WO2014014065A1 - Fuel combustion device - Google Patents

Fuel combustion device Download PDF

Info

Publication number
WO2014014065A1
WO2014014065A1 PCT/JP2013/069545 JP2013069545W WO2014014065A1 WO 2014014065 A1 WO2014014065 A1 WO 2014014065A1 JP 2013069545 W JP2013069545 W JP 2013069545W WO 2014014065 A1 WO2014014065 A1 WO 2014014065A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel combustion
flow
fuel
discharge port
Prior art date
Application number
PCT/JP2013/069545
Other languages
French (fr)
Japanese (ja)
Inventor
和喜 稲津
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to JP2014525870A priority Critical patent/JP6156378B2/en
Priority to CN201380032995.3A priority patent/CN104379997B/en
Publication of WO2014014065A1 publication Critical patent/WO2014014065A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels

Definitions

  • the present invention relates to a fuel combustion apparatus used for a cement rotary kiln. More specifically, the present invention relates to a fuel combustion apparatus that can reduce the fuel cost by using a flame-retardant fuel, such as anthracite, oil coke, and can produce cement without deteriorating its quality.
  • a flame-retardant fuel such as anthracite, oil coke
  • a fuel combustion apparatus used in a cement clinker firing apparatus burns cement raw material charged from the upstream side into the cement rotary kiln into the cement clinker in the middle of moving downstream by rotation of the cement rotary kiln. Is moved to the clinker cooler side from the front part of the kiln surrounding the downstream end of the cement rotary kiln and cooled (for example, see Patent Document 1).
  • the rotary kiln is attached with the burner 56a as a fuel combustion apparatus which bakes a raw material.
  • This burner 56a is arrange
  • the primary air external flow is a straight flow, and the primary air internal flow is a swirl flow.
  • the primary air internal flow / external flow is supplied to the header 561 from the single fan 560, and the distribution of the internal flow / external flow is adjusted by the opening degree of the pair of valves 561a, 561b installed in the header 561.
  • symbol F of FIG. 20 shows an air volume meter.
  • an object of the present invention is to provide a fuel combustion apparatus that can efficiently burn a flame retardant fuel such as anthracite or oil coke with a rotary kiln.
  • the fuel combustion apparatus is a fuel combustion apparatus that injects solid powder fuel together with air from the discharge port along the virtual axis in the injection direction.
  • the fuel combustion apparatus according to the present invention includes a fuel injection port that is arranged in a ring shape around the virtual axis at the discharge port, and jets the solid powder fuel in the injection direction, and the fuel injection at the discharge port.
  • An outer air injection port that is arranged in a ring shape on the outer side in the radial direction of the port and spaced around the imaginary axis, and injects air in the injection direction; and in the discharge port, the inner side in the radial direction of the fuel injection port And an inner air injection port arranged in a ring shape with an interval around the virtual axis.
  • the fuel combustion apparatus further includes a swirling / diffusion flow path including a first diffusion flow generation unit and a second diffusion flow generation unit at the inner air injection port.
  • the first diffusion flow generation unit includes a flat portion disposed on an outer peripheral portion on the discharge port side of the inner air injection port so as to be parallel to the virtual axis, and the discharge port on the discharge port side of the flat portion.
  • a first inclined portion formed so as to open greatly toward the side, and the second diffusion flow generating portion is arranged parallel to the first inclined portion so as to be parallel to the first inclined portion. It has the 2nd inclined part arrange
  • the primary air (outer flow) from the outer air injection port attracts the surrounding high-temperature gas by the negative pressure generated by the high-speed flow, so that an external recirculation region is formed following the secondary air entrainment. become.
  • the high temperature field in the external recirculation region further promotes the combustion of the solid powder fuel flow (pulverized coal flow) introduced by the first primary air flow from the swirl / diffusion flow path. That is, the flame temperature increases.
  • promoting the introduction of pulverized coal into a high temperature field by swirling / diffusion flow is also an important factor for increasing the combustion rate.
  • the scale of the external recirculation zone will depend on the momentum of the primary air.
  • the momentum (N) of the primary air is calculated by a flow path area (m 2 ) ⁇ flow velocity (m / s) ⁇ mass flow rate (kg / s), and the primary air momentum per input heat (N / MW).
  • a slot structure in which pieces are arranged at a predetermined interval in the circumferential direction on the discharge port side of the outer air injection port is preferable.
  • a slot structure is provided in the external flow burner discharge section, so that a gap is provided in the primary air external flow, high temperature secondary air entrainment can be promoted, and the high temperature secondary air entrainment region is expanded. can do.
  • a structure provided with the 1st fan which supplies air to the said inner side air injection port, and the 2nd fan which supplies air to the said outer side air injection port can also be employ
  • the primary air fan (blower) independent in the internal flow and the external flow
  • the air amount and the air amount ratio of the internal flow and the external flow can be arbitrarily adjusted, and depending on the fuel type to be used
  • the flame can be adjusted to an optimum state.
  • the flow velocity at the discharge portion of the outer air injection port is 150 to 250 m / s.
  • the flat portion has a length of a portion parallel to the axis of the concentric cylindrical member that is 1 to 2 times the height of the parallel portion, and an angle of the second inclined portion is 30 °. It is also possible to adopt a configuration in which the angle is ⁇ 60 °.
  • the first diffusion flow generating unit having the flat portion and the inclined portion of 30 ° to 60 ° is disposed on the outer peripheral portion on the discharge port side of the inner air injection port, so that the inner flow is reduced. While being rectified by the flat portion, it diffuses radially in the radial outer peripheral direction at 30 ° or more and 60 ° or less with respect to the axial direction. Then, the inner flow diffused radially while being rectified joins the coal flow on the outer peripheral side, and then quickly diffuses the coal into the high temperature secondary air flow on the outer peripheral side. A rise is possible.
  • m ⁇ 1.5R 2 + R + K ⁇ R 2 / (d 0 / d 1 ) 2 (1)
  • R (u 0 -u 1) ⁇ 0 ⁇ (d 0/2) 2 / u 1 ⁇ 1 (d 1/2- ⁇ ) 2 + (u 0 -u 1) ⁇ 0 (d 0/2) 2 u 0 : Jet velocity (primary air) u 1 : Entrained flow velocity (secondary air) ⁇ 0 : Jet density (primary air) ⁇ 1 : Entrained flow density (secondary air) d 0 : Effective inner diameter of discharge port of fuel combustion apparatus d 1 : Effective inner diameter of rotary kiln K: Jet shape factor of rotary kiln, 1 when discharge port of
  • the momentum of the primary air at the outer air injection port is preferably 6 to 8 N / MW.
  • Another fuel combustion apparatus is a fuel combustion apparatus that injects solid powder fuel together with air from the discharge port along the virtual axis in the injection direction.
  • Another fuel combustion apparatus includes a plurality of fuel injection port portions that are arranged in a ring shape at intervals around the imaginary axis at the discharge port, and jet the solid powder fuel in the injection direction.
  • a plurality of outer air injection ports that are arranged in a ring shape at the discharge port in the radial direction outside the plurality of fuel injection ports and spaced around the virtual axis, and for injecting air in the injection direction;
  • the discharge port is arranged in a ring shape radially inward of the plurality of fuel injection port portions and spaced around the virtual axis, and as it advances in the injection direction, a turning direction and a radius around the virtual axis
  • a plurality of inner air injection ports for injecting air in a spiral diffusion direction between the direction outer side direction.
  • the plurality of inner air jets formed in the ring-shaped inner side and in the jetting direction are entrained between the plurality of inner air flows jetted from the inner air jets, respectively.
  • a predetermined inner injection gap is formed between two inner air injection openings adjacent to each other in the direction around the virtual axis.
  • the outer air flow (primary air flow) ejected at a high speed from the plurality of outer air ejection ports attracts the surrounding high-temperature gas by the negative pressure generated by the high-speed flow, so that the secondary air Following the entrainment, an external recirculation zone will be formed.
  • the high temperature field in this external recirculation further promotes the combustion of the solid powder fuel flow (pulverized coal flow) introduced by the inner air flow from the plurality of inner air injection ports. That is, the flame temperature can be increased.
  • the plurality of inner air jet ports Since a predetermined inner jet port gap is formed between two inner air jet ports adjacent in the direction around the virtual axis among the plural inner air jet ports, the plurality of inner air jet ports The air in the internal circulation region in the ring-shaped inside and in the injection direction formed by the portion is attracted and easily entrained between the plurality of inner air flows respectively injected from the plurality of inner air injection ports. For this reason, a strong air flow is generated in the internal circulation region, and in combination with the inner air flow, combustion of the solid powder fuel flow (pulverized coal flow) is further promoted. That is, the flame temperature can be further increased.
  • Each inner air injection port includes an inflow port into which air flowing in the injection direction flows, an upstream flow path extending from the inflow port in a swirl direction between the injection direction and a direction around the virtual axis, It is preferable to have a downstream flow channel that is airtightly connected to the upstream flow channel and extends in the spiral diffusion direction.
  • the upstream flow path and the downstream flow path are formed in a straight line, by doing so, the air flowing inside the inner air injection port portion is linearly connected to the straight upstream flow path. Since the flow direction of the air can be changed stepwise by flowing through the downstream flow path, the inner air injection port portion can be rectified.
  • Another fuel combustion apparatus further includes an upstream ring having the virtual axis as a central axis, and a downstream ring having the virtual axis as a central axis and disposed in the injection direction of the upstream ring. It is preferable to provide a diffusion flow ring having In this case, the upstream flow channel of each inner air injection port is formed in the upstream ring, and the downstream flow channel of each inner air injection port is formed in the downstream ring. In this case, it is only necessary to form a straight upstream flow path in the upstream ring and a straight downstream flow path in the downstream ring, so the upstream ring and the downstream ring are inexpensive. Can be manufactured.
  • the plurality of outer air injection ports such that air that is radially outward of the plurality of outer air injection ports is entrained between the plurality of air flows respectively injected from the plurality of outer air injection ports.
  • a predetermined outer injection port gap may be formed between two outer air injection ports adjacent to each other in the direction around the virtual axis. In this case, a gap is provided in the outer air flow (outside primary air flow), so that high temperature secondary air entrainment can be promoted and the region of high temperature secondary air entrainment can be expanded.
  • Another fuel combustion apparatus further includes a first fan for supplying air to the plurality of inner air injection ports and the plurality of fuel injection ports, and air to the outer air injection ports. And a second fan.
  • a first fan for supplying air to the plurality of inner air injection ports and the plurality of fuel injection ports, and air to the outer air injection ports.
  • a second fan for controlling the first fan and the second fan independently of each other, the flame can be adjusted to an optimum state depending on the type of fuel used.
  • the flow rate of the secondary air in the outer air injection port is 150 to 250 m / s.
  • the inner air jet port portion whose angle in the spiral diffusion direction with respect to the virtual axis is 30 ° to 60 ° is arranged on the outer peripheral portion on the discharge port side of the outer air jet port portion, so that the internal flow is It diffuses radially in the spiral diffusion direction. Then, after the radially diffused internal flow merges with the coal flow on the outer peripheral side, the coal is quickly diffused into the high temperature secondary air flow on the outer peripheral side, so that the flame is heated to increase the combustion speed. It becomes possible.
  • the momentum of the outside air injected from the outside air injection port is preferably 6 to 8 N / MW. According to this configuration, proper external recirculation can be ensured.
  • the cement clinker firing apparatus is a cement rotary kiln and another fuel combustion apparatus according to any one of the above, attached to the cement rotary kiln so that the discharge port is located inside the cement rotary kiln. And comprising.
  • the range is preferably from 1.5 to 2.6, more preferably from 2.0 to 2.4.
  • a flame-retardant fuel with a low volatile content such as anthracite or oil coke can be efficiently burned in a rotary kiln.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. It is a top view of the piece arrange
  • FIG. 15 is an XV-XV cross-sectional view of the downstream ring shown in FIG. 14.
  • FIG. 17 is a cross-sectional view of the upstream ring shown in FIG. 16 taken along the line XVII-XVII.
  • FIG. 1 It is a schematic sectional drawing which shows the state of an action
  • a fuel combustion apparatus (hereinafter sometimes simply referred to as a burner) 1 includes a plurality of concentric cylindrical members, specifically, an innermost first cylindrical member a, A plurality of flow paths partitioned by a second cylindrical member b, a third cylindrical member c, and a fourth cylindrical member d on the outermost periphery are provided.
  • the plurality of flow paths are, in order from the center of the concentric circles, an inner air injection port 2 configured by a spiral flow path S to generate a swirl flow, and a fuel injection port 3 disposed outside the inner air injection port 2.
  • an outer air injection port 4 disposed outside the fuel injection port 3, an inner air injection port 2, a fuel injection port 3, and a discharge port 5 for discharging air from the outer air injection port 4.
  • the inner air injection port 2 has a swirl / diffusion flow path including a first diffusion flow generation unit 6 and a second diffusion flow generation unit 7. 8 is provided.
  • the first diffusion flow generator 6 has a flat part 6a, a first inclined part 6b, and an inlet-side inclined part 6c.
  • the flat portion 6a is disposed on the outer peripheral portion of the burner 1 on the discharge port 5 side so as to be parallel to the virtual axis O of the cylindrical members a to d.
  • the 1st inclination part 6b is formed in the discharge port 5 side of the flat part 6a so that it may open large as it goes to this discharge port 5 side.
  • the inlet side inclined portion 6c is formed on the side opposite to the discharge port 5 side of the flat portion 6a so as to open larger toward the opposite side.
  • the length of the portion parallel to the virtual axis O of the cylindrical member a is 1 to 2 times the parallel portion height H (in this embodiment, the length of the flat portion 6a). Is 5 to 10 mm).
  • angle (theta) 1 of the 1st inclination part 6b with respect to the flat part 6a is 45 degrees.
  • the angle ⁇ 2 of the inlet side inclined portion 6c with respect to the flat portion 6a is 30 ° (see FIG. 6).
  • the second diffusion flow generating unit 7 has an inclined part (second inclined part) 7a.
  • the inclined portion 7a is disposed on the inner peripheral portion of the discharge port 5 of the inner air injection port 2 so as to be parallel to the first inclined portion 6b.
  • the angle ⁇ 3 of the inclined part 7a with respect to the virtual axis O is 45 ° (see FIG. 6).
  • first inclined portion 6b of the first diffusion flow generation unit 6 and the inclined portion 7a of the second diffusion flow generation unit 7 are parallel to each other with a predetermined interval.
  • a rectifying flow path 8 a is formed between the outer peripheral surface of the cylindrical member a and the flat portion 6 a of the first diffusion flow generating unit 6.
  • a diffusion flow path 8 b is formed between the first inclined portion 6 b of the first diffusion flow generation unit 6 and the inclined portion 7 a of the second diffusion flow generation unit 7.
  • a swirling / diffusion channel 8 is formed by the rectifying channel 8a and the diffusion channel 8b. The first primary air flow discharged through the swirling / diffusion flow path 8 is introduced to the vicinity of the discharge port 5 while being swirled, and is diffused while being rectified near the discharge port 5 to the outside. Discharged.
  • the inner air injection port 2 is constituted by the spiral flow path S.
  • the spiral flow path S is formed by a plurality of swirl blades S1,. Has been.
  • the angle ⁇ 4 of the swirling blades S1,... With respect to the virtual axis O is 45 °.
  • the fuel injection ports 3 are provided with equirectangular shaped rectifying plates 30,... At equal intervals (in FIG. 1, five are arranged).
  • the current plate 30 has a plurality of air vent holes for cooling.
  • the rectifying plate 30 is formed with a small width at the center side and is formed wider toward the outer peripheral side.
  • a flame-retardant fuel such as anthracite or oil coke which is promoted by reducing the manufacturing cost is used.
  • the outer air injection port 4 has a slot structure closed by pieces 40,... Arranged at predetermined intervals in the circumferential direction (in FIG. 1, 10 pieces are arranged).
  • the piece 40 includes a wide-angle portion 40a having a substantially square shape in a plan view and a diversion portion 40b having a triangular shape in a plan view. And the wide angle part 40a is arrange
  • the size of the piece 40 is, for example, a width dimension X of 33 mm, an overall length dimension Y of 70 mm, and a thickness dimension Z of 12.5 mm.
  • the dimension Y1 is substantially the same as the width dimension X. .
  • the angle ⁇ 5 formed by the virtual axis O and the hypotenuse is 24 degrees.
  • a gap is formed in the primary air flow (inner flow), and entrainment of high temperature secondary air (outer flow) can be promoted.
  • the accompanying area can be enlarged.
  • the inner air injection port 2 and the fuel injection port 3 are provided with a first fan (blower) 9 that supplies air to the inner air injection port 2 and the fuel injection port 3.
  • the outer air injection port 4 is provided with a second fan (blower) 10 for supplying air to the outer air injection port 4, and is independent of the inner air injection port 2 and the outer air injection port 4.
  • the air can be supplied.
  • An air flow meter 11 that measures the air flow of the first fan (blower) 9 and an air flow meter 11 that measures the air flow of the second fan (blower) 10 are provided.
  • the primary air (outer flow) from the outer air injection port 4 attracts the surrounding high-temperature gas by the negative pressure generated by the high-speed flow, so that the secondary air entrainment E is followed by the external air.
  • a recirculation zone B will be formed.
  • the high temperature field in the external recirculation region B further promotes the combustion of the solid powder fuel flow (pulverized coal flow) introduced by the first primary air flow from the swirl / diffusion flow path 8. That is, the flame temperature increases.
  • promoting the introduction of pulverized coal into a high temperature field by swirling / diffusion flow is also an important factor for increasing the combustion rate.
  • the scale of the external recirculation region B depends on the momentum of the primary air.
  • the momentum (N) of the primary air is calculated by a flow path area (m 2 ) ⁇ flow velocity (m / s) ⁇ mass flow rate (kg / s), and the primary air momentum per input heat (N / MW).
  • the air amount and the air amount ratio of the internal air / external flow can be adjusted to an optimum state depending on the type of fuel used.
  • the SO 3 circulation can be suppressed by narrowing and shortening the flame as the combustion speed increases.
  • the flame temperature and the combustion speed can be increased.
  • the use rate of low-volatile coal for example, anthracite coal having a volatile content (VM) of 10% or less of anhydrous ashless-based coal and oil coke can be increased by improving the combustion rate.
  • the calorie ratio (conventional) can be increased to 10% or less (improved) to 30%.
  • air is supplied to the inner air injection port 2 by the first air fan (blower) 9 and air is supplied to the outer air injection port 4 by the second air fan (blower) 10.
  • the internal and external air can be supplied independently, making flame adjustment easy and reducing the amount of SO 3 circulated by narrowing and shortening the flame.
  • the present invention is applied to the burner of the cement clinker firing apparatus, but is not limited to the cement clinker firing apparatus, and can be applied to various burners using pulverized coal as fuel.
  • a cement clinker firing apparatus 50 used when firing cement raw materials such as limestone, clay, silicic acid raw materials, and iron oxide raw materials includes four cyclones 51 to 54 and FIG.
  • a cooler 60 connected to the rotary kiln 56 and a fan 62 connected to the uppermost cyclone 53 on the left side via a pipe 61 are provided.
  • the rotary kiln 56 is provided with the above-described fuel combustion device 1 as a fuel combustion device for firing the raw material.
  • the primary air external flow is accompanied by high temperature secondary air from the cooler 60 to increase the temperature of the flame, thereby promoting coal combustion.
  • a swirling / diffusion flow path 8 is attached near the outlet end of the primary air flow (near the discharge port 5).
  • the swirling / diffusion flow path 8 stirs and swirls the airflow flowing along the direction of the virtual axis O of the fuel combustion device 1.
  • the manufacturing method includes a raw material preparation step, a cement clinker firing step, and a finishing step.
  • a powder raw material (hereinafter simply referred to as a raw material) in which the components are stabilized by pulverization, drying, and mixing so as to be the required constituents, mainly limestone, clay, silica, and iron oxide raw materials. Produced.
  • the raw material produced in the raw material production process is supplied to the cyclone 51 on the upper right side of the suspension preheater (SP) of the cement clinker baking apparatus 50 described above.
  • the raw material supplied to the upper right cyclone 51 is guided into the left lower cyclone 54 while exchanging heat with the gas discharged from the gas outlet of the upper right cyclone 51, and is fixed in the lower left cyclone 54. I'm separated.
  • the raw material separated as a solid is supplied to the cyclone 52 on the lower right side, and in each of the cyclones 51 to 54, “supply to inlet”, “heat exchange”, and “solid-gas separation” are sequentially repeated, and the calcining furnace 55 To be supplied.
  • the fuel is burned to separate carbon dioxide from the limestone component to generate a quick lime component.
  • the raw material exiting the calcining furnace 55 accompanied by the air current is guided into the cyclone 52 on the lower right side and separated into solid and gas.
  • the solid-gas separated raw material is supplied to the rotary kiln 56 through the inlet hood 58.
  • the raw material supplied to the rotary kiln 56 moves along the inclination of the rotary kiln 56 from the kiln bottom to the front of the kiln while further exchanging heat, and is fired to become a (cement) clinker.
  • the cement clinker requires rapid cooling in terms of quality, the cement clinker is led to the cooler 60 immediately after leaving the rotary kiln 56, where it is rapidly cooled by air or the like to become a semi-finished cement clinker (intermediate product).
  • the fuel combustion apparatus 201 is a fuel combustion apparatus that injects solid powder fuel together with air from the discharge port g1 along the virtual axis O in the injection direction f1.
  • a flame retardant fuel such as anthracite coal or oil coke which is promoted by reducing manufacturing costs is used.
  • the fuel combustion apparatus 201 includes a plurality of fuel injection port portions 203, a plurality of outer air injection port portions 245, and a plurality of inner air injection port portions 310.
  • the fuel combustion apparatus 201 further includes a first fan 9 and a second fan 10 as shown in FIG.
  • the plurality of fuel injection ports 203 are arranged in a ring shape at intervals around the virtual axis O in the discharge port g1 (see FIG. 12) so that the solid powder fuel is injected in the injection direction f1.
  • the plurality of outer air injection port portions 245 are spaced apart from each other around the imaginary axis O in the radial outer direction r1 of the plurality of fuel injection port portions 203 at the discharge port g1 so that air is injected in the injection direction f1. And arranged in a ring shape.
  • the plurality of inner air injection ports 310 are directed toward the spiral diffusion direction s01 (see FIGS. 18 and 19) between the turning direction t1 around the virtual axis O and the radial outer direction r1 as proceeding in the injection direction f1.
  • the plurality of fuel injection port portions 203 are arranged in a ring shape at intervals around the inner side in the radial direction and around the virtual axis O so that air is injected.
  • the plurality of outer air injection ports 245, the plurality of fuel injection ports 203, and the plurality of inner air injection ports 310 are concentrically arranged around the virtual axis O, respectively. It is formed between the cylindrical member d1 and the cylindrical member c1, between the cylindrical member c1 and the cylindrical member b1, and between the cylindrical member b1 and the cylindrical member a1.
  • the plurality of outer air injection port portions 245 include a plurality of partition pieces 240 arranged at predetermined intervals in the outer air flow path 204 that is a ring-shaped gap between the cylindrical member d1 and the cylindrical member c1. It is formed by partitioning.
  • the outer air flow path 204 has a closed slot structure by the plurality of partition pieces 240.
  • the flow rate of secondary air in each outer air injection port 245 is preferably 150 to 250 m / s.
  • the plurality of fuel injection ports 203 are formed in a ring-shaped gap between the cylindrical member c1 and the cylindrical member b1 by partitioning with a plurality of isosceles trapezoidal rectifying plates 230.
  • the plurality of rectifying plates 230 are arranged at a predetermined interval between the cylindrical member c1 and the cylindrical member b1.
  • Each rectifying plate 230 has an isosceles trapezoidal shape.
  • the rectifying plate 230 is formed with a plurality of air vent holes 231 for cooling. Further, the rectifying plate 230 is formed with a small width at the center side and is formed wider toward the outer peripheral side.
  • the plurality of inner air injection ports 310 are formed in a diffusion flow ring 300 that seals the inner air flow path 202 that is a ring-shaped gap between the cylindrical member b1 and the cylindrical member a1.
  • the diffusion flow ring 300 is disposed in the upstream ring 302 having the virtual axis O as the central axis and the injection direction f1 of the upstream ring 302 with the virtual axis O as the central axis. And a downstream ring 301.
  • the upstream ring 302 and the downstream ring 301 are overlapped so that the opening 315 and the opening 314 coincide with each other (see FIG. 19).
  • the upstream ring 302 and the downstream ring 301 are made of, for example, stainless steel hardware.
  • the upstream flow channel 316 of each inner air injection port 310 is formed in the upstream ring 302, and the downstream flow channel 312 of each inner air injection port 310 is formed in the downstream ring 301. ing.
  • the outer diameter and inner diameter of the upstream ring 302 and the downstream ring 301 are the same.
  • the inner diameter of the upstream ring 302 and the downstream ring 301 is a diameter that can be inserted into the outer diameter of the cylindrical member a1
  • the outer diameter is a diameter that can be inserted into the inner diameter of the cylindrical member b1.
  • the inner air injection port portion 310 includes a linear downstream channel 312 and a linear upstream channel 316.
  • each downstream flow path 312 has a flow path between the outer side of the radial direction r1 and the turning direction t1 as it proceeds from the upstream side surface 301b to the downstream side surface 301a (injection direction f1).
  • the cross-sectional shape is a rectangle and a straight line along the spiral diffusion direction s01. As shown in FIG.
  • a predetermined inner jet opening gap is formed between two inner air jet portions 310 adjacent to each other in the direction around the virtual axis O among the plural inner air jet portions 310. .
  • the air in the ring-shaped inner side formed by the plurality of inner air injection ports 310 and in the injection direction f ⁇ b> 1 is respectively injected from the plurality of inner air injection ports 310. It is easy to be accompanied between the plurality of inner airflows F1.
  • the angle of the spiral diffusion direction s01 with respect to the virtual axis O is set in the range of 30 ° to 60 °.
  • a plurality of upstream flow paths 316 are formed at predetermined intervals around the center of the upstream ring 302.
  • One of the upstream flow paths 316 forms an opening 315 on the downstream side surface 302 a of the upstream ring 302, and the other forms an opening 318 on the upstream side surface 302 b of the upstream ring 302.
  • the opening 315 opens at a position translated in a direction away from the center line of the upstream ring 302, and the opening 318 opens at a position further translated from the opening 315 in a direction away from the center. That is, the opening 315 and the opening 318 are formed at positions that are translated from each other in the turning direction.
  • each upstream channel 316 has a rectangular cross-sectional shape that is straight along a direction extending at a predetermined angle with respect to the downstream side surface 302a.
  • Each partition piece 240 formed in the outer air flow path 204 is the same as the piece 40 shown in FIGS. 7 and 8, and has a wide-angle portion 40 a having a substantially square shape in plan view and a branching portion having a triangular shape in plan view. 40b. And the wide angle part of the partition piece 240 is arrange
  • a first fan (blower) that supplies air to the inner air passage 202 and the plurality of fuel injection ports 203 is supplied to the inner air passage 202 and the plurality of fuel injection ports 203 (for example, a first fan shown in FIG. 9).
  • a fan 9 is provided.
  • the outer air flow path 204 is provided with a second fan (blower) (for example, the second fan 10 shown in FIG. 9) that supplies air to the outer air flow path 204.
  • the outside air flow path 204 can be independently supplied with air.
  • the air volume of each of the first fan and the second fan is measured by an air flow meter (for example, the air flow meter 11 shown in FIG. 9).
  • the above fuel combustion apparatus 201 operates as follows.
  • the first fan is activated, air is supplied to the inner air flow path 202 and the plurality of fuel injection ports 203.
  • the second fan is activated, air is supplied to the outer air flow path 204.
  • the air supplied to the inner air flow path 202 is ejected through the inner air ejection port portion 310.
  • the air supplied to the inner air flow path 202 first flows through the upstream flow path 316 via the opening 318 formed in the upstream ring 302 of the diffusion flow ring 300, and from the opening 315. Discharge.
  • the opening 315 and the opening 318 are formed at positions parallel to each other in the turning direction t1, the flow of air flowing through the upstream channel 316 is directed to the turning direction t1 as it proceeds in the injection direction f1. .
  • the air discharged from the upstream flow path 316 flows through the downstream flow path 312 via the opening 314 and is discharged from the opening 311.
  • the opening 311 and the opening 314 are parallel to each other in the turning direction and parallel to the outside of the radial direction r1, so that the opening 311 and the opening 314 are directed to the spiral diffusion direction s01 as the jetting direction f1 is advanced.
  • the upstream flow path 316 and the downstream flow path 312 are gently connected, the air in the inner air injection port 310 is introduced to the vicinity of the discharge port g1 while being swirled, and the discharge port g1 In the vicinity of, it is diffused while being rectified and discharged to the outside.
  • the primary air (outer flow) from the outer air flow path 204 continues to the secondary air entrainment region B ⁇ b> 1 by attracting surrounding high-temperature gas by the negative pressure generated by the high-speed flow.
  • An external recirculation area A1 will be formed.
  • the high temperature field in the external recirculation region A1 further promotes the combustion of the solid powder fuel flow D1 (pulverized coal flow) introduced by the inner air flow from the inner air injection port 310. That is, the flame temperature increases.
  • a predetermined inner injection port gap is formed between the two inner air injection ports 310 adjacent to the turning direction t ⁇ b> 1 that is the direction around the virtual axis O. 12, the air in the internal circulation region E ⁇ b> 1 in the ring-shaped inner side and the injection direction f ⁇ b> 1 formed by the plurality of inner air injection ports 310 is attracted, and as shown in FIGS. 18 and 19, It becomes easy to accompany a plurality of inner airflows F1 respectively ejected from the air ejection port portion 310.
  • region E1 is accompanied by the pulverized-coal diffusion area
  • the flow rate of the secondary air in the outer air flow C1 injected from the outer air injection port 245 is preferably 150 to 250 m / s. For this reason, the air flow in the internal circulation region E1 is strongly generated, and the combustion of the solid powder fuel flow D1 is further promoted in combination with the inner air flow. That is, the flame temperature can be further increased.
  • the scale of the external recirculation region A1 depends on the momentum of the primary air. And in external recirculation area
  • the momentum (N) of the primary air is calculated by channel area (m 2 ) ⁇ flow velocity (m / s) ⁇ mass flow rate (kg / s), and the momentum (N / MW).
  • the internal air / external air quantity and the air quantity ratio can be set arbitrarily. Can be adjusted. For this reason, a flame can be adjusted to an optimal state with the fuel kind to be used.
  • SO 3 circulation the SO 3 circulation can be suppressed by narrowing and shortening the flame as the combustion speed increases.
  • the flame temperature and the combustion speed can be increased.
  • the use rate of low-volatile coal for example, anthracite coal having a volatile content (VM) of 10% or less of anhydrous ashless-based coal and oil coke can be increased by improving the combustion rate.
  • the calorie ratio (conventional) can be increased to 10% or less (improved) to 30%.
  • air is supplied to the inner air flow path 202 by the first air fan (blower) and air is supplied to the outer air flow path 204 by the second air fan (blower). Flow and external air can be supplied independently to facilitate flame adjustment, and the amount of SO 3 circulated can be reduced by narrowing and shortening the flame.
  • the fuel combustion apparatus 1 is applied to a burner of a cement clinker firing apparatus, but is not limited to a cement clinker firing apparatus, and can be applied to various burners using pulverized coal as fuel.
  • a cement clinker firing apparatus 50 used when firing cement raw materials such as limestone, clay, silicic acid raw materials, and iron oxide raw materials includes four cyclones 51 to 54 and FIG.
  • a cooler 60 connected to the rotary kiln 56 and a fan 62 connected to the uppermost cyclone 53 on the left side via a pipe 61 are provided.
  • the rotary kiln 56 is provided with the above-described fuel combustion device 1 as a fuel combustion device for firing the raw material.
  • the primary air external flow is accompanied by high temperature secondary air from the cooler 60 to increase the temperature of the flame, thereby promoting coal combustion.
  • a diffusion flow ring 100 is attached in the vicinity of the outlet end of the primary air flow. By this diffusion flow ring 100, the air flow flowing along the direction of the imaginary axis O of the fuel combustion apparatus 1 is stirred and swirled. By generating an exhaust gas circulation flow (internal circulation) inside the flame, the temperature of the flame is increased and stabilized.
  • the primary air external flow is increased, the flame becomes narrower and longer, and conversely when the primary air internal flow is increased, the flame becomes wider and shorter.
  • the distribution of the primary air flow and the external flow is adjusted by the above-described valve opening while observing the firing state of the cement clinker in the rotary kiln 56 and the wear of the refractory bricks in the rotary kiln 56.
  • the manufacturing method includes a raw material preparation step, a cement clinker firing step, and a finishing step.
  • a powder raw material (hereinafter simply referred to as a raw material) in which the components are stabilized by pulverization, drying, and mixing so as to be the required constituents, mainly limestone, clay, silica, and iron oxide raw materials. Produced.
  • the raw material produced in the raw material production process is supplied to the cyclone 51 on the upper right side of the suspension preheater (SP) of the cement clinker baking apparatus 50 described above.
  • the raw material supplied to the upper right cyclone 51 is guided into the left lower cyclone 54 while exchanging heat with the gas discharged from the gas outlet of the upper right cyclone 51, and is fixed in the lower left cyclone 54. I'm separated.
  • the raw material separated as a solid is supplied to the cyclone 52 on the lower right side, and in each of the cyclones 51 to 54, “supply to inlet”, “heat exchange”, and “solid-gas separation” are sequentially repeated, and the calcining furnace 55 To be supplied.
  • the fuel is burned to separate carbon dioxide from the limestone component to generate a quick lime component.
  • the raw material exiting the calcining furnace 55 accompanied by the air current is guided into the cyclone 52 on the lower right side and separated into solid and gas.
  • the solid-gas separated raw material is supplied to the rotary kiln 56 through the inlet hood 58.
  • the raw material supplied to the rotary kiln 56 moves along the inclination of the rotary kiln 56 from the kiln bottom to the front of the kiln while further exchanging heat, and is fired to become a (cement) clinker.
  • the cement clinker requires rapid cooling in terms of quality, the cement clinker is led to the cooler 60 immediately after leaving the rotary kiln 56, where it is rapidly cooled by air or the like to become a semi-finished cement clinker (intermediate product).
  • Example 1 and Comparative Examples 1 and 2 Next, Example 1 and Comparative Examples 1 and 2 will be described.
  • Comparative Example 1 an existing burner (conventional burner) is used, the internal flow rate of the discharge flow is 70 m / s, the external flow is 90 m / s, the external recirculation index is 1.0, and the primary air momentum. was 3.8 N / MW, and the oil coke ratio was 10% cal.
  • Comparative Example 2 was the same as Comparative Example 1 except that the oil coke ratio was 25% cal.
  • Example 1 the burner 1 shown in FIG. 1 is used, the internal flow rate of the discharge flow rate is 126 m / s, the external flow is 226 m / s, the external recirculation index is 2.5, and the primary air momentum is 6 0.8 N / MW, and the oil coke ratio was 25% cal.
  • Comparative Examples 1 and 2 and Example 1 was subjected to a test for comparative evaluation of the clinker production capacity ratio and the lowest cyclone SO 3 concentration. The results are shown in Table 1.
  • the clinker production capacity ratio was evaluated at a relative ratio based on the clinker production capacity (t / h) of Comparative Example 1. Further, when the SO 3 concentration is 7% or more, it indicates that the SO 3 circulation is not sufficiently suppressed.
  • the oil coke ratio is the heat ratio of oil coke to the clinker raw material.
  • Comparative Example 1 The results shown in Table 1 will be described.
  • the oil coke ratio is 10% cal
  • the clinker production capacity ratio is 100% (when the clinker production capacity of Comparative Example 1 is 100)
  • the cyclone SO 3 concentration at the bottom is 5-6%. It was.
  • Comparative Example 1 since the oil coke ratio was low, a high clinker production capacity ratio and a low SO 3 concentration were shown.
  • Example 1 the ratio of oil coke was 25% cal, the clinker production capacity ratio was 102%, and the cyclone SO 3 concentration in the lowermost stage was 5 to 6%. In the case of Example 1, even if the ratio of oil coke was high, the clinker production capacity ratio was higher than that of Comparative Example 1, and the cyclone SO 3 concentration at the lowest stage was also low.
  • Example 2 (Example 2, Comparative Example 3) Next, Example 2 will be described.
  • the fuel combustion apparatus 201 shown in FIG. 11 is used, the internal flow rate of the discharge flow rate is 126 m / s, the external flow is 226 m / s, the external recirculation index is 2.5, and the primary air momentum.
  • the primary air momentum. was 6.8 N / MW.
  • Comparative Example 3 in the diffusion flow ring 300 of the fuel combustion apparatus 201 shown in FIG. 11, the gap between the two adjacent inner air injection port portions 310 is filled without any gap so that a predetermined inner injection port clearance is not formed.
  • Example 2 was the same as Example 2 except that a type that does not generate swirling / diffusion flow was used.
  • Example 2 For each of Example 2 and Comparative Example 3, the amount of denitration material (urea) used (kg / t-clinker), clinker production capacity ratio (%), F-CaO ratio (%), primary air ratio (%) A test for comparative evaluation was conducted. The results are shown in Table 2.
  • Example 2 compared with Comparative Example 3, the clinker production capacity ratio was improved, and the amount of denitration material (urea) used was small, so low NOx was realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

In order to make it possible to efficiently burn fire-retardant fuel by a rotary kiln, a fuel combustion device (201) is provided with a plurality of inside air injection port portions (310) which are disposed in a ring shape at intervals radially inside a plurality of fuel injection port portions (235) and around a virtual axis (O) in a discharge port (g1), and through which air is injected in a spiral diffusion direction (s01) between a rotation direction (t1) around the virtual axis (O) and the outward direction of a radial direction (r1) as going in an injection direction (f1). A predetermined inside injection port gap is formed between two inside air injection port portions (310) adjacent in the direction around the virtual axis (O) such that air present inside the ring shape formed by the plurality of inside air injection port portions (310) and present in the injection direction (f1) goes with and between a plurality of inside air flows injected respectively from the inside air injection port portions (310).

