WO2014019901A1 - Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble. - Google Patents

Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble. Download PDF

Info

Publication number
WO2014019901A1
WO2014019901A1 PCT/EP2013/065574 EP2013065574W WO2014019901A1 WO 2014019901 A1 WO2014019901 A1 WO 2014019901A1 EP 2013065574 W EP2013065574 W EP 2013065574W WO 2014019901 A1 WO2014019901 A1 WO 2014019901A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
assembly
thermo
thermoelectric element
connection means
Prior art date
Application number
PCT/EP2013/065574
Other languages
English (en)
Inventor
Cédric DE VAULX
Patrick Boisselle
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to EP13740285.5A priority Critical patent/EP2880694A1/fr
Publication of WO2014019901A1 publication Critical patent/WO2014019901A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • thermoelectric module An assembly comprising a thermoelectric element and a means of electrical connection of said thermoelectric element, a thermoelectric module comprising such an assembly.
  • the present invention relates to an assembly comprising a thermoelectric element and a means of electrical connection of said thermoelectric element. It also relates to a thermoelectric module, in particular for generating an electric current in a motor vehicle, and comprising said assembly.
  • electric thermo modules using so-called electric thermo elements, for generating an electric current in the presence of a temperature gradient between two of their opposite faces, said first and second contact faces, according to the phenomenon known as the Seebeck effect.
  • These devices comprise a stack of first tubes, intended for the circulation of the exhaust gases of an engine, and second tubes, intended for the circulation of a heat transfer fluid of a cooling circuit.
  • the electrical thermo elements are sandwiched between the tubes so as to be subjected to a temperature gradient from the temperature difference between the hot exhaust gases and the cold cooling fluid.
  • thermoelectric elements are grouped in pairs.
  • the thermoelectric elements belonging to the same pair are electrically interconnected by electrical tracks arranged on their first or second contact faces.
  • thermoelectric elements it is known to assemble the electric thermoelectric elements to the electric tracks by a brazing process. During this process, the electric tracks and the electric thermoelectric elements of metal are caused to expand under the effect of the temperature before the joining takes place. Once the electric tracks have reached the right temperature, the connection is realized and then we begin to cool the whole.
  • a disadvantage is that electric tracks and electric thermo elements do not have the same coefficient of thermal expansion. So the Electric tracks shrink more than the electric thermo elements during cooling, which may damage the electrical thermo elements, including creating cracks and / or breaks at their contact faces.
  • thermoelectric module in operation is subjected to a large difference in temperature between its cold side and its hot side, which is typically the case when the hot face of the device is subjected to temperatures above 250 * 0.
  • the electric tracks secured to the hot-side thermoelectric elements expand more than those joined to the cold-side electric thermo elements, which may damage the electric thermoelectric elements in the same manner as described above.
  • the invention aims to improve the situation.
  • the invention thus proposes a set of at least one thermoelectric element capable of generating an electric current under the action of a temperature gradient exerted between two of its faces, called contact faces, and a connecting means.
  • electrical connector for electrically connecting said thermoelectric element with another thermoelectric element, characterized in that the assembly comprises a substrate disposed at at least one of the contact faces, mechanically connecting the thermoelectric element and the means electrical connection and having a coefficient of thermal expansion between that of the thermoelectric element and that of the electrical connection means.
  • the difference in coefficient of thermal expansion between, on the one hand, the substrate and the electrical connection means and, on the other hand, the substrate and the thermoelectric element is less important than the difference in thermal coefficient between the medium electrical connection and the electric thermo element.
  • This establishes a progressivity of the coefficient of thermal expansion between the electrical connection means and the thermoelectric element, thanks to the substrate.
  • the electrical connection means has a coefficient of thermal expansion greater than that of the thermoelectric element and the substrate has a coefficient of thermal expansion greater than that of the thermoelectric element and lower than that of the electrical connection means.
  • said substrate comprises at least two layers, said first and second layers, the first layer being in contact with the thermoelectric element, the second layer being in contact with the electrical connection means, the coefficient of thermal expansion of the first layer being closer to that of the thermoelectric element than that of the second layer.
  • the coefficient of thermal expansion of the second layer is closer to that of the electrical connection means than that of the first layer.
  • the contraction difference and / or the expansion of the connection means relative to that of the thermoelectric element is thus progressively damped between the thermoelectric element and the substrate, between each different layer of the substrate and between the substrate and the medium. connection.
  • the coefficient of thermal expansion of the first layer is, for example, lower than that of the second layer.
  • said substrate comprises one or more other layers located between the first and second layers, the coefficient of thermal expansion of the other layers being either increasing or decreasing from a layer in contact with the first layer to a layer in contact with the second layer. With several other layers, it is possible to further reduce the difference in coefficient of thermal expansion between adjacent substrate layers so that the damping of contraction and expansion is further improved.
  • the first layer is, for example, titanium.
  • the second layer is, in particular, nickel.
  • the first layer has, for example, a thickness of less than or equal to 10 ⁇ m.
  • the second layer has, in particular, a thickness less than or equal to 15 .mu.m.
  • the substrate is advantageously an electrical and thermal conductor.
