WO2014017076A1 - スパイラル型正浸透膜エレメントおよび正浸透膜モジュール - Google Patents

スパイラル型正浸透膜エレメントおよび正浸透膜モジュール Download PDF

Info

Publication number
WO2014017076A1
WO2014017076A1 PCT/JP2013/004470 JP2013004470W WO2014017076A1 WO 2014017076 A1 WO2014017076 A1 WO 2014017076A1 JP 2013004470 W JP2013004470 W JP 2013004470W WO 2014017076 A1 WO2014017076 A1 WO 2014017076A1
Authority
WO
WIPO (PCT)
Prior art keywords
forward osmosis
osmosis membrane
spiral
flow path
membrane element
Prior art date
Application number
PCT/JP2013/004470
Other languages
English (en)
French (fr)
Inventor
康弘 宇田
誠 小泓
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US14/414,040 priority Critical patent/US9861938B2/en
Publication of WO2014017076A1 publication Critical patent/WO2014017076A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0021Forward osmosis or direct osmosis comprising multiple forward osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • B01D2313/086Meandering flow path over the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements

Definitions

  • the present invention relates to a spiral type forward osmosis membrane element and a spiral type forward osmosis membrane module loaded with this spiral type forward osmosis membrane element.
  • Patent Document 2 A technique (see, for example, Patent Document 2) that permeates, increases the flow rate on the concentrated seawater side with the positive osmotic pressure energy, and generates power at the increased flow rate is also known.
  • the spiral type forward osmosis membrane element used for the technique using such a forward osmosis phenomenon is known (for example, refer to patent documents 3).
  • the center of the membrane passes through a bent channel in a membrane leaf that is formed in an envelope shape from the central tube so that a liquid flow occurs on one surface of the membrane.
  • the flow of returning to the tube is generated.
  • two bent flow paths are provided in parallel in the membrane leaf along the axial direction of the central tube.
  • the present invention also provides a forward osmosis membrane module comprising a pressure vessel and the spiral forward osmosis membrane element loaded in the pressure vessel.
  • spiral forward osmosis membrane elements 2 loaded in the pressure vessel 9A, supply pipes 32 and recovery pipes 33, which will be described later, of adjacent spiral type forward osmosis membrane elements 2 are connected by connectors 6B and 6E, respectively. ing.
  • the spiral forward osmosis membrane element 2 located at one end (left side in FIG. 1) is connected to the center supply member 7A by a supply connection member 6A and a plug 6D.
  • the spiral forward osmosis membrane element 2 located at the other end (right side in FIG. 1) is connected to the central discharge member 7C by the discharge connection member 6F and the plug 6C.
  • the end member 5 includes a cylindrical inner peripheral portion 51 that fits into the central tube 31 and a cylindrical outer peripheral portion 52 that is concentrically disposed with the inner peripheral portion 51 and surrounds the inner peripheral portion 51 while being spaced apart. .
  • the inner peripheral part 51 and the outer peripheral part 52 are connected by a connecting part (not shown).
  • a communication passage 55 through which liquid can flow is formed between the outer peripheral surface of the inner peripheral portion 51 and the inner peripheral surface of the outer peripheral portion 52.
  • the downstream end member 5 and the upstream end member 5 are in contact with each other, and the communication paths 55 of the adjacent end members 5 are connected.
  • the central tube is arranged such that the plurality of supply holes 31A and the plurality of recovery holes 31B form a row extending in the axial direction (x-axis direction) of the central tube 31. It is formed on 31 pipe walls.
  • the plurality of supply holes 31A and the plurality of recovery holes 31B are formed at positions shifted from each other in the x-axis direction.
  • the inner peripheral surface of the supply pipe 32 defines an inflow region 3A
  • the inner peripheral surface of the recovery tube 33 defines an outflow region 3B.
  • the inflow region 3 ⁇ / b> A and the outflow region 3 ⁇ / b> B continuously extend in the axial direction (x-axis direction) of the central tube 31 from one end to the other end of the central tube 31.
  • the inflow region 3A and the outflow region 3B form a flow path through which the first liquid flows.
  • the supply pipe 32 has a through hole 32 ⁇ / b> A that communicates with the supply hole 31 ⁇ / b> A of the central pipe 31, and the recovery pipe 33 has a through hole 33 ⁇ / b> A that communicates with the recovery hole 31 ⁇ / b> B of the central pipe 31.
  • the laminate 20 is formed by alternately laminating envelope-shaped membrane leaves 23 in which forward osmosis membranes 21 are superposed on both surfaces of the inner channel member 22 and outer channel members 24. It has a configuration.
  • the inner flow path member 22 is a net made of, for example, resin, and forms an inner flow path 20A for flowing the first liquid between the forward osmosis membranes 21.
  • the outer flow path member 24 is, for example, a net made of resin, and forms an outer flow path 20B for flowing a second liquid having a higher osmotic pressure than the first liquid between the membrane leaves 23.
  • two continuous osmosis membranes 21 are formed by folding one continuous sheet 25 into two with the outer flow path member 24 interposed therebetween.
  • the membrane leaf 23 is obtained by joining the forward osmosis membranes 21 formed in such a manner on three sides with the inner flow path member 22 interposed therebetween.
  • An adhesive is used for this joining.
  • an extension portion obtained by extending one of the inner flow path members 22 is directly wound around the central tube 31 and both ends thereof are sealed with an adhesive so as to face the outer peripheral surface of the central tube 31.
  • a cylindrical flow path 20C is formed.
  • the configuration of the laminate 20 is not limited to the configuration shown in FIGS. 2A and 2B.
  • all the forward osmosis membranes 21 may be connected by folding a continuous sheet into a bellows shape.
  • a composite membrane in which a skin layer is formed on a porous support can be used.
  • An epoxy resin porous membrane can be used as the porous support.
  • a skin layer formed on the porous support a skin layer containing a polyamide-based resin obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halogen component can be used.
  • the method for forming the skin layer containing the polyamide resin on the surface of the porous epoxy resin membrane is not particularly limited, and a known method can be used. For example, an interfacial condensation method, a phase separation method, or a thin film coating method can be used.
  • a skin layer is formed by bringing an aqueous amine solution having a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component, and the skin layer is placed on the porous epoxy resin membrane. You can do that.
  • the polyfunctional amine component include aromatic, aliphatic, or alicyclic polyfunctional amines. Moreover, these polyfunctional amine components may be used alone or as a mixture.
  • An aromatic, aliphatic, or alicyclic polyfunctional acid halide can be used as the polyfunctional halide component. These polyfunctional acid halide components may be used alone or as a mixture.
  • constituent material of the porous support those other than the above can be adopted.
  • constituent material of the porous support examples thereof include polyaryl ether sulfones such as polysulfone and polyether sulfone, polyimide, polyvinylidene fluoride, and the like.
  • materials other than those described above can be used as the constituent material of the skin layer.
  • PE polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • nylon nylon
  • PAN polyacrylonitrile
  • PMMA polyvinyl alcohol
  • PMMA polysulfone, polyethersulfone, polyimide, ethylene-vinyl alcohol copolymer, etc. It can be illustrated.
  • FIG. 3 is a cross-sectional view schematically showing the flow of the liquid inside the central tube 31 and inside the membrane leaf 23. For simplicity, only one membrane leaf 23 is shown.
  • the internal flow path 26 is formed with a first opening 26A and a second opening 26B at one end of the membrane leaf 23 (an end where the joint portion 29 is not formed). It is configured as a U-shaped channel toward the two openings 26B. Further, in one membrane leaf 23, all the internal flow paths 26 are arranged in parallel in the axial direction (x-axis direction) of the central tube 31, and the first opening 26A and the second opening 26B are the axes of the central tube 31. They are arranged alternately in the direction (x-axis direction).
  • the joint portions 27 to 29 are extended toward the outer peripheral surface of the central tube 31, and the forward osmosis membrane 21 is bonded to the outer peripheral surface of the central tube 31 with the inner flow channel member 22 forming the cylindrical flow channel 20C interposed therebetween. Is done.
  • the cylindrical flow path 20C is divided in the axial direction of the central tube 31, and between the first opening 26A and the second opening 26B in one internal flow path 26 or in the axial direction of the central tube 31 ( Adjacent internal flow paths 26 are isolated from each other in the x-axis direction).
  • the inflow region 3A communicates with the first opening 26A via the through hole 32A, the supply hole 31A, and the cylindrical flow path 20C. Further, the outflow region 3B communicates with the second opening 26B through the through hole 33A, the recovery hole 31B, and the cylindrical flow path 20C. Actually, the plurality of through holes 32A and the plurality of supply holes 31A communicate with the first opening 26A, and the plurality of through holes 33A and the plurality of recovery holes 31B communicate with the second opening 26B. In FIG. 3, one is shown for simplification.
  • the cross-sectional area of the flow path formed by the inflow region 3A is constant from one end of the central tube 31 to the other end, and the cross-sectional area of the flow path formed by the outflow region 3B is also constant.
  • an increase in pressure loss caused by a change in the cross-sectional area of the flow path formed by the inflow region 3A or the cross-sectional area of the flow path formed by the outflow region 3B in the axial direction of the central tube 31 can be suppressed.
  • the cross-sectional area of the flow path formed by the inflow region 3A is larger than the cross-sectional area of the flow path formed by the outflow region 3B.
  • the internal flow path 26 a part of the first liquid moves to the outside of the membrane leaf 23 via the forward osmosis membrane 21, so the flow rate of the first liquid flowing through the flow path formed by the outflow area 3B is the inflow area. This is less than the flow rate of the first liquid flowing through the flow path formed by 3A. If the flow path formed by the inflow area 3A and the flow path formed by the outflow area 3B are configured as described above, more first liquid can be supplied to the flow path formed by the inflow area 3A. The utilization efficiency of the flow path formed by the outflow region 3B can be increased.
  • FIGS. 4 to 6 are cross-sectional views of the central tube 31 of the spiral forward osmosis membrane element 2 according to the modification on the zy plane.
  • the spiral forward osmosis membrane element 2 according to the modification is configured in the same manner as the spiral forward osmosis membrane element 2 of the first embodiment except that the structure of the central tube 31 is different.