Description

燃料燃焼装置Fuel combustion device
 本発明は、セメントロータリーキルンに用いる燃料燃焼装置に関する。より詳しくは、本発明は、難燃性の燃料、例えば無煙炭、オイルコークスを使用して燃料コストを低減させ、かつ、セメントを、その品質を損なうことなく製造することができる燃料燃焼装置に関する。 The present invention relates to a fuel combustion apparatus used for a cement rotary kiln. More specifically, the present invention relates to a fuel combustion apparatus that can reduce the fuel cost by using a flame-retardant fuel, such as anthracite, oil coke, and can produce cement without deteriorating its quality.
 一般に、セメントクリンカー焼成装置に用いられる燃料燃焼装置は、セメントロータリーキルン内にその上流側から投入されたセメント原料を、セメントロータリーキルンの回転によって下流側に移動する途中でセメントクリンカーに焼成し、このセメントクリンカーを、セメントロータリーキルンの下流側の端部を囲む窯前部からクリンカークーラー側に移動させて冷却するようになっている(例えば、特許文献1参照)。 In general, a fuel combustion apparatus used in a cement clinker firing apparatus burns cement raw material charged from the upstream side into the cement rotary kiln into the cement clinker in the middle of moving downstream by rotation of the cement rotary kiln. Is moved to the clinker cooler side from the front part of the kiln surrounding the downstream end of the cement rotary kiln and cooled (for example, see Patent Document 1).
 そして、図20に示すように、ロータリーキルンには、原料を焼成する燃料燃焼装置としてのバーナー56aが取り付けられている。このバーナー56aは、例えば、外周側より1次空気外流、石炭流、1次空気内流、重油ガン挿入筒の順に配置されている(図示せず)。そして、1次空気外流は直進流、1次空気内流は旋回流となっている。1次空気内流・外流は、単独ファン560よりヘッダ561に供給され、ヘッダ561に設置されている一対の弁561a、561bの開度により、内流・外流の配分が調整される。なお、図20の符号Fは、風量計を示す。 And as shown in FIG. 20, the rotary kiln is attached with the burner 56a as a fuel combustion apparatus which bakes a raw material. This burner 56a is arrange | positioned in order of the primary air outer flow, the coal flow, the primary air internal flow, and the heavy oil gun insertion cylinder from the outer peripheral side (for example). The primary air external flow is a straight flow, and the primary air internal flow is a swirl flow. The primary air internal flow / external flow is supplied to the header 561 from the single fan 560, and the distribution of the internal flow / external flow is adjusted by the opening degree of the pair of valves 561a, 561b installed in the header 561. In addition, the code | symbol F of FIG. 20 shows an air volume meter.
 ところで、セメント原料の製造コスト削減により、セメントクリンカー焼成装置のセメントロータリーキルンにおいて、無煙炭やオイルコークスなどの低価格の難燃性燃料の利用が推進されている。
 しかし、難燃性の燃料の使用比率を上げると、ロータリーキルンが燃焼遅れとなるため、強い還元雰囲気となり、異常反応が発生して、コーチングと呼ばれる付着物が、サスペンションプレヒータ内に成長して、生産に悪影響を及ぼすことになる。
By the way, the use of low-cost flame retardant fuels such as anthracite and oil coke is promoted in cement rotary kilns for cement clinker firing devices due to reduction in manufacturing costs of cement raw materials.
However, increasing the use ratio of flame-retardant fuel causes the combustion delay of the rotary kiln, creating a strong reducing atmosphere, causing abnormal reactions, and deposits called coaching grow in the suspension preheater and produce Will be adversely affected.
特開2004-205064号公報JP 2004-205064 A
 そこで、本発明は、無煙炭やオイルコークスなどの揮発分の少ない難燃性燃料を、ロータリーキルンで効率よく燃焼することができる燃料燃焼装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a fuel combustion apparatus that can efficiently burn a flame retardant fuel such as anthracite or oil coke with a rotary kiln.
 本発明に係る燃料燃焼装置は、固体粉末燃料を空気と共に吐出口から仮想軸に沿って噴射方向に噴射させる燃料燃焼装置である。本発明に係る燃料燃焼装置は、前記吐出口において、前記仮想軸の周りにリング状に配置され、前記噴射方向に前記固体粉末燃料を噴出させる燃料噴射口と、前記吐出口において、前記燃料噴射口の半径方向の外側かつ前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に空気を噴射させる外側空気噴射口と、前記吐出口において、前記燃料噴射口の半径方向内側かつ前記仮想軸の周りに間隔をおいてリング状に配置された内側空気噴射口と、を備える。本発明に係る燃料燃焼装置は、さらに、前記内側空気噴射口に、第1拡散流生成部と第2拡散流生成部とで構成される旋回・拡散流路を備える。前記第1拡散流生成部は、前記仮想軸に平行するように、前記内側空気噴射口の吐出口側の外周部に配置される平坦部と、該平坦部の吐出口側に、該吐出口側に向かうにしたがって大きく開口するように形成される第1傾斜部とを有し、前記第2拡散流生成部は、前記第1傾斜部に対して平行するように、前記内側空気噴射口の吐出口側の内周部に配置される第2傾斜部を有する。 The fuel combustion apparatus according to the present invention is a fuel combustion apparatus that injects solid powder fuel together with air from the discharge port along the virtual axis in the injection direction. The fuel combustion apparatus according to the present invention includes a fuel injection port that is arranged in a ring shape around the virtual axis at the discharge port, and jets the solid powder fuel in the injection direction, and the fuel injection at the discharge port. An outer air injection port that is arranged in a ring shape on the outer side in the radial direction of the port and spaced around the imaginary axis, and injects air in the injection direction; and in the discharge port, the inner side in the radial direction of the fuel injection port And an inner air injection port arranged in a ring shape with an interval around the virtual axis. The fuel combustion apparatus according to the present invention further includes a swirling / diffusion flow path including a first diffusion flow generation unit and a second diffusion flow generation unit at the inner air injection port. The first diffusion flow generation unit includes a flat portion disposed on an outer peripheral portion on the discharge port side of the inner air injection port so as to be parallel to the virtual axis, and the discharge port on the discharge port side of the flat portion. A first inclined portion formed so as to open greatly toward the side, and the second diffusion flow generating portion is arranged parallel to the first inclined portion so as to be parallel to the first inclined portion. It has the 2nd inclined part arrange | positioned at the inner peripheral part by the side of a discharge outlet.
 この場合、外側空気噴射口からの1次空気(外流)は、高速流により生じる負圧によって周囲の高温ガスを誘引することにより、2次空気同伴に続いて外部再循環領域が形成されることになる。そして、この外部再循環領域における高温場が、旋回・拡散流路からの第1の1次空気流によって導入される固体粉末燃料流(微粉炭流)の燃焼をさらに促進させる。すなわち、火炎温度が上昇する。一方、旋回・拡散流により高温場への微粉炭導入を促進させることも燃焼速度を上昇させる重要な要素となる。また、外部再循環領域のスケールは、1次空気のモーメンタムに依存することになる。そして、外部再循環領域において、第1の1次空気の流速を上昇させることによりモーメンタムを大きくすることにより2次空気同伴及び外部再循環を促進させ、上述した燃焼速度上昇が実現する。なお、前記1次空気のモーメンタム(N)は、流路面積(m2)×流速(m/s)×質量流量(kg/s)で算出され、投入熱量あたりの1次空気のモーメンタム(N/MW)で表示する。 In this case, the primary air (outer flow) from the outer air injection port attracts the surrounding high-temperature gas by the negative pressure generated by the high-speed flow, so that an external recirculation region is formed following the secondary air entrainment. become. The high temperature field in the external recirculation region further promotes the combustion of the solid powder fuel flow (pulverized coal flow) introduced by the first primary air flow from the swirl / diffusion flow path. That is, the flame temperature increases. On the other hand, promoting the introduction of pulverized coal into a high temperature field by swirling / diffusion flow is also an important factor for increasing the combustion rate. Also, the scale of the external recirculation zone will depend on the momentum of the primary air. Then, in the external recirculation region, the momentum is increased by increasing the flow rate of the first primary air to promote the secondary air entrainment and the external recirculation, thereby realizing the above-described increase in the combustion speed. The momentum (N) of the primary air is calculated by a flow path area (m 2 ) × flow velocity (m / s) × mass flow rate (kg / s), and the primary air momentum per input heat (N / MW).
 また、本発明によれば、前記外側空気噴射口の吐出口側には、周方向に所定の間隔をおいてピースが配置されたスロット構造であることが好ましい。 In addition, according to the present invention, it is preferable that a slot structure in which pieces are arranged at a predetermined interval in the circumferential direction on the discharge port side of the outer air injection port is preferable.
 この場合、外流のバーナー吐出部をスロット構造にすることで、1次空気外流に隙間が設けられるようになり、高温2次空気同伴を促進することができ、高温2次空気の同伴領域を拡大することができる。 In this case, a slot structure is provided in the external flow burner discharge section, so that a gap is provided in the primary air external flow, high temperature secondary air entrainment can be promoted, and the high temperature secondary air entrainment region is expanded. can do.
 また、本発明によれば、前記内側空気噴射口に空気を供給する第1のファンと、前記外側空気噴射口に空気を供給する第2のファンとを備えるような構成を採用することもできる。 Moreover, according to this invention, a structure provided with the 1st fan which supplies air to the said inner side air injection port, and the 2nd fan which supplies air to the said outer side air injection port can also be employ | adopted. .
 この場合、1次空気ファン(ブロア)を内流、外流で独立化させることにより、内流及び外流のそれぞれの空気量及び空気量比率を任意に調整することができて、使用する燃料種によって火炎を最適な状態に調整することができる。 In this case, by making the primary air fan (blower) independent in the internal flow and the external flow, the air amount and the air amount ratio of the internal flow and the external flow can be arbitrarily adjusted, and depending on the fuel type to be used The flame can be adjusted to an optimum state.
 また、本発明によれば、前記外側空気噴射口の吐出部流速は、150~250m/sであることが好ましい。 Further, according to the present invention, it is preferable that the flow velocity at the discharge portion of the outer air injection port is 150 to 250 m / s.
 この場合、1次空気の流速を上昇させることで、1次空気のモーメンタムを大きくし、1次空気のモーメンタムを大きくすることで、高温2次空気の同伴及び外部再循環を促進することができる。 In this case, it is possible to increase the momentum of the primary air by increasing the flow velocity of the primary air and to increase the momentum of the primary air, thereby promoting entrainment of high temperature secondary air and external recirculation. .
 また、本発明によれば、前記平坦部は、同心円筒状部材の軸線に平行する部位の長さが、平行部位高さの1~2倍で、前記第2傾斜部の角度が、30°~60°であるような構成を採用することもできる。 According to the present invention, the flat portion has a length of a portion parallel to the axis of the concentric cylindrical member that is 1 to 2 times the height of the parallel portion, and an angle of the second inclined portion is 30 °. It is also possible to adopt a configuration in which the angle is ˜60 °.
 かかる構成によれば、平坦部、及び、30°~60°の傾斜部を有する第1拡散流生成部が、内側空気噴射口の吐出口側の外周部に配置されることで、内流が平坦部によって整流されつつ半径外周方向に軸方向に対して30°以上60°以下で放射状に拡散することになる。そして、整流されつつ放射状に拡散された内流は、外周側の石炭流に合流後、速やかに石炭をその外周側の高温2次空気流に拡散させるため、火炎を高温化させて燃焼速度の上昇が可能になる。 According to such a configuration, the first diffusion flow generating unit having the flat portion and the inclined portion of 30 ° to 60 ° is disposed on the outer peripheral portion on the discharge port side of the inner air injection port, so that the inner flow is reduced. While being rectified by the flat portion, it diffuses radially in the radial outer peripheral direction at 30 ° or more and 60 ° or less with respect to the axial direction. Then, the inner flow diffused radially while being rectified joins the coal flow on the outer peripheral side, and then quickly diffuses the coal into the high temperature secondary air flow on the outer peripheral side. A rise is possible.
 また、本発明によれば、外部再循環のスケールは、下記の式(1)により算出される外部再循環指標m=1.5~2.6の範囲であることが好ましく、さらに2.0~2.4の範囲であることが好ましい。
   m=-1.5R2+R+K・R2/(d0/d12     (1)
但し、
R=(u0-u1)ρ0・(d0/2)2/u1ρ1(d1/2-δ)2+(u0-u1)ρ0(d0/2)2

0:噴流速度(1次空気)
1:同伴流流速(2次空気)
ρ0:噴流密度(1次空気)
ρ1:同伴流密度(2次空気)
0:燃料燃焼装置の吐出口の有効内径
1:ロータリーキルンの有効内径
K:ロータリーキルンの噴流形状ファクターで、燃料燃焼装置の吐出口が円形の場合は1
δ:境界層厚さで、ロータリーキルンの有効内径が燃料燃焼装置の吐出口の内径よりも十分に大きい場合はほぼ0
m:外部再循環指標
Further, according to the present invention, the scale of the external recirculation is preferably in the range of the external recirculation index m calculated by the following formula (1) = 1.5 to 2.6, and further 2.0 It is preferably in the range of ~ 2.4.
m = −1.5R 2 + R + K · R 2 / (d 0 / d 1 ) 2 (1)
However,
R = (u 0 -u 1) ρ 0 · (d 0/2) 2 / u 1 ρ 1 (d 1/2-δ) 2 + (u 0 -u 1) ρ 0 (d 0/2) 2

