WO2014017288A1 - Composition for forming conductive film and process for producing conductive film - Google Patents

Composition for forming conductive film and process for producing conductive film Download PDF

Info

Publication number
WO2014017288A1
WO2014017288A1 PCT/JP2013/068719 JP2013068719W WO2014017288A1 WO 2014017288 A1 WO2014017288 A1 WO 2014017288A1 JP 2013068719 W JP2013068719 W JP 2013068719W WO 2014017288 A1 WO2014017288 A1 WO 2014017288A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conductive film
composition
formula
mass
Prior art date
Application number
PCT/JP2013/068719
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 徹
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014017288A1 publication Critical patent/WO2014017288A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints

Definitions

  • the present invention relates to a conductive film forming composition, and more particularly to a conductive film forming composition containing a polymer having a predetermined reducing group and copper oxide particles.
  • the present invention also relates to a method for producing a conductive film, and more particularly to a method for producing a conductive film using the conductive film forming composition.
  • a dispersion of metal particles or metal oxide particles is applied to the base material by a printing method, and heat treatment is performed to sinter the metal film or wiring on a circuit board.
  • a technique for forming an electrically conductive portion is known. Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
  • Patent Document 1 discloses a method for producing a conductive pattern by forming a coating film using a dispersion containing a polyhydrazone compound and copper fine particles, and further performing a heat treatment. ing.
  • a coating film is formed using the dispersion containing the reducing organic polymer represented by the aliphatic polyether compound which has a hydroxyl group at the terminal, and a metal oxide particle, and also heat processing Has disclosed a method for producing a metal thin film.
  • An object of this invention is to provide the composition for electrically conductive film formation which can form the electrically conductive film which shows the outstanding electroconductivity in view of the said situation, and is excellent in storage stability.
  • Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
  • the present inventors have found that the above problems can be solved by using a vinyl polymer having a predetermined reducing group bonded through a linking group. That is, it has been found that the above object can be achieved by the following configuration.
  • the repeating unit represented by formula (1) includes the repeating unit represented by formula (2) described later or the repeating unit represented by formula (3) described later.
  • composition For forming a conductive film according to any one of (1) to (4), wherein the content of the repeating unit represented by the formula (1) is 60 to 100 mol% with respect to all the repeating units. Composition. (6) The composition for forming a conductive film according to any one of (1) to (5), wherein the average particle diameter of the copper oxide particles is 100 nm or less.
  • a mass ratio of the vinyl polymer to the copper oxide particles is 3.0 or less.
  • the electrically conductive film which shows the outstanding electroconductivity can be formed, and the composition for electrically conductive film formation which is excellent in storage stability can be provided.
  • the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
  • one feature of the present invention is that a vinyl polymer having a reducing group containing a hydroxyl group is used.
  • a hydroxyl group functioning as a reducing group is bonded as a side chain to the main chain portion of the vinyl polymer via a methylene group and a linking group.
  • the reducing action of the hydroxyl group is suppressed, and the reducing action is produced only by an external action such as heat treatment or light irradiation treatment.
  • the vinyl polymer used in the present invention acts as a latent reducing agent. Therefore, simply mixing the vinyl polymer and the copper oxide particles hardly causes a reducing action on the copper oxide particles, and the occurrence of precipitation in the composition is suppressed. As a result, the storage stability of the composition is improved. improves. Furthermore, this vinyl polymer has a strong reducing action on the copper oxide particles after the heat treatment or the light irradiation treatment, and as a result, a conductive film containing metallic copper having excellent conductive properties can be produced.
  • the vinyl polymer contained in the composition for forming a conductive film contains a repeating unit represented by the following formula (1).
  • the side chain part containing the OH group in the formula (1) functions as a reducing group having an action of reducing the copper oxide particles. That is, the vinyl polymer corresponds to a latent reducing agent that acts as a reducing agent for the copper oxide particles when heat treatment or light irradiation treatment is performed. Therefore, even if the vinyl-based polymer and the copper oxide particles coexist, the reduction of the copper oxide particles does not substantially proceed unless the predetermined heat treatment or light irradiation treatment is performed. Excellent storage stability.
  • a vinyl polymer intends the polymer (polymer) obtained by superposing
  • R 1 represents a hydrogen atom or an alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms from the viewpoint of easy synthesis and excellent handleability. Of these, a methyl group and an ethyl group are preferable.
  • L 1 represents a divalent linking group (organic group) which may have a substituent.
  • the divalent linking group include a divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms), and a divalent aromatic hydrocarbon group (preferably having 6 to 6 carbon atoms). 12), —O—, —S—, —SO 2 —, —N (R) — (R: alkyl group), —CO—, —NH—, —COO—, —CONH—, or a combination thereof Groups (for example, an alkyleneoxy group, an alkyleneoxycarbonyl group, an alkylenecarbonyloxy group, and the like).
  • divalent aliphatic hydrocarbon group examples include a methylene group, an ethylene group, a propylene group, or a butylene group.
  • divalent aromatic hydrocarbon group examples include a phenylene group and a naphthylene group.
  • the linking group may have a substituent, and the type thereof is not particularly limited.
  • halogen atom alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, acyloxy group, carbamoyloxy group, Alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group, ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto Group, alkylthio group, arylthio group, sulfamoyl group, sulfo group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group
  • the repeating unit represented by Formula (2) or the repeating unit represented by Formula (3) is mentioned.
  • the polyol group (HOCH 2 CHOH—) in the repeating unit represented by the formula (2) or the hydroxyketone group (HOCH 2 CO—) in the repeating unit represented by the formula (3) is contained in the vinyl polymer.
  • the polymer has a high reducing power, and an excellent conductive film can be obtained at a low temperature.
  • R 1 of formula (2) and (3) has the same definition as R 1 in formula (1).
  • L 2 in Formula (2) and Formula (3) represents a divalent linking group. The definition of the linking group is as described above.
  • both the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) may be contained. When both are included, a conductive film having more excellent conductive properties can be obtained.
  • the repeating unit represented by the formula (5) or the formula (6) is preferable in terms of high production suitability and easy adjustment of physical properties. ).
  • Equation (5) and R 1 in the formula (6) has the same meaning as R 1 in the formula (1).
  • L 4 in Formula (5) and Formula (6) represents a divalent linking group.
  • the definition of the linking group is as described above.
  • L 4 is preferably a divalent aliphatic hydrocarbon group (preferably having 1 to 6 carbon atoms).
  • both the repeating unit represented by the formula (5) and the repeating unit represented by the formula (6) may be contained. When both are included, a conductive film having more excellent conductive properties can be obtained.
  • the content of the repeating unit represented by the formula (1) in the vinyl polymer is not particularly limited, but it is excellent in the storage stability of the composition for forming a conductive film, and a conductive film excellent in conductive characteristics can be obtained. It is preferably 60 to 100 mol%, more preferably 80 to 100 mol%, based on all repeating units.
  • the vinyl polymer may contain a repeating unit other than the repeating unit represented by the above formula (1), and preferably has a repeating unit represented by the following formula (4).
  • the repeating unit represented by the formula (4) contains a metal coordinating group, and can be coordinated to the copper oxide particles via the group.
  • the storage stability of the copper oxide particles in the composition is improved by the vinyl polymer being coordinated and approaching the copper oxide particles via the metal coordinating group. Furthermore, in the reduction step described later, the reduction effect on the copper oxide particles can be easily achieved, and a conductive film having better conductive properties can be obtained in some cases.
  • R 2 represents a hydrogen atom or an alkyl group.
  • the definition and preferred embodiments of the alkyl group are synonymous with the alkyl group represented by R 1 in formula (1).
  • L 3 represents a divalent linking group which may have a substituent. Definition of L 3 are the same as those defined L 1 in Formula (1).
  • X represents a metal coordinating group.
  • the metal coordinating group intends a group capable of coordinating with a metal. The type is not particularly limited.
  • a substituted or unsubstituted amino group, a substituted or unsubstituted amide group, or a substituted or unsubstituted amino group is superior in terms of storage stability of the composition for forming a conductive film, and a conductive film having excellent conductive properties.
  • a substituted carboxyl group is preferred, and any of the groups represented by the following formulas (X) to (Z) is more preferred.
  • * represents a bonding position with L 3 .
  • R 3 to R 7 each independently represents a hydrogen atom or a monovalent organic group.
  • the type of the monovalent organic group is not particularly limited, and examples thereof include aliphatic hydrocarbon groups (for example, alkyl groups, alkenyl groups, alkynyl groups, etc.), aromatic hydrocarbon groups (for example, aryl groups), heterocyclic groups ( For example, an azole group, a pyridyl group), etc. are mentioned, A hydrogen atom, a methyl group, or an ethyl group is preferable.
  • the content is not particularly limited, but a conductive film excellent in the storage stability of the composition for forming a conductive film and having excellent conductive properties is obtained. Therefore, the content is preferably 1 to 40 mol%, more preferably 5 to 20 mol%, based on all repeating units.
  • the weight-average molecular weight of the vinyl polymer is not particularly limited, but is preferably from 1,000 to 1,000,000, more preferably from 3,000 to 100,000, from the viewpoint that a conductive film excellent in the storage stability of the conductive film-forming composition and the conductive properties can be obtained. preferable.
  • a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation is used and measured in terms of polystyrene using N-methylpyrrolidone as a solvent.
  • the production method of the vinyl polymer is not particularly limited, and a known method can be adopted.
  • a desired vinyl polymer can be obtained by performing radical polymerization, cationic polymerization, or anionic polymerization using a vinyl monomer that forms a desired repeating unit.
  • various initiators such as radical polymerization initiators
  • the composition for forming a conductive film contains copper oxide particles.
  • the “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in a crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound for which no peak is detected. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to copper oxide particles.
  • copper oxide copper (I) oxide or copper (II) oxide is preferable, and copper (II) oxide is more preferable because it is available at low cost and has low resistance.
  • the average particle size of the copper oxide particles is not particularly limited, but is preferably 100 nm or less, and more preferably 50 nm or less.
  • the lower limit is not particularly limited, but is preferably 1 nm or more.
  • An average particle size of 1 nm or more is preferable because the activity on the particle surface does not become too high, does not dissolve in the composition, and is easy to handle. Moreover, if it is 100 nm or less, it becomes easy to form a pattern such as wiring by a printing method using the composition as an ink-jet ink composition, and when the composition is made into a conductor, reduction to metal copper is sufficient. Therefore, it is preferable because the conductivity of the obtained conductive film is good.
  • the average particle diameter in this invention points out an average primary particle diameter.
  • the average particle diameter is determined by measuring the particle diameter (diameter) of at least 50 or more copper oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM) and arithmetically averaging them. In the observation diagram, when the shape of the copper oxide particles is not a perfect circle, the major axis is measured as the diameter.
  • the copper oxide particles for example, CuO nanoparticles made by Kanto Chemical Co., CuO nanoparticles made by Sigma-Aldrich, etc. can be preferably used.
  • the composition for forming a conductive film contains a solvent.
  • the solvent functions as a dispersion medium for the copper oxide particles.
  • the type of the solvent is not particularly limited.
  • water, organic solvents such as alcohols, ethers, and esters can be used.
  • an aliphatic alcohol having a monovalent to trivalent hydroxyl group from the viewpoint of better compatibility with the vinyl polymer and the copper oxide particles, water, an aliphatic alcohol having a monovalent to trivalent hydroxyl group, an alkyl ether derived from the aliphatic alcohol, derived from the aliphatic alcohol.
  • Alkyl esters or mixtures thereof are preferably used.
  • aliphatic alcohols having a monovalent to trivalent hydroxyl group include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, and 1-nonanol.
  • aliphatic alcohols having 1 to 3 carbon atoms having 1 to 3 valent hydroxyl groups have a high boiling point and are difficult to remain after formation of the conductive film, and are compatible with the vinyl polymer and the copper oxide particles.
  • Methanol, ethylene glycol, glycerin, 2-methoxyethanol, diethylene glycol, and isopropyl alcohol are more preferable.
  • ethers examples include alkyl ethers derived from the above alcohols, such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl.
  • alkyl ethers having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferred.
  • diethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran are more preferred.
  • esters examples include alkyl esters derived from the above alcohols, such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, and ⁇ -butyrolactone. Illustrated. Among these, alkyl esters having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferable, and specifically, methyl formate, ethyl formate, and methyl acetate are more preferable. .
  • the main solvent is a solvent having the highest content in the solvent.
  • the composition for forming a conductive film may contain other components in addition to the vinyl polymer, the copper oxide particles, and the solvent.
  • the composition for forming a conductive film may contain a surfactant.
  • the surfactant plays a role of improving the dispersibility of the copper oxide particles.
  • the type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
  • composition for forming a conductive film contains the above-described vinyl polymer, copper oxide particles, and a solvent.
  • the content of the vinyl polymer in the composition for forming a conductive film is not particularly limited, but is preferably 5 to 50% by mass with respect to the total mass of the composition from the viewpoint of obtaining a conductive film having superior conductive characteristics. 35 mass% is more preferable.
  • the content of the copper oxide particles in the composition for forming a conductive film is not particularly limited, but a conductive film having a sufficient film thickness that is superior in conductive properties can be obtained, and an increase in viscosity is suppressed, so that the composition can be used as an ink jet ink composition.
  • the content of the solvent in the composition for forming a conductive film is not particularly limited, but is preferably 5 to 90% by mass with respect to the total mass of the composition from the viewpoint of suppressing an increase in viscosity and being excellent in handleability. 80 mass% is more preferable.
  • the mass ratio between the vinyl polymer and the copper oxide particles in the composition for forming a conductive film is not particularly limited. 10 or less is preferable and 3.0 or less is more preferable. In addition, although a minimum in particular is not restrict
  • the content of the surfactant is not particularly limited, but is 0.0001 to 1% by mass with respect to the total mass of the composition from the viewpoint of improving coating properties. Is preferable, and 0.001 to 0.1% by mass is more preferable.
  • the viscosity of the conductive film forming composition is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing.
