WO2014010611A1 - Organic electroluminescence element and electronic apparatus - Google Patents

Organic electroluminescence element and electronic apparatus Download PDF

Info

Publication number
WO2014010611A1
WO2014010611A1 PCT/JP2013/068794 JP2013068794W WO2014010611A1 WO 2014010611 A1 WO2014010611 A1 WO 2014010611A1 JP 2013068794 W JP2013068794 W JP 2013068794W WO 2014010611 A1 WO2014010611 A1 WO 2014010611A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
ring
Prior art date
Application number
PCT/JP2013/068794
Other languages
French (fr)
Japanese (ja)
Inventor
祐一郎 河村
均 熊
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2014010611A1 publication Critical patent/WO2014010611A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device.
  • An organic EL element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field.
  • Eastman Kodak's C.I. W. Organic materials have been constructed since Tang et al.'S report on low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics) Letters, 51, 913, 1987, etc.) Research on organic electroluminescence elements (hereinafter, abbreviated as organic EL elements) as materials is actively conducted.
  • One of the problems in the organic EL element is compatibility between high luminous efficiency and low driving voltage.
  • a method of forming a light emitting layer by doping a host material with a dopant material by several percent is known. By studying host materials and dopant materials, and combinations thereof, the above problems have been addressed.
  • the organic EL device in which the light emitting layer contains a host material made of an amine-based aromatic compound and a dopant material made of an aluminum complex of 8-hydroxyquinoline (Alq complex) (see Patent Documents 1 and 2)
  • An organic EL device in which the light emitting layer contains a host material composed of a tetracene derivative (naphthacene derivative) and a dopant material composed of a compound having a pyromethene skeleton or a metal complex thereof, has been developed.
  • the red light-emitting organic EL device described in Patent Document 1 or 2 has insufficient luminous efficiency and device lifetime.
  • the red light-emitting organic EL device described in Patent Document 3 has improved luminous efficiency and device lifetime.
  • the initial luminance is high when driven at a high temperature (for example, 60 ° C. or higher). It has been found that there is a significant decrease, and that there is room for improvement in the device life at room temperature and high temperature. Accordingly, an object of the present invention is to provide an organic EL element that has a small decrease in initial luminance when driven at a high temperature (for example, 60 ° C. or higher) and has a long element lifetime at room temperature and a high temperature (for example, 60 ° C. or higher).
  • An electronic device equipped with an EL element is provided.
  • One embodiment of the present invention has a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer is in order from the first electrode side, a hole transport zone, a light emitting layer, and an electron transport.
  • An organic electroluminescent device having a band, wherein the light emitting layer contains a host material and a dopant material, and the electron mobility of the host material is larger than the hole mobility, while the mixture of the host material and the dopant material The electron mobility is smaller than the hole mobility, and the electron transport band has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer. It is an organic electroluminescence element.
  • Another embodiment of the present invention has a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer is in order from the first electrode side, a hole transport zone, a light emitting layer, an electron
  • An organic electroluminescence device having a transport band, wherein a light emitting layer contains a host material and a dopant material, and a difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is 0.7 eV
  • the organic electroluminescence element is characterized in that the electron transport zone has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
  • Another embodiment of the present invention has a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer is in order from the first electrode side, a hole transport zone, a light emitting layer, an electron
  • An organic electroluminescence device having a region containing a compound represented by the general formula (C), wherein the region is in contact with a light emitting layer.
  • Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each a hydrogen atom, substituted or Unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted ring formation
  • Ar 11 -Az (C) (In the formula (C), Ar 11 is a substituted or unsubstituted carbazolyl group or an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with one or more substituted or unsubstituted carbazolyl groups. Az. Is a substituted or unsubstituted nitrogen-containing heterocyclic group having 6 ring atoms.) Yet another embodiment of the present invention is an electronic apparatus on which the organic EL element is mounted.
  • the organic EL element having a long element lifetime in the above and an electronic device equipped with the organic EL element can be provided.
  • the tetracene-based fluorescent host material described in Patent Document 3 is generally electron-transporting.
  • the electron affinity (Af) of the dopant material is used.
  • the electron transport layer side (near the interface) in the light emitting layer is a recombination site, and it tends to cause deterioration of the electron transport layer, which is often poor in hole resistance and excitation resistance.
  • Typical device configurations of the organic EL device of the present invention include (1) anode / hole transport zone / light emitting layer / electron transport zone / cathode, (2) anode / acceptor material-containing layer (acceptor layer) / hole Preferred examples include transport zone / light emitting layer / electron transport zone / cathode. Further, an electron barrier layer or an exciton barrier layer may be provided between the light emitting layer and the hole transport zone, and the hole transport layer in contact with the light emitting layer may be an electron barrier layer or an exciton barrier layer. .
  • the organic EL device of the present invention may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent / phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit. It may be a tandem type having a plurality of light emitting units.
  • the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons. Each part and layer will be described below.
  • the organic EL element of the present invention is produced on a light-transmitting substrate.
  • the translucent substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport zone, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), indium-zinc oxide (IZO), gold, silver, platinum, copper and the like.
  • the anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering. Thus, when light emission from the light emitting layer is taken out from the anode, it is preferable that the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the organic EL device of the present invention preferably has an acceptor layer containing an acceptor material between the anode and the hole transport zone.
  • the acceptor layer has an effect of moving holes more efficiently toward the light emitting layer.
  • the hole transport zone may contain an acceptor material. Examples of the acceptor material include compounds represented by the following general formula (I), (II), or (III).
  • R 11 to R 16 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 17 (R 17 is an alkyl group having 1 to 20 carbon atoms).
  • R 11 and R 12 , R 13 and R 14 , or R 15 and R 16 are bonded to each other to represent a group represented by —CO—O—CO—.
  • R 11 to R 16 are preferably all cyano groups.
  • Examples of the alkyl group for R 17 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • R 21 to R 24 may be the same or different from each other, and are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number of 6
  • Y 1 to Y 4 may be the same or different from each other, and are —N ⁇ , —CH ⁇ , or C (R 25 ) ⁇ , and R 25 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • Ar 10 is a condensed ring having 6 to 24 ring carbon atoms or a heterocyclic ring having 6 to 24 ring atoms.
  • ar 1 and ar 2 each independently represent a ring of the following general formula (i) or (ii). ⁇ Wherein X 1 and X 2 may be the same or different from each other, and are any of the divalent groups shown in the following (a) to (g).
  • R 31 to R 34 may be the same as or different from each other, and may be a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms). Or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, and R 32 and R 33 may combine with each other to form a ring.) ⁇
  • Examples of each group of R 21 to R 25 and R 31 to R 34 are as follows.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the aryl group include a phenyl group, a biphenylyl group, and a naphthyl group.
  • Examples of the heterocyclic group include residues such as pyridine, pyrazine, furan, imidazole, benzimidazole, and thiophene.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group include a methoxy group and an ethoxy group.
  • Examples of the aryloxy group include a phenyloxy group. These may have a substituent.
  • Examples of the substituted aryl group include an aryl group substituted with a halogen atom such as a monofluorophenyl group and a trifluoromethylphenyl group; a tolyl group and a 4-t-butylphenyl group. And an aryl group substituted with an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms).
  • substituted alkyl group examples include alkyl groups substituted with a halogen atom, such as a trifluoromethyl group, a pentafluoroethyl group, a perfluorocyclohexyl group, and a perfluoroadamantyl group.
  • a halogen atom such as a trifluoromethyl group, a pentafluoroethyl group, a perfluorocyclohexyl group, and a perfluoroadamantyl group.
  • the substituted aryloxy group includes an aryloxy group substituted with a halogen atom or substituted with a halogen atom-containing alkyl group (having 1 to 5 carbon atoms), such as 4-trifluoromethylphenyloxy group and pentafluorophenyloxy; And an aryloxy group substituted with an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as a 4-t-butylphenoxy group.
  • R 21 to R 24 that are adjacent to each other may be bonded to each other to form a ring. Examples of the ring include a benzene ring, naphthalene ring, pyrazine ring, pyridine ring, furan ring and the like.
  • Z 1 to Z 3 are each independently a divalent group represented by the following general formula (h).
  • Ar 31 is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • the aryl group include a phenyl group and a naphthyl group.
  • the heteroaryl group include pyridine, pyrazine, pyrimidine, quinoline, isoquinoline and the like.
  • substituents include electron withdrawing groups such as a cyano group, a fluoro group, a trifluoromethyl group, a chloro group, and a bromo group.
  • the hole transport zone is a layer that assists hole injection into the light emitting layer and transports holes to the light emitting layer, and has a high hole mobility and a small ionization energy of usually 5.7 eV or less.
  • a material used in such a hole transport zone a material that transports holes to the light emitting layer with a lower electric field strength is preferable, and an electric field application with a hole mobility of, for example, 10 4 to 10 6 V / cm is preferable. Sometimes it is preferably at least 10 ⁇ 4 cm 2 / V ⁇ sec.
  • the hole transport zone may be composed of one or more hole transport layers.
  • the first hole transport layer may be referred to as a hole injection layer.
  • the material for forming the hole transport zone is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally used as a hole transport material in a photoconductive material, or the hole transport of an EL element. Any of known materials used for the layer can be selected and used.
  • Preferred examples of the material that can be used for the hole transport zone include compounds represented by the following general formula (7).
  • Q 1 -GQ 2 (7) Q 1 and Q 2 are sites having at least one tertiary amine, and G is a linking group.
  • an amine derivative represented by the following general formula (8) is preferably exemplified.
  • Ar 21 to Ar 24 are a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • s and t are each independently an integer of 0 to 4.
  • Ar 21 and Ar 22 , Ar 23 and Ar 24 may be connected to each other to form a cyclic structure.
  • R 21 and R 22 may also be connected to each other to form a cyclic structure.
  • R 21 and R 22 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, Substitution with 50 alkyl groups, alkoxy groups having 1 to 50 carbon atoms, aralkyl groups having 7 to 50 carbon atoms, styryl groups, aryl groups having 6 to 50 ring carbon atoms or heteroaryl groups having 5 to 50 ring atoms An aryl group substituted with an amino group substituted with an amino group substituted, an aryl group having 6 to 50 ring carbon atoms or a heteroaryl group having 5 to 50 ring atoms, or a ring formation It is a heteroaryl group having 5 to 50 atoms.
  • examples of the substituent include the same groups as those represented by R 21 and R 22 , and at least one selected from them, preferably 1 to 10 carbon atoms. And an aryl group having 6 to 12 ring carbon atoms.
  • Examples of the aryl group having 6 to 50 ring carbon atoms include any of phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, chrysenyl, benzoanthryl, benzo [c] phenanthryl, benzo [ g]
  • Examples include a chrycenyl group, a triphenylenyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a biphenylyl group, a terphenylyl group, and a fluoranthenyl group.
  • aryl group having 6 to 30 ring carbon atoms preferred is an aryl group having 6 to 20 ring carbon atoms, and further preferred is an aryl group having 6 to 12 ring carbon atoms. More specifically, a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, a terphenylyl group, and a 9,9-dimethylfluorenyl group are preferable, and a phenyl group, a naphthyl group, a biphenylyl group, and 9,9 are more preferable. -A dimethylfluorenyl group.
  • heteroaryl group having 5 to 50 ring atoms examples include any of pyrrolyl group, pyrazolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, pyridyl group, triazinyl group, indolyl group, isoindolyl group, imidazolyl group, benzine.
  • Imidazolyl group indazolyl group, imidazo [1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothio Phenyl group, azadibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyridinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, Enochiajiniru group, phenoxazinyl group, oxazolyl group, oxadiazolyl group, furazanyl group, benzoxazolyl group, thi
  • alkyl group having 1 to 50 carbon atoms examples include a methyl group, an ethyl group, and various propyl groups (“various” means all linear and branched groups, and the same applies hereinafter). ), Various butyl groups, various octyl groups, various decyl groups, and the like. Of these, an alkyl group having 1 to 5 carbon atoms is preferable.
  • alkoxy group having 1 to 50 carbon atoms include those in which the alkyl group moiety is the alkyl group having 1 to 50 carbon atoms (preferably 1 to 5 carbon atoms).
  • Examples of the aralkyl group having 7 to 50 carbon atoms are represented by “—YZ”, and examples of Y include alkylene examples corresponding to the above examples of alkyl, and examples of Z include those of the above aryl.
  • An example is given.
  • an amino group substituted with an aryl group having 6 to 50 ring carbon atoms or a heteroaryl group having 5 to 50 ring atoms an aryl group having 6 to 50 ring carbon atoms and a ring bonded to a nitrogen atom
  • a heteroaryl group having 5 to 50 atoms to be formed is explained in the same manner as in Ar 21 , and preferred ones are also the same.
  • the amino group may be substituted only with an aryl group, may be substituted only with a heteroaryl group, or may be substituted with both an aryl group and a heteroaryl group.
  • About 50 heteroaryl groups, each aryl group, heteroaryl group, and amino group are described in the same manner as described above, and preferred ones are also the same.
  • s and t are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • a compound represented by the following general formula (4) is also preferably exemplified.
  • At least one of Ar 11 to Ar 13 is a group represented by the following general formulas (4-2) to (4-4). Also, the general formulas (4-2) to (The group that is not any of the groups represented by 4-4) is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.)
  • L 1 to L 3 each independently represents a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, and the substituents that L 1 to L 3 may have are A linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a triarylsilyl group having 18 to 30 ring carbon atoms, An alkylarylsilyl group having 8 to 15 carbon atoms (the alkyl group has 1 to 5 carbon atoms, and the aryl group has 6 to 14 ring carbon atoms), an aryl group having 6 to 50 ring carbon atoms, It is at least one selected from a halogen atom and a cyano group.
  • Ar 14 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and Ar 14 may have a linear or branched alkyl group having 1 to 10 carbon atoms, A cycloalkyl group having 3 to 10 ring carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a triarylsilyl group having 18 to 30 ring carbon atoms, an alkylarylsilyl group having 8 to 15 carbon atoms (the alkyl group The number of carbon atoms is 1 to 5, and the aryl group has 6 to 14 ring carbon atoms.), An aryl group having 6 to 50 ring carbon atoms, a halogen atom, and a cyano group.
  • R 51 ⁇ R 56 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted ring formed cycloalkyl group having 3 to 10 carbon atoms, substituted Or an unsubstituted trialkylsilyl group having 3 to 10 carbon atoms, a substituted or unsubstituted triarylsilyl group having 18 to 30 ring carbon atoms, a substituted or unsubstituted alkylarylsilyl group having 8 to 15 carbon atoms (alkyl The group has 1 to 5 carbon atoms and the aryl group has 6 to 14 ring carbon atoms.) Represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a halogen atom, or a cyano group.
  • a plurality of adjacent R 51 to R 56 may be bonded to each other to form a ring.
  • b and f each independently represents an integer of 0 to 3
  • a, c, d and e each independently represents an integer of 0 to 4.
  • Examples of the arylene group represented by L 1 to L 3 include a phenylene group, a naphthylene group, a biphenylene group, a 9,9-dimethylfluorenylene group, a 9,9-diphenylfluorenylene group, an anthrylene group, an acenaphthylenyl group, an anthranylene group, Examples thereof include a phenanthrylene group, a phenalenyl group, a quinolylene group, an isoquinolylene group, an s-indacenylene group, an as-indacenylene group, and a chrysenylene group.
  • an arylene group having 6 to 30 ring carbon atoms is preferable, an arylene group having 6 to 20 ring carbon atoms is more preferable, an arylene group having 6 to 12 ring carbon atoms is more preferable, a phenylene group, a biphenylene group 9,9-dimethylfluorenylene group (especially 9,9-dimethylfluorene-2,7-diyl group) is particularly preferable.
  • the remaining groups will be described, but the same groups will be described in the same manner.
  • the alkyl group an alkyl group having 1 to 5 carbon atoms is preferable.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-hexyl group.
  • the alkyl group of the trialkylsilyl group is as described above, and preferred ones are also the same.
  • Examples of the aryl group of the triarylsilyl group examples include a phenyl group, a naphthyl group, and a biphenylyl group.
  • alkylaryl group of the alkylarylsilyl group examples include a dialkylmonoarylsilyl group.
  • the alkyl group has 1 to 5 carbon atoms.
  • the aryl group has 6 to 14 ring carbon atoms.
  • Examples of the aryl group having 6 to 50 ring carbon atoms include phenyl group, naphthyl group, biphenylyl group, anthryl group, phenanthryl group, and terphenylyl group.
  • Examples of the halogen atom include a fluorine atom.
  • Each of a to f is preferably 0 or 1, more preferably 0.
  • R 61 to R 64 each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, or a tricyclic group having 3 to 10 carbon atoms.
  • a plurality of adjacent R 61 to R 64 may combine to form a ring.
  • k, l, m, and n are each independently an integer of 0 to 4.
  • the following general formulas (4-5 ′) to (4-7 ′) are preferable (the definitions of each group are as described above). ).
  • the general formula (4-5 ′) includes the following groups.
  • the hole transport zone may be composed of one hole transport layer or may be composed of at least two hole transport layers.
  • the hole transport layer that is not adjacent to the light emitting layer is generally used in a thick film for optical adjustment of the organic EL element, so that the hole mobility is high from the viewpoint of lowering the voltage. It is preferable.
  • the acceptor layer is often provided, and it is preferable that the interaction with the acceptor layer is high.
  • the light emitting layer contains a host material and a dopant material, the electron mobility of the host material is larger than the hole mobility, and the electron mobility of the mixture of the host material and the dopant material. Is smaller than the hole mobility.
  • the hole mobility and electron mobility can be obtained by the Time of Flight method or the like, but can also be obtained by impedance spectroscopy as follows. [Measurement method of hole mobility and electron mobility] A small alternating voltage of 100 mV is applied while applying a bias DC voltage. The alternating current value (absolute value and phase) flowing at this time is measured using an impedance analyzer (1260 manufactured by Solartron).
  • the combination of the host material and the dopant material as described above is not particularly limited.
  • a combination with a compound having a skeleton or a metal complex thereof is preferred.
  • the energy gap of the dopant material is preferably 2.5 eV or less, more preferably 2.3 eV or less, still more preferably 2.1 eV or less from the viewpoint of obtaining a red light-emitting organic EL device, and the lower limit is preferably Is 1.7 eV, more preferably 1.8 eV, still more preferably 1.9 eV.
  • the red color means red, deep red, orange, or red-orange, and has a peak wavelength in the range of 550 to 800 nm.
  • the red system is preferably red and deep red.
  • the difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is 0.7 eV or more, further 0.8 eV or more, it can be said that detrapping is very difficult.
  • the difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is preferably 1.4 eV or less, more preferably 1.2 eV or less, still more preferably 1.1 eV or less, and particularly preferably Is 1.0 eV or less. If the carriers trapped in the dopant material are less likely to be detrapped by the host material, the recombination sites in the light-emitting layer are more likely to be concentrated on the electron transport band side. Thus, the effect of the present invention that the reduction of the initial luminance can be suppressed is remarkably exhibited.
  • the concentration of the dopant material contained in the light emitting layer is preferably 0.1 to 10% by mass. More preferably, the concentration of the dopant material contained in the light emitting layer is 0.5 to 2% by mass.
  • host material and dopant material all may be used individually by 1 type and may use 2 or more types together.
  • the host material is preferably a tetracene derivative represented by the following general formula (1).
  • Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each a hydrogen atom, substituted or Unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted ring formation
  • Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each independently a hydrogen atom, It is preferably a substituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group.
  • alkyl group examples include a methyl group, an ethyl group, and various propyl groups (“various” indicates that all linear and branched groups are included, and the same shall apply hereinafter), various butyl groups, Examples include various octyl groups and various decyl groups.
  • alkynyl group examples include an ethynyl group and a methylethynyl group.
  • cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group.
  • Examples of the substituent that these alkyl group, alkynyl group, and cycloalkyl group may have include a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these is preferable. .
  • aryl group examples include phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, chrysenyl, benzoanthryl, benzo [c] phenanthryl, benzo [g] chrysenyl, triphenylenyl, fluorenyl, Examples thereof include a benzofluorenyl group, a dibenzofluorenyl group, a biphenylyl group, a terphenylyl group, and a fluoranthenyl group.
  • an aryl group having 6 to 20 ring carbon atoms preferred is an aryl group having 6 to 12 ring carbon atoms, and further preferred is an aryl group having 6 to 10 ring carbon atoms. More specifically, a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, and a terphenylyl group are preferable, and a phenyl group, a naphthyl group, and a biphenylyl group are more preferable.
  • the substituent that the aryl group may have include, for example, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 ring carbon atoms, an aromatic heterocyclic group having 5 to 20 ring carbon atoms, A halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these, particularly an aryl group having 6 to 20 ring carbon atoms, and an aromatic heterocyclic ring having 5 to 20 ring carbon atoms. Groups are preferred.
  • Examples of the substituted amino group include a trialkylamino group, a triarylamino group, a dialkylmonoarylamino group, and a monoalkyldiarylamino group.
  • the alkyl group part and the aryl group part are described in the same manner as described above, and preferred ones are also the same.
  • Examples of the alkoxy group and alkylthio group include those in which the alkyl group moiety is the alkyl group, and the alkyl group moiety is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. preferable.
  • Examples of the substituent that the alkoxy group and alkylthio group may have include a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these is preferable.
  • Examples of the aryloxy group and arylthio group include those in which the aryl group moiety is the aryl group, and preferred aryl moieties are the same as described above.