u 0 : Jet velocity (primary air)
u 1 : Entrained flow velocity (secondary air)
ρ 0 : Jet density (primary air)
ρ 1 : Entrained flow density (secondary air)
d 0 : Effective inner diameter of discharge port of fuel combustion apparatus d 1 : Effective inner diameter of rotary kiln K: Jet shape factor of rotary kiln, 1 when discharge port of fuel combustion apparatus is circular
δ: Almost 0 when the effective inner diameter of the rotary kiln is sufficiently larger than the inner diameter of the discharge port of the fuel combustion device at the boundary layer thickness
m: External recirculation index
 かかる構成によれば、外部再循環指標mが過小である場合(m<1.5)は、高温2次空気の同伴が完結しないため、燃焼速度の低下を起こす。一方、過剰である場合(m>2.6)も高温だが低酸素濃度の排ガスを過剰に循環させることになるため、燃焼速度の低下を引き起こす。したがって、外部再循環指標m=1.5~2.6の範囲であれば、適度な燃焼速度を維持できる。 According to such a configuration, when the external recirculation index m is too small (m <1.5), the entrainment of the high temperature secondary air is not completed, so that the combustion speed is lowered. On the other hand, when it is excessive (m> 2.6), exhaust gas having a high temperature but low oxygen concentration is circulated excessively, which causes a reduction in the combustion rate. Therefore, if the external recirculation index m is in the range of 1.5 to 2.6, an appropriate combustion rate can be maintained.
 また、本発明によれば、前記外側空気噴射口における1次空気のモーメンタムは、6~8N/MWであることが好ましい。 Further, according to the present invention, the momentum of the primary air at the outer air injection port is preferably 6 to 8 N / MW.
 かかる構成によれば、適正な外部再循環を確保することができる。 According to this configuration, proper external recirculation can be ensured.
 本発明に係る別の燃料燃焼装置は、固体粉末燃料を空気と共に吐出口から仮想軸に沿って噴射方向に噴射させる燃料燃焼装置である。本発明に係る別の燃料燃焼装置は、前記吐出口において、前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に前記固体粉末燃料を噴出させる複数の燃料噴射口部と、前記吐出口において、前記複数の燃料噴射口部の半径方向外側かつ前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に空気を噴射させる複数の外側空気噴射口部と、前記吐出口において、前記複数の燃料噴射口部の半径方向内側かつ前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に進むにつれて前記仮想軸の周りの旋回方向と半径方向外側方向との間の螺旋拡散方向に向けて空気を噴射させる複数の内側空気噴射口部と、を備える。前記複数の内側空気噴射口部が形成するリング状の内側かつ前記噴射方向にある空気が前記複数の内側空気噴射口部からそれぞれ噴射された複数の内側空気流の間に同伴するよう、前記複数の内側空気噴射口部のうち前記仮想軸の周り方向に隣接する2つの内側空気噴射口部の間には、所定の内側噴射口隙間が形成されている。 Another fuel combustion apparatus according to the present invention is a fuel combustion apparatus that injects solid powder fuel together with air from the discharge port along the virtual axis in the injection direction. Another fuel combustion apparatus according to the present invention includes a plurality of fuel injection port portions that are arranged in a ring shape at intervals around the imaginary axis at the discharge port, and jet the solid powder fuel in the injection direction. A plurality of outer air injection ports that are arranged in a ring shape at the discharge port in the radial direction outside the plurality of fuel injection ports and spaced around the virtual axis, and for injecting air in the injection direction; The discharge port is arranged in a ring shape radially inward of the plurality of fuel injection port portions and spaced around the virtual axis, and as it advances in the injection direction, a turning direction and a radius around the virtual axis A plurality of inner air injection ports for injecting air in a spiral diffusion direction between the direction outer side direction. The plurality of inner air jets formed in the ring-shaped inner side and in the jetting direction are entrained between the plurality of inner air flows jetted from the inner air jets, respectively. A predetermined inner injection gap is formed between two inner air injection openings adjacent to each other in the direction around the virtual axis.
 本発明によれば、複数の外側空気噴射口部から高速に噴射された外側空気流(1次空気流)は、高速流により生じる負圧によって周囲の高温ガスを誘引することにより、2次空気同伴に続いて外部再循環領域が形成されることになる。そして、この外部再循環における高温場が、複数の内側空気噴射口部からの内側空気流によって導入される固体粉末燃料流(微粉炭流)の燃焼をさらに促進させる。すなわち、火炎温度を上昇させることができる。
 さらに、複数の内側空気噴射口部のうち仮想軸の周り方向に隣接する2つの内側空気噴射口部の間には、所定の内側噴射口隙間が形成されているので、複数の内側空気噴射口部が形成するリング状の内側かつ噴射方向にある内部循環領域の空気が誘引され、複数の内側空気噴射口部からそれぞれ噴射された複数の内側空気流の間に同伴しやすくなる。このため、内部循環領域における空気流が強く生じ、内側空気流と相まって固体粉末燃料流(微粉炭流)の燃焼をよりさらに促進させる。すなわち、火炎温度をさらに上昇させることができる。
According to the present invention, the outer air flow (primary air flow) ejected at a high speed from the plurality of outer air ejection ports attracts the surrounding high-temperature gas by the negative pressure generated by the high-speed flow, so that the secondary air Following the entrainment, an external recirculation zone will be formed. And the high temperature field in this external recirculation further promotes the combustion of the solid powder fuel flow (pulverized coal flow) introduced by the inner air flow from the plurality of inner air injection ports. That is, the flame temperature can be increased.
Furthermore, since a predetermined inner jet port gap is formed between two inner air jet ports adjacent in the direction around the virtual axis among the plural inner air jet ports, the plurality of inner air jet ports The air in the internal circulation region in the ring-shaped inside and in the injection direction formed by the portion is attracted and easily entrained between the plurality of inner air flows respectively injected from the plurality of inner air injection ports. For this reason, a strong air flow is generated in the internal circulation region, and in combination with the inner air flow, combustion of the solid powder fuel flow (pulverized coal flow) is further promoted. That is, the flame temperature can be further increased.
 各内側空気噴射口部は、前記噴射方向に流れる空気が入流する流入口と、前記流入口から前記噴射方向と前記仮想軸の周り方向との間の旋回方向に伸びる上流側流路と、前記上流側流路に気密的に接続し、前記螺旋拡散方向に伸びる下流側流路とを有することが好ましい。
 上流側流路と下流側流路とは直線状に形成されているが、このようにすることにより、内側空気噴射口部の内部を流れる空気は、直線状の上流側流路と、直線状の下流側流路とを流れることにより、段階的に空気の流れる向きを変えることができるので、内側空気噴射口部の整流化を図ることができる。
Each inner air injection port includes an inflow port into which air flowing in the injection direction flows, an upstream flow path extending from the inflow port in a swirl direction between the injection direction and a direction around the virtual axis, It is preferable to have a downstream flow channel that is airtightly connected to the upstream flow channel and extends in the spiral diffusion direction.
Although the upstream flow path and the downstream flow path are formed in a straight line, by doing so, the air flowing inside the inner air injection port portion is linearly connected to the straight upstream flow path. Since the flow direction of the air can be changed stepwise by flowing through the downstream flow path, the inner air injection port portion can be rectified.
 本発明に係る別の燃料燃焼装置は、さらに、前記仮想軸を中心軸とする上流側リングと、前記仮想軸を中心軸とし、前記上流側リングの前記噴射方向に配置された下流側リングとを有する拡散流リングを備えることが好ましい。この場合、各内側空気噴射口部の前記上流側流路は前記上流側リングに形成され、各内側空気噴射口部の前記下流側流路は前記下流側リングに形成される。
 この場合、上流側リングには直線状の上流側流路を形成し、下流側リングにも、直線状の下流側流路を形成するだけでよいので、上流側リングと下流側リングとを安価に製造することができる。
Another fuel combustion apparatus according to the present invention further includes an upstream ring having the virtual axis as a central axis, and a downstream ring having the virtual axis as a central axis and disposed in the injection direction of the upstream ring. It is preferable to provide a diffusion flow ring having In this case, the upstream flow channel of each inner air injection port is formed in the upstream ring, and the downstream flow channel of each inner air injection port is formed in the downstream ring.
In this case, it is only necessary to form a straight upstream flow path in the upstream ring and a straight downstream flow path in the downstream ring, so the upstream ring and the downstream ring are inexpensive. Can be manufactured.
 前記複数の外側空気噴射口部の噴射方向の半径方向外側にある空気が前記複数の外側空気噴射口部からそれぞれ噴射された複数の空気流の間に同伴するよう、前記複数の外側空気噴射口部のうち、前記仮想軸の周り方向に隣接する2つの外側空気噴射口部の間には、所定の外側噴射口隙間が形成されていてもよい。
 この場合、外側空気流(1次空気外流)に隙間が設けられるようになり、高温の2次空気同伴を促進することができ、高温の2次空気同伴の領域を拡大することができる。
The plurality of outer air injection ports such that air that is radially outward of the plurality of outer air injection ports is entrained between the plurality of air flows respectively injected from the plurality of outer air injection ports. A predetermined outer injection port gap may be formed between two outer air injection ports adjacent to each other in the direction around the virtual axis.
In this case, a gap is provided in the outer air flow (outside primary air flow), so that high temperature secondary air entrainment can be promoted and the region of high temperature secondary air entrainment can be expanded.
 本発明に係る別の燃料燃焼装置は、さらに、前記複数の内側空気噴射口部及び前記複数の燃料噴射口部に空気を供給する第1のファンと、前記外側空気噴射口部に空気を供給する第2のファンとを備えることが好ましい。
 この場合、第1のファンと第2のファンとを互いに独立に制御することにより、使用する燃料種によって火炎を最適な状態に調整することができる。
Another fuel combustion apparatus according to the present invention further includes a first fan for supplying air to the plurality of inner air injection ports and the plurality of fuel injection ports, and air to the outer air injection ports. And a second fan.
In this case, by controlling the first fan and the second fan independently of each other, the flame can be adjusted to an optimum state depending on the type of fuel used.
 また、本発明によれば、前記外側空気噴射口部における2次空気の流速は、150~250m/sであることが好ましい。この場合、1次空気の流速を上昇させることで、1次空気のモーメンタムを大きくし、1次空気のモーメンタムを大きくすることで、高温2次空気の同伴及び外部再循環を促進することができる。 Further, according to the present invention, it is preferable that the flow rate of the secondary air in the outer air injection port is 150 to 250 m / s. In this case, it is possible to increase the momentum of the primary air by increasing the flow velocity of the primary air and to increase the momentum of the primary air, thereby promoting entrainment of high temperature secondary air and external recirculation. .
 また、本発明によれば、前記仮想軸に対する前記螺旋拡散方向の角度が30°~60°であるような構成を採用することもできる。 In addition, according to the present invention, it is possible to adopt a configuration in which the angle of the spiral diffusion direction with respect to the virtual axis is 30 ° to 60 °.
 かかる構成によれば、仮想軸に対する螺旋拡散方向の角度が30°~60°の内側空気噴射口部が、外側空気噴射口部の吐出口側の外周部に配置されることで、内流が螺旋拡散方向に放射状に拡散することになる。そして、放射状に拡散された内流は、外周側の石炭流に合流後、速やかに石炭をその外周側の高温の2次空気流に拡散させるため、火炎を高温化させて燃焼速度の上昇が可能になる。 According to such a configuration, the inner air jet port portion whose angle in the spiral diffusion direction with respect to the virtual axis is 30 ° to 60 ° is arranged on the outer peripheral portion on the discharge port side of the outer air jet port portion, so that the internal flow is It diffuses radially in the spiral diffusion direction. Then, after the radially diffused internal flow merges with the coal flow on the outer peripheral side, the coal is quickly diffused into the high temperature secondary air flow on the outer peripheral side, so that the flame is heated to increase the combustion speed. It becomes possible.
 また、本発明によれば、前記外側空気噴射口部から噴射される外側空気のモーメンタムは、6~8N/MWであることが好ましい。かかる構成によれば、適正な外部再循環を確保することができる。 Further, according to the present invention, the momentum of the outside air injected from the outside air injection port is preferably 6 to 8 N / MW. According to this configuration, proper external recirculation can be ensured.
 また、本発明に係るセメントクリンカー焼成装置は、セメントロータリーキルンと、前記吐出口が前記セメントロータリーキルンの内部に位置するように、前記セメントロータリーキルンに取り付けられた上述のいずれかに記載の別の燃料燃焼装置と、を備える。前記吐出口から前記セメントロータリーキルンの内部に噴射される空気の直進する流れとは逆向きの流れを生じさせる外部再循環のスケールは、下記の式(2)により算出される外部再循環指標m=1.5~2.6の範囲であることが好ましく、さらに2.0~2.4の範囲であることが好ましい。

   m=-1.5R2+R+K・R2/(d0/d12     (2)
但し、
R=(u0-u1)ρ0・(d0/2)2/u1ρ1(d1/2-δ)2+(u0-u1)ρ0(d0/2)2

0:噴流速度(1次空気)
1:同伴流流速(2次空気)
ρ0:噴流密度(1次空気)
ρ1:同伴流密度(2次空気)
0:別の燃料燃焼装置の吐出口の有効内径
1:ロータリーキルンの有効内径
K:ロータリーキルンの噴流形状ファクターで、別の燃料燃焼装置の吐出口が円形の場合は1
δ:境界層厚さで、ロータリーキルンの有効内径が別の燃料燃焼装置の吐出口の内径よりも十分に大きい場合はほぼ0
m:外部再循環指標
Moreover, the cement clinker firing apparatus according to the present invention is a cement rotary kiln and another fuel combustion apparatus according to any one of the above, attached to the cement rotary kiln so that the discharge port is located inside the cement rotary kiln. And comprising. The scale of the external recirculation that produces a flow opposite to the straight flow of the air injected from the discharge port into the cement rotary kiln is an external recirculation index m = calculated by the following equation (2). The range is preferably from 1.5 to 2.6, more preferably from 2.0 to 2.4.

m = −1.5R 2 + R + K · R 2 / (d 0 / d 1 ) 2 (2)
However,
R = (u 0 -u 1) ρ 0 · (d 0/2) 2 / u 1 ρ 1 (d 1/2-δ) 2 + (u 0 -u 1) ρ 0 (d 0/2) 2