  • a viscosity suitable for printing applications such as inkjet and screen printing.
  • inkjet discharge 1 to 50 cP is preferable, and 1 to 40 cP is more preferable.
  • screen printing it is preferably from 1,000 to 100,000 cP, more preferably from 10,000 to 80,000 cP.
  • the method for preparing the conductive film forming composition is not particularly limited, and a known method can be adopted.
  • a known method can be adopted.
  • the components are dispersed by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method.
  • a composition can be obtained.
  • the manufacturing method of the electrically conductive film of this invention has a coating-film formation process and a reduction process at least. Below, each process is explained in full detail.
  • This step is a step of forming a coating film by applying the above-described composition for forming a conductive film on a substrate.
  • the precursor film before the reduction treatment is obtained in this step.
  • the conductive film forming composition used is as described above.
  • a well-known thing can be used as a base material used at this process.
  • the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof. More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate), polyacetal resin, polysulfone resin, polyetherimide resin, polyether ketone Resin base materials such as resin and cellulose derivatives; uncoated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper ( Paper substrates such as double kraft paper for heavy bags, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, corrugated cardboard; soda glass, borosilicate glass, silica glass, Glass substrates such as quartz glass; silicon-based semiconductor
  • the method for applying the conductive film forming composition onto the substrate is not particularly limited, and a known method can be adopted.
  • coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
  • the shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
  • the coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film.
  • the film thickness of the coating film is preferably 0.01 to 5000 ⁇ m, 0.1 to 1000 ⁇ m is more preferable.
  • the conductive film-forming composition may be applied to the substrate and then dried to remove the solvent.
  • the drying method a hot air dryer or the like can be used.
  • the temperature is preferably a temperature at which the reduction of the copper oxide particles does not occur, and the heat treatment is preferably performed at 40 ° C. to 200 ° C.
  • the heat treatment is more preferably performed at a temperature of from 150 ° C. to less than 150 ° C., more preferably from 70 ° C. to 120 ° C.
  • This step is a step of performing a heat treatment and / or a light irradiation treatment on the coating film formed in the coating film forming step to reduce the copper oxide particles to form a conductive film containing metallic copper.
  • the vinyl polymer produces a reducing action on the copper oxide particles, the copper oxide in the copper oxide particles is reduced, and further sintered to obtain metallic copper.
  • metallic copper particles in the coating film obtained by reducing the copper oxide particles are fused to each other to form grains, and the grains are further bonded and fused. To form a thin film.
  • the vinyl polymer may remain in the conductive film.
  • the heating temperature is preferably 100 to 300 ° C., more preferably 150 to 250 ° C.
  • the heating time is 5 to 120 minutes in that a conductive film having superior conductivity can be formed in a short time.
  • 10 to 60 minutes are more preferable.
  • the heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
  • the light irradiation treatment enables reduction and sintering of the copper oxide by irradiating light on the portion to which the coating film has been applied at room temperature for a short time, and is due to long-time heating.
  • the base material is not deteriorated, and the adhesion of the conductive film to the base material becomes better.
  • the copper oxide particles absorb light and convert it into heat, and the heat causes the hydroxyl group in the vinyl polymer to undergo a reducing action, and the formed copper metal Progression of fusion proceeds.
  • the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
  • the irradiation energy of the pulse light is preferably 1 ⁇ 100J / cm 2, more preferably 1 ⁇ 30J / cm 2, preferably from 1 ⁇ sec ⁇ 100 m sec as a pulse width, and more preferably 10 ⁇ sec ⁇ 10 m sec.
  • the irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
  • the above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
  • the atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere.
  • the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen
  • the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
  • a conductive film (metal copper film) containing metal copper is obtained.
  • the film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 ⁇ m is preferable and 0.1 to 100 ⁇ m is more preferable from the viewpoint of printed wiring board use.
  • the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
  • the volume resistance value of the conductive film is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less, more preferably 1 ⁇ 10 ⁇ 3 ⁇ cm or less, and further preferably 5 ⁇ 10 ⁇ 4 ⁇ cm or less from the viewpoint of conductive characteristics.
  • the volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the conductive film by the four-probe method.
  • the conductive film may be provided on the entire surface of the base material or in a pattern.
  • the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
  • wiring conductor wiring
  • the above-mentioned composition for forming a conductive film was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided.
  • a method of etching the conductive film in a pattern may be used.
  • the etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
  • an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
  • the material of the insulating film is not particularly limited.
  • epoxy resin epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin and the like.
  • an epoxy resin a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin.
  • Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
  • solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
  • the base material (base material with a conductive film) having the conductive film obtained above can be used for various applications.
  • a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 2 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 31000.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 4 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 30000.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 5 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 28000.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 6 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 31000.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 7 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 110,000.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • GPC gel permeation chromatograph
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 8 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 1500.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • the obtained polymer was dissolved in IPA to obtain a polymer solution 9 having a solid content of 50 wt%.
  • the weight average molecular weight Mw of the obtained polymer was 34000.
  • the weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
  • Dispersion 2 was obtained according to the same procedure as in Dispersion Preparation Example 1, except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 2 (380 parts by mass).
  • Dispersion 3 was obtained according to the same procedure as in Dispersion Preparation Example 1, except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer aqueous solution 3 (420 parts by mass).
  • Dispersion 4 was obtained according to the same procedure as Dispersion Preparation Example 1, except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 4 (420 parts by mass).
  • Dispersion 5 was obtained according to the same procedure as Dispersion Preparation Example 1, except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 5 (320 parts by mass).
  • Dispersion 6 was obtained according to the same procedure as in Preparation 1 for dispersion except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 6 (290 parts by mass).
  • Dispersion 7 was obtained in the same manner as in Dispersion Preparation Example 1, except that aqueous polymer solution 1 (420 parts by mass) was replaced with an aqueous solution (420 parts by mass) containing 50 wt% polyethylene glycol (average molecular weight 300).
  • Dispersion Preparation Example 8 Dispersion was carried out according to the same procedure as in Preparation Example 1 except that the aqueous polymer solution 1 (420 parts by mass) was replaced with an aqueous solution (420 parts by mass) containing 50 wt% poly (methyl vinyl ketone dimethylhydrazone) (average molecular weight 6000). Liquid 8 was obtained.
  • the poly (methyl vinyl ketone dimethylhydrazone) corresponds to the polymer disclosed in Patent Document 1.
  • Dispersion 9 was obtained according to the same procedure as Dispersion Preparation Example 1 except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer solution 7 (290 parts by mass).
  • Dispersion 10 was obtained according to the same procedure as Dispersion Preparation Example 1, except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer solution 8 (290 parts by mass).
  • Dispersion 11 was obtained in the same manner as Dispersion Preparation Example 1, except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer solution 9 (340 parts by mass).
  • Dispersion 12 was obtained according to the same procedure as Dispersion Preparation Example 1, except that the amount of polymer aqueous solution 1 used was changed from 420 parts by weight to 800 parts by weight.
  • Dispersion 13 was obtained in the same manner as in Dispersion Preparation Example 1, except that aqueous polymer solution 1 (420 parts by mass) was replaced with an aqueous solution (420 parts by mass) containing 50 wt% polyvinyl alcohol (average molecular weight 22000). When the obtained dispersion liquid 13 was allowed to stand at room temperature for 24 hours, the dispersion state was maintained.
  • Table 1 below collectively shows the results of the above-mentioned dispersion preparation examples 1 to 13.
  • the “reducing group” column and the “coordinating group” column in Table 1 mean the type of each functional group contained in the polymer in the polymer solution.
  • dispersions 1 to 6 and 9 to 12 corresponding to the composition for forming a conductive film of the present invention exhibited excellent storage stability.
  • Dispersion 7 when a polymer having a hydroxyl group at the terminal described in Patent Document 2 was used, the storage stability of the conductive film forming composition was poor.
  • Example 1 The dispersion 1 was printed on a 10 ⁇ 10 mm surface of a glass substrate using an inkjet printing apparatus (manufactured by FUJIFILM Dimatix, apparatus name: DMP-2831).
  • a copper thin film was obtained by drying in a glove box (oxygen concentration ⁇ 100 ppm) on a hot plate at 100 ° C. for 10 minutes and then sintering at 200 ° C. for 1 hour.
  • the film thickness was measured with a stylus type film thickness meter, it was 0.5 ⁇ m.
  • the volume resistivity was measured using a four-probe method resistivity meter, it was 6 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 2 A copper thin film was obtained by performing the same operation as in Example 1 except that the glass substrate was replaced with a PET substrate.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 4 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 3 The copper thin film was obtained by performing the same operation as Example 1 except having changed the sintering method from 200 degreeC 1-hour heating sintering to the light sintering shown below.
  • the obtained copper thin film had a thickness of 0.4 ⁇ m and a volume resistivity of 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • Light sintering Light irradiation was performed using an Xe flash lamp (set voltage 3 kV) at an irradiation energy of 2070 J and a pulse width of 2 msec.
  • Example 4 The copper thin film was obtained by performing the same operation as Example 1 except having changed the sintering temperature from 200 degreeC to 250 degreeC.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 2 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 5 The copper thin film was obtained by performing the same operation as Example 1 except having changed the sintering temperature from 200 degreeC to 300 degreeC.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 5 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 6 A copper thin film was obtained by performing the same operation as in Example 1 except that Dispersion 1 was replaced with Dispersion 2.
  • the obtained copper thin film had a thickness of 0.6 ⁇ m and a volume resistivity of 3 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 7 A copper thin film was obtained by performing the same operation as in Example 6 except that the sintering method was changed from heat sintering at 200 ° C. for 1 hour to light sintering.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the conditions for photosintering were the same as those performed in Example 3.
  • Example 8 A copper thin film was obtained by performing the same operation as in Example 7 except that the glass substrate was replaced with a PET substrate.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • Example 9 A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 4.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 8 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 10 A copper thin film was obtained by performing the same operation as in Example 9 except that the sintering method was changed from heat sintering at 200 ° C. for 1 hour to light sintering.
  • the obtained copper thin film had a thickness of 0.4 ⁇ m and a volume resistivity of 7 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the conditions for photosintering were the same as those performed in Example 3.
  • Example 11 A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 5.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 3 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 12 A copper thin film was obtained by performing the same operation as in Example 11 except that the sintering method was changed from heat sintering at 200 ° C. for 1 hour to light sintering.
  • the obtained copper thin film had a thickness of 0.4 ⁇ m and a volume resistivity of 3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the conditions for photosintering were the same as those performed in Example 3.
  • Example 13 A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 6.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 14 The copper thin film was obtained by performing the same operation as Example 13 except having changed the sintering temperature from 200 degreeC to 150 degreeC.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 15 A copper thin film was obtained by performing the same operation as in Example 14 except that the dispersion 6 was replaced with the dispersion 9.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 4 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 16 A copper thin film was obtained by performing the same operation as in Example 15 except that the dispersion 9 was replaced with the dispersion 10.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 6 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • Example 17 A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 11.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • Example 18 A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 12.
  • the obtained copper thin film had a thickness of 0.6 ⁇ m and a volume resistivity of 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • Example 1 A thin film was prepared by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 8.
  • the film thickness of the obtained thin film was 0.5 ⁇ m.
  • the volume resistivity of the thin film obtained using the four-probe method resistivity meter was measured, it showed no conductivity.
  • Example 2 A thin film was prepared by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 13.
  • the film thickness of the obtained thin film was 0.5 ⁇ m.
  • the obtained copper thin film had a thickness of 0.5 ⁇ m and a volume resistivity of 3 ⁇ 10 2 ⁇ ⁇ cm.
  • Example 14 when the molecular weight of the vinyl polymer was within a predetermined range, a copper thin film having a smaller volume resistivity, that is, excellent electrical conductivity, was obtained.
  • Example 1 and Example 18 when the mass ratio of the vinyl polymer and the copper oxide particles (the mass of the vinyl polymer / the mass of the copper oxide particles) is 3 or less, the volume resistivity is further increased. Was obtained, that is, a copper thin film excellent in conductive properties was obtained.
  • Example 13 and Example 17 when the vinyl polymer has two kinds of reducing groups, a copper thin film having a smaller volume resistivity, that is, excellent electrical conductivity can be obtained. It was.
  • Comparative Example 1 using the dispersion 8 containing poly (methyl vinyl ketone dimethyl hydrazone) described in Patent Document 1 a film showing conductivity was not obtained.
  • Comparative Example 2 using the dispersion liquid 13 containing polyvinyl alcohol only a film having inferior conductive properties was obtained.

Abstract

The purpose of the present invention is to provide a composition which is to be used in forming a conductive film and which can form a conductive film with excellent conductivity and exhibits excellent storage stability. This composition comprises: a vinyl polymer which comprises repeating units represented by formula (1); copper oxide particles; and a solvent.

