WO2014021736A1 - Способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья - Google Patents

Способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья Download PDF

Info

Publication number
WO2014021736A1
WO2014021736A1 PCT/RU2013/000616 RU2013000616W WO2014021736A1 WO 2014021736 A1 WO2014021736 A1 WO 2014021736A1 RU 2013000616 W RU2013000616 W RU 2013000616W WO 2014021736 A1 WO2014021736 A1 WO 2014021736A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
downhole space
space
generator
oil
Prior art date
Application number
PCT/RU2013/000616
Other languages
English (en)
French (fr)
Inventor
Валерий Георгиевич АКШЕНЦЕВ
Роберт Ибрагимович АЛИМБЕКОВ
Алексей Сергеевич ШУЛАКОВ
Салихьян Шакирьянович ШАРИПОВ
Владимир Анатольевич ДОКИЧЕВ
Софья Робертовна АЛИМБЕКОВА
Original Assignee
Общество С Ограниченной Ответственностью "Инновационно-Производственный Центр "Пилот"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Инновационно-Производственный Центр "Пилот" filed Critical Общество С Ограниченной Ответственностью "Инновационно-Производственный Центр "Пилот"
Publication of WO2014021736A1 publication Critical patent/WO2014021736A1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells

Definitions

  • the invention relates to the oil industry and can be used to increase the volume of pumped fluid, increase the oil recovery coefficient, its flow rate, improve the quality and rheological (kinetic) properties, as well as to reduce the loss on the elements of the borehole space (ESP) ) - installation of an electric centrifugal pump (ESP), tubing string (tubing), casing pipe of natural salts (calcium, magnesium, sodium, potassium), hydrated and hydrated left-hydrogen deposits, negatively affecting the operation of the borehole ESP.
  • ESP electric centrifugal pump
  • tubing string tubing
  • casing pipe of natural salts calcium, magnesium, sodium, potassium
  • hydrated and hydrated left-hydrogen deposits negatively affecting the operation of the borehole ESP.
  • Thermal methods of exposure are used to remove paraffin and resins deposited on the walls of the pore channels, and to intensify chemical methods for treating bottom-hole zones.
  • a significant factor affecting production efficiency is the level of protection of equipment and well space from unwanted solid deposits.
  • the problem of formation of unwanted solid deposits in oil and gas wells, in production equipment is acute in the oil industry.
  • a common process leading to the formation of deposits during hydrocarbon production operations is the precipitation of difficultly soluble salts from the mineralized water of an oil field.
  • Some water from oil fields contains a sufficient amount of sulfate ions in the presence of barium, calcium and / or strontium ions, which creates the potential for the formation of barium sulfate (BaS0 4 ) and / or strontium sulfate (SrS0 4 ) in the form of scale.
  • the deposits are usually formed from such classes of compounds that include: calcium carbonate (CaCO3), calcium sulfate (CaS0 4 ), calcium sulfide (CaS), barium sulfate (BaS0 4 ), barium sulfide (BaS), barium thiosulfate (BaS 2O3), strontium sulfate ( SrS0 4 ), sodium carbonate (Na 2 C0 3 ), sodium sulfate (a 2SO4), sodium sulfide (Na 2 S), potassium carbonate (K 2 C0 3 ), potassium sulfate (K 2 S0 4 ), magnesium sulfate (MgS0 4 ), magnesium chloride (MgCl 2 ), halite (NaCl), zinc sulfide (ZnS), zinc sulfite (ZnS0 3 ), zinc sulfate (ZnS0 4 ), lead sulfate (PbS), lead s
  • Methods for treating chemicals to remove unwanted deposits include acidizing or treating using various other chemicals to remove unwanted deposits.
  • the type of chemical treatment process is selected depending on the type of condensate or sediment.
  • Chemicals such as polyelectrolytes, phosphonates, polyphosphinocarboxylic acids, organophosphonic acids (such as diethylene triamine penta methylphosphonic acid and hexamethylene diamine tetramethylene phosphonic acid), and polymers such as polyacrylate, polyvinyl sulfonate, sulfonated polymethyl amylates, often use sulfonated polyacrylamates for preventing the growth of unwanted hydrocarbon deposits, such as salt crystals, on the inner surfaces of the production string.
  • this solution Upon reaching the maximum volume of a substance that can be dissolved for a given temperature and pressure, this solution must be saturated, and when the conditions under which the saturation concentration of the substance increases, the solution becomes supersaturated. If the necessary seed crystals are present in the solution, the dissolved substances will crystallize out of the solution, and this can lead to sedimentation in the borehole space.
  • the positive and negative ions of the substance in the solution must be grouped together. Due to this charge distribution, ions that include more than one atom can be considered as dipoles, and under the influence of an electric field, such ions are oriented with respect to this field. This process significantly increases the chance of collision between charged particles of the opposite charge, since they will move in the opposite direction from each other (especially if the electric field is alternating), and leads to an increase in the growth of clusters of oppositely charged ions of the dissolved substance.
  • the electric field reduces the attractive forces that cause the attraction of water molecules to ions, as a result of which the charged particles combine to form a seed crystal.
  • Such tiny seed crystals have a surface charge that attracts a large number of ions and their clusters (which can be achieved in a supersaturated solution), and such seed crystals grow rapidly and provoke the growth of other crystals (i.e., precipitation of dissolved substances) in case the solution is no longer oversaturated.
  • crystal growth continues until the volume of the dissolved substance decreases again.
  • a similar creation of seed crystals in a solution belongs to the field of homogeneous seed crystals; crystals can also form on any foreign substance or on a flat surface with sharp protrusions. Electric charges will be concentrated on any of these protrusions that will attract charged particles to initiate the crystallization process. If there are no available homogeneous seed crystals in this part of the solution, the solute will likewise crystallize on heterogeneous seed crystals, which should likewise be present on the ESP. This is what leads to an increase in sediment on their surfaces.
  • a known method of influencing the fluid of oil fields during oil production including the creation of an oscillatory process directly in the processed oil fluid by carrying electromagnetic waves in the frequency range from 3 * 10 "5 to 3 * 10 14 Hz, which modulate information signals resonant hydrocarbons of the processed oil fluid, and form in standing waves (RF patent ⁇ "2281387 C2, E21B 43/16, publ. 04/20/2006).
  • the formation of directed standing waves is carried out by a resonant wave device (generator) immersed in kvazhinu and resonance control, standing waves carry field antenna placed on a surface, comprising a movable resonant modules waveguides et al.
  • the known method has a significant drawback, which requires a clear interaction of two subsystems - ground and submersible, a complex algorithm for setting up the subsystems and, accordingly, providing an acceptable and reliable communication channel: well - surface,
  • the generator generates narrow pulses with a frequency set by the control device to provide free resonant oscillations in the emitter circuit