  • Examples of the substituent that the aryloxy group and arylthio group may have include an alkyl group having 1 to 20 carbon atoms, a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group. At least one of the above is preferred.
  • alkenyl group examples include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl and the like.
  • cycloalkenyl group examples include a cyclopropenyl group, a cyclopentenyl group, a cyclooctenyl group, and a cyclodecenyl group.
  • Examples of the substituent that the alkenyl group or cycloalkenyl group may have include a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these is preferable.
  • Examples of the aralkyl group include benzyl group, phenylethyl group, 2-phenylpropan-2-yl and the like.
  • the substituent that the aralkyl group may have is, in particular, a substituent for an aryl group.
  • Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a halogen atom, an acyl group, a carboxyl group, and an ester.
  • the heterocyclic group is preferably an aromatic heterocyclic group having 5 to 30 ring carbon atoms, more preferably an aromatic heterocyclic group having 5 to 20 ring carbon atoms, and further preferably a ring forming carbon number. 5 to 12 aromatic heterocyclic groups.
  • Preferred examples of the heterocyclic group include a pyridyl group, a furyl group, a thienyl group, a pyrazyl group, a pyrimidyl group, and a quinolyl group.
  • heterocyclic group examples include, for example, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 ring carbon atoms, and an aromatic heterocyclic group having 5 to 20 ring carbon atoms.
  • a cyclic group is preferred.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom is preferable.
  • acyl group examples include formyl group, acetyl group, propionyl group, benzoyl group and the like. Any of the ester groups is —O—C ( ⁇ O) —R, where R is an alkyl group or an aryl group.
  • alkyl ester group having 1 to 10 carbon atoms such as a methyl ester group, an ethyl ester group or a butyl ester group, or an aryl ester group having 6 to 30 ring carbon atoms such as a phenyl ester group.
  • silyl group include a trialkylsilyl group, a triarylsilyl group, a monoalkyldiarylsilyl group, and a dialkylmonoarylsilyl group.
  • At least one of Q 10 , Q 20 , Q 30 and Q 40 is a substituted or unsubstituted ring group having 6 to 30 carbon atoms, a substituted or unsubstituted ring Preferably, it is a heterocyclic group having 5 to 30 carbon atoms, preferably two or more substituted or unsubstituted aryl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted heterocyclic groups having 5 to 30 ring carbon atoms.
  • a ring group is preferable, and two or four are preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms.
  • Q 10 , Q 20 , Q 30 and Q 40 are substituted or unsubstituted aryl groups having 6 to 30 ring carbon atoms
  • Q 20 and Q 30 form a substituted or unsubstituted ring.
  • An aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms are preferable.
  • Q 10 , Q 20 , Q 30 and Q 40 are substituted or unsubstituted heterocyclic groups having 5 to 30 ring carbon atoms
  • Q 20 and Q 30 are substituted or unsubstituted ring forming carbon atoms.
  • a heterocyclic group of several 5 to 30 is preferable.
  • Q 10 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are all hydrogen.
  • Q 20 and Q 30 are a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms, Q 10 , Q 40 , It is preferred that Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are all hydrogen.
  • tetracene derivative represented by the formula (1) a tetracene derivative represented by the following formula (1-1) is a preferred one.
  • Q 10 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are as defined above, and preferred ones More preferably, all are hydrogen, in particular.
  • Q 21 to Q 25 and Q 31 to Q 35 are the same as defined for Q 10 , and preferred ones are also the same. However, two or more adjacent Q 21 to Q 25 and Q 31 to Q 35 may be bonded to each other to form a ring.
  • a condensed aromatic ring in which two or more rings are condensed and a condensed aromatic heterocyclic ring in which two or more rings are condensed are preferable.
  • Q 21 , Q 25 and Q 31 , Q 35 are preferably an unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms.
  • a monocyclic aryl group and a monocyclic heterocyclic group are more preferable, and a phenyl group, a pyridyl group, a pyrimidine group, a pyrimidine group, a pyrazine group, and a triazine group are preferable.
  • the tetracene derivative represented by the formula (1-1) has a substituent in at least one of the ortho positions of the two benzene rings bonded to tetracene.
  • At least one of Q 21 and Q 25 in the tetracene derivative represented by the formula (1-1) is a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and Q 31 , One or more of Q 35 are preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group.
  • tetracene derivative represented by the formula (1-1) it is preferable to use at least one selected from the following.
  • tetracene derivative represented by the above formula (1) is one of the preferred tetracene derivatives represented by the following formula (1-2).
  • Q 10 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 , Q 140 are as defined above, and preferable ones are also the same. It is. In particular, the case where all are hydrogen is more preferable.
  • Q 151 to Q 155 and Q 161 to Q 165 have the same definition as Q 10 , and preferred ones are also the same.
  • two or more adjacent Q 152 to Q 155 and Q 162 to Q 165 may be bonded to each other to form a ring.
  • Q 151 and Q 161 are preferably an unsubstituted aryl group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms.
  • a monocyclic aryl group and a monocyclic heterocyclic group are more preferable, and a phenyl group, a pyridyl group, a pyrimidine group, a pyrimidine group, a pyrazine group, and a triazine group are preferable.
  • X is an oxygen atom, sulfur atom, or —NR 21 —
  • R 21 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or an aryl group having 5 to 20 ring atoms. A heterocyclic group or an aryl group having 6 to 20 ring carbon atoms.
  • the alkyl group represented by R 21 is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms.
  • the cycloalkyl group represented by R 21 is preferably a cycloalkyl group having 3 to 10 ring carbon atoms, and more preferably a cycloalkyl group having 5 to 8 ring carbon atoms.
  • the aryl group represented by R 21 is preferably an aryl group having 6 to 14 ring carbon atoms, and more preferably an aryl group having 6 to 12 ring carbon atoms.
  • tetracene derivative represented by the formula (1-2) it is preferable to use at least one selected from the following.
  • the dopant material is preferably a compound represented by the following general formula (2).
  • R 15 to R 21 forms a condensed ring with a substituent containing an aromatic ring or an adjacent substituent
  • the rest are each independently a hydrogen atom, an alkyl group, Cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen atom, haloalkyl group, halo Alkenyl group, haloalkynyl group, cyano group, acyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, condensed ring and aliphatic ring formed between adjacent substituents Chosen from.
  • R 15 to R 21 may be the same or different, and may have a substituent.
  • X is carbon or nitrogen, but in the case of nitrogen, the above -R 21 does not exist.
  • the metal of the metal complex is at least one selected from boron, beryllium, magnesium, chromium, iron, cobalt, nickel, copper, zinc, and platinum. As the metal, boron is preferable.
  • the alkyl group which may have a substituent is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and still more preferably an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group may be linear or branched, and may be any of a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group.
  • the aryl group which may have a substituent is preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms.
  • phenyl group phenylphenyl group (4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group), naphthylphenyl group (4- (1-naphthyl) phenyl group, 4- (2- Naphthyl) phenyl group), naphthyl group (1-naphthyl group, 2-naphthyl group), phenylnaphthyl group (6-phenyl-2-naphthyl group, 4-phenyl-1-naphthyl group), naphthylnaphthyl group (6-naphthyl group) -2-naphthyl group, 4-naphthyl-1-naphthyl group), anthryl group, phenanthryl group, pyrenyl group, and chrysenyl group.
  • the amino group has an amino group, a monoalkylaryl group having 1 to 20 carbon atoms which may have a substituent, a dialkylaryl group having 1 to 20 carbon atoms which may have a substituent, and a substituent. It may be a monoarylaryl group having 6 to 30 carbon atoms or a bisarylaryl group having 6 to 30 carbon atoms which may have a substituent. Specific examples include a dimethylamino group, a diethylamino group, a diphenylamino group, a ditolylamino group, and a dicylylamino group.
  • alkoxy group which may have a substituent examples include a methoxy group, an ethoxy group, and a propoxy group. Among them, an alkoxy group having 1 to 20 carbon atoms is preferable, and an alkoxy group having 1 to 10 carbon atoms is more preferable. Further, an alkoxy group having 1 to 5 carbon atoms is more preferable.
  • alkylthio group which may have a substituent examples include a methylthio group and an ethylthio group. Among them, an alkylthio group having 1 to 20 carbon atoms is preferable, an alkylthio group having 1 to 10 carbon atoms is more preferable, and More preferred are 1-5 alkylthio groups.
  • Examples of the aryloxy group which may have a substituent include a phenoxy group, among which an aryloxy group having 6 to 30 carbon atoms is preferable, an aryloxy group having 6 to 20 carbon atoms is more preferable, and More preferred are 6-12 aryloxy groups.
  • Examples of the aryloxythio group which may have a substituent include a phenylthio group. Among them, an arylthio group having 6 to 30 carbon atoms is preferable, an arylthio group having 6 to 20 carbon atoms is more preferable, and a carbon number of 6 More preferred are ⁇ 12 arylthio groups.
  • Examples of the alkenyl group which may have a substituent include a vinyl group and a propenyl group. Among them, an alkenyl group having 2 to 20 carbon atoms is preferable, an alkenyl group having 2 to 10 carbon atoms is more preferable, and More preferred are 2 to 5 alkenyl groups.
  • Examples of the aralkyl group which may have a substituent include a benzyl group. Among them, an aralkyl group having 7 to 30 carbon atoms is preferable, an aralkyl group having 7 to 20 carbon atoms is more preferable, and an alkyl group having 7 to 12 carbon atoms is preferable. The aralkyl group is more preferable.
  • a heterocyclic group having 5 to 30 carbon atoms is preferable.
  • a heterocyclic group having 5 to 20 carbon atoms is more preferable, and a heterocyclic group having 5 to 12 carbon atoms is more preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • haloalkyl group, haloalkenyl group, and haloalkynyl group examples include those in which the above halogen group is substituted on the alkyl group, alkenyl group, or alkynyl group, preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms. More preferably, it has 1 to 5 carbon atoms.
  • the acyl group examples include a formyl group, an acetyl group, a propionyl group, and a benzoyl group.
  • the acyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the ester groups are all —O—C ( ⁇ O) —R, where R is an alkyl group or an aryl group.
  • R is an alkyl group or an aryl group.
  • an alkyl ester group having 1 to 10 carbon atoms (preferably 1 to 5) such as a methyl ester group, an ethyl ester group, or a butyl ester group, or a ring-forming carbon number such as a phenyl ester group 6 To 30 (preferably 6 to 20, more preferably 6 to 12) aryl ester groups.
  • the compound having a pyromethene skeleton represented by the general formula (2) or a metal complex thereof is preferably a metal complex having a pyromethene skeleton represented by the following formula (2-1).
  • R 22 to R 28 forms a condensed aromatic ring with a substituent containing an aromatic ring or an adjacent substituent, and the rest are independently a hydrogen atom,
  • R 22 to R 28 may be the same or different and may have a substituent.
  • R 29 and R 30 may be the same or different, and may be a halogen atom, a hydrogen atom, or an alkyl group which may have a substituent [preferably a perfluoroalkyl having 1 to 20 carbon atoms (more preferably 1 to 5 carbon atoms). Group], an alkoxyl group which may have a substituent [preferably a 1H, 1H-perfluoroalkoxy group having 1 to 20 carbon atoms (more preferably 1 to 5 carbon atoms)], an aryl which may have a substituent It is selected from a group, an aryloxy group which may have a substituent, and a heterocyclic group which may have a substituent.
  • R 29 and R 30 may be connected to form a ring.
  • X is carbon or nitrogen, but in the case of nitrogen, the above -R 28 does not exist.
  • Preferred examples of the substituent include at least one selected from halogenated hydrocarbons having 1 to 10 carbon atoms and halogen atoms.
  • the halogenated hydrocarbon having 1 to 10 carbon atoms include those having 1 to 10 carbon atoms such as a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • a perfluoroalkyl group is preferred, a halogenated hydrocarbon having 1 to 6 carbon atoms is more preferred, and a perfluoroalkyl group having 1 to 6 carbon atoms is more preferred.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among them, a fluorine atom is preferable.
  • the boron atom (B) and the upper right nitrogen atom (N) are coordinated, and the coordinate bond is represented by a dotted line. Specific examples and preferred examples of each group are the same as those described in the general formula (2).
  • At least one of R 22 to R 28 of the metal complex having a pyromethene skeleton represented by the formula (2-1) is preferably a substituent containing an aromatic ring.
  • R 22 to R 28 of the metal complex having a pyromethene skeleton represented by the formula (2-1) form a condensed aromatic ring with an adjacent substituent.
  • the metal complex having a pyromethene skeleton represented by the formula (2-1) forms a condensed aromatic ring which may have a substituent between adjacent substituents of R 22 to R 24 and / or Alternatively, it is preferable to form a condensed aromatic ring which may have a substituent between adjacent substituents of R 25 to R 27 .
  • Examples of the compound having a pyromethene skeleton represented by the general formula (2) or a metal complex thereof include those listed in paragraph [0103] of International Publication No. 2008/111554, paragraph of International Publication No. 2010/084852 Although at least one selected from those listed in [0060] to [0066] can be used, it is particularly preferable to use at least one selected from the following.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, the light emitting layer can be easily formed and the chromaticity can be easily adjusted. Moreover, if it is 50 nm or less, there is little possibility that a drive voltage will rise.
  • the electron transport zone is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and is made of a material having high electron mobility.
  • the electron transport zone is composed of one or more electron transport layers.
  • the present invention has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
  • the “region” refers to a layer that occupies a part or all of the “electron transport zone”.
  • the electron transport zone may be a single electron transport layer (in this case, the layer itself corresponds to a region containing a material having an energy gap of 3.2 eV or more), or two electron transport layers [emission
  • the first electron transport layer (the first electron transport layer corresponds to a region containing a material having an energy gap of 3.2 eV or more) and the second electron transport layer] may be sequentially formed from the layers.
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • the electron transport zone of the organic EL device of the present invention has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
  • the material having an energy gap of 3.2 eV or more is preferably a material having an energy gap of 3.3 eV or more, more preferably a material having an energy gap of 3.4 eV or more, preferably a material having an energy gap of 3.9 eV or less, more preferably energy.
  • the ionization potential (Ip) of the material contained in the region in contact with the light emitting layer is preferably 0.3 to 0.8 eV, more preferably the ionization potential (Ip) of the host material contained in the light emitting layer. Preferably it is 0.3 to 0.7 eV, more preferably 0.4 to 0.7 eV, particularly preferably 0.4 to 0.6 eV.
  • the difference between the ionization potential (Ip) of the material contained in the region in contact with the light emitting layer and the ionization potential (Ip) of the dopant material contained in the light emitting layer is preferably 0.3 eV or less, more preferably It is 0.2 eV or less, more preferably 0.1 eV or less.
  • the electron affinity (Af) of the material contained in the region in contact with the light emitting layer is preferably 0.2 to 0.7 eV than the electron affinity (Af) of the host material contained in the light emitting layer.
  • it is 0.3 to 0.7 eV, more preferably 0.4 to 0.7 eV, and particularly preferably 0.5 to 0.7 eV.
  • the abundance of the region containing the material having an energy gap of 3.2 eV or more in the electron transport zone is not particularly limited, but is preferably 1 to 100% by mass, more preferably 5 to 100% by mass, and more preferably 5 to 70%.
  • the content is 5% by mass, more preferably 5 to 50% by mass, more preferably 10 to 50% by mass, and still more preferably 10 to 45% by mass.
  • Ar 11 -Az (C) (In the formula, Ar 11 represents a substituted or unsubstituted carbazolyl group or an aromatic hydrocarbon group having 6 to 36 ring carbon atoms substituted with one or more substituted or unsubstituted carbazolyl groups. Az represents a substituted Or an unsubstituted nitrogen-containing heterocyclic group having 6 ring atoms.)
  • the substituted or unsubstituted carbazolyl group may be bonded to Az at any position, and among them, the 9-position, that is, the nitrogen atom is preferable. That is, the substituted or unsubstituted carbazolyl group is preferably a substituted or unsubstituted 9-carbazolyl group. This reduces the difference between singlet energy and triplet energy. As a result, it is considered that the triplet excitons generated in the light emitting layer are confined and the singlet energy is small, so that the stability to the excited state is secured and the lifetime is increased.
  • Examples of the aromatic hydrocarbon group having 6 to 36 ring carbon atoms include phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, chrysenyl, benzoanthryl, benzo [c] phenanthryl, benzo [ g]
  • Examples include a chrycenyl group, a triphenylenyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a biphenylyl group, a terphenylyl group, and a fluoranthenyl group.
  • the aromatic hydrocarbon group preferably has 6 to 30 ring carbon atoms, more preferably 6 to 20 ring carbon atoms, still more preferably 6 to 12 ring carbon atoms, specifically Is more preferably a phenyl group, a naphthyl group, or a biphenylyl group, and more preferably a phenyl group.
  • Preferred examples of the aromatic hydrocarbon group having a substituent include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
  • the nitrogen-containing heterocyclic group having 6 ring-forming atoms represented by Az is preferably a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, more preferably a pyrimidinyl group, a pyrazinyl group, a triazinyl group, and more preferably a pyrimidinyl group. It is a group.
  • the compound (C) having a pyrimidinyl group, a pyrazinyl group or a triazinyl group can be expected to show excellent electron injection and transport performance, and has a good balance of electrons and holes in the device when combined with the amine compound of the present invention. Therefore, it is considered that it contributes to further increase in efficiency and life of the organic EL element.
  • each group is an alkyl group having 1 to 30 carbon atoms represented by R 11 to R 18 in the formula (C-1) described later, 1 to 30 alkoxy groups, 7 to 30 aralkyl groups, 6 to 30 ring-forming aryloxy groups, 3 to 30 alkylsilyl groups, 8 to 40 dialkylarylsilyl groups, carbon An alkyldiarylsilyl group having 13 to 50 carbon atoms, a triarylsilyl group having 18 to 60 carbon atoms, an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, an aromatic heterocyclic group having 5 to 30 ring atoms, carbon 1-30 haloalkyl group, a halogen atom, a hydroxyl group, a nitro group, a cyano group, and at least one selected from a carboxy group, be described in R 11 ⁇ R 18, which will be described later ones of these preferred of the groups It is as.
  • the substituent of Az is preferably an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an aryl having 6 to 30 ring carbon atoms.
  • an aromatic heterocyclic group having 5 to 30 ring atoms, and more preferable examples of these groups are as described in R 11 to R 18 described later.
  • the aromatic hydrocarbon group having 6 to 30 ring carbon atoms as the substituent for Az is preferably an aromatic hydrocarbon group having 6 to 12 ring carbon atoms, more preferably a phenyl group or a biphenylyl group. A naphthyl group, more preferably a phenyl group or a biphenylyl group.
  • the aromatic heterocyclic group having 5 to 30 ring atoms as a substituent for Az is preferably an aromatic heterocyclic group having 5 to 10 ring atoms, more preferably a pyridyl group, A pyrimidinyl group and a carbazolyl group (preferably a 9-carbazolyl group).
  • Ar 11 or Az has a substituent, the number thereof may be one or two, or three or more, but preferably one or two. Az and Ar 11 preferably have no substituent.
  • a compound represented by the following general formula (C-1) is preferable because the difference between singlet energy and triplet energy is small.
  • k is an integer of 1 to 3.
  • n is an integer of 0 to 3.
  • Az is as defined above.
  • R 11 to R 18 are each independently a hydrogen atom, substituted or unsubstituted.
  • K is preferably 2 because it is considered that the conduction level of electrons becomes more appropriate.
  • the substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms is explained in the same manner as in the formula (C).
  • the aromatic heterocyclic group (heteroaryl group) having 5 to 30 ring atoms preferably has 5 to 20 ring atoms, and more preferably 5 to 14 ring atoms.
  • the aromatic heterocyclic group includes those in which an aromatic ring and an aromatic heterocyclic ring are connected.
  • aromatic heterocyclic group examples include pyrrolyl group, pyrazolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, pyridyl group, triazinyl group, indolyl group, isoindolyl group, imidazolyl group, benzimidazolyl group, indazolyl group, imidazolo [ 1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothiophenyl group, azadibenzothiophenyl group Quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyridinyl group, carbazolyl group, azacarbazolyl group,
  • alkyl group having 1 to 30 carbon atoms examples include linear, branched and cyclic alkyl groups.
  • linear and branched alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
  • the alkoxy group having 1 to 30 carbon atoms is represented as —OY, and examples of Y include the above alkyl examples.
  • Specific examples of the alkoxy group include a methoxy group and an ethoxy group.
  • the aryloxy group having 6 to 30 ring carbon atoms is represented by —OZ, and examples of Z include the above aryl groups.
  • aryloxy group examples include a phenoxy group and a naphthyloxy group.
  • the aralkyl group having 7 to 30 carbon atoms is represented by, for example, “—YZ”.
  • Y examples include alkylene examples corresponding to the above alkyl examples, and examples of Z include the above aryl examples.
  • benzyl group, phenylethyl group, 2-phenylpropan-2-yl group and the like can be mentioned.
  • haloalkyl group having 1 to 30 carbon atoms examples include one or more halogen atoms (including a fluorine atom, a chlorine atom and a bromine atom, preferably a fluorine atom) in the above-described alkyl group having 1 to 30 carbon atoms.
  • halogen atoms including a fluorine atom, a chlorine atom and a bromine atom, preferably a fluorine atom
  • substituted groups include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, and a pentafluoroethyl group.
  • they are a trifluoromethyl group and a pentafluoroethyl group.