  • the substrate can thus transmit the heat and the current between the electrical means and the thermoelectric element.
  • thermoelectric module comprising a plurality of assemblies as described above.
  • thermoelectric device in particular for generating an electric current in a motor vehicle, comprising at least one thermoelectric module as described above.
  • Figure 1 illustrates in perspective, an example of a thermoelectric device according to the invention, shown in an exploded manner
  • Figure 2 is a schematic side view of a portion of a thermoelectric module comprising an assembly according to the invention
  • FIGS 3 and 4 are views identical to those of Figure 1 showing alternative embodiments of the assembly according to the invention.
  • a device comprises thermal conduction supports in contact with a hot or cold source, such as a plurality of tubes 1 for circulating a first fluid alternating with a plurality of tubes 2 circulation of a second fluid.
  • a hot or cold source such as a plurality of tubes 1 for circulating a first fluid alternating with a plurality of tubes 2 circulation of a second fluid.
  • Said tubes 1, 2 extend here parallel to each other in the same direction.
  • the circulation tubes 1 of the first fluid are configured, for example, for the circulation of a fluid, said to be hot. It may be the exhaust gas of a motor vehicle engine.
  • the circulation tubes 1 of the first fluid define one or more circulation channels of the first fluid, called hot channels.
  • the circulation tubes 2 of the second fluid are configured, for example, for the circulation of a fluid, said cold, having a temperature lower than the temperature of the first fluid. It may be a coolant, such as a mixture of water and glycol, from, for example, a low temperature cooling loop of the vehicle.
  • the circulation tubes 2 of the second fluid define one or more circulation channels of the second fluid, said cold channels.
  • the exhaust gas circulation tubes 1 are three in number and the circulation tubes 2 of the coolant are five in number.
  • Said device further comprises a plurality of elements, called electrical thermo, capable of creating an electric current from a temperature gradient applied between two of their faces, said first and second contact faces, provided in exchange relation thermal with said hot and cold channels.
  • electrical thermo a plurality of elements, called electrical thermo
  • elements 4 of substantially parallelepipedal shape (schematically visible in Figures 2 to 4) generating an electric current, according to the Seebeck effect.
  • Such elements allow the creation of an electric current in a load connected between said opposed contact faces 3a, 3b.
  • such elements consist, for example, of manganese silicide (MnSi).
  • Said circulation tubes 1, 2 have, for example, a flattened section in an elongation direction, orthogonal to the direction of extension of the tubes.
  • Said circulation tubes 1, 2 may thus be flat tubes. This means that they have two large parallel faces connected by short sides.
  • the thermoelectric elements 4 are in contact with one and / or the other of the flat faces of the tubes 1, 2 by their contact faces 3a, 3b.
  • Said tubes 2 intended for the circulation of the cold fluid consist, for example, of aluminum and / or of aluminum alloy.
  • the tubes 1 intended for the circulation of hot fluid consist, in particular, of stainless steel. They are formed, for example, by profiling, welding and / or brazing.
  • Said device further comprises, for example, a manifold plate 15 at each end of said tubes 1 for circulation of the first fluid.
  • Said collector plate 15 is provided with orifices 6 in which the ends of said tubes 1 for circulating the first fluid are inserted.
  • Said device may also comprise manifolds 7 in fluid communication with the end of said circulation tubes 1 of the first fluid and fixed to the collector plates 15 by means of screws 8.
  • Said boxes comprise an orifice 16 for the inlet and or the output of the first fluid.
  • Said tubes 2 for circulating the second fluid may be provided at each of their end with collectors 9 allowing communication of said circulation tubes 2 of the second fluid and a manifold, not shown, of the second fluid via orifices 10 opening on a side face of the beam defined by the stack of tubes 1, 2 of circulation of the first and second fluid.
  • the electric thermoelectric elements 4 are distributed in layers 5 provided between the tubes 1 for circulating the first fluid and the tubes 2 for circulating the second fluid.
  • Each ply 5 schematically represents a plurality of electric thermo elements 4 arranged in a rectangular shape. In the thermoelectric device, electrical connections are established between the layers 5 of electric thermo elements.
  • An electrical connector, not shown, allows the device to be connected to an external electrical circuit.
  • thermoelectric device here comprises a plurality of electrical modules, each of the electrical modules consisting of at least one of said cold channel and one of said hot channel and a plurality of said thermoelectric elements 4 located between said cold channel and said hot channel .
  • thermoelectric elements 4 may be, for a first part, elements of a first type, called P (referenced 4P), for establishing an electrical potential difference in a direction, said positive, when they are subject to a given temperature gradient, and, for the other part, elements of a second type, called N (referenced 4N), allowing the creation of an electrical potential difference in an opposite direction, called negative, when are subject to the same temperature gradient.
  • P referenced 4P
  • N referenced 4N
  • thermoelectric elements applied on the same tube 1, 2 are electrically connected.
  • the P type thermoelectric elements and the N type thermoelectric elements provided between a same tube for circulating the first fluid and a same tube for circulating the second fluid, may be associated. between them so as to allow the circulation of the series current of an element of the first type towards an element of the second type.
  • the thermoelectric elements 4 thus associated form a basic conduction cell and the cells obtained may be associated in series and / or in parallel.
  • the first contact face 3a of each electric thermo element is intended to be in heat exchange relation with the hot channel and the second contact face 3b of each thermoelectric element is intended to be in exchange relation. thermal with the cold channel.