  • the spectrum analyzer unit evaluates the mathematical expectation of the dominant frequency and the dispersion of free oscillations arising in the circuit of the emitter and generates a feedback signal to the control device to adjust the frequency by means of a varicap.
  • the wave action on the borehole space is formed by the emitter circuit based on certain a priori settings that take into account one or another composition of sediments on the basis of empirical laboratory and production data.
  • this method does not provide the proper level of resonance-wave action on the fluid and the reservoir, taking into account the whole range of parameters of the borehole space. Therefore, it is not effective enough to increase oil production, but is a specialized tool to protect against hydrated and hydrocarbon deposits of a certain type in wells and production equipment.
  • the objective of the invention is to reduce the viscosity of the fluid and its separation into light hydrocarbons and energized water, increase the drainage function of cracks, capillaries and pores of the reservoir while reducing the loss on the elements of the borehole space - the installation of an electric centrifugal pump, tubing string, casing pipe of natural hydrated and hydrated hydrocarbon deposits due to the resonant excitation of fluid hydrocarbons and the energization of an aqueous solution of salts at low energy costs using the use of relatively simple technical means.
  • the problem is solved by the method of influencing the borehole space during hydrocarbon production, which consists in placing a device with an emitter and a controlled generator to create an electromagnetic wave field in the downhole space at the base of the submersible electric motor to create an electromagnetic wave field in which the radiation of the electromagnetic wave field provides the resonance frequency for the downhole space, previously determined from schegosya experience or simulation results, or in the testing process, the testing process is carried out with a predetermined frequency, and in time periods between testing the generator is converted into the resonant frequency mode, as determined in process testing, for the formation by the emitter of standing electromagnetic waves that distribute wave energy throughout the borehole space.
  • the essence of the proposed method consists in the formation in the axial direction of the borehole space of a high-frequency electromotive force (emf) conductivity due to the presence of carriers of electric charges in this space: electrons in the metal, ions in solution, charged solid particles and polarization emf in dielectric molecules, which in turn causes the appearance of a coaxial electromagnetic field inside the borehole space, which, when the emitter is constantly exposed to electromagnetic waves on the resonance second frequency which is predetermined from commercially practical experience or simulation results, or in the testing process, distributed as standing waves. For example, at a frequency of approximately 120 kHz, the standing wavelength will be 2498 m.
  • emf electromotive force
  • the generated standing waves of the electromagnetic field distribute wave energy in the borehole space, which facilitates the formation of homogeneous seed crystals in the borehole fluid, and, as a result, the crystals formed in the fluid are transported by it without sediment deposits on the surfaces of the ESP, as homogeneous seed crystals attract a substance from a solution ten times more actively than heterogeneous seed crystals on the surface and, as a result, crystals form in the fluid in the form of a suspension.
  • the resonance-wave action leads to the excitation and decomposition of fluid hydrocarbons into lighter ones, which leads to a decrease in their viscosity and, as a result, an increase in their mobility both in the well and in the zone of the productive formation adjacent to the well.
  • the resonance-wave effect increases the drainage function of cracks, capillaries and pores of deposits due to the release of: - heavy hydrocarbons deposited and adhering to their wall, asphaltene-paraffin-resinous deposits;
  • the inventive method is as follows. Before the launch of the well assembly, the sealed generator container with the emitter is attached and connected to the base of the ESP submersible electric motor (SEM). The layout goes down into the well. When starting the PEM, the generator turns on, because the device is powered from the stator winding of the SEM, similar to the prototype. If the resonant excitation frequency is a priori known from practical experience or the simulation result, then the generator starts at this frequency. Otherwise, testing is carried out. For example, the test mode starts, while the generator excites the emitter with a periodic sequence of very narrow powerful pulses. It is known that the narrower the impulse, the wider its spectrum.
  • resonant damped harmonic oscillations arise in the emitter with a frequency and damping period, depending on the parameters of the medium. Having determined the frequency and the attenuation period, the generator is transferred to the radiation mode of the resonant frequency with the power due to the attenuation period, which corresponds to the operating mode. Both in test and in operating mode in the borehole space, resonant standing electromagnetic waves appear along its axis.
  • the movement of fluid from the reservoir to the production well is traditionally carried out by creating a depression on the reservoir by reducing the dynamic level of the borehole fluid in the casing wells, which corresponds to the well-proven hydrocarbon production technology.
  • An important advantage of the proposed method are low energy consumption - the power consumed by the generator for radiation is about 100W.
  • the device is localized in the submersible part and does not require additional ground equipment, a communication channel, etc.
  • the application of the proposed method of resonance-wave action on the fluid and the borehole space allows to reanimate the wells and significantly extend the life of fields characterized by low flow rates, waterflooding, heavy oils, etc., by increasing the oil recovery coefficient, its quality and rheological properties.
  • the method provides protection of the elements of the borehole space from harmful deposits.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения объема откачиваемого флюида, повышения коэффициента извлечения нефти, ее дебита, а также для уменьшения выпадения на элементах скважинного пространства естественных гидратных и гидрато-углеводородных отложений. Способ заключается в размещении в основании погружного электродвигателя электроцентробежного насоса устройства с излучателем и управляемым генератором для создания электромагнитного волнового поля во внутрискважинном пространстве, причем излучение электромагнитного волнового поля обеспечивают на резонансной для внутрискважинного пространства частоте, предварительно определяемой из имеющегося практического опыта, или результата моделирования, или в процессе тестирования, причем процесс тестирования осуществляют с заданной периодичностью, а в периоды времени между тестированием генератор переводят в режим резонансной частоты, определяемой в процессе тестирования, для формирования излучателем стоячих электромагнитных волн, которые распределяют волновую энергию во всем скважин ном пространстве.