  • the gap between the inner peripheral surface of the center tube 31 and the outer peripheral surface of the supply pipe 32 and the outer peripheral surface of the recovery pipe 33 can be reduced as compared with the first embodiment. Therefore, a larger volume can be secured for the inflow region 3A and the outflow region 3B, and the processing capability of the spiral type forward osmosis membrane element can be improved. Further, compared to the first embodiment, the amount of resin filled in the gap between the inner peripheral surface of the center tube 31 and the outer peripheral surface of the supply pipe 32 and the outer peripheral surface of the recovery pipe 33 can be reduced.
  • 5A and 5B are cross-sectional views showing the internal structure of the center tube 31 according to the second modification.
  • the central tube 31 has a partition portion 36 that continuously extends from one end to the other end of the center tube 31 inside, and the inflow region 3A and the outflow region 3B are separated by the inner peripheral surface of the center tube 31 and the partition portion 36. It is partitioned.
  • the length of the partition portion 36 in the y-axis direction is shorter than the inner diameter of the center tube 31. Accordingly, the cross-sectional area of the flow path formed by the inflow region 3A is larger than the cross-sectional area of the flow path formed by the outflow region 3B.
  • a through hole is provided in the tube wall of the central tube 31 so that the inflow region 3A and the outflow region 3B communicate with the outside of the central tube 31, and a supply hole 31A and a recovery hole 31B are formed.
  • the central tube 31 having the partition part 36 can be produced by extrusion molding or injection molding. It can also be produced by joining a plate-like material to be the partition portion 36 to the inner peripheral surface of the center tube 36 by heat welding, ultrasonic welding, welding, adhesion or the like. Alternatively, two tubes having a semicircular cross section can be joined to each other.
  • the second modification since it is not necessary to fill the inside of the center tube 31 with the resin to form the sealing portion 34, most of the volume inside the center tube 31 is used as the inflow region 3A or the outflow region 3B. Therefore, the processing capability of the spiral forward osmosis membrane element can be improved.
  • 6A and 6B are cross-sectional views showing the internal structure of the center tube 31 according to the third modification.
  • an inner tube 38 having an elliptical cross section is fixed inside the center tube 31.
  • the outer diameter of the inner tube 38 in the longitudinal direction is substantially the same as the inner diameter of the center tube 31, and the inner tube 38 is disposed in contact with the inner peripheral surface of the center tube 31 in the longitudinal direction.
  • the inflow region 3A is defined by the inner peripheral surface of the center tube 31 and the outer peripheral surface of the inner tube 38
  • the outflow region 3B is defined by the inner peripheral surface of the inner tube 38.
  • a plurality of recovery holes 31 ⁇ / b> B are formed in the tube wall of the central tube 31 so as to face each other at a position intersecting with the long axis of the inner tube 38 cross section.
  • a plurality of through holes 38A are formed in the tube wall of the inner tube 38 so as to communicate with the plurality of recovery holes 31B.
  • the outflow region 3B communicates with the outside of the central tube 31 through the through hole 38A and the recovery hole 31B.
  • a supply hole 31 ⁇ / b> A is formed in the tube wall of the central tube 31 at a position other than a position in contact with the inner tube 38 (a position intersecting with the longitudinal direction of the cross section of the inner tube 38).
  • the inflow region 3A communicates with the outside of the central tube 31 through the supply hole 31A.
  • the center tube 31 having the inner tube 38 inside can be produced by extrusion molding or injection molding. Moreover, it can also produce by joining the inner peripheral surface of the center pipe
  • the gap between the inner peripheral surface of the center tube 31 and the inner peripheral surface of the inner tube 38 can be used as the inflow region 3A, so that the spiral forward osmosis as compared with the first embodiment is possible.
  • the processing capability of the membrane element can be improved.
  • the supply hole 31A can be formed at a position other than the position in contact with the inner tube 38 (the position intersecting the long axis direction of the inner tube 38 cross section) in the tube wall of the central tube 31, the circumferential direction of the central tube 3 It is possible to promote the supply of the liquid more evenly to the internal flow paths 26 of the plurality of membrane leaves 23 wound around.
  • spiral forward osmosis membrane element and forward osmosis module of the present invention are not limited to the above-described embodiments, and can be various embodiments.
  • the inflow port 7B is provided at one end (the left side in FIG. 1) of the forward osmosis membrane module 1, but as shown in FIG. 7, the flow path member 7E having the inflow port 7B is provided at both ends.
  • the inlet 9B may be provided at both ends of the forward osmosis membrane module 1 by being attached to the pressure vessel 9A side of the central through hole 9C of the cap 9B.
  • a supply connecting member 6A is further provided in place of the plug 6C, the first liquid is supplied from both ends of the forward osmosis membrane module 1 to the inflow region 3A in the central tube 31 of the spiral osmosis membrane element 2. can do.
  • the flow of the first liquid flowing from one end of the forward osmosis membrane module 1 is It collides with the flow of the first liquid flowing in from the other end of the forward osmosis membrane module, and does not flow to the other end of the flow path formed by the inflow regions 3A of the plurality of connected spiral forward osmosis membrane elements. Therefore, the substantial flow path length of the flow of the first liquid in the center tube 31 is shortened, and the pressure loss of the first liquid flowing in the center tube 31 can be further reduced.
  • a plurality of spiral forward osmosis membrane elements 2 are connected and loaded in the pressure vessel 9A, but one spiral type is provided in the pressure vessel 9A. Only the forward osmosis membrane element 2 may be loaded. Also in this case, inflow ports may be provided at both ends of the forward osmosis membrane module 1.
  • the cross-sectional area of the flow path formed by the inflow region 3A is preferably larger than the cross-sectional area of the flow path formed by the outflow region 3B.
  • the magnitude relationship between the cross-sectional area of the flow path formed by the inflow region 3A and the cross-sectional area of the flow path formed by the outflow region 3B is not limited to this. Both may be the same size, and depending on the case, the magnitude relationship between the two may be reversed.
  • the osmotic pressure of the second liquid is preferably higher than the osmotic pressure of the first liquid, but may be lower than the osmotic pressure of the first liquid.
  • a part of the second liquid moves from the outside of the membrane leaf 23 to the internal flow path 26 of the membrane leaf 23 through the forward osmosis membrane 21. That is, the flow rate flowing through the flow path formed by the outflow region 3B is larger than the flow rate flowing through the flow path formed by the inflow region 3A. Therefore, the cross-sectional area of the flow path formed by the outflow region 3B is preferably larger than the cross-sectional area of the flow path formed by the inflow region 3A.
  • a circular tube or an elliptical tube is used as the central tube and the inner tube (supply tube, recovery tube).
  • the shapes of the central tube and the inner tube are not limited to this.
  • a square tube may be used, and a tube having an arbitrary shape as a cross-sectional shape may be used.
  • a packing such as an O-ring may be used for stopping. Considering this point, it is preferable to use a circular tube or an elliptical tube as the central tube or the inner tube.
  • the gap between the inner peripheral surface of the central tube 31 and the outer peripheral surface of the supply tube 32 and the outer peripheral surface of the recovery tube 33 is filled with resin, and the supply tube 32 and the recovery tube 33 are placed inside the central tube 31.
  • the central tube 31 in which the recovery tube 32 and the recovery tube 33 are connected to each other may be manufactured by extrusion molding or the like. This eliminates the need to fill the gap between the inner peripheral surface of the central tube 31 and the outer peripheral surface of the supply tube 32 and the outer peripheral surface of the recovery tube 33 to form the sealing portion 34.
  • the width of the opening end that forms the first opening 26A may be longer than the width of the opening end that forms the second opening 26B.
  • the opening area of the second opening 26B tends to be larger than the opening area of the first opening 26A.
  • a part of the first liquid flowing through the internal flow path 26 of the membrane leaf 23 moves to the outside of the membrane leaf 23 through the forward osmosis membrane 21 due to the osmosis phenomenon, so the flow rate of the first liquid passing through the second opening 26B is The flow rate is lower than the flow rate of the first liquid passing through the first opening 26A.
  • the number of the internal flow paths 26 of one membrane leaf 23 is three, but is not limited thereto.
  • the number of internal channels may be one, two, or three or more. If there are three or more internal flow paths, the width of the internal flow path in the direction of the central tube axis is reduced, and the liquid can be spread to every corner of the internal flow path. As a result, the utilization efficiency of the forward osmosis membrane 21 can be increased. However, if the number of internal flow paths is too large, the flow resistance in the internal flow path 26 increases, and the area required for the joints 27 and 28 increases. From the viewpoint of increasing the utilization efficiency of the forward osmosis membrane 21, the number of internal channels 26 in one membrane leaf 23 is suitably 2-5.
  • the two supply pipes 32 and the two recovery pipes 33 are fixed inside the center pipe 31, but the number of the supply pipes 32 and the number of the recovery pipes 33 to be fixed are two or more. There may be. Moreover, both need not be the same number, and at least one of the supply pipe 32 or the supply pipe 31 may be one. As the number of supply pipes or recovery pipes fixed inside the central pipe 31 increases, the gap between the inner peripheral surface of the central pipe 31 and the outer peripheral surface of the supply pipe 32 and the outer peripheral surface of the recovery pipe 33 decreases. More volume of the inflow region 3A or the outflow region 3B can be secured. Further, the inner diameter of the supply pipe 32 and the inner diameter of the recovery pipe 33 may be the same, or the inner diameter of the recovery pipe 33 may be larger than the inner diameter of the supply pipe 32 in some cases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 スパイラル型正浸透膜エレメント(2)は、第1開口(26A)から第2開口(26B)へ延びる内部流路が形成された膜リーフ(23)と、膜リーフ(23)が巻き回され、第1開口(26A)と連通する供給孔(31A)および第2開口(26B)と連通する回収孔(31B)を有する中心管(31)と、を備え、中心管(31)の内部は、供給孔(31A)と連通する流入領域(3A)および回収孔(31B)と連通する流出領域(3B)のそれぞれが中心管(3)の一端から他端にかけて中心管(31)の軸方向に連続的に延びる流路を形成するように区画されている。流入領域(3A)に供給された液体が、内部流路(26)を複数回流れずに外部に排出されるのでスパイラル型正浸透膜エレメント(2)内の圧力損失が低減される。これにより、内部での流体の流れの圧力損失が低減されるスパイラル型正浸透膜エレメントを提供できる。

