WO2014021425A1 - Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film - Google Patents

Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film Download PDF

Info

Publication number
WO2014021425A1
WO2014021425A1 PCT/JP2013/070894 JP2013070894W WO2014021425A1 WO 2014021425 A1 WO2014021425 A1 WO 2014021425A1 JP 2013070894 W JP2013070894 W JP 2013070894W WO 2014021425 A1 WO2014021425 A1 WO 2014021425A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laminate
biaxially stretched
stretched nylon
nylon film
Prior art date
Application number
PCT/JP2013/070894
Other languages
French (fr)
Japanese (ja)
Inventor
真男 高重
亮 西原
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Priority to JP2014528220A priority Critical patent/JPWO2014021425A1/en
Publication of WO2014021425A1 publication Critical patent/WO2014021425A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles

Definitions

  • the present invention particularly relates to a biaxially stretched nylon film, a laminate film, a laminate packaging material, a battery, and a method for producing a biaxially stretched nylon film that can be suitably used as a packaging material for cold forming.
  • Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging.
  • the laminate packaging material including the ONy film is used as a packaging material for cold molding that is superior in safety and flexibility in shape (drawing moldability) and can be reduced in thickness and weight compared to hot molding.
  • Such laminate packaging material including ONy film is suitably used for applications such as battery packaging, pharmaceutical packaging (PTP: Press through pack packaging, etc.), daily necessities (refillable packaging for liquid detergents, etc.), foods, etc. be able to.
  • the packaging material for cold molding is required to further improve the drawability (deep drawability) as the capacity of batteries and the like increases.
  • the impact strength measured by the puncture impact method defined in JIS P 8134 is 30000 J / m (30 KJ) as a packaging material including a heat resistant resin film.
  • the impact strength of the film is measured in detail, it is not described in detail, so it is not a problem in ordinary drawing, but it is not a problem. If the time conditions become severe, pinholes may be generated, so that it is not possible to squeeze deeply, and there is a restriction in increasing the internal capacity of a battery or the like. Further, higher drawability is required for pharmaceutical packaging applications.
  • the present invention provides a biaxially stretched nylon film, a laminate film, a laminate packaging material, a battery, and a method for producing a biaxially stretched nylon film that have pinhole resistance and have excellent deep drawability during cold forming.
  • the purpose is to provide.
  • cold molding refers to molding performed at room temperature without heating.
  • cold forming for example, using a cold forming machine used for forming aluminum foil or the like, the sheet material is pushed into the female mold with the male mold and pressed at a high speed.
  • plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
  • the present invention provides the following biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing a biaxially stretched nylon film. That is, the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and the average value in four directions of the tensile impact strength defined by JIS K7160 is 4800 KJ / m 2 or more. It is characterized by being. Note that the four directions are a molding extrusion direction (MD direction), a direction inclined by 45 ° from the MD direction, a vertical direction of the MD direction (TD direction), and a direction inclined by 135 ° from the MD direction. Say.
  • MD direction molding extrusion direction
  • TD direction vertical direction of the MD direction
  • 135 ° from the MD direction a direction inclined by 135 ° from the MD direction.
  • the ratio of the maximum value and the minimum value (maximum value / minimum value) in the four directions of the tensile impact strength is preferably 1.30 or less.
  • the minimum value in the four directions of the tensile impact strength is preferably 4500 KJ / m 2 or more.
  • the laminate film of the present invention is characterized in that the biaxially stretched nylon film is laminated.
  • the laminate film of the present invention is preferably used for cold forming.
  • the use of the laminate film of the present invention is not particularly limited, for example, it can be suitably used for a battery exterior material or a PTP packaging material.
  • the lamination mode of the laminate film is not particularly limited.
  • the biaxially stretched nylon film / aluminum layer / polypropylene layer and the polyethylene terephthalate layer / biaxial Examples include stretched nylon film / aluminum layer / polypropylene layer.
  • the lamination mode of the laminate film when used for a PTP packaging material, is not particularly limited, and examples thereof include the biaxially stretched nylon film / aluminum layer / polyvinyl chloride layer.
  • the laminate packaging material of the present invention is characterized by using the laminate film.
  • the battery of the present invention is characterized by using the laminate film as an exterior material.
  • the method for producing a biaxially stretched nylon film of the present invention is a method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film, and a raw film production process for forming a raw film from the raw material, In a tubular biaxial stretching method, a biaxial stretching process of biaxially stretching the raw film, and a heat fixing process of heat-treating the film after the biaxial stretching process by heat treatment. It is a feature.
  • a biaxially stretched nylon film a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having pinhole resistance and excellent deep drawability at the time of cold forming. be able to. Furthermore, the biaxially stretched nylon film of the present invention has good stretching stability and excellent film thickness accuracy.
  • the biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
  • Nylon 6, nylon 8, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used as the nylon resin as the raw material.
  • Nylon 6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
  • the chemical formula of Ny6 is shown in the following formula (1).
  • the number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less. If the number average molecular weight of the nylon resin is less than 15000, impact strength and tensile strength may be insufficient. If it exceeds 30000, a load in extrusion molding is excessively applied and it is difficult to obtain an appropriate extrusion amount. Efficiency may be reduced. In the present embodiment, it is necessary that the tensile impact strength defined by JIS K7160 satisfies the following conditions.
  • the average value in the four directions of the tensile impact strength of the biaxially stretched nylon film needs to be 4800 KJ / m 2 or more.
  • the four directions refer to a molding extrusion direction (MD direction), a direction inclined by 45 ° from the MD direction, a vertical direction of the MD direction (TD direction), and a direction inclined by 135 ° from the MD direction.
  • MD direction molding extrusion direction
  • TD direction vertical direction of the MD direction
  • 135 ° from the MD direction a direction inclined by 135 ° from the MD direction.
  • the average value in the four directions of the tensile impact strength more that is preferably 5000KJ / m 2 or more and 6000KJ / m 2 or more preferable.
  • the tensile impact strength can be measured according to the method described in JIS K7160.
  • the average value of the tensile impact strength in the four directions is within the above range, and the ratio of the maximum value and the minimum value in the four directions of the tensile impact strength (maximum value / minimum value) is 1.30 or less. preferable. This is because if the ratio between the maximum value and the minimum value in four directions (maximum value / minimum value) is less than 1.30, the deep drawability of the film may be insufficient.
  • the minimum value in the four directions of the tensile impact strength is preferably 4500 KJ / m 2 or more. This is because if the minimum value is less than 4500 KJ / m 2 , the deep drawability of the film may be insufficient.
  • Examples of means for bringing the tensile impact strength of the ONy film into the above-described range include adjusting the stretching ratio, stretching temperature, stretching speed, and heat setting temperature after stretching, during the production of the ONy film.
  • a draw ratio at the time of manufacture it can be suitably drawn, for example, from 2.8 times to 4.5 times, more preferably from 3.0 times to 4.0 times.
  • the difference between the draw ratio in the MD direction and the TD direction during production is, for example, a difference obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction (TD ⁇ MD), for example, 0.1 or more, more preferably It is 0.2 or more and 0.8 or less, and it can be adjusted particularly preferably in the range of 0.3 to 0.8.
  • the stretching speed at the time of manufacture for example, at 1.0 sec -1 or more 20.0Sec -1 or less, more preferably adjusted in 1.5 sec -1 or more 15.0Sec -1 or less.