  • the P-type thermoelectric elements alternate with the N-type thermoelectric elements. They are grouped in pairs, each pair being formed of a P-type thermoelectric element and a thermoelectric element. of the N type.
  • the module is configured here to allow current to flow between the first contact faces 3a of the thermoelectric elements of the same pair and a flow of current between the second contact faces 3b of each of the thermoelectric elements of the same pair. two neighboring pairs. In other words, the current flows in series through the electric thermoelectric elements alternately passing from a P-type thermoelectric element to an N type thermoelectric element.
  • the module comprises a plurality of electrical connection means 20 connecting the first contact faces 3a of the thermoelectric elements of the same pair and the second contact faces 3b of each of the electric thermo elements belonging to two neighboring pairs to allow the flow of current described above.
  • Two adjacent thermoelectric elements are connected by the electrical connection means 20 either by their first contact face 3a or by their second contact face 3b.
  • the combination of at least one of said thermoelectric elements 4 and one of said electrical connection means 20 is called a set 30 according to the invention.
  • the assembly 30 comprises a substrate 40 disposed at the level of at least one of the contact faces 3a, 3b, here the two contact faces 3a, 3b, mechanically connecting the thermoelectric element 4 and the electrical connection means 20 and having a coefficient of thermal expansion between that of the element thermoelectric 4 and that of the electrical connection means 20.
  • the electrical connection means 20 may be in contact with a thermal conduction means, not illustrated, said thermal conduction means being an electrical insulator.
  • the thermal conduction means is, for example, ceramic material. It allows the transfer of heat between the cold channel or the channel hot and the electrical connection means 20 which then transmits heat to the thermoelectric element 4 on which it is located via the substrate 40.
  • the substrate is indeed a thermal and electrical conductor so that it also transmits the current between the electrical connection means 20 and the thermoelectric element 4.
  • the thermal conduction means may be directly in contact with the cold channel or the hot channel. It can also be in heat exchange relation with the cold channel or the hot channel via thermal conduction fins on which it is applied.
  • the electrical connection means 20 includes, in particular, electrical tracks. They are, for example, copper or nickel.
  • the electrical connection means 20 further comprises a brazing material, said solder, comprising for example an aluminum alloy. This solder is disposed, in particular, in contact with the electrical tracks. It makes it possible to solder the connection means 20 to the thermoelectric element 4, in particular via the substrate 40. Before brazing, the solder connects two electric thermoelectric elements 4 of the same pair.
  • the substrate 40 is projected onto the thermoelectric element 4 before being brazed by means of electrical connection 20 and in particular to the solder.
  • the substrate thus acts as a barrier to prevent diffusion of materials constituting solder to the thermoelectric element 4 and / or the diffusion of materials constituting the thermoelectric element to the solder in order to guarantee the quality of the solder.
  • the coefficient of thermal expansion of the thermal connection means 20 is greater than that of the thermoelectric element 4.
  • the solder has a coefficient of thermal expansion greater than that of electrical tracks, that of the thermoelectric elements 4 and that of the substrate 40.
  • thermoelectric device in operation when the thermoelectric device in operation is subjected to a high temperature, for example when the hot face of the device is subjected to temperatures higher than 250 ⁇ , the greater expansion of the connection means 20 compared to that of the thermoelectric element 4 is damped by the substrate 40 whose expansion is intermediate.
  • the coefficient of thermal expansion of the substrate 40 is, for example, between 10x10 ⁇ ⁇ 6 / ⁇ and 18x10 A ⁇ 6 / ⁇ C for a temperature of 560 ⁇ .
  • FIG. 3 represents a variant of the invention, in which said substrate comprises at least two layers 41, 42, called first 41 and second layers 42.
  • the first layer 41 is in contact with the thermoelectric element 4, and the second layer 41 layer 42 is in contact with the electrical connection means 20.
  • the coefficient of thermal expansion of the first layer 41 is closer to that of the thermoelectric element 4 than that of the second layer 42.
  • the coefficient The thermal expansion of the first layer 41 is smaller than that of the second layer 42.
  • the differences in the coefficient of thermal expansion are further reduced.
  • the coefficient of thermal expansion of the first layer is, in particular, between 10 ⁇ 10 ⁇ "6 / ⁇ and 14x10 A" 6 / ⁇ C for a temperature of 560 ⁇ .
  • Titanium will be chosen for the first layer of the substrate, since this material has such a characteristic.
  • the coefficient of thermal expansion of the second layer is, for example, between 14x10 ⁇ "6 / ⁇ and 18x10 ⁇ ⁇ 6 / ⁇ for a temperature of 560 ° C.
  • nickel will be chosen. for the second layer of the substrate because this material has such a characteristic.
  • the choice of these materials for the first and second layers allows the substrate to provide the accommodation function of the thermal expansion coefficients, the anti-diffusion barrier function between the solder and the thermo element. 4 during the brazing of the assembly 30 and the electrical and thermal connection function between the electrical connection means 20 and the thermoelectric element 4.
  • the first layer has, for example, a thickness less than or equal to 10 ⁇ .
  • the second layer has, in particular, a thickness less than or equal to 15 .mu.m.
  • FIG. 4 shows a variant of the invention according to which the substrate comprises one or more other layers 43, 44, here two other layers, situated between the first and second layers 41, 42, the coefficient of thermal expansion of the other sub-layers ascending or descending from a layer in contact with the first layer to a layer in contact with the second layer.
  • Thermal expansion coefficients are increasing here from the first layer to the second layer. They are thus increasing from the thermoelectric element to the electrical connection means.
  • said layers are successively projected onto each other after having projected the first layer on the thermoelectric element.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

