或者所述高温热源设置于所述喷淋器的进口之 前, 以使低浓度防冻溶液先经过加热再进入所述喷淋器与循环气体进行热交 换。
4、 如权利要求 1-3中任一所述的空调热泵机组, 其特征在于: 所述高温热 源和低温冷源的载体为空调热泵机组中使用的制冷剂。
5、 如权利要求 1-4中任一所述的空调热泵机组, 其特征在于: 所述喷淋器 的进口和出口均设有控制阀门; 所述高温热源的进口、出口分别通过控制阀门 与所述压缩机的制冷剂排气口、 制冷剂吸气口相通; 所述低温冷源的进口、 出 口分别通过控制阀门与蒸发式冷凝器的液体管、 气体管相通。
6、 如权利要求 1-4中任一所述的空调热泵机组, 其特征在于: 所述喷淋器 的进口和出口均设有控制阀门;所述高温热源的进口通过控制阀门与所述压缩 机的制冷剂排气口相通, 出口通过第二节流装置与所述低温冷源的进口相通; 所述低温冷源的出口通过控制阀门与蒸发式冷凝器的气体管相通。
7、 如权利要求 5或 6所述的空调热泵机组, 其特征在于: 所述高温热源 设置于所述喷淋器与防冻溶液集液盘之间;所述制冷剂在盘管结构的高温热源 和低温冷源内流动。
8、 如权利要求 1-4中任一所述的空调热泵机组, 其特征在于: 所述高温热 源的载体为空调热泵机组中使用的制冷剂,低温冷源的载体为外界新风; 所述 喷淋器的进口和出口均设有控制阀门; 所述高温热源的进口、 出口分别通过控 制阀门与所述压缩机的制冷剂排气口、制冷剂吸气口相通; 所述低温冷源区设 有热交换器,所述热交换器设有与外界新风相通的新风入口及与所述蒸发式冷 凝器连通的新风出口,以使经循环气体预热后的新风通过管路排出至所述蒸发 式冷凝器。
9、 如权利要求 1-8中任一所述的空调热泵机组, 其特征在于: 所述喷淋 器与所述防冻溶液集液盘之间设有喷淋循环泵,所述防冻溶液集液盘还与空调 ***中的低浓度防冻溶液通道连接。
10、 如权利要求 1-8中任一所述的空调热泵机组, 其特征在于: 所述高浓 度溶液通道上设有溶液泵。
11、 如权利要求 1-8中任一所述空调热泵机组, 其特征在于: 所述热泵机 组设置有第一制冷阀、 第二制冷阀、 第一热泵阀和第二热泵阀; 其中, 所述第 一制冷阀设置在所述压缩机的排气口与所述蒸发式冷凝器的气体管的连接管 路上,所述第二制冷阀设置在所述压缩机的吸气口与所述蒸发器的气体管的连 接管路上,所述第一热泵阀设置在所述压缩机的排气口与所述蒸发器的气体管 的连接管路上,所述第二热泵阀设置在所述压缩机的吸气口与所述蒸发式冷凝 器的气体管的连接管路上,所述蒸发式冷凝器的液体管通过所述节流装置与所 述蒸发器的液体管连接。
12、 如权利要求 1-8中任一所述空调热泵机组, 其特征在于: 所述压缩机 的排气口设有第一换向阀,所述压缩机的吸气口设有第二换向阀; 所述第一换 向阀的两个出口分别与所述蒸发式冷凝器的气体管和所述蒸发器的气体管连 接,所述第二换向阀的两个进口同时分别与所述蒸发式冷凝器的气体管和所述 蒸发器的气体管连接; 或者所述热泵机组设置有四通换向阀,所述四通换向阀 的四个接口分别与所述压缩机排气口、所述蒸发式冷凝器的气体管、所述蒸发 器的气体管和所述压缩机的吸气口连接。
13、 如权利要求 1-8中任一所述空调热泵机组, 其特征在于: 所述蒸发器 采用多个并联的方式。
PCT/CN2012/080016 2012-08-06 2012-08-13 一种带防冻溶液再生装置的空调热泵机组 WO2014023035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210279297.0 2012-08-06
CN201210279297.0A CN103574967B (zh) 2012-08-06 2012-08-06 一种带防冻溶液再生装置的空调热泵机组

Publications (1)

Publication Number Publication Date
WO2014023035A1 true WO2014023035A1 (zh) 2014-02-13

Family

ID=50047293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080016 WO2014023035A1 (zh) 2012-08-06 2012-08-13 一种带防冻溶液再生装置的空调热泵机组

Country Status (2)