Description

導電膜形成用組成物および導電膜の製造方法Conductive film forming composition and conductive film manufacturing method
 本発明は、導電膜形成用組成物に係り、特に、所定の還元性基を有するポリマーと酸化銅粒子とを含有する導電膜形成用組成物に関する。
 また、本発明は、導電膜の製造方法に係り、特に、上記導電膜形成用組成物を用いた導電膜の製造方法に関する。
The present invention relates to a conductive film forming composition, and more particularly to a conductive film forming composition containing a polymer having a predetermined reducing group and copper oxide particles.
The present invention also relates to a method for producing a conductive film, and more particularly to a method for producing a conductive film using the conductive film forming composition.
 基材上に金属膜を形成する方法として、金属粒子または金属酸化物粒子の分散体を印刷法により基材に塗布し、加熱処理して焼結させることによって金属膜や回路基板における配線等の電気的導通部位を形成する技術が知られている。
 上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
As a method for forming a metal film on a base material, a dispersion of metal particles or metal oxide particles is applied to the base material by a printing method, and heat treatment is performed to sinter the metal film or wiring on a circuit board. A technique for forming an electrically conductive portion is known.
Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
 より具体的には、特許文献1においては、ポリヒドラゾン化合物と銅微粒子とを含有する分散体を用いて塗膜を形成し、さらに加熱処理を施すことにより導電性パターンを製造する方法が開示されている。
 また、特許文献2においては、末端にヒドロキシル基を有する脂肪族ポリエーテル化合物に代表される還元性有機ポリマーと金属酸化物粒子とを含有する分散体を用いて塗膜を形成し、さらに加熱処理を施すことにより金属薄膜を製造する方法が開示されている。
More specifically, Patent Document 1 discloses a method for producing a conductive pattern by forming a coating film using a dispersion containing a polyhydrazone compound and copper fine particles, and further performing a heat treatment. ing.
Moreover, in patent document 2, a coating film is formed using the dispersion containing the reducing organic polymer represented by the aliphatic polyether compound which has a hydroxyl group at the terminal, and a metal oxide particle, and also heat processing Has disclosed a method for producing a metal thin film.
特開2010-174313号公報JP 2010-174313 A 特開2005-2418号公報JP 2005-2418 A
 一方、近年、低コスト化の観点から、酸化銅粒子を含む組成物を用いて導電特性に優れる金属銅を含有する導電膜を形成する方法の開発が要望されている。
 本発明者らが、特許文献1に記載されるポリヒドラゾン化合物と酸化銅粒子とを用いて導電膜の作製を試みたところ、得られた薄膜は導電性を示さず、所望の導電膜を得ることができなかった。
 また、特許文献2で具体的に使用されている末端にヒドロキシル基を有するポリエチレングリコールと酸化銅粒子とを含む組成物を使用した場合、その組成物の保存安定性が悪く、所定時間後には沈殿が確認され、導電膜形成に用いることができなった。
On the other hand, in recent years, from the viewpoint of cost reduction, development of a method for forming a conductive film containing metallic copper having excellent conductive characteristics using a composition containing copper oxide particles has been demanded.
When the present inventors tried to produce a conductive film using the polyhydrazone compound and copper oxide particles described in Patent Document 1, the obtained thin film did not exhibit conductivity, and a desired conductive film was obtained. I couldn't.
Moreover, when the composition containing the polyethylene glycol which has a hydroxyl group at the terminal specifically used by patent document 2, and the copper oxide particle is used, the storage stability of the composition is bad, and it precipitates after a predetermined time. Was confirmed and could not be used for forming a conductive film.
 本発明は、上記実情に鑑みて、優れた導電性を示す導電膜を形成することができ、保存安定性に優れる導電膜形成用組成物を提供することを目的とする。
 また、本発明は、該導電膜形成用組成物を用いた導電膜の製造方法を提供することも目的とする。
An object of this invention is to provide the composition for electrically conductive film formation which can form the electrically conductive film which shows the outstanding electroconductivity in view of the said situation, and is excellent in storage stability.
Another object of the present invention is to provide a method for producing a conductive film using the composition for forming a conductive film.
 本発明者らは、従来技術の問題点について鋭意検討した結果、連結基を介して結合される所定の還元性基を有するビニル系ポリマーを使用することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies on the problems of the prior art, the present inventors have found that the above problems can be solved by using a vinyl polymer having a predetermined reducing group bonded through a linking group.
That is, it has been found that the above object can be achieved by the following configuration.
(1) 後述する式(1)で表される繰り返し単位を有するビニル系ポリマーと、酸化銅粒子と、溶媒とを含む、導電膜形成用組成物。
(2) 式(1)で表される繰り返し単位が、後述する式(2)で表される繰り返し単位、または、後述する式(3)で表される繰り返し単位を含む、(1)に記載の導電膜形成用組成物。
(3) ビニル系ポリマーが、さらに後述する式(4)で表される繰り返し単位を有する、(1)または(2)に記載の導電膜形成用組成物。
(4) 金属配位性基が、置換若しくは未置換のアミノ基、置換若しくは未置換のアミド基、または、置換若しくは未置換のカルボキシル基である、(3)に記載の導電膜形成用組成物。
(5) 式(1)で表される繰り返し単位の含有量が、全繰り返し単位に対して、60~100モル%である、(1)~(4)のいずれかに記載の導電膜形成用組成物。
(6) 酸化銅粒子の平均粒子径が100nm以下である、(1)~(5)のいずれかに記載の導電膜形成用組成物。
(1) The composition for electrically conductive film formation containing the vinyl polymer which has a repeating unit represented by Formula (1) mentioned later, a copper oxide particle, and a solvent.
(2) The repeating unit represented by formula (1) includes the repeating unit represented by formula (2) described later or the repeating unit represented by formula (3) described later. A composition for forming a conductive film.
(3) The conductive film-forming composition according to (1) or (2), wherein the vinyl polymer further has a repeating unit represented by the formula (4) described later.
(4) The composition for forming a conductive film according to (3), wherein the metal coordinating group is a substituted or unsubstituted amino group, a substituted or unsubstituted amide group, or a substituted or unsubstituted carboxyl group. .
(5) For forming a conductive film according to any one of (1) to (4), wherein the content of the repeating unit represented by the formula (1) is 60 to 100 mol% with respect to all the repeating units. Composition.
(6) The composition for forming a conductive film according to any one of (1) to (5), wherein the average particle diameter of the copper oxide particles is 100 nm or less.
(7) ビニル系ポリマーの重量平均分子量が、3000~100000である、(1)~(6)のいずれかに記載の導電膜形成用組成物。
(8) ビニル系ポリマーと酸化銅粒子との質量比(ビニル系ポリマーの質量/酸化銅粒子の質量)が3.0以下である、(1)~(7)のいずれかに記載の導電膜形成用組成物。
(9) (1)~(8)のいずれかに記載の導電膜形成用組成物を基材上に付与して、塗膜を形成する塗膜形成工程と、
 塗膜に対して加熱処理および/または光照射処理を行い、酸化銅粒子を還元して、金属銅を含有する導電膜を形成する還元工程とを備える、導電膜の製造方法。
(7) The composition for forming a conductive film according to any one of (1) to (6), wherein the vinyl polymer has a weight average molecular weight of 3000 to 100,000.
(8) The conductive film according to any one of (1) to (7), wherein a mass ratio of the vinyl polymer to the copper oxide particles (the mass of the vinyl polymer / the mass of the copper oxide particles) is 3.0 or less. Forming composition.
(9) A coating film forming step of applying the composition for forming a conductive film according to any one of (1) to (8) on a substrate to form a coating film,
A reduction process which performs heat processing and / or light irradiation processing to a coating film, reduces copper oxide particles, and forms a conductive film containing metallic copper, and a manufacturing method of a conductive film.
 本発明によれば、優れた導電性を示す導電膜を形成することができ、保存安定性に優れる導電膜形成用組成物を提供することができる。
 また、本発明によれば、該導電膜形成用組成物を用いた導電膜の製造方法を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, the electrically conductive film which shows the outstanding electroconductivity can be formed, and the composition for electrically conductive film formation which is excellent in storage stability can be provided.
Moreover, according to this invention, the manufacturing method of the electrically conductive film using this composition for electrically conductive film formation can also be provided.
 以下に、本発明の導電膜形成用組成物および導電膜の製造方法の好適態様について詳述する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
 上述したように、本発明の一つの特徴点は、ヒドロキシル基を含む還元性基を有するビニル系ポリマーを使用する点が挙げられる。このポリマー中において、還元性基として機能するヒドロキシル基はメチレン基および連結基を介してビニル系ポリマーの主鎖部分に側鎖として結合している。そのため、ヒドロキシル基の還元作用は抑制されており、加熱処理または光照射処理などの外的作用によって初めて還元作用を生じる。つまり、本発明で使用されるビニル系ポリマーは、潜在性還元剤として作用する。従って、このビニル系ポリマーと酸化銅粒子とを単に混合させただけでは、酸化銅粒子に対する還元作用は生じにくく、組成物中での沈殿の発生が抑制され、結果として組成物の保存安定性が向上する。さらに、このビニル系ポリマーは、加熱処理または光照射処理を実施した後の酸化銅粒子に対する還元作用が強く、結果として導電特性に優れた金属銅を含有する導電膜を製造することができる。
Below, the suitable aspect of the manufacturing method of the composition for electrically conductive film formation of this invention and an electrically conductive film is explained in full detail.
First, the feature point compared with the prior art of this invention is explained in full detail.
As described above, one feature of the present invention is that a vinyl polymer having a reducing group containing a hydroxyl group is used. In this polymer, a hydroxyl group functioning as a reducing group is bonded as a side chain to the main chain portion of the vinyl polymer via a methylene group and a linking group. For this reason, the reducing action of the hydroxyl group is suppressed, and the reducing action is produced only by an external action such as heat treatment or light irradiation treatment. That is, the vinyl polymer used in the present invention acts as a latent reducing agent. Therefore, simply mixing the vinyl polymer and the copper oxide particles hardly causes a reducing action on the copper oxide particles, and the occurrence of precipitation in the composition is suppressed. As a result, the storage stability of the composition is improved. improves. Furthermore, this vinyl polymer has a strong reducing action on the copper oxide particles after the heat treatment or the light irradiation treatment, and as a result, a conductive film containing metallic copper having excellent conductive properties can be produced.
 以下では、まず、導電膜形成用組成物の各種成分(ビニル系ポリマー、酸化銅粒子、溶媒など)について詳述し、その後、導電膜の製造方法について詳述する。 In the following, first, various components (vinyl polymer, copper oxide particles, solvent, etc.) of the conductive film forming composition will be described in detail, and then the method for manufacturing the conductive film will be described in detail.
(ビニル系ポリマー)
 導電膜形成用組成物に含まれるビニル系ポリマーは、以下の式(1)で表される繰り返し単位を含む。式(1)中のOH基を含む側鎖部分は、酸化銅粒子を還元する作用を有する還元性基として機能する。つまり、ビニル系ポリマーは、加熱処理または光照射処理が施された際に、酸化銅粒子の還元剤として作用する潜在性還元剤に該当する。そのため、ビニル系ポリマーと酸化銅粒子とを併存させても、所定の加熱処理または光照射処理を施さない限り、酸化銅粒子の還元は実質的に進行せず、導電膜形成用組成物自体の保存安定性に優れる。
 なお、ビニル系ポリマーとは、ビニル基をもつ化合物(モノマー)を重合して得られる重合体(ポリマー)を意図する。
(Vinyl polymer)
The vinyl polymer contained in the composition for forming a conductive film contains a repeating unit represented by the following formula (1). The side chain part containing the OH group in the formula (1) functions as a reducing group having an action of reducing the copper oxide particles. That is, the vinyl polymer corresponds to a latent reducing agent that acts as a reducing agent for the copper oxide particles when heat treatment or light irradiation treatment is performed. Therefore, even if the vinyl-based polymer and the copper oxide particles coexist, the reduction of the copper oxide particles does not substantially proceed unless the predetermined heat treatment or light irradiation treatment is performed. Excellent storage stability.
In addition, a vinyl polymer intends the polymer (polymer) obtained by superposing | polymerizing the compound (monomer) which has a vinyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R1は、水素原子またはアルキル基を表す。
 アルキル基中の炭素数は特に制限されないが、合成が容易で、取扱い性に優れる点で、炭素数1~6が好ましく、炭素数1~3がより好ましい。なかでも、メチル基、エチル基が好ましい。
In formula (1), R 1 represents a hydrogen atom or an alkyl group.
The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms from the viewpoint of easy synthesis and excellent handleability. Of these, a methyl group and an ethyl group are preferable.
 L1は、置換基を有していてもよい2価の連結基(有機基)を表す。
 2価の連結基としては、2価の脂肪族炭化水素基(好ましくは炭素数1~8、より好ましくは炭素数1~5)、2価の芳香族炭化水素基(好ましくは炭素数6~12)、-O-、-S-、-SO2-、-N(R)-(R:アルキル基)、-CO-、-NH-、-COO-、-CONH-、またはこれらを組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。
 2価の脂肪族炭化水素基(例えば、アルキレン基)としては、例えば、メチレン基、エチレン基、プロピレン基、またはブチレン基などが挙げられる。
 2価の芳香族炭化水素基としては、例えば、フェニレン基、ナフチレン基などが挙げられる。
L 1 represents a divalent linking group (organic group) which may have a substituent.
Examples of the divalent linking group include a divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms), and a divalent aromatic hydrocarbon group (preferably having 6 to 6 carbon atoms). 12), —O—, —S—, —SO 2 —, —N (R) — (R: alkyl group), —CO—, —NH—, —COO—, —CONH—, or a combination thereof Groups (for example, an alkyleneoxy group, an alkyleneoxycarbonyl group, an alkylenecarbonyloxy group, and the like).
Examples of the divalent aliphatic hydrocarbon group (for example, an alkylene group) include a methylene group, an ethylene group, a propylene group, or a butylene group.
Examples of the divalent aromatic hydrocarbon group include a phenylene group and a naphthylene group.
 上記連結基は置換基を有していてもよく、その種類は特に制限されない。例えば、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルまたはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、スルファモイル基、スルホ基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH)2)、ホスファト基(-OPO(OH)2)、スルファト基(-OSO3H)、または、その他の公知の置換基が挙げられる。なかでも、還元力が強く低温で優れた導電膜が得られる点から、ヒドロキシル基が好ましい。なお、置換基は複数含まれていてもよい。 The linking group may have a substituent, and the type thereof is not particularly limited. For example, halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, acyloxy group, carbamoyloxy group, Alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group, ammonio group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl or arylsulfonylamino group, mercapto Group, alkylthio group, arylthio group, sulfamoyl group, sulfo group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, phosphino group, phosphinyl group, Finiruokishi group, phosphinyl group, a phosphono group, a silyl group, a hydrazino group, a ureido group, a boronic acid group (-B (OH) 2), phosphato group (-OPO (OH) 2), a sulfato group (-OSO 3 H) or other known substituents. Of these, a hydroxyl group is preferred because it has a strong reducing power and an excellent conductive film can be obtained at low temperatures. A plurality of substituents may be included.