Description

スパイラル型正浸透膜エレメントおよび正浸透膜モジュール
 本発明は、スパイラル型正浸透膜エレメントおよびこのスパイラル型正浸透膜エレメントが装填されたスパイラル型正浸透膜モジュールに関する。
 従来、排水処理、海水淡水化、および浸透圧発電などに正浸透現象を利用した技術が知られている。例えば、海水淡水化において、海水淡水化の工程で濃縮された濃縮海水を希釈するために正浸透膜を利用する方法が知られている(例えば、特許文献1参照)。また、海水淡水化装置で逆浸透膜を利用して海水を淡水化する際に同時に生成された濃縮海水に、これよりも濃度の薄い海水または淡水などの希釈水を、半透膜を介して浸透させ、その正浸透圧エネルギーで濃縮海水側の流量を増加させ、増加した流量で発電を行う技術(例えば、特許文献2参照)も知られている。そして、このような正浸透現象を利用した技術に用いられるスパイラル型正浸透膜エレメントが知られている(例えば、特許文献3参照)。
 ところで、スパイラル型正浸透膜エレメントでは、低濃度(低浸透圧)の液体から高濃度(高浸透圧)の液体へ膜を介して液体移動が生じる。そして、膜の近傍で濃度分極層が形成されるのを抑制するために、膜両面で高濃度(高浸透圧)の液体と低濃度(低浸透圧)の液体を流す必要がある。
 例えば、特許文献3のスパイラル型正浸透膜エレメントでは、膜の一方の面で液体の流れが生じるように、中心管を出て膜を封筒状に形成した膜リーフ内の屈曲流路を通り中心管に戻るという流れが生じるようになっている。また、膜リーフ内に2つの屈曲流路が中心管の軸方向に沿って並列に設けられている。
特開2005-279540号公報 特開2003-176775号公報 米国特許第4033878号明細書
 しかしながら、スパイラル型正浸透膜エレメントにおいて、特許文献3に記載のように、中心管に供給された液体を、複数の屈曲流路のすべてを順に通過するように流したのでは、中心管および膜リーフ内の内部流路を流れる液体の流れの圧力損失が非常に大きくなってしまう。
 本発明は、このような事情に鑑み、中心管に供給された液体の流れの圧力損失が低減された、スパイラル型正浸透膜エレメントを提供することを目的とする。
 上記目的を達成するために、本発明は、第1開口から第2開口へ延びるU字状の内部流路が形成された膜リーフと、前記膜リーフが巻き回された、前記第1開口と連通する供給孔および前記第2開口と連通する回収孔を有する中心管と、を備え、前記中心管の内部は、前記供給孔と連通する流入領域および前記回収孔と連通する流出領域のそれぞれが前記中心管の一端から他端にかけて前記中心管の軸方向に連続的に延びる流路を形成するように区画されているスパイラル型正浸透膜エレメントを提供する。
 また、本発明は、圧力容器と、前記圧力容器内に装填された上記のスパイラル型正浸透膜エレメントと、を備えた正浸透膜モジュールを提供する。
 上記の構成によれば、中心管の流入領域に供給された液体は、流入領域から供給孔および第1開口を介して膜リーフの内部流路を流れ、さらに内部流路から第2開口および回収孔を介して流出領域を流れて外部に排出される。中心管内に供給された液体は、内部流路を複数回流れずに外部に排出されるので、特許文献3のように中心管内に供給された液体が内部流路を複数回流れる場合に比べて、中心管内部および膜リーフ内部の液体流れの圧力損失を低減することができる。
第1の実施形態に係るスパイラル型正浸透膜エレメントが装填された正浸透膜モジュールの断面図 図2Aは中心管に巻き回される前の積層体の斜視図、図2Bは中心管の回りに積層体が巻き回されたスパイラル型正浸透膜エレメントの模式的な断面図 第1の実施形態の中心管および膜リーフの内部流路における液体の流れを模式的に示す図 図4Aおよび図4Bは第1変形例に係る中心管の断面図 図5Aおよび図5Bは第2変形例に係る中心管の断面図 図6Aおよび図6Bは第3変形例に係る中心管の断面図 その他の実施形態に係る正浸透膜モジュールの断面図
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって何ら限定されるものではない。
 (第1の実施形態)
 図1に本発明の第1の実施形態に係るスパイラル型正浸透膜エレメント2を内蔵する正浸透膜モジュール1を示す。この正浸透膜モジュール1はベッセルと呼ばれる筒状の圧力容器9Aと、圧力容器9A内に装填された複数のスパイラル型正浸透膜エレメント2とを備えている。圧力容器9Aの両端には、円盤状のキャップ9Bが取り付けられている。
 一方(図1では左側)のキャップ9Bの中心には中心貫通孔9Cが形成され、中心貫通孔9Cの圧力容器9A側に、中心供給部材7Aが取り付けられている。中心供給部材7Aには流入口7Bが形成されている。また、周辺供給部材8Aが、一方のキャップ9Bの中心からずれた位置に取り付けられている。
 他方(図1では右側)のキャップ9Bの中心にも中心貫通孔9Cが形成され、中心貫通孔9Cの圧力容器9A側に中心排出部材7Cが取り付けられている。中心排出部材7Cには流出口7Dが形成されている。また、周辺排出部材8Bが他方のキャップ9Bの中心からずれた位置に取り付けられている。
 圧力容器9A内に装填された複数のスパイラル型正浸透膜エレメント2は、隣り合うスパイラル型正浸透膜エレメント2の後述する供給管32同士および回収管33同士がそれぞれ連結器6B、6Eによって連結されている。一端(図1では左側)に位置するスパイラル型正浸透膜エレメント2は、供給連結部材6Aおよびプラグ6Dによって中心供給部材7Aと連結されている。また、他端(図1では右側)に位置するスパイラル型正浸透膜エレメント2は、排出連結部材6Fおよびプラグ6Cによって中心排出部材7Cと連結されている。
 本実施形態の正浸透モジュール1には、第1液体と、第1液体よりも溶質濃度が高く、第1液体よりも浸透圧が高い第2液体がそれぞれ供給される。本実施形態では、第1液体は、流入口7Bから中心供給部材7Aおよび供給連結部材6Aを介して、スパイラル型正浸透膜エレメント2の内部に供給され、連結された複数のスパイラル型正浸透膜エレメント2の内部を流れる。その後、第1液体は、排出連結部材6Fおよび中心排出部材7Cを介して、流出口7Dから正浸透膜モジュール1の外部へ排出される。第1液体は、連結された複数のスパイラル型正浸透膜エレメント2内の第1の内部を通ることで濃縮される。
 一方、第2液体は、周辺供給部材8Aから圧力容器9Aの内部に供給される。圧力容器9Aの内部に供給された第2液体は、スパイラル型正浸透膜エレメント2の内部を流れる第1液体の流れと並行に流れるように、連結された複数のスパイラル型正浸透膜エレメント2の内部を流れる。その後、第2の液体は、スパイラル型正浸透膜エレメント2の内部を出て周辺排出管8Bから圧力容器9Aの外部に排出される。第2液体は、連結された複数のスパイラル型正浸透膜エレメント2の内部を通ることで希釈される。本実施形態においては、第1液体は濃縮されるべき液体であり、第2液体は希釈されるべき液体ということもできる。
 第1液体の流れと第2液体の流れとは、スパイラル型正浸透膜エレメント2の後述する正浸透膜21の両面を並行して流れる。第2液体の浸透圧は、第1液体の浸透圧よりも高いので、第1液体から第2液体に向かって、浸透現象によって正浸透膜21を介して液体移動が生じる。これに伴い、周辺供給部材8Aへ供給された流量よりも周辺排出部材8Bから流出する流量が増加する。
 正浸透膜21の両面に第1液体と第2液体を並行に流すのは、正浸透膜21の近傍で濃度分極層が成長し、第1液体から第2液体への浸透現象による液体移動が著しく低下することを防ぐためである。
 例えば、第1液体としては淡水が用いられ、第2液体としては海水が用いられるが、第1液体および第2液体は、これに限定されない。第1液体として通常の海水を用い、第2液体として通常濃度より高い濃度の濃縮された海水を用いてもよい。つまり、第1液体と第2液体との間で浸透圧が異なっていればよい。濃縮されるべき液体である第1液体は、淡水のように溶質成分をほとんど含まず、実質的に濃縮されない液体であってもよい。
 本実施形態においては、第2液体は所定圧力だけ加圧されて供給されている。このように、希釈されるべき液体を加圧して行う方法はPRO(Pressure Retarded Osmosis)と呼ばれている。第1液体と希釈されるべき第2液体の双方を加圧しないで供給する方法であってもよく、本発明ではこれらの方法を包含して「正浸透」と呼び、これらの用途で用いられる膜を「正浸透膜」という。