  • the heat setting temperature after stretching is, for example, 150 ° C. or higher and 218 ° C. or lower, more preferably 160 ° C. or higher and 215 ° C. or lower.
  • the laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film.
  • other laminate base materials include an aluminum (Al) layer, a film including an aluminum layer, and a polypropylene (PP) -based or polyethylene (PE) -based seal layer (sealant layer).
  • the laminate film of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinyl chloride (PVC), polyvinylidene chloride resin (PVDC), polyvinyl chloride on at least one surface of the above ONy film.
  • a layer obtained by further laminating a layer (which may be a coating layer) such as a vinylidene copolymer resin, a lubricant, an antistatic agent, or a nitrified cotton amide resin may be used.
  • a layer which may be a coating layer
  • a layer such as a vinylidene copolymer resin, a lubricant, an antistatic agent, or a nitrified cotton amide resin
  • By laminating such a laminate substrate and coating layer it is possible to improve production efficiency and transport efficiency, and to improve functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, A laminate film to which processability and the like are added can be obtained.
  • stacking aspect of the said laminate film ONy / Al / PP, PET / ONy / Al / PP, ONy / Al / PVC is mentioned, for example.
  • a laminate film for PTP packaging material a laminate mode of ONy / Al / PVC is preferable.
  • a laminate film for a battery exterior material a laminate mode such as ONy / Al / PP and PET / ONy / Al / PP is preferable, and as a laminate film for in-vehicle battery, in particular, PET / ONy / Al / PP.
  • the lamination mode is preferable.
  • the laminate packaging material of this embodiment is comprised from the said laminate film.
  • a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming.
  • the above-described ONy film has excellent drawability, so that it is possible to suppress the breakage of the aluminum layer during cold deep drawing, etc. The generation of pinholes in can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
  • the laminate packaging material of the present embodiment preferably has a total thickness of the ONy film and other laminate base material of 200 ⁇ m or less. When the total thickness exceeds 200 ⁇ m, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
  • the thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the ONy film is less than 5 ⁇ m, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient.
  • the thickness of the ONy film exceeds 50 ⁇ m, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
  • the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching.
  • a first heat treatment device 20 that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set.
  • a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
  • the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
  • the tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air.
  • the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
  • the first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2.
  • the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
  • the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
  • the second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
  • the tension controller 50 includes guide rolls 51 ⁇ / b> A and 51 ⁇ / b> B and a tension roll 52.
  • the winding device 60 includes a guide roll 61 and a winding roll 62.
  • the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92.
  • the tubular molten resin is cooled by a water cooling ring 93.
  • the raw film 1 is molded by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93.
  • the cooled original film 1 is folded by the stabilizer 94.
  • the folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
  • the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11.
  • the introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12.
  • the film 2 after being bubble-stretched is folded by the guide plate 13.
  • the folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
  • the difference (TD ⁇ MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.1 or more, more preferably 0.2 or more and 0.8 or less. More preferably, it is 3 or more and 0.8 or less. If the value of TD-MD is less than the lower limit, the deep drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to decrease. In particular, when the value of TD-MD is 0.1 or less, the stretching stability is inferior and the thickness accuracy of the film tends to decrease. On the other hand, if the value of TD-MD exceeds the above upper limit, the deep drawability of the resulting film tends to be insufficient, and the stretching stability tends to be lowered.
  • the film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21.
  • the film 2 is preheated at a low temperature or lower and sent to the next separation step.
  • the heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
  • the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B.
  • film 2A, 2B is isolate
  • the incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
  • These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step.
  • these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
  • the overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
  • the heat treatment temperature in the second heat treatment (heat setting) is preferably 160 ° C. or higher and 215 ° C. or lower.
  • the film shrinkage rate tends to increase and the risk of delamination tends to increase.
  • the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases and the distortion of the film increases.
  • the density tends to be too high, and the degree of crystallinity tends to be too high, making the film difficult to deform.
  • the relaxation rate at this time is preferably 15% or less. A strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
  • the film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
  • the tubular method is adopted as the biaxial stretching method, but a tenter method may be used.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
  • the biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14.
  • the magnification during this stretching was 3.0 times in the MD direction and 3.3 times in the TD direction.
  • First heat treatment step and second heat treatment step Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
  • Windding process Next, as shown in FIG.
  • the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
  • a biaxially stretched nylon film was produced.
  • the thickness of the obtained biaxially stretched nylon film was 15 ⁇ m.
  • the tensile impact strength of the obtained biaxially stretched nylon film was measured.
  • the obtained results are shown in Table 1. (Production of laminate film)
  • the obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 ⁇ m was used as an intermediate substrate, and a CPP film having a thickness of 60 ⁇ m was used as a sealant film to obtain a laminate film.
  • the laminated film after dry lamination was aged at 40 ° C. for 3 days. The deep drawability of the obtained laminate film was evaluated.
  • the obtained results are shown in Table 1.
  • Examples 2 to 7, Comparative Examples 1 and 2 As Examples 2 to 7, biaxially stretched nylon films and laminate films were produced in the same manner as in Example 1 except that the production conditions (stretch ratio, heat setting temperature) were changed by the production method shown in Table 1. The tensile impact strength in four directions of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1. Further, the deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1. On the other hand, the biaxially stretched nylon film obtained by the production method shown in Table 1 was obtained as Comparative Examples 1 and 2, and the tensile impact strength of the biaxially stretched nylon film was measured in the same manner as in Example 1. The obtained results are shown in Table 1. In addition, a laminate film was prepared using the biaxially stretched nylon films of Comparative Examples 1 and 2, and the deep drawability was evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
  • the biaxially stretched nylon film of the present invention is, for example, an industrial field (such as a lithium battery packaging material mounted on an electric vehicle, a tablet-type terminal device, a smartphone, etc.), a pharmaceutical field (such as a PTP packaging material), and a daily necessities field. It can be suitably used as a packaging material that particularly requires pinhole resistance, such as a packaging material for a liquid detergent (such as a refill for liquid detergents) and a packaging material in the field of food.
  • the laminate packaging material of the present invention can be suitably used as a packaging material for cold molding that requires particularly excellent deep drawability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 The biaxially-oriented nylon film (3) of the present invention is a biaxially-oriented nylon film (3) having nylon resin as a starting material, wherein the average tensile shock elasticity in four directions as stipulated by JIS K7160 is at least 4800KJ/m2. The ratio of the maximum to minimum tensile shock elasticity (maximum/minimum) does not exceed 1.30.