L'invention concerne un ensemble (30) d'au moins un élément thermo électrique (4) susceptibles de générer un courant électrique sous l'action d'un gradient de température exercé entre deux de ses faces, dites faces de contact (3a, 3b), et d'un moyen de connexion électrique (20) destiné à connecter électriquement ledit élément thermo électrique (4) avec un autre élément thermo électrique (4), caractérisé par le fait que l'ensemble (30) comprend un substrat (40) disposé au niveau d'au moins une des faces de contact (3a, 3b), reliant mécaniquement l'élément thermo électrique (4) et le moyen de connexion électrique (20) et présentant un coefficient de dilatation thermique entre celui de l'élément thermo électrique (4) et celui du moyen de connexion électrique (20). L'invention concerne aussi un module thermo électrique comprenant un tel ensemble et un dispositif thermo électrique comprenant un tel module.

Description

Ensemble comprenant un élément thermo électrique et un moyen de connexion électrique dudit élément thermo électrique, module thermo électrique comprenant un tel ensemble. La présente invention concerne un ensemble comprenant un élément thermo électrique et un moyen de connexion électrique dudit élément thermo électrique. Elle concerne aussi un module thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile, et comprenant ledit ensemble. Actuellement, il a déjà été proposé des modules thermo électriques utilisant des éléments, dits thermo électriques, permettant de générer un courant électrique en présence d'un gradient de température entre deux de leurs faces opposées, dites première et deuxième faces de contact, selon le phénomène connu sous le nom d'effet Seebeck. Ces dispositifs comprennent un empilement de premiers tubes, destinés à la circulation des gaz d'échappement d'un moteur, et de seconds tubes, destinés à la circulation d'un fluide caloporteur d'un circuit de refroidissement. Les éléments thermo électriques sont pris en sandwich entre les tubes de façon à être soumis à un gradient de température provenant de la différence de température entre les gaz d'échappement, chauds, et le fluide de refroidissement, froid.
Les éléments thermo électriques sont groupés par paire. Les éléments thermo électriques appartenant à une même paire sont reliés entre eux électriquement par des pistes électriques disposées sur leurs premières ou sur leurs deuxièmes faces de contact.
Il est connu d'assembler les éléments thermo électriques aux pistes électriques par un procédé de brasage. Pendant ce procédé, les pistes électriques et les éléments thermo électriques en métal sont amenés à s'étendre sous l'effet de la température avant que la solidarisation ne s'effectue. Une fois que les pistes électriques ont atteint la bonne température, la solidarisation se réalise et on commence alors à refroidir l'ensemble.
Un inconvénient vient du fait que les pistes électriques et les éléments thermo électriques ne présentent pas le même coefficient de dilatation thermique. Ainsi les pistes électriques se rétractent d'avantage que les éléments thermo électriques pendant le refroidissement, ce qui risque d'endommager les éléments thermo électriques, notamment en créant des fissures et/ou des cassures au niveau de leurs faces de contact.
Ce risque existe également, lorsque le module thermo électrique en fonctionnement est soumis à une forte différence de température entre son côté froid et son côté chaud, ce qui est typiquement le cas quand la face chaude du dispositif est soumise à des températures supérieures à 250*0. En atteignant ces températures, les pistes électriques solidarisées aux éléments thermo électriques côté chaud se dilatent davantage que celles solidarisées aux éléments thermo électriques côté froid, ce qui risque d'endommager les éléments thermo électriques de la même manière que décrite précédemment. L'invention vise à améliorer la situation.
L'invention propose ainsi un ensemble d'au moins un élément thermo électrique susceptibles de générer un courant électrique sous l'action d'un gradient de température exercé entre deux de ses faces, dites faces de contact, et d'un moyen de connexion électrique destiné à connecter électriquement ledit élément thermo électrique avec un autre élément thermo électrique, caractérisé par le fait que l'ensemble comprend un substrat disposé au niveau d'au moins une des faces de contact, reliant mécaniquement l'élément thermo électrique et le moyen de connexion électrique et présentant un coefficient de dilatation thermique entre celui de l'élément thermo électrique et celui du moyen de connexion électrique.
Selon l'invention, la différence de coefficient de dilatation thermique entre d'une part le substrat et le moyen de connexion électrique et d'autre part le substrat et l'élément thermo électrique est moins importante que la différence de coefficient thermique entre le moyen de connexion électrique et l'élément thermo électrique. On établit ainsi une progressivité du coefficient de dilatation thermique entre le moyen de connexion électrique et l'élément thermo électrique, grâce au substrat. Grâce à l'invention, lorsque l'ensemble est soumis à de forte variation de température, le substrat, qui se contracte et se dilate de façon intermédiaire par rapport au moyen de connexion électrique et à l'élément thermo électrique, permet d'amortir la différence de contraction et de dilatation qui existe entre le moyen de connexion électrique et l'élément thermo électrique. Les contraintes mécaniques exercées entre le substrat et le moyen de connexion d'une part et entre le substrat et l'élément thermo électrique d'autre part pendant leurs contraction et/ou dilatation sont ainsi inférieures à celles exercées directement entre le moyen de connexion et l'élément thermo électrique en l'absence du substrat ce qui permet de limiter le risque de fissure ou de casse.