u 0 : Jet velocity (primary air)
u 1 : Entrained flow velocity (secondary air)
ρ 0 : Jet density (primary air)
ρ 1 : Entrained flow density (secondary air)
d 0 : Effective inner diameter of the discharge port of another fuel combustion device d 1 : Effective inner diameter of the rotary kiln K: Jet shape factor of the rotary kiln, 1 when the discharge port of another fuel combustion device is circular
δ: Almost 0 when the effective inner diameter of the rotary kiln is sufficiently larger than the inner diameter of the discharge port of another fuel combustion device at the boundary layer thickness
m: External recirculation index
 かかる構成によれば、外部再循環指標mが過小である場合(m<1.5)は、高温の2次空気の同伴が完結しないため、燃焼速度の低下を起こす。一方、過剰である場合(m>2.6)も高温だが低酸素濃度の排ガスを過剰に循環させることになるため、燃焼速度の低下を引き起こす。したがって、外部再循環指標m=1.5~2.6の範囲であれば、適度な燃焼速度を維持できる。 According to such a configuration, when the external recirculation index m is too small (m <1.5), the entrainment of the high-temperature secondary air is not completed, so that the combustion speed is reduced. On the other hand, when it is excessive (m> 2.6), exhaust gas having a high temperature but low oxygen concentration is circulated excessively, which causes a reduction in the combustion rate. Therefore, if the external recirculation index m is in the range of 1.5 to 2.6, an appropriate combustion rate can be maintained.
 本発明によれば、無煙炭やオイルコークスなどの揮発分の少ない難燃性燃料を、ロータリーキルンで効率よく燃焼することができる。 According to the present invention, a flame-retardant fuel with a low volatile content such as anthracite or oil coke can be efficiently burned in a rotary kiln.
本発明の一実施形態に係る燃料燃焼装置の構成を示す正面図である。It is a front view which shows the structure of the fuel combustion apparatus which concerns on one Embodiment of this invention. 図1に示した燃料燃焼装置の側断面図である。It is a sectional side view of the fuel combustion apparatus shown in FIG. 図1に示した内側空気噴射口の概略側断面図である。It is a schematic sectional side view of the inner side air injection port shown in FIG. 図3に示した内側空気噴射口の概略正面図である。It is a schematic front view of the inner side air injection port shown in FIG. 図3に示した内側空気噴射口の展開図である。It is an expanded view of the inner side air injection port shown in FIG. 図5のA―A線矢視断面図である。FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. 図1に示した外側空気噴射口に配置されるピースの平面図である。It is a top view of the piece arrange | positioned at the outer side air injection port shown in FIG. 図7に示したピースの側面図である。It is a side view of the piece shown in FIG. 図1に示した燃料燃焼装置の第1のファンと第2のファンとの接続概念図である。It is a connection conceptual diagram of the 1st fan and 2nd fan of the fuel combustion apparatus shown in FIG. 図1に示した燃料燃焼装置を備えたセメントリンカー焼成装置の構成図である。It is a block diagram of the cement linker baking apparatus provided with the fuel combustion apparatus shown in FIG. 本発明の別の実施形態に係る燃料燃焼装置の構成を示す正面図である。It is a front view which shows the structure of the fuel combustion apparatus which concerns on another embodiment of this invention. 図11に示した燃料燃焼装置の側断面図である。It is a sectional side view of the fuel combustion apparatus shown in FIG. 図11に示した燃料燃焼装置の拡散流リングの正面図である。It is a front view of the diffusion flow ring of the fuel combustion apparatus shown in FIG. 図13に示した拡散流リングの下流側リングの正面図である。It is a front view of the downstream ring of the diffusion flow ring shown in FIG. 図14に示した下流側リングのXV-XV断面図である。FIG. 15 is an XV-XV cross-sectional view of the downstream ring shown in FIG. 14. 図13に示した拡散流リングの上流側リングの正面図である。It is a front view of the upstream ring of the diffusion flow ring shown in FIG. 図16に示した上流側リングのXVII-XVII断面図である。FIG. 17 is a cross-sectional view of the upstream ring shown in FIG. 16 taken along the line XVII-XVII. 図11に示した燃料燃焼装置の作動の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of an action | operation of the fuel combustion apparatus shown in FIG. 図13に示した拡散流リングの一部を省略した部分斜視図である。It is the fragmentary perspective view which abbreviate | omitted a part of diffusion flow ring shown in FIG. 従来の燃料燃焼装置に空気を供給する空気供給部の構成を示す図である。It is a figure which shows the structure of the air supply part which supplies air to the conventional fuel combustion apparatus.
 以下に、本発明の一実施形態に係る燃料燃焼装置について、図1から図9を参照して説明する。
 図1及び図2に示すように、燃料燃焼装置(以下、単にバーナーという場合もある。)1は、複数の同心円筒状部材、具体的には、最内周の第1円筒状部材a、その外側の第2円筒状部材b、第3円筒状部材c、最外周の第4円筒状部材dにより仕切られた複数の流路を備えている。該複数の流路は、同心円の中心から順に、旋回流を生成すべく螺旋流路Sで構成される内側空気噴射口2と、該内側空気噴射口2の外側に配置される燃料噴射口3と、該燃料噴射口3の外側に配置される外側空気噴射口4と、内側空気噴射口2、燃料噴射口3、外側空気噴射口4から空気を吐出する吐出口5とを備えている。
A fuel combustion apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
As shown in FIGS. 1 and 2, a fuel combustion apparatus (hereinafter sometimes simply referred to as a burner) 1 includes a plurality of concentric cylindrical members, specifically, an innermost first cylindrical member a, A plurality of flow paths partitioned by a second cylindrical member b, a third cylindrical member c, and a fourth cylindrical member d on the outermost periphery are provided. The plurality of flow paths are, in order from the center of the concentric circles, an inner air injection port 2 configured by a spiral flow path S to generate a swirl flow, and a fuel injection port 3 disposed outside the inner air injection port 2. And an outer air injection port 4 disposed outside the fuel injection port 3, an inner air injection port 2, a fuel injection port 3, and a discharge port 5 for discharging air from the outer air injection port 4.
 図3、図4、図5及び図6に示すように、内側空気噴射口2には、第1拡散流生成部6と、第2拡散流生成部7とで構成される旋回・拡散流路8を備えている。 As shown in FIGS. 3, 4, 5, and 6, the inner air injection port 2 has a swirl / diffusion flow path including a first diffusion flow generation unit 6 and a second diffusion flow generation unit 7. 8 is provided.
 第1拡散流生成部6は、平坦部6aと、第1傾斜部6bと、入口側傾斜部6cとを有している。平坦部6aは、円筒状部材a~dの仮想軸Oに平行するように、バーナー1の吐出口5側の外周部に配置されている。第1傾斜部6bは、平坦部6aの吐出口5側に、該吐出口5側に向かうにしたがって大きく開口するように形成されている。入口側傾斜部6cは、平坦部6aの吐出口5側とは反対側に、該反対側に向かうにしたがって大きく開口するように形成されている。 The first diffusion flow generator 6 has a flat part 6a, a first inclined part 6b, and an inlet-side inclined part 6c. The flat portion 6a is disposed on the outer peripheral portion of the burner 1 on the discharge port 5 side so as to be parallel to the virtual axis O of the cylindrical members a to d. The 1st inclination part 6b is formed in the discharge port 5 side of the flat part 6a so that it may open large as it goes to this discharge port 5 side. The inlet side inclined portion 6c is formed on the side opposite to the discharge port 5 side of the flat portion 6a so as to open larger toward the opposite side.
 そして、平坦部6aは、円筒状部材aの仮想軸Oに平行する部位の長さが、平行部位高さHの1~2倍になっている(本実施形態では、平坦部6aの長さは、5~10mm)。また、第1拡散流生成部6において、平坦部6aに対する第1傾斜部6bの角度θ1は、45°になっている。また、平坦部6aに対する入口側傾斜部6cの角度θ2は、30°になっている(図6参照)。 In the flat portion 6a, the length of the portion parallel to the virtual axis O of the cylindrical member a is 1 to 2 times the parallel portion height H (in this embodiment, the length of the flat portion 6a). Is 5 to 10 mm). Moreover, in the 1st diffused flow production | generation part 6, angle (theta) 1 of the 1st inclination part 6b with respect to the flat part 6a is 45 degrees. Further, the angle θ2 of the inlet side inclined portion 6c with respect to the flat portion 6a is 30 ° (see FIG. 6).
 第2拡散流生成部7は、傾斜部(第2傾斜部)7aを有している。該傾斜部7aは、第1傾斜部6bに対して平行するように、内側空気噴射口2の吐出口5の内周部に配置されている。第2拡散流生成部7において、仮想軸Oに対する傾斜部7aの角度θ3は、45°になっている(図6参照)。 The second diffusion flow generating unit 7 has an inclined part (second inclined part) 7a. The inclined portion 7a is disposed on the inner peripheral portion of the discharge port 5 of the inner air injection port 2 so as to be parallel to the first inclined portion 6b. In the second diffusion flow generating unit 7, the angle θ3 of the inclined part 7a with respect to the virtual axis O is 45 ° (see FIG. 6).
 したがって、第1拡散流生成部6の第1傾斜部6bと、第2拡散流生成部7の傾斜部7aとは、所定の間隔をおいて平行している。そして、円筒状部材aの外周面と第1拡散流生成部6の平坦部6aとの間に整流流路8aが形成されている。また、第1拡散流生成部6の第1傾斜部6bと第2拡散流生成部7の傾斜部7aとの間に拡散流路8bが形成されている。そして、整流流路8aと拡散流路8bとで旋回・拡散流路8が形成されている。
 この旋回・拡散流路8を通って吐出される第1の1次空気流は、旋回されつつ吐出口5の近傍まで導入され、該吐出口5の近傍で、整流されつつ拡散されて外部に吐出される。
Therefore, the first inclined portion 6b of the first diffusion flow generation unit 6 and the inclined portion 7a of the second diffusion flow generation unit 7 are parallel to each other with a predetermined interval. A rectifying flow path 8 a is formed between the outer peripheral surface of the cylindrical member a and the flat portion 6 a of the first diffusion flow generating unit 6. Further, a diffusion flow path 8 b is formed between the first inclined portion 6 b of the first diffusion flow generation unit 6 and the inclined portion 7 a of the second diffusion flow generation unit 7. A swirling / diffusion channel 8 is formed by the rectifying channel 8a and the diffusion channel 8b.
The first primary air flow discharged through the swirling / diffusion flow path 8 is introduced to the vicinity of the discharge port 5 while being swirled, and is diffused while being rectified near the discharge port 5 to the outside. Discharged.
 また、内側空気噴射口2は、上述したように、螺旋流路Sで構成されており、該螺旋流路Sは、図5に示すように、複数の旋回羽根S1,…が螺旋状に形成されている。該旋回羽根S1,…の、仮想軸Oに対する角度θ4は、45°になっている。 Further, as described above, the inner air injection port 2 is constituted by the spiral flow path S. As shown in FIG. 5, the spiral flow path S is formed by a plurality of swirl blades S1,. Has been. The angle θ4 of the swirling blades S1,... With respect to the virtual axis O is 45 °.
 図1及び図2に示すように、燃料噴射口3は、等脚台形状の整流板30,…が等間隔に配置されている(図1では、5枚を配置)。この整流板30は、冷却のため空気抜きの孔が複数形成されている。また、整流板30は、中心側が幅小に形成され、外周側に向かうにしたがって幅広に形成されている。また、固体粉末燃料としては、例えば、製造コスト低減により推進されている無煙炭やオイルコークスなどの難燃性燃料が使用される。 As shown in FIGS. 1 and 2, the fuel injection ports 3 are provided with equirectangular shaped rectifying plates 30,... At equal intervals (in FIG. 1, five are arranged). The current plate 30 has a plurality of air vent holes for cooling. Further, the rectifying plate 30 is formed with a small width at the center side and is formed wider toward the outer peripheral side. In addition, as the solid powder fuel, for example, a flame-retardant fuel such as anthracite or oil coke which is promoted by reducing the manufacturing cost is used.
 図1に示すように、外側空気噴射口4は、周方向に所定の間隔をおいて配置(図1では、10個を配置)されたピース40,…によって閉塞されたスロット構造になっている。該ピース40は、図7及び図8に示すように、平面視略正方形状の広角部40aと、平面視三角形状の分流部40bとで構成される。そして、広角部40aが吐出部5側に配置される。また、ピース40の大きさは、例えば、幅寸法Xが33mm、全体の長さ寸法Yが70mm、厚さ寸法Zが12.5mmとなっており、寸法Y1は幅寸法Xとほぼ同じである。また、分流部40bの頂部Aにおいて、仮想軸Oと斜辺とのなす角度θ5は、24度である。そして、外側空気噴射口4をスロット構造にすることで、1次空気流(内流)に隙間が形成されて、高温2次空気(外流)同伴を促進することができ、高温2次空気の同伴領域を拡大することができる。 As shown in FIG. 1, the outer air injection port 4 has a slot structure closed by pieces 40,... Arranged at predetermined intervals in the circumferential direction (in FIG. 1, 10 pieces are arranged). . As shown in FIGS. 7 and 8, the piece 40 includes a wide-angle portion 40a having a substantially square shape in a plan view and a diversion portion 40b having a triangular shape in a plan view. And the wide angle part 40a is arrange | positioned at the discharge part 5 side. The size of the piece 40 is, for example, a width dimension X of 33 mm, an overall length dimension Y of 70 mm, and a thickness dimension Z of 12.5 mm. The dimension Y1 is substantially the same as the width dimension X. . In addition, at the apex A of the flow dividing portion 40b, the angle θ5 formed by the virtual axis O and the hypotenuse is 24 degrees. And by making the outer air injection port 4 into a slot structure, a gap is formed in the primary air flow (inner flow), and entrainment of high temperature secondary air (outer flow) can be promoted. The accompanying area can be enlarged.
 また、図9に示すように、内側空気噴射口2及び燃料噴射口3には、内側空気噴射口2及び燃料噴射口3に空気を供給する第1のファン(ブロア)9が設けられている。また、外側空気噴射口4には、外側空気噴射口4に空気を供給する第2のファン(ブロア)10が設けられており、内側空気噴射口2と、外側空気噴射口4とに独立して空気を供給できるように構成されている。なお、第1のファン(ブロア)9の風量を計測する風量計11及び第2のファン(ブロア)10の風量を計測する風量計11が設けられている。 Further, as shown in FIG. 9, the inner air injection port 2 and the fuel injection port 3 are provided with a first fan (blower) 9 that supplies air to the inner air injection port 2 and the fuel injection port 3. . Further, the outer air injection port 4 is provided with a second fan (blower) 10 for supplying air to the outer air injection port 4, and is independent of the inner air injection port 2 and the outer air injection port 4. The air can be supplied. An air flow meter 11 that measures the air flow of the first fan (blower) 9 and an air flow meter 11 that measures the air flow of the second fan (blower) 10 are provided.
 そして、図3に示すように、外側空気噴射口4からの1次空気(外流)は、高速流により生じる負圧によって周囲の高温ガスを誘引することにより、2次空気同伴Eに続いて外部再循環領域Bが形成されることになる。そして、この外部再循環領域Bにおける高温場が、旋回・拡散流路8からの第1の1次空気流によって導入される固体粉末燃料流(微粉炭流)の燃焼をさらに促進させる。すなわち、火炎温度が上昇する。一方、旋回・拡散流により高温場への微粉炭導入を促進させることも燃焼速度を上昇させる重要な要素となる。また、外部再循環領域Bのスケールは、1次空気のモーメンタムに依存することになる。そして、外部再循環領域Bにおいて、第1の1次空気の流速を上昇させることにより2次空気同伴及び外部再循環を促進させ、上述した燃焼速度上昇(着火安定)が実現する。なお、前記1次空気のモーメンタム(N)は、流路面積(m2)×流速(m/s)×質量流量(kg/s)で算出され、投入熱量あたりの1次空気のモーメンタム(N/MW)で表示する。 As shown in FIG. 3, the primary air (outer flow) from the outer air injection port 4 attracts the surrounding high-temperature gas by the negative pressure generated by the high-speed flow, so that the secondary air entrainment E is followed by the external air. A recirculation zone B will be formed. The high temperature field in the external recirculation region B further promotes the combustion of the solid powder fuel flow (pulverized coal flow) introduced by the first primary air flow from the swirl / diffusion flow path 8. That is, the flame temperature increases. On the other hand, promoting the introduction of pulverized coal into a high temperature field by swirling / diffusion flow is also an important factor for increasing the combustion rate. Further, the scale of the external recirculation region B depends on the momentum of the primary air. And in the external recirculation area | region B, the secondary air entrainment and external recirculation are accelerated | stimulated by raising the flow velocity of 1st primary air, and the combustion speed rise (ignition stability) mentioned above is implement | achieved. The momentum (N) of the primary air is calculated by a flow path area (m 2 ) × flow velocity (m / s) × mass flow rate (kg / s), and the primary air momentum per input heat (N / MW).
 また、第1の空気ファン(ブロア)9で内流の空気を供給し、第2の空気ファン(ブロア)10で外流の空気を供給することにより、内流・外流の空気量及び空気量比率を任意に調整することができて、使用する燃料種によって火炎を最適な状態に調整することができる。SO3循環に対しては、燃焼速度上昇に伴い火炎が狭角・短炎化されることにより、SO3循環を抑制することができる。 Also, by supplying the internal air with the first air fan (blower) 9 and supplying the external air with the second air fan (blower) 10, the air amount and the air amount ratio of the internal air / external flow The flame can be adjusted to an optimum state depending on the type of fuel used. For SO 3 circulation, the SO 3 circulation can be suppressed by narrowing and shortening the flame as the combustion speed increases.
 このように、本実施形態によれば、火炎温度及び燃焼速度を上昇させることができる。具体的には、燃焼速度改善により、低揮発炭、例えば、無水無灰基準の石炭の揮発分(VM)10%以下の無煙炭、オイルコークスの使用比率を増加させることができる。カロリー比で(従来)10%以下(改良)30%まで増量することができる。また、第1の空気ファン(ブロア)9により、内側空気噴射口2に空気を供給すると共に、第2の空気ファン(ブロア)10により、外側空気噴射口4に空気を供給するようにしたので、内流・外流の空気をそれぞれ独立して供給できて、火炎調整が容易になり、狭角・短炎化によってSO3の循環量を低減することができる。 Thus, according to the present embodiment, the flame temperature and the combustion speed can be increased. Specifically, the use rate of low-volatile coal, for example, anthracite coal having a volatile content (VM) of 10% or less of anhydrous ashless-based coal and oil coke can be increased by improving the combustion rate. The calorie ratio (conventional) can be increased to 10% or less (improved) to 30%. In addition, air is supplied to the inner air injection port 2 by the first air fan (blower) 9 and air is supplied to the outer air injection port 4 by the second air fan (blower) 10. The internal and external air can be supplied independently, making flame adjustment easy and reducing the amount of SO 3 circulated by narrowing and shortening the flame.
 なお、本発明は、前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更することができる。 In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change variously.
 例えば、前記実施形態の場合、セメントクリンカー焼成装置のバーナーに適用するようにしたが、セメントクリンカー焼成装置に限定されるものではなく、微粉炭を燃料とする種々のバーナーにも適用できる。 For example, in the case of the above embodiment, the present invention is applied to the burner of the cement clinker firing apparatus, but is not limited to the cement clinker firing apparatus, and can be applied to various burners using pulverized coal as fuel.
 図10に示すように、石灰石、粘土、珪酸原料、酸化鉄原料などのセメント原料を焼成する際に使用されるセメントクリンカー焼成装置50は、4つのサイクロン51~54と、図10を正面から見て右側下段のサイクロン52に連結された仮焼炉55、左側下段のサイクロン54及び右側下段のサイクロン52に連結されたライジングダクト57及びインレットフッド58と、インレットフッド58に連結されるロータリーキルン56と、ロータリーキルン56に連結される冷却機60と、左側最上段のサイクロン53に配管61を介して連結されるファン62とを備える。 As shown in FIG. 10, a cement clinker firing apparatus 50 used when firing cement raw materials such as limestone, clay, silicic acid raw materials, and iron oxide raw materials includes four cyclones 51 to 54 and FIG. A calcining furnace 55 connected to the right lower cyclone 52, a left lower cyclone 54, a rising duct 57 and an inlet hood 58 connected to the lower right cyclone 52, a rotary kiln 56 connected to the inlet hood 58, A cooler 60 connected to the rotary kiln 56 and a fan 62 connected to the uppermost cyclone 53 on the left side via a pipe 61 are provided.
 そして、ロータリーキルン56には、原料を焼成する燃料燃焼装置としての上述の燃料燃焼装置1が取り付けられている。 The rotary kiln 56 is provided with the above-described fuel combustion device 1 as a fuel combustion device for firing the raw material.