 上記式(1)で表される繰り返し単位の好適態様としては、式(2)で表される繰り返し単位、または、式(3)で表される繰り返し単位が挙げられる。式(2)で表される繰り返し単位中のポリオール基(HOCH2CHOH-)、または、式(3)で表される繰り返し単位中のヒドロキシケトン基(HOCH2CO-)がビニル系ポリマー中に含まれる場合、ポリマーが高い還元力を有し、低温で優れた導電膜が得られる。 As a suitable aspect of the repeating unit represented by the said Formula (1), the repeating unit represented by Formula (2) or the repeating unit represented by Formula (3) is mentioned. The polyol group (HOCH 2 CHOH—) in the repeating unit represented by the formula (2) or the hydroxyketone group (HOCH 2 CO—) in the repeating unit represented by the formula (3) is contained in the vinyl polymer. When included, the polymer has a high reducing power, and an excellent conductive film can be obtained at a low temperature.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2)および式(3)中のR1は、式(1)中のR1と同義である。
 式(2)および式(3)中のL2は、2価の連結基を表す。連結基の定義は、上述の通りである。
 なお、ビニル系ポリマー中には、式(2)で表される繰り返し単位と、式(3)で表される繰り返し単位との両方が含まれていてもよい。両方含まれる場合、より導電特性に優れた導電膜が得られる。
R 1 of formula (2) and (3) has the same definition as R 1 in formula (1).
L 2 in Formula (2) and Formula (3) represents a divalent linking group. The definition of the linking group is as described above.
In the vinyl polymer, both the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) may be contained. When both are included, a conductive film having more excellent conductive properties can be obtained.
 さらに、上記式(1)で表される繰り返し単位の好適態様としては、製造適性が高く、物性値の調整が容易な点で、式(5)で表される繰り返し単位、または、式(6)で表される繰り返し単位が挙げられる。 Furthermore, as a preferred embodiment of the repeating unit represented by the above formula (1), the repeating unit represented by the formula (5) or the formula (6) is preferable in terms of high production suitability and easy adjustment of physical properties. ).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(5)および式(6)中のR1は、式(1)中のR1と同義である。
 式(5)および式(6)中のL4は、2価の連結基を表す。連結基の定義は、上述の通りである。なかでも、L4としては、2価の脂肪族炭化水素基(好ましくは炭素数1~6)が好ましい。
 なお、ビニル系ポリマー中には、式(5)で表される繰り返し単位と、式(6)で表される繰り返し単位との両方が含まれていてもよい。両方含まれる場合、より導電特性に優れた導電膜が得られる。
Equation (5) and R 1 in the formula (6) has the same meaning as R 1 in the formula (1).
L 4 in Formula (5) and Formula (6) represents a divalent linking group. The definition of the linking group is as described above. Among them, L 4 is preferably a divalent aliphatic hydrocarbon group (preferably having 1 to 6 carbon atoms).
In the vinyl polymer, both the repeating unit represented by the formula (5) and the repeating unit represented by the formula (6) may be contained. When both are included, a conductive film having more excellent conductive properties can be obtained.
 ビニル系ポリマー中における式(1)で表される繰り返し単位の含有量は特に制限されないが、導電膜形成用組成物の保存安定性により優れ、導電特性により優れた導電膜が得られる点で、全繰り返し単位に対して、60~100モル%であることが好ましく、80~100モル%であることがより好ましい。 The content of the repeating unit represented by the formula (1) in the vinyl polymer is not particularly limited, but it is excellent in the storage stability of the composition for forming a conductive film, and a conductive film excellent in conductive characteristics can be obtained. It is preferably 60 to 100 mol%, more preferably 80 to 100 mol%, based on all repeating units.
 ビニル系ポリマーには、上述した式(1)で表される繰り返し単位以外の繰り返し単位が含まれていてもよく、以下の式(4)で表される繰り返し単位を有することが好ましい。式(4)で表される繰り返し単位中には、金属配位性基が含まれており、該基を介して酸化銅粒子に配位可能となる。ビニル系ポリマーが金属配位性基を介して酸化銅粒子に配位して近接することにより、組成物中での酸化銅粒子の保存安定性が向上する。さらに、後述する還元工程の際に、酸化銅粒子に対する還元作用が及びやすくなり、導電特性により優れる導電膜を得ることができる場合がある。 The vinyl polymer may contain a repeating unit other than the repeating unit represented by the above formula (1), and preferably has a repeating unit represented by the following formula (4). The repeating unit represented by the formula (4) contains a metal coordinating group, and can be coordinated to the copper oxide particles via the group. The storage stability of the copper oxide particles in the composition is improved by the vinyl polymer being coordinated and approaching the copper oxide particles via the metal coordinating group. Furthermore, in the reduction step described later, the reduction effect on the copper oxide particles can be easily achieved, and a conductive film having better conductive properties can be obtained in some cases.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(4)中、R2は、水素原子またはアルキル基を表す。アルキル基の定義および好適態様は、式(1)中のR1で表されるアルキル基と同義である。
 L3は、置換基を有していてもよい2価の連結基を表す。L3の定義は、式(1)中のL1の定義と同義である。
 Xは、金属配位性基を表す。金属配位性基とは、金属に対して配位可能な基を意図する。その種類は特に制限されないが、例えば、アミノ基、アミド基、アミジノ基、トリアジン環、トリアゾール環、ベンゾトリアゾール基、イミダゾール基、ベンズイミダゾール基、キノリン基、ピリジン基、ピリミジン基、ピラジン基、ナゾリン基、キノキサリン基、プリン基、トリアジン基、ピペリジン基、ピペラジン基、ピロリジン基、ピラゾール基、アニリン基、ニトロ基、ニトロソ基、チオール基、チオウレア基、チオシアヌール酸基、ベンズチアゾール基、メルカプトトリアジン基、チオエーテル基、チオキシ基、スルホキシド基、スルホン基、サルファイト基、スルホン酸基、リン酸基、または、ボロン酸基などが挙げられる。
 なかでも、導電膜形成用組成物の保存安定性により優れ、導電特性により優れた導電膜が得られる点で、置換若しくは未置換のアミノ基、置換若しくは未置換のアミド基、または、置換若しくは未置換のカルボキシル基が好ましく、以下の式(X)~(Z)で表される基のいずれかがより好ましい。なお、式中、*はL3との結合位置を表す。
In formula (4), R 2 represents a hydrogen atom or an alkyl group. The definition and preferred embodiments of the alkyl group are synonymous with the alkyl group represented by R 1 in formula (1).
L 3 represents a divalent linking group which may have a substituent. Definition of L 3 are the same as those defined L 1 in Formula (1).
X represents a metal coordinating group. The metal coordinating group intends a group capable of coordinating with a metal. The type is not particularly limited. For example, amino group, amide group, amidino group, triazine ring, triazole ring, benzotriazole group, imidazole group, benzimidazole group, quinoline group, pyridine group, pyrimidine group, pyrazine group, nazoline group , Quinoxaline group, purine group, triazine group, piperidine group, piperazine group, pyrrolidine group, pyrazole group, aniline group, nitro group, nitroso group, thiol group, thiourea group, thiocyanuric acid group, benzthiazole group, mercaptotriazine group, thioether Group, thioxy group, sulfoxide group, sulfone group, sulfite group, sulfonic acid group, phosphoric acid group, or boronic acid group.
Among these, a substituted or unsubstituted amino group, a substituted or unsubstituted amide group, or a substituted or unsubstituted amino group is superior in terms of storage stability of the composition for forming a conductive film, and a conductive film having excellent conductive properties. A substituted carboxyl group is preferred, and any of the groups represented by the following formulas (X) to (Z) is more preferred. In the formula, * represents a bonding position with L 3 .
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(X)~式(Z)中、R3~R7は、それぞれ独立に、水素原子または1価の有機基を表す。1価の有機基の種類は特に制限されず、例えば、脂肪族炭化水素基(例えば、アルキル基、アルケニル基、アルキニル基など)、芳香族炭化水素基(例えば、アリール基)、複素環基(例えば、アゾール基、ピリジル基)などが挙げられ、水素原子、メチル基またはエチル基が好ましい。 In formulas (X) to (Z), R 3 to R 7 each independently represents a hydrogen atom or a monovalent organic group. The type of the monovalent organic group is not particularly limited, and examples thereof include aliphatic hydrocarbon groups (for example, alkyl groups, alkenyl groups, alkynyl groups, etc.), aromatic hydrocarbon groups (for example, aryl groups), heterocyclic groups ( For example, an azole group, a pyridyl group), etc. are mentioned, A hydrogen atom, a methyl group, or an ethyl group is preferable.
 ビニル系ポリマーに式(4)で表される繰り返し単位が含まれる場合、その含有量は特に制限されないが、導電膜形成用組成物の保存安定性により優れ、導電特性により優れた導電膜が得られる点で、全繰り返し単位に対して、1~40モル%であることが好ましく、5~20モル%であることがより好ましい。 When the vinyl polymer contains a repeating unit represented by the formula (4), the content is not particularly limited, but a conductive film excellent in the storage stability of the composition for forming a conductive film and having excellent conductive properties is obtained. Therefore, the content is preferably 1 to 40 mol%, more preferably 5 to 20 mol%, based on all repeating units.
 ビニル系ポリマーの重量平均分子量は特に制限されないが、導電膜形成用組成物の保存安定性により優れ、導電特性により優れた導電膜が得られる点で、1000~1000000が好ましく、3000~100000がより好ましい。
 なお、重量平均分子量の測定方法としては、東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定する。
The weight-average molecular weight of the vinyl polymer is not particularly limited, but is preferably from 1,000 to 1,000,000, more preferably from 3,000 to 100,000, from the viewpoint that a conductive film excellent in the storage stability of the conductive film-forming composition and the conductive properties can be obtained. preferable.
As a method for measuring the weight average molecular weight, a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation is used and measured in terms of polystyrene using N-methylpyrrolidone as a solvent.
 ビニル系ポリマーの製造方法は特に制限されず、公知の方法を採用できる。例えば、所望の繰り返し単位を形成するビニル系モノマーを用いて、ラジカル重合、カチオン重合またはアニオン重合を行うことにより、所望のビニル系ポリマーを得ることができる。
 なお、各重合様式においては、必要に応じて各種開始剤(例えば、ラジカル重合開始剤など)を使用することができる。
The production method of the vinyl polymer is not particularly limited, and a known method can be adopted. For example, a desired vinyl polymer can be obtained by performing radical polymerization, cationic polymerization, or anionic polymerization using a vinyl monomer that forms a desired repeating unit.
In each polymerization mode, various initiators (such as radical polymerization initiators) can be used as necessary.
(酸化銅粒子)
 導電膜形成用組成物には、酸化銅粒子が含まれる。
 本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、限定的ではないが、銅の含有量が酸化銅粒子に対して1質量%以下であることをいう。
(Copper oxide particles)
The composition for forming a conductive film contains copper oxide particles.
The “copper oxide” in the present invention is a compound that substantially does not contain copper that has not been oxidized. Specifically, in a crystal analysis by X-ray diffraction, a peak derived from copper oxide is detected, and is derived from a metal. Refers to a compound for which no peak is detected. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to copper oxide particles.
 酸化銅としては、酸化銅(I)または酸化銅(II)が好ましく、安価に入手可能であること、低抵抗であることから酸化銅(II)であることが更に好ましい。 As the copper oxide, copper (I) oxide or copper (II) oxide is preferable, and copper (II) oxide is more preferable because it is available at low cost and has low resistance.
 酸化銅粒子の平均粒子径は特に制限されないが、100nm以下が好ましく、50nm以下がより好ましい。下限も特に制限されないが、1nm以上が好ましい。
 平均粒子径が1nm以上であれば、粒子表面の活性が高くなりすぎず、組成物中で溶解することがなく、取扱い性に優れるため好ましい。また、100nm以下であれば、組成物をインクジェット用インク組成物として用い、印刷法により配線等のパターン形成を行うことが容易となり、組成物を導体化する際に、金属銅への還元が十分となり、得られる導電膜の導電性が良好であるため好ましい。
 なお、本発明における平均粒子径は、平均一次粒径のことを指す。平均粒子径は、透過型電子顕微鏡(TEM)観察または走査型電子顕微鏡(SEM)観察により、少なくとも50個以上の酸化銅粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、酸化銅粒子の形状が真円状でない場合、長径を直径として測定する。
 酸化銅粒子としては、例えば、関東化学社製のCuOナノ粒子、シグマアルドリッチ社製のCuOナノ粒子等を好ましく使用することができる。
The average particle size of the copper oxide particles is not particularly limited, but is preferably 100 nm or less, and more preferably 50 nm or less. The lower limit is not particularly limited, but is preferably 1 nm or more.
An average particle size of 1 nm or more is preferable because the activity on the particle surface does not become too high, does not dissolve in the composition, and is easy to handle. Moreover, if it is 100 nm or less, it becomes easy to form a pattern such as wiring by a printing method using the composition as an ink-jet ink composition, and when the composition is made into a conductor, reduction to metal copper is sufficient. Therefore, it is preferable because the conductivity of the obtained conductive film is good.
In addition, the average particle diameter in this invention points out an average primary particle diameter. The average particle diameter is determined by measuring the particle diameter (diameter) of at least 50 or more copper oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM) and arithmetically averaging them. In the observation diagram, when the shape of the copper oxide particles is not a perfect circle, the major axis is measured as the diameter.
As the copper oxide particles, for example, CuO nanoparticles made by Kanto Chemical Co., CuO nanoparticles made by Sigma-Aldrich, etc. can be preferably used.
(溶媒)
 導電膜形成用組成物には、溶媒が含まれる。溶媒は、酸化銅粒子の分散媒として機能する。
 溶媒の種類は特に制限されないが、例えば、水や、アルコール類、エーテル類、エステル類などの有機溶媒などを使用することができる。なかでも、上記ビニル系ポリマーおよび酸化銅粒子との相溶性がより優れる点から、水、1~3価のヒドロキシル基を有する脂肪族アルコール、この脂肪族アルコール由来のアルキルエーテル、この脂肪族アルコール由来のアルキルエステル、またはこれらの混合物が好ましく用いられる。
(solvent)
The composition for forming a conductive film contains a solvent. The solvent functions as a dispersion medium for the copper oxide particles.
The type of the solvent is not particularly limited. For example, water, organic solvents such as alcohols, ethers, and esters can be used. Among these, from the viewpoint of better compatibility with the vinyl polymer and the copper oxide particles, water, an aliphatic alcohol having a monovalent to trivalent hydroxyl group, an alkyl ether derived from the aliphatic alcohol, derived from the aliphatic alcohol. Alkyl esters or mixtures thereof are preferably used.
 溶媒として、水を用いる場合には、イオン交換水のレベルの純度を有するものが好ましい。
 1~3価のヒドロキシル基を有する脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、グリシドール、メチルシクロヘキサノール、2-メチル-1-ブタノール、3-メチル-2-ブタノール、4-メチル-2-ペンタノール、イソプロピルアルコール、2-エチルブタノール、2-エチルヘキサノール、2-オクタノール、テルピネオール、ジヒドロテルピネオール、2-メトキシエタノール、2-エトキシエタノール、2-n-ブトキシエタノール、カルビトール、エチルカルビトール、n-ブチルカルビトール、ジアセトンアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、トリメチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ペンタメチレングリコール、へキシレングリコール、グリセリン等が挙げられる。
 なかでも、1~3価のヒドロキシル基を有する炭素数1~6の脂肪族アルコールは、沸点が高すぎず導電膜形成後に残存しにくいこと、上記ビニル系ポリマーおよび酸化銅粒子の相溶性を図りやすいことから好ましく、具体的には、メタノール、エチレングリコール、グリセリン、2-メトキシエタノール、ジエチレングリコール、イソプロピルアルコールがより好ましい。
When water is used as the solvent, one having a level of purity of ion-exchanged water is preferable.