Description

СПОСОБ ЭЛЕКТРОМАГНИТНОГО ВОЗДЕЙСТВИЯ НА
СКВАЖИННОЕ ПРОСТРАНСТВО ПРИ ДОБЫЧЕ
УГЛЕВОДОРОДНОГО СЫРЬЯ
Область техники, к которой относится изобретение Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения объема откачиваемого флюида, повышения коэффициента извлечения нефти, ее дебита, улучшения качества и реологических (кинетических) свойств, а также для уменьшения выпадения на элементах скважинного пространства (ЭСП) - установке электроцентробежного насоса (УЭЦН), колонне насосно-компрессорных труб (НКТ), обсадной трубе естественных солей ( кальция, магния, натрия, калия), гидратных и гидрато-углеводородных отложений, отрицательно влияющих на работу скважинной УЭЦН.
Предшествующий уровень техники
Известны различные способы воздействия на скважинное пространство и продуктивный пласт, использующие механические, тепловые, физические, химические и электромагнитные методы и их комбинации для повышения эффективности добычи углеводородного сырья.
При механическом воздействии на пласты их проницаемость повышается вследствие создания новых каналов и трещин, сообщающих пласты с призабойной зоной скважины. Механические методы обработки (гидравлический разрыв пласта, торпедирование) применяют в пластах, сложенных плотными породами.
Тепловые методы воздействия применяют для удаления парафина и смол, осевших на стенках поровых каналов, и интенсификации химических методов обработки призабойных зон.
Физические методы основаны на вибрационном, ультразвуковом и др. воздействиях. Их в основном применяют для удаления из призабойной зоны скважины остаточной воды и твердых мелкодисперсных частиц, в результате чего увеличивается проницаемость пород для нефти. Механические, тепловые, физические методы хорошо известны и, в ряде случаев довольно действенны, однако использование этих методов требует значительных финансовых и энергетических затрат.
Применение химических методов воздействия на продуктивные пласты основано на происходящих реакциях взаимодействия закачиваемых химических веществ, в основном различных кислот, с некоторыми породами, которые растворяются, тем самым, увеличивая размеры поровых каналов и повышая пластовую проницаемость. Применение химических реагентов в ряде случаев эффективно, но затратно. Кроме того небезопасно для окружающей среды.
Существенное снижение энергозатрат при высокой эффективности обеспечивают методы, использующие электромагнитное воздействие. Важным достоинством таких методов является проведения воздействия одновременно с основным процессом добычи, не препятствуя ему.
Существенным фактором, влияющим на эффективность добычи, является уровень защиты оборудования и скважинного пространства от нежелательных твердых отложений. Проблема образования нежелательных твердых отложений в нефтегазовых скважинах, в эксплуатационном оборудовании остро стоит в нефтяной промышленности. Отложения солей, парафина или воска, а также отложения асфальтенов, создают большие проблемы в нефтяной промышленности во всем мире. Часто образование отложений приводит к снижению добычи и увеличению эксплуатационных расходов, связанных с добычей углеводородов.
Обычным процессом, ведущим к образованию отложений при проведении операций добычи углеводородов, является выпадение осадка трудно растворимых солей из минерализованной воды месторождения нефти. Некоторые воды месторождений нефти содержат достаточное количество сульфатных ионов в присутствие ионов бария, кальция и/или стронция, что создает потенциал для образования сульфата бария (BaS04) и/или сульфата стронция (SrS04) в виде окалины. Отложения, обычно, образованы из таких классов соединений, которые включают в себя: карбонат кальция (СаСОз), сульфат кальция (CaS04), сульфид кальция (CaS), сульфат бария (BaS04), сульфид бария (BaS), тиосульфат бария (BaS 2O3), сульфат стронция (SrS04), карбонат натрия (Na2C03), сульфат натрия ( a 2SO4), сульфид натрия (Na2S), карбонат калия (К2С03), сульфат калия (К2 S04), сульфат магния (MgS04), хлорид магния (MgCl2), галит (NaCl), сульфид цинка (ZnS), сульфит цинка (ZnS03), сульфат цинка (ZnS04), сульфат свинца (PbS), сульфит свинца (PbS03), сульфат свинца (PbS04) и т.п., а также их комбинации.
Способы обработки химикатами для удаления нежелательных отложений, таких как соли, парафин, асфальтены и гидраты, включают в себя кислотную обработку или обработку с использованием различных других химикатов для удаления нежелательных отложений. Часто тип процесса обработки химикатами выбирают в зависимости от типа конденсата или отложения. Химикаты, такие как полиэлектролиты, фосфонаты, полифосфинокарбоновые кислоты, органофосфоновые кислоты (такие как диэтилентриамин пента метилфосфоновая кислота и гексаметилендиамин тетраметилен фосфоновая кислота), и полимеры, такие как полиакрилат, поливинил сульфонат, сульфонированные полиакрилаты, фосфометилированные полиамины и др. часто используют для торможения или предотвращения