 1次空気外流は、冷却機60からの高温の2次空気を同伴させて火炎を高温化することにより、石炭燃焼は促進される。1次空気内流の出口端付近(吐出口5付近)には旋回・拡散流路8が取り付けられている。この旋回・拡散流路8によって、燃料燃焼装置1の仮想軸Oの方向に沿って流れてくる空気流が撹拌旋回する。火炎内部の排ガス循環流(内部循環)が生成されることで、火炎の高温化及び安定化が図られている。1次空気外流を増やすと、火炎は狭角・長炎化し、逆に1次空気内流を増やすと広角・短炎化する。ロータリーキルン56内におけるセメントクリンカーの焼成状況や、ロータリーキルン56内の耐火煉瓦の損耗を見ながら、1次空気内流・外流の配分が前述の弁開度により調整される。 The primary air external flow is accompanied by high temperature secondary air from the cooler 60 to increase the temperature of the flame, thereby promoting coal combustion. A swirling / diffusion flow path 8 is attached near the outlet end of the primary air flow (near the discharge port 5). The swirling / diffusion flow path 8 stirs and swirls the airflow flowing along the direction of the virtual axis O of the fuel combustion device 1. By generating an exhaust gas circulation flow (internal circulation) inside the flame, the temperature of the flame is increased and stabilized. When the primary air external flow is increased, the flame becomes narrower and longer, and conversely when the primary air internal flow is increased, the flame becomes wider and shorter. The distribution of the primary air flow and the external flow is adjusted by the above-described valve opening while observing the firing state of the cement clinker in the rotary kiln 56 and the wear of the refractory bricks in the rotary kiln 56.
 つぎにセメントの製造方法について説明する。該製造方法は、原料作製工程と、セメントクリンカーの焼成工程と、仕上げ工程とを備えている。 Next, a method for manufacturing cement will be described. The manufacturing method includes a raw material preparation step, a cement clinker firing step, and a finishing step.
 まず、原料作製工程において、石灰石、粘土、けい石、酸化鉄原料を中心に所要の構成成分になるように粉砕、乾燥、混合して成分が安定した粉体原料(以下、単に原料という)が作製される。 First, in the raw material production process, a powder raw material (hereinafter simply referred to as a raw material) in which the components are stabilized by pulverization, drying, and mixing so as to be the required constituents, mainly limestone, clay, silica, and iron oxide raw materials. Produced.
 つぎに、セメントクリンカーの焼成工程に移行する。原料作製工程で作製された原料は、上述したセメントクリンカー焼成装置50のサスペンションプリヒーター(SP)の右側上段のサイクロン51に供給される。そして、右側上段のサイクロン51に供給された原料は、右側上段のサイクロン51のガス出口から排出されるガスと熱交換をしながら左側下段のサイクロン54内に導かれ、左側下段のサイクロン54で固気分離される。固体として分離された原料は、右側下段のサイクロン52に供給され、各段のサイクロン51~54で、「入口に供給」、「熱交換」、「固気分離」を順次繰り返し、仮焼炉55に供給される。仮焼炉55では、燃料を燃焼させて石灰石成分から二酸化炭素を分離して生石灰成分を生成させる。気流に同伴されて仮焼炉55を出た原料は、右側下段のサイクロン52内に導かれ、固気分離される。そして、固気分離された原料は、インレットフッド58を経てロータリーキルン56へと供給される。ロータリーキルン56に供給された原料は、ロータリーキルン56の傾斜に沿って窯尻から窯前へとさらに熱交換をしながら移動して焼成され、(セメント)クリンカとなる。セメントクリンカーは品質上急冷が必要なので、ロータリーキルン56を出た後直ぐに冷却機60へと導かれ、ここで、空気などで急冷されて半製品であるセメントクリンカー(中間製品)となる。 Next, the process proceeds to the cement clinker firing step. The raw material produced in the raw material production process is supplied to the cyclone 51 on the upper right side of the suspension preheater (SP) of the cement clinker baking apparatus 50 described above. The raw material supplied to the upper right cyclone 51 is guided into the left lower cyclone 54 while exchanging heat with the gas discharged from the gas outlet of the upper right cyclone 51, and is fixed in the lower left cyclone 54. I'm separated. The raw material separated as a solid is supplied to the cyclone 52 on the lower right side, and in each of the cyclones 51 to 54, “supply to inlet”, “heat exchange”, and “solid-gas separation” are sequentially repeated, and the calcining furnace 55 To be supplied. In the calcining furnace 55, the fuel is burned to separate carbon dioxide from the limestone component to generate a quick lime component. The raw material exiting the calcining furnace 55 accompanied by the air current is guided into the cyclone 52 on the lower right side and separated into solid and gas. The solid-gas separated raw material is supplied to the rotary kiln 56 through the inlet hood 58. The raw material supplied to the rotary kiln 56 moves along the inclination of the rotary kiln 56 from the kiln bottom to the front of the kiln while further exchanging heat, and is fired to become a (cement) clinker. Since the cement clinker requires rapid cooling in terms of quality, the cement clinker is led to the cooler 60 immediately after leaving the rotary kiln 56, where it is rapidly cooled by air or the like to become a semi-finished cement clinker (intermediate product).
 そして、仕上げ工程に移行して、セメントクリンカーに石膏が加えられて、セメントが完成する。 Then, the process proceeds to the finishing process, and gypsum is added to the cement clinker to complete the cement.
 以下に、本発明の別の実施形態に係る燃料燃焼装置について、図11から図19を参照して説明する。
 図11に示すように、燃料燃焼装置201は、固体粉末燃料を空気と共に吐出口g1から仮想軸Oに沿って噴射方向f1に噴射させる燃料燃焼装置である。
 固体粉末燃料としては、例えば、製造コスト低減により推進されている無煙炭やオイルコークスなどの難燃性燃料が使用される。
Hereinafter, a fuel combustion apparatus according to another embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 11, the fuel combustion apparatus 201 is a fuel combustion apparatus that injects solid powder fuel together with air from the discharge port g1 along the virtual axis O in the injection direction f1.
As the solid powder fuel, for example, a flame retardant fuel such as anthracite coal or oil coke which is promoted by reducing manufacturing costs is used.
 燃料燃焼装置201は、複数の燃料噴射口部203と、複数の外側空気噴射口部245と、複数の内側空気噴射口部310とを備える。燃料燃焼装置201は、さらに、図9に示すような第1のファン9及び第2のファン10を備える。 The fuel combustion apparatus 201 includes a plurality of fuel injection port portions 203, a plurality of outer air injection port portions 245, and a plurality of inner air injection port portions 310. The fuel combustion apparatus 201 further includes a first fan 9 and a second fan 10 as shown in FIG.
 複数の燃料噴射口部203は、噴射方向f1に固体粉末燃料が噴出するように、吐出口g1(図12参照)において、仮想軸Oの周りに間隔をおいてリング状に配置されている。 The plurality of fuel injection ports 203 are arranged in a ring shape at intervals around the virtual axis O in the discharge port g1 (see FIG. 12) so that the solid powder fuel is injected in the injection direction f1.
 複数の外側空気噴射口部245は、噴射方向f1に空気が噴射するように、吐出口g1において、複数の燃料噴射口部203の半径方向の外側方向r1かつ仮想軸Oの周りに間隔をおいてリング状に配置されている。 The plurality of outer air injection port portions 245 are spaced apart from each other around the imaginary axis O in the radial outer direction r1 of the plurality of fuel injection port portions 203 at the discharge port g1 so that air is injected in the injection direction f1. And arranged in a ring shape.
 複数の内側空気噴射口部310は、噴射方向f1に進むにつれて仮想軸Oの周りの旋回方向t1と半径方向の外側方向r1との間の螺旋拡散方向s01(図18及び図19参照)に向けて空気が噴射するように、吐出口g1において、複数の燃料噴射口部203の半径方向の内側かつ仮想軸Oの周りに間隔をおいてリング状に配置されている。 The plurality of inner air injection ports 310 are directed toward the spiral diffusion direction s01 (see FIGS. 18 and 19) between the turning direction t1 around the virtual axis O and the radial outer direction r1 as proceeding in the injection direction f1. In the discharge port g1, the plurality of fuel injection port portions 203 are arranged in a ring shape at intervals around the inner side in the radial direction and around the virtual axis O so that air is injected.
 図11及び図12に示すように、複数の外側空気噴射口部245、複数の燃料噴射口部203、及び複数の内側空気噴射口部310は、それぞれ、仮想軸Oの周りに同心円状に配置された、円筒状部材d1と円筒状部材c1との間、円筒状部材c1と円筒状部材b1との間、及び円筒状部材b1と円筒状部材a1との間に形成されている。
 複数の外側空気噴射口部245は、円筒状部材d1と円筒状部材c1との間のリング状の隙間である外側空気流路204を、所定の間隔をおいて配置された複数の仕切ピース240で仕切って形成したものである。複数の仕切ピース240によって、外側空気流路204は閉塞されたスロット構造になっている。
 各外側空気噴射口部245における2次空気の流速は、150~250m/sであることが好ましい。
As shown in FIGS. 11 and 12, the plurality of outer air injection ports 245, the plurality of fuel injection ports 203, and the plurality of inner air injection ports 310 are concentrically arranged around the virtual axis O, respectively. It is formed between the cylindrical member d1 and the cylindrical member c1, between the cylindrical member c1 and the cylindrical member b1, and between the cylindrical member b1 and the cylindrical member a1.
The plurality of outer air injection port portions 245 include a plurality of partition pieces 240 arranged at predetermined intervals in the outer air flow path 204 that is a ring-shaped gap between the cylindrical member d1 and the cylindrical member c1. It is formed by partitioning. The outer air flow path 204 has a closed slot structure by the plurality of partition pieces 240.
The flow rate of secondary air in each outer air injection port 245 is preferably 150 to 250 m / s.
 複数の燃料噴射口部203は、円筒状部材c1と円筒状部材b1との間のリング状の隙間に、等脚台形状の複数の整流板230で仕切って形成されている。複数の整流板230は、円筒状部材c1と円筒状部材b1との間に、所定の間隔をおいて配置されている。各整流板230は、等脚台形状を有する。 The plurality of fuel injection ports 203 are formed in a ring-shaped gap between the cylindrical member c1 and the cylindrical member b1 by partitioning with a plurality of isosceles trapezoidal rectifying plates 230. The plurality of rectifying plates 230 are arranged at a predetermined interval between the cylindrical member c1 and the cylindrical member b1. Each rectifying plate 230 has an isosceles trapezoidal shape.
 図11及び図12に示すように、整流板230には、冷却のための複数の空気抜き孔231が形成されている。また、整流板230は、中心側が幅小に形成され、外周側に向かうにしたがって幅広に形成されている。 As shown in FIGS. 11 and 12, the rectifying plate 230 is formed with a plurality of air vent holes 231 for cooling. Further, the rectifying plate 230 is formed with a small width at the center side and is formed wider toward the outer peripheral side.
 複数の内側空気噴射口部310は、円筒状部材b1と円筒状部材a1との間のリング状の隙間である内側空気流路202を封止した拡散流リング300に形成されている。 The plurality of inner air injection ports 310 are formed in a diffusion flow ring 300 that seals the inner air flow path 202 that is a ring-shaped gap between the cylindrical member b1 and the cylindrical member a1.
 図13から図17に示すように、拡散流リング300は、仮想軸Oを中心軸とする上流側リング302と、仮想軸Oを中心軸とし、上流側リング302の噴射方向f1に配置された下流側リング301とを有する。
 上流側リング302と下流側リング301とは、開口315と開口314とが一致するように、重ねられている(図19参照)。
 上流側リング302及び下流側リング301は、例えば、ステンレス製金物で形成される。
As shown in FIGS. 13 to 17, the diffusion flow ring 300 is disposed in the upstream ring 302 having the virtual axis O as the central axis and the injection direction f1 of the upstream ring 302 with the virtual axis O as the central axis. And a downstream ring 301.
The upstream ring 302 and the downstream ring 301 are overlapped so that the opening 315 and the opening 314 coincide with each other (see FIG. 19).
The upstream ring 302 and the downstream ring 301 are made of, for example, stainless steel hardware.
 図19に示すように、各内側空気噴射口部310の上流側流路316は上流側リング302に形成され、各内側空気噴射口部310の下流側流路312は下流側リング301に形成されている。 As shown in FIG. 19, the upstream flow channel 316 of each inner air injection port 310 is formed in the upstream ring 302, and the downstream flow channel 312 of each inner air injection port 310 is formed in the downstream ring 301. ing.
 図13に示すように、上流側リング302及び下流側リング301の外径及び内径は、互いに同じにされている。上流側リング302及び下流側リング301の内径は、円筒状部材a1の外径に挿入可能な径とされ、外径は、円筒状部材b1の内径に挿入可能な径とされている。
 内側空気噴射口部310は、直線状の下流側流路312と、直線状の上流側流路316とで構成されている。
As shown in FIG. 13, the outer diameter and inner diameter of the upstream ring 302 and the downstream ring 301 are the same. The inner diameter of the upstream ring 302 and the downstream ring 301 is a diameter that can be inserted into the outer diameter of the cylindrical member a1, and the outer diameter is a diameter that can be inserted into the inner diameter of the cylindrical member b1.
The inner air injection port portion 310 includes a linear downstream channel 312 and a linear upstream channel 316.
 図14に示すように、下流側リング301の中心の周りに所定の間隔をおいて、複数の下流側流路312が形成されている。各下流側流路312の一方は、下流側リング301の下流側側面301aに開口311を形成しており、他方は、下流側リング301の上流側側面301bに開口314を形成している。
 図15に示すように、各下流側流路312は、上流側側面301bから下流側側面301a(噴射方向f1)に進むにつれて、流路が半径方向r1の外側方向と旋回方向t1との間の螺旋拡散方向s01に沿うように、断面形状が矩形で直線状に形成されている。
 図13に示すように、複数の内側空気噴射口部310のうち仮想軸Oの周り方向に隣接する2つの内側空気噴射口部310の間には、所定の内側噴射口隙間が形成されている。これにより、図18及び図19に示すように、複数の内側空気噴射口部310が形成するリング状の内側かつ噴射方向f1にある空気を、複数の内側空気噴射口部310からそれぞれ噴射された複数の内側空気流F1の間に同伴しやすくしている。
 また、図19に示すように、仮想軸Oに対する螺旋拡散方向s01の角度は、30°~60°の範囲に設定されている。
As shown in FIG. 14, a plurality of downstream flow paths 312 are formed around the center of the downstream ring 301 at a predetermined interval. One of the downstream channels 312 forms an opening 311 on the downstream side surface 301 a of the downstream ring 301, and the other forms an opening 314 on the upstream side surface 301 b of the downstream ring 301.
As shown in FIG. 15, each downstream flow path 312 has a flow path between the outer side of the radial direction r1 and the turning direction t1 as it proceeds from the upstream side surface 301b to the downstream side surface 301a (injection direction f1). The cross-sectional shape is a rectangle and a straight line along the spiral diffusion direction s01.
As shown in FIG. 13, a predetermined inner jet opening gap is formed between two inner air jet portions 310 adjacent to each other in the direction around the virtual axis O among the plural inner air jet portions 310. . As a result, as shown in FIGS. 18 and 19, the air in the ring-shaped inner side formed by the plurality of inner air injection ports 310 and in the injection direction f <b> 1 is respectively injected from the plurality of inner air injection ports 310. It is easy to be accompanied between the plurality of inner airflows F1.
As shown in FIG. 19, the angle of the spiral diffusion direction s01 with respect to the virtual axis O is set in the range of 30 ° to 60 °.
 図16に示すように、上流側リング302の中心の周りに所定の間隔をおいて、複数の上流側流路316が形成されている。各上流側流路316の一方は、上流側リング302の下流側側面302aに開口315を形成しており、他方は、上流側リング302の上流側側面302bに開口318を形成している。
 開口315は、上流側リング302の中心線より離れる方向に平行移動した位置に開口しており、開口318は、開口315のさらに、中心より離れる方向に平行移動した位置に開口している。つまり、開口315と開口318とは、互いに旋回方向に平行移動した位置に形成されている。
 図17に示すように、各上流側流路316は、下流側側面302aに対して所定の角度に伸びる方向の直線に沿うように、断面形状が矩形で直線状に形成されている。
As shown in FIG. 16, a plurality of upstream flow paths 316 are formed at predetermined intervals around the center of the upstream ring 302. One of the upstream flow paths 316 forms an opening 315 on the downstream side surface 302 a of the upstream ring 302, and the other forms an opening 318 on the upstream side surface 302 b of the upstream ring 302.
The opening 315 opens at a position translated in a direction away from the center line of the upstream ring 302, and the opening 318 opens at a position further translated from the opening 315 in a direction away from the center. That is, the opening 315 and the opening 318 are formed at positions that are translated from each other in the turning direction.
As shown in FIG. 17, each upstream channel 316 has a rectangular cross-sectional shape that is straight along a direction extending at a predetermined angle with respect to the downstream side surface 302a.
 外側空気流路204内に形成された各仕切ピース240は、図7及び図8に示すピース40と同一のものであり、平面視略正方形状の広角部40aと、平面視三角形状の分流部40bとで構成される。そして、仕切ピース240の広角部が吐出口g1の側に配置される。そして、スロット構造にすることで、外側空気流(内流)に隙間が形成されて、高温2次空気(外流)同伴を促進することができ、高温の2次空気同伴領域B1を拡大することができる。 Each partition piece 240 formed in the outer air flow path 204 is the same as the piece 40 shown in FIGS. 7 and 8, and has a wide-angle portion 40 a having a substantially square shape in plan view and a branching portion having a triangular shape in plan view. 40b. And the wide angle part of the partition piece 240 is arrange | positioned at the discharge outlet g1 side. And by using a slot structure, a gap is formed in the outer air flow (inner flow), entrainment of high temperature secondary air (outer flow) can be promoted, and the high temperature secondary air entrainment region B1 can be expanded. Can do.
 内側空気流路202及び複数の燃料噴射口部203には、内側空気流路202及び複数の燃料噴射口部203に空気を供給する第1のファン(ブロア)(例えば図9に示す第1のファン9)が設けられている。また、外側空気流路204には、外側空気流路204に空気を供給する第2のファン(ブロア)(例えば図9に示す第2のファン10)が設けられており、内側空気流路202と、外側空気流路204とに独立して空気を供給できるように構成されている。第1のファン及び第2のファンのそれぞれの風量は、風量計(例えば図9に示す風量計11)によって測定される。 A first fan (blower) that supplies air to the inner air passage 202 and the plurality of fuel injection ports 203 is supplied to the inner air passage 202 and the plurality of fuel injection ports 203 (for example, a first fan shown in FIG. 9). A fan 9) is provided. The outer air flow path 204 is provided with a second fan (blower) (for example, the second fan 10 shown in FIG. 9) that supplies air to the outer air flow path 204. And the outside air flow path 204 can be independently supplied with air. The air volume of each of the first fan and the second fan is measured by an air flow meter (for example, the air flow meter 11 shown in FIG. 9).
 以上の燃料燃焼装置201は、以下のように作動する。
 第1のファンが作動すると、内側空気流路202と複数の燃料噴射口部203とに空気を供給する。また、第2のファンが作動すると、外側空気流路204に空気を供給する。
 図18に示すように、内側空気流路202に供給された空気は、内側空気噴射口部310を通って噴射される。
 図19に示すように、内側空気流路202に供給された空気は、まず、拡散流リング300の上流側リング302に形成された開口318を介して上流側流路316を流れ、開口315から吐出する。このとき、開口315と開口318とは、互いに旋回方向t1に平行移動した位置に形成されているので、上流側流路316を流れる空気の流れは、噴射方向f1に進むにつれて旋回方向t1に向く。
The above fuel combustion apparatus 201 operates as follows.
When the first fan is activated, air is supplied to the inner air flow path 202 and the plurality of fuel injection ports 203. When the second fan is activated, air is supplied to the outer air flow path 204.
As shown in FIG. 18, the air supplied to the inner air flow path 202 is ejected through the inner air ejection port portion 310.
As shown in FIG. 19, the air supplied to the inner air flow path 202 first flows through the upstream flow path 316 via the opening 318 formed in the upstream ring 302 of the diffusion flow ring 300, and from the opening 315. Discharge. At this time, since the opening 315 and the opening 318 are formed at positions parallel to each other in the turning direction t1, the flow of air flowing through the upstream channel 316 is directed to the turning direction t1 as it proceeds in the injection direction f1. .
 次に、上流側流路316から吐出された空気は、開口314を介して下流側流路312を流れ、開口311から吐出する。このとき、開口311と開口314とは、互いに旋回方向に平行移動していると共に、半径方向r1の外側に平行移動しているので、噴射方向f1に進むにつれて螺旋拡散方向s01に向く。
 このとき、上流側流路316と、下流側流路312とは緩やかに接続されているので、内側空気噴射口部310の空気は、旋回されつつ吐出口g1の近傍まで導入され、吐出口g1の近傍で、整流されつつ拡散されて外部に吐出される。
Next, the air discharged from the upstream flow path 316 flows through the downstream flow path 312 via the opening 314 and is discharged from the opening 311. At this time, the opening 311 and the opening 314 are parallel to each other in the turning direction and parallel to the outside of the radial direction r1, so that the opening 311 and the opening 314 are directed to the spiral diffusion direction s01 as the jetting direction f1 is advanced.
At this time, since the upstream flow path 316 and the downstream flow path 312 are gently connected, the air in the inner air injection port 310 is introduced to the vicinity of the discharge port g1 while being swirled, and the discharge port g1 In the vicinity of, it is diffused while being rectified and discharged to the outside.
 そして、図18に示すように、外側空気流路204からの1次空気(外流)は、高速流により生じる負圧によって周囲の高温ガスを誘引することにより、2次空気同伴領域B1に続いて外部再循環領域A1が形成されることになる。
 そして、この外部再循環領域A1における高温場が、内側空気噴射口部310からの内側空気流によって導入される固体粉末燃料流D1(微粉炭流)の燃焼をさらに促進させる。すなわち、火炎温度が上昇する。