Examples of aliphatic alcohols having a monovalent to trivalent hydroxyl group include methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol, 1-heptanol, 1-octanol, and 1-nonanol. 1-decanol, glycidol, methylcyclohexanol, 2-methyl-1-butanol, 3-methyl-2-butanol, 4-methyl-2-pentanol, isopropyl alcohol, 2-ethylbutanol, 2-ethylhexanol, 2 -Octanol, terpineol, dihydroterpineol, 2-methoxyethanol, 2-ethoxyethanol, 2-n-butoxyethanol, carbitol, ethyl carbitol, n-butyl carbitol, diacetone alcohol, ethylene glycol , Diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, trimethylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, pentamethylene glycol Hexylene glycol, glycerin and the like.
Among these, aliphatic alcohols having 1 to 3 carbon atoms having 1 to 3 valent hydroxyl groups have a high boiling point and are difficult to remain after formation of the conductive film, and are compatible with the vinyl polymer and the copper oxide particles. Methanol, ethylene glycol, glycerin, 2-methoxyethanol, diethylene glycol, and isopropyl alcohol are more preferable.
 エーテル類としては、上記アルコール由来のアルキルエーテルが挙げられ、ジエチルエーテル、ジイソブチルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル、メチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン等が例示される。なかでも、1~3価のヒドロキシル基を有する炭素数1~4の脂肪族アルコール由来の炭素数2~8のアルキルエーテルが好ましく、具体的には、ジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフランがより好ましい。 Examples of ethers include alkyl ethers derived from the above alcohols, such as diethyl ether, diisobutyl ether, dibutyl ether, methyl-t-butyl ether, methyl cyclohexyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl. Examples include ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane and the like. Of these, alkyl ethers having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferred. Specifically, diethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran are more preferred.
 エステル類としては、上記アルコール由来のアルキルエステルが挙げられ、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、γ-ブチロラクトン等が例示される。なかでも、1~3価のヒドロキシル基を有する炭素数1~4の脂肪族アルコール由来の炭素数2~8のアルキルエステルが好ましく、具体的には、ギ酸メチル、ギ酸エチル、酢酸メチルがより好ましい。 Examples of the esters include alkyl esters derived from the above alcohols, such as methyl formate, ethyl formate, butyl formate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, butyl propionate, and γ-butyrolactone. Illustrated. Among these, alkyl esters having 2 to 8 carbon atoms derived from aliphatic alcohols having 1 to 3 carbon atoms and having 1 to 3 valent hydroxyl groups are preferable, and specifically, methyl formate, ethyl formate, and methyl acetate are more preferable. .
 上記溶媒の中でも、沸点が高すぎないことから、特に水を主溶媒として用いることが好ましい。主溶媒とは、溶媒の中で含有率が最も多い溶媒である。 Among the above solvents, it is particularly preferable to use water as the main solvent because the boiling point is not too high. The main solvent is a solvent having the highest content in the solvent.
(その他成分)
 導電膜形成用組成物には、上記ビニル系ポリマー、酸化銅粒子および溶媒以外にも他の成分が含まれていてもよい。
 例えば、導電膜形成用組成物には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子の分散性を向上させる役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種を単独、または2種以上を混合して用いることができる。
(Other ingredients)
The composition for forming a conductive film may contain other components in addition to the vinyl polymer, the copper oxide particles, and the solvent.
For example, the composition for forming a conductive film may contain a surfactant. The surfactant plays a role of improving the dispersibility of the copper oxide particles. The type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
[導電膜形成用組成物]
 導電膜形成用組成物には、上述したビニル系ポリマー、酸化銅粒子、および、溶媒が含有される。
 導電膜形成用組成物中におけるビニル系ポリマーの含有量は特に制限されないが、導電特性により優れる導電膜が得られる点から、組成物全質量に対して、5~50質量%が好ましく、10~35質量%がより好ましい。
 導電膜形成用組成物中における酸化銅粒子の含有量は特に制限されないが、導電特性により優れる十分な膜厚の導電膜が得られると共に、粘度の上昇が抑制され、組成物をインクジェット用インク組成物として用いることができる点から、組成物全質量に対して、5~60質量%が好ましく、10~50質量%がより好ましい。
 導電膜形成用組成物中における溶媒の含有量は特に制限されないが、粘度の上昇が抑制され、取扱い性により優れる点から、組成物全質量に対して、5~90質量%が好ましく、15~80質量%がより好ましい。
[Composition for forming conductive film]
The composition for forming a conductive film contains the above-described vinyl polymer, copper oxide particles, and a solvent.
The content of the vinyl polymer in the composition for forming a conductive film is not particularly limited, but is preferably 5 to 50% by mass with respect to the total mass of the composition from the viewpoint of obtaining a conductive film having superior conductive characteristics. 35 mass% is more preferable.
The content of the copper oxide particles in the composition for forming a conductive film is not particularly limited, but a conductive film having a sufficient film thickness that is superior in conductive properties can be obtained, and an increase in viscosity is suppressed, so that the composition can be used as an ink jet ink composition. From the point that it can be used as a product, it is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on the total mass of the composition.
The content of the solvent in the composition for forming a conductive film is not particularly limited, but is preferably 5 to 90% by mass with respect to the total mass of the composition from the viewpoint of suppressing an increase in viscosity and being excellent in handleability. 80 mass% is more preferable.
 導電膜形成用組成物中におけるビニル系ポリマーと酸化銅粒子との質量比(ビニル系ポリマーの質量/酸化銅粒子の質量)は特に制限されないが、導電特性により優れる導電膜が得られる点から、10以下が好ましく、3.0以下がより好ましい。なお、下限は特に制限されないが、本発明の効果がより優れる点で、0.1以上が好ましい。 The mass ratio between the vinyl polymer and the copper oxide particles in the composition for forming a conductive film (the mass of the vinyl polymer / the mass of the copper oxide particles) is not particularly limited. 10 or less is preferable and 3.0 or less is more preferable. In addition, although a minimum in particular is not restrict | limited, 0.1 or more are preferable at the point which the effect of this invention is more excellent.
 導電膜形成用組成物中に界面活性剤が含まれる場合、界面活性剤の含有量は特に制限されないが、塗布性向上の点から、組成物全質量に対して、0.0001~1質量%が好ましく、0.001~0.1質量%がより好ましい。 When the surfactant is contained in the composition for forming a conductive film, the content of the surfactant is not particularly limited, but is 0.0001 to 1% by mass with respect to the total mass of the composition from the viewpoint of improving coating properties. Is preferable, and 0.001 to 0.1% by mass is more preferable.
 導電膜形成用組成物の粘度は、インクジェット、スクリーン印刷等の印刷用途に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1~50cPが好ましく、1~40cPがより好ましい。スクリーン印刷を行う場合は、1000~100000cPが好ましく、10000~80000cPがより好ましい。 The viscosity of the conductive film forming composition is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing. When inkjet discharge is performed, 1 to 50 cP is preferable, and 1 to 40 cP is more preferable. When screen printing is performed, it is preferably from 1,000 to 100,000 cP, more preferably from 10,000 to 80,000 cP.
 導電膜形成用組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、溶媒中に酸化銅粒子およびビニル系ポリマーを添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。 The method for preparing the conductive film forming composition is not particularly limited, and a known method can be adopted. For example, after adding copper oxide particles and a vinyl polymer in a solvent, the components are dispersed by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method. Thus, a composition can be obtained.
[導電膜の製造方法]
 本発明の導電膜の製造方法は、少なくとも塗膜形成工程と還元工程とを有する。以下に、それぞれの工程について詳述する。
[Method for producing conductive film]
The manufacturing method of the electrically conductive film of this invention has a coating-film formation process and a reduction process at least. Below, each process is explained in full detail.
(塗膜形成工程)
 本工程は、上述した導電膜形成用組成物を基材上に付与して、塗膜を形成する工程である。本工程により還元処理が施される前の前駆体膜が得られる。
 使用される導電膜形成用組成物については、上述の通りである。
(Coating film formation process)
This step is a step of forming a coating film by applying the above-described composition for forming a conductive film on a substrate. The precursor film before the reduction treatment is obtained in this step.
The conductive film forming composition used is as described above.
 本工程で使用される基材としては、公知のものを用いることができる。基材に使用される材料としては、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材、またはこれらの複合物が挙げられる。
 より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリエーテルイミド樹脂基材、紙基材、ガラス基材が好ましく使用される。
A well-known thing can be used as a base material used at this process. Examples of the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof.
More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate), polyacetal resin, polysulfone resin, polyetherimide resin, polyether ketone Resin base materials such as resin and cellulose derivatives; uncoated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper ( Paper substrates such as double kraft paper for heavy bags, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, corrugated cardboard; soda glass, borosilicate glass, silica glass, Glass substrates such as quartz glass; silicon-based semiconductor substrates such as amorphous silicon and polysilicon; Compound semiconductor substrates such as dS, CdTe, GaAs; metal substrates such as copper plate, iron plate, aluminum plate; alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc) Oxides), Nesa (tin oxide), ATO (antimony-doped tin oxide), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), gallium-doped zinc oxide, aluminum nitride substrate, silicon carbide, and other inorganic materials Substrate: Paper-phenolic resin, paper-epoxy resin, paper-polyester resin and other paper-resin composite, glass cloth-epoxy resin, glass cloth-polyimide resin, glass cloth-fluorine resin-glass-resin composite And the like, and the like. Among these, a polyester resin base material, a polyetherimide resin base material, a paper base material, and a glass base material are preferably used.
 導電膜形成用組成物を基材上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。
 塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
 基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましい。
The method for applying the conductive film forming composition onto the substrate is not particularly limited, and a known method can be adopted. For example, coating methods such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used.
The shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
The coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film. Usually, the film thickness of the coating film is preferably 0.01 to 5000 μm, 0.1 to 1000 μm is more preferable.
 本工程においては、必要に応じて、導電膜形成用組成物を基材へ塗布した後に乾燥処理を行い、溶媒を除去してもよい。残存する溶媒を除去することにより、後述する還元工程において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、導電膜の導電性および導電膜と基材との密着性の点で好ましい。
 乾燥処理の方法としては温風乾燥機などを用いることができ、温度としては、酸化銅粒子の還元が生じないような温度が好ましく、40℃~200℃で加熱処理を行なうことが好ましく、50℃以上150℃未満で加熱処理を行なうことがより好ましく、70℃~120℃で加熱処理を行うことがさらに好ましい。
In this step, if necessary, the conductive film-forming composition may be applied to the substrate and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the reduction step described later, and the conductivity of the conductive film and the adhesion between the conductive film and the substrate From the viewpoint of sex.
As the drying method, a hot air dryer or the like can be used. The temperature is preferably a temperature at which the reduction of the copper oxide particles does not occur, and the heat treatment is preferably performed at 40 ° C. to 200 ° C. The heat treatment is more preferably performed at a temperature of from 150 ° C. to less than 150 ° C., more preferably from 70 ° C. to 120 ° C.
(還元工程)
 本工程は、上記塗膜形成工程で形成された塗膜に対して加熱処理および/または光照射処理を行い、酸化銅粒子を還元して、金属銅を含有する導電膜を形成する工程である。
 加熱処理および/または光照射処理を行うことにより、上記ビニル系ポリマーが酸化銅粒子に対して還元作用を生じ、酸化銅粒子中の酸化銅が還元され、さらに焼結されて金属銅が得られる。より具体的には、上記処理を施すことにより、酸化銅粒子が還元されて得られる塗膜中の金属銅粒子同士が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して薄膜を形成する。なお、処理条件によっては、導電膜中に上記ビニル系ポリマーが残存してもよい。
(Reduction process)
This step is a step of performing a heat treatment and / or a light irradiation treatment on the coating film formed in the coating film forming step to reduce the copper oxide particles to form a conductive film containing metallic copper. .
By performing the heat treatment and / or the light irradiation treatment, the vinyl polymer produces a reducing action on the copper oxide particles, the copper oxide in the copper oxide particles is reduced, and further sintered to obtain metallic copper. . More specifically, by performing the above treatment, metallic copper particles in the coating film obtained by reducing the copper oxide particles are fused to each other to form grains, and the grains are further bonded and fused. To form a thin film. Depending on the processing conditions, the vinyl polymer may remain in the conductive film.
 加熱処理の条件は、使用されるビニル系ポリマーの種類によって適宜最適な条件が選択される。なかでも、短時間で、導電性により優れる導電膜を形成することができる点で、加熱温度は100~300℃が好ましく、150~250℃がより好ましく、また、加熱時間は5~120分が好ましく、10~60分がより好ましい。
 なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
 本発明では、比較的低温の加熱処理により導電膜の形成が可能であり、従って、プロセスコストが安いという利点を有する。
As the conditions for the heat treatment, optimum conditions are appropriately selected depending on the type of vinyl polymer used. Among them, the heating temperature is preferably 100 to 300 ° C., more preferably 150 to 250 ° C., and the heating time is 5 to 120 minutes in that a conductive film having superior conductivity can be formed in a short time. Preferably, 10 to 60 minutes are more preferable.
The heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
In the present invention, the conductive film can be formed by heat treatment at a relatively low temperature, and therefore, the process cost is low.