 次に、図1~図3を参照してスパイラル型正浸透膜エレメント2の構成について詳細に説明する。なお、図面に付した座標軸のx方向、y方向、z方向は、いずれの図面においてもスパイラル型正浸透膜エレメント2および正浸透膜モジュール1に関して同一の方向を示すものとする。
 各スパイラル型正浸透膜エレメント2は、中心管31と、中心管31の周りに巻き回された積層体20と、積層体20を取り囲む外装材40とを有している。また、端部材5が、積層体20を挟むように配置されて中心管31の両端に取り付けられている。外装材40は、両側の端部材5によって保持されている。端部材5は中心管31に巻き回された積層体20がテレスコピック状に伸長することを防止する役割を果たす。
 端部材5には中心管31に嵌合する筒状の内周部51と、内周部51を離間しながら取り囲む、内周部51と同心に配置された筒状の外周部52とを備える。内周部51と外周部52とは連結部(不図示)で連結されている。内周部51の外周面と外周部52の内周面との間に液体が流通可能な連通路55が形成されている。本実施形態では、隣り合うスパイラル型正浸透膜エレメント2において、下流側の端部材5と上流側の端部材5が接しており、隣り合う端部材5の連通路55同士が連なっている。
 図2Aおよび図2Bに示すように、中心管31の内部には、供給管32および回収管33が、それらの外周面が互いに接するように、並んで配置されている。また、供給管32および回収管33が並ぶ方向において、供給管32の外周面および回収管33の外周面が中心管31の内周面と接するように、供給管32および回収管33が中心管31内部に配置されている。
 中心管31、供給管32、および回収管33がそれぞれ接する箇所以外において、中心管31の内周面と供給管32の外周面および回収管33の外周面との間には隙間が存在する。この隙間に樹脂が充填されて、中心管31の内部に供給管32および回収管33が保持されている。充填された樹脂は封止部34を形成する。この隙間に樹脂が充填されることで、流入領域3Aおよび流出領域3B中の液体が、貫通孔32Aまたは貫通孔33Aから中心管31の内周面と供給管32の外周面および回収管33の外周面との間の隙間に漏れることを防止できる。
 充填される樹脂としては二液性熱硬化樹脂、一液性熱硬化樹脂および溶融した熱可塑性樹脂などを用いることができる。封止部34を形成する工程の作業効率を考慮すると、充填される樹脂として二液性熱硬化樹脂を用いるのが好ましい。本実施形態によれば、供給管32および回収管33の外周面のほとんどが封止部34で囲まれるので、中心管31の内部でこれらが強固に保持される。
 図2A、図2B、および図3に示すように、複数の供給孔31Aおよび複数の回収孔31Bが、それぞれが中心管31の軸方向(x軸方向)に延びる列をなすように、中心管31の管壁に形成されている。また、複数の供給孔31Aと複数の回収孔31Bは、x軸方向において互いにずれた位置に形成されている。
 図2Bに示すように、供給管32の内周面は流入領域3Aを区画し、回収管33の内周面は流出領域3Bを区画している。図3に示すように、流入領域3Aおよび流出領域3Bは、中心管31の一端から他端にかけて中心管31の軸方向(x軸方向)に連続的に延びている。流入領域3Aおよび流出領域3Bは、詳細は後述するが、第1液体が流れる流路を形成している。供給管32は、中心管31の供給孔31Aと連通する貫通孔32Aを有し、回収管33は、中心管31の回収孔31Bと連通する貫通孔33Aを有する。
 図2Aおよび図2Bに示すように、積層体20は、内側流路部材22の両面に正浸透膜21が重ね合せられた封筒状の膜リーフ23と外側流路部材24とが交互に積層された構成を有している。内側流路部材22は、例えば樹脂などからなる網であり、正浸透膜21同士の間に第1液体を流すための内側流路20Aを形成する。外側流路部材24は、例えば樹脂からなる網であり、膜リーフ23同士の間に第1液体よりも浸透圧の高い第2液体を流すための外側流路20Bを形成する。本実施形態の正浸透膜エレメント2では、第2液体は加圧されて供給されるので、正浸透膜21同士が密着してしまうことを防止するために内側流路部材22としては比較的緻密な構造の網を用いることが好ましい。一方、外側流路部材24は内側流路部材22よりも目の粗い疎な構造の網である。
 例えば、1枚の連続したシート25が外側流路部材24を挟んで二つ折りにされることにより、2枚の正浸透膜21が形成される。膜リーフ23はそのように形成された正浸透膜21同士が内側流路部材22を挟んで三辺で接合されることにより得られる。この接合には接着剤が用いられる。また、例えば、内側流路部材22の1枚を延長させた延長部が中心管31に直接巻き付けられ、その両端部が接着剤で封止されることにより、中心管31の外周面に面する筒状流路20Cが形成される。
 積層体20の構成は図2Aおよび図2Bに示した構成に限られない。例えば連続したシートが蛇腹状に折り畳まれることにより、すべての正浸透膜21がつながっていてもよい。
 正浸透膜21としては、例えば多孔性支持体上にスキン層を形成した複合膜を用いることができる。多孔性支持体としてはエポキシ樹脂多孔質膜を用いることができる。また、多孔性支持体上に形成するスキン層としては、多官能アミン成分と多官能酸ハロゲン成分とを重合してなるポリアミド系樹脂を含むスキン層を用いることができる。
 ポリアミド系樹脂を含むスキン層をエポキシ樹脂多孔質膜の表面に形成する方法は特に限定されず、公知の方法を用いることができる。例えば、界面縮合法、相分離法、薄膜塗布法を用いることができる。一例としては、多官能アミン成分を有するアミン水溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させることによりスキン層を形成し、前記スキン層をエポキシ樹脂多孔質膜上に載置することとすればよい。前記多官能アミン成分としては、芳香族、脂肪族、または脂環式の多官能アミンが挙げられる。またこれらの多官能アミン成分は単独で用いてもよく、混合物としてもよい。前記多官能ハライド成分としては、芳香族、脂肪族、または脂環式の多官能酸ハロゲン化物を用いることができる。これらの多官能酸ハライド成分において単独で用いてもよいが、混合物として用いてもよい。
 多孔性支持体の構成材料としては、上記以外のものを採用することができる。例えば、ポリスルホン、ポリエーテルスルホン等のポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデン等を例示できる。
 また、スキン層の構成材料としては、上記以外のものを採用することができる。例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ナイロン、ポリアクリロニトリル(PAN)、ポリビニルアルコール(PVA)、PMMA、ポリスルホン、ポリエーテルスルホン、ポリイミド、エチレン-ビニルアルコール共重合体などを例示できる。
 図3を参照して、中心管31の内部と膜リーフ23の内部について詳しく説明する。図3は、中心管31内部および膜リーフ23内部での液体の流れを模式的に示す断面図である。簡略化のために、1つの膜リーフ23のみを図示している。
 膜リーフ23において、2枚の正浸透膜21同士の三辺を接合する上述した接着剤からなる接合部29によって空間が区画されている。この空間は、接合部29が形成されない辺からこれと対向する辺まで、2枚の正浸透膜21同士を接合する例えば接着剤からなる接合部28によって区切られている。これにより、中心管31の軸方向に並んだ3つの内部流路26が形成されている。それぞれの内部流路26には、接合部29が形成されない辺からこれと対向する辺に向かって延び、かつ、接合部29との間に隙間が形成されるように、2枚の正浸透膜21同士を接合する例えば接着剤からなる接合部27によって区切られている。
 この接合部27~29によって、内部流路26は、膜リーフ23の一端(接合部29が形成されていない端)に第1開口26Aおよび第2開口26Bが形成され、第1開口26Aから第2開口26Bに向かうU字状の流路として構成されている。また、1つの膜リーフ23において全ての内部流路26が中心管31の軸方向(x軸方向)に並列に並んでおり、それらの第1開口26Aおよび第2開口26Bは中心管31の軸方向(x軸方向)に交互に並んでいる。