роста нежелательных углеводородных отложений, таких как кристаллы солей, на внутренних поверхностях эксплуатационной колонны. Типично, такие химикаты являются эффективными только для специфических типов отложений и ограничены только таким применением. Несмотря на определенные преимущества, обработка химикатами обычно является дорогой, во многих случаях вредной для окружающей среды, и часто весьма чувствительной, эффективно воздействующей только на специфические виды сырой нефти или на специфические типы нежелательных отложений. Обработка химикатами часто требует использования специального оборудования для ввода химикатов в самые глубокие секции ствола скважины. В последнее время актуальными становятся способы электрофизического и электромагнитного воздействия на продукцию скважин. Это воздействие базируется на следующих положениях. При растворении в воде таких минералов, как карбонат кальция и кислая соль угольной кислоты, карбонат и бикарбонат магния наблюдается присутствие положительно и отрицательно заряженных ионов. При достижении максимального объема вещества, которое может быть растворено для заданных значений температуры и давления данный раствор должен быть насыщен, а при изменении условий, при которых концентрация насыщения субстанции повысилась, раствор становится перенасыщенным. В случае присутствия в растворе необходимых затравочных кристаллов растворенные субстанции будут выкристаллизовываться из раствора, и именно это может привести к осаждению осадка в скважинном пространстве.
Для формирования затравочных кристаллов положительные и отрицательные ионы вещества в растворе должны быть сгруппированы вместе. Благодаря такому распределению зарядов ионы, которые включают более одного атома, можно рассматривать как диполи, а под влиянием электрического поля подобные ионы ориентируются по отношению к данному полю. Этот процесс значительно увеличивает шансы столкновения между заряженными частицами противоположного заряда, так как они будут двигаться в противоположном направлении друг от друга (особенно, если электрическое поле переменное), и приводит к увеличению роста кластеров противоположно заряженных ионов растворенного вещества.
Кроме того, электрическое поле уменьшает силы притяжения, которые вызывают притяжение молекул воды к ионам, в результате чего заряженные частицы соединяются, образуя затравочный кристалл. Подобные крошечные затравочные кристаллы обладают зарядом поверхности, привлекающим большое количество ионов и их скоплений (что может быть достигнуто в перенасыщенном растворе), и подобные затравочные кристаллы быстро растут и провоцируют рост других кристаллов (т.е. осаждение растворенного вещества) в случае, если раствор более не является перенасыщенным. При уменьшении давления (многие субстанции, формирующие осаждаемое вещество, обладают убывающей растворимостью в воде с понижающимся давлением) рост кристаллов продолжается до повторного снижения объема растворенного вещества.
Подобное создание затравочных кристаллов в растворе относится к области гомогенных затравочных кристаллов; кристаллы также могут формироваться на любой инородной субстанции или на плоской поверхности, обладающей острыми выступами. Электрические заряды будут сконцентрированы на любом из таких выступов, которые будут привлекать заряженные частицы для инициирования процесса кристаллизации. Если в данной части раствора нет доступных гомогенных затравочных кристаллов, растворенное вещество подобным образом будет кристаллизоваться на гетерогенных затравочных кристаллах, которые подобным образом должны присутствовать на ЭСП. Именно это приводит к увеличению осадка на их поверхностях.
Гомогенные затравочные кристаллы инициируют процесс кристаллизации при более высоком давлении, чем давление, при котором кристаллизация может инициироваться на гетерогенных затравочных кристаллах на поверхности. В результате все вещество, подверженное осаждению из раствора, должно быть подобным образом выведено в осадок до начала процесса гетерогенного отложения на поверхности.
Аналогично происходит процесс снижения отложений на поверхностях ЭСП асфальтенов и твердых парафинов из нефтяного содержимого водно- нефтяной смеси. Как асфальтены, так и твердые парафины могут использовать затравочные кристаллы, как это описано выше, в качестве зародыша кристалла, на котором осаждаются взвешенные частицы (которые обладают внешней схожестью с крупинками) до достижения уровня температуры застывания. Известен способ электромагнитного воздействия на флюид нефтяных месторождений (патент РФ N°2208141 , МПК Е21В43/24, опубликован 10.07.2003), предназначенный для увеличения степени извлечения нефти или других испаряемых жидкостей из нефтяных источников на земле или в море. По данному способу размещают излучатель электромагнитных волн в скважине и совместно с ним или отдельно - электрод электрического поля высокой частоты. Воздействуют на нефтяной пласт в начальный период электромагнитными волнами сверхвысокой частоты, затем частотой 15-30 кГц и, наконец, частотой 0,01-15 Гц до частичного разогрева пласта. После этого на нефтяной пласт воздействуют высокочастотным электрическим полем, которое фазируют с электромагнитным и естественным электрическим полями, обеспечивая тем самым взаимную индукцию электромагнитного и электрических полей, их резонанс и изменение физико- механических свойств нефтяного пласта. Возникающее в результате разогрева испарение воды создает дополнительное давление пара на пласт.