 光照射処理は、上述した加熱処理とは異なり、室温にて塗膜が付与された部分に対して光を短時間照射することで酸化銅の還元および焼結が可能となり、長時間の加熱による基材の劣化が起こらず、導電膜の基材との密着性がより良好となる。なお、光照射した際には、酸化銅粒子が光を吸収して、熱に変換し、その熱によってビニル系ポリマー中のヒドロキシル基が還元作用を生じるようになると共に、形成された金属銅同士の融着が進行する。 Unlike the heat treatment described above, the light irradiation treatment enables reduction and sintering of the copper oxide by irradiating light on the portion to which the coating film has been applied at room temperature for a short time, and is due to long-time heating. The base material is not deteriorated, and the adhesion of the conductive film to the base material becomes better. When irradiated with light, the copper oxide particles absorb light and convert it into heat, and the heat causes the hydroxyl group in the vinyl polymer to undergo a reducing action, and the formed copper metal Progression of fusion proceeds.
 光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
 光照射は、フラッシュランプによる光照射が好ましく、フラッシュランプによるパルス光照射であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基材への熱の影響を極めて小さくすることができる。
 パルス光の照射エネルギーとしては、1~100J/cm2が好ましく、1~30J/cm2がより好ましく、パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射時間は、1~100m秒が好ましく、1~50m秒がより好ましく、1~20m秒が更に好ましい。
The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can concentrate and heat the surface of the portion to which the coating film has been applied in a very short time, so that the influence of heat on the substrate can be extremely reduced.
The irradiation energy of the pulse light is preferably 1 ~ 100J / cm 2, more preferably 1 ~ 30J / cm 2, preferably from 1μ sec ~ 100 m sec as a pulse width, and more preferably 10μ sec ~ 10 m sec. The irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
 上記加熱処理および光照射処理は、単独で実施してもよく、両者を同時に実施してもよい。また、一方の処理を施した後、さらに他方の処理を施してもよい。 The above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
 上記加熱処理および光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。 The atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere. The inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen, and the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
(導電膜)
 上記工程を実施することにより、金属銅を含有する導電膜(金属銅膜)が得られる。
 導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
 なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
 導電膜の体積抵抗値は、導電特性の点から、1×10-2Ωcm以下が好ましく、1×10-3Ωcm以下がより好ましく、5×10-4Ωcm以下がさらに好ましい。
 体積抵抗値は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。
(Conductive film)
By carrying out the above steps, a conductive film (metal copper film) containing metal copper is obtained.
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 μm is preferable and 0.1 to 100 μm is more preferable from the viewpoint of printed wiring board use.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
The volume resistance value of the conductive film is preferably 1 × 10 −2 Ωcm or less, more preferably 1 × 10 −3 Ωcm or less, and further preferably 5 × 10 −4 Ωcm or less from the viewpoint of conductive characteristics.
The volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the conductive film by the four-probe method.
 導電膜は基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
 パターン状の導電膜を得る方法としては、上記導電膜形成用組成物をパターン状に基材に付与して、上記加熱処理および/または光照射処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
 エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
The conductive film may be provided on the entire surface of the base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method of obtaining a patterned conductive film, the above-mentioned composition for forming a conductive film was applied to a substrate in a pattern, and the above heat treatment and / or light irradiation treatment was performed, or the entire surface of the substrate was provided. For example, a method of etching the conductive film in a pattern may be used.
The etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
 パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。 When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
 絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
 これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
The material of the insulating film is not particularly limited. For example, epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
 また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。 The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
 上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。 The base material (base material with a conductive film) having the conductive film obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
 以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(ポリマー合成例1)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、5,6-ジヒドロキシヘキシルアクリレート90質量部、アクリル酸10質量部、およびV-601(和光純薬製、下記構造)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーを重曹水で中和することで、固形分50wt%のポリマー水溶液1を得た。得られたポリマーの重量平均分子量Mwは、28000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 1)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. A diethylene glycol diacetate (60 parts by mass) solution of 90 parts by mass of 5,6-dihydroxyhexyl acrylate, 10 parts by mass of acrylic acid, and 0.3 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd., the following structure) The solution was added dropwise over 2.5 hours. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. By neutralizing the obtained polymer with sodium bicarbonate water, a polymer aqueous solution 1 having a solid content of 50 wt% was obtained. The weight average molecular weight Mw of the obtained polymer was 28000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(ポリマー合成例2)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、5,6-ジヒドロキシヘキシルアクリレート100質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし、固形分50wt%のポリマー溶液2を得た。得られたポリマーの重量平均分子量Mwは、31000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 2)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. Thereto, a solution of 100 parts by mass of 5,6-dihydroxyhexyl acrylate and 0.3 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) in diethylene glycol diacetate (60 parts by mass) was added dropwise over 2.5 hours. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 2 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 31000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
(ポリマー合成例3)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、5,6-ジヒドロキシヘキシルアクリレート60質量部、アクリル酸40質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーを重曹水で中和することで、固形分50wt%のポリマー水溶液3を得た。得られたポリマーの重量平均分子量Mwは、26000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 3)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. Thereto, 60 parts by mass of 5,6-dihydroxyhexyl acrylate, 40 parts by mass of acrylic acid, and 0.3 part by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) were added 2.5 parts of diethylene glycol diacetate (60 parts by mass) solution. It was added dropwise over time. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. By neutralizing the obtained polymer with sodium bicarbonate water, a polymer aqueous solution 3 having a solid content of 50 wt% was obtained. The weight average molecular weight Mw of the obtained polymer was 26000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
(ポリマー合成例4)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、ジヒドロキシアセトンモノアクリレート70質量部、アクリルアミド30質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし、固形分50wt%のポリマー溶液4を得た。得られたポリマーの重量平均分子量Mwは、30000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 4)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. Thereto, a diethylene glycol diacetate (60 parts by mass) solution of 70 parts by mass of dihydroxyacetone monoacrylate, 30 parts by mass of acrylamide, and 0.3 parts by mass of V-601 (manufactured by Wako Pure Chemical Industries) was dropped over 2.5 hours. did. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 4 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 30000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(ポリマー合成例5)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、ジヒドロキシアセトンモノアクリレート90質量部、ジメチルアミノエチルアクリレート10質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし、固形分50wt%のポリマー溶液5を得た。得られたポリマーの重量平均分子量Mwは、28000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 5)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. Thereto, 90 parts by weight of dihydroxyacetone monoacrylate, 10 parts by weight of dimethylaminoethyl acrylate, and 0.3 part by weight of diethylene glycol diacetate (60 parts by weight) of V-601 (manufactured by Wako Pure Chemical Industries) were added for 2.5 hours. It was dripped over. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 5 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 28000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(ポリマー合成例6)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、ジヒドロキシアセトンモノアクリレート100質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし固形分50wt%のポリマー溶液6を得た。得られたポリマーの重量平均分子量Mwは、31000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 6)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. Thereto, 100 parts by mass of dihydroxyacetone monoacrylate and 0.3 part by mass of diethylene glycol diacetate (60 parts by mass) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2.5 hours. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 6 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 31000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
(ポリマー合成例7)
 三口フラスコに、ジエチレングリコールジアセテート70質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、ジヒドロキシアセトンモノアクリレート100質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(30質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし固形分50wt%のポリマー溶液7を得た。得られたポリマーの重量平均分子量Mwは、110000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 7)
70 parts by mass of diethylene glycol diacetate was placed in a three-necked flask and heated to 75 ° C. under a nitrogen stream. Thereto, 100 parts by mass of dihydroxyacetone monoacrylate and 0.3 part by mass of diethylene glycol diacetate (30 parts by mass) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2.5 hours. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 7 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 110,000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
(ポリマー合成例8)
 三口フラスコに、ジエチレングリコールジアセテート200質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、ジヒドロキシアセトンモノアクリレート100質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(190質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし固形分50wt%のポリマー溶液8を得た。得られたポリマーの重量平均分子量Mwは、1500であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 8)
In a three-necked flask, 200 parts by mass of diethylene glycol diacetate was added and heated to 75 ° C. under a nitrogen stream. Thereto, 100 parts by mass of dihydroxyacetone monoacrylate and 0.3 part by mass of diethylene glycol diacetate (190 parts by mass) of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2.5 hours. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 8 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 1500. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
(ポリマー合成例9)
 三口フラスコに、ジエチレングリコールジアセテート140質量部を入れ、窒素気流下、75℃まで加熱した。そこへ、5,6-ジヒドロキシヘキシルアクリレート50質量部、ジヒドロキシアセトンモノアクリレート50質量部、およびV-601(和光純薬製)0.3質量部のジエチレングリコールジアセテート(60質量部)溶液を、2.5時間かけて滴下した。滴下終了後、2時間攪拌した後80℃まで加熱し、更に2時間撹拌した。その後、室温まで、反応溶液を冷却した。反応終了後、水で再沈を行い、固形物を取り出した。得られたポリマーをIPAに溶かし固形分50wt%のポリマー溶液9を得た。得られたポリマーの重量平均分子量Mwは、34000であった。なお、重量平均分子量は東ソー社製ゲル透過クロマトグラフ(GPC)を用いて、N-メチルピロリドンを溶媒としてポリスチレン換算で測定した。
(Polymer synthesis example 9)
In a three-necked flask, 140 parts by mass of diethylene glycol diacetate was placed and heated to 75 ° C. under a nitrogen stream. Thereto, 50 parts by mass of 5,6-dihydroxyhexyl acrylate, 50 parts by mass of dihydroxyacetone monoacrylate, and 0.3 part by mass of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) were added a diethylene glycol diacetate (60 parts by mass) solution. Added dropwise over 5 hours. After completion of dropping, the mixture was stirred for 2 hours, then heated to 80 ° C., and further stirred for 2 hours. Thereafter, the reaction solution was cooled to room temperature. After completion of the reaction, reprecipitation was performed with water, and the solid matter was taken out. The obtained polymer was dissolved in IPA to obtain a polymer solution 9 having a solid content of 50 wt%. The weight average molecular weight Mw of the obtained polymer was 34000. The weight average molecular weight was measured in terms of polystyrene using a gel permeation chromatograph (GPC) manufactured by Tosoh Corporation using N-methylpyrrolidone as a solvent.
(分散液調製例1)
 CuOナノ粒子(関東化学社製:粒径27-95nm)80質量部に対して、純水160質量部を加え、超音波ホモジナイザーで10分間処理し、酸化銅分散液を得た。この分散液に上記ポリマー水溶液1を420質量部、ゾニールFSN1質量部を加え、超音波ホモジナイザーで10分間処理することで分散液1を得た。
(Dispersion Preparation Example 1)
To 80 parts by mass of CuO nanoparticles (manufactured by Kanto Chemical Co., Inc .: particle size 27-95 nm), 160 parts by mass of pure water was added and treated with an ultrasonic homogenizer for 10 minutes to obtain a copper oxide dispersion. To this dispersion, 420 parts by mass of the polymer aqueous solution 1 and 1 part by mass of zonyl FSN were added, and the dispersion 1 was obtained by treating with an ultrasonic homogenizer for 10 minutes.
(分散液調製例2)
 ポリマー水溶液1(420質量部)をポリマー溶液2(380質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液2を得た。
(Dispersion Preparation Example 2)
Dispersion 2 was obtained according to the same procedure as in Dispersion Preparation Example 1, except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 2 (380 parts by mass).
(分散液調製例3)
 ポリマー水溶液1(420質量部)をポリマー水溶液3(420質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液3を得た。
(Dispersion Preparation Example 3)
Dispersion 3 was obtained according to the same procedure as in Dispersion Preparation Example 1, except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer aqueous solution 3 (420 parts by mass).
(分散液調製例4)
 ポリマー水溶液1(420質量部)をポリマー溶液4(420質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液4を得た。
(Dispersion Preparation Example 4)
Dispersion 4 was obtained according to the same procedure as Dispersion Preparation Example 1, except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 4 (420 parts by mass).
(分散液調製例5)