 接合部27~29は中心管31の外周面に向かって延長されており、筒状流路20Cを形成する内側流路部材22を挟んで、正浸透膜21は中心管31の外周面に接合される。これによって、筒状流路20Cは中心管31の軸方向に分断されており、一の内部流路26における第1開口26Aと第2開口26Bとの間、あるいは、中心管31の軸方向(x軸方向)において隣り合う内部流路26同士が隔離されている。
 流入領域3Aは、貫通孔32A、供給孔31A、および筒状流路20Cを介して、第1開口26Aと連通している。また、流出領域3Bは、貫通孔33A、回収孔31Bおよび筒状流路20Cを介して、第2開口26Bと連通している。実際には、第1開口26Aには、複数の貫通孔32Aおよび複数の供給孔31Aが連通し、第2開口26Bには、複数の貫通孔33Aおよび複数の回収孔31Bが連通しているが、図3では簡略化のためそれぞれ1つずつ図示している。
 次に、図3を参照して、中心管31内部および膜リーフ23の内部流路26における第1液体の流れを説明する。
 図3の矢印は、スパイラル型正浸透膜エレメント2を流れる第1液体の流れを模式的に示している。正浸透膜モジュール1に供給された第1液体は、流入口7Bを介して、場合によっては上流側のスパイラル型正浸透膜エレメント2を介して、供給管32に流入し、流入領域3Aを第1液体が流れる。
 流入領域3Aを流れる第1液体は、貫通孔32A、供給孔31A、および筒状流路20Cを介して、第1開口26Aから内部流路26へ入り、内部流路26を流れる。膜リーフ23の外部には周辺供給部材8Aから供給される第2液体(第1液体よりも高浸透圧の液体)が流れており、第1液体および第2液体が膜リーフ23の正浸透膜21の両面を流れている。従って、内部流路26を流れる第1液体の一部は、浸透現象により正浸透膜21を介して膜リーフ23の外部へと移動する。そして、膜リーフ23の上流側の内部流路26から膜リーフ23の外部へ移動しなかった第1液体は、内部流路26の第2開口26Bを出て、筒状流路20C、回収孔31Bおよび貫通孔33Aを介して、流出領域3Bへ入る。第1液体が溶質成分を含むものである場合には、流出領域3Bに入った第1液体は流入領域3Aに流入した第1液体よりも濃縮されている。
 この流出領域3Bに入った第1の液体は、場合によっては下流側のスパイラル型正浸透膜エレメント2の流出領域3Bを流れ、流出口7Dを介して正浸透膜モジュール1の外部に排出される。
 図1に示す通り、正浸透モジュール1において、最下流に位置するスパイラル型正浸透膜エレメント2の供給管32の他端はプラグ6Cによって封止されている。従って、正浸透膜モジュール1に供給された第1液体はスパイラル型正浸透膜エレメント2のいずれかの内部流路26を流れて正浸透膜モジュール1から排出されることとなる。流入領域3A内の第1液体が、流入領域3Aを出て内部流路26を流れ、一旦流出領域3Bに入ると、流出領域3B内の第1液体は、再び内部流路26を流れることなく、外部に排出される。
 すなわち、流入領域3Aに供給された第1液体は内部流路26を複数回流れることなく、外部に排出される。従って、従来技術のように、スパイラル型正浸透膜エレメントに供給された液体が2つの内部流路を順に通過して内部流路を2回流れるのに比べて、本実施形態は、スパイラル型正浸透膜エレメントの中心管内部および膜リーフ内部の液体流れの圧力損失を低減することができる。
 本実施形態において、中心管31の一端から他端にかけて、流入領域3Aが形成する流路の断面積は一定であり、流出領域3Bが形成する流路の断面積も一定である。これにより、流入領域3Aが形成する流路の断面積または流出領域3Bが形成する流路の断面積が、中心管31の軸方向において変化することに伴い生じる圧力損失の増加を抑制できる。
 本実施形態においては、流入領域3Aが形成する流路の断面積が、流出領域3Bが形成する流路の断面積よりも大きい。内部流路26において、第1液体の一部は正浸透膜21を介して膜リーフ23の外部へ移動するので、流出領域3Bによって形成される流路を流れる第1液体の流量は、流入領域3Aによって形成される流路を流れる第1液体の流量よりも少なくなる。流入領域3Aによって形成される流路および流出領域3Bによって形成される流路が上記のように構成されていれば、流入領域3Aによって形成される流路により多くの第1液体を供給できるとともに、流出領域3Bによって形成される流路の利用効率を高めることができる。
 流入領域3Aが形成する流路の断面積Saと流出領域3Bが形成する流路の断面積Sbとの比Sa/Sbは、スパイラル型正浸透膜エレメントにおいて、第1液体の供給量と第1液体の排出量との間の良好なバランスを実現でき、効率の良い正浸透操作を実現できるように調整することが好ましい。
 (変形例)
 図4~図6を参照して、変形例について説明する。図4~図6は変形例に係るスパイラル型正浸透膜エレメント2の中心管31のzy平面の断面図を示したものである。変形例に係るスパイラル型正浸透膜エレメント2は、中心管31の構造が異なる点を除き、第1の実施形態のスパイラル型正浸透膜エレメント2と同様に構成されている。
 <第1変形例>
 図4Aおよび図4Bは、第1変形例に係る中心管31の内部構造を示す断面図である。第1変形例において、管径の等しい2つの供給管32が、それらの外周面が中心管31の内周面と接するように並んで、中心管31内に配置されている。また、管径の等しい2つの回収管33が、それらの外周面が、中心管31の内周面および2つの供給管32の外周面と接するように配置されている。中心管31の内周面と2つの供給管32の外周面および2つの回収管33の外周面との間には、供給管32の外周面と回収管33の外周面とが接する位置よりも中心管31の内周面側に4つの隙間が存在する。そして、この4つ隙間に樹脂が充填され、封止部34が形成されている。供給管32の径は、回収管33の径よりも大きく、流入領域3Aが形成する流路の断面積が、流出領域3Bが形成する流路の断面積よりも大きい。
 2つの供給管32および2つの回収管33は周方向に交互に配置されている。これに伴い、供給孔31Aおよび貫通孔32A、ならびに、回収孔31Bおよび貫通孔33Aが、中心管31周方向の2箇所に設けられている。従って、中心管31の周方向の複数箇所において、流入領域3Aから内部流路26への第1液体の供給あるいは内部流路26から流出領域3Bへの第1液体の回収が可能となる。これにより、中心管31の周りに巻き回された複数の膜リーフ23に対してより均等に第1液体を供給することができる。
 また、第1変形例においては、第1の実施形態と比較して、中心管31の内周面と供給管32の外周面および回収管33の外周面との隙間を減らすことができる。従って、流入領域3Aおよび流出領域3Bについてより多くの容積を確保でき、スパイラル型正浸透膜エレメントの処理能力の向上を図ることができる。また、第1の実施形態と比べて、中心管31の内周面と供給管32の外周面および回収管33の外周面との隙間に充填される樹脂の量を減らすことができる。
 <第2変形例>
 図5Aおよび図5Bは、第2変形例に係る中心管31の内部構造を示す断面図である。この中心管31は、内部に中心管31の一端から他端にかけて連続的に延びる仕切り部36を有し、中心管31の内周面と仕切り部36とによって流入領域3Aと流出領域3Bとが区画されている。仕切り部36のy軸方向の長さは、中心管31の内径よりも短い。従って、流入領域3Aによって形成される流路の断面積が、流出領域3Bによって形成される流路の断面積よりも大きい。流入領域3Aおよび流出領域3Bを中心管31の外部と連通させるように中心管31の管壁に貫通孔を設けられ、供給孔31Aおよび回収孔31Bが形成されている。
 仕切り部36を有する中心管31は、押出成形や射出成形などにより作製できる。また、中心管36の内周面に仕切り部36となる板状材を熱溶着、超音波溶着、溶接、接着等によって接合することによって作製することもできる。あるいは、断面が半円である2つの管を互いに接合して作製することもできる。
 第2変形例によれば、中心管31の内部に樹脂を充填して封止部34を形成する必要がないので、中心管31の内部の容積の多くを流入領域3Aあるいは流出領域3Bとして利用することができ、スパイラル型正浸透膜エレメントの処理能力の向上を図ることができる。
 <第3変形例>