  • haloalkoxy group having 1 to 30 carbon atoms examples include groups in which one or more halogen atoms (including fluorine, chlorine and bromine atoms, preferably fluorine atoms) are substituted on the above alkoxy group. .
  • halogen atoms including fluorine, chlorine and bromine atoms, preferably fluorine atoms
  • it is a trifluoromethoxy group.
  • the alkylsilyl group having 3 to 30 carbon atoms is represented by —Si (R a ) (R b ) (R c ), and examples of (R a ), (R b ) and (R c ) include the alkyl groups described above. Groups. Specific examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, and a propyldimethylsilyl group.
  • the dialkylarylsilyl group having 8 to 40 carbon atoms is represented by —Si (R a ) (R b ) (Ar c ), and examples of (R a ) and (R b ) include the alkyl groups described above. Examples of (Ar c ) include the aryl groups described above. Specific examples include a phenyldimethylsilyl group.
  • the alkyldiarylsilyl group having 13 to 50 carbon atoms is represented by —Si (R a ) (Ar b ) (Ar c ), and examples of (R a ) include the alkyl groups described above, and (Ar b ) and Examples of (Ar c ) include the aryl groups described above. Specific examples include a methyldiphenylsilyl group.
  • the triarylsilyl group having 18 to 60 carbon atoms is represented as —Si (Ar a ) (Ar b ) (Ar c ), and examples of (Ar a ), (Ar b ) and (Ar c ) And aryl groups.
  • Examples of the alkenyl group having 2 to 30 carbon atoms include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl, etc. Is mentioned.
  • Examples of the alkynyl group having 2 to 30 carbon atoms include an ethynyl group and a methylethynyl group.
  • R 11 to R 18 in the formula (c-1) are preferably hydrogen atoms because the conduction level of electrons is considered to be more appropriate.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, Preferably it is a fluorine atom.
  • Az in the formula (C-1) is preferably a group represented by the following formula (2c). This is thought to improve the stability of the molecule.
  • X 1 to X 3 are each independently a nitrogen atom or CH, and at least two of X 1 to X 3 are nitrogen atoms.
  • Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms.
  • X 1 and X 2 in the formula (2c) are nitrogen atoms and X 3 is CH.
  • Ar 12 and Ar 13 are preferably those having 6 to 20 ring carbon atoms, more preferably those having 6 to 12 ring carbon atoms, specifically, phenyl group, naphthyl group, biphenylyl group, 9,9- A dimethylfluorenyl group is preferred.
  • the number of carbon atoms of Ar 12 in the formula (2c) is preferably less than or equal to the number of carbon atoms of Ar 13. Thereby, it is thought that manufacture becomes easy.
  • Ar 12 in formula (2c) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group or a substituted or unsubstituted biphenylyl group, the molecular weight of the group is small, and the thermal load during vapor deposition Therefore, it is considered that stable device manufacturing is possible. From the same viewpoint, it is more preferable that Ar 12 is a substituted or unsubstituted phenyl group and Ar 13 is a substituted or unsubstituted biphenylyl group.
  • the material of the region adjacent to the light emitting layer is preferably a compound represented by the formula (C).
  • a compound represented by the formula (C) As another material for the electron transport zone, an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferable, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • materials used in the electron transport zone other than the compound (C) include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, Although fluorenylidene methane, anthraquinodimethane, anthrone, etc. and derivatives thereof are mentioned, it is not particularly limited to these. Further, it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
  • the nitrogen-containing ring derivative examples include oxazole, thiazole, oxadiazole, thiadiazole, and triazole derivatives.
  • the nitrogen-containing ring derivative is preferably a benzimidazole derivative represented by any of the following formulas (1) to (3).
  • Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
  • R 11 and R 12 each independently represents a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 ring atoms, or 1 to 20 carbon atoms.
  • m is an integer of 0 to 5, and when m is an integer of 2 or more, the plurality of R 11 may be the same as or different from each other.
  • R 11 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 60 ring atoms.
  • Ar 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted by a halogen atom, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon atom having 6 to 6 carbon atoms.
  • Ar 3 is a substituted or unsubstituted arylene group having 6 to 60 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 60 ring atoms.
  • L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 ring carbon atoms, or a substituted or unsubstituted hetero condensed ring group having 9 to 60 ring atoms. Or a substituted or unsubstituted fluorenylene group.
  • Examples of the substituted or unsubstituted aromatic hydrocarbon ring represented by a plurality of adjacent R 11 bonded to each other when m is an integer of 2 or more include a benzene ring, a naphthalene ring, and an anthracene ring.
  • the substituents that each group may have include an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and an aralkyl having 7 to 30 carbon atoms.
  • aryloxy group having 6 to 30 ring carbon atoms aryloxy group having 6 to 30 ring carbon atoms, alkylsilyl group having 3 to 30 carbon atoms, dialkylarylsilyl group having 8 to 40 carbon atoms, alkyldiarylsilyl group having 13 to 50 carbon atoms, 18 to carbon atoms 60 triarylsilyl groups, aromatic hydrocarbon groups having 6 to 30 ring carbon atoms, aromatic heterocyclic groups having 5 to 30 ring atoms, haloalkyl groups having 1 to 30 carbon atoms, halogen atoms, hydroxyl groups, Examples thereof include at least one selected from a nitro group, a cyano group, and a carboxy group. Preferable examples of these groups are the same as those described for R 11 to R 18 in formula (C-1).
  • an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p).
  • a donor material (n) and acceptor material (p) is to dope metals such as Li and Cs into the material of the electron transport layer
  • a typical example of P doping is to dope acceptor materials such as F4TCNQ into the material of the hole transport layer.
  • a compound represented by any one of the following general formulas (34) to (36) can also be preferably used.
  • X is a condensed ring containing a nitrogen atom or a sulfur atom.
  • Y is a single bond, an alkyl group, an alkylene group, a cycloalkyl group, an aryl group, a heterocyclic group, a silyl group, an ether group, or Any one or a combination of thioether groups, q is a natural number of 2 or more.
  • the molecular weight of the compound represented by General formula (34) is 480 or more.
  • A is a substituent having a phenanthroline skeleton or a benzoquinoline skeleton.
  • B is a p-valent organic group having a structure represented by the following formula (35A). P is a natural number of 2 or more. .)
  • R 4 and R 5 are each independently an alkyl group or an aryl group (including an aryl group fused to a phenyl group), and l and m are each independently a natural number of 0 to 5).
  • Z is at least one selected from the following formula (35B).
  • R 6 and R 7 may be the same or different, and each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, A condensed ring formed between an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, an acyl group, an ester group, a carbamoyl group, an amino group, a silyl group, and an adjacent substituent.
  • Ar 4 is an aryl group or a heteroaryl group.
  • the organic EL device of the present invention has at least one of an electron donating dopant and an organometallic complex in an interface region of the electron transport zone in contact with the cathode and / or a site in the electron transport zone near the cathode. .
  • the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
  • the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
  • alkali metal examples include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV), and the like, and those having a work function of 2.9 eV or less are preferable.
  • K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metal examples include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV).
  • a work function of 2.9 eV or less is particularly preferable.
  • the rare earth metal examples include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • those listed as preferred metals have particularly high reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to further improve the light emission luminance and extend the life of the organic EL device. .
  • alkali metal compound examples include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine.
  • alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
  • alkaline earth metal compound examples include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 ⁇ x ⁇ 1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 ⁇ x ⁇ 1), and BaO, SrO, and CaO are preferable.
  • the rare earth metal compound ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
  • the organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
  • the addition form of the electron donating dopant and the organometallic complex is preferably formed in a layered or island shape in the interface region.
  • a forming method while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material as a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and an electron is deposited in the organic material.
  • a method of dispersing at least one of the donor dopant and the organometallic complex is preferable.
  • the dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
  • At least one of the electron donating dopant and the organometallic complex is formed in a layered form
  • at least one of the electron donating dopant and the organometallic complex is formed.
  • These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
  • an electron donating dopant and an organometallic complex In the case where at least one of an electron donating dopant and an organometallic complex is formed in an island shape, a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 to 1 nm.
  • cathode As the cathode, in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound and a mixture thereof are used. Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, rare earth metal, and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance with respect to the light emitted from the cathode is larger than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • an insulating thin film layer can be inserted between the pair of electrodes.
  • materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, and oxide. Germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like may be used, and a mixture or laminate of these may be used.
  • An organic EL element can be produced by forming an anode, a light emitting layer, a hole transport layer, and an electron injection / transport layer as required, and further forming a cathode by the materials and the formation methods exemplified above. Moreover, an organic EL element can also be produced from the cathode to the anode in the reverse order.
  • an example of manufacturing an organic EL device having a structure in which an anode / hole transport layer / light emitting layer / electron injection / transport layer / cathode are sequentially provided on a translucent substrate will be described.
  • a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole transport layer is sequentially provided on the anode.
  • the hole transport layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. However, it is easy to obtain a uniform film and pinholes are not easily generated. It is preferable to form by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound used (the material of the hole transport layer), the crystal structure and recombination structure of the target hole transport layer, etc.
  • the source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 ⁇ 7 to 10 ⁇ 3 Torr, the deposition rate of 0.01 to 50 nm / second, the substrate temperature of ⁇ 50 to 300 ° C., and the film thickness of 5 nm to 5 ⁇ m. .
  • a light emitting layer in which a light emitting layer is provided on the hole transport layer is also performed by thinning the organic light emitting material using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • a vacuum deposition method from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as that of the hole transport layer.
  • an electron injection / transport layer is provided on the light emitting layer.
  • an organic EL element can be obtained by laminating a cathode.
  • the cathode is made of metal, and vapor deposition or sputtering can be used.
  • vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
  • the organic EL element is preferably manufactured from the anode to the cathode consistently by a single vacuum.
  • Example 1 (Production of organic EL device) A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and further UV (Ultraviolet) ozone cleaned for 30 minutes. The glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the following acceptor material is deposited on the surface where the transparent electrode line is formed so as to cover the transparent electrode. The acceptor layer was formed. On this acceptor layer, the following compound (HT-100) was deposited as a first hole transport material to form a first hole transport layer having a thickness of 55 nm.
  • ITO transparent electrode line manufactured by Geomatic
  • the following compound (HT-200) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • a compound (C) having a thickness of 25 nm, an electron transport material (ET-100) having a thickness of 5 nm, LiF having a thickness of 1 nm, and metal Al having a thickness of 80 nm were sequentially stacked on the light emitting layer.
  • a cathode was formed.
  • LiF which is an electron injecting electrode, was formed at a deposition rate of 1 ⁇ / min.
  • Tables 1 and 2 show the physical properties of the compounds (1), (2), (C) and the electron transport material (ET-100).
  • the light emitting layer contains a host material and a dopant material, the electron mobility of the host material is larger than the hole mobility, and the mixture of the host material and the dopant material The electron mobility is smaller than the hole mobility.
  • Table 2 in the host material and dopant material used in Example 1, the electron mobility of the compound (1) as the host material is larger than the hole mobility, and the compound (1) as the host material. It can be seen that the electron mobility of the mixture of the compound (2) which is a dopant material is smaller than the hole mobility.
  • the organic EL device produced as described above was caused to emit light by direct current drive at room temperature (25 ° C.) and 85 ° C., and the luminance (cd / m 2 ) and current density were measured, and the current density was 15 mA / cm 2 .
  • the element life LT95 (time until the luminance was reduced to 95%) and the element life LT70 (time until the luminance was reduced to 70%) were determined. The results are shown in Table 3.
  • Example 1 an organic EL device was prepared in the same manner except that the layer of the compound (C) was not provided, and the thickness of the electron transport material (ET-100) was changed to 30 nm, and the light emission performance was evaluated. .
  • the results are shown in Table 3.
  • Example 3 it can be seen from the comparison between Example 1 and Comparative Example 1 that the organic EL element of the present invention has improved element lifetime LT70 at room temperature and high temperature. Furthermore, it can be seen from the comparison of the element lifetime LT95 that the organic EL element of the present invention has a marked improvement in the decrease in the initial luminance.
  • the hydrogen atom includes isotopes having different neutron numbers, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
  • ring carbon number means the number of carbon atoms constituting a saturated ring, unsaturated ring or aromatic ring
  • ring atom number means a hetero ring (saturated ring, unsaturated ring).
  • the number of carbon atoms and hetero atoms constituting the aromatic ring when it has an acyclic hydrocarbon group and a cyclic hydrocarbon group such as an aralkyl group, it is simply described as “the number of carbon atoms”.
  • the acyclic hydrocarbon group of the group (cyclic hydrocarbon group)
  • preferred groups are mentioned in the explanation of each group of each compound, but without any notice, it is shown that a preferred combination of the preferred groups is preferred. Can be combined freely. Similarly, any description that may be preferred, such as a preferred numerical range, can be freely selected or combined freely.
  • the organic EL device of the present invention can be suitably used as an electronic device such as a display device such as a television, a mobile phone, or a personal computer, or a light emitting device for lighting or a vehicle lamp. For example, it can be used as a planar light emitting device that emits deep red light, and among them, it is mainly useful for in-vehicle applications (tail lamps, brake lamps, etc.) with a high heat load.
  • the device life is improved at room temperature and high temperature, and further, the decrease in the initial luminance is remarkably suppressed. Therefore, it can be used for electronic devices such as a display device such as a television, a mobile phone, or a personal computer, and a light emitting device such as an illumination or a vehicle lamp.
  • a display device such as a television, a mobile phone, or a personal computer
  • a light emitting device such as an illumination or a vehicle lamp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an organic EL element in which the decrease in initial brightness when driven at high temperatures (e.g., 60°C or more) is small, and which has a long element lifespan at room temperature and high temperatures (e.g., 60°C or more). Also provided is an electronic apparatus equipped with the organic EL element. Specifically, there is provided an organic electroluminescence element having a first electrode, an organic thin film layer, and a second electrode in the sequence listed, the organic thin film layer having a hole transport band, a light-emitting layer, and an electron transport band in sequence from the side toward the first electrode, wherein: the light-emitting layer contains a host material and a dopant material; the electron mobility of the host material is larger than the hole mobility; the electron mobility of a mixture of the host material and the dopant material is smaller than the hole mobility; the electron transport band has a region containing a material in which the energy gap is no less than 3.2 eV; and the region is in contact with the light-emitting layer; there is also provided an electronic apparatus equipped with the organic EL element.

Description

有機エレクトロルミネッセンス素子及び電子機器ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
 本発明は、有機エレクトロルミネッセンス素子及び電子機器に関する。 The present invention relates to an organic electroluminescence element and an electronic device.
 有機EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W. Tang, S.A. Vanslyke, アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する。)に関する研究が盛んに行われている。 An organic EL element is a self-luminous element utilizing the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. Eastman Kodak's C.I. W. Organic materials have been constructed since Tang et al.'S report on low-voltage driven organic EL devices using stacked devices (CW Tang, SA Vanslyke, Applied Physics) Letters, 51, 913, 1987, etc.) Research on organic electroluminescence elements (hereinafter, abbreviated as organic EL elements) as materials is actively conducted.
 有機EL素子における課題の一つは、高発光効率と低駆動電圧の両立である。高効率な有機EL素子を得る手段としては、ホスト材料にドーパント材料を数%ドーピングすることにより発光層を形成する方法が知られている。ホスト材料及びドーパント材料並びにそれらの組合せを検討することにより、前記課題の解決に取り組まれてきた。
 具体的には、発光層が、アミン系芳香族化合物からなるホスト材料と、8-ヒドロキシキノリンのアルミニウム錯体(Alq錯体)からなるドーパント材料とを含有する有機EL素子(特許文献1及び2参照)、発光層が、テトラセン誘導体(ナフタセン誘導体)からなるホスト材料と、ピロメテン骨格を有する化合物もしくはその金属錯体からなるドーパント材料とを含有する有機EL素子(特許文献3参照)等が開発されている。
One of the problems in the organic EL element is compatibility between high luminous efficiency and low driving voltage. As a means for obtaining a highly efficient organic EL device, a method of forming a light emitting layer by doping a host material with a dopant material by several percent is known. By studying host materials and dopant materials, and combinations thereof, the above problems have been addressed.
Specifically, the organic EL device in which the light emitting layer contains a host material made of an amine-based aromatic compound and a dopant material made of an aluminum complex of 8-hydroxyquinoline (Alq complex) (see Patent Documents 1 and 2) An organic EL device (see Patent Document 3), in which the light emitting layer contains a host material composed of a tetracene derivative (naphthacene derivative) and a dopant material composed of a compound having a pyromethene skeleton or a metal complex thereof, has been developed.
国際公開第2001/23497号International Publication No. 2001/23497 特開2003-40845号公報Japanese Patent Laid-Open No. 2003-40845 国際公開第2008/111554号International Publication No. 2008/111554
 特許文献1又は2に記載の赤色発光性の有機EL素子は、発光効率及び素子寿命が不十分であった。特許文献3に記載の赤色発光性の有機EL素子では発光効率及び素子寿命が改善されたが、本発明者らのさらなる検討によると、高温下(例えば60℃以上)での駆動時には初期輝度が大きく低下することが判明し、さらに室温及び高温での素子寿命にも改善の余地があることが判明した。
 そこで、本発明の課題は、高温下(例えば60℃以上)での駆動時の初期輝度の低下が少なく、かつ室温及び高温(例えば60℃以上)での素子寿命の長い有機EL素子及び該有機EL素子を搭載した電子機器を提供することである。
The red light-emitting organic EL device described in Patent Document 1 or 2 has insufficient luminous efficiency and device lifetime. The red light-emitting organic EL device described in Patent Document 3 has improved luminous efficiency and device lifetime. However, according to further studies by the present inventors, the initial luminance is high when driven at a high temperature (for example, 60 ° C. or higher). It has been found that there is a significant decrease, and that there is room for improvement in the device life at room temperature and high temperature.
Accordingly, an object of the present invention is to provide an organic EL element that has a small decrease in initial luminance when driven at a high temperature (for example, 60 ° C. or higher) and has a long element lifetime at room temperature and a high temperature (for example, 60 ° C. or higher). An electronic device equipped with an EL element is provided.
 本発明の一実施形態は、第1電極、有機薄膜層、第2電極をこの順に有し、かつ前記有機薄膜層が、前記第1電極側から順に、正孔輸送帯域、発光層、電子輸送帯域を有する有機エレクトロルミネッセンス素子であって、発光層がホスト材料及びドーパント材料を含有し、該ホスト材料の電子移動度は正孔移動度より大きく、一方、該ホスト材料及び該ドーパント材料の混合物の電子移動度は正孔移動度より小さく、かつ、前記電子輸送帯域がエネルギーギャップ3.2eV以上の材料を含有する領域を有しており、該領域が発光層と接していることを特徴とする有機エレクトロルミネッセンス素子である。 One embodiment of the present invention has a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer is in order from the first electrode side, a hole transport zone, a light emitting layer, and an electron transport. An organic electroluminescent device having a band, wherein the light emitting layer contains a host material and a dopant material, and the electron mobility of the host material is larger than the hole mobility, while the mixture of the host material and the dopant material The electron mobility is smaller than the hole mobility, and the electron transport band has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer. It is an organic electroluminescence element.
 本発明の別の実施形態は、第1電極、有機薄膜層、第2電極をこの順に有し、かつ前記有機薄膜層が、前記第1電極側から順に、正孔輸送帯域、発光層、電子輸送帯域を有する有機エレクトロルミネッセンス素子であって、発光層がホスト材料及びドーパント材料を含有し、該ホスト材料の電子親和力(Af)と該ドーパント材料の電子親和力(Af)との差が0.7eV以上であり、かつ、前記電子輸送帯域がエネルギーギャップ3.2eV以上の材料を含有する領域を有しており、該領域が発光層と接していることを特徴とする有機エレクトロルミネッセンス素子である。 Another embodiment of the present invention has a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer is in order from the first electrode side, a hole transport zone, a light emitting layer, an electron An organic electroluminescence device having a transport band, wherein a light emitting layer contains a host material and a dopant material, and a difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is 0.7 eV The organic electroluminescence element is characterized in that the electron transport zone has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
 本発明の別の実施形態は、第1電極、有機薄膜層、第2電極をこの順に有し、かつ前記有機薄膜層が、前記第1電極側から順に、正孔輸送帯域、発光層、電子輸送帯域を有する有機エレクトロルミネッセンス素子であって、発光層がホスト材料及びドーパント材料を含有し、該ホスト材料が下記一般式(1)で表される化合物であり、かつ、前記電子輸送帯域が下記一般式(C)で表される化合物を含有する領域を有しており、該領域が発光層と接していることを特徴とする有機エレクトロルミネッセンス素子である。 Another embodiment of the present invention has a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer is in order from the first electrode side, a hole transport zone, a light emitting layer, an electron An organic electroluminescence device having a transport band, wherein the light emitting layer contains a host material and a dopant material, the host material is a compound represented by the following general formula (1), and the electron transport band is: An organic electroluminescence device having a region containing a compound represented by the general formula (C), wherein the region is in contact with a light emitting layer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Q10、Q20、Q30、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140は、それぞれ水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数2~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、置換もしくは無置換の炭素数2~20のアルケニル基、置換もしくは無置換の環形成炭素数5~20のシクロアルケニル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の複素環基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基又はシリル基を表し、これらは同一でも異なるものであってもよい。)
    Ar11-Az   (C)
(式(C)中、Ar11は、置換もしくは無置換のカルバゾリル基、又は置換もしくは無置換のカルバゾリル基が1つ以上置換した環形成炭素数6~30の芳香族炭化水素基である。Azは、置換又は無置換の環形成原子数6の含窒素複素環基である。)
 本発明のさらに別の実施形態は、前記有機EL素子を搭載した電子機器である。
(In the formula (1), Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each a hydrogen atom, substituted or Unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted ring formation Aryl group having 6 to 30 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted Aryloxy group having 6 to 30 ring carbon atoms, substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, substituted or unsubstituted ring forming carbon Number 5 ~ 0 represents a cycloalkenyl group, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted heterocyclic group, a halogen atom, an acyl group, a carboxyl group, an ester group, a carbamoyl group, or a silyl group. May be the same or different.)