Description

二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法Biaxially stretched nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially stretched nylon film
 本発明は、特に、冷間成型用の包装材料として好適に用いることができる二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法に関する。 The present invention particularly relates to a biaxially stretched nylon film, a laminate film, a laminate packaging material, a battery, and a method for producing a biaxially stretched nylon film that can be suitably used as a packaging material for cold forming.
 二軸延伸ナイロンフィルム(以後、ONyフィルムとも言う)は、強度、耐衝撃性、耐ピンホール性などに優れるため、重量物包装や水物包装など大きな強度負荷が掛かる用途に多く用いられている。
 そして、このONyフィルムを含むラミネート包材を、熱間成型に比して、安全性や形状自由度(絞り成型性)に優れ、薄肉化や軽量化が図れる冷間成型用の包装材料として用いることが検討されている(例えば、特許文献1)。
 このようなONyフィルムを含むラミネート包材は電池包装用、医薬包装用(PTP:Press through pack包材など)、日用品用(液体洗剤用詰め替え包材など)、食品用などの用途に好適に用いることができる。
Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. .
The laminate packaging material including the ONy film is used as a packaging material for cold molding that is superior in safety and flexibility in shape (drawing moldability) and can be reduced in thickness and weight compared to hot molding. (For example, Patent Document 1).
Such laminate packaging material including ONy film is suitably used for applications such as battery packaging, pharmaceutical packaging (PTP: Press through pack packaging, etc.), daily necessities (refillable packaging for liquid detergents, etc.), foods, etc. be able to.
特開2005-22336号公報JP 2005-22336 A
 一方、冷間成型用の包装材料は、電池などの大容量化に伴い、更なる絞り成型性の向上(深絞り成型性)が要求されるようになっている。
 しかしながら、上記特許文献1に記載の二軸延伸ナイロンフィルムでは、耐熱性樹脂フィルムを含む包装用材料として、JIS P 8134で規定されたパンクチャー衝撃方法で測定された衝撃強度を30000J/m(30KJ/m)以上とすることが規定されてはいるが、フィルムのどの部分の衝撃強度を測定しているのか詳細に記載されていないことから、通常の絞り成型では問題にはならないものの、絞り成型時の条件が厳しくなると、ピンホールが発生するおそれがあるため、深く絞ることができず、電池などの内容量を増加させることに制約があった。また、医薬包装用途ではより高い絞り成型性が要求される。
On the other hand, the packaging material for cold molding is required to further improve the drawability (deep drawability) as the capacity of batteries and the like increases.
However, in the biaxially stretched nylon film described in Patent Document 1, the impact strength measured by the puncture impact method defined in JIS P 8134 is 30000 J / m (30 KJ) as a packaging material including a heat resistant resin film. Although it is specified that the impact strength of the film is measured in detail, it is not described in detail, so it is not a problem in ordinary drawing, but it is not a problem. If the time conditions become severe, pinholes may be generated, so that it is not possible to squeeze deeply, and there is a restriction in increasing the internal capacity of a battery or the like. Further, higher drawability is required for pharmaceutical packaging applications.
 そこで、本発明は、耐ピンホール性を備えつつ、冷間成型時に優れた深絞り成型性を有する二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材、電池および二軸延伸ナイロンフィルムの製造方法を提供することを目的とする。 Therefore, the present invention provides a biaxially stretched nylon film, a laminate film, a laminate packaging material, a battery, and a method for producing a biaxially stretched nylon film that have pinhole resistance and have excellent deep drawability during cold forming. The purpose is to provide.
 本発明において、冷間成型とは、加熱せず常温下で行う成型をいう。かかる冷間成型の一手段として、例えば、アルミニウム箔などの成型に用いられる冷間成型機を用いて、シート材料を雌金型に対して雄金型で押し込み、高速でプレスすることが挙げられる。かかる冷間成型によると、加熱することなく型付け、曲げ、剪断、絞りなどの塑性変形を生じさせることができる。 In the present invention, cold molding refers to molding performed at room temperature without heating. As one means of such cold forming, for example, using a cold forming machine used for forming aluminum foil or the like, the sheet material is pushed into the female mold with the male mold and pressed at a high speed. . According to such cold forming, plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
 前記課題を解決すべく、本発明は、以下のような二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供するものである。
 すなわち、本発明の二軸延伸ナイロンフィルムは、ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、JIS K7160で規定された引張衝撃強度の4方向における平均値が、4800KJ/m以上であることを特徴とするものである。なお、上記4方向とは、成形の押出方向(MD方向)、前記MD方向から45°傾斜した方向、前記MD方向の垂直方向(TD方向)、および、前記MD方向から135°傾斜した方向をいう。
 本発明の二軸延伸ナイロンフィルムにおいては、前記引張衝撃強度の4方向における最大値と最小値の比率(最大値/最小値)が、1.30以下であることが好ましい。
 本発明の二軸延伸ナイロンフィルムにおいては、前記引張衝撃強度の4方向における最小値が、4500KJ/m以上であることが好ましい。
In order to solve the above-mentioned problems, the present invention provides the following biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing a biaxially stretched nylon film.
That is, the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and the average value in four directions of the tensile impact strength defined by JIS K7160 is 4800 KJ / m 2 or more. It is characterized by being. Note that the four directions are a molding extrusion direction (MD direction), a direction inclined by 45 ° from the MD direction, a vertical direction of the MD direction (TD direction), and a direction inclined by 135 ° from the MD direction. Say.
In the biaxially stretched nylon film of the present invention, the ratio of the maximum value and the minimum value (maximum value / minimum value) in the four directions of the tensile impact strength is preferably 1.30 or less.
In the biaxially stretched nylon film of the present invention, the minimum value in the four directions of the tensile impact strength is preferably 4500 KJ / m 2 or more.
 本発明のラミネートフィルムは、上記二軸延伸ナイロンフィルムが積層されてなることを特徴とするものである。
 本発明のラミネートフィルムにおいては、冷間成型用であることが好ましい。
 本発明のラミネートフィルムの用途は特に限定されないが、例えば、電池の外装材やPTP包材に好適に用いることができる。
 本発明のラミネートフィルムを電池の外装材に用いる場合、当該ラミネートフィルムの積層態様は特に限定されないが、例えば、前記二軸延伸ナイロンフィルム/アルミニウム層/ポリプロピレン層、および、ポリエチレンテレフタレート層/前記二軸延伸ナイロンフィルム/アルミニウム層/ポリプロピレン層が挙げられる。
 本発明のラミネートフィルムにおいては、PTP包材に用いる場合、当該ラミネートフィルムの積層態様は特に限定されないが、前記二軸延伸ナイロンフィルム/アルミニウム層/ポリ塩化ビニル層が挙げられる。
 本発明のラミネート包材は、前記ラミネートフィルムを用いたことを特徴とするものである。
 本発明の電池は、前記ラミネートフィルムを外装材として用いたことを特徴とするものである。
The laminate film of the present invention is characterized in that the biaxially stretched nylon film is laminated.
The laminate film of the present invention is preferably used for cold forming.
Although the use of the laminate film of the present invention is not particularly limited, for example, it can be suitably used for a battery exterior material or a PTP packaging material.
When the laminate film of the present invention is used as a battery exterior material, the lamination mode of the laminate film is not particularly limited. For example, the biaxially stretched nylon film / aluminum layer / polypropylene layer and the polyethylene terephthalate layer / biaxial Examples include stretched nylon film / aluminum layer / polypropylene layer.
In the laminate film of the present invention, when used for a PTP packaging material, the lamination mode of the laminate film is not particularly limited, and examples thereof include the biaxially stretched nylon film / aluminum layer / polyvinyl chloride layer.
The laminate packaging material of the present invention is characterized by using the laminate film.
The battery of the present invention is characterized by using the laminate film as an exterior material.
 本発明の二軸延伸ナイロンフィルムの製造方法は、前記二軸延伸ナイロンフィルムを製造する二軸延伸ナイロンフィルムの製造方法であって、前記原料から原反フィルムを成形する原反フィルム製造工程と、チューブラー式二軸延伸法にて、前記原反フィルムを二軸延伸する二軸延伸工程と、前記二軸延伸工程後のフィルムに熱処理を施して熱固定する熱固定工程と、を備えることを特徴とするものである。 The method for producing a biaxially stretched nylon film of the present invention is a method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film, and a raw film production process for forming a raw film from the raw material, In a tubular biaxial stretching method, a biaxial stretching process of biaxially stretching the raw film, and a heat fixing process of heat-treating the film after the biaxial stretching process by heat treatment. It is a feature.
 本発明によれば、耐ピンホール性を備えつつ、冷間成型時に優れた深絞り成型性を有する二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することができる。さらに、本発明の二軸延伸ナイロンフィルムは、延伸安定性も良好で、フィルム厚み精度が優れている。 According to the present invention, there are provided a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having pinhole resistance and excellent deep drawability at the time of cold forming. be able to. Furthermore, the biaxially stretched nylon film of the present invention has good stretching stability and excellent film thickness accuracy.
本発明の二軸延伸ナイロンフィルムを製造する装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus which manufactures the biaxially stretched nylon film of this invention.
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 〔二軸延伸ナイロンフィルムの構成〕