 図6Aおよび図6Bは、第3変形例に係る中心管31の内部構造を示す断面図である。第3変形例においては、中心管31の内部に断面が楕円形状の内管38が固定されている。内管38の長手方向の外径は中心管31の内径とほぼ一致しており、内管38は長手方向において中心管31の内周面と接するように配置されている。中心管31の内周面と内管38の外周面とによって流入領域3Aが区画され、内管38の内周面によって流出領域3Bが区画されている。中心管31の管壁には、内管38断面の長軸と交わる位置で互いに対向する複数の回収孔31Bが形成されている。内管38の管壁には、複数の回収孔31Bに連通するように、複数の貫通孔38Aが形成されている。流出領域3Bは、貫通孔38Aおよび回収孔31Bを介して中心管31の外部と連通している。
 中心管31の管壁には、内管38と接する位置(内管38断面の長軸方向と交わる位置)以外の位置に供給孔31Aが形成されている。流入領域3Aは、供給孔31Aを介して中心管31の外部と連通している。
 内部に内管38を有する中心管31は、押出成形や射出成形などにより作製できる。また、中心管31の内周面と内管38の外周面とを熱溶着、超音波溶着、溶接、接着等によって接合することによって作製することもできる。
 第3変形例によれば、中心管31の内周面と内管38の内周面との隙間を流入領域3Aとして利用することができるので、第1の実施形態と比べてスパイラル型正浸透膜エレメントの処理能力の向上を図ることができる。
 また、中心管31の管壁において、内管38と接する位置(内管38断面の長軸方向と交わる位置)以外の位置に供給孔31Aを形成することができるので、中心管3の周方向に巻き回された複数の膜リーフ23の内部流路26へより均等に液体を供給することを促進できる。
 (その他の実施形態)
 本発明のスパイラル型正浸透膜エレメントおよび正浸透モジュールは上記の実施形態に何ら限定されるものではなく、様々な実施形態とすることが可能である。
 第1の実施形態において、正浸透膜モジュール1の一端(図1の左側)に流入口7Bが設けられているが、図7に示すように、流入口7Bを有する流路部材7Eを両端のキャップ9Bの中心貫通孔9Cの圧力容器9A側に取り付けて、正浸透膜モジュール1の両端に流入口7Bを設けてもよい。この場合に、さらにプラグ6Cに代えて供給連結部材6Aを設ければ、正浸透膜モジュール1の両端からスパイラル型正浸透膜エレメント2の中心管31内の流入領域3Aに、第1液体を供給することができる。第1液体を正浸透膜モジュール1の両端からスパイラル型正浸透膜エレメント2の流入領域3Aに供給すれば、正浸透膜モジュール1の一端から流入した第1液体の流れは、流入領域3Aにおいて、正浸透膜モジュールの他端から流入した第1液体の流れとぶつかり、連結された複数のスパイラル型正浸透膜エレメントの流入領域3Aが形成する流路の他端まで流れない。従って、中心管31内の第1液体の流れの実質的な流路長が短くなり、中心管31内を流れる第1液体の圧力損失をより低減できる。
 第1の実施形態に係る正浸透膜モジュール1においては、複数のスパイラル型正浸透膜エレメント2が連結されて、圧力容器9A内に装填されているが、圧力容器9A内に、1つのスパイラル型正浸透膜エレメント2のみが装填されることとしてもよい。この場合においても、正浸透膜モジュール1の両端に流入口が設けられてもよい。
 第1実施形態および変形例に記載の通り、流入領域3Aによって形成される流路の断面積は流出領域3Bによって形成される流路の断面積よりも大きいことが好ましい。しかし、流入領域3Aによって形成される流路の断面積と流出領域3Bによって形成される流路の断面積との大小関係はこれに限られない。両者が同じ大きさであってもよいし、場合によっては、両者の大小関係が逆転していてもよい。
 第1の実施形態に記載の通り、第2液体の浸透圧は、第1液体の浸透圧よりも高いことが好ましいが、第1液体の浸透圧よりも低くてもよい。この場合には、膜リーフ23の外部から正浸透膜21を介して膜リーフ23の内部流路26へ第2の液体の一部が移動する。つまり、流入領域3Aによって形成される流路を流れる流量よりも流出領域3Bによって形成される流路を流れる流量が多い。従って、流出領域3Bによって形成される流路の断面積は、流入領域3Aによって形成される流路の断面積よりも大きいことが好ましい。
 第1の実施形態および変形例においては、中心管および内管(供給管、回収管)として、円管あるいは楕円管を用いている。しかし、中心管および内管の形状はこれに限られない。方形管を用いてもよいし、断面形状としては任意の形状である管を用いることができる。ところで、スパイラル型正浸透膜エレメント2の中心管3の端部と中心供給部材7Aまたは中心排出部材7C、あるいは、隣り合うスパイラル型正浸透膜エレメント2の中心管3の端部との間の封止のためにO-リング等のパッキンを用いることがある。この点を考慮すると、中心管または内管として、円管あるいは楕円管を用いるのが好ましい。
 第1実施形態においては、中心管31の内周面と供給管32の外周面および回収管33の外周面との隙間に樹脂が充填されて、中心管31内部に供給管32および回収管33を保持されていたが、回収管32および回収管33が内部で連結された中心管31を押出成形などによって作製することとしてもよい。これによれば、中心管31の内周面と供給管32の外周面および回収管33の外周面との隙間に樹脂を充填して封止部34を形成する必要がなくなる。
 第1の実施形態において、第1開口26Aを形成する開口端の幅は、第2開口26Bを形成する開口端の幅よりも長くてもよい。このようにすることで、第2開口26Bの開口面積が第1開口26Aの開口面積よりも大きくなりやすい。膜リーフ23の内部流路26を流れる第1液体の一部は浸透現象により正浸透膜21を介して膜リーフ23の外部へ移動するので、第2開口26Bを通る第1液体の流量は、第1開口26Aを通る第1液体の流量よりも低下する。第1開口26Aおよび第2開口26Bについて上記の構成とすることで、第1開口26Aおよび第2開口26Bのそれぞれを通過する第1液体の流量に合せた開口面積を確保することが容易となる。
 第1の実施形態において、1つの膜リーフ23の内部流路26の数は3つであるが、これに限られない。1つの膜リーフにおいて内部流路の数は1つであってもよいし、2つであってもよいし、3つ以上であってもよい。内部流路が3つ以上であれば、内部流路の中心管軸方向の巾が小さくなって、内部流路の隅々まで液体を行き渡らせることができる。その結果、正浸透膜21の利用効率を高めることができる。ただし、内部流路の数が多すぎると、内部流路26内の流路抵抗が増し、また、接合部27、28として必要な部分の面積が増えてしまう。正浸透膜21の利用効率を高める観点からは、1つの膜リーフ23の内部流路26の数は2~5が適当である。
 第1変形例においては、2つの供給管32および2つの回収管33が中心管31の内部に固定されていたが、固定される供給管32の数および回収管33の数は2つ以上であってもよい。また、両者が等しい数である必要はなく、供給管32または供給管31の少なくとも一方が1つであってもよい。中心管31の内部に固定される、供給管の数または回収管の数が増えるほど、中心管31の内周面と供給管32の外周面および回収管33の外周面との隙間が減って、流入領域3Aまたは流出領域3Bの容積をより多く確保できる。さらに、供給管32の内径と回収管33の内径は両者が同一であってもよいし、場合によっては回収管33の内径が供給管32の内径よりも大きくてもよい。
1       正浸透膜モジュール
2       スパイラル型正浸透膜エレメント
20      積層体
21      正浸透膜
23      膜リーフ
26      内部流路
26A     第1開口
26B     第2開口
31      中心管
3A      流入領域
3B      流出領域
31A     供給孔
31B     回収孔
32      供給管
32A     貫通孔
33      回収管
33A     貫通孔
34      封止部
36      仕切り部
38      内管
38A     貫通孔
6A      供給連結部材
6B、6E   連結部材
6C、6D   プラグ
6F      排出連結部材
7B      流入口
7D      流出口
9A      圧力容器