Однако данный способ требует существенных энергозатрат и значительного усложнения конструкции оборудования, размещенного в скважине.
Известен способ воздействия на флюид нефтяных месторождений при добыче нефти, включающий создание колебательного процесса непосредственно в обрабатываемом нефтяном флюиде несущими электромагнитными волнами в диапазоне частот от 3* 10"5 до 3* 1014 Гц, которые модулируют информационными сигналами, резонансными углеводородам обрабатываемого нефтяного флюида, и формируют в стоячие волны (патент РФ ^«2281387 С2, Е21В 43/16, опубл. 20.04.2006). Формирование направленных стоячих волн осуществляют резонансно- волновым устройством (генератором), погруженным в скважину, а управление резонансными, стоячими волнами осуществляют размещенным на поверхности антенным полем, включающим в себя подвижные резонансные модули, волноводы и др. Использование известного способа резонансно-волнового воздействия на скважинную жидкость (флюид) позволяет реанимировать скважины, отличающиеся низким дебитом, заводненностью, тяжелыми нефтями и др., за счет повышения коэффициента извлечения нефти, ее качества и реологических свойств, при снижении содержания воды в откачиваемом флюиде.
Однако, известный способ имеет существенный недостаток, который заключается в том, что требует четкого взаимодействия двух подсистем - наземной и погружной, сложного алгоритма настройки подсистем и, соответственно, обеспечения приемлемого и надежного канала связи: скважина - поверхность,
Наиболее близким к предложенному является способ воздействия на скважинное пространство нефтяных месторождений посредством электромагнитного протектора скважинной установки электроцентробежного насоса, обеспечивающего, посредством излучателя электромагнитного сигнала, соединённого с выходом генератора, формирование электромагнитного поля в скважинном пространстве (патент РФ N°2444612, МПК Е21В 37/00, опубл. 10.03.2012;. К выводным концам обмотки излучателя подключён варикап, управляющий вход которого соединён с выходом устройства управления, которое управляет генератором по сигналу от спектроанализатора. Устройство имеет канал связи с поверхностью. При этом генератор формирует узкие импульсы с частотой, задаваемой устройством управления для обеспечения свободных резонансных колебаний в контуре излучателя, блок спектроанализатора проводит оценку величины математического ожидания доминирующей частоты и дисперсии свободных колебаний, возникающих в контуре излучателя и формирует сигнал обратной связи в устройство управления для подстройки частоты посредством варикапа. В данном случае волновое воздействие на скважинное пространство формируется контуром излучателя на основании определенных априорных уставок, которые учитывают тот или иной состав отложений на основании импирических лабораторных и производственных данных.
Однако данный способ не обеспечивает должного уровня резонансно- волнового воздействия на флюид и продуктивный пласт, учитывающего весь комплекс параметров скважинного пространства. Поэтому он не достаточно эффективен для повышения нефтедобычи, а является специализированным средством для защиты от гидратных и углеводородных отложений определенного типа в скважинах и эксплуатационном оборудовании.
Задачей изобретения является снижение вязкости флюида и разделение его на легкие углеводороды и энергизированную воду, повышение дренажной функции трещин, капилляров и пор продуктивного пласта при уменьшении выпадения на элементах скважинного пространства - установке электроцентробежного насоса, колонне насосно-компрессорных труб, обсадной трубе естественных гидратных и гидрато-углеводородных отложений, за счет резонансного возбуждения углеводородов флюида и энергизации водного раствора солей при низких энергозатратах с использованием сравнительно простых технических средств.
Сущность изобретения
Поставленная задача решается способом воздействия на скважинное пространство при добыче углеводородного сырья, заключающимся в размещении в основании погружного электродвигателя установки электроцентробежного насоса устройства с излучателем и управляемым генератором для создания электромагнитного волнового поля во внутрискважинном пространстве, в котором в отличие от прототипа излучение электромагнитного волнового поля обеспечивают на резонансной для внутрискважинного пространства частоте, предварительно определяемой из имеющегося практического опыта, или результата моделирования, или в процессе тестирования, причем процесс тестирования осуществляют с заданной периодичностью, а в периоды времени между тестированием генератор переводят в режим резонансной частоты, определяемой в процессе тестирования, для формирования излучателем стоячих электромагнитных волн, которые распределяют волновую энергию во всем скважинном пространстве.