 本実施形態の二軸延伸ナイロンフィルム(ONyフィルム)は、ナイロン樹脂を原料とする原反フィルムを二軸延伸し、所定の温度で熱固定して形成したものである。
 原料であるナイロン樹脂としては、ナイロン6、ナイロン8、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12などを使用することができる。物性や溶融特性、取り扱いやすさの点からはナイロン6(以後、Ny6ともいう)を用いることが好ましい。
 ここで、前記Ny6の化学式を下記式(1)に示す。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[Configuration of biaxially stretched nylon film]
The biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
Nylon 6, nylon 8, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used as the nylon resin as the raw material. Nylon 6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
Here, the chemical formula of Ny6 is shown in the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 原料であるナイロン樹脂の数平均分子量は、15000以上30000以下が好ましく、22000以上24000以下であることがより好ましい。
 ナイロン樹脂の数平均分子量が15000未満であると、衝撃強度や引張強度が不十分となるおそれがあり、30000を超えると、押出成形における負荷がかかりすぎて適切な押出量が得られにくく、製造効率が低下するおそれがある。
 本実施形態においては、JIS K7160で規定された引張衝撃強度が下記条件を満たすことが必要である。
The number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
If the number average molecular weight of the nylon resin is less than 15000, impact strength and tensile strength may be insufficient. If it exceeds 30000, a load in extrusion molding is excessively applied and it is difficult to obtain an appropriate extrusion amount. Efficiency may be reduced.
In the present embodiment, it is necessary that the tensile impact strength defined by JIS K7160 satisfies the following conditions.
 前記二軸延伸ナイロンフィルムの引張衝撃強度の4方向における平均値が、4800KJ/m以上であることが必要である。ここで4方向とは、成形の押出方向(MD方向)、MD方向から45°傾斜した方向、MD方向の垂直方向(TD方向)、および、MD方向から135°傾斜した方向をいう。
 上記4方向における平均値を4800KJ/m以上とすることで、フィルムの強度及び深絞り成型性が良好となる。
 上記4方向における平均値が、4800KJ/m未満では、フィルムの深絞り成型性が不足する。また、冷間成型時に優れた深絞り成型性を得るという観点から、引張衝撃強度の4方向における平均値は、5000KJ/m以上であることが好ましく、6000KJ/m以上であることがより好ましい。
 なお、引張衝撃強度は、JIS K7160に記載の方法に準拠して測定できる。
The average value in the four directions of the tensile impact strength of the biaxially stretched nylon film needs to be 4800 KJ / m 2 or more. Here, the four directions refer to a molding extrusion direction (MD direction), a direction inclined by 45 ° from the MD direction, a vertical direction of the MD direction (TD direction), and a direction inclined by 135 ° from the MD direction.
By setting the average value in the four directions to 4800 KJ / m 2 or more, the strength and deep drawability of the film are improved.
When the average value in the four directions is less than 4800 KJ / m 2 , the deep drawability of the film is insufficient. From the viewpoint of obtaining excellent deep drawing formability during cold molding, the average value in the four directions of the tensile impact strength, more that is preferably 5000KJ / m 2 or more and 6000KJ / m 2 or more preferable.
The tensile impact strength can be measured according to the method described in JIS K7160.
 また、引張衝撃強度の4方向における平均値を上述の範囲にするとともに、引張衝撃強度の4方向における最大値と最小値の比率(最大値/最小値)が、1.30以下であることが好ましい。4方向における最大値と最小値の比率(最大値/最小値)が、1.30未満では、フィルムの深絞り成型性が不足するおそれがあるからである。 Further, the average value of the tensile impact strength in the four directions is within the above range, and the ratio of the maximum value and the minimum value in the four directions of the tensile impact strength (maximum value / minimum value) is 1.30 or less. preferable. This is because if the ratio between the maximum value and the minimum value in four directions (maximum value / minimum value) is less than 1.30, the deep drawability of the film may be insufficient.
 ここで、引張衝撃強度の4方向における最小値は、4500KJ/m以上であることが好ましい。最小値が4500KJ/m未満では、フィルムの深絞り成型性が不足するおそれがあるからである。 Here, the minimum value in the four directions of the tensile impact strength is preferably 4500 KJ / m 2 or more. This is because if the minimum value is less than 4500 KJ / m 2 , the deep drawability of the film may be insufficient.
 なお、ONyフィルムの引張衝撃強度を上述した範囲にする手段としては、ONyフィルム製造時の延伸倍率や延伸温度、延伸速度、延伸後の熱固定温度を調整することなどが挙げられる。
 製造時の延伸倍率としては、例えば、2.8倍以上4.5倍以下、より好ましくは3.0倍以上4.0倍以下で好適に延伸できる。
 また、製造時のMD方向およびTD方向における延伸倍率の差を設けてもよい。製造時のMD方向およびTD方向における延伸倍率の差としては、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD-MD)が、例えば、0.1以上であり、より好ましくは0.2以上0.8以下であり、特に好ましくは0.3以上0.8以下の範囲で調整できる。
 製造時の延伸速度としては、例えば、1.0sec-1以上20.0sec-1以下であり、より好ましくは1.5sec-1以上15.0sec-1以下で調整できる。
 また、延伸後の熱固定温度としては、例えば、150℃以上218℃以下であり、より好ましくは160℃以上215℃以下で調整できる。
Examples of means for bringing the tensile impact strength of the ONy film into the above-described range include adjusting the stretching ratio, stretching temperature, stretching speed, and heat setting temperature after stretching, during the production of the ONy film.
As a draw ratio at the time of manufacture, it can be suitably drawn, for example, from 2.8 times to 4.5 times, more preferably from 3.0 times to 4.0 times.
Moreover, you may provide the difference of the draw ratio in MD direction at the time of manufacture, and TD direction. The difference between the draw ratio in the MD direction and the TD direction during production is, for example, a difference obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction (TD−MD), for example, 0.1 or more, more preferably It is 0.2 or more and 0.8 or less, and it can be adjusted particularly preferably in the range of 0.3 to 0.8.
The stretching speed at the time of manufacture, for example, at 1.0 sec -1 or more 20.0Sec -1 or less, more preferably adjusted in 1.5 sec -1 or more 15.0Sec -1 or less.
The heat setting temperature after stretching is, for example, 150 ° C. or higher and 218 ° C. or lower, more preferably 160 ° C. or higher and 215 ° C. or lower.
〔ラミネートフィルムの構成〕
 本実施形態のラミネートフィルムは、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム(Al)層やアルミニウム層を含むフィルムや、ポリプロピレン(PP)系やポリエチレン(PE)系のシール層(シーラント層)などが挙げられる。
 また、本実施形態のラミネートフィルムは、上記したONyフィルムの少なくとも一方の面にポリエチレンテレフタレート(PET)や、ポリエステル樹脂や、ポリ塩化ビニル(PVC)や、ポリ塩化ビニリデン樹脂(PVDC)や、ポリ塩化ビニリデン共重合体樹脂や、滑剤や、帯電防止剤や、硝化綿アミド樹脂などの層(コーティング層であってもよい)をさらに積層したものでもよい。
 このようなラミネート基材やコーティング層などが積層されることで、製造効率の向上や搬送効率の向上を図ることができるとともに、機能性(耐薬品性、電気絶縁性、防湿性、耐寒性、加工性など)が付加されたラミネートフィルムを得ることができる。
 前記ラミネートフィルムの積層態様としては、例えば、ONy/Al/PP、PET/ONy/Al/PP、ONy/Al/PVCが挙げられる。これらの中でも、PTP包材用のラミネートフィルムとしては、ONy/Al/PVCの積層態様が好ましい。また、電池の外装材用のラミネートフィルムとしては、ONy/Al/PP、PET/ONy/Al/PPなどの積層態様が好ましく、特に車載電池用のラミネートフィルムとしては、PET/ONy/Al/PPの積層態様が好ましい。
[Composition of laminate film]
The laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, examples of other laminate base materials include an aluminum (Al) layer, a film including an aluminum layer, and a polypropylene (PP) -based or polyethylene (PE) -based seal layer (sealant layer).
In addition, the laminate film of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinyl chloride (PVC), polyvinylidene chloride resin (PVDC), polyvinyl chloride on at least one surface of the above ONy film. A layer obtained by further laminating a layer (which may be a coating layer) such as a vinylidene copolymer resin, a lubricant, an antistatic agent, or a nitrified cotton amide resin may be used.
By laminating such a laminate substrate and coating layer, it is possible to improve production efficiency and transport efficiency, and to improve functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, A laminate film to which processability and the like are added can be obtained.
As a lamination | stacking aspect of the said laminate film, ONy / Al / PP, PET / ONy / Al / PP, ONy / Al / PVC is mentioned, for example. Among these, as a laminate film for PTP packaging material, a laminate mode of ONy / Al / PVC is preferable. In addition, as a laminate film for a battery exterior material, a laminate mode such as ONy / Al / PP and PET / ONy / Al / PP is preferable, and as a laminate film for in-vehicle battery, in particular, PET / ONy / Al / PP. The lamination mode is preferable.
 〔ラミネート包材の構成〕
 本実施形態のラミネート包材は、上記ラミネートフィルムから構成されている。一般に、アルミニウム層を含むラミネート包材は、冷間成型の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成型に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた絞り成型性を有するため、冷間での深絞り成型などの際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成型品が得られる。
[Composition of laminate packaging material]
The laminate packaging material of this embodiment is comprised from the said laminate film. In general, a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming. In this respect, according to the laminate packaging material of the present embodiment, the above-described ONy film has excellent drawability, so that it is possible to suppress the breakage of the aluminum layer during cold deep drawing, etc. The generation of pinholes in can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