Claims (12)

  1.  第1開口から第2開口へ延びるU字状の内部流路が形成された膜リーフと、
     前記膜リーフが巻き回された、前記第1開口と連通する供給孔および前記第2開口と連通する回収孔を有する中心管と、を備え、
     前記中心管の内部は、前記供給孔と連通する流入領域および前記回収孔と連通する流出領域のそれぞれが前記中心管の一端から他端にかけて前記中心管の軸方向に連続的に延びる流路を形成するように区画されているスパイラル型正浸透膜エレメント。
  2.  前記流入領域が形成する流路の断面積および前記流出領域が形成する流路の断面積は、前記中心管の一端から他端にかけて一定である、請求項1に記載のスパイラル型正浸透膜エレメント。
  3.  前記中心管に第1流体が供給され、前記膜リーフの外部に前記第1流体よりも浸透圧が高い第2流体が供給される、請求項1または請求項2に記載のスパイラル型正浸透膜エレメント。
  4.  前記流入領域が形成する流路の断面積は、前記流出領域が形成する流路の断面積よりも大きい、請求項1~3のいずれか1項に記載のスパイラル型正浸透膜エレメント。
  5.  前記第1開口を形成する開口端の幅は、前記第2開口を形成する開口端の幅よりも大きい、請求項4に記載のスパイラル型正浸透膜エレメント。
  6.  前記膜リーフには、前記中心管の軸方向に並ぶ複数の前記内部流路が形成されている、請求項1~5のいずれか1項に記載のスパイラル型正浸透膜エレメント。
  7.  前記中心管内に配置され、前記供給孔と連通する貫通孔が形成された前記流入領域を区画する供給管と、
     前記中心管内に配置され、前記回収孔と連通する貫通孔が形成された前記流出領域を区画する回収管と、を備える請求項1~6のいずれか1項に記載のスパイラル型正浸透膜エレメント。
  8.  前記供給管の外周面および前記回収管の外周面と前記中心管の内周面との隙間に樹脂が充填されている、請求項7に記載のスパイラル型正浸透膜エレメント。
  9.  複数の前記供給管および/または複数の前記供給管が、前記中心管内に配置されている、請求項7または請求項8に記載のスパイラル型正浸透膜エレメント。
  10.  前記中心管の内部で一端から他端にかけて連続的に延びる仕切り部を有し、前記中心管の内部は、前記仕切り部によって前記流入領域および前記流出領域に区画されている、請求項1~6のいずれかに1項に記載のスパイラル型正浸透膜エレメント。
  11.  圧力容器と、
     前記圧力容器内に装填された請求項1~10のいずれか1項に記載のスパイラル型正浸透膜エレメントと、を備えた正浸透膜モジュール。
  12.  連結された複数の前記スパイラル型正浸透膜エレメントが前記圧力容器内に装填され、前記スパイラル型正浸透膜エレメントの前記流入領域に液体を流入させるための流入口を両端に備える、請求項11に記載の正浸透膜モジュール。
PCT/JP2013/004470 2012-07-25 2013-07-23 スパイラル型正浸透膜エレメントおよび正浸透膜モジュール WO2014017076A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/414,040 US9861938B2 (en) 2012-07-25 2013-07-23 Spiral-wound forward osmosis membrane element and forward osmosis membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012164894A JP5961469B2 (ja) 2012-07-25 2012-07-25 スパイラル型正浸透膜エレメントおよび正浸透膜モジュール
JP2012-164894 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017076A1 true WO2014017076A1 (ja) 2014-01-30