 ポリマー水溶液1(420質量部)をポリマー溶液5(320質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液5を得た。
(Dispersion Preparation Example 5)
Dispersion 5 was obtained according to the same procedure as Dispersion Preparation Example 1, except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 5 (320 parts by mass).
(分散液調製例6)
 ポリマー水溶液1(420質量部)をポリマー溶液6(290質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液6を得た。
(Dispersion Preparation Example 6)
Dispersion 6 was obtained according to the same procedure as in Preparation 1 for dispersion except that polymer solution 1 (420 parts by mass) was replaced with polymer solution 6 (290 parts by mass).
(分散液調製例7)
 ポリマー水溶液1(420質量部)を50wt%ポリエチレングリコール(平均分子量300)含有水溶液(420質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液7を得た。
(Dispersion Preparation Example 7)
Dispersion 7 was obtained in the same manner as in Dispersion Preparation Example 1, except that aqueous polymer solution 1 (420 parts by mass) was replaced with an aqueous solution (420 parts by mass) containing 50 wt% polyethylene glycol (average molecular weight 300).
(分散液調製例8)
 ポリマー水溶液1(420質量部)を50wt%ポリ(メチルビニルケトンジメチルヒドラゾン)(平均分子量6000)含有水溶液(420質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液8を得た。
 なお、上記ポリ(メチルビニルケトンジメチルヒドラゾン)は、特許文献1に開示されるポリマーに該当する。
(Dispersion Preparation Example 8)
Dispersion was carried out according to the same procedure as in Preparation Example 1 except that the aqueous polymer solution 1 (420 parts by mass) was replaced with an aqueous solution (420 parts by mass) containing 50 wt% poly (methyl vinyl ketone dimethylhydrazone) (average molecular weight 6000). Liquid 8 was obtained.
The poly (methyl vinyl ketone dimethylhydrazone) corresponds to the polymer disclosed in Patent Document 1.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(分散液調製例9)
 ポリマー水溶液1(420質量部)をポリマー溶液7(290質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液9を得た。
(Dispersion Preparation Example 9)
Dispersion 9 was obtained according to the same procedure as Dispersion Preparation Example 1 except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer solution 7 (290 parts by mass).
(分散液調製例10)
 ポリマー水溶液1(420質量部)をポリマー溶液8(290質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液10を得た。
(Dispersion Preparation Example 10)
Dispersion 10 was obtained according to the same procedure as Dispersion Preparation Example 1, except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer solution 8 (290 parts by mass).
(分散液調製例11)
 ポリマー水溶液1(420質量部)をポリマー溶液9(340質量部)に代えたこと以外は、分散液調製例1と同様にして分散液11を得た。
(Dispersion Preparation Example 11)
Dispersion 11 was obtained in the same manner as Dispersion Preparation Example 1, except that polymer aqueous solution 1 (420 parts by mass) was replaced with polymer solution 9 (340 parts by mass).
(分散液調製例12)
 ポリマー水溶液1の使用量を420質量部から800質量部に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液12を得た。
(Dispersion Preparation Example 12)
Dispersion 12 was obtained according to the same procedure as Dispersion Preparation Example 1, except that the amount of polymer aqueous solution 1 used was changed from 420 parts by weight to 800 parts by weight.
(分散液調製例13)
 ポリマー水溶液1(420質量部)を50wt%ポリビニルアルコール(平均分子量22000)含有水溶液(420質量部)に代えたこと以外は、分散液調製例1と同様の手順に従って、分散液13を得た。得られた分散液13を室温で24時間静置したところ、分散状態を保持していた。
(Dispersion Preparation Example 13)
Dispersion 13 was obtained in the same manner as in Dispersion Preparation Example 1, except that aqueous polymer solution 1 (420 parts by mass) was replaced with an aqueous solution (420 parts by mass) containing 50 wt% polyvinyl alcohol (average molecular weight 22000). When the obtained dispersion liquid 13 was allowed to stand at room temperature for 24 hours, the dispersion state was maintained.
 上記分散液1~13の保存安定性に関して、以下の評価を行った。結果を表1にまとめて示す。実用上、「A」「B」が好ましい。
「A」:分散液調製後、24時間経過時に沈殿が確認されない
「B」:分散液調製後、1時間経過時は沈殿が確認されないが、1時間超24時間未満の間に沈殿が確認される
「C」:分散液調製後、1時間以内に、沈殿が確認される
The following evaluations were performed on the storage stability of the dispersions 1 to 13. The results are summarized in Table 1. Practically, “A” and “B” are preferable.
“A”: No precipitation is confirmed when 24 hours have elapsed since the dispersion was prepared. “B”: No precipitation was confirmed after 1 hour after the preparation of the dispersion, but no precipitation was confirmed for more than 1 hour but less than 24 hours. "C": Precipitation is confirmed within 1 hour after the dispersion is prepared
 以下の表1に、上記分散液調製例1~13の結果をまとめて示す。
 なお、表1中の「還元性基」欄および「配位性基」欄は、ポリマー溶液中のポリマー中に含まれるそれぞれの官能基の種類を意味する。
Table 1 below collectively shows the results of the above-mentioned dispersion preparation examples 1 to 13.
In addition, the “reducing group” column and the “coordinating group” column in Table 1 mean the type of each functional group contained in the polymer in the polymer solution.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1に示すように、本発明の導電膜形成用組成物に該当する分散液1~6、および、9~12は優れた保存安定性を示した。
 一方、分散液7に示すように、特許文献2に記載される末端にヒドロキシル基を有するポリマーを使用した場合、導電膜形成用組成物の保存安定性が劣っていた。
As shown in Table 1, dispersions 1 to 6 and 9 to 12 corresponding to the composition for forming a conductive film of the present invention exhibited excellent storage stability.
On the other hand, as shown in Dispersion 7, when a polymer having a hydroxyl group at the terminal described in Patent Document 2 was used, the storage stability of the conductive film forming composition was poor.
(実施例1)
 インクジェット印刷装置(FUJIFILM Dimatix社製、装置名:DMP-2831)を用いて、ガラス基板の10×10mmの面上に上記分散液1を印刷した。グローブボックス中(酸素濃度<100ppm)、ホットプレートにて100℃、10分間乾燥した後、200℃で1時間焼結することで銅薄膜を得た。触針式膜厚計により、膜厚を測定したところ0.5μmであった。また、四探針法抵抗率計を用いて体積抵抗率を測定したところ、6×10-3Ω・cmであった。
(Example 1)
The dispersion 1 was printed on a 10 × 10 mm surface of a glass substrate using an inkjet printing apparatus (manufactured by FUJIFILM Dimatix, apparatus name: DMP-2831). A copper thin film was obtained by drying in a glove box (oxygen concentration <100 ppm) on a hot plate at 100 ° C. for 10 minutes and then sintering at 200 ° C. for 1 hour. When the film thickness was measured with a stylus type film thickness meter, it was 0.5 μm. Moreover, when the volume resistivity was measured using a four-probe method resistivity meter, it was 6 × 10 −3 Ω · cm.
(実施例2)
 ガラス基板をPET基板に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は4×10-3Ω・cmであった。
(Example 2)
A copper thin film was obtained by performing the same operation as in Example 1 except that the glass substrate was replaced with a PET substrate. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 4 × 10 −3 Ω · cm.
(実施例3)
 焼結方法を200℃で1時間の加熱焼結から以下に示す光焼結に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.4μmであり、体積抵抗率は5×10-4Ω・cmであった。
光焼結:Xeフラッシュランプ(設定電圧3kV)を用いて、照射エネルギー2070J、パルス幅2msecにて、光照射を行った。
(Example 3)
The copper thin film was obtained by performing the same operation as Example 1 except having changed the sintering method from 200 degreeC 1-hour heating sintering to the light sintering shown below. The obtained copper thin film had a thickness of 0.4 μm and a volume resistivity of 5 × 10 −4 Ω · cm.
Light sintering: Light irradiation was performed using an Xe flash lamp (set voltage 3 kV) at an irradiation energy of 2070 J and a pulse width of 2 msec.
(実施例4)
 焼結温度を200℃から250℃に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は2×10-3Ω・cmであった。
Example 4
The copper thin film was obtained by performing the same operation as Example 1 except having changed the sintering temperature from 200 degreeC to 250 degreeC. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 2 × 10 −3 Ω · cm.
(実施例5)
 焼結温度を200℃から300℃に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は5×10-3Ω・cmであった。
(Example 5)
The copper thin film was obtained by performing the same operation as Example 1 except having changed the sintering temperature from 200 degreeC to 300 degreeC. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 5 × 10 −3 Ω · cm.
(実施例6)
 分散液1を分散液2に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.6μmであり、体積抵抗率は3×10-3Ω・cmであった。
(Example 6)
A copper thin film was obtained by performing the same operation as in Example 1 except that Dispersion 1 was replaced with Dispersion 2. The obtained copper thin film had a thickness of 0.6 μm and a volume resistivity of 3 × 10 −3 Ω · cm.
(実施例7)
 焼結方法を200℃で1時間の加熱焼結から光焼結に代えたこと以外は、実施例6と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は5×10-4Ω・cmであった。なお、光焼結の条件は実施例3で実施した条件と同じであった。
(Example 7)
A copper thin film was obtained by performing the same operation as in Example 6 except that the sintering method was changed from heat sintering at 200 ° C. for 1 hour to light sintering. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 5 × 10 −4 Ω · cm. The conditions for photosintering were the same as those performed in Example 3.
(実施例8)
 ガラス基板をPET基板に代えたこと以外は、実施例7と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は3×10-4Ω・cmであった。
(Example 8)
A copper thin film was obtained by performing the same operation as in Example 7 except that the glass substrate was replaced with a PET substrate. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 3 × 10 −4 Ω · cm.
(実施例9)
 分散液1を分散液4に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は8×10-3Ω・cmであった。
Example 9
A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 4. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 8 × 10 −3 Ω · cm.
(実施例10)
 焼結方法を200℃で1時間の加熱焼結から光焼結に代えたこと以外は実施例9と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.4μmであり、体積抵抗率は7×10-4Ω・cmであった。なお、光焼結の条件は実施例3で実施した条件と同じであった。
(Example 10)
A copper thin film was obtained by performing the same operation as in Example 9 except that the sintering method was changed from heat sintering at 200 ° C. for 1 hour to light sintering. The obtained copper thin film had a thickness of 0.4 μm and a volume resistivity of 7 × 10 −4 Ω · cm. The conditions for photosintering were the same as those performed in Example 3.
(実施例11)
 分散液1を分散液5に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は3×10-3Ω・cmであった。
(Example 11)
A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 5. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 3 × 10 −3 Ω · cm.
(実施例12)
 焼結方法を200℃で1時間の加熱焼結から光焼結に代えたこと以外は、実施例11と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.4μmであり、体積抵抗率は3×10-4Ω・cmであった。なお、光焼結の条件は実施例3で実施した条件と同じであった。
Example 12
A copper thin film was obtained by performing the same operation as in Example 11 except that the sintering method was changed from heat sintering at 200 ° C. for 1 hour to light sintering. The obtained copper thin film had a thickness of 0.4 μm and a volume resistivity of 3 × 10 −4 Ω · cm. The conditions for photosintering were the same as those performed in Example 3.
(実施例13)
 分散液1を分散液6に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は1×10-3Ω・cmであった。
(Example 13)
A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 6. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 1 × 10 −3 Ω · cm.
(実施例14)
 焼結温度を200℃から150℃に代えたこと以外は、実施例13と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は1×10-3Ω・cmであった。
(Example 14)
The copper thin film was obtained by performing the same operation as Example 13 except having changed the sintering temperature from 200 degreeC to 150 degreeC. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 1 × 10 −3 Ω · cm.
(実施例15)
 分散液6を分散液9に代えたこと以外は、実施例14と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は4×10-3Ω・cmであった。
(Example 15)
A copper thin film was obtained by performing the same operation as in Example 14 except that the dispersion 6 was replaced with the dispersion 9. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 4 × 10 −3 Ω · cm.
(実施例16)
 分散液9を分散液10に代えたこと以外は、実施例15と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は6×10-3Ω・cmであった。
(Example 16)
A copper thin film was obtained by performing the same operation as in Example 15 except that the dispersion 9 was replaced with the dispersion 10. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 6 × 10 −3 Ω · cm.
(実施例17)
 分散液1を分散液11に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は9×10-4Ω・cmであった。
(Example 17)
A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 11. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 9 × 10 −4 Ω · cm.
(実施例18)
 分散液1を分散液12に代えたこと以外は、実施例1と同じ操作を行うことにより銅薄膜を得た。得られた銅薄膜の膜厚は0.6μmであり、体積抵抗率は1×10-2Ω・cmであった。
(Example 18)
A copper thin film was obtained by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 12. The obtained copper thin film had a thickness of 0.6 μm and a volume resistivity of 1 × 10 −2 Ω · cm.
(比較例1)
 分散液1を分散液8に代えたこと以外は、実施例1と同じ操作を行うことにより薄膜の作製を行った。得られた薄膜の膜厚は0.5μmであった。また、四探針法抵抗率計を用いて得られた薄膜の体積抵抗率を測定したところ、導電性を示さなかった。
(Comparative Example 1)
A thin film was prepared by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 8. The film thickness of the obtained thin film was 0.5 μm. Moreover, when the volume resistivity of the thin film obtained using the four-probe method resistivity meter was measured, it showed no conductivity.
(比較例2)
 分散液1を分散液13に代えたこと以外は、実施例1と同じ操作を行うことにより薄膜の作製を行った。得られた薄膜の膜厚は0.5μmであった。得られた銅薄膜の膜厚は0.5μmであり、体積抵抗率は3×102Ω・cmであった。
(Comparative Example 2)
A thin film was prepared by performing the same operation as in Example 1 except that the dispersion 1 was replaced with the dispersion 13. The film thickness of the obtained thin film was 0.5 μm. The obtained copper thin film had a thickness of 0.5 μm and a volume resistivity of 3 × 10 2 Ω · cm.
 上記実施例および比較例の結果を以下の表2にまとめて示す。
 なお、表2中の「還元性基」欄および「配位性基」欄は、ポリマー溶液中に含まれるポリマー中に含まれるそれぞれの官能基の種類を意味する。また、「膜厚」は、上述した方法に従って測定した値である。
The results of the above examples and comparative examples are summarized in Table 2 below.
In addition, the “reducing group” column and the “coordinating group” column in Table 2 mean the type of each functional group contained in the polymer contained in the polymer solution. The “film thickness” is a value measured according to the method described above.
Figure JPOXMLDOC01-appb-T000014