 本実施形態のラミネート包材は、ONyフィルムと他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超えると、冷間成型によるコーナー部の成型が困難となり、シャープな形状の成型品が得られにくい傾向がある。 The laminate packaging material of the present embodiment preferably has a total thickness of the ONy film and other laminate base material of 200 μm or less. When the total thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
 本実施形態のラミネート包材におけるONyフィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。ここで、ONyフィルムの厚さが5μm未満では、ラミネート包材の耐衝撃性が低くなり、冷間成型性が不十分となる傾向にある。一方、ONyフィルムの厚さが50μmを超えると、ラミネート包材の耐衝撃性の更なる向上効果が得られにくくなり、包材総厚が増加するばかりで好ましくない。 The thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm or less. Here, if the thickness of the ONy film is less than 5 μm, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient. On the other hand, when the thickness of the ONy film exceeds 50 μm, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
 〔二軸延伸ナイロンフィルムの製造装置〕
 次に、本実施形態の二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
 先ず、本実施形態の二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
 フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60とを備えている。
[Production equipment for biaxially stretched nylon film]
Next, a method for producing the biaxially stretched nylon film of the present embodiment will be described based on the drawings.
First, an apparatus for producing the biaxially stretched nylon film of this embodiment will be described with an example.
As shown in FIG. 1, the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching. A first heat treatment device 20 (preheating furnace) that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set. And a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
 原反製造装置90は、図1に示すように、押出機91と、サーキュラーダイス92と、水冷リング93と、安定板94と、ピンチロール95とを備えている。
 チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
 第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
 分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A~34Cとを備えている。また、トリミング装置32は、ブレード321を有している。
As shown in FIG. 1, the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
The tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air. As shown in FIG. 1, the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
The first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2. As shown in FIG. 1, the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
As shown in FIG. 1, the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
 第二熱処理装置40は、図1に示すように、テンター41と、加熱炉42とを備えている。
 張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
 巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。
The second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
As shown in FIG. 1, the tension controller 50 includes guide rolls 51 </ b> A and 51 </ b> B and a tension roll 52.
As shown in FIG. 1, the winding device 60 includes a guide roll 61 and a winding roll 62.
 〔二軸延伸ナイロンフィルムの製造方法〕
 次に、このフィルム製造装置100を用いて二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。
[Production method of biaxially stretched nylon film]
Next, each process which manufactures a biaxially-stretched nylon film using this film manufacturing apparatus 100 is demonstrated in detail.
 (原反フィルム製造工程)
 原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成型される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。
(Raw film production process)
As shown in FIG. 1, the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92. The tubular molten resin is cooled by a water cooling ring 93. The raw film 1 is molded by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93. The cooled original film 1 is folded by the stabilizer 94. The folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
 (二軸延伸工程)
 原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。
(Biaxial stretching process)
As shown in FIG. 1, the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11. The introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12. Thereafter, the film 2 after being bubble-stretched is folded by the guide plate 13. The folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
 この際、MD方向およびTD方向の延伸倍率をそれぞれ2.8倍以上とすることで、衝撃強度が向上することが期待できる。
 また、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD-MD)が、0.1以上であることが好ましく、0.2以上0.8以下であることがより好ましく、0.3以上0.8以下であることが更により好ましい。TD-MDの値が前記下限未満では、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、フィルムの厚み精度が低下する傾向にある。また、特に、TD-MDの値が0.1以下の場合には、延伸安定性が劣るとともに、フィルムの厚み精度が低下する傾向にある。一方、TD-MDの値が前記上限を超えると、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、延伸安定性が低下する傾向にある。
At this time, it can be expected that the impact strength is improved by setting the draw ratio in the MD direction and the TD direction to 2.8 times or more, respectively.
Further, the difference (TD−MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.1 or more, more preferably 0.2 or more and 0.8 or less. More preferably, it is 3 or more and 0.8 or less. If the value of TD-MD is less than the lower limit, the deep drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to decrease. In particular, when the value of TD-MD is 0.1 or less, the stretching stability is inferior and the thickness accuracy of the film tends to decrease. On the other hand, if the value of TD-MD exceeds the above upper limit, the deep drawability of the resulting film tends to be insufficient, and the stretching stability tends to be lowered.
 (第一熱処理工程)
 二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
 この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
 この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。
(First heat treatment process)
The film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21. The film 2 is preheated at a low temperature or lower and sent to the next separation step.
The heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
By this first heat treatment step, the crystallinity of the film 2 is increased, and the slipping property between the overlapping films is improved.
 (分離工程)
 ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
 これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。
(Separation process)
As shown in FIG. 1, the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B. And film 2A, 2B is isolate | separated, interposing air between film 2A, 2B by a pair of separation roll 33A, 33B located up and down apart. The incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step. In addition, these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
 (第二熱処理工程(熱固定工程))
 重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
 この第二熱処理(熱固定)における熱処理温度は、160℃以上215℃以下であることが好ましい。熱処理温度が前記下限未満では、フィルム収縮率が大きくなり、デラミが発生する危険性が高まる傾向にあり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増し、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる傾向にある。
 また、このときの弛緩率は、15%以下であることが好ましい。
 なお、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。
(Second heat treatment process (heat setting process))
The overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
The heat treatment temperature in the second heat treatment (heat setting) is preferably 160 ° C. or higher and 215 ° C. or lower. If the heat treatment temperature is less than the lower limit, the film shrinkage rate tends to increase and the risk of delamination tends to increase.On the other hand, if the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases and the distortion of the film increases. Also, the density tends to be too high, and the degree of crystallinity tends to be too high, making the film difficult to deform.
In addition, the relaxation rate at this time is preferably 15% or less.
A strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
 (巻取工程)
 第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。
(Winding process)
The film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
 〔実施形態の変形〕
 なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。
[Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the object and effect. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. In addition, the specific structure and shape in carrying out the present invention may be used as other structures and shapes within the scope of achieving the object and effect of the present invention. The present invention is not limited to the above-described embodiments, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.