Family

ID=49996903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004470 WO2014017076A1 (ja) 2012-07-25 2013-07-23 スパイラル型正浸透膜エレメントおよび正浸透膜モジュール

Country Status (3)

Country Link
US (1) US9861938B2 (ja)
JP (1) JP5961469B2 (ja)
WO (1) WO2014017076A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135366A4 (en) * 2014-04-21 2018-01-24 Picogram Co., Ltd. Reverse osmosis membrane filter having fluid channel formed on side surface thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397296B1 (ko) * 2013-12-27 2014-05-22 도레이케미칼 주식회사 정삼투용 또는 압력지연 삼투용 다공성 유출관 및 이를 포함하는 정삼투 또는 압력지연 삼투 모듈
US10525414B2 (en) 2015-05-29 2020-01-07 Sumitomo Chemical Company, Limited Spiral-wound acid gas separation membrane element, acid gas separation membrane module, and acid gas separation apparatus
WO2017020524A1 (zh) * 2015-08-03 2017-02-09 佛山市美的清湖净水设备有限公司 滤芯的中心管组件及其制备方法
WO2017079131A1 (en) * 2015-11-06 2017-05-11 Fluid Technology Solutions (Fts), Inc. Methods and systems for treating wastewater via forward osmosis
WO2019161367A1 (en) * 2018-02-19 2019-08-22 Dd Filter Solutions, Inc. Energy efficient reverse osmosis filtration
CN109999673B (zh) * 2019-05-08 2024-02-13 上海凯鑫分离技术股份有限公司 一种卷式膜元件
DE202019107205U1 (de) * 2019-12-20 2020-01-21 Spiraltec Gmbh Vorrichtung zur Wärme- und/oder Stoffübertragung
CN114011246B (zh) * 2021-10-29 2024-04-02 浙江沁园水处理科技有限公司 一种侧流膜滤芯组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124587A (ja) * 1974-08-26 1976-02-27 Daicel Ltd
US4033878A (en) * 1975-05-12 1977-07-05 Universal Oil Products Company Spiral wound membrane module for direct osmosis separations
JPH01115410A (ja) * 1987-10-27 1989-05-08 Agency Of Ind Science & Technol 溶液間浸透装置
WO2009151709A2 (en) * 2008-03-20 2009-12-17 Yale University Spiral wound membrane module for forward osmotic use
WO2010104895A2 (en) * 2009-03-09 2010-09-16 Herron John R Center tube configuration for a multiple spiral wound forward osmosis element
WO2011072277A2 (en) * 2009-12-11 2011-06-16 Hydration Systems, Llc Osmotic water transfer system and related processes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3525682A1 (de) * 1985-07-18 1987-01-22 Robert Kohlheb Wickelmembran-filterkerze
JP4166464B2 (ja) 2001-12-10 2008-10-15 国立大学法人東京工業大学 海水淡水化装置付き浸透圧発電システム
WO2005082497A1 (en) * 2004-02-25 2005-09-09 Dow Global Technologies, Inc. Apparatus for treating solutions of high osmotic strength
JP2005279540A (ja) 2004-03-30 2005-10-13 Toray Eng Co Ltd 淡水化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124587A (ja) * 1974-08-26 1976-02-27 Daicel Ltd
US4033878A (en) * 1975-05-12 1977-07-05 Universal Oil Products Company Spiral wound membrane module for direct osmosis separations
JPH01115410A (ja) * 1987-10-27 1989-05-08 Agency Of Ind Science & Technol 溶液間浸透装置
WO2009151709A2 (en) * 2008-03-20 2009-12-17 Yale University Spiral wound membrane module for forward osmotic use
WO2010104895A2 (en) * 2009-03-09 2010-09-16 Herron John R Center tube configuration for a multiple spiral wound forward osmosis element
WO2011072277A2 (en) * 2009-12-11 2011-06-16 Hydration Systems, Llc Osmotic water transfer system and related processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135366A4 (en) * 2014-04-21 2018-01-24 Picogram Co., Ltd. Reverse osmosis membrane filter having fluid channel formed on side surface thereof

Also Published As

Publication number Publication date
JP5961469B2 (ja) 2016-08-02
US9861938B2 (en) 2018-01-09
JP2014023986A (ja) 2014-02-06
US20150157984A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP5961469B2 (ja) スパイラル型正浸透膜エレメントおよび正浸透膜モジュール
JP5956283B2 (ja) スパイラル型分離膜エレメント用端部材、スパイラル型分離膜エレメントおよび分離膜モジュール
KR101651305B1 (ko) 나선형으로 권취된 멤브레인 분리기 조립체
US8021550B2 (en) Central core element for a separator assembly
JP6683800B2 (ja) 渦巻き状膜モジュール及び塩水シールを含むフィルタアセンブリ
WO2015063975A1 (ja) 流路部材及び正浸透膜エレメント
ES2743899T3 (es) Conjunto de filtración que incluye biorreactores enrollados en espiral y módulos de membrana colocados en recipientes de presión separados
KR20150144335A (ko) 삼투 장치
KR101632941B1 (ko) 유체 커플링을 가지는 여과 시스템
US20190388839A1 (en) Spiral wound membrane rolls and modules
ES2687894T3 (es) Montaje que incluye módulos enrollados en espiral conectados en serie con controlador de flujo de filtrado
WO2013146277A1 (ja) 医療器具
JP2015107483A (ja) 螺旋流水処理装置
KR102347564B1 (ko) 통합된 투과물 흐름 제어기를 갖는 나권형 모듈
JP5925626B2 (ja) スパイラル型正浸透膜エレメント及び正浸透膜モジュール
CN112165982A (zh) 流路间隔物和螺旋型膜元件
CN106237861B (zh) 反渗透膜元件、反渗透膜元件的制备方法和滤芯
US11534536B2 (en) Heat exchanger and oxygenator
CN112135680B (zh) 流路间隔物和螺旋型膜元件
US20140076790A1 (en) Central core element for a separator assembly
WO2015063976A1 (ja) 正浸透膜エレメント
JP6633300B2 (ja) 分離膜ユニット及び分離膜エレメント
WO2016199726A1 (ja) 分離膜エレメント及び膜分離装置
WO2023176647A1 (ja) 正浸透膜エレメント、及び正浸透膜モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823371

Country of ref document: EP

Kind code of ref document: A1