Ar 11 -Az (C)
(In the formula (C), Ar 11 is a substituted or unsubstituted carbazolyl group or an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with one or more substituted or unsubstituted carbazolyl groups. Az. Is a substituted or unsubstituted nitrogen-containing heterocyclic group having 6 ring atoms.)
Yet another embodiment of the present invention is an electronic apparatus on which the organic EL element is mounted.
 本発明によれば、高温下(例えば60℃以上であり、好ましくは80℃以上)での駆動時の初期輝度の低下が少なく、かつ室温及び高温(例えば60℃以上であり、好ましくは80℃以上)での素子寿命の長い有機EL素子及び該有機EL素子を搭載した電子機器を提供することができる。 According to the present invention, there is little decrease in initial luminance during driving at high temperature (for example, 60 ° C. or higher, preferably 80 ° C. or higher), and room temperature and high temperature (for example, 60 ° C. or higher, preferably 80 ° C.). The organic EL element having a long element lifetime in the above and an electronic device equipped with the organic EL element can be provided.
 本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、以下の知見を得るに至った。特許文献3に記載されたようなテトラセン系の蛍光ホスト材料は一般的に電子輸送性であるが、赤色発光性ピロメテン系ドーパント材料等がドープされた発光層では、該ドーパント材料の電子親和力(Af)が大きいために、発光層内に注入された電子はドーパント材料によって強力にトラップされると考えられる。そのために発光層の中でも電子輸送層側(界面付近)が再結合部位になっており、正孔耐性及び励起耐性に乏しいことが多い電子輸送層の劣化を引き起こしやすくなることが、駆動時の初期輝度の低下や素子寿命の低下に繋がっているものと推測した。
 一般に高温下では、ドーパント材料にトラップされたキャリアはホスト材料にデトラップされ易くなる。しかし、深赤発光性有機EL素子においては、ホスト材料とドーパント材料の電子親和力(Af)の差が0.7eV以上と大きいため、前記デトラップが少なく、高温下においても発光層の中でも電子輸送層側に再結合部位が集中し易くなり、初期輝度の低下や素子寿命の低下に拍車をかけているものと推測した。
 そこで、電子輸送帯域において、特定の物性を有する材料からなる領域を設け、当該領域が発光層と接する有機EL素子を製造したところ、前記課題が解決されることが判明した。
 本発明は、かかる知見に基づいて開発したものである。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge. The tetracene-based fluorescent host material described in Patent Document 3 is generally electron-transporting. However, in a light-emitting layer doped with a red light-emitting pyromethene-based dopant material or the like, the electron affinity (Af) of the dopant material is used. ) Is large, it is considered that electrons injected into the light emitting layer are strongly trapped by the dopant material. For this reason, the electron transport layer side (near the interface) in the light emitting layer is a recombination site, and it tends to cause deterioration of the electron transport layer, which is often poor in hole resistance and excitation resistance. It was speculated that this led to a decrease in luminance and a decrease in device life.
In general, at a high temperature, carriers trapped in the dopant material are easily detrapped by the host material. However, in the deep red light-emitting organic EL device, the difference in electron affinity (Af) between the host material and the dopant material is as large as 0.7 eV or more, so the detrapping is small, and the electron transport layer is a high-temperature light emitting layer. It is assumed that the recombination sites tend to concentrate on the side, which has spurred a decrease in initial luminance and a decrease in device life.
Thus, it has been found that when the region made of a material having specific physical properties is provided in the electron transport zone and an organic EL element in which the region is in contact with the light emitting layer is manufactured, the above problem is solved.
The present invention has been developed based on such knowledge.
 本発明の有機EL素子の代表的な素子構成としては、(1) 陽極/正孔輸送帯域/発光層/電子輸送帯域/陰極、(2) 陽極/アクセプター材料含有層(アクセプター層)/正孔輸送帯域/発光層/電子輸送帯域/陰極等を好ましく挙げることができる。また、発光層と正孔輸送帯域との間に電子障壁層や励起子障壁層があってもよく、発光層と接する正孔輸送層が、電子障壁層や励起子障壁層であってもよい。
 本発明の有機EL素子は、蛍光発光型又は燐光発光型の単色発光素子であっても、蛍光/燐光ハイブリッド型の白色発光素子であってもよいし、単独の発光ユニットを有するシンプル型であってもよいし、複数の発光ユニットを有するタンデム型であってもよい。ここで、「発光ユニット」とは、一層以上の有機層を含み、そのうちの一層が発光層であり、注入された正孔と電子が再結合することにより発光することができる最小単位をいう。
 以下にそれぞれの部位や層について説明する。
Typical device configurations of the organic EL device of the present invention include (1) anode / hole transport zone / light emitting layer / electron transport zone / cathode, (2) anode / acceptor material-containing layer (acceptor layer) / hole Preferred examples include transport zone / light emitting layer / electron transport zone / cathode. Further, an electron barrier layer or an exciton barrier layer may be provided between the light emitting layer and the hole transport zone, and the hole transport layer in contact with the light emitting layer may be an electron barrier layer or an exciton barrier layer. .
The organic EL device of the present invention may be a fluorescent or phosphorescent monochromatic light emitting device, a fluorescent / phosphorescent hybrid white light emitting device, or a simple type having a single light emitting unit. It may be a tandem type having a plurality of light emitting units. Here, the “light emitting unit” refers to a minimum unit that includes one or more organic layers, one of which is a light emitting layer, and can emit light by recombination of injected holes and electrons.
Each part and layer will be described below.
(透光性基板)
 本発明の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は、有機EL素子を支持する基板であり、400~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
 具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
(Translucent substrate)
The organic EL element of the present invention is produced on a light-transmitting substrate. Here, the translucent substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
Specifically, a glass plate, a polymer plate, etc. are mentioned. Examples of the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
(陽極)
 本発明の有機EL素子の陽極は、正孔を正孔輸送帯域に注入する機能を有するものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、インジウム-亜鉛酸化物(IZO)、金、銀、白金、銅等が挙げられる。
 陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
 このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(anode)
The anode of the organic EL device of the present invention has a function of injecting holes into the hole transport zone, and it is effective to have a work function of 4.5 eV or more. Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), indium-zinc oxide (IZO), gold, silver, platinum, copper and the like.
The anode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
Thus, when light emission from the light emitting layer is taken out from the anode, it is preferable that the transmittance of the anode for light emission is greater than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. The film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm.
(アクセプター層)
 本発明の有機EL素子は、前記陽極と前記正孔輸送帯域との間に、アクセプター材料を含有するアクセプター層を有することが好ましい。該アクセプター層は、正孔を発光層へ向けてより一層効率良く移動させるという効果をもたらす。
 また、正孔輸送帯域がアクセプター材料を含有していてもよい。
 前記アクセプター材料としては、下記一般式(I)、(II)又は(III)で表される化合物等が挙げられる。
(Acceptor layer)
The organic EL device of the present invention preferably has an acceptor layer containing an acceptor material between the anode and the hole transport zone. The acceptor layer has an effect of moving holes more efficiently toward the light emitting layer.
In addition, the hole transport zone may contain an acceptor material.
Examples of the acceptor material include compounds represented by the following general formula (I), (II), or (III).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(I)中、R11~R16は、それぞれ独立に、シアノ基、-CONH2、カルボキシル基、もしくは-COOR17(R17は、炭素数1~20のアルキル基である。)を表すか、又は、R11及びR12、R13及びR14、もしくはR15及びR16が互いに結合して-CO-O-CO-で示される基を表す。)
 R11~R16は、全てシアノ基であることが好ましい。
 R17のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
(In the formula (I), R 11 to R 16 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 17 (R 17 is an alkyl group having 1 to 20 carbon atoms). R 11 and R 12 , R 13 and R 14 , or R 15 and R 16 are bonded to each other to represent a group represented by —CO—O—CO—.
R 11 to R 16 are preferably all cyano groups.
Examples of the alkyl group for R 17 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(II)中、R21~R24は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数6~50のアリールオキシ基、又はシアノ基である。R21~R24のうち互いに隣接するものは互いに結合して環を形成してもよい。
 Y1~Y4は互いに同一でも異なっていてもよく、-N=、-CH=、又はC(R25)=であり、R25は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数6~50のアリールオキシ基、又はシアノ基である。
 Ar10は、環形成炭素数6~24の縮合環又は環形成原子数6~24の複素環である。ar1及びar2は、それぞれ独立に、下記一般式(i)又は(ii)の環を表す。
Figure JPOXMLDOC01-appb-C000006
{式中、X1及びX2は互いに同一でも異なっていてもよく、下記(a)~(g)に示す二価の基のいずれかである。
In the general formula (II), R 21 to R 24 may be the same or different from each other, and are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number of 6 An aryl group of ˜50, a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms, a halogen atom, a substituted or unsubstituted fluoroalkyl group of 1 to 20 carbon atoms, a substituted or unsubstituted carbon number of 1˜ 20 alkoxy groups, substituted or unsubstituted aryloxy groups having 6 to 50 carbon atoms, or cyano groups. It may be bonded to each other to form a ring in which adjacent ones of R 21 ~ R 24.
Y 1 to Y 4 may be the same or different from each other, and are —N═, —CH═, or C (R 25 ) ═, and R 25 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Substituted or unsubstituted aryl groups having 6 to 50 carbon atoms, substituted or unsubstituted heterocyclic groups having 5 to 50 ring atoms, halogen atoms, substituted or unsubstituted alkoxy groups having 1 to 20 carbon atoms, substituted Alternatively, it is an unsubstituted aryloxy group having 6 to 50 carbon atoms or a cyano group.
Ar 10 is a condensed ring having 6 to 24 ring carbon atoms or a heterocyclic ring having 6 to 24 ring atoms. ar 1 and ar 2 each independently represent a ring of the following general formula (i) or (ii).
Figure JPOXMLDOC01-appb-C000006
{Wherein X 1 and X 2 may be the same or different from each other, and are any of the divalent groups shown in the following (a) to (g).
Figure JPOXMLDOC01-appb-C000007
(式中、R31~R34は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50の複素環基であり、R32とR33は互いに結合して環を形成してもよい。)}
Figure JPOXMLDOC01-appb-C000007
(Wherein R 31 to R 34 may be the same as or different from each other, and may be a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms). Or a substituted or unsubstituted heterocyclic group having 5 to 50 ring-forming atoms, and R 32 and R 33 may combine with each other to form a ring.)}
 R21~R25及びR31~R34の各基の例としては以下の通りである。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 アリール基としては、フェニル基、ビフェニリル基、ナフチル基等が挙げられる。
 複素環基としては、ピリジン、ピラジン、フラン、イミダゾール、ベンズイミダゾール、チオフェン等の残基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基等が挙げられる。
 アリールオキシ基の例としては、フェニルオキシ基等が挙げられる。
 これらは置換基を有していてもよく、置換されたアリール基としては、モノフルオロフェニル基、トリフルオロメチルフェニル基等のハロゲン原子が置換したアリール基;トリル基、4-t-ブチルフェニル基等の、炭素数1~10(好ましくは1~5)のアルキル基が置換したアリール基等が挙げられる。置換されたアルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロシクロヘキシル基、パーフルオロアダマンチル基等の、ハロゲン原子が置換したアルキル基が挙げられる。置換されたアリールオキシ基としては、4-トリフルオロメチルフェニルオキシ基、ペンタフルオロフェニルオキシ等の、ハロゲン原子が置換したもしくはハロゲン原子含有アルキル基(炭素数1~5)が置換したアリールオキシ基;4-t-ブチルフェノキシ基等の、炭素数1~10(好ましくは1~5)のアルキル基が置換したアリールオキシ基等が挙げられる。
 R21~R24のうち互いに隣接するものは、互いに結合して環を形成していてもよい。該環の例としては、ベンゼン環、ナフタレン環、ピラジン環、ピリジン環、フラン環等が挙げられる。
Examples of each group of R 21 to R 25 and R 31 to R 34 are as follows.
Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a cyclopentyl group, and a cyclohexyl group.
Examples of the aryl group include a phenyl group, a biphenylyl group, and a naphthyl group.
Examples of the heterocyclic group include residues such as pyridine, pyrazine, furan, imidazole, benzimidazole, and thiophene.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkoxy group include a methoxy group and an ethoxy group.
Examples of the aryloxy group include a phenyloxy group.
These may have a substituent. Examples of the substituted aryl group include an aryl group substituted with a halogen atom such as a monofluorophenyl group and a trifluoromethylphenyl group; a tolyl group and a 4-t-butylphenyl group. And an aryl group substituted with an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms). Examples of the substituted alkyl group include alkyl groups substituted with a halogen atom, such as a trifluoromethyl group, a pentafluoroethyl group, a perfluorocyclohexyl group, and a perfluoroadamantyl group. The substituted aryloxy group includes an aryloxy group substituted with a halogen atom or substituted with a halogen atom-containing alkyl group (having 1 to 5 carbon atoms), such as 4-trifluoromethylphenyloxy group and pentafluorophenyloxy; And an aryloxy group substituted with an alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) such as a 4-t-butylphenoxy group.
R 21 to R 24 that are adjacent to each other may be bonded to each other to form a ring. Examples of the ring include a benzene ring, naphthalene ring, pyrazine ring, pyridine ring, furan ring and the like.
Figure JPOXMLDOC01-appb-C000008
 式(III)中、Z1~Z3は、それぞれ独立に、下記一般式(h)で示される二価の基である。
Figure JPOXMLDOC01-appb-C000009
 式(h)中、Ar31は、置換もしくは無置換の炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 アリール基としては、フェニル基、ナフチル基等が挙げられる。
 ヘテロアリール基としては、ピリジン、ピラジン、ピリミジン、キノリン、イソキノリン等が挙げられる。
 また、これらの置換基の例としては、シアノ基、フルオロ基、トリフルオロメチル基、クロロ基及びブロモ基等の電子吸引性の基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
In the formula (III), Z 1 to Z 3 are each independently a divalent group represented by the following general formula (h).
Figure JPOXMLDOC01-appb-C000009
In the formula (h), Ar 31 is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
Examples of the aryl group include a phenyl group and a naphthyl group.
Examples of the heteroaryl group include pyridine, pyrazine, pyrimidine, quinoline, isoquinoline and the like.
Examples of these substituents include electron withdrawing groups such as a cyano group, a fluoro group, a trifluoromethyl group, a chloro group, and a bromo group.
(正孔輸送帯域)
 正孔輸送帯域は発光層への正孔注入を助け、発光層まで正孔を輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.7eV以下と小さい。このような正孔輸送帯域に用いる材料としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば104~106V/cmの電界印加時に、少なくとも10-4cm2/V・秒であると好ましい。
 正孔輸送帯域は、1層以上の正孔輸送層からなるものであってもよい。つまり、1層の正孔輸送層であってもよいし、2層の正孔輸送層(陽極から順に、第一正孔輸送層、第二正孔輸送層)からなるものであってもよい。なお、該第一正孔輸送層は、正孔注入層と称されることもある。該第二正孔輸送層と発光層の間に、さらに、第三、第四・・の正孔輸送層があってもよい。
 正孔輸送帯域を形成する材料としては、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔輸送材料として慣用されているものや、EL素子の正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
(Hole transport zone)
The hole transport zone is a layer that assists hole injection into the light emitting layer and transports holes to the light emitting layer, and has a high hole mobility and a small ionization energy of usually 5.7 eV or less. As a material used in such a hole transport zone, a material that transports holes to the light emitting layer with a lower electric field strength is preferable, and an electric field application with a hole mobility of, for example, 10 4 to 10 6 V / cm is preferable. Sometimes it is preferably at least 10 −4 cm 2 / V · sec.
The hole transport zone may be composed of one or more hole transport layers. That is, it may be a single hole transport layer or may be composed of two hole transport layers (a first hole transport layer and a second hole transport layer in order from the anode). . The first hole transport layer may be referred to as a hole injection layer. Between the second hole transport layer and the light emitting layer, there may be further third, fourth,... Hole transport layers.
The material for forming the hole transport zone is not particularly limited as long as it has the above-mentioned preferable properties, and conventionally used as a hole transport material in a photoconductive material, or the hole transport of an EL element. Any of known materials used for the layer can be selected and used.
 正孔輸送帯域に使用し得る材料としては、下記一般式(7)で表される化合物が好ましく挙げられる。
    Q1-G-Q2   (7)
 式(7)中、Q1及びQ2は、少なくとも1個の第三級アミンを有する部位であり、Gは連結基である。
Preferred examples of the material that can be used for the hole transport zone include compounds represented by the following general formula (7).
Q 1 -GQ 2 (7)
In formula (7), Q 1 and Q 2 are sites having at least one tertiary amine, and G is a linking group.
 より具体的には、下記一般式(8)で表されるアミン誘導体が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000010
More specifically, an amine derivative represented by the following general formula (8) is preferably exemplified.
Figure JPOXMLDOC01-appb-C000010
 式(8)において、Ar21~Ar24は置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。s及びtは、それぞれ独立に、0~4の整数である。Ar21及びAr22、Ar23及びAr24はそれぞれ互いに連結して環状構造を形成してもよい。R21及びR22もそれぞれ互いに連結して環状構造を形成してもよい。
 また、R21及びR22は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、炭素数1~50のアルキル基、炭素数1~50のアルコキシ基、炭素数7~50のアラルキル基、スチリル基、環形成炭素数6~50のアリール基もしくは環形成原子数5~50のヘテロアリール基で置換されたアミノ基、環形成炭素数6~50のアリール基もしくは環形成原子数5~50のヘテロアリール基で置換されたアミノ基で置換された環形成炭素数6~50のアリール基もしくは環形成原子数5~50のヘテロアリール基である。
 Ar21~Ar24が置換基を有する場合、該置換基としては、R21、R22が示す基と同じものが挙げられ、それらから選択される少なくとも一種であり、好ましくは炭素数1~10のアルキル基、環形成炭素数6~12のアリール基である。
In the formula (8), Ar 21 to Ar 24 are a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms. s and t are each independently an integer of 0 to 4. Ar 21 and Ar 22 , Ar 23 and Ar 24 may be connected to each other to form a cyclic structure. R 21 and R 22 may also be connected to each other to form a cyclic structure.
R 21 and R 22 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, Substitution with 50 alkyl groups, alkoxy groups having 1 to 50 carbon atoms, aralkyl groups having 7 to 50 carbon atoms, styryl groups, aryl groups having 6 to 50 ring carbon atoms or heteroaryl groups having 5 to 50 ring atoms An aryl group substituted with an amino group substituted with an amino group substituted, an aryl group having 6 to 50 ring carbon atoms or a heteroaryl group having 5 to 50 ring atoms, or a ring formation It is a heteroaryl group having 5 to 50 atoms.
In the case where Ar 21 to Ar 24 have a substituent, examples of the substituent include the same groups as those represented by R 21 and R 22 , and at least one selected from them, preferably 1 to 10 carbon atoms. And an aryl group having 6 to 12 ring carbon atoms.
 前記環形成炭素数6~50のアリール基としては、いずれも、例えばフェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾアントリル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、トリフェニレニル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニリル基、ターフェニリル基、フルオランテニル基等が挙げられる。中でも、好ましくは環形成炭素数6~30のアリール基、より好ましくは環形成炭素数6~20のアリール基、さらに好ましくは環形成炭素数6~12のアリール基である。より具体的には、好ましくはフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ターフェニリル基、9,9-ジメチルフルオレニル基であり、より好ましくはフェニル基、ナフチル基、ビフェニリル基、9,9-ジメチルフルオレニル基である。
 前記環形成原子数5~50のヘテロアリール基としては、いずれも、例えばピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2-a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられる。
Examples of the aryl group having 6 to 50 ring carbon atoms include any of phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, chrysenyl, benzoanthryl, benzo [c] phenanthryl, benzo [ g] Examples include a chrycenyl group, a triphenylenyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a biphenylyl group, a terphenylyl group, and a fluoranthenyl group. Among them, preferred is an aryl group having 6 to 30 ring carbon atoms, more preferred is an aryl group having 6 to 20 ring carbon atoms, and further preferred is an aryl group having 6 to 12 ring carbon atoms. More specifically, a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, a terphenylyl group, and a 9,9-dimethylfluorenyl group are preferable, and a phenyl group, a naphthyl group, a biphenylyl group, and 9,9 are more preferable. -A dimethylfluorenyl group.
Examples of the heteroaryl group having 5 to 50 ring atoms include any of pyrrolyl group, pyrazolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, pyridyl group, triazinyl group, indolyl group, isoindolyl group, imidazolyl group, benzine. Imidazolyl group, indazolyl group, imidazo [1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothio Phenyl group, azadibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyridinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, Enochiajiniru group, phenoxazinyl group, oxazolyl group, oxadiazolyl group, furazanyl group, benzoxazolyl group, thienyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, triazolyl group, tetrazolyl group, and the like.