Avantageusement, le moyen de connexion électrique présente un coefficient de dilation thermique supérieur à celui de l'élément thermo électrique et le substrat présente un coefficient de dilatation thermique supérieur à celui de l'élément thermo électrique et inférieur à celui du moyen de connexion électrique.
Selon un aspect de l'invention, ledit substrat comprend au moins deux couches, dites première et deuxième couches, la première couche étant au contact de l'élément thermo électrique, la deuxième couche étant au contact du moyen de connexion électrique, le coefficient de dilatation thermique de la première couche étant plus proche de celui de l'élément thermo électrique que ne l'est celui de la deuxième couche. Autrement dit, le coefficient de dilatation thermique de la deuxième couche est plus proche de celui du moyen de connexion électrique que ne l'est celui de la première couche. La présence d'au moins deux couches permet d'améliorer la progressivité de coefficient de dilatation thermique entre le moyen de connexion électrique et l'élément thermo électrique, c'est-à-dire de réduire la différence de coefficient de dilatation thermique entre deux matériaux adjacent de l'ensemble. La différence de contraction et/ou la dilatation du moyen de connexion par rapport à celle de l'élément thermo électrique est ainsi amortie progressivement entre l'élément thermo électrique et le substrat, entre chaque différente couche du substrat et entre le substrat et le moyen de connexion. Dans l'exemple déjà évoqué plus haut, le coefficient de dilatation thermique de la première couche est, par exemple, inférieur à celui de la deuxième couche. Selon un exemple de réalisation de l'invention, ledit substrat comprend une ou plusieurs autres couches situées entre les première et les deuxième couches, le coefficient de dilatation thermique des autres couches allant soit en croissant soit en décroissant depuis une couche située au contact de la première couche jusqu'à une couche située au contact de la deuxième couche. Avec plusieurs autres couches, il est possible de réduire encore la différence de coefficient de dilatation thermique entre les couches du substrat adjacentes de sorte que l'on améliore d'avantage l'amortissement de la contraction et de la dilatation. La première couche est, par exemple, en Titane. La deuxième couche est, notamment, en Nickel.
La première couche présente, par exemple, une épaisseur inférieure ou égale à 10 pm. La deuxième couche présente, notamment, une épaisseur inférieure ou égale à 15 pm.
Le substrat est avantageusement un conducteur électrique et thermique. Le substrat peut ainsi transmettre la chaleur et le courant entre le moyen électrique et l'élément thermo électrique.
L'invention concerne aussi un module thermo électrique comprenant une pluralité d'ensembles tels que décrit précédemment.
L'invention concerne également un dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile, comprenant au moins un module thermo électrique tel que décrit précédemment.
Les figures annexées feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
La figure 1 illustre en perspective, un exemple de dispositif thermo électrique conforme à l'invention, représenté de façon éclatée ; La figure 2 est une vue schématique de coté d'une partie d'un module thermo électrique comprenant un ensemble conforme à l'invention ;
Les figures 3 et 4 sont des vues identiques à celles de la figure 1 représentant des variantes de réalisations de l'ensemble selon l'invention.
Comme illustré à la figure 1 , un dispositif conforme à l'invention comprend des supports de conduction thermique en contact avec une source chaude ou froide telles qu'une pluralité de tubes 1 de circulation d'un premier fluide alternant avec une pluralité de tubes 2 de circulation d'un deuxième fluide. Lesdits tubes 1 , 2 s'étendent ici parallèlement les uns aux autres dans une même direction.
Les tubes 1 de circulation du premier fluide sont configurés, par exemple, pour la circulation d'un fluide, dit chaud. Il pourra s'agir des gaz d'échappement d'un moteur thermique de véhicule automobile. Les tubes 1 de circulation du premier fluide définissent un ou plusieurs canaux de circulation du premier fluide, dits canaux chauds. Les tubes 2 de circulation du deuxième fluide sont configurés, par exemple, pour la circulation d'un fluide, dit froid, présentant une température inférieure à la température du premier fluide. Il pourra s'agir d'un liquide de refroidissement, tel qu'un mélange d'eau et de glycol, provenant, par exemple, d'une boucle de refroidissement basse température du véhicule. Les tubes 2 de circulation du deuxième fluide définissent un ou plusieurs canaux de circulation du deuxième fluide, dits canaux froids. Ici, les tubes de circulation 1 de gaz d'échappement sont au nombre de trois et les tubes de circulation 2 du liquide de refroidissement sont au nombre de cinq.
Ledit dispositif comprend en outre une pluralité d'éléments, dits thermo électriques, susceptible de créer un courant électrique à partir d'un gradient de température appliqué entre deux de leurs faces, dites première et deuxième faces de contact, prévues en relation d'échange thermique avec lesdits canaux chaud et froid.
Il s'agit, par exemple, d'éléments 4 de forme sensiblement parallélépipédiques (visible de façon schématique aux figures 2 à 4) générant un courant électrique, selon l'effet Seebeck. De tels éléments permettent la création d'un courant électrique dans une charge connectée entre lesdites faces de contact 3a, 3b, prévues opposées. De façon connue de l'homme du métier, de tels éléments sont constitués, par exemple, de siliciure de manganèse (MnSi).
Lesdits tubes de circulation 1 , 2 présentent, par exemple, une section aplatie selon une direction d'allongement, orthogonale à la direction d'extension des tubes. Lesdits tubes de circulation 1 , 2 pourront ainsi être des tubes plats. On entend par là qu'ils présentent deux grandes faces parallèles reliés par des petits côtés. Les éléments thermo électriques 4 sont au contact de l'une et/ou l'autre des faces planes des tubes 1 , 2 par leurs faces de contact 3a, 3b.