Then, as shown in FIG. 18, the primary air (outer flow) from the outer air flow path 204 continues to the secondary air entrainment region B <b> 1 by attracting surrounding high-temperature gas by the negative pressure generated by the high-speed flow. An external recirculation area A1 will be formed.
The high temperature field in the external recirculation region A1 further promotes the combustion of the solid powder fuel flow D1 (pulverized coal flow) introduced by the inner air flow from the inner air injection port 310. That is, the flame temperature increases.
 さらに、図19に示すように、仮想軸Oの周り方向である旋回方向t1に隣接する2つの内側空気噴射口部310の間には、所定の内側噴射口隙間が形成されているので、図12に示すように、複数の内側空気噴射口部310が形成するリング状の内側かつ噴射方向f1にある内部循環領域E1の空気が誘引され、図18及び図19に示すように、複数の内側空気噴射口部310からそれぞれ噴射された複数の内側空気流F1の間に同伴しやすくなる。
 そして、内部循環領域E1の空気は、内側空気流F1と固体粉末燃料流D1と共に揮発分燃焼領域M1の粉炭拡散領域L1に同伴され、揮発分燃焼領域N1が拡大する。このとき、外側空気噴射口部245から噴射される外側空気流C1の2次空気の流速は、150~250m/sであることが好ましい。
 このため、内部循環領域E1における空気流が強く生じ、内側空気流と相まって固体粉末燃料流D1の燃焼をよりさらに促進させる。すなわち、火炎温度をさらに上昇させることができる。
Further, as shown in FIG. 19, a predetermined inner injection port gap is formed between the two inner air injection ports 310 adjacent to the turning direction t <b> 1 that is the direction around the virtual axis O. 12, the air in the internal circulation region E <b> 1 in the ring-shaped inner side and the injection direction f <b> 1 formed by the plurality of inner air injection ports 310 is attracted, and as shown in FIGS. 18 and 19, It becomes easy to accompany a plurality of inner airflows F1 respectively ejected from the air ejection port portion 310.
And the air of the internal circulation area | region E1 is accompanied by the pulverized-coal diffusion area | region L1 of the volatile matter combustion area | region M1 with the inner side air flow F1 and the solid powder fuel flow D1, and the volatile matter combustion area | region N1 expands. At this time, the flow rate of the secondary air in the outer air flow C1 injected from the outer air injection port 245 is preferably 150 to 250 m / s.
For this reason, the air flow in the internal circulation region E1 is strongly generated, and the combustion of the solid powder fuel flow D1 is further promoted in combination with the inner air flow. That is, the flame temperature can be further increased.
 一方、螺旋拡散方向s01の旋回・拡散流により高温場への微粉炭導入を促進させることも燃焼速度を上昇させる重要な要素となる。また、外部再循環領域A1のスケールは、1次空気のモーメンタムに依存することになる。そして、外部再循環領域A1において、内側空気の流速を上昇させることにより2次空気同伴及び外部再循環を促進させ、燃焼速度上昇(着火安定)が実現する。
 なお、1次空気のモーメンタム(N)は、流路面積(m2)×流速(m/s)×質量流量(kg/s)で算出され、投入熱量あたりの1次空気のモーメンタム(N/MW)で表示する。
On the other hand, promoting the introduction of pulverized coal into the high temperature field by the swirling / diffusion flow in the spiral diffusion direction s01 is also an important factor for increasing the combustion rate. Further, the scale of the external recirculation region A1 depends on the momentum of the primary air. And in external recirculation area | region A1, secondary air entrainment and external recirculation are accelerated | stimulated by raising the flow velocity of inner air, and a combustion speed raise (ignition stability) is implement | achieved.
The momentum (N) of the primary air is calculated by channel area (m 2 ) × flow velocity (m / s) × mass flow rate (kg / s), and the momentum (N / MW).
 また、第1の空気ファン(ブロア)で内流の空気を供給し、第2の空気ファン(ブロア)で外流の空気を供給することにより、内流・外流の空気量及び空気量比率を任意に調整することができる。このため、使用する燃料種によって火炎を最適な状態に調整することができる。
 SO3循環に対しては、燃焼速度上昇に伴い火炎が狭角・短炎化されることにより、SO3循環を抑制することができる。
In addition, by supplying the internal air with the first air fan (blower) and supplying the external air with the second air fan (blower), the internal air / external air quantity and the air quantity ratio can be set arbitrarily. Can be adjusted. For this reason, a flame can be adjusted to an optimal state with the fuel kind to be used.
For SO 3 circulation, the SO 3 circulation can be suppressed by narrowing and shortening the flame as the combustion speed increases.
 このように、本実施形態によれば、火炎温度及び燃焼速度を上昇させることができる。具体的には、燃焼速度改善により、低揮発炭、例えば、無水無灰基準の石炭の揮発分(VM)10%以下の無煙炭、オイルコークスの使用比率を増加させることができる。カロリー比で(従来)10%以下(改良)30%まで増量することができる。また、第1の空気ファン(ブロア)により、内側空気流路202に空気を供給すると共に、第2の空気ファン(ブロア)により、外側空気流路204に空気を供給するようにしたので、内流・外流の空気をそれぞれ独立して供給できて、火炎調整が容易になり、狭角・短炎化によってSO3の循環量を低減することができる。 Thus, according to the present embodiment, the flame temperature and the combustion speed can be increased. Specifically, the use rate of low-volatile coal, for example, anthracite coal having a volatile content (VM) of 10% or less of anhydrous ashless-based coal and oil coke can be increased by improving the combustion rate. The calorie ratio (conventional) can be increased to 10% or less (improved) to 30%. In addition, air is supplied to the inner air flow path 202 by the first air fan (blower) and air is supplied to the outer air flow path 204 by the second air fan (blower). Flow and external air can be supplied independently to facilitate flame adjustment, and the amount of SO 3 circulated can be reduced by narrowing and shortening the flame.
 燃料燃焼装置1は、セメントクリンカー焼成装置のバーナーに適用するようにしたが、セメントクリンカー焼成装置に限定されるものではなく、微粉炭を燃料とする種々のバーナーにも適用できる。 The fuel combustion apparatus 1 is applied to a burner of a cement clinker firing apparatus, but is not limited to a cement clinker firing apparatus, and can be applied to various burners using pulverized coal as fuel.
 図10に示すように、石灰石、粘土、珪酸原料、酸化鉄原料などのセメント原料を焼成する際に使用されるセメントクリンカー焼成装置50は、4つのサイクロン51~54と、図10を正面から見て右側下段のサイクロン52に連結された仮焼炉55、左側下段のサイクロン54及び右側下段のサイクロン52に連結されたライジングダクト57及びインレットフッド58と、インレットフッド58に連結されるロータリーキルン56と、ロータリーキルン56に連結される冷却機60と、左側最上段のサイクロン53に配管61を介して連結されるファン62とを備える。 As shown in FIG. 10, a cement clinker firing apparatus 50 used when firing cement raw materials such as limestone, clay, silicic acid raw materials, and iron oxide raw materials includes four cyclones 51 to 54 and FIG. A calcining furnace 55 connected to the right lower cyclone 52, a left lower cyclone 54, a rising duct 57 and an inlet hood 58 connected to the lower right cyclone 52, a rotary kiln 56 connected to the inlet hood 58, A cooler 60 connected to the rotary kiln 56 and a fan 62 connected to the uppermost cyclone 53 on the left side via a pipe 61 are provided.
 そして、ロータリーキルン56には、原料を焼成する燃料燃焼装置としての上述の燃料燃焼装置1が取り付けられている。 The rotary kiln 56 is provided with the above-described fuel combustion device 1 as a fuel combustion device for firing the raw material.
 1次空気外流は、冷却機60からの高温の2次空気を同伴させて火炎を高温化することにより、石炭燃焼は促進される。1次空気内流の出口端付近には拡散流リング100が取り付けられている。この拡散流リング100によって、燃料燃焼装置1の仮想軸Oの方向に沿って流れてくる空気流が撹拌旋回する。火炎内部の排ガス循環流(内部循環)が生成されることで、火炎の高温化及び安定化が図られている。1次空気外流を増やすと、火炎は狭角・長炎化し、逆に1次空気内流を増やすと広角・短炎化する。ロータリーキルン56内におけるセメントクリンカーの焼成状況や、ロータリーキルン56内の耐火煉瓦の損耗を見ながら、1次空気内流・外流の配分が前述の弁開度により調整される。 The primary air external flow is accompanied by high temperature secondary air from the cooler 60 to increase the temperature of the flame, thereby promoting coal combustion. A diffusion flow ring 100 is attached in the vicinity of the outlet end of the primary air flow. By this diffusion flow ring 100, the air flow flowing along the direction of the imaginary axis O of the fuel combustion apparatus 1 is stirred and swirled. By generating an exhaust gas circulation flow (internal circulation) inside the flame, the temperature of the flame is increased and stabilized. When the primary air external flow is increased, the flame becomes narrower and longer, and conversely when the primary air internal flow is increased, the flame becomes wider and shorter. The distribution of the primary air flow and the external flow is adjusted by the above-described valve opening while observing the firing state of the cement clinker in the rotary kiln 56 and the wear of the refractory bricks in the rotary kiln 56.
 つぎにセメントの製造方法について説明する。該製造方法は、原料作製工程と、セメントクリンカーの焼成工程と、仕上げ工程とを備えている。 Next, a method for manufacturing cement will be described. The manufacturing method includes a raw material preparation step, a cement clinker firing step, and a finishing step.
 まず、原料作製工程において、石灰石、粘土、けい石、酸化鉄原料を中心に所要の構成成分になるように粉砕、乾燥、混合して成分が安定した粉体原料(以下、単に原料という)が作製される。 First, in the raw material production process, a powder raw material (hereinafter simply referred to as a raw material) in which the components are stabilized by pulverization, drying, and mixing so as to be the required constituents, mainly limestone, clay, silica, and iron oxide raw materials. Produced.
 つぎに、セメントクリンカーの焼成工程に移行する。原料作製工程で作製された原料は、上述したセメントクリンカー焼成装置50のサスペンションプリヒーター(SP)の右側上段のサイクロン51に供給される。そして、右側上段のサイクロン51に供給された原料は、右側上段のサイクロン51のガス出口から排出されるガスと熱交換をしながら左側下段のサイクロン54内に導かれ、左側下段のサイクロン54で固気分離される。固体として分離された原料は、右側下段のサイクロン52に供給され、各段のサイクロン51~54で、「入口に供給」、「熱交換」、「固気分離」を順次繰り返し、仮焼炉55に供給される。仮焼炉55では、燃料を燃焼させて石灰石成分から二酸化炭素を分離して生石灰成分を生成させる。気流に同伴されて仮焼炉55を出た原料は、右側下段のサイクロン52内に導かれ、固気分離される。そして、固気分離された原料は、インレットフッド58を経てロータリーキルン56へと供給される。ロータリーキルン56に供給された原料は、ロータリーキルン56の傾斜に沿って窯尻から窯前へとさらに熱交換をしながら移動して焼成され、(セメント)クリンカとなる。セメントクリンカーは品質上急冷が必要なので、ロータリーキルン56を出た後直ぐに冷却機60へと導かれ、ここで、空気などで急冷されて半製品であるセメントクリンカー(中間製品)となる。 Next, the process proceeds to the cement clinker firing step. The raw material produced in the raw material production process is supplied to the cyclone 51 on the upper right side of the suspension preheater (SP) of the cement clinker baking apparatus 50 described above. The raw material supplied to the upper right cyclone 51 is guided into the left lower cyclone 54 while exchanging heat with the gas discharged from the gas outlet of the upper right cyclone 51, and is fixed in the lower left cyclone 54. I'm separated. The raw material separated as a solid is supplied to the cyclone 52 on the lower right side, and in each of the cyclones 51 to 54, “supply to inlet”, “heat exchange”, and “solid-gas separation” are sequentially repeated, and the calcining furnace 55 To be supplied. In the calcining furnace 55, the fuel is burned to separate carbon dioxide from the limestone component to generate a quick lime component. The raw material exiting the calcining furnace 55 accompanied by the air current is guided into the cyclone 52 on the lower right side and separated into solid and gas. The solid-gas separated raw material is supplied to the rotary kiln 56 through the inlet hood 58. The raw material supplied to the rotary kiln 56 moves along the inclination of the rotary kiln 56 from the kiln bottom to the front of the kiln while further exchanging heat, and is fired to become a (cement) clinker. Since the cement clinker requires rapid cooling in terms of quality, the cement clinker is led to the cooler 60 immediately after leaving the rotary kiln 56, where it is rapidly cooled by air or the like to become a semi-finished cement clinker (intermediate product).
 つぎに、仕上げ工程に移行して、セメントクリンカーに石膏が加えられて、セメントが完成する。 Next, the process proceeds to the finishing process, and gypsum is added to the cement clinker to complete the cement.
(実施例1及び比較例1、2)
 つぎに実施例1及び比較例1、2について説明する。比較例1では、既設のバーナー(従来のバーナー)を使用して、吐出流速の内流を70m/sとし、外流を90m/sとし、外部再循環指標を1.0とし、1次空気モーメンタムを3.8N/MWとし、オイルコークス比率を10%calとした。比較例2では、オイルコークス比率を25%calとした以外は比較例1と同じにした。
(Example 1 and Comparative Examples 1 and 2)
Next, Example 1 and Comparative Examples 1 and 2 will be described. In Comparative Example 1, an existing burner (conventional burner) is used, the internal flow rate of the discharge flow is 70 m / s, the external flow is 90 m / s, the external recirculation index is 1.0, and the primary air momentum. Was 3.8 N / MW, and the oil coke ratio was 10% cal. Comparative Example 2 was the same as Comparative Example 1 except that the oil coke ratio was 25% cal.
 実施例1では、図1に示すバーナー1を使用して、吐出流速の内流を126m/sとし、外流を226m/sとし、外部再循環指標を2.5とし、1次空気モーメンタムを6.8N/MWとし、オイルコークス比率を25%calとした。比較例1、2、実施例1のそれぞれについて、クリンカ生産能力比、最下段のサイクロンSO3濃度を比較評価する試験を行った。その結果を表1に示す。 In Example 1, the burner 1 shown in FIG. 1 is used, the internal flow rate of the discharge flow rate is 126 m / s, the external flow is 226 m / s, the external recirculation index is 2.5, and the primary air momentum is 6 0.8 N / MW, and the oil coke ratio was 25% cal. Each of Comparative Examples 1 and 2 and Example 1 was subjected to a test for comparative evaluation of the clinker production capacity ratio and the lowest cyclone SO 3 concentration. The results are shown in Table 1.
 なお、クリンカ生産能力比は、比較例1のクリンカ生産能力(t/h)を基準に相対的な割合で評価した。また、SO3濃度が7%以上の場合、SO3循環の抑制が十分でないことを示す。
 また、オイルコークス比率は、クリンカ原料に対するオイルコークスの熱割合である。
The clinker production capacity ratio was evaluated at a relative ratio based on the clinker production capacity (t / h) of Comparative Example 1. Further, when the SO 3 concentration is 7% or more, it indicates that the SO 3 circulation is not sufficiently suppressed.
The oil coke ratio is the heat ratio of oil coke to the clinker raw material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果について説明する。比較例1では、オイルコークス比率が10%calで、クリンカ生産能力比が100%(比較例1のクリンカ生産能力を100とした場合)、最下段のサイクロンSO3濃度が5~6%となった。比較例1の場合、オイルコークス比率が低かったため、高いクリンカ生産能力比、低いSO3濃度が示された。 The results shown in Table 1 will be described. In Comparative Example 1, the oil coke ratio is 10% cal, the clinker production capacity ratio is 100% (when the clinker production capacity of Comparative Example 1 is 100), and the cyclone SO 3 concentration at the bottom is 5-6%. It was. In the case of Comparative Example 1, since the oil coke ratio was low, a high clinker production capacity ratio and a low SO 3 concentration were shown.
 比較例2では、オイルコークスの比率を25%calに上げると、クリンカ生産能力比が98%まで低下し、最下段のサイクロンSO3濃度は、8~9%まで上昇した。オイルコークス比率を上げると、ロータリーキルンが燃焼遅れとなるため、強い還元雰囲気となり、異常反応が発生して、コーチングと呼ばれる付着物が、サスペンションプレヒータ内に成長して、生産に悪影響を及ぼすことになるからと考えられる。 In Comparative Example 2, when the ratio of oil coke was increased to 25% cal, the clinker production capacity ratio decreased to 98%, and the cyclone SO 3 concentration in the lowermost stage increased to 8-9%. When the oil coke ratio is increased, the rotary kiln is delayed in combustion, resulting in a strong reducing atmosphere, an abnormal reaction occurs, and deposits called coaching grow in the suspension preheater, adversely affecting production. It is thought from.
 実施例1では、オイルコークスの比率が25%cal、クリンカ生産能力比が102%、最下段のサイクロンSO3濃度が5~6%となった。実施例1の場合、オイルコークスの比率が高くても、クリンカ生産能力比が比較例1よりも高く、最下段のサイクロンSO3濃度も低かった。 In Example 1, the ratio of oil coke was 25% cal, the clinker production capacity ratio was 102%, and the cyclone SO 3 concentration in the lowermost stage was 5 to 6%. In the case of Example 1, even if the ratio of oil coke was high, the clinker production capacity ratio was higher than that of Comparative Example 1, and the cyclone SO 3 concentration at the lowest stage was also low.
(実施例2、比較例3)
 つぎに実施例2について説明する。実施例2では、図11に示す燃料燃焼装置201を使用して、吐出流速の内流を126m/sとし、外流を226m/sとし、外部再循環指標を2.5とし、1次空気モーメンタムを6.8N/MWとした。比較例3では、図11に示す燃料燃焼装置201の拡散流リング300において、所定の内側噴射口隙間が形成されないように、隣接する2つの内側空気噴射口部310の間は隙間無く詰め、かつ、旋回・拡散流が生じないタイプのものを用いた以外は実施例2と同じにした。
(Example 2, Comparative Example 3)
Next, Example 2 will be described. In Example 2, the fuel combustion apparatus 201 shown in FIG. 11 is used, the internal flow rate of the discharge flow rate is 126 m / s, the external flow is 226 m / s, the external recirculation index is 2.5, and the primary air momentum. Was 6.8 N / MW. In Comparative Example 3, in the diffusion flow ring 300 of the fuel combustion apparatus 201 shown in FIG. 11, the gap between the two adjacent inner air injection port portions 310 is filled without any gap so that a predetermined inner injection port clearance is not formed. Example 2 was the same as Example 2 except that a type that does not generate swirling / diffusion flow was used.
 実施例2、比較例3のそれぞれについて、脱硝材(尿素)使用量(kg/t-クリンカ)、クリンカ生産能力比(%)、F-CaOの比率(%)、1次空気比(%)を比較評価する試験を行った。その結果を表2に示す。 For each of Example 2 and Comparative Example 3, the amount of denitration material (urea) used (kg / t-clinker), clinker production capacity ratio (%), F-CaO ratio (%), primary air ratio (%) A test for comparative evaluation was conducted. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果について説明する。実施例2は、比較例3に比べて、クリンカ生産能力比が改善し、かつ、脱硝材(尿素)使用量が少ないので低NOxを実現した。 The results shown in Table 2 will be described. In Example 2, compared with Comparative Example 3, the clinker production capacity ratio was improved, and the amount of denitration material (urea) used was small, so low NOx was realized.
1 燃料燃焼装置(バーナー)
2 1次空気流路
3 燃料噴射口
4 2次空気流路
5 吐出口
6 第1拡散流生成部
6a 平坦部
6b 第1傾斜部
7 第2拡散流生成部
7a 傾斜部(第2傾斜部)
8 旋回・拡散流路
9 第1のファン(ブロア)
10 第2のファン(ブロア)
40 ピース
S 螺旋流路
a~d 円筒状部材
A1 外部再循環領域
B1 2次空気同伴領域
C1 外側空気流
D1 固体粉末燃料流
E1 内部循環領域
F1 内側空気流
L1 粉炭拡散領域
M1 揮発分燃焼領域
O 仮想軸
s01 螺旋拡散方向
a1 円筒状部材
b1 円筒状部材
c1 円筒状部材
d1 円筒状部材
f1 噴射方向
g1 吐出口
r1 半径方向(外側方向)
t1 旋回方向
201 燃料燃焼装置
202 内側空気流路
203 燃料噴射口部
204 外側空気流路
230 整流板
231 空気抜き孔
240 仕切ピース
240a 広角部
240b 分流部
245 外側空気噴射口部
300 拡散流リング
301 下流側リング
301a 下流側側面
301b 上流側側面
302 上流側リング
302a 下流側側面
302b 上流側側面
310 内側空気噴射口部
311 開口
312 下流側流路
314 開口
315 開口
316 上流側流路
318 開口
1 Fuel combustion device (burner)
2 Primary air flow path 3 Fuel injection port 4 Secondary air flow path 5 Discharge port 6 First diffusion flow generation part 6a Flat part 6b First inclination part 7 Second diffusion flow generation part 7a Inclination part (second inclination part)
8 Swirling / Diffusion Channel 9 First Fan (Blower)
10 Second fan (blower)
40 pieces S spiral flow paths a to d cylindrical member A1 external recirculation region B1 secondary air entrainment region C1 outer air flow D1 solid powder fuel flow E1 internal circulation region F1 inner air flow L1 pulverized coal diffusion region M1 volatile matter combustion region O Virtual axis s01 Spiral diffusion direction a1 Cylindrical member b1 Cylindrical member c1 Cylindrical member d1 Cylindrical member f1 Injection direction g1 Discharge port r1 Radial direction (outward direction)
t1 Swirl direction 201 Fuel combustion device 202 Inner air flow path 203 Fuel injection port part 204 Outer air flow path 230 Rectifier plate 231 Air vent hole 240 Partition piece 240a Wide angle part 240b Diverging part 245 Outer air injection port part 300 Diffusion flow ring 301 Downstream side Ring 301a Downstream side surface 301b Upstream side surface 302 Upstream ring 302a Downstream side surface 302b Upstream side surface 310 Inner air injection port 311 Opening 312 Downstream flow path 314 Opening 315 Opening 316 Upstream flow path 318 Opening