 前記炭素数1~50のアルキル基としては、例えばメチル基、エチル基、各種プロピル基(「各種」とは、直鎖状及び分岐鎖状のあらゆる基を含むことを示し、以下同様である。)、各種ブチル基、各種オクチル基、各種デシル基等が挙げられる。中でも、炭素数1~5のアルキル基が好ましい。
 前記炭素数1~50のアルコキシ基としては、アルキル基部位が前記炭素数1~50(好ましくは炭素数1~5)のアルキル基であるものが挙げられる。
 前記炭素数7~50のアラルキル基としては、例えば「-Y-Z」と表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。
 環形成炭素数6~50のアリール基もしくは環形成原子数5~50のヘテロアリール基で置換されたアミノ基については、窒素原子と結合している環形成炭素数6~50のアリール基及び環形成原子数5~50のヘテロアリール基が、Ar21の場合と同じように説明され、好ましいものも同じである。当該アミノ基は、アリール基のみで置換されていてもよいし、ヘテロアリール基のみで置換されていてもよいし、アリール基とヘテロアリール基との両方で置換されていてもよい。
 前記環形成炭素数6~50のアリール基もしくは環形成原子数5~50のヘテロアリール基で置換されたアミノ基で置換された環形成炭素数6~50のアリール基もしくは環形成原子数5~50のヘテロアリール基については、各アリール基、ヘテロアリール基、アミノ基について、これまでの説明と同じように説明され、好ましいものも同じである。
 s及びtは、好ましくは0~2の整数であり、より好ましくは0又は1であり、さらに好ましくは0である。
Examples of the alkyl group having 1 to 50 carbon atoms include a methyl group, an ethyl group, and various propyl groups (“various” means all linear and branched groups, and the same applies hereinafter). ), Various butyl groups, various octyl groups, various decyl groups, and the like. Of these, an alkyl group having 1 to 5 carbon atoms is preferable.
Examples of the alkoxy group having 1 to 50 carbon atoms include those in which the alkyl group moiety is the alkyl group having 1 to 50 carbon atoms (preferably 1 to 5 carbon atoms).
Examples of the aralkyl group having 7 to 50 carbon atoms are represented by “—YZ”, and examples of Y include alkylene examples corresponding to the above examples of alkyl, and examples of Z include those of the above aryl. An example is given.
For an amino group substituted with an aryl group having 6 to 50 ring carbon atoms or a heteroaryl group having 5 to 50 ring atoms, an aryl group having 6 to 50 ring carbon atoms and a ring bonded to a nitrogen atom A heteroaryl group having 5 to 50 atoms to be formed is explained in the same manner as in Ar 21 , and preferred ones are also the same. The amino group may be substituted only with an aryl group, may be substituted only with a heteroaryl group, or may be substituted with both an aryl group and a heteroaryl group.
The aryl group having 6 to 50 ring carbon atoms and the aryl group having 5 to 50 ring atoms substituted with the amino group substituted with the aryl group having 6 to 50 ring carbon atoms or the heteroaryl group having 5 to 50 ring atoms. About 50 heteroaryl groups, each aryl group, heteroaryl group, and amino group are described in the same manner as described above, and preferred ones are also the same.
s and t are preferably integers of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 正孔輸送帯域に使用し得る材料としては、下記一般式(4)で表される化合物も好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000011
As a material that can be used in the hole transport zone, a compound represented by the following general formula (4) is also preferably exemplified.
Figure JPOXMLDOC01-appb-C000011
(式(4)中、Ar11~Ar13は、少なくとも1つが下記一般式(4-2)~(4-4)で表される基である。また、一般式(4-2)~(4-4)で表される基のいずれでもない基は、置換もしくは無置換の炭素数6~40のアリール基である。) (In the formula (4), at least one of Ar 11 to Ar 13 is a group represented by the following general formulas (4-2) to (4-4). Also, the general formulas (4-2) to ( The group that is not any of the groups represented by 4-4) is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、X11は、酸素原子又は硫黄原子である。
 L1~L3は、それぞれ独立に、単結合、又は置換もしくは無置換の環形成炭素数6~50のアリーレン基を表し、L1~L3が有してもよい置換基は、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数18~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アルキル基の炭素数は1~5であり、アリール基の環形成炭素数は6~14である。)、環形成炭素数6~50のアリール基、ハロゲン原子及びシアノ基から選択される少なくとも一種である。
 Ar14は、置換もしくは無置換の環形成炭素数6~50のアリール基を表し、Ar14が有してもよい置換基は、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数18~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アルキル基の炭素数は1~5であり、アリール基の環形成炭素数は6~14である。)、環形成炭素数6~50のアリール基、ハロゲン原子及びシアノ基から選択される少なくとも一種である。
 R51~R56は、それぞれ独立に、置換もしくは無置換の炭素数1~10の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の環形成炭素数3~10のシクロアルキル基、置換もしくは無置換の炭素数3~10のトリアルキルシリル基、置換もしくは無置換の環形成炭素数18~30のトリアリールシリル基、置換もしくは無置換の炭素数8~15のアルキルアリールシリル基(アルキル基の炭素数は1~5であり、アリール基の環形成炭素数は6~14である。)、置換もしくは無置換の環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基を表す。隣接した複数のR51~R56は、互いに結合して環を形成してもよい。
 b、fは、それぞれ独立に、0~3の整数を表し、a、c、d、eは、それぞれ独立に、0~4の整数を表す。)
(In the formula, X 11 represents an oxygen atom or a sulfur atom.
L 1 to L 3 each independently represents a single bond or a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, and the substituents that L 1 to L 3 may have are A linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a triarylsilyl group having 18 to 30 ring carbon atoms, An alkylarylsilyl group having 8 to 15 carbon atoms (the alkyl group has 1 to 5 carbon atoms, and the aryl group has 6 to 14 ring carbon atoms), an aryl group having 6 to 50 ring carbon atoms, It is at least one selected from a halogen atom and a cyano group.
Ar 14 represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, and Ar 14 may have a linear or branched alkyl group having 1 to 10 carbon atoms, A cycloalkyl group having 3 to 10 ring carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a triarylsilyl group having 18 to 30 ring carbon atoms, an alkylarylsilyl group having 8 to 15 carbon atoms (the alkyl group The number of carbon atoms is 1 to 5, and the aryl group has 6 to 14 ring carbon atoms.), An aryl group having 6 to 50 ring carbon atoms, a halogen atom, and a cyano group.
R 51 ~ R 56 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted ring formed cycloalkyl group having 3 to 10 carbon atoms, substituted Or an unsubstituted trialkylsilyl group having 3 to 10 carbon atoms, a substituted or unsubstituted triarylsilyl group having 18 to 30 ring carbon atoms, a substituted or unsubstituted alkylarylsilyl group having 8 to 15 carbon atoms (alkyl The group has 1 to 5 carbon atoms and the aryl group has 6 to 14 ring carbon atoms.) Represents a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a halogen atom, or a cyano group. . A plurality of adjacent R 51 to R 56 may be bonded to each other to form a ring.
b and f each independently represents an integer of 0 to 3, and a, c, d and e each independently represents an integer of 0 to 4. )
 L1~L3が表すアリーレン基としては、フェニレン基、ナフチレン基、ビフェニレン基、9,9-ジメチルフルオレニレン基、9,9-ジフェニルフルオレニレン基、アントリレン基、アセナフチレニル基、アントラニレン基、フェナントレニレン基、フェナレニル基、キノリレン基、イソキノリレン基、s-インダセニレン基、as-インダセニレン基、クリセニレン基等が挙げられる。これらの中でも、環形成炭素数6~30のアリーレン基が好ましく、環形成炭素数6~20のアリーレン基がより好ましく、環形成炭素数6~12のアリーレン基がさらに好ましく、フェニレン基、ビフェニレン基、9,9-ジメチルフルオレニレン基(特に9,9-ジメチルフルオレン-2,7-ジイル基)が特に好ましい。
 以下、残りの各基について説明するが、同じ基については同じように説明される。
 アルキル基としては、炭素数1~5のアルキル基が好ましい。アルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ヘキシル基等が挙げられる。
 トリアルキルシリル基のアルキル基としては、上記の通りであり、好ましいものも同じである。トリアリールシリル基のアリール基としては、フェニル基、ナフチル基、ビフェニリル基が挙げられる。
 アルキルアリールシリル基のアルキルアリール基としては、ジアルキルモノアリールシリル基等が挙げられる。該アルキル基の炭素数は1~5である。また、該アリール基の環形成炭素数は6~14である。
 前記環形成炭素数6~50のアリール基としては、フェニル基、ナフチル基、ビフェニルイル基、アントリル基、フェナントリル基、ターフェニルイル基等が挙げられる。
 ハロゲン原子としては、フッ素原子が挙げられる。
 a~fは、いずれも0又は1が好ましく、0がより好ましい。
Examples of the arylene group represented by L 1 to L 3 include a phenylene group, a naphthylene group, a biphenylene group, a 9,9-dimethylfluorenylene group, a 9,9-diphenylfluorenylene group, an anthrylene group, an acenaphthylenyl group, an anthranylene group, Examples thereof include a phenanthrylene group, a phenalenyl group, a quinolylene group, an isoquinolylene group, an s-indacenylene group, an as-indacenylene group, and a chrysenylene group. Among these, an arylene group having 6 to 30 ring carbon atoms is preferable, an arylene group having 6 to 20 ring carbon atoms is more preferable, an arylene group having 6 to 12 ring carbon atoms is more preferable, a phenylene group, a biphenylene group 9,9-dimethylfluorenylene group (especially 9,9-dimethylfluorene-2,7-diyl group) is particularly preferable.
Hereinafter, the remaining groups will be described, but the same groups will be described in the same manner.
As the alkyl group, an alkyl group having 1 to 5 carbon atoms is preferable. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-hexyl group.
The alkyl group of the trialkylsilyl group is as described above, and preferred ones are also the same. Examples of the aryl group of the triarylsilyl group include a phenyl group, a naphthyl group, and a biphenylyl group.
Examples of the alkylaryl group of the alkylarylsilyl group include a dialkylmonoarylsilyl group. The alkyl group has 1 to 5 carbon atoms. The aryl group has 6 to 14 ring carbon atoms.
Examples of the aryl group having 6 to 50 ring carbon atoms include phenyl group, naphthyl group, biphenylyl group, anthryl group, phenanthryl group, and terphenylyl group.
Examples of the halogen atom include a fluorine atom.
Each of a to f is preferably 0 or 1, more preferably 0.
 また、前記一般式(4)において、Ar11~Ar13において、一般式(4-2)~(4-4)のいずれで表される基でもない場合、置換もしくは無置換の炭素数6~40のアリール基を表す。該アリール基は、下記一般式(4-5)~(4-7)で表されることが好ましい。 In the general formula (4), when Ar 11 to Ar 13 is not a group represented by any of the general formulas (4-2) to (4-4), a substituted or unsubstituted carbon number of 6 to 40 aryl groups are represented. The aryl group is preferably represented by the following general formulas (4-5) to (4-7).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、R61~R64は、それぞれ独立に、炭素数1~10の直鎖状もしくは分岐状のアルキル基、環形成炭素数3~10のシクロアルキル基、炭素数3~10のトリアルキルシリル基、環形成炭素数18~30のトリアリールシリル基、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)、環形成炭素数6~50のアリール基、ハロゲン原子又はシアノ基である。隣接した複数のR61~R64は結合して環を形成してもよい。
 k、l、m、及びnは、それぞれ独立に、0~4の整数である。]
 さらに、上記一般式(4-5)~(4-7)としては、以下の一般式(4-5’)~(4-7’)が好ましい(各基の定義は前記の通りである。)。
Figure JPOXMLDOC01-appb-C000014
[Wherein, R 61 to R 64 each independently represents a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, or a tricyclic group having 3 to 10 carbon atoms. An alkylsilyl group, a triarylsilyl group having 18 to 30 ring carbon atoms, an alkylarylsilyl group having 8 to 15 carbon atoms (the ring portion having 6 to 14 carbon atoms in the aryl moiety), and an aryl having 6 to 50 ring carbon atoms Group, a halogen atom or a cyano group. A plurality of adjacent R 61 to R 64 may combine to form a ring.
k, l, m, and n are each independently an integer of 0 to 4. ]
Further, as the general formulas (4-5) to (4-7), the following general formulas (4-5 ′) to (4-7 ′) are preferable (the definitions of each group are as described above). ).
Figure JPOXMLDOC01-appb-C000014
 なお、上記一般式(4-5’)としては、以下の基も含まれる。
Figure JPOXMLDOC01-appb-C000015
The general formula (4-5 ′) includes the following groups.
Figure JPOXMLDOC01-appb-C000015
 なお、正孔輸送帯域は、1層の正孔輸送層からなるものであってもよいし、少なくとも2層以上の正孔輸送層からなるものであってもよい。後者の場合、発光層に隣接しない正孔輸送層は、有機EL素子の光学調整のために一般的には厚膜で用いられる場合が多いため、低電圧化の観点から正孔移動度が高いことが好ましい。更に、効率よくキャリアを生成するため、前記アクセプター層を設ける場合が多く、該アクセプター層との相互作用が高いことが好ましい。 The hole transport zone may be composed of one hole transport layer or may be composed of at least two hole transport layers. In the latter case, the hole transport layer that is not adjacent to the light emitting layer is generally used in a thick film for optical adjustment of the organic EL element, so that the hole mobility is high from the viewpoint of lowering the voltage. It is preferable. Furthermore, in order to generate carriers efficiently, the acceptor layer is often provided, and it is preferable that the interaction with the acceptor layer is high.
(発光層)
 本発明の有機EL素子では、発光層はホスト材料及びドーパント材料を含有し、該ホスト材料の電子移動度は正孔移動度よりも大きく、かつ該ホスト材料及び該ドーパント材料の混合物の電子移動度は正孔移動度より小さい。
 なお、正孔移動度及び電子移動度は、Time of Flight法等により求めることもできるが、次のようにインピーダンス分光法によって求めることもできる。
〔正孔移動度及び電子移動度の測定方法〕
 バイアスDC電圧を印加しながら100mVの微小交流電圧を印加する。このときに流れる交流電流値(絶対値と位相)をインピーダンスアナライザー(ソーラトロン社製1260)を用いて測定する。交流電圧の周波数を変えながら本測定を行い、電流値と電圧値とから、複素インピーダンス(Z)を算出する。このときモジュラスM=iωZ(i:虚数単位、ω:角周波数)の虚数部(ImM)の周波数依存性を求め、ImMが最大値となる周波数ωの逆数を、障壁層内を伝導する電子の応答時間と定義する。そして以下の式により、正孔移動度及び電子移動度を算出する。
    移動度=(発光層の膜厚)2/(応答時間・電圧)
(Light emitting layer)
In the organic EL device of the present invention, the light emitting layer contains a host material and a dopant material, the electron mobility of the host material is larger than the hole mobility, and the electron mobility of the mixture of the host material and the dopant material. Is smaller than the hole mobility.
The hole mobility and electron mobility can be obtained by the Time of Flight method or the like, but can also be obtained by impedance spectroscopy as follows.
[Measurement method of hole mobility and electron mobility]
A small alternating voltage of 100 mV is applied while applying a bias DC voltage. The alternating current value (absolute value and phase) flowing at this time is measured using an impedance analyzer (1260 manufactured by Solartron). This measurement is performed while changing the frequency of the AC voltage, and the complex impedance (Z) is calculated from the current value and the voltage value. At this time, the frequency dependence of the imaginary part (ImM) of the modulus M = iωZ (i: imaginary unit, ω: angular frequency) is obtained, and the reciprocal of the frequency ω at which ImM is the maximum value is determined by the electron conducting in the barrier layer. It is defined as response time. Then, the hole mobility and the electron mobility are calculated by the following equations.
Mobility = (Light emitting layer thickness) 2 / (Response time / Voltage)
 上記のようなホスト材料とドーパント材料との組み合わせであれば、特に制限は無いが、例えば、後述する一般式(1)で表されるテトラセン誘導体と後述する一般式(2)で表されるピロメテン骨格を有する化合物又はその金属錯体との組合せが好ましく挙げられる。
 ドーパント材料のエネルギーギャップは、赤色系発光の有機EL素子を得る観点からは、好ましくは2.5eV以下、より好ましくは2.3eV以下、さらに好ましくは2.1eV以下であり、下限としては、好ましくは1.7eV、より好ましくは1.8eV、さらに好ましくは1.9eVである。なお、赤色系とは、赤色、深赤色、橙色、赤橙色を言い、ピーク波長が550~800nmの範囲である。赤色系は、好ましくは赤色及び深赤色である。
 ホスト材料の電子親和力(Af)とドーパント材料の電子親和力(Af)の差は大きいほど、ドーパント材料にトラップされたキャリアがホスト材料にデトラップされ難くなる。通常、ホスト材料の電子親和力(Af)とドーパント材料の電子親和力(Af)の差が0.7eV以上、さらには0.8eV以上であると、非常にデトラップされ難いと言える。この観点から、ホスト材料の電子親和力(Af)とドーパント材料の電子親和力(Af)の差は、好ましくは1.4eV以下、より好ましくは1.2eV以下、さらに好ましくは1.1eV以下、特に好ましくは1.0eV以下である。ドーパント材料にトラップされたキャリアがホスト材料にデトラップされ難くなると、発光層における再結合部位が、電子輸送帯域側により一層集中し易くなるため、そのような有機EL素子であっても長寿命化できて初期輝度の低下も抑制できるという本発明の効果が顕著に現れる。
 なお、本発明では、前記発光層が含有する前記ドーパント材料の濃度が0.1~10質量%であることが好ましい。前記発光層が含有する前記ドーパント材料の濃度が0.5~2質量%であることがより好ましい。また、ホスト材料及びドーパント材料は、いずれも1種を単独で使用してもよいし、2種以上を併用してもよい。
The combination of the host material and the dopant material as described above is not particularly limited. For example, the tetracene derivative represented by the general formula (1) described later and the pyromethene represented by the general formula (2) described later. A combination with a compound having a skeleton or a metal complex thereof is preferred.
The energy gap of the dopant material is preferably 2.5 eV or less, more preferably 2.3 eV or less, still more preferably 2.1 eV or less from the viewpoint of obtaining a red light-emitting organic EL device, and the lower limit is preferably Is 1.7 eV, more preferably 1.8 eV, still more preferably 1.9 eV. The red color means red, deep red, orange, or red-orange, and has a peak wavelength in the range of 550 to 800 nm. The red system is preferably red and deep red.
The larger the difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material, the more difficult the carriers trapped in the dopant material are detrapped by the host material. Usually, when the difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is 0.7 eV or more, further 0.8 eV or more, it can be said that detrapping is very difficult. From this viewpoint, the difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is preferably 1.4 eV or less, more preferably 1.2 eV or less, still more preferably 1.1 eV or less, and particularly preferably Is 1.0 eV or less. If the carriers trapped in the dopant material are less likely to be detrapped by the host material, the recombination sites in the light-emitting layer are more likely to be concentrated on the electron transport band side. Thus, the effect of the present invention that the reduction of the initial luminance can be suppressed is remarkably exhibited.
In the present invention, the concentration of the dopant material contained in the light emitting layer is preferably 0.1 to 10% by mass. More preferably, the concentration of the dopant material contained in the light emitting layer is 0.5 to 2% by mass. Moreover, as for host material and dopant material, all may be used individually by 1 type and may use 2 or more types together.
〔ホスト材料〕
 前述のとおり、ホスト材料としては、下記一般式(1)で表されるテトラセン誘導体が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000016
[Host material]
As described above, the host material is preferably a tetracene derivative represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000016
 前記式(1)中、Q10、Q20、Q30、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140は、それぞれ水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数2~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、置換もしくは無置換の炭素数2~20のアルケニル基、置換もしくは無置換の環形成炭素数5~20のシクロアルケニル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の複素環基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基又はシリル基を表し、これらは同一でも異なるものであってもよい。
 特に、Q10、Q20、Q30、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140は、それぞれ独立して、水素原子、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の炭素数7~30のアラルキル基又は置換もしくは無置換の芳香族複素環基であることが好ましい。
In the formula (1), Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each a hydrogen atom, substituted or Unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted ring formation Aryl group having 6 to 30 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted Aryloxy group having 6 to 30 ring carbon atoms, substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, substituted or unsubstituted ring forming carbon Number 5 20 represents a cycloalkenyl group, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted heterocyclic group, a halogen atom, an acyl group, a carboxyl group, an ester group, a carbamoyl group, or a silyl group. May be the same or different.
In particular, Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each independently a hydrogen atom, It is preferably a substituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group.
 上記アルキル基としては、例えばメチル基、エチル基、各種プロピル基(「各種」とは、直鎖状及び分岐鎖状のあらゆる基を含むことを示し、以下同様である。)、各種ブチル基、各種オクチル基、各種デシル基等が挙げられる。
 上記アルキニル基としては、例えばエチニル基、メチルエチニル基等が挙げられる。
 上記シクロアルキル基としては、例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、シクロデシル基等が挙げられる。
 これらアルキル基、アルキニル基、シクロアルキル基が有してもよい置換基としては、例えば、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種が好ましい。
 上記アリール基としては、例えばフェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾアントリル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、トリフェニレニル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニリル基、ターフェニリル基、フルオランテニル基等が挙げられる。中でも、好ましくは環形成炭素数6~20のアリール基、より好ましくは環形成炭素数6~12のアリール基、さらに好ましくは環形成炭素数6~10のアリール基である。より具体的には、好ましくはフェニル基、ナフチル基、ビフェニリル基、フルオレニル基、ターフェニリル基であり、より好ましくはフェニル基、ナフチル基、ビフェニリル基である。
 上記アリール基が有してもよい置換基としては、例えば、炭素数1~20のアルキル基、環形成炭素数6~20のアリール基、環形成炭素数5~20の芳香族複素環基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種、特に環形成炭素数6~20のアリール基、環形成炭素数5~20の芳香族複素環基が好ましい。
Examples of the alkyl group include a methyl group, an ethyl group, and various propyl groups (“various” indicates that all linear and branched groups are included, and the same shall apply hereinafter), various butyl groups, Examples include various octyl groups and various decyl groups.