Country Link
CN (1) CN103574967B (zh)
WO (1) WO2014023035A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061615B (zh) * 2014-07-07 2017-03-08 湖南科技大学 一种开式热源塔防冻液浓缩升温***
CN107642862A (zh) * 2017-09-01 2018-01-30 江苏紫东建筑科技股份有限公司 一种地源热泵驱动的溶液除湿新风机组
CN107816819A (zh) * 2017-10-26 2018-03-20 江苏海雷德蒙新能源有限公司 一种具有防冻剂浓度浓缩再生功能的能源塔***
US10300400B2 (en) * 2015-04-20 2019-05-28 Hunan Dongyou Water Vapor Energy Energy-Saving CO., Ltd Wet evaporation-based cold concentration system
CN112212418A (zh) * 2020-01-16 2021-01-12 清华大学 热湿比可调的溶液辅助式热泵***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940164B (zh) * 2014-05-16 2017-01-04 清华大学 一种溶液喷淋式无霜空气源热泵装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257279A (ja) * 1996-03-21 1997-09-30 Takasago Thermal Eng Co Ltd 空調設備およびその運転方法と洗浄方法
CN102230688A (zh) * 2011-03-29 2011-11-02 清华大学 一种溶液喷淋型热泵机组
CN202254029U (zh) * 2011-03-29 2012-05-30 清华大学 一种溶液喷淋型热泵机组
CN102620474A (zh) * 2012-04-06 2012-08-01 广州市华德工业有限公司 一种带防冻溶液再生热回收装置的空调冷热水机组
CN102620489A (zh) * 2012-04-06 2012-08-01 广州市华德工业有限公司 一种带防冻溶液再生热回收装置的空调热泵机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100193332B1 (ko) * 1996-10-07 1999-06-15 이상운 수냉열 순환식 냉방 시스템
JPH11264594A (ja) * 1998-03-18 1999-09-28 Fujitsu General Ltd 空気調和機の制御方法
JP2004340418A (ja) * 2003-05-13 2004-12-02 Denso Corp 給湯空調装置
CN202692531U (zh) * 2012-08-06 2013-01-23 广州市华德工业有限公司 一种带防冻溶液再生装置的空调热泵机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257279A (ja) * 1996-03-21 1997-09-30 Takasago Thermal Eng Co Ltd 空調設備およびその運転方法と洗浄方法
CN102230688A (zh) * 2011-03-29 2011-11-02 清华大学 一种溶液喷淋型热泵机组
CN202254029U (zh) * 2011-03-29 2012-05-30 清华大学 一种溶液喷淋型热泵机组
CN102620474A (zh) * 2012-04-06 2012-08-01 广州市华德工业有限公司 一种带防冻溶液再生热回收装置的空调冷热水机组
CN102620489A (zh) * 2012-04-06 2012-08-01 广州市华德工业有限公司 一种带防冻溶液再生热回收装置的空调热泵机组

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061615B (zh) * 2014-07-07 2017-03-08 湖南科技大学 一种开式热源塔防冻液浓缩升温***
US10300400B2 (en) * 2015-04-20 2019-05-28 Hunan Dongyou Water Vapor Energy Energy-Saving CO., Ltd Wet evaporation-based cold concentration system
CN107642862A (zh) * 2017-09-01 2018-01-30 江苏紫东建筑科技股份有限公司 一种地源热泵驱动的溶液除湿新风机组
CN107816819A (zh) * 2017-10-26 2018-03-20 江苏海雷德蒙新能源有限公司 一种具有防冻剂浓度浓缩再生功能的能源塔***
CN107816819B (zh) * 2017-10-26 2024-04-26 江苏海雷德蒙新能源有限公司 一种具有防冻剂浓度浓缩再生功能的能源塔***
CN112212418A (zh) * 2020-01-16 2021-01-12 清华大学 热湿比可调的溶液辅助式热泵***
CN112212418B (zh) * 2020-01-16 2024-04-26 清华大学 热湿比可调的溶液辅助式热泵***

Also Published As

Publication number Publication date
CN103574967B (zh) 2016-06-01
CN103574967A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN206361857U (zh) 热回收式膜法溶液热泵***
CN103900310B (zh) 溶液除湿预防空气源热泵热水器结霜的***及方法
WO2014023035A1 (zh) 一种带防冻溶液再生装置的空调热泵机组
CN109163471B (zh) 节能舒适型分体热泵空调***及其控制方法
CN101846368A (zh) 一种热泵驱动和蒸发冷却结合的溶液除湿新风机组
CN206361856U (zh) 热回收式膜法溶液空调
CN108800646A (zh) 一种蒸发冷空气源热泵机组
CN107869812A (zh) 一体式膜法溶液热泵***
CN104776629A (zh) 蒸发式冷凝器空调***及其工作方法
CN101398234A (zh) 低温风冷热泵机组
CN105276861A (zh) 一种补偿式双源热泵冷热风空调机组
CN104279662B (zh) 冷热联供的水环热泵空调***及其实现方法
CN103615836A (zh) 一种螺杆式全热回收风冷热泵空调机组
CN107388657B (zh) 一种基于低压压缩溶液再生的无霜空气源热泵***
CN202747685U (zh) 一种带防冻溶液再生装置的空调冷热水机组
CN105258389A (zh) 一种补偿式双源热泵冷热水机组
CN105716324B (zh) 基于压缩‑喷射复合的双热源高效空调***及应用
CN110030765A (zh) 一种干燥供暖供冷复合***
CN103423815A (zh) 一种溶液辅助储能型家用空调器
CN106322810A (zh) 基于调湿与蒸发冷却的无霜空气源热泵***
CN110986207A (zh) 一种热泵驱动直膨式温湿分控热回收型溶液调湿新风机组
CN204154012U (zh) 一种带防冻溶液再生装置的空调热泵机组
CN110966696A (zh) 带太阳能喷射的冷媒辐射墙一体化空调***和空调器
CN203595316U (zh) 一种螺杆式全热回收风冷热泵空调机组
CN202902508U (zh) 一种用于空调***的防冻溶液再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882776

Country of ref document: EP

Kind code of ref document: A1