Claims (16)

  1.  固体粉末燃料を空気と共に吐出口から仮想軸に沿って噴射方向に噴射させる燃料燃焼装置であって、
     前記吐出口において、前記仮想軸の周りにリング状に配置され、前記噴射方向に前記固体粉末燃料を噴出させる燃料噴射口と、
     前記吐出口において、前記燃料噴射口の半径方向の外側かつ前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に空気を噴射させる外側空気噴射口と、
     前記吐出口において、前記燃料噴射口の半径方向内側かつ前記仮想軸の周りに間隔をおいてリング状に配置された内側空気噴射口と、を備え、
     さらに、前記内側空気噴射口に、第1拡散流生成部と第2拡散流生成部とで構成される旋回・拡散流路を備え、
     前記第1拡散流生成部は、前記仮想軸に平行するように、前記内側空気噴射口の吐出口側の外周部に配置される平坦部と、該平坦部の吐出口側に、該吐出口側に向かうにしたがって大きく開口するように形成される第1傾斜部とを有し、
     前記第2拡散流生成部は、前記第1傾斜部に対して平行するように、前記内側空気噴射口の吐出口側の内周部に配置される第2傾斜部を有する、燃料燃焼装置。
    A fuel combustion apparatus that injects solid powder fuel together with air in an injection direction along a virtual axis from a discharge port,
    A fuel injection port arranged in a ring shape around the imaginary axis in the discharge port, and jets the solid powder fuel in the injection direction;
    In the discharge port, an outer air injection port that is arranged in a ring shape at an interval outside the radial direction of the fuel injection port and around the virtual axis, and injects air in the injection direction;
    An inner air injection port arranged in a ring shape at an interval inside the fuel injection port in the radial direction and around the virtual axis,
    Furthermore, the inner air injection port is provided with a swirl / diffusion flow path composed of a first diffusion flow generation unit and a second diffusion flow generation unit,
    The first diffusion flow generation unit includes a flat portion disposed on an outer peripheral portion on the discharge port side of the inner air injection port so as to be parallel to the virtual axis, and the discharge port on the discharge port side of the flat portion. A first inclined portion formed so as to open greatly toward the side,
    The fuel combustion apparatus, wherein the second diffusion flow generation unit includes a second inclined portion disposed on an inner peripheral portion on the discharge port side of the inner air injection port so as to be parallel to the first inclined portion.
  2.  前記外側空気噴射口の吐出口側には、周方向に所定の間隔をおいてピースが配置されてスロット構造である、請求項1に記載の燃料燃焼装置。 The fuel combustion device according to claim 1, wherein the outer air injection port has a slot structure in which pieces are arranged at predetermined intervals in the circumferential direction on the discharge port side.
  3.  前記内側空気噴射口に空気を供給する第1のファンと、前記外側空気噴射口に空気を供給する第2のファンとを備える請求項1又は2に記載の燃料燃焼装置。 The fuel combustion apparatus according to claim 1 or 2, comprising a first fan for supplying air to the inner air injection port and a second fan for supplying air to the outer air injection port.
  4.  前記外側空気噴射口の吐出部流速は、150~250m/sである、請求項1から3のいずれかに記載の燃料燃焼装置。 The fuel combustion apparatus according to any one of claims 1 to 3, wherein a discharge part flow velocity of the outer air injection port is 150 to 250 m / s.
  5.  前記平坦部は、前記仮想軸に平行する部位の長さが、平行部位高さの1~2倍、前記第2傾斜部の角度が、30°~60°である、請求項1から4のいずれかに記載の燃料燃焼装置。 The flat portion has a length of a portion parallel to the virtual axis being 1 to 2 times a height of the parallel portion, and an angle of the second inclined portion is 30 ° to 60 °. The fuel combustion apparatus according to any one of the above.
  6.  外部再循環のスケールは、下記の式(1)により算出される外部再循環指標m=1.5~2.6の範囲である請求項1から5のいずれかに記載の燃料燃焼装置。
       m=-1.5R2+R+K・R2/(d0/d12     (1)
    但し、
    R=(u0-u1)ρ0・(d0/2)2/u1ρ1(d1/2-δ)2+(u0-u1)ρ0(d0/2)2
    0:噴流速度(1次空気)
    1:同伴流流速(2次空気)
    ρ0:噴流密度(1次空気)
    ρ1:同伴流密度(2次空気)
    0:燃料燃焼装置の吐出口の有効内径
    1:ロータリーキルンの有効内径
    K:ロータリーキルンの噴流形状ファクターで、燃料燃焼装置の吐出口が円形の場合は1
    δ:境界層厚さで、ロータリーキルンの有効内径が燃料燃焼装置の吐出口の内径よりも十分に大きい場合はほぼ0
    m:外部再循環指標
    The fuel combustion apparatus according to any one of claims 1 to 5, wherein the scale of the external recirculation is in the range of the external recirculation index m calculated by the following formula (1) = 1.5 to 2.6.
    m = −1.5R 2 + R + K · R 2 / (d 0 / d 1 ) 2 (1)
    However,
    R = (u 0 -u 1) ρ 0 · (d 0/2) 2 / u 1 ρ 1 (d 1/2-δ) 2 + (u 0 -u 1) ρ 0 (d 0/2) 2
    u 0 : Jet velocity (primary air)
    u 1 : Entrained flow velocity (secondary air)
    ρ 0 : Jet density (primary air)
    ρ 1 : Entrained flow density (secondary air)
    d 0 : Effective inner diameter of discharge port of fuel combustion apparatus d 1 : Effective inner diameter of rotary kiln K: Jet shape factor of rotary kiln, 1 when discharge port of fuel combustion apparatus is circular
    δ: Almost 0 when the effective inner diameter of the rotary kiln is sufficiently larger than the inner diameter of the discharge port of the fuel combustion device at the boundary layer thickness
    m: External recirculation index
  7.  前記外側空気噴射口における1次空気のモーメンタムは、6~8N/MWである、請求項1から6のいずれかに記載の燃料燃焼装置。 The fuel combustion apparatus according to any one of claims 1 to 6, wherein a momentum of primary air at the outer air injection port is 6 to 8 N / MW.
  8.  固体粉末燃料を空気と共に吐出口から仮想軸に沿って噴射方向に噴射させる燃料燃焼装置であって、
     前記吐出口において、前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に前記固体粉末燃料を噴出させる複数の燃料噴射口部と、
     前記吐出口において、前記複数の燃料噴射口部の半径方向の外側かつ前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に空気を噴射させる複数の外側空気噴射口部と、
     前記吐出口において、前記複数の燃料噴射口部の半径方向内側かつ前記仮想軸の周りに間隔をおいてリング状に配置され、前記噴射方向に進むにつれて前記仮想軸の周りの旋回方向と半径方向外側方向との間の螺旋拡散方向に向けて空気を噴射させる複数の内側空気噴射口部と、を備え、
     前記複数の内側空気噴射口部が形成するリング状の内側かつ前記噴射方向にある空気が前記複数の内側空気噴射口部からそれぞれ噴射された複数の内側空気流の間に同伴するよう、前記複数の内側空気噴射口部のうち前記仮想軸の周り方向に隣接する2つの内側空気噴射口部の間には、所定の内側噴射口隙間が形成されている、燃料燃焼装置。
    A fuel combustion apparatus that injects solid powder fuel together with air in an injection direction along a virtual axis from a discharge port,
    A plurality of fuel injection ports that are arranged in a ring shape at intervals around the virtual axis in the discharge port, and inject the solid powder fuel in the injection direction;
    A plurality of outer air injection ports which are arranged in a ring shape at intervals around the imaginary axis outside the radial direction of the plurality of fuel injection ports in the discharge port; ,
    The discharge port is arranged in a ring shape radially inward of the plurality of fuel injection port portions and spaced around the virtual axis, and as it advances in the injection direction, a turning direction and a radial direction around the virtual axis A plurality of inner air injection ports for injecting air toward the spiral diffusion direction between the outer direction, and
    The plurality of inner air jets formed in the ring-shaped inner side and in the jetting direction are entrained between the plurality of inner air flows jetted from the inner air jets, respectively. A fuel combustion apparatus in which a predetermined inner injection gap is formed between two inner air injection openings adjacent to each other in the direction around the virtual axis.
  9.  各内側空気噴射口部は、前記噴射方向に流れる空気が入流する流入口と、前記流入口から前記噴射方向と前記仮想軸の周り方向との間の旋回方向に伸びる上流側流路と、前記上流側流路に気密的に接続し、前記螺旋拡散方向に伸びる下流側流路とを有する、請求項8に記載の燃料燃焼装置。 Each inner air injection port includes an inflow port into which air flowing in the injection direction flows, an upstream flow path extending from the inflow port in a swirl direction between the injection direction and a direction around the virtual axis, The fuel combustion apparatus according to claim 8, further comprising a downstream flow path that is airtightly connected to the upstream flow path and extends in the spiral diffusion direction.
  10.  さらに、前記仮想軸を中心軸とする上流側リングと、
     前記仮想軸を中心軸とし、前記上流側リングの前記噴射方向に配置された下流側リングとを有する拡散流リングを備え、
     各内側空気噴射口部の前記上流側流路は前記上流側リングに形成され、
     各内側空気噴射口部の前記下流側流路は前記下流側リングに形成された、請求項9に記載の燃料燃焼装置。
    And an upstream ring having the imaginary axis as a central axis;
    A diffusion flow ring having the virtual axis as a central axis and a downstream ring disposed in the injection direction of the upstream ring;
    The upstream flow path of each inner air injection port is formed in the upstream ring,
    The fuel combustion apparatus according to claim 9, wherein the downstream flow path of each inner air injection port is formed in the downstream ring.
  11.  前記複数の外側空気噴射口部の噴射方向の半径方向外側にある空気が前記複数の外側空気噴射口からそれぞれ噴射された複数の空気流の間に同伴するよう、前記複数の外側空気噴射口部のうち、前記仮想軸の周り方向に隣接する2つの外側空気噴射口部の間には、所定の外側噴射口隙間が形成されている、請求項8から10のいずれかに記載の燃料燃焼装置。 The plurality of outer air injection ports so that air that is radially outward of the plurality of outer air injection ports is entrained between the plurality of air flows respectively injected from the plurality of outer air injection ports. 11. The fuel combustion apparatus according to claim 8, wherein a predetermined outer injection port gap is formed between two outer air injection ports adjacent to each other in the direction around the virtual axis. .
  12.  さらに、前記複数の内側空気噴射口部及び前記複数の燃料噴射口部に空気を供給する第1のファンと、前記外側空気噴射口部に空気を供給する第2のファンとを備える、請求項8から11のいずれかに記載の燃料燃焼装置。 The apparatus further comprises a first fan that supplies air to the plurality of inner air injection ports and the plurality of fuel injection ports, and a second fan that supplies air to the outer air injection ports. The fuel combustion apparatus according to any one of 8 to 11.
  13.  前記外側空気噴射口部における2次空気の流速は、150~250m/sである、請求項8から12のいずれかに記載の燃料燃焼装置。 The fuel combustion apparatus according to any one of claims 8 to 12, wherein a flow rate of secondary air in the outer air injection port is 150 to 250 m / s.
  14.  前記仮想軸に対する前記螺旋拡散方向の角度が30°~60°である、請求項8から13のいずれかに記載の燃料燃焼装置。 14. The fuel combustion device according to claim 8, wherein an angle of the spiral diffusion direction with respect to the virtual axis is 30 ° to 60 °.
  15.  前記外側空気噴射口部から噴射される外側空気のモーメンタムは、6~8N/MWである、請求項8から14のいずれかに記載の燃料燃焼装置。 15. The fuel combustion apparatus according to claim 8, wherein the momentum of the outside air injected from the outside air injection port is 6 to 8 N / MW.
  16.  セメントロータリーキルンと、
     前記吐出口が前記セメントロータリーキルンの内部に位置するように、前記セメントロータリーキルンに取り付けられた請求項8から15のいずれかに記載の燃料燃焼装置と、を備え、
     前記吐出口から前記セメントロータリーキルンの内部に噴射される空気の直進する流れとは逆向きの流れを生じさせる外部再循環のスケールは、下記の式(2)により算出される外部再循環指標m=1.5~2.6の範囲である、セメントクリンカー焼成装置。
       m=-1.5R2+R+K・R2/(d0/d12     (2)
    但し、
    R=(u0-u1)ρ0・(d0/2)2/u1ρ1(d1/2-δ)2+(u0-u1)ρ0(d0/2)2
    0:噴流速度(1次空気)
    1:同伴流流速(2次空気)
    ρ0:噴流密度(1次空気)
    ρ1:同伴流密度(2次空気)
    0:燃料燃焼装置の吐出口の有効内径
    1:ロータリーキルンの有効内径
    K:ロータリーキルンの噴流形状ファクターで、燃料燃焼装置の吐出口が円形の場合は1
    δ:境界層厚さで、ロータリーキルンの有効内径が燃料燃焼装置の吐出口の内径よりも十分に大きい場合はほぼ0
    m:外部再循環指標
    Cement rotary kiln,
    The fuel combustion device according to any one of claims 8 to 15, which is attached to the cement rotary kiln so that the discharge port is located inside the cement rotary kiln.
    The scale of the external recirculation that produces a flow opposite to the straight flow of the air injected from the discharge port into the cement rotary kiln is an external recirculation index m = calculated by the following equation (2). Cement clinker firing device in the range of 1.5 to 2.6.
    m = −1.5R 2 + R + K · R 2 / (d 0 / d 1 ) 2 (2)
    However,
    R = (u 0 -u 1) ρ 0 · (d 0/2) 2 / u 1 ρ 1 (d 1/2-δ) 2 + (u 0 -u 1) ρ 0 (d 0/2) 2
    u 0 : Jet velocity (primary air)
    u 1 : Entrained flow velocity (secondary air)
    ρ 0 : Jet density (primary air)
    ρ 1 : Entrained flow density (secondary air)
    d 0 : Effective inner diameter of discharge port of fuel combustion apparatus d 1 : Effective inner diameter of rotary kiln K: Jet shape factor of rotary kiln, 1 when discharge port of fuel combustion apparatus is circular
    δ: Almost 0 when the effective inner diameter of the rotary kiln is sufficiently larger than the inner diameter of the discharge port of the fuel combustion device at the boundary layer thickness
    m: External recirculation index
PCT/JP2013/069545 2012-07-19 2013-07-18 Fuel combustion device WO2014014065A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014525870A JP6156378B2 (en) 2012-07-19 2013-07-18 Fuel combustion device
CN201380032995.3A CN104379997B (en) 2012-07-19 2013-07-18 Fuel burner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-160746 2012-07-19
JP2012160746 2012-07-19
JP2013100715 2013-05-10
JP2013-100715 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014014065A1 true WO2014014065A1 (en) 2014-01-23