Examples of the alkynyl group include an ethynyl group and a methylethynyl group.
Examples of the cycloalkyl group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and a cyclodecyl group.
Examples of the substituent that these alkyl group, alkynyl group, and cycloalkyl group may have include a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these is preferable. .
Examples of the aryl group include phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, chrysenyl, benzoanthryl, benzo [c] phenanthryl, benzo [g] chrysenyl, triphenylenyl, fluorenyl, Examples thereof include a benzofluorenyl group, a dibenzofluorenyl group, a biphenylyl group, a terphenylyl group, and a fluoranthenyl group. Among them, preferred is an aryl group having 6 to 20 ring carbon atoms, more preferred is an aryl group having 6 to 12 ring carbon atoms, and further preferred is an aryl group having 6 to 10 ring carbon atoms. More specifically, a phenyl group, a naphthyl group, a biphenylyl group, a fluorenyl group, and a terphenylyl group are preferable, and a phenyl group, a naphthyl group, and a biphenylyl group are more preferable.
Examples of the substituent that the aryl group may have include, for example, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 ring carbon atoms, an aromatic heterocyclic group having 5 to 20 ring carbon atoms, A halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these, particularly an aryl group having 6 to 20 ring carbon atoms, and an aromatic heterocyclic ring having 5 to 20 ring carbon atoms. Groups are preferred.
 上記置換アミノ基としては、トリアルキルアミノ基、トリアリールアミノ基、ジアルキルモノアリールアミノ基、モノアルキルジアリールアミノ基が挙げられる。アルキル基部位及びアリール基部位については、上記説明と同じように説明され、好ましいものも同じである。
 上記アルコキシ基、アルキルチオ基としては、アルキル基部位が上記アルキル基であるものが挙げられ、アルキル基部位としては、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましい。
 該アルコキシ基、アルキルチオ基が有してもよい置換基としては、例えば、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種が好ましい。
 上記アリールオキシ基、アリールチオ基としては、アリール基部位が上記アリール基であるものが挙げられ、アリール部位の好ましいものは、上記説明と同じである。
 該アリールオキシ基、アリールチオ基が有してもよい置換基としては、例えば、炭素数1~20のアルキル基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種が好ましい。
Examples of the substituted amino group include a trialkylamino group, a triarylamino group, a dialkylmonoarylamino group, and a monoalkyldiarylamino group. The alkyl group part and the aryl group part are described in the same manner as described above, and preferred ones are also the same.
Examples of the alkoxy group and alkylthio group include those in which the alkyl group moiety is the alkyl group, and the alkyl group moiety is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. preferable.
Examples of the substituent that the alkoxy group and alkylthio group may have include a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these is preferable.
Examples of the aryloxy group and arylthio group include those in which the aryl group moiety is the aryl group, and preferred aryl moieties are the same as described above.
Examples of the substituent that the aryloxy group and arylthio group may have include an alkyl group having 1 to 20 carbon atoms, a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group. At least one of the above is preferred.
 上記アルケニル基としては、例えば、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基、ヘプテニル基、オクテニル基、オクタジエニル基、2-エチルヘキセニル基、デセニル基等が挙げられる。
 上記シクロアルケニル基としては、例えばシクロプロペニル基、シクロペンテニル基、シクロオクテニル基、シクロデセニル基等が挙げられる。
 該アルケニル基、シクロアルケニル基が有してもよい置換基としては、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種が好ましい。
 上記アラルキル基としては、例えばベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル等が挙げられる。
 該アラルキル基が有してもよい置換基は、特にアリール基部位への置換基であり、該置換基としては、例えば炭素数1~20のアルキル基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種が好ましい。
 上記複素環基は、好ましくは環形成炭素数5~30の芳香族複素環基であり、より好ましくは環形成炭素数5~20の芳香族複素環基であり、さらに好ましくは環形成炭素数5~12の芳香族複素環基である。該複素環基としては、例えば、ピリジル基、フリル基、チエニル基、ピラジル基、ピリミジル基、キノリル基等が好ましく挙げられる。
 該複素環基が有してもよい置換基としては、例えば、炭素数1~20のアルキル基、環形成炭素数6~20のアリール基、環形成炭素数5~20の芳香族複素環基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基が挙げられ、これらから選択される少なくとも一種、特に環形成炭素数6~20のアリール基、環形成炭素数5~20の芳香族複素環基が好ましい。
Examples of the alkenyl group include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl and the like. .
Examples of the cycloalkenyl group include a cyclopropenyl group, a cyclopentenyl group, a cyclooctenyl group, and a cyclodecenyl group.
Examples of the substituent that the alkenyl group or cycloalkenyl group may have include a halogen atom, an acyl group, a carboxyl group, an ester group, and a carbamoyl group, and at least one selected from these is preferable.
Examples of the aralkyl group include benzyl group, phenylethyl group, 2-phenylpropan-2-yl and the like.
The substituent that the aralkyl group may have is, in particular, a substituent for an aryl group. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, a halogen atom, an acyl group, a carboxyl group, and an ester. Group and a carbamoyl group, and at least one selected from these groups is preferred.
The heterocyclic group is preferably an aromatic heterocyclic group having 5 to 30 ring carbon atoms, more preferably an aromatic heterocyclic group having 5 to 20 ring carbon atoms, and further preferably a ring forming carbon number. 5 to 12 aromatic heterocyclic groups. Preferred examples of the heterocyclic group include a pyridyl group, a furyl group, a thienyl group, a pyrazyl group, a pyrimidyl group, and a quinolyl group.
Examples of the substituent that the heterocyclic group may have include, for example, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 ring carbon atoms, and an aromatic heterocyclic group having 5 to 20 ring carbon atoms. A halogen atom, an acyl group, a carboxyl group, an ester group, a carbamoyl group, and at least one selected from these, in particular an aryl group having 6 to 20 ring carbon atoms, and an aromatic complex having 5 to 20 ring carbon atoms. A cyclic group is preferred.
 上記ハロゲン原子としては、いずれも、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でも、フッ素原子が好ましい。
 上記アシル基としては、いずれも、ホルミル基、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。
 上記エステル基としては、いずれも、-O-C(=O)-R[Rはアルキル基又はアリール基である。]で表されるものであり、メチルエステル基、エチルエステル基、ブチルエステル基等の炭素数1~10のアルキルエステル基や、フェニルエステル基等の環形成炭素数6~30のアリールエステル基が挙げられる。
 上記シリル基としては、例えば、トリアルキルシリル基、トリアリールシリル基、モノアルキルジアリールシリル基、ジアルキルモノアリールシリル基が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom is preferable.
Examples of the acyl group include formyl group, acetyl group, propionyl group, benzoyl group and the like.
Any of the ester groups is —O—C (═O) —R, where R is an alkyl group or an aryl group. An alkyl ester group having 1 to 10 carbon atoms such as a methyl ester group, an ethyl ester group or a butyl ester group, or an aryl ester group having 6 to 30 ring carbon atoms such as a phenyl ester group. Can be mentioned.
Examples of the silyl group include a trialkylsilyl group, a triarylsilyl group, a monoalkyldiarylsilyl group, and a dialkylmonoarylsilyl group.
 前記式(1)で表されるテトラセン誘導体におけるQ10、Q20、Q30及びQ40の1つ以上が置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基であることが好ましく、2つ以上が置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基であることが好ましく、2つ又は4つが置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基であることが好ましい。なお、Q10、Q20、Q30及びQ40のうちの2つが置換もしくは無置換の環形成炭素数6~30のアリール基である場合、Q20及びQ30が置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基であることが好ましい。Q10、Q20、Q30及びQ40のうちの2つが置換もしくは無置換の環形成炭素数5~30の複素環基である場合、Q20及びQ30が置換もしくは無置換の環形成炭素数5~30の複素環基であることが好ましい。
 特に、上記の場合、Q10、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140はすべてが水素である場合が好ましい。
 より好ましくは、Q20及びQ30が置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基で、Q10、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140がすべて水素である場合が好ましい。
In the tetracene derivative represented by the formula (1), at least one of Q 10 , Q 20 , Q 30 and Q 40 is a substituted or unsubstituted ring group having 6 to 30 carbon atoms, a substituted or unsubstituted ring Preferably, it is a heterocyclic group having 5 to 30 carbon atoms, preferably two or more substituted or unsubstituted aryl groups having 6 to 30 ring carbon atoms, substituted or unsubstituted heterocyclic groups having 5 to 30 ring carbon atoms. A ring group is preferable, and two or four are preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms. . When two of Q 10 , Q 20 , Q 30 and Q 40 are substituted or unsubstituted aryl groups having 6 to 30 ring carbon atoms, Q 20 and Q 30 form a substituted or unsubstituted ring. An aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms are preferable. When two of Q 10 , Q 20 , Q 30 and Q 40 are substituted or unsubstituted heterocyclic groups having 5 to 30 ring carbon atoms, Q 20 and Q 30 are substituted or unsubstituted ring forming carbon atoms. A heterocyclic group of several 5 to 30 is preferable.
In particular, in the above case, it is preferable that Q 10 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are all hydrogen.
More preferably, Q 20 and Q 30 are a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms, Q 10 , Q 40 , It is preferred that Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are all hydrogen.
 前記式(1)で表されるテトラセン誘導体としては、下記式(1-1)で表されるテトラセン誘導体が好ましいものの1つである。
Figure JPOXMLDOC01-appb-C000017
As the tetracene derivative represented by the formula (1), a tetracene derivative represented by the following formula (1-1) is a preferred one.
Figure JPOXMLDOC01-appb-C000017
 前記式(1-1)中、Q10、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140は、前記定義のとおりであり、好ましいものも同じで、特にすべてが水素である場合がより好ましい。
 Q21~Q25及びQ31~Q35は、Q10の定義と同じであり、好ましいものも同じである。但し、Q21~Q25、Q31~Q35は、隣接する2個以上が互いに結合して環を形成してもよい。特に、2環以上が縮合した縮合芳香族環、2環以上が縮合した縮合芳香族複素環が好ましい。
 Q21、Q25及びQ31、Q35は、無置換置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基であることが好まし。より好ましくは、単環のアリール基、単環の複素環基であり、フェニル基、ピリジル基、ピリミジン基、ピリミジン基、ピラジン基、トリアジン基が好ましい。
In the formula (1-1), Q 10 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are as defined above, and preferred ones More preferably, all are hydrogen, in particular.
Q 21 to Q 25 and Q 31 to Q 35 are the same as defined for Q 10 , and preferred ones are also the same. However, two or more adjacent Q 21 to Q 25 and Q 31 to Q 35 may be bonded to each other to form a ring. In particular, a condensed aromatic ring in which two or more rings are condensed, and a condensed aromatic heterocyclic ring in which two or more rings are condensed are preferable.
Q 21 , Q 25 and Q 31 , Q 35 are preferably an unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms. . A monocyclic aryl group and a monocyclic heterocyclic group are more preferable, and a phenyl group, a pyridyl group, a pyrimidine group, a pyrimidine group, a pyrazine group, and a triazine group are preferable.
 前記式(1-1)で表されるテトラセン誘導体におけるQ21、Q25、Q31、Q35のうちの1つ以上、好ましくはQ21又はQ25とQ31又はQ35の2つが、水素原子以外の基であることが好ましく、置換もしくは無置換の環形成炭素数6~30のアリール基であることがより好ましく、置換もしくは無置換のフェニル基であることがさらに好ましい。
 このような構成であれば、前記式(1-1)で表されるテトラセン誘導体は、テトラセンに結合する2つのベンゼン環のオルト位のうち、少なくとも1つに置換基を有することになる。テトラセンに結合する2つのベンゼン環のオルト位に置換基を導入すると、導入された置換基とテトラセン骨格との間に立体障害が生じる。この立体障害により、導入された置換基は、テトラセン骨格の平面に対して面外方向を向くようになる。そして、面外方向に突き出た置換基により、テトラセン誘導体同士の会合が防止される。
 なお、Q21、Q25、Q31、Q35の2つ以上が水素原子以外の基である場合には、これらは同一でも異なるものであってもよい。また、これら隣接する2個以上が互いに結合して環を形成してもよい。
 また、テトラセンに結合する2つのベンゼン環の合計4つのオルト位のうち、2つ以上が水素原子以外の基で置換されていることが好ましい。
 本発明では、前記式(1-1)で表されるテトラセン誘導体におけるQ21、Q25の1つ以上は置換もしくは無置換のアリール基又は置換もしくは無置換の複素環基であり、Q31、Q35の1つ以上は置換もしくは無置換の環形成炭素数6~30のアリール基又は置換もしくは無置換の複素環基であることが好ましい。
One or more of Q 21 , Q 25 , Q 31 and Q 35 in the tetracene derivative represented by the formula (1-1), preferably two of Q 21 or Q 25 and Q 31 or Q 35 are hydrogen It is preferably a group other than an atom, more preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, and further preferably a substituted or unsubstituted phenyl group.
With such a configuration, the tetracene derivative represented by the formula (1-1) has a substituent in at least one of the ortho positions of the two benzene rings bonded to tetracene. When a substituent is introduced at the ortho position of two benzene rings bonded to tetracene, a steric hindrance occurs between the introduced substituent and the tetracene skeleton. Due to this steric hindrance, the introduced substituents are directed out of plane with respect to the plane of the tetracene skeleton. And the association of tetracene derivatives is prevented by the substituent protruding in the out-of-plane direction.
In addition, when two or more of Q 21 , Q 25 , Q 31 and Q 35 are groups other than hydrogen atoms, these may be the same or different. Two or more adjacent ones may be bonded to each other to form a ring.
Moreover, it is preferable that two or more of the total four ortho positions of the two benzene rings bonded to tetracene are substituted with a group other than a hydrogen atom.
In the present invention, at least one of Q 21 and Q 25 in the tetracene derivative represented by the formula (1-1) is a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and Q 31 , One or more of Q 35 are preferably a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heterocyclic group.
 前記式(1-1)で表されるテトラセン誘導体としては、以下から選択される少なくとも1種を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000018
As the tetracene derivative represented by the formula (1-1), it is preferable to use at least one selected from the following.
Figure JPOXMLDOC01-appb-C000018
 また、前記式(1)で表されるテトラセン誘導体は、下記式(1-2)で表されるテトラセン誘導体が好ましいものの1つである。
Figure JPOXMLDOC01-appb-C000019
Further, the tetracene derivative represented by the above formula (1) is one of the preferred tetracene derivatives represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000019
 前記式(1-2)中、Q10、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130、Q140は前記定義のとおりであり、好ましいものも同じである。特にすべてが水素である場合がより好ましい。
 Q151~Q155及びQ161~Q165は、Q10の定義と同じであり、好ましいものも同じである。但し、Q152~Q155及びQ162~Q165は、隣接する2個以上が互いに結合して環を形成してもよい。特にQ152~Q155及びQ162~Q165のすべてが水素である場合がより好ましい。Q151およびQ161は無置換置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数5~30の複素環基であることが好まし。より好ましくは、単環のアリール基、単環の複素環基であり、フェニル基、ピリジル基、ピリミジン基、ピリミジン基、ピラジン基、トリアジン基が好ましい。
 Xは、酸素原子、硫黄原子又は-NR21-(R21は、水素原子、炭素数1~20のアルキル基、環形成炭素数3~20のシクロアルキル基、環形成原子数5~20の複素環基又は環形成炭素数6~20のアリール基である。)である。
 R21が表すアルキル基は、好ましくは炭素数1~10のアルキル基、より好ましくは炭素数1~5のアルキル基である。R21が表すシクロアルキル基は、好ましくは環形成炭素数3~10のシクロアルキル基、より好ましくは環形成炭素数5~8のシクロアルキル基である。R21が表すアリール基は、好ましくは環形成炭素数6~14のアリール基であり、より好ましくは環形成炭素数6~12のアリール基である。
In the formula (1-2), Q 10 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 , Q 140 are as defined above, and preferable ones are also the same. It is. In particular, the case where all are hydrogen is more preferable.
Q 151 to Q 155 and Q 161 to Q 165 have the same definition as Q 10 , and preferred ones are also the same. However, two or more adjacent Q 152 to Q 155 and Q 162 to Q 165 may be bonded to each other to form a ring. In particular, it is more preferable that all of Q 152 to Q 155 and Q 162 to Q 165 are hydrogen. Q 151 and Q 161 are preferably an unsubstituted aryl group having 6 to 30 ring carbon atoms and a substituted or unsubstituted heterocyclic group having 5 to 30 ring carbon atoms. A monocyclic aryl group and a monocyclic heterocyclic group are more preferable, and a phenyl group, a pyridyl group, a pyrimidine group, a pyrimidine group, a pyrazine group, and a triazine group are preferable.
X is an oxygen atom, sulfur atom, or —NR 21 — (R 21 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 ring carbon atoms, or an aryl group having 5 to 20 ring atoms. A heterocyclic group or an aryl group having 6 to 20 ring carbon atoms.).
The alkyl group represented by R 21 is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. The cycloalkyl group represented by R 21 is preferably a cycloalkyl group having 3 to 10 ring carbon atoms, and more preferably a cycloalkyl group having 5 to 8 ring carbon atoms. The aryl group represented by R 21 is preferably an aryl group having 6 to 14 ring carbon atoms, and more preferably an aryl group having 6 to 12 ring carbon atoms.
 前記式(1-2)で表されるテトラセン誘導体としては、以下から選択される少なくとも1種を用いることが好ましい。 As the tetracene derivative represented by the formula (1-2), it is preferable to use at least one selected from the following.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
〔ドーパント材料〕
 前述のとおり、ドーパント材料としては、下記一般式(2)で表される化合物が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000025
[Dopant material]
As described above, the dopant material is preferably a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000025
 前記式(2)中、R15~R21のうち少なくとも一つは芳香環を含む置換基かあるいは隣接置換基との間に縮合環を形成し、残りはそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン原子、ハロアルキル基、ハロアルケニル基、ハロアルキニル基、シアノ基、アシル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環及び脂肪族環の中から選ばれる。R15~R21は同一でも異なったものであってもよく、置換基を有していてもよい。Xは炭素又は窒素であるが、窒素の場合には上記-R21は存在しない。
 金属錯体の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。該金属としては、ホウ素が好ましい。
In the formula (2), at least one of R 15 to R 21 forms a condensed ring with a substituent containing an aromatic ring or an adjacent substituent, and the rest are each independently a hydrogen atom, an alkyl group, Cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen atom, haloalkyl group, halo Alkenyl group, haloalkynyl group, cyano group, acyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, condensed ring and aliphatic ring formed between adjacent substituents Chosen from. R 15 to R 21 may be the same or different, and may have a substituent. X is carbon or nitrogen, but in the case of nitrogen, the above -R 21 does not exist.
The metal of the metal complex is at least one selected from boron, beryllium, magnesium, chromium, iron, cobalt, nickel, copper, zinc, and platinum. As the metal, boron is preferable.
 置換基を有してもよいアルキル基としては、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~10のアルキル基、さらに好ましくは炭素数1~5のアルキル基である。該アルキル基は、直鎖でも分岐していてもよいし、第一級アルキル基、第二級アルキル基、第三級アルキル基のいずれでもよい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基が挙げられる。
 置換基を有してもよいアリール基としては、好ましくは炭素数6~30のアリール基、より好ましくは炭素数6~20のアリール基である。具体的には、フェニル基、フェニルフェニル基(4-フェニルフェニル基、3-フェニルフェニル基、2-フェニルフェニル基)、ナフチルフェニル基(4-(1-ナフチル)フェニル基、4-(2-ナフチル)フェニル基)、ナフチル基(1-ナフチル基、2-ナフチル基)、フェニルナフチル基(6-フェニル-2-ナフチル基、4-フェニル-1-ナフチル基)、ナフチルナフチル基(6-ナフチル-2-ナフチル基、4-ナフチル-1-ナフチル基)、アントリル基、フェナントリル基、ピレニル基、クリセニル基が挙げられる。
The alkyl group which may have a substituent is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and still more preferably an alkyl group having 1 to 5 carbon atoms. The alkyl group may be linear or branched, and may be any of a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n -Octyl group, n-nonyl group, n-decyl group.
The aryl group which may have a substituent is preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms. Specifically, phenyl group, phenylphenyl group (4-phenylphenyl group, 3-phenylphenyl group, 2-phenylphenyl group), naphthylphenyl group (4- (1-naphthyl) phenyl group, 4- (2- Naphthyl) phenyl group), naphthyl group (1-naphthyl group, 2-naphthyl group), phenylnaphthyl group (6-phenyl-2-naphthyl group, 4-phenyl-1-naphthyl group), naphthylnaphthyl group (6-naphthyl group) -2-naphthyl group, 4-naphthyl-1-naphthyl group), anthryl group, phenanthryl group, pyrenyl group, and chrysenyl group.