 例えば、本実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式であってもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。 For example, in this embodiment, the tubular method is adopted as the biaxial stretching method, but a tenter method may be used. Furthermore, the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
 次に、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、各例における特性(二軸延伸ナイロンフィルムの引張衝撃強度およびラミネートフィルムの深絞り成型性)は以下のような方法で評価した。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. The properties in each example (tensile impact strength of the biaxially stretched nylon film and deep drawability of the laminate film) were evaluated by the following methods.
(i)引張衝撃強度
 二軸延伸ナイロンフィルムから、長手方向がMD方向の向きとなるように幅10mm×長さ50mmの切片を切り出した。同様に、MD方向から45°傾斜した方向、TD方向、および、MD方向から135°傾斜した方向の向きとなるように上記切片を切り出し、4方向についての試験片を用意した。
 JIS K7160に記載の方法に準拠して、二軸延伸ナイロンフィルムの引張衝撃強度を、東洋精機社製テンサイル衝撃試験機を用いて測定した。
(ii)深絞り成型性
 ラミネートフィルムを裁断して、120×80mmの短冊片を作製してサンプルとした。33×55mmの矩形状の金型を用い、0.1MPaの面圧で押えて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)した。そして、アルミニウム箔にピンホールが10枚のサンプルのいずれにも発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。なお、ピンホールの確認は透過光を目視で確認した。
A:限界成型深さが7mm以上
B:限界成型深さが5mm以上7mm未満
C:限界成型深さが5mm未満
(I) Tensile impact strength A section having a width of 10 mm and a length of 50 mm was cut out from the biaxially stretched nylon film so that the longitudinal direction was in the MD direction. Similarly, the section was cut out so as to be oriented in a direction inclined by 45 ° from the MD direction, a TD direction, and a direction inclined by 135 ° from the MD direction, and test pieces in four directions were prepared.
Based on the method described in JIS K7160, the tensile impact strength of the biaxially stretched nylon film was measured using a Tensil impact tester manufactured by Toyo Seiki Co., Ltd.
(Ii) Deep-drawing moldability The laminate film was cut to prepare a 120 × 80 mm strip piece as a sample. Using a 33 x 55 mm rectangular mold, press it with a surface pressure of 0.1 MPa, change the molding depth from 0.5 mm to 0.5 mm, and cold mold each 10 samples. (One-stage pull-in molding). The molding depth at which no pinhole was generated in any of the 10 samples in the aluminum foil was taken as the limit molding depth, and the molding depth was shown as an evaluation value. In addition, confirmation of the pinhole confirmed the transmitted light visually.
A: Limit molding depth is 7 mm or more B: Limit molding depth is 5 mm or more and less than 7 mm C: Limit molding depth is less than 5 mm
〔実施例1〕
(原反フィルム製造工程)
 図1に示すように、Ny6ペレットを押出機91中で、275℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
 Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
 次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱するとともに、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.3倍とした。
(第一熱処理工程および第二熱処理工程)
 次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度210℃にて熱処理を施し、熱固定した。
(巻取工程)
 次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
 得られた二軸延伸ナイロンフィルムの引張衝撃強度を測定した。得られた結果を表1に示す。
(ラミネートフィルムの作製)
 得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
 得られたラミネートフィルムの深絞り成型性を評価した。得られた結果を表1に示す。
[Example 1]
(Raw film production process)
As shown in FIG. 1, after Ny6 pellets were melt-kneaded at 275 ° C. in an extruder 91, the melt was extruded as a tube-like film from a circular die 92, and then rapidly cooled with water (15 ° C.). Film 1 was produced.
What was used as Ny6 is Ube Industries, Ltd. nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5].
(Biaxial stretching process)
Next, as shown in FIG. 1, the raw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while gas is being injected therein, and is blown to the starting point of the drawing to create bubbles. The biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14. The magnification during this stretching was 3.0 times in the MD direction and 3.3 times in the TD direction.
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
(Winding process)
Next, as shown in FIG. 1, the film 3 heat-set in the second heat treatment step is wound as two films 3 </ b> A and 3 </ b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50. A biaxially stretched nylon film was produced. The thickness of the obtained biaxially stretched nylon film was 15 μm.
The tensile impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1.
(Production of laminate film)
The obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 μm was used as an intermediate substrate, and a CPP film having a thickness of 60 μm was used as a sealant film to obtain a laminate film. The laminated film after dry lamination was aged at 40 ° C. for 3 days.
The deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
〔実施例2~7、比較例1,2〕
 実施例2~7として、表1に示す製造方法で製造条件(延伸倍率、熱固定温度)を変更した以外は実施例1と同様にして、二軸延伸ナイロンフィルムおよびラミネートフィルムを製造した。
 得られた二軸延伸ナイロンフィルムの4方向における引張衝撃強度を測定した。得られた結果を表1に示す。また、得られたラミネートフィルムの深絞り成型性を評価した。得られた結果を表1に示す。
 一方、比較例1,2として、表1に示す製造方法で得られた二軸延伸ナイロンフィルムを入手し、実施例1と同様に、二軸延伸ナイロンフィルムの引張衝撃強度を測定した。得られた結果を表1に示す。また、比較例1,2の二軸延伸ナイロンフィルムを用いてラミネートフィルムを作製し、実施例1と同様に、深絞り成型性を評価した。得られた結果を表1に示す。
[Examples 2 to 7, Comparative Examples 1 and 2]
As Examples 2 to 7, biaxially stretched nylon films and laminate films were produced in the same manner as in Example 1 except that the production conditions (stretch ratio, heat setting temperature) were changed by the production method shown in Table 1.
The tensile impact strength in four directions of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1. Further, the deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
On the other hand, the biaxially stretched nylon film obtained by the production method shown in Table 1 was obtained as Comparative Examples 1 and 2, and the tensile impact strength of the biaxially stretched nylon film was measured in the same manner as in Example 1. The obtained results are shown in Table 1. In addition, a laminate film was prepared using the biaxially stretched nylon films of Comparative Examples 1 and 2, and the deep drawability was evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果からも明らかなように、二軸延伸ナイロンフィルムの4方向における引張衝撃強度が前記条件を満たす場合(実施例1~7)には、冷間成型時に良好な深絞り成型性を有することが確認された。また、これらの二軸延伸ナイロンフィルムは、延伸安定性も良好で、フィルムの厚み精度が優れていることが確認された。特に、二軸延伸ナイロンフィルムの4方向における最大値と最小値の比率(最大値/最小値)が1.30以下である場合(実施例1~6)では、当該比率が1.30を超える場合(実施例7)と比べて、より良好な深絞り成型性を有することが確認された。
 一方、二軸延伸ナイロンフィルムの4方向における引張衝撃強度が前記条件を満たさない場合(比較例1,2)では、冷間成型時に良好な深絞り成型性が不十分であることが確認された。
As is apparent from the results shown in Table 1, when the tensile impact strength in four directions of the biaxially stretched nylon film satisfies the above conditions (Examples 1 to 7), good deep drawability during cold forming It was confirmed to have Moreover, it was confirmed that these biaxially stretched nylon films have good stretching stability and excellent film thickness accuracy. In particular, when the ratio between the maximum value and the minimum value (maximum value / minimum value) in four directions of the biaxially stretched nylon film is 1.30 or less (Examples 1 to 6), the ratio exceeds 1.30. Compared to the case (Example 7), it was confirmed to have better deep drawing moldability.
On the other hand, when the tensile impact strength in the four directions of the biaxially stretched nylon film did not satisfy the above conditions (Comparative Examples 1 and 2), it was confirmed that good deep drawability was insufficient during cold forming. .
 本発明の二軸延伸ナイロンフィルムは、例えば工業用分野(電気自動車、タブレット型端末機器、スマートフォンなどに搭載されるリチウム電池用包材など)、医薬用分野(PTP包材など)、日用品用分野(液体洗剤用詰め替え包材など)、および食品用分野の包装材料など、耐ピンホール特性が特に必要とされる包装材料として好適に用いることができる。本発明のラミネート包材は、特に優れた深絞り成型性が要求される冷間成型用包材として好適に用いることができる。 The biaxially stretched nylon film of the present invention is, for example, an industrial field (such as a lithium battery packaging material mounted on an electric vehicle, a tablet-type terminal device, a smartphone, etc.), a pharmaceutical field (such as a PTP packaging material), and a daily necessities field. It can be suitably used as a packaging material that particularly requires pinhole resistance, such as a packaging material for a liquid detergent (such as a refill for liquid detergents) and a packaging material in the field of food. The laminate packaging material of the present invention can be suitably used as a packaging material for cold molding that requires particularly excellent deep drawability.
  3,3A,3B…二軸延伸ナイロンフィルム 3, 3A, 3B ... Biaxially stretched nylon film