Family

ID=49948887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069545 WO2014014065A1 (en) 2012-07-19 2013-07-18 Fuel combustion device

Country Status (3)

Country Link
JP (1) JP6156378B2 (en)
CN (1) CN104379997B (en)
WO (1) WO2014014065A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065786A1 (en) * 2018-09-26 2020-04-02 太平洋セメント株式会社 Burner apparatus for cement kiln and method for operating same
WO2020065787A1 (en) * 2018-09-26 2020-04-02 太平洋セメント株式会社 Burner apparatus for cement kiln and method for operating same
JP6799687B1 (en) * 2019-03-19 2020-12-16 太平洋セメント株式会社 Burner device for cement kiln and its operation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108656A (en) * 2002-09-18 2004-04-08 Nippon Sanso Corp Waste plastic burner lance and method for melting cold iron source using it
JP2004205064A (en) * 2002-12-24 2004-07-22 Ube Ind Ltd Combustion method for fire-retardant fuel in rotary kiln
JP2008138901A (en) * 2006-11-30 2008-06-19 Chugoku Electric Power Co Inc:The Burner device for low volatile fuel
WO2009034626A1 (en) * 2007-09-12 2009-03-19 Taiheiyo Cement Corporation Cement kiln burner apparatus, and method for running the burner apparatus
JP2011208886A (en) * 2010-03-30 2011-10-20 Mitsubishi Materials Corp Pulverized coal burner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224207A (en) * 1982-06-19 1983-12-26 Babcock Hitachi Kk Pulverized coal firing equipment
JPS59122805A (en) * 1982-12-28 1984-07-16 Mitsubishi Mining & Cement Co Ltd Method and device for burning solid pulverized fuel
FR2581444B1 (en) * 1985-05-03 1988-11-10 Charbonnages De France PROCESS FOR THE COMBUSTION OF FLUID FUELS AND A TURBULENCE BURNER SUITABLE FOR ITS IMPLEMENTATION
JPH02263746A (en) * 1989-04-04 1990-10-26 Tosoh Corp Method and device for combustion in cement rotary kiln
DE19527083A1 (en) * 1995-07-25 1997-01-30 Lentjes Kraftwerkstechnik Process and burner for reducing NO¶x¶ formation from coal dust combustion
CN201662062U (en) * 2010-04-22 2010-12-01 林正春 Cyclone pulverized coal burner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108656A (en) * 2002-09-18 2004-04-08 Nippon Sanso Corp Waste plastic burner lance and method for melting cold iron source using it
JP2004205064A (en) * 2002-12-24 2004-07-22 Ube Ind Ltd Combustion method for fire-retardant fuel in rotary kiln
JP2008138901A (en) * 2006-11-30 2008-06-19 Chugoku Electric Power Co Inc:The Burner device for low volatile fuel
WO2009034626A1 (en) * 2007-09-12 2009-03-19 Taiheiyo Cement Corporation Cement kiln burner apparatus, and method for running the burner apparatus
JP2011208886A (en) * 2010-03-30 2011-10-20 Mitsubishi Materials Corp Pulverized coal burner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065786A1 (en) * 2018-09-26 2020-04-02 太平洋セメント株式会社 Burner apparatus for cement kiln and method for operating same
WO2020065787A1 (en) * 2018-09-26 2020-04-02 太平洋セメント株式会社 Burner apparatus for cement kiln and method for operating same
CN111226076A (en) * 2018-09-26 2020-06-02 太平洋水泥株式会社 Burner device for cement kiln and operation method thereof
US11112111B2 (en) 2018-09-26 2021-09-07 Taiheiyo Cement Corporation Cement kiln burner device and method for operating the same
CN111226076B (en) * 2018-09-26 2021-12-28 太平洋水泥株式会社 Burner device for cement kiln and operation method thereof
JP6799687B1 (en) * 2019-03-19 2020-12-16 太平洋セメント株式会社 Burner device for cement kiln and its operation method
US11428402B2 (en) 2019-03-19 2022-08-30 Taiheiyo Cement Corporation Cement kiln burner device and method for operating the same

Also Published As

Publication number Publication date
CN104379997A (en) 2015-02-25
JP6156378B2 (en) 2017-07-05
CN104379997B (en) 2016-11-02
JPWO2014014065A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP4264004B2 (en) Improved burner system with low NOx emission
CN106196056B (en) The burner of smoke backflow indole energy low with the temperature control of Staged Premixed Combustion
CN1807985B (en) Air port of firing fuel, method for manufacturing air port, boiler, boiler facility
JP4892107B1 (en) Top-fired hot air furnace
CN107559827A (en) A kind of ultralow nitrogen gas burner
CN110486722B (en) Low-oxygen low-NOx bottom gas burner
CN105627304A (en) Strong-swirling-flow fuel staging ultra-low-nitrogen gas burner
KR100907712B1 (en) A burner for burning gas
CN108884992A (en) Low nitrogen oxide burner
JP6156378B2 (en) Fuel combustion device
JP5743115B2 (en) Combustion device
TW202107015A (en) Combustible waste blowing device and operation method therefor
CN104266188A (en) Gas oxygen-enriched supporting premixed swirl-flow combustion device
JP2015190731A (en) Fuel combustion device for cement rotary kiln
WO2010048796A1 (en) Burner and its gas distribution loop
US20090226853A1 (en) High-Efficiency Self-Regenerative Burner
CN103740880B (en) High-velocity burner for self-preheating of rotational flow and back flow in premixed airflow heat accumulator
TW202030442A (en) Burner apparatus for cement kiln and method for operating same
CN105114954B (en) Combustion device for multi-fuel premix swirl-flow combustion
JP7156465B2 (en) fuel burner
JP2012214309A (en) Cement production apparatus
CN201819218U (en) Horizontal internal mixing type ceramics burner used for top combustion stove
CN210511672U (en) Novel low natural gas high-speed burner structure that discharges
JP2011052871A (en) Combustion device
JP6732960B2 (en) Method for burning fuel and boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201500929

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13820588

Country of ref document: EP

Kind code of ref document: A1