Сущность предлагаемого способа состоит в формировании в осевом направлении скважинного пространства высокочастотной электродвижущей силы (эдс) проводимости за счет наличия носителей электрических зарядов в этом пространстве: электронов в металле, ионов в растворе, заряженных твердых частиц и эдс поляризации в молекулах диэлектриков, что в свою очередь вызывает возникновение коаксиального электромагнитного поля внутри скважинного пространства, которое при постоянном воздействии излучателем электромагнитных колебаний на резонансной частоте, которая предварительно определяется из имеющегося практического опыта, или результата моделирования, или в процессе тестирования, распространяется в виде стоячих волн. Например, при частоте приблизительно в 120 кГц длина стоячей волны будет составлять 2498 м. Сформированные стоячие волны электромагнитного поля распределяют волновую энергию в скважинном пространстве, что облегчает образование гомогенных затравочных кристаллов в скважинной жидкости, и, как следствие, сформированные в жидкости кристаллы транспортируются ею без отложения осадка на поверхностях ЭСП, т.к. гомогенные затравочные кристаллы притягивают вещество из раствора в десять раз более активно, чем гетерогенные затравочные кристаллы на поверхности и, вследствие чего, кристаллы образуются в флюиде в виде взвеси.
Кроме того, резонансно-волновое воздействие приводит к возбуждению и расщеплению углеводородов флюида на более легкие, что приводит к снижению их вязкости и, как следствие, повышению их подвижности как в скважине, так и в зоне продуктивного пласта, прилегающего к скважине. Также резонансно-волновое воздействие способствует повышению дренажной функции трещин, капилляров и пор месторождений за счет освобождения от: - осевших и налипших на их стенку тяжелых углеводородов, асфальтено- парафиносмолистых отложений;
- глин, коллоидно-дисперсных образований, микрочастиц породы и др. при растворении и/или вымывании их энергизированной водой флюида;
- воды адсорбированной и прочно связанной на поверхности минеральных частиц.
Сведения, подтверждающие возможность осуществления изобретения
Заявляемый способ осуществляют следующим образом. Перед спуском скважинной компоновки герметичный контейнер генератора с излучателем крепится и подключается к основанию погружного электродвигателя (ПЭД) УЭЦН. Компоновка спускается в скважину. При запуске ПЭД включается генератор, т.к. электропитание устройства осуществляется от статорной обмотки ПЭД, аналогично прототипу. Если априори известна резонансная частота возбуждения, из имеющегося практического опыта или результата моделирования, тогда генератор запускается на этой частоте. В противном случае осуществляется тестирование. Например, запускается тестовый режим, при этом генератор возбуждает излучатель периодической последовательностью очень узких мощных импульсов. Известно, что чем уже импульс, тем шире его спектр. При этом в излучателе возникают резонансные затухающие гармонические колебания с частотой и периодом затухания, зависящие от параметров среды. Определив частоту и период затухания, переводят генератор в режим излучения резонансной частоты с мощностью, обусловленной периодом затухания, что соответствует рабочему режиму. И в тестовом и в рабочем режиме в скважинном пространстве, вдоль его оси возникают резонансные стоячие электромагнитные волны.
Следует отметить, что согласно предложенному способу перемещение флюида из пластового коллектора в добывающую скважину осуществляют традиционно за счет создания депрессии на продуктивный пласт через снижение динамического уровня скважинной жидкости в обсадной колонне ю скважины, что соответствует хорошо зарекомендовавшей себя технологии добычи углеводородного сырья.
Немаловажным преимуществом заявляемого способа являются низкие энергозатраты - мощность, потребляемая генератором на излучение, составляет порядка 100Вт. Устройство локализовано в погружной части и не требует дополнительного наземного оборудования, канала связи и др.
Таким образом, применение предложенного способа резонансно- волнового воздействия на флюид и скважинное пространство позволяет реанимировать скважины и существенно продлить жизнь месторождениям, отличающимся низким дебитом, заводненностью, тяжелыми нефтями и др., за счет повышения коэффициента извлечения нефти, ее качества и реологических свойств. Кроме того, способ обеспечивает защиту элементов скважинного пространства от вредных отложений.