 アミノ基は、アミノ基、置換基を有してもよい炭素数1~20のモノアルキルアリール基、置換基を有してもよい炭素数1~20のジアルキルアリール基、置換基を有してもよい炭素数6~30のモノアリールアリール基、置換基を有してもよい炭素数6~30のビスアリールアリール基でもよい。具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジキシリルアミノ基等が挙げられる。
 置換基を有してもよいアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられ、中でも、炭素数1~20のアルコキシ基が好ましく、炭素数1~10のアルコキシ基がより好ましく、炭素数1~5のアルコキシ基がさらに好ましい。
 置換基を有してもよいアルキルチオ基としては、メチルチオ基、エチルチオ基等が挙げられ、中でも、炭素数1~20のアルキルチオ基が好ましく、炭素数1~10のアルキルチオ基がより好ましく、炭素数1~5のアルキルチオ基がさらに好ましい。
 置換基を有してもよいアリールオキシ基としては、フェノキシ基等が挙げられ、中でも、炭素数6~30のアリールオキシ基が好ましく、炭素数6~20のアリールオキシ基がより好ましく、炭素数6~12のアリールオキシ基がさらに好ましい。
 置換基を有してもよいアリールオキシチオ基としては、フェニルチオ基等が挙げられ、中でも、炭素数6~30のアリールチオ基が好ましく、炭素数6~20のアリールチオ基がより好ましく、炭素数6~12のアリールチオ基がさらに好ましい。
 置換基を有してもよいアルケニル基としては、ビニル基、プロペニル基等が挙げられ、中でも、炭素数2~20のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましく、炭素数2~5のアルケニル基がさらに好ましい。
 置換基を有してもよいアラルキル基としては、ベンジル基等が挙げられ、中でも、炭素数7~30のアラルキル基が好ましく、炭素数7~20のアラルキル基がより好ましく、炭素数7~12のアラルキル基がさらに好ましい。
 置換基を有してもよい複素環基としては、ピリジル基、フリル基、チエニル基、ピラジル基、ピリミジル基、キノリル基等が挙げられ、中でも、炭素数5~30の複素環基が好ましく、炭素数5~20の複素環基がより好ましく、炭素数5~12の複素環基がさらに好ましい。
The amino group has an amino group, a monoalkylaryl group having 1 to 20 carbon atoms which may have a substituent, a dialkylaryl group having 1 to 20 carbon atoms which may have a substituent, and a substituent. It may be a monoarylaryl group having 6 to 30 carbon atoms or a bisarylaryl group having 6 to 30 carbon atoms which may have a substituent. Specific examples include a dimethylamino group, a diethylamino group, a diphenylamino group, a ditolylamino group, and a dicylylamino group.
Examples of the alkoxy group which may have a substituent include a methoxy group, an ethoxy group, and a propoxy group. Among them, an alkoxy group having 1 to 20 carbon atoms is preferable, and an alkoxy group having 1 to 10 carbon atoms is more preferable. Further, an alkoxy group having 1 to 5 carbon atoms is more preferable.
Examples of the alkylthio group which may have a substituent include a methylthio group and an ethylthio group. Among them, an alkylthio group having 1 to 20 carbon atoms is preferable, an alkylthio group having 1 to 10 carbon atoms is more preferable, and More preferred are 1-5 alkylthio groups.
Examples of the aryloxy group which may have a substituent include a phenoxy group, among which an aryloxy group having 6 to 30 carbon atoms is preferable, an aryloxy group having 6 to 20 carbon atoms is more preferable, and More preferred are 6-12 aryloxy groups.
Examples of the aryloxythio group which may have a substituent include a phenylthio group. Among them, an arylthio group having 6 to 30 carbon atoms is preferable, an arylthio group having 6 to 20 carbon atoms is more preferable, and a carbon number of 6 More preferred are ˜12 arylthio groups.
Examples of the alkenyl group which may have a substituent include a vinyl group and a propenyl group. Among them, an alkenyl group having 2 to 20 carbon atoms is preferable, an alkenyl group having 2 to 10 carbon atoms is more preferable, and More preferred are 2 to 5 alkenyl groups.
Examples of the aralkyl group which may have a substituent include a benzyl group. Among them, an aralkyl group having 7 to 30 carbon atoms is preferable, an aralkyl group having 7 to 20 carbon atoms is more preferable, and an alkyl group having 7 to 12 carbon atoms is preferable. The aralkyl group is more preferable.
Examples of the heterocyclic group which may have a substituent include a pyridyl group, a furyl group, a thienyl group, a pyrazyl group, a pyrimidyl group, a quinolyl group, etc. Among them, a heterocyclic group having 5 to 30 carbon atoms is preferable. A heterocyclic group having 5 to 20 carbon atoms is more preferable, and a heterocyclic group having 5 to 12 carbon atoms is more preferable.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 ハロアルキル基、ハロアルケニル基、ハロアルキニル基としては、前記アルキル基、アルケニル基、アルキニル基に上記ハロゲン原子が置換したものが挙げられ、好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~5である。
 アシル基としては、いずれも、ホルミル基、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。該アシル基の炭素数は、好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10である。
 エステル基としては、いずれも、-O-C(=O)-R[Rはアルキル基又はアリール基である。]で表されるものであり、メチルエステル基、エチルエステル基、ブチルエステル基等の炭素数1~10(好ましくは1~5)のアルキルエステル基や、フェニルエステル基等の環形成炭素数6~30(好ましくは6~20、より好ましくは6~12)のアリールエステル基が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the haloalkyl group, haloalkenyl group, and haloalkynyl group include those in which the above halogen group is substituted on the alkyl group, alkenyl group, or alkynyl group, preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms. More preferably, it has 1 to 5 carbon atoms.
Examples of the acyl group include a formyl group, an acetyl group, a propionyl group, and a benzoyl group. The acyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
The ester groups are all —O—C (═O) —R, where R is an alkyl group or an aryl group. And an alkyl ester group having 1 to 10 carbon atoms (preferably 1 to 5) such as a methyl ester group, an ethyl ester group, or a butyl ester group, or a ring-forming carbon number such as a phenyl ester group 6 To 30 (preferably 6 to 20, more preferably 6 to 12) aryl ester groups.
 前記一般式(2)で表されるピロメテン骨格を有する化合物又はその金属錯体としては、下記式(2-1)で表されるピロメテン骨格を有する金属錯体であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
The compound having a pyromethene skeleton represented by the general formula (2) or a metal complex thereof is preferably a metal complex having a pyromethene skeleton represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000026
 前記式(2-1)中、R22~R28のうち少なくとも1つは芳香環を含む置換基かあるいは隣接置換基との間で縮合芳香環を形成し、残りはそれぞれ独立に水素原子、炭素数1~50のアルキル基、環形成炭素数3~50のシクロアルキル基、炭素数7~50のアラルキル基、炭素数2~50のアルケニル基、環形成炭素数3~50のシクロアルケニル基、炭素数2~50のアルキニル基、水酸基、メルカプト基、炭素数1~50のアルコキシ基、炭素数1~50のアルキルチオ基、環形成炭素数6~50のアリールエーテル基、環形成炭素数6~50のアリールチオエーテル基、環形成炭素数6~50のアリール基、環形成原子数6~50の複素環基、ハロゲン原子、ハロアルキル基、ハロアルケニル基、ハロアルキニル基、シアノ基、アルデヒド基、アシル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環及び脂肪族環の中から選ばれる。R22~R28は同一でも異なってもよく、置換基を有してもよい。
 R29及びR30は同じでも異なってもよく、ハロゲン原子、水素原子、置換基を有してよいアルキル基[好ましくは炭素数1~20(より好ましくは炭素数1~5)のパーフルオロアルキル基]、置換基を有してよいアルコキシル基[好ましくは炭素数1~20(より好ましくは炭素数1~5)の1H、1H-パーフルオロアルコキシ基]、置換基を有してもよいアリール基、置換基を有してもよいアリールオキシ基、置換基を有してもよい複素環基から選ばれる。また、R29とR30は繋がって環を形成していてもよい。
 Xは炭素又は窒素であるが、窒素の場合には上記-R28は存在しない。
 上記の置換基としては、いずれも、炭素数1~10のハロゲン化炭化水素及びハロゲン原子から選択される少なくとも一種が好ましく挙げられる。炭素数1~10のハロゲン化炭化水素としては、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等の炭素数1~10のパーフルオロアルキル基が好ましく挙げられ、炭素数1~6のハロゲン化炭化水素がより好ましく、炭素数1~6のパーフルオロアルキル基がさらに好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でもフッ素原子が好ましい。
 なお、式(2-1)中、ホウ素原子(B)と右上の窒素原子(N)とは配位結合しており、当該配位結合は点線で表している。
 各基の具体例や好ましいものは、前記一般式(2)における説明の場合と同じである。
In the formula (2-1), at least one of R 22 to R 28 forms a condensed aromatic ring with a substituent containing an aromatic ring or an adjacent substituent, and the rest are independently a hydrogen atom, An alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 ring carbon atoms, an aralkyl group having 7 to 50 carbon atoms, an alkenyl group having 2 to 50 carbon atoms, and a cycloalkenyl group having 3 to 50 carbon atoms. An alkynyl group having 2 to 50 carbon atoms, a hydroxyl group, a mercapto group, an alkoxy group having 1 to 50 carbon atoms, an alkylthio group having 1 to 50 carbon atoms, an aryl ether group having 6 to 50 ring carbon atoms, and 6 ring forming carbon atoms. Arylthioether group having ˜50, aryl group having 6 to 50 ring carbon atoms, heterocyclic group having 6 to 50 ring atoms, halogen atom, haloalkyl group, haloalkenyl group, haloalkynyl group, cyano group, al It is selected from a condensed ring and an aliphatic ring formed between a dehydride group, an acyl group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group, a siloxanyl group, and an adjacent substituent. R 22 to R 28 may be the same or different and may have a substituent.
R 29 and R 30 may be the same or different, and may be a halogen atom, a hydrogen atom, or an alkyl group which may have a substituent [preferably a perfluoroalkyl having 1 to 20 carbon atoms (more preferably 1 to 5 carbon atoms). Group], an alkoxyl group which may have a substituent [preferably a 1H, 1H-perfluoroalkoxy group having 1 to 20 carbon atoms (more preferably 1 to 5 carbon atoms)], an aryl which may have a substituent It is selected from a group, an aryloxy group which may have a substituent, and a heterocyclic group which may have a substituent. R 29 and R 30 may be connected to form a ring.
X is carbon or nitrogen, but in the case of nitrogen, the above -R 28 does not exist.
Preferred examples of the substituent include at least one selected from halogenated hydrocarbons having 1 to 10 carbon atoms and halogen atoms. Examples of the halogenated hydrocarbon having 1 to 10 carbon atoms include those having 1 to 10 carbon atoms such as a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group. A perfluoroalkyl group is preferred, a halogenated hydrocarbon having 1 to 6 carbon atoms is more preferred, and a perfluoroalkyl group having 1 to 6 carbon atoms is more preferred. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among them, a fluorine atom is preferable.
In the formula (2-1), the boron atom (B) and the upper right nitrogen atom (N) are coordinated, and the coordinate bond is represented by a dotted line.
Specific examples and preferred examples of each group are the same as those described in the general formula (2).
 本発明では、前記式(2-1)で表されるピロメテン骨格を有する金属錯体のR22~R28のうち少なくとも1つは芳香環を含む置換基であることが好ましい。
 本発明では、前記式(2-1)で表されるピロメテン骨格を有する金属錯体のR22~R28が隣接置換基との間で縮合芳香環を形成することが好ましい。
 本発明では、前記式(2-1)で表されるピロメテン骨格を有する金属錯体はR22~R24の隣接置換基同士で置換基を有してもよい縮合芳香環を形成すること及び/又はR25~R27の隣接置換基同士で置換基を有してもよい縮合芳香環を形成することが好ましい。
In the present invention, at least one of R 22 to R 28 of the metal complex having a pyromethene skeleton represented by the formula (2-1) is preferably a substituent containing an aromatic ring.
In the present invention, it is preferable that R 22 to R 28 of the metal complex having a pyromethene skeleton represented by the formula (2-1) form a condensed aromatic ring with an adjacent substituent.
In the present invention, the metal complex having a pyromethene skeleton represented by the formula (2-1) forms a condensed aromatic ring which may have a substituent between adjacent substituents of R 22 to R 24 and / or Alternatively, it is preferable to form a condensed aromatic ring which may have a substituent between adjacent substituents of R 25 to R 27 .
 前記一般式(2)で表されるピロメテン骨格を有する化合物又はその金属錯体としては、国際公開第2008/111554号の段落[0103]に挙げられたものや、国際公開第2010/084852号の段落[0060]~[0066]に挙げられたものから選択される少なくとも1種を用いることができるが、特に、以下から選択される少なくとも1種を用いることが好ましい。 Examples of the compound having a pyromethene skeleton represented by the general formula (2) or a metal complex thereof include those listed in paragraph [0103] of International Publication No. 2008/111554, paragraph of International Publication No. 2010/084852 Although at least one selected from those listed in [0060] to [0066] can be used, it is particularly preferable to use at least one selected from the following.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であれば発光層形成が容易であり、色度の調整が容易である。また、50nm以下であれば、駆動電圧が上昇する恐れが少ない。 The thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm. When the thickness is 5 nm or more, the light emitting layer can be easily formed and the chromaticity can be easily adjusted. Moreover, if it is 50 nm or less, there is little possibility that a drive voltage will rise.
(電子輸送帯域)
 電子輸送帯域は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい材料からなる。
 電子輸送帯域は、1層以上の電子輸送層からなるものである。特に、本発明においては、エネルギーギャップ3.2eV以上の材料を含有する領域を有しており、該領域が発光層と接する構成をとる。なお、該「領域」とは、「電子輸送帯域」の中の一部又は全部を占める層を指す。電子輸送帯域は、1層の電子輸送層(この場合、この層自体がエネルギーギャップ3.2eV以上の材料を含有する領域に相当する)であってもよいし、2層の電子輸送層[発光層から順に、第一電子輸送層(この第一電子輸送層がエネルギーギャップ3.2eV以上の材料を含有する領域に相当する)、第二電子輸送層]からなるものであってもよい。該第二電子輸送層と陰極の間に、さらに、第三、第四・・の電子輸送層があってもよい。なお、陰極に最も近い電子輸送層は、電子注入層と称されることもある。
 有機EL素子は、発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104~106V/cmの電界印加時に電子移動度が少なくとも10-5cm2/Vs以上であることが好ましい。
(Electronic transport band)
The electron transport zone is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and is made of a material having high electron mobility.
The electron transport zone is composed of one or more electron transport layers. In particular, the present invention has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer. The “region” refers to a layer that occupies a part or all of the “electron transport zone”. The electron transport zone may be a single electron transport layer (in this case, the layer itself corresponds to a region containing a material having an energy gap of 3.2 eV or more), or two electron transport layers [emission The first electron transport layer (the first electron transport layer corresponds to a region containing a material having an energy gap of 3.2 eV or more) and the second electron transport layer] may be sequentially formed from the layers. There may further be third, fourth,... Electron transport layers between the second electron transport layer and the cathode. Note that the electron transport layer closest to the cathode may be referred to as an electron injection layer.
In the organic EL element, since emitted light is reflected by an electrode (for example, a cathode), it is known that light emitted directly from the anode interferes with light emitted via reflection by the electrode. In order to efficiently use this interference effect, the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several μm. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6. The electron mobility is preferably at least 10 −5 cm 2 / Vs or more when an electric field of V / cm is applied.
 本発明の有機EL素子が有する電子輸送帯域は、前述のとおり、エネルギーギャップ3.2eV以上の材料を含有する領域を有しており、該領域が発光層と接している。
 エネルギーギャップ3.2eV以上の材料は、好ましくはエネルギーギャップ3.3eV以上の材料、より好ましくはエネルギーギャップ3.4eV以上の材料であり、好ましくはエネルギーギャップ3.9eV以下の材料、より好ましくはエネルギーギャップ3.8eV以下の材料、さらに好ましくはエネルギーギャップ3.7eV以下の材料、特に好ましくはエネルギーギャップ3.6eV以下の材料である。
 また、発光層と接している当該領域が含有する前記材料のイオン化ポテンシャル(Ip)は、前記発光層が含有するホスト材料のイオン化ポテンシャル(Ip)より、好ましくは0.3~0.8eV、より好ましくは0.3~0.7eV、さらに好ましくは0.4~0.7eV、特に好ましくは0.4~0.6eV大きい。
 発光層と接している当該領域が含有する前記材料のイオン化ポテンシャル(Ip)と、前記発光層が含有するドーパント材料のイオン化ポテンシャル(Ip)との差は、好ましくは0.3eV以下、より好ましくは0.2eV以下、さらに好ましくは0.1eV以下である。
 さらに、発光層と接している当該領域が含有する前記材料の電子親和力(Af)は、前記発光層が含有するホスト材料の電子親和力(Af)より、好ましくは0.2~0.7eV、より好ましくは0.3~0.7eV、さらに好ましくは0.4~0.7eV、特に好ましくは0.5~0.7eV小さい。
 電子輸送帯域が有するエネルギーギャップ3.2eV以上の材料を含有する領域の存在量に特に制限は無いが、好ましくは1~100質量%、より好ましくは5~100質量%、より好ましくは5~70質量%、より好ましくは5~50質量%、より好ましくは10~50質量%、さらに好ましくは10~45質量%である。
As described above, the electron transport zone of the organic EL device of the present invention has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
The material having an energy gap of 3.2 eV or more is preferably a material having an energy gap of 3.3 eV or more, more preferably a material having an energy gap of 3.4 eV or more, preferably a material having an energy gap of 3.9 eV or less, more preferably energy. A material having a gap of 3.8 eV or less, more preferably a material having an energy gap of 3.7 eV or less, and particularly preferably a material having an energy gap of 3.6 eV or less.
Further, the ionization potential (Ip) of the material contained in the region in contact with the light emitting layer is preferably 0.3 to 0.8 eV, more preferably the ionization potential (Ip) of the host material contained in the light emitting layer. Preferably it is 0.3 to 0.7 eV, more preferably 0.4 to 0.7 eV, particularly preferably 0.4 to 0.6 eV.
The difference between the ionization potential (Ip) of the material contained in the region in contact with the light emitting layer and the ionization potential (Ip) of the dopant material contained in the light emitting layer is preferably 0.3 eV or less, more preferably It is 0.2 eV or less, more preferably 0.1 eV or less.
Further, the electron affinity (Af) of the material contained in the region in contact with the light emitting layer is preferably 0.2 to 0.7 eV than the electron affinity (Af) of the host material contained in the light emitting layer. Preferably it is 0.3 to 0.7 eV, more preferably 0.4 to 0.7 eV, and particularly preferably 0.5 to 0.7 eV.
The abundance of the region containing the material having an energy gap of 3.2 eV or more in the electron transport zone is not particularly limited, but is preferably 1 to 100% by mass, more preferably 5 to 100% by mass, and more preferably 5 to 70%. The content is 5% by mass, more preferably 5 to 50% by mass, more preferably 10 to 50% by mass, and still more preferably 10 to 45% by mass.
 エネルギーギャップ3.2eV以上の材料の中でも、下記一般式(C)で表される化合物[以下、化合物(C)と略称することがある。]が好ましい。
   Ar11-Az   (C)
(式中、Ar11は、置換もしくは無置換のカルバゾリル基、又は置換もしくは無置換のカルバゾリル基が1つ以上置換した環形成炭素数6~36の芳香族炭化水素基である。Azは、置換又は無置換の環形成原子数6の含窒素複素環基である。)
Among materials having an energy gap of 3.2 eV or more, a compound represented by the following general formula (C) [hereinafter sometimes abbreviated as compound (C). ] Is preferable.
Ar 11 -Az (C)
(In the formula, Ar 11 represents a substituted or unsubstituted carbazolyl group or an aromatic hydrocarbon group having 6 to 36 ring carbon atoms substituted with one or more substituted or unsubstituted carbazolyl groups. Az represents a substituted Or an unsubstituted nitrogen-containing heterocyclic group having 6 ring atoms.)
 前記式(C)中、置換もしくは無置換のカルバゾリル基は、どの位置でAzと結合していてもよいが、中でも、9-位、つまり窒素原子で置換していることが好ましい。つまり、置換もしくは無置換のカルバゾリル基としては、置換もしくは無置換の9-カルバゾリル基であることが好ましい。これにより、一重項エネルギーと三重項エネルギーの差が小さくなる。結果として、発光層内で発生した三重項励起子を閉じ込めつつ、一重項エネルギーも小さいため、励起状態に対する安定性が確保され長寿命化に寄与すると考えられる。
 環形成炭素数6~36の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾアントリル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、トリフェニレニル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニリル基、ターフェニリル基、フルオランテニル基等が挙げられる。該芳香族炭化水素基としては、環形成炭素数6~30のものが好ましく、環形成炭素数6~20のものがより好ましく、環形成炭素数6~12のものがさらに好ましく、具体的には、フェニル基、ナフチル基、ビフェニリル基がより好ましく、フェニル基がさらに好ましい。
 置換基を有する芳香族炭化水素基としては、トリル基、キシリル基、9,9-ジメチルフルオレニル基等が好ましく挙げられる。
 また、Azが表す環形成原子数6の含窒素複素環基としては、好ましくは、ピリジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、より好ましくはピリミジニル基、ピラジニル基、トリアジニル基、さらに好ましくはピリミジニル基である。ピリミジニル基、ピラジニル基又はトリアジニル基を有する化合物(C)は、優れた電子注入輸送性能を示すことが期待でき、本発明のアミン化合物と組み合わせた際に素子中で電子と正孔のバランスが良好となり、有機EL素子の一層の高効率化及び長寿命化に寄与すると考えられる。
In the formula (C), the substituted or unsubstituted carbazolyl group may be bonded to Az at any position, and among them, the 9-position, that is, the nitrogen atom is preferable. That is, the substituted or unsubstituted carbazolyl group is preferably a substituted or unsubstituted 9-carbazolyl group. This reduces the difference between singlet energy and triplet energy. As a result, it is considered that the triplet excitons generated in the light emitting layer are confined and the singlet energy is small, so that the stability to the excited state is secured and the lifetime is increased.