Lesdits tubes 2 destinés à la circulation du fluide froid sont constitués, par exemple, d'aluminium et/ou d'alliage d'aluminium. Les tubes 1 destinés à la circulation du fluide chaud, sont constitués, notamment, d'acier inox. Ils sont formés, par exemple, par profilage, soudage et/ou brasage.
Ledit dispositif comprend en outre, par exemple, une plaque collectrice 15 à chacune des extrémités desdits tubes 1 de circulation du premier fluide. Ladite plaque collectrice 15 est munie d'orifices 6 dans lesquels les extrémités desdits tubes 1 de circulation du premier fluide sont insérées.
Ledit dispositif pourra également comprendre des boîtes collectrices 7 en communication de fluide avec l'extrémité desdits tubes de circulation 1 du premier fluide et fixées aux plaques collectrices 15 par l'intermédiaire de vis 8. Lesdites boîtes comprennent un orifice 16 pour l'entrée et/ou la sortie du premier fluide.
Lesdits tubes 2 de circulation du second fluide pourront être munis à chacune de leur extrémité de collecteurs 9 permettant une mise en communication desdits tubes 2 de circulation du second fluide et d'une boîte collectrice, non représentée, du deuxième fluide par l'intermédiaire d'orifices 10 débouchant sur une face latérale du faisceau défini par l'empilement des tubes 1 , 2 de circulation du premier et du deuxième fluide. Comme illustré à la figure 1 , les éléments thermo électriques 4 sont réparties en nappes 5 prévues entre les tubes 1 de circulation du premier fluide et les tubes 2 de circulation du deuxième fluide. Chaque nappe 5 représente schématiquement une pluralité d'éléments thermo électriques 4 disposés selon une forme rectangulaire. Dans le dispositif thermo électrique, des liaisons électriques sont établies entre les nappes 5 d'éléments thermo électriques. Un connecteur électrique, non représenté, permet de relier le dispositif à un circuit électrique extérieur.
Ledit dispositif thermo électrique comprend ici une pluralité de module électrique, chacun des modules électrique étant constitué d'au moins un desdits canal froid et un desdits canal chaud et d'une pluralité desdits éléments thermo électrique 4 situés entre ledit canal froid et ledit canal chaud.
Les éléments thermo électriques 4 pourront être, pour une première partie, des éléments d'un premier type, dit P (référencés 4P), permettant d'établir une différence de potentiel électrique dans un sens, dit positif, lorsqu'ils sont soumis à un gradient de température donné, et, pour l'autre partie, des éléments d'un second type, dit N (référencés 4N), permettant la création d'une différence de potentiel électrique dans un sens opposé, dit négatif, lorsqu'ils sont soumis au même gradient de température.
Les éléments thermo électriques appliqués sur un même tube 1 , 2 sont reliés électriquement. En particulier et comme illustré aux figures 2 à 4, les éléments thermo électriques de type P et les éléments thermo électriques de type N, prévus entre un même tube de circulation du premier fluide et un même tube de circulation du deuxième fluide, pourront être associés entre eux de façon à permettre la circulation du courant en série d'un élément du premier type vers un élément du second type. Il est également possible de relier entre elles par des pistes électriques les faces d'éléments thermo électriques de même types pour un montage en parallèle desdits éléments. Les éléments thermo électriques 4 ainsi associés forment une cellule de conduction de base et les cellules obtenues pourront être associées en série et/ou en parallèle. Sur ces figures, la première face de contact 3a de chaque éléments thermo électriques est destiné à être en relation d'échange thermique avec le canal chaud et la deuxième face de contact 3b de chaque élément thermo électrique est destinée à être en relation d'échange thermique avec le canal froid.
Comme représenté sur la figure 2, les éléments thermo électriques de type P alternent avec les éléments thermo électriques de type N. Ils sont groupés par paire, chaque paire étant formée d'un élément thermo électrique de type P et d'un élément thermo électrique de type N. On configure ici le module pour permettre une circulation de courant entre les premières faces de contact 3a des éléments thermo électriques d'une même paire et une circulation de courant entre les deuxièmes faces de contact 3b de chacun des éléments thermo électriques de deux paires voisines. Autrement dit, le courant circule en série à travers les éléments thermo électriques en passant alternativement d'un élément thermo électrique de type P à un élément thermo électrique de type N. Pour cela, le module comprend une pluralité de moyens de connexion électrique 20 reliant les premières faces de contact 3a des éléments thermo électriques d'une même paire et les deuxièmes faces de contact 3b de chacun des éléments thermo électriques appartenant à deux paires voisines afin de permettre la circulation de courant décrite précédemment. Deux éléments thermo électriques adjacents sont liés par les moyens de connexion électrique 20 soit par leur première face de contact 3a soit par leur deuxième face de contact 3b. On appelle ensemble 30 selon l'invention, l'association d'au moins un desdits éléments thermo électrique 4 et d'un desdits moyens de connexion électrique 20. Selon l'invention, l'ensemble 30 comprend un substrat 40 disposé au niveau d'au moins une des faces de contact 3a, 3b, ici les deux faces de contact 3a, 3b, reliant mécaniquement l'élément thermo électrique 4 et le moyen de connexion électrique 20 et présentant un coefficient de dilatation thermique entre celui de l'élément thermo électrique 4 et celui du moyen de connexion électrique 20.