Claims

Формула изобретения
1. Способ воздействия на скважинное пространство при добыче углеводородного сырья, заключающийся в размещении в основании погружного электродвигателя установки электроцентробежного насоса устройства с излучателем и управляемым генератором для создания электромагнитного волнового поля во внутрискважинном пространстве отличающийся тем, что излучение электромагнитного волнового поля обеспечивают на резонансной для внутрискважинного пространства частоте, предварительно определяемой из имеющегося практического опыта, или результата моделирования, или в процессе тестирования, причем процесс тестирования осуществляют с заданной периодичностью, а в периоды времени между тестированием генератор переводят в режим резонансной частоты, определяемой в процессе тестирования, для формирования излучателем стоячих электромагнитных волн, которые распределяют волновую энергию во всем скважинном пространстве.
PCT/RU2013/000616 2012-08-01 2013-07-19 Способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья WO2014021736A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012133097 2012-08-01
RU2012133097/03A RU2529689C2 (ru) 2012-08-01 2012-08-01 Способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья

Publications (1)

Publication Number Publication Date
WO2014021736A1 true WO2014021736A1 (ru) 2014-02-06

Family

ID=48906088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000616 WO2014021736A1 (ru) 2012-08-01 2013-07-19 Способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья

Country Status (4)

Country Link
EP (1) EP2644822B1 (ru)
FI (1) FI20135802L (ru)
RU (1) RU2529689C2 (ru)
WO (1) WO2014021736A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2599893C1 (ru) * 2015-06-30 2016-10-20 Софья Робертовна Алимбекова Управляемый электромагнитный протектор скважинной установки электропогружного насоса
RU2634147C1 (ru) * 2016-08-17 2017-10-24 Общество С Ограниченной Ответственностью "Инновационно-Производственный Центр "Пилот" Установка и способ ингибирования коррозии и образования отложений на скважинном оборудовании
US10253608B2 (en) 2017-03-14 2019-04-09 Saudi Arabian Oil Company Downhole heat orientation and controlled fracture initiation using electromagnetic assisted ceramic materials
RU2676777C1 (ru) * 2017-12-27 2019-01-11 ООО "Инновационно-производственный центр "Пилот" Автоматизированная система и способ защиты скважинного оборудования от образования нежелательных отложений
US10900353B2 (en) 2018-09-17 2021-01-26 Saudi Arabian Oil Company Method and apparatus for sub-terrain chlorine ion detection in the near wellbore region in an open-hole well
RU2694329C1 (ru) * 2018-11-29 2019-07-11 ООО "Инновационно-производственный центр "Пилот" Способ комплексного воздействия для ингибирования образования солеотложений на скважинном оборудовании и установка для его осуществления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2191889C1 (ru) * 2001-08-20 2002-10-27 Белоненко Владимир Николаевич Способ разработки месторождений углеводородов
RU2191896C2 (ru) * 2000-04-13 2002-10-27 Дыбленко Валерий Петрович Способ обработки призабойной зоны пласта
RU2215126C2 (ru) * 2002-05-27 2003-10-27 Закрытое акционерное общество "ИНЕФ" Способ восстановления и поддержания продуктивности скважины
RU2444612C1 (ru) * 2010-06-16 2012-03-10 Роберт Ибрагимович Алимбеков Электромагнитный протектор скважинной установки электроцентробежного насоса