Examples of the aromatic hydrocarbon group having 6 to 36 ring carbon atoms include phenyl, naphthyl, anthryl, phenanthryl, pyrenyl, chrysenyl, benzoanthryl, benzo [c] phenanthryl, benzo [ g] Examples include a chrycenyl group, a triphenylenyl group, a fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a biphenylyl group, a terphenylyl group, and a fluoranthenyl group. The aromatic hydrocarbon group preferably has 6 to 30 ring carbon atoms, more preferably 6 to 20 ring carbon atoms, still more preferably 6 to 12 ring carbon atoms, specifically Is more preferably a phenyl group, a naphthyl group, or a biphenylyl group, and more preferably a phenyl group.
Preferred examples of the aromatic hydrocarbon group having a substituent include a tolyl group, a xylyl group, and a 9,9-dimethylfluorenyl group.
The nitrogen-containing heterocyclic group having 6 ring-forming atoms represented by Az is preferably a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, more preferably a pyrimidinyl group, a pyrazinyl group, a triazinyl group, and more preferably a pyrimidinyl group. It is a group. The compound (C) having a pyrimidinyl group, a pyrazinyl group or a triazinyl group can be expected to show excellent electron injection and transport performance, and has a good balance of electrons and holes in the device when combined with the amine compound of the present invention. Therefore, it is considered that it contributes to further increase in efficiency and life of the organic EL element.
 式(C)で表されるアジン系化合物において、各基の置換基としては、後述する式(C-1)中のR11~R18が表す、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数7~30のアラルキル基、環形成炭素数6~30のアリールオキシ基、炭素数3~30のアルキルシリル基、炭素数8~40のジアルキルアリールシリル基、炭素数13~50のアルキルジアリールシリル基、炭素数18~60のトリアリールシリル基、環形成炭素数6~30の芳香族炭化水素基、環形成原子数5~30の芳香族複素環基、炭素数1~30のハロアルキル基、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシ基から選択される少なくとも一種が挙げられ、これら各基の好ましいものも後述するR11~R18にて説明するとおりである。
 なお、Azの置換基としては、その中でも好ましくは、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数7~30のアラルキル基、環形成炭素数6~30のアリールオキシ基、環形成炭素数6~30の芳香族炭化水素基、環形成原子数5~30の芳香族複素環基であり、より好ましくは、環形成炭素数6~30の芳香族炭化水素基、環形成原子数5~30の芳香族複素環基であり、こられ各基のさらに好ましいものは後述するR11~R18にて説明するとおりである。特に、Azの置換基としての環形成炭素数6~30の芳香族炭化水素基としては、好ましくは環形成炭素数6~12の芳香族炭化水素基であり、より好ましくはフェニル基、ビフェニリル基、ナフチル基であり、さらに好ましくはフェニル基、ビフェニリル基である。また、特に、Azの置換基としての環形成原子数5~30の芳香族複素環基としては、好ましくは環形成原子数5~10の芳香族複素環基であり、より好ましくはピリジル基、ピリミジニル基、カルバゾリル基(好ましくは9-カルバゾリル基)である。
 Ar11又はAzが置換基を有す場合、その数は、1つ又は2つでもよいし、3つ以上であってもよいが、好ましくは1つ又は2つである。また、Az及びAr11は、置換基を有していないものも好ましい。
In the azine-based compound represented by the formula (C), the substituent of each group is an alkyl group having 1 to 30 carbon atoms represented by R 11 to R 18 in the formula (C-1) described later, 1 to 30 alkoxy groups, 7 to 30 aralkyl groups, 6 to 30 ring-forming aryloxy groups, 3 to 30 alkylsilyl groups, 8 to 40 dialkylarylsilyl groups, carbon An alkyldiarylsilyl group having 13 to 50 carbon atoms, a triarylsilyl group having 18 to 60 carbon atoms, an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, an aromatic heterocyclic group having 5 to 30 ring atoms, carbon 1-30 haloalkyl group, a halogen atom, a hydroxyl group, a nitro group, a cyano group, and at least one selected from a carboxy group, be described in R 11 ~ R 18, which will be described later ones of these preferred of the groups It is as.
Among them, the substituent of Az is preferably an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an aryl having 6 to 30 ring carbon atoms. An oxy group, an aromatic hydrocarbon group having 6 to 30 ring carbon atoms, and an aromatic heterocyclic group having 5 to 30 ring atoms, more preferably an aromatic hydrocarbon group having 6 to 30 ring carbon atoms. And an aromatic heterocyclic group having 5 to 30 ring atoms, and more preferable examples of these groups are as described in R 11 to R 18 described later. In particular, the aromatic hydrocarbon group having 6 to 30 ring carbon atoms as the substituent for Az is preferably an aromatic hydrocarbon group having 6 to 12 ring carbon atoms, more preferably a phenyl group or a biphenylyl group. A naphthyl group, more preferably a phenyl group or a biphenylyl group. In particular, the aromatic heterocyclic group having 5 to 30 ring atoms as a substituent for Az is preferably an aromatic heterocyclic group having 5 to 10 ring atoms, more preferably a pyridyl group, A pyrimidinyl group and a carbazolyl group (preferably a 9-carbazolyl group).
When Ar 11 or Az has a substituent, the number thereof may be one or two, or three or more, but preferably one or two. Az and Ar 11 preferably have no substituent.
 上記一般式(C)で表される化合物の中でも、一重項エネルギーと三重項エネルギーの差が小さくなるために下記一般式(C-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000038
(式中、kは1~3の整数である。nは0~3の整数である。Azは前記定義のとおりである。R11~R18はそれぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の芳香族複素環基、置換もしくは無置換の炭素数1~30の直鎖、分岐、もしくは環状のアルキル基、置換もしくは無置換の炭素数1~30のアルコキシ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の炭素数1~30のハロアルキル基、置換もしくは無置換の炭素数1~30のハロアルコキシ基、置換もしくは無置換の炭素数3~30のアルキルシリル基、置換もしくは無置換の炭素数8~40のジアルキルアリールシリル基、置換もしくは無置換の炭素数13~50のアルキルジアリールシリル基、置換もしくは無置換の炭素数18~60のトリアリールシリル基、置換もしくは無置換の炭素数2~30のアルケニル基、置換もしくは無置換の炭素数2~30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又はカルボキシ基である。)
Among the compounds represented by the general formula (C), a compound represented by the following general formula (C-1) is preferable because the difference between singlet energy and triplet energy is small.
Figure JPOXMLDOC01-appb-C000038
(Wherein k is an integer of 1 to 3. n is an integer of 0 to 3. Az is as defined above. R 11 to R 18 are each independently a hydrogen atom, substituted or unsubstituted. An aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted straight chain or branched chain having 1 to 30 carbon atoms, Or a cyclic alkyl group, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, and a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms. Substituted or unsubstituted haloalkyl groups having 1 to 30 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 30 carbon atoms, substituted or unsubstituted alkylsilyl groups having 3 to 30 carbon atoms, substituted or unsubstituted 8 to 8 carbon atoms 40 dialkylarylsilyl groups, substituted or unsubstituted alkyldiarylsilyl groups having 13 to 50 carbon atoms, substituted or unsubstituted triarylsilyl groups having 18 to 60 carbon atoms, substituted or unsubstituted 2 to 30 carbon atoms An alkenyl group, a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, a halogen atom, a cyano group, a hydroxyl group, a nitro group, or a carboxy group.)
 電子の電導準位がより適切になると考えられることから、kは2であることが好ましい。
 置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基は、式(C)における説明と同じように説明される。
 環形成原子数5~30の芳香族複素環基(ヘテロアリール基)は、好ましくは環形成原子数が5~20であり、より好ましくは環形成原子数が5~14である。なお、芳香族複素環基は、芳香族環と芳香族複素環が連結したものをも含む。
 芳香族複素環基の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2-a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられる。中でも、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基である。
K is preferably 2 because it is considered that the conduction level of electrons becomes more appropriate.
The substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms is explained in the same manner as in the formula (C).
The aromatic heterocyclic group (heteroaryl group) having 5 to 30 ring atoms preferably has 5 to 20 ring atoms, and more preferably 5 to 14 ring atoms. The aromatic heterocyclic group includes those in which an aromatic ring and an aromatic heterocyclic ring are connected.
Specific examples of the aromatic heterocyclic group include pyrrolyl group, pyrazolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, pyridyl group, triazinyl group, indolyl group, isoindolyl group, imidazolyl group, benzimidazolyl group, indazolyl group, imidazolo [ 1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, benzothiophenyl group, dibenzothiophenyl group, azadibenzothiophenyl group Quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphthyridinyl group, carbazolyl group, azacarbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group , Oxazolyl group, oxadiazolyl group, furazanyl group, benzoxazolyl group, thienyl group, thiazolyl group, thiadiazolyl group, benzothiazolyl group, triazolyl group, tetrazolyl group, and the like. Among these, a dibenzofuranyl group, a dibenzothiophenyl group, and a carbazolyl group are preferable.
 炭素数1~30のアルキル基としては、直鎖状、分岐状及び環状のアルキル基がある。直鎖状及び分岐状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 環状アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。
 炭素数1~30のアルコキシ基は、-OYと表され、Yの例として上記のアルキルの例が挙げられる。具体的なアルコキシ基の例としては、メトキシ基、エトキシ基等が挙げられる。
 環形成炭素数6~30のアリールオキシ基は、-OZで表わされ、Zの例としては上記アリール基が挙げられる。具体的なアリールオキシ基の例としては、例えばフェノキシ基、ナフチルオキシ基等が挙げられる。
 炭素数7~30のアラルキル基は、例えば「-Y-Z」と表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。例えば、ベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基等が挙げられる。
 炭素数1~30のハロアルキル基としては、上述した炭素数1~30のアルキル基に1つ以上のハロゲン原子(フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。)が置換した基が挙げられる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、ペンタフルオロエチル基等が挙げられる。好ましくは、トリフルオロメチル基、ペンタフルオロエチル基である。
 炭素数1~30のハロアルコキシ基としては、上記アルコキシ基に1つ以上のハロゲン原子(フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。)が置換した基が挙げられる。好ましくは、トリフルオロメトキシ基である。
Examples of the alkyl group having 1 to 30 carbon atoms include linear, branched and cyclic alkyl groups. Examples of linear and branched alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl. Group, n-heptyl group, n-octyl group and the like.
Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
The alkoxy group having 1 to 30 carbon atoms is represented as —OY, and examples of Y include the above alkyl examples. Specific examples of the alkoxy group include a methoxy group and an ethoxy group.
The aryloxy group having 6 to 30 ring carbon atoms is represented by —OZ, and examples of Z include the above aryl groups. Specific examples of the aryloxy group include a phenoxy group and a naphthyloxy group.
The aralkyl group having 7 to 30 carbon atoms is represented by, for example, “—YZ”. Examples of Y include alkylene examples corresponding to the above alkyl examples, and examples of Z include the above aryl examples. Can be mentioned. For example, benzyl group, phenylethyl group, 2-phenylpropan-2-yl group and the like can be mentioned.
Examples of the haloalkyl group having 1 to 30 carbon atoms include one or more halogen atoms (including a fluorine atom, a chlorine atom and a bromine atom, preferably a fluorine atom) in the above-described alkyl group having 1 to 30 carbon atoms. Examples include substituted groups. Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, and a pentafluoroethyl group. Preferably, they are a trifluoromethyl group and a pentafluoroethyl group.
Examples of the haloalkoxy group having 1 to 30 carbon atoms include groups in which one or more halogen atoms (including fluorine, chlorine and bromine atoms, preferably fluorine atoms) are substituted on the above alkoxy group. . Preferably, it is a trifluoromethoxy group.
 炭素数3~30のアルキルシリル基は、-Si(Ra)(Rb)(Rc)と表され、(Ra)、(Rb)及び(Rc)の例としては上述したアルキル基が挙げられる。具体的には、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。
 炭素数8~40のジアルキルアリールシリル基は、-Si(Ra)(Rb)(Arc)と表され、(Ra)及び(Rb)の例として上述したアルキル基が挙げられ、(Arc)の例としては、上述したアリール基が挙げられる。具体的には、フェニルジメチルシリル基等が挙げられる。
 炭素数13~50のアルキルジアリールシリル基は、-Si(Ra)(Arb)(Arc)と表され、(Ra)の例として上述したアルキル基が挙げられ、(Arb)及び(Arc)の例としては、上述したアリール基が挙げられる。具体的には、メチルジフェニルシリル基等が挙げられる。
 炭素数18~60のトリアリールシリル基は、-Si(Ara)(Arb)(Arc)と表され、(Ara)、(Arb)及び(Arc)の例としては、上述したアリール基が挙げられる。具体的には、トリフェニルシリル基等が挙げられる。
 炭素数2~30のアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ペンタジエニル基、ヘキセニル基、ヘキサジエニル基、ヘプテニル基、オクテニル基、オクタジエニル基、2-エチルヘキセニル基、デセニル基等が挙げられる。
 炭素数2~30のアルキニル基としては、エチニル基、メチルエチニル基等が挙げられる。
 式(c-1)中のR11~R18は、電子の電導準位がより適切になると考えられるために、水素原子であることが好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、好ましくはフッ素原子である。
The alkylsilyl group having 3 to 30 carbon atoms is represented by —Si (R a ) (R b ) (R c ), and examples of (R a ), (R b ) and (R c ) include the alkyl groups described above. Groups. Specific examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, and a propyldimethylsilyl group.
The dialkylarylsilyl group having 8 to 40 carbon atoms is represented by —Si (R a ) (R b ) (Ar c ), and examples of (R a ) and (R b ) include the alkyl groups described above. Examples of (Ar c ) include the aryl groups described above. Specific examples include a phenyldimethylsilyl group.
The alkyldiarylsilyl group having 13 to 50 carbon atoms is represented by —Si (R a ) (Ar b ) (Ar c ), and examples of (R a ) include the alkyl groups described above, and (Ar b ) and Examples of (Ar c ) include the aryl groups described above. Specific examples include a methyldiphenylsilyl group.
The triarylsilyl group having 18 to 60 carbon atoms is represented as —Si (Ar a ) (Ar b ) (Ar c ), and examples of (Ar a ), (Ar b ) and (Ar c ) And aryl groups. Specific examples include a triphenylsilyl group.
Examples of the alkenyl group having 2 to 30 carbon atoms include vinyl, propenyl, butenyl, pentenyl, pentadienyl, hexenyl, hexadienyl, heptenyl, octenyl, octadienyl, 2-ethylhexenyl, decenyl, etc. Is mentioned.
Examples of the alkynyl group having 2 to 30 carbon atoms include an ethynyl group and a methylethynyl group.
R 11 to R 18 in the formula (c-1) are preferably hydrogen atoms because the conduction level of electrons is considered to be more appropriate.
As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, Preferably it is a fluorine atom.
 さらに、式(C-1)のAzが、下記式(2c)で表される基であることが好ましい。これにより、分子の安定性が向上すると考えられる。
Figure JPOXMLDOC01-appb-C000039
(式(2c)中、X1~X3はそれぞれ独立に、窒素原子又はCHであり、X1~X3のうち少なくとも2つは窒素原子である。
 Ar12及びAr13はそれぞれ独立に、置換又は無置換の環形成炭素数6~18の芳香族炭化水素基である。)
Further, Az in the formula (C-1) is preferably a group represented by the following formula (2c). This is thought to improve the stability of the molecule.
Figure JPOXMLDOC01-appb-C000039
(In Formula (2c), X 1 to X 3 are each independently a nitrogen atom or CH, and at least two of X 1 to X 3 are nitrogen atoms.
Ar 12 and Ar 13 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 18 ring carbon atoms. )
 前記一般式(2c)中、電子の電導準位がより適切になると考えられることから、上記式(2c)中のX1及びX2が窒素原子であり、X3がCHであることが好ましい。
 Ar12、Ar13は環形成炭素数6~20のものが好ましく、環形成炭素数6~12のものがさらに好ましく、具体的には、フェニル基、ナフチル基、ビフェニルイル基、9,9-ジメチルフルオレニル基が好ましい。
 また、上記式(2c)中のAr12の炭素数が、Ar13の炭素数以下であることが好ましい。これにより、製造が容易になると考えられる。
 特に、式(2c)中のAr12が、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基又は置換もしくは無置換のビフェニリル基であれば、基の分子量が小さく、蒸着時の熱負荷を軽減できることから安定した素子製造が可能であると考えられる。
 同様の観点から、Ar12が置換もしくは無置換のフェニル基であり、Ar13が置換もしくは無置換のビフェニリル基であるとより好ましい。
In the general formula (2c), since it is considered that the conduction level of electrons becomes more appropriate, it is preferable that X 1 and X 2 in the formula (2c) are nitrogen atoms and X 3 is CH. .
Ar 12 and Ar 13 are preferably those having 6 to 20 ring carbon atoms, more preferably those having 6 to 12 ring carbon atoms, specifically, phenyl group, naphthyl group, biphenylyl group, 9,9- A dimethylfluorenyl group is preferred.
The number of carbon atoms of Ar 12 in the formula (2c) is preferably less than or equal to the number of carbon atoms of Ar 13. Thereby, it is thought that manufacture becomes easy.
In particular, if Ar 12 in formula (2c) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group or a substituted or unsubstituted biphenylyl group, the molecular weight of the group is small, and the thermal load during vapor deposition Therefore, it is considered that stable device manufacturing is possible.
From the same viewpoint, it is more preferable that Ar 12 is a substituted or unsubstituted phenyl group and Ar 13 is a substituted or unsubstituted biphenylyl group.
 なお、式(C)で表される化合物については、国際公開第2011/148909号等を参照することができる。
 一般式(C)で表される化合物としては、以下から選択される少なくとも1種を用いることが好ましい。
In addition, about the compound represented by Formula (C), international publication 2011/148909 etc. can be referred.
As the compound represented by the general formula (C), it is preferable to use at least one selected from the following.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 上述したとおり、本発明では、発光層に隣接する前記領域の材料は、式(C)で表される化合物であることが好ましい。電子輸送帯域用の他の材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 化合物(C)以外の電子輸送帯域に用いられる材料としては、具体的には、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体が挙げられるが、特にこれらに限定されるものではない。また、正孔注入材料に電子受容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもできる。
As described above, in the present invention, the material of the region adjacent to the light emitting layer is preferably a compound represented by the formula (C). As another material for the electron transport zone, an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferable, and a nitrogen-containing ring derivative is particularly preferable. The nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
Specific examples of materials used in the electron transport zone other than the compound (C) include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, Although fluorenylidene methane, anthraquinodimethane, anthrone, etc. and derivatives thereof are mentioned, it is not particularly limited to these. Further, it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
 前記含窒素環誘導体としては、例えば、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール誘導体が好ましく挙げられる。
 特に、含窒素環誘導体としては、下記式(1)~(3)のいずれかで表されるベンゾイミダゾール誘導体が好ましい。
Preferred examples of the nitrogen-containing ring derivative include oxazole, thiazole, oxadiazole, thiadiazole, and triazole derivatives.
In particular, the nitrogen-containing ring derivative is preferably a benzimidazole derivative represented by any of the following formulas (1) to (3).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 上記式(1)~(3)中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
 R11及びR12は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~60のアリール基、置換もしくは無置換の環形成原子数5~60のヘテロアリール基、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基である。
 mは、0~5の整数であり、mが2以上の整数であるとき、複数のR11は互いに同一でも異なっていてもよい。また、隣接する複数のR11同士が互いに結合して、置換もしくは無置換の芳香族炭化水素環を形成していてもよい。
 Ar1は、置換もしくは無置換の環形成炭素数6~60のアリール基又は置換もしくは無置換の環形成原子数5~60のヘテロアリール基である。
 Ar2は、水素原子、炭素数1~20のアルキル基、ハロゲン原子が置換した炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~60のアリール基又は置換もしくは無置換の環形成原子数5~60のヘテロアリール基である。
 Ar3は、置換もしくは無置換の環形成炭素数6~60のアリーレン基又は置換もしくは無置換の環形成原子数5~60のヘテロアリーレン基である。
 L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~60のアリーレン基、置換もしくは無置換の環形成原子数9~60のヘテロ縮合環基又は置換もしくは無置換のフルオレニレン基である。
In the above formulas (1) to (3), Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
R 11 and R 12 each independently represents a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 60 ring atoms, or 1 to 20 carbon atoms. An alkyl group, an alkyl group having 1 to 20 carbon atoms substituted with a halogen atom, or an alkoxy group having 1 to 20 carbon atoms.
m is an integer of 0 to 5, and when m is an integer of 2 or more, the plurality of R 11 may be the same as or different from each other. Further, a plurality of adjacent R 11 may be bonded to each other to form a substituted or unsubstituted aromatic hydrocarbon ring.