Les moyens de connexion électrique 20 pourront être en contact avec un moyen de conduction thermique, non-illustré, ledit moyen de conduction thermique étant un isolant électrique. Le moyen de conduction thermique est, par exemple, en matériau céramique. Il permet le transfert de chaleur entre le canal froid ou le canal chaud et le moyen de connexion électrique 20 qui transmet alors la chaleur à l'élément thermo électrique 4 sur lequel il se trouve par l'intermédiaire du substrat 40. Le substrat est en effet un conducteur thermique et électrique de sorte qu'il transmet également le courant entre le moyen de connexion électrique 20 et l'élément thermo électrique 4.
Le moyen de conduction thermique peut être directement en contact avec le canal froid ou le canal chaud. Il peut également être en relation d'échange thermique avec le canal froid ou le canal chaud par l'intermédiaire d'ailettes de conduction thermique sur lesquelles il est appliqué.
Le moyen de connexion électrique 20 comprend, notamment, des pistes électriques. Elles sont, par exemple, en Cuivre ou en Nickel. Le moyen de connexion électrique 20 comprend en outre un matériau de brasage, dit brasure, comprenant par exemple, un alliage d'aluminium. Cette brasure est disposée, notamment, au contact des pistes électriques. Elle permet de braser le moyen de connexion 20 à l'élément thermo électrique 4, notamment par l'intermédiaire du substrat 40. Avant brasage, la brasure relie entre eux deux éléments thermo électriques 4 d'une même paire.
Selon un aspect de l'invention, le substrat 40 est projeté sur l'élément thermo électrique 4 avant d'être brasé au moyen de connexion électrique 20 et notamment à la brasure. Le substrat assure ainsi un rôle de barrière pour empêcher la diffusion de matériaux constituant de la brasure vers l'élément thermo électrique 4 et/ou la diffusion de matériaux constituant l'élément thermo électrique vers la brasure afin de garantir la qualité de la brasure.
Dans les exemples illustrés sur les figures 2 à 4, le coefficient de dilatation thermique du moyen de connexion thermique 20 est supérieur à celui de l'élément thermo électrique 4. Dans ces exemples, la brasure présente un coefficient de dilatation thermique supérieur à celui des pistes électrique, à celui des éléments thermo électrique 4 et à celui du substrat 40. Ainsi, lorsque le moyen de connexion 20 et l'élément thermo électrique 4 sont b rasés l'un à l'autre par l'intermédiaire du substrat 40, la contraction supérieure du moyen de connexion lors du retour à température ambiante par rapport à celle de l'élément thermo électrique est amortie par le substrat dont la contraction est intermédiaire. De la même manière, lorsque le dispositif thermo électrique en fonctionnement est soumis à une forte température, par exemple quand la face chaude du dispositif est soumise à des températures supérieures à 250X, la dilatation supérieure du mo yen de connexion 20 par rapport à celle de l'élément thermo électrique 4 est amortie par le substrat 40 dont la dilatation est intermédiaire.
Dans l'exemple de réalisation évoqué précédemment, le coefficient de dilatation thermique du substrat 40 est, par exemple, compris entre 10x10Λ~6/Ό et 18x10A~6/<C pour une température de 560Ό.
La figure 3 représente une variante de l'invention, dans lequel ledit substrat comprend au moins deux couches 41 , 42, dites première 41 et deuxième couches 42. La première couche 41 est au contact de l'élément thermo électrique 4, et la deuxième couche 42 est au contact du moyen de connexion électrique 20. Le coefficient de dilatation thermique de la première couche 41 est plus proche de celui de l'élément thermo électrique 4 que ne l'est celui de la deuxième couche 42. Ici, le coefficient de dilatation thermique de la première couche 41 est plus faible que celui de la deuxième couche 42. Dans cette variante de l'invention, on réduit encore d'avantage les différences de coefficient de dilatation thermique.
Dans cet exemple de réalisation, le coefficient de dilatation thermique de la première couche est, notamment, compris entre 10χ10Λ"6/ΧΪ et 14x10A "6/<C pour une température de 560Ό. On choisira, par exemple, du Titane pour la première couche du substrat, du fait que ce matériau présente une telle caractéristique. Toujours dans cet exemple de réalisation, le coefficient de dilatation thermique de la deuxième couche est, par exemple, compris entre 14x10Λ"6/Ό et 18x10Λ ~6/Ό pour une température de 560Ό. On choisira, par exemple, du Nickel pour la deuxième couche du substrat du fait ce matériau présente une telle caractéristique.
Le choix de ces matériaux pour les première et deuxième couches permet au substrat d'assurer la fonction d'accommodation des coefficients de dilatation thermique, la fonction de barrière anti-diffusion entre la brasure et l'élément thermo électrique 4 pendant le brasage de l'ensemble 30 et la fonction de liaison électrique et thermique entre le moyen de connexion électrique 20 et l'élément thermo électrique 4. La première couche présente, par exemple, une épaisseur inférieure ou égale à 10 μηπ. La deuxième couche présente, notamment, une épaisseur inférieure ou égale à 15 pm.
La figure 4 représente une variante de l'invention selon laquelle le substrat comprend une ou plusieurs autres couches 43, 44, ici deux autres couches, situées entre les première et les deuxième couches 41 , 42, le coefficient de dilatation thermique des autres sous couches allant soit en croissant soit en décroissant depuis une couche située au contact de la première couche jusqu'à une couche située au contact de la deuxième couche.
Les coefficients de dilatations thermiques vont ici en croissant depuis la première couche vers la deuxième couche. Ils vont ainsi en croissant depuis l'élément thermo électrique jusqu'au moyen de connexion électrique. Dans les exemples de réalisation illustrés aux figures 3 et 4 selon lesquels le substrat 40 comprend plusieurs couches, lesdites couches sont projetées successivement les unes sur les autres après avoir projetée la première couche sur l'élément thermo électrique.