Claims (10)

  1.  ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、
     JIS K7160で規定された引張衝撃強度の4方向における平均値が、4800KJ/m以上である
     ことを特徴とする二軸延伸ナイロンフィルム。
     なお、上記4方向とは、成形の押出方向(MD方向)、前記MD方向から45°傾斜した方向、前記MD方向の垂直方向(TD方向)、および、前記MD方向から135°傾斜した方向をいう。
    A biaxially stretched nylon film made from nylon resin,
    A biaxially stretched nylon film characterized in that an average value in four directions of tensile impact strength defined by JIS K7160 is 4800 KJ / m 2 or more.
    Note that the four directions are a molding extrusion direction (MD direction), a direction inclined by 45 ° from the MD direction, a vertical direction of the MD direction (TD direction), and a direction inclined by 135 ° from the MD direction. Say.
  2.  請求項1に記載の二軸延伸ナイロンフィルムにおいて、
     前記引張衝撃強度の4方向における最大値と最小値の比率(最大値/最小値)が1.30以下である
     ことを特徴とする二軸延伸ナイロンフィルム。
    In the biaxially stretched nylon film according to claim 1,
    The ratio of the maximum value and the minimum value (maximum value / minimum value) in the four directions of the tensile impact strength is 1.30 or less.
  3.  請求項1または請求項2に記載の二軸延伸ナイロンフィルムにおいて、
     前記引張衝撃強度の4方向における最小値が、4500KJ/m以上である
     ことを特徴とする二軸延伸ナイロンフィルム。
    In the biaxially stretched nylon film according to claim 1 or 2,
    The minimum value in the four directions of the tensile impact strength is 4500 KJ / m 2 or more.
  4.  請求項1から請求項3のいずれか一項に記載の二軸延伸ナイロンフィルムが積層されてなることを特徴とするラミネートフィルム。 A laminate film comprising the biaxially stretched nylon film according to any one of claims 1 to 3 laminated.
  5.  請求項4に記載のラミネートフィルムにおいて、
     冷間成型用であることを特徴とするラミネートフィルム。
    The laminate film according to claim 4,
    A laminate film characterized by being for cold forming.
  6.  請求項4または請求項5に記載のラミネートフィルムにおいて、
     当該ラミネートフィルムの積層態様が、
    前記二軸延伸ナイロンフィルム/アルミニウム層/ポリプロピレン層、および、
    ポリエチレンテレフタレート層/前記二軸延伸ナイロンフィルム/アルミニウム層/ポリプロピレン層
    のうちのいずれか1つである
     ことを特徴とするラミネートフィルム。
    In the laminate film according to claim 4 or 5,
    The lamination mode of the laminate film is
    The biaxially oriented nylon film / aluminum layer / polypropylene layer, and
    A laminate film characterized by being one of polyethylene terephthalate layer / biaxially stretched nylon film / aluminum layer / polypropylene layer.
  7.  請求項4または請求項5に記載のラミネートフィルムにおいて、
     当該ラミネートフィルムの積層態様が、前記二軸延伸ナイロンフィルム/アルミニウム層/ポリ塩化ビニル層である
     ことを特徴とするラミネートフィルム。
    In the laminate film according to claim 4 or 5,
    The laminated film is characterized in that the lamination mode of the laminated film is the biaxially oriented nylon film / aluminum layer / polyvinyl chloride layer.
  8.  請求項4から請求項7のいずれか一項に記載のラミネートフィルムを用いたことを特徴とするラミネート包材。 A laminate packaging material using the laminate film according to any one of claims 4 to 7.
  9.  請求項4から請求項6のいずれか一項に記載のラミネートフィルムを外装材として用いたことを特徴とする電池。 A battery comprising the laminate film according to any one of claims 4 to 6 as an exterior material.
  10.  請求項1から請求項3のいずれか一項に記載の二軸延伸ナイロンフィルムを製造する二軸延伸ナイロンフィルムの製造方法であって、
     前記原料から原反フィルムを成形する原反フィルム製造工程と、
     チューブラー式二軸延伸法にて、前記原反フィルムを二軸延伸する二軸延伸工程と、
     前記二軸延伸工程後のフィルムに熱処理を施して熱固定する熱固定工程と、を備える
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
    A method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film according to any one of claims 1 to 3,
    A raw film manufacturing process for forming a raw film from the raw material,
    In a tubular biaxial stretching method, a biaxial stretching step of biaxially stretching the raw film,
    And a heat setting step of heat-setting the film after the biaxial stretching step by performing a heat treatment. A method for producing a biaxially stretched nylon film.
PCT/JP2013/070894 2012-08-02 2013-08-01 Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film WO2014021425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528220A JPWO2014021425A1 (en) 2012-08-02 2013-08-01 Biaxially stretched nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially stretched nylon film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-172372 2012-08-02
JP2012172372 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021425A1 true WO2014021425A1 (en) 2014-02-06