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449585A (en) * 1982-01-29 1984-05-22 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations
SU1657659A1 (ru) * 1989-07-03 1991-06-23 А.М.Морев, В.С.Маевский Ю.В.Деев и С.И.Никишин Способ дегазации угольного пласта
US5323855A (en) * 1991-05-17 1994-06-28 Evans James O Well stimulation process and apparatus
US5268537A (en) * 1992-06-29 1993-12-07 Exxon Production Research Company Broadband resonant wave downhole seismic source
RU2085721C1 (ru) * 1994-06-20 1997-07-27 Валерий Петрович Дыбленко Способ обработки прискважинной зоны пласта
US6328102B1 (en) * 1995-12-01 2001-12-11 John C. Dean Method and apparatus for piezoelectric transport
RU2208141C1 (ru) 2002-10-28 2003-07-10 Темерко Александр Викторович Способ разработки нефтегазоконденсатных месторождений
RU2281387C2 (ru) * 2004-11-18 2006-08-10 Валерий Сергеевич Юрданов Способ воздействия на флюид нефтяных месторождений при добыче нефти
RU2379489C1 (ru) * 2008-07-11 2010-01-20 Виктор Геннадиевич Гузь Способ интенсификации добычи нефти и реанимации простаивающих нефтяных скважин путем электромагнитного резонансного воздействия на продуктивный пласт
GB2472080A (en) * 2009-07-24 2011-01-26 Wayne Rudd Stimulating a target material
CN202132019U (zh) * 2011-07-08 2012-02-01 中国石油化工股份有限公司 可调式变频共振电磁防蜡装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2191896C2 (ru) * 2000-04-13 2002-10-27 Дыбленко Валерий Петрович Способ обработки призабойной зоны пласта
RU2191889C1 (ru) * 2001-08-20 2002-10-27 Белоненко Владимир Николаевич Способ разработки месторождений углеводородов
RU2215126C2 (ru) * 2002-05-27 2003-10-27 Закрытое акционерное общество "ИНЕФ" Способ восстановления и поддержания продуктивности скважины
RU2444612C1 (ru) * 2010-06-16 2012-03-10 Роберт Ибрагимович Алимбеков Электромагнитный протектор скважинной установки электроцентробежного насоса

Also Published As

Publication number Publication date
EP2644822A2 (en) 2013-10-02
EP2644822B1 (en) 2016-04-06
FI20135802L (fi) 2014-02-02
RU2529689C2 (ru) 2014-09-27
RU2012133097A (ru) 2014-02-27
EP2644822A3 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2014021736A1 (ru) Способ электромагнитного воздействия на скважинное пространство при добыче углеводородного сырья
US9695682B2 (en) Use of ionized fluid in hydraulic fracturing
RU2432322C2 (ru) Способ снижения отложений в водно-нефтяной смеси трубопровода нефтяной скважины
US9745841B2 (en) Fracture clean-up by electro-osmosis
US8485251B2 (en) Electromagnetic based system and method for enhancing subsurface recovery of fluid within a permeable formation
EA007853B1 (ru) Жидкости для обработки скважин, содержащие хелатообразователи
US11220890B2 (en) Induced cavitation to prevent scaling on wellbore pumps
Taheri-Shakib et al. Application of ultrasonic as a novel technology for removal of inorganic scales (KCl) in hydrocarbon reservoirs: An experimental approach
EP3959286A2 (en) Forming mineral in fractures in a geological formation
WO2020223244A1 (en) Forming mineral in fractures in a geological formation
RU2231631C1 (ru) Способ разработки нефтяной залежи
CA3057428C (en) Nanosized particulates for downhole applications
Taheri-Shakib et al. The effect of ultrasonic wave on the removal of inorganic scales: NaCl and KCl
US11236599B2 (en) Methods of low-rate hydraulic fracturing treatments
US11873701B2 (en) Enhanced scale inhibitor squeeze treatment using a chemical additive
US20210071067A1 (en) Propping Open Hydraulic Fractures
RU2599893C1 (ru) Управляемый электромагнитный протектор скважинной установки электропогружного насоса
RU2136859C1 (ru) Способ разработки нефтяных месторождений
RU2281387C2 (ru) Способ воздействия на флюид нефтяных месторождений при добыче нефти
Alimbekova Electromagnetic Device for Preventing and Combating Operational Disturbances at Oil and Gas Fields
RU2777254C1 (ru) Способ разработки нефтяных месторождений
WO2015094165A1 (en) Compositions for treating subterranean formations
RU2193649C2 (ru) Способ разработки нефтяной залежи
US20230331598A1 (en) Removal of sulfate from seawater
RU2694329C1 (ru) Способ комплексного воздействия для ингибирования образования солеотложений на скважинном оборудовании и установка для его осуществления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205 DATED 28/07/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13825696

Country of ref document: EP

Kind code of ref document: A1