Claims

Revendications
1 . Ensemble (30) d'au moins un élément thermo électrique (4) susceptibles de générer un courant électrique sous l'action d'un gradient de température exercé entre deux de ses faces, dites faces de contact (3a, 3b), et d'un moyen de connexion électrique (20) destiné à connecter électriquement ledit élément thermo électrique (4) avec un autre élément thermo électrique (4), caractérisé par le fait que l'ensemble (30) comprend un substrat (40) disposé au niveau d'au moins une des faces de contact (3a, 3b), reliant mécaniquement l'élément thermo électrique (4) et le moyen de connexion électrique (20) et présentant un coefficient de dilatation thermique entre celui de l'élément thermo électrique (4) et celui du moyen de connexion électrique (20).
2. Ensemble (30) selon la revendication 1 , dans lequel ledit substrat (40) comprend au moins deux couches, dites première (41 ) et deuxième couches (42), la première couche (41 ) étant au contact de l'élément thermo électrique (4), la deuxième couche (42) étant au contact du moyen de connexion électrique (20), le coefficient de dilatation thermique de la première couche (41 ) étant plus proche de celui de l'élément thermo électrique (4) que ne l'est celui de la deuxième couche (42).
3. Ensemble (30) selon la revendication 2, dans lequel ledit substrat (40) comprend une ou plusieurs autres couches (43, 44) situées entre les première (41 ) et les deuxième couches (42), le coefficient de dilatation thermique des autres couches (43, 44) allant soit en croissant soit en décroissant depuis une couche (43) située au contact de la première couche (41 ) jusqu'à une couche (44) située au contact de la deuxième couche (42).
4. Ensemble (30) selon la revendication 2 ou 3, dans lequel la première couche (41 ) est en Titane.
5. Ensemble (30) selon l'une des revendications 2 à 4, dans lequel la deuxième couche (42) est en Nickel.
6. Ensemble (30) selon l'une quelconque des revendications 2 à 5, dans lequel la première couche (41 ) présente une épaisseur inférieure ou égale à 10 pm.
7. Ensemble (30) selon l'une quelconque des revendications 2 à 6, dans lequel la deuxième couche (42) présente une épaisseur inférieure ou égale à 15 m.
8. Ensemble (30) selon l'une quelconque des revendications précédentes, dans lequel le substrat (40) est un conducteur électrique et thermique.
9. Module thermo électrique comprenant une pluralité d'ensembles (30) selon l'une quelconque des revendications précédentes.
10. Dispositif thermo électrique (1 ), notamment destiné à générer un courant électrique dans un véhicule automobile, comprenant au moins un module selon la revendication 9.
PCT/EP2013/065574 2012-07-30 2013-07-24 Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble. WO2014019901A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13740285.5A EP2880694A1 (fr) 2012-07-30 2013-07-24 Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257382A FR2994024B1 (fr) 2012-07-30 2012-07-30 Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble.
FR1257382 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014019901A1 true WO2014019901A1 (fr) 2014-02-06

Family

ID=46754724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065574 WO2014019901A1 (fr) 2012-07-30 2013-07-24 Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble.

Country Status (3)

Country Link
EP (1) EP2880694A1 (fr)
FR (1) FR2994024B1 (fr)
WO (1) WO2014019901A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019683A1 (fr) * 2014-04-03 2015-10-09 Valeo Systemes Thermiques Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1453560A (fr) * 1964-10-16 1966-06-03 Siemens Ag Contact métallique semiconducteur et le procédé de sa fabrication
DE10022726A1 (de) * 1999-08-10 2001-06-07 Matsushita Electric Works Ltd Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510473B1 (de) * 2010-09-21 2013-01-15 Miba Sinter Austria Gmbh Thermogenerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1453560A (fr) * 1964-10-16 1966-06-03 Siemens Ag Contact métallique semiconducteur et le procédé de sa fabrication
DE10022726A1 (de) * 1999-08-10 2001-06-07 Matsushita Electric Works Ltd Thermoelektrisches Modul mit verbessertem Wärmeübertragungsvermögen und Verfahren zum Herstellen desselben
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2880694A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019683A1 (fr) * 2014-04-03 2015-10-09 Valeo Systemes Thermiques Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
WO2015149953A3 (fr) * 2014-04-03 2015-11-26 Valeo Systemes Thermiques Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile

Also Published As

Publication number Publication date
FR2994024A1 (fr) 2014-01-31
FR2994024B1 (fr) 2015-04-10
EP2880694A1 (fr) 2015-06-10

Similar Documents

Publication Publication Date Title
EP0176671B1 (fr) Perfectionnements apportés aux modules thermo-électriques à plusieurs thermo-éléments pour installation thermo-électrique, et installation thermo-électrique comportant de tels modules thermo-électriques
FR2932924A1 (fr) Dispositif de generation d&#39;energie electrique, faisceau d&#39;echange de chaleur comprenant un tel dispositif et echangeur de chaleur comprenant un tel faisceau
FR2965404A1 (fr) Procédé de fabrication d&#39;un dispositif thermo electrique, notamment destine a générer un courant électrique dans un véhicule automobile.
EP2622658A1 (fr) Dispositf thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
WO2012041559A1 (fr) Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2939280A1 (fr) Module et dispositif thermo-électriques, notamment destinés à générer un courant électrique dans un véhicule automobile
EP2936573B1 (fr) Ensemble comprenant un élément thermo électrique et un moyen de connexion électrique dudit élément thermo électrique, module et dispositif thermo électrique comprenant un tel ensemble
WO2013076215A1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et procede de fabrication dudit dispositif
CA1033393A (fr) Pompe a chaleur thermoelectrique
WO2014016323A1 (fr) Module thermo électrique
WO2012041561A1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
EP2880694A1 (fr) Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble.
EP3017486B1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
EP3127171A1 (fr) Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
WO2017093339A1 (fr) Connecteur électrique pour relier des éléments thermoélectriques et absorber leurs contraintes
WO2014019900A1 (fr) Procede de fabrication d&#39;un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.
FR3013429A1 (fr) Module thermo electrique et dispositif thermo electrique comprenant au moins un tel module.
WO2017046485A1 (fr) Module et dispositif thermo électrique, notamment destinés a générer un courant électrique dans un véhicule automobile, et procédé de fabrication d&#39;un tel module
EP3012428A1 (fr) Module thermo électrique, notamment destinés à générer un courant électrique dans un véhicule automobile
WO2013037773A1 (fr) Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2541182A1 (fr) Module et dispositif thermo électriques, notamment destinés à générer un courant électrique dans un véhicule automobile.
FR2977931A1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, faisant dispositif thermo electrique
FR2965405A1 (fr) Procédé de fabrication d&#39;un dispositif thermo électrique, notamment destine a générer un courant électrique dans un véhicule automobile.
FR2977376A1 (fr) Procede de fabrication d&#39;un dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et dispositif thermo electrique obtenu par un tel procede.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013740285

Country of ref document: EP