 
Figure JPOXMLDOC01-appb-T000014

 
 表2に示すように、本発明の導電膜形成用組成物を使用した場合、優れた導電特性を有する銅薄膜を得ることができた。
 なかでも、実施例1と3との比較から分かるように、還元処理として光照射を使用した場合、より体積抵抗率が小さい、つまり導電特性に優れる銅薄膜が得られた。
 また、実施例6と実施例13との比較から分かるように、還元性基としてヒドロキシケトン基を使用した場合、より体積抵抗率が小さい、つまり導電特性に優れる銅薄膜が得られた。
 また、実施例14、実施例15および実施例16の比較から分かるように、ビニル系ポリマーの分子量が所定範囲の場合、より体積抵抗率が小さい、つまり導電特性に優れる銅薄膜が得られた。
 また、実施例1と実施例18との比較から分かるように、ビニル系ポリマーと酸化銅粒子の質量比(ビニル系ポリマーの質量/酸化銅粒子の質量)が3以下の場合、より体積抵抗率が小さい、つまり導電特性に優れる銅薄膜が得られた。
 また、実施例1、実施例13および実施例17の比較から分かるように、ビニル系ポリマーが2種の還元性基を有する場合、より体積抵抗率が小さい、つまり導電特性に優れる銅薄膜が得られた。
As shown in Table 2, when the composition for forming a conductive film of the present invention was used, a copper thin film having excellent conductive properties could be obtained.
In particular, as can be seen from a comparison between Examples 1 and 3, when light irradiation was used as the reduction treatment, a copper thin film having a smaller volume resistivity, that is, excellent electrical conductivity, was obtained.
Further, as can be seen from a comparison between Example 6 and Example 13, when a hydroxyketone group was used as the reducing group, a copper thin film having a smaller volume resistivity, that is, excellent electrical conductivity, was obtained.
Further, as can be seen from a comparison between Example 14, Example 15, and Example 16, when the molecular weight of the vinyl polymer was within a predetermined range, a copper thin film having a smaller volume resistivity, that is, excellent electrical conductivity, was obtained.
Further, as can be seen from the comparison between Example 1 and Example 18, when the mass ratio of the vinyl polymer and the copper oxide particles (the mass of the vinyl polymer / the mass of the copper oxide particles) is 3 or less, the volume resistivity is further increased. Was obtained, that is, a copper thin film excellent in conductive properties was obtained.
Further, as can be seen from the comparison between Example 1, Example 13 and Example 17, when the vinyl polymer has two kinds of reducing groups, a copper thin film having a smaller volume resistivity, that is, excellent electrical conductivity can be obtained. It was.
 一方、特許文献1に記載されるポリ(メチルビニルケトンジメチルヒドラゾン)を含む分散液8を使用した比較例1においては、導電性を示す膜が得られなかった。
 また、ポリビニルアルコールを含む分散液13を使用した比較例2においては、導電特性に劣る膜しか得られなかった。
 
On the other hand, in Comparative Example 1 using the dispersion 8 containing poly (methyl vinyl ketone dimethyl hydrazone) described in Patent Document 1, a film showing conductivity was not obtained.
Moreover, in the comparative example 2 using the dispersion liquid 13 containing polyvinyl alcohol, only a film having inferior conductive properties was obtained.

Claims (9)

  1.  式(1)で表される繰り返し単位を有するビニル系ポリマーと、酸化銅粒子と、溶媒とを含む、導電膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、R1は、水素原子またはアルキル基を表す。L1は、置換基を有していてもよい2価の連結基を表す。)
    The composition for electrically conductive film formation containing the vinyl-type polymer which has a repeating unit represented by Formula (1), a copper oxide particle, and a solvent.
    Figure JPOXMLDOC01-appb-C000001

    (In Formula (1), R 1 represents a hydrogen atom or an alkyl group. L 1 represents a divalent linking group which may have a substituent.)
  2.  前記式(1)で表される繰り返し単位が、式(2)で表される繰り返し単位、または、式(3)で表される繰り返し単位を含む、請求項1に記載の導電膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002

    (式(2)および式(3)中、R1は、水素原子またはアルキル基を表す。Lは、2価の連結基を表す。)
    The composition for electrically conductive film formation of Claim 1 in which the repeating unit represented by said Formula (1) contains the repeating unit represented by Formula (2) or the repeating unit represented by Formula (3). object.
    Figure JPOXMLDOC01-appb-C000002

    (In Formula (2) and Formula (3), R 1 represents a hydrogen atom or an alkyl group. L 2 represents a divalent linking group.)
  3.  前記ビニル系ポリマーが、さらに式(4)で表される繰り返し単位を有する、請求項1または2に記載の導電膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003

    (式(4)中、R2は、水素原子またはアルキル基を表す。L3は、置換基を有していてもよい2価の連結基を表す。Xは、金属配位性基を表す。)
    The composition for electrically conductive film formation of Claim 1 or 2 in which the said vinyl-type polymer further has a repeating unit represented by Formula (4).
    Figure JPOXMLDOC01-appb-C000003

    (In Formula (4), R 2 represents a hydrogen atom or an alkyl group. L 3 represents a divalent linking group which may have a substituent. X represents a metal coordinating group. .)
  4.  前記金属配位性基が、置換若しくは未置換のアミノ基、置換若しくは未置換のアミド基、または、置換若しくは未置換のカルボキシル基である、請求項3に記載の導電膜形成用組成物。 The conductive film-forming composition according to claim 3, wherein the metal coordinating group is a substituted or unsubstituted amino group, a substituted or unsubstituted amide group, or a substituted or unsubstituted carboxyl group.
  5.  前記式(1)で表される繰り返し単位の含有量が、全繰り返し単位に対して、60~100モル%である、請求項1~4のいずれか1項に記載の導電膜形成用組成物。 The composition for forming a conductive film according to any one of claims 1 to 4, wherein the content of the repeating unit represented by the formula (1) is 60 to 100 mol% with respect to all repeating units. .
  6.  前記酸化銅粒子の平均粒子径が100nm以下である、請求項1~5のいずれか1項に記載の導電膜形成用組成物。 The composition for forming a conductive film according to any one of claims 1 to 5, wherein an average particle diameter of the copper oxide particles is 100 nm or less.
  7.  前記ビニル系ポリマーの重量平均分子量が3000~100000である、請求項1~6のいずれか1項に記載の導電膜形成用組成物。 The conductive film-forming composition according to any one of claims 1 to 6, wherein the vinyl polymer has a weight average molecular weight of 3000 to 100,000.
  8.  前記ビニル系ポリマーと前記酸化銅粒子との質量比(前記ビニル系ポリマーの質量/前記酸化銅粒子の質量)が3.0以下である、請求項1~7のいずれか1項に記載の導電膜形成用組成物。 The conductive material according to any one of claims 1 to 7, wherein a mass ratio of the vinyl polymer to the copper oxide particles (a mass of the vinyl polymer / a mass of the copper oxide particles) is 3.0 or less. Film forming composition.
  9.  請求項1~8のいずれか1項に記載の導電膜形成用組成物を基材上に付与して、塗膜を形成する塗膜形成工程と、
     前記塗膜に対して加熱処理および/または光照射処理を行い、前記酸化銅粒子を還元して、金属銅を含有する導電膜を形成する還元工程とを備える、導電膜の製造方法。
     
    A coating film forming step of applying a composition for forming a conductive film according to any one of claims 1 to 8 on a substrate to form a coating film,
    A reduction method of performing the heat treatment and / or light irradiation treatment to the coating film, reducing the copper oxide particles, and forming a conductive film containing metallic copper.
PCT/JP2013/068719 2012-07-24 2013-07-09 Composition for forming conductive film and process for producing conductive film WO2014017288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-163681 2012-07-24
JP2012163681A JP2014025085A (en) 2012-07-24 2012-07-24 Composition for forming conductive film and process for producing conductive film

Publications (1)

Publication Number Publication Date
WO2014017288A1 true WO2014017288A1 (en) 2014-01-30

Family

ID=49997104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068719 WO2014017288A1 (en) 2012-07-24 2013-07-09 Composition for forming conductive film and process for producing conductive film

Country Status (3)

Country Link
JP (1) JP2014025085A (en)
TW (1) TW201407642A (en)
WO (1) WO2014017288A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962520B2 (en) * 2013-01-15 2016-08-03 信越化学工業株式会社 Monomer, polymer compound, resist material and pattern forming method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002418A (en) * 2003-06-12 2005-01-06 Asahi Kasei Corp Metallic oxide particulate-dispersed body
JP2005220402A (en) * 2004-02-05 2005-08-18 Asahi Kasei Corp Dispersion of metallic oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002418A (en) * 2003-06-12 2005-01-06 Asahi Kasei Corp Metallic oxide particulate-dispersed body
JP2005220402A (en) * 2004-02-05 2005-08-18 Asahi Kasei Corp Dispersion of metallic oxide

Also Published As

Publication number Publication date
JP2014025085A (en) 2014-02-06
TW201407642A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
WO2014156594A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
TWI564352B (en) Liquid composition, metal copper film and conductor wiring, and method for producing metal copper film
WO2013145953A1 (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
WO2015005276A1 (en) Method for producing electrically conductive film and electrically conductive film
JP5897437B2 (en) Manufacturing method of conductive layer, printed wiring board
WO2015015918A1 (en) Electroconductive-film-forming composition and method for producing electroconductive film
WO2015033823A1 (en) Production method for conductive film
WO2014157303A1 (en) Composition for forming conductive films and method for producing conductive film using same
WO2014156326A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
WO2015005046A1 (en) Composition for forming electrically conductive film, method for producing electrically conductive film, and electrically conductive film
WO2014141787A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
WO2014156345A1 (en) Composition for forming conductive films and method for producing conductive film using same
WO2015029715A1 (en) Method for producing conducting film, and conducting film
JP5871762B2 (en) Conductive film forming composition and conductive film manufacturing method
WO2014017288A1 (en) Composition for forming conductive film and process for producing conductive film
JP2014167872A (en) Method for producing conductive film, and wiring board
WO2015005178A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2014186952A (en) Method of producing coated copper particle, method of producing composition for formation of conductive film and method of producing conductive film
JP2014044907A (en) Composition for forming conductive film and method for producing conductive film
WO2016031409A1 (en) Composition and method for forming conductive film
WO2016031404A1 (en) Composition for electrically conductive film formation use, and method for producing electrically conductive film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823235

Country of ref document: EP

Kind code of ref document: A1