Family

ID=50028092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070894 WO2014021425A1 (en) 2012-08-02 2013-08-01 Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film

Country Status (3)

Country Link
JP (1) JPWO2014021425A1 (en)
TW (1) TW201412501A (en)
WO (1) WO2014021425A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126523A (en) * 1989-10-11 1991-05-29 Idemitsu Petrochem Co Ltd Manufacture of biaxially oriented film
JP2005022336A (en) * 2003-07-04 2005-01-27 Showa Denko Packaging Co Ltd Packaging material excellent in moldability and packaging container molded by using the material
JP2008045016A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film
JP2008045015A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126523A (en) * 1989-10-11 1991-05-29 Idemitsu Petrochem Co Ltd Manufacture of biaxially oriented film
JP2005022336A (en) * 2003-07-04 2005-01-27 Showa Denko Packaging Co Ltd Packaging material excellent in moldability and packaging container molded by using the material
JP2008045016A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film
JP2008045015A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film

Also Published As

Publication number Publication date
TW201412501A (en) 2014-04-01
JPWO2014021425A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6218582B2 (en) Method for producing stretched nylon film, method for producing multilayer film, method for producing packaging material, and method for producing battery
JP2015107583A (en) Multilayer film, package material, and battery
JP2008044209A (en) Biaxially stretched nylon film, laminated packaging material and forming method of biaxially stretched nylon film
JP2015107581A (en) Multilayer film, multilayer film package material, draw-molded article, and battery
WO2013089081A1 (en) Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
JP2015107585A (en) Multilayer film, multilayer film package material, draw molded article, and battery
WO2014103785A1 (en) Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film
WO2013141135A1 (en) Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film
WO2013137395A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
JP2015051527A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2015051525A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2014054797A (en) Biaxially oriented nylon film, laminate film, laminate packaging material, and production method of biaxially oriented nylon film
WO2014141963A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
WO2013137153A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
WO2014141966A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
JP2015107582A (en) Multilayer film, multilayer film package material, draw-molded article, and pharmaceutical packaging material
WO2014021425A1 (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film
JP2015051528A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2015107584A (en) Multilayer film, multilayer film package material, and draw-molded article
JP2014037076A (en) Biaxially stretched nylon film, laminated film, laminated packaging material and forming method of biaxially stretched nylon film
JP2014046473A (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, and method for producing biaxially-oriented nylon film
JP2015051526A (en) Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2015051529A (en) Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2014156556A1 (en) Biaxially stretched nylon film, laminated film and molded body
JP2015052033A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826007

Country of ref document: EP

Kind code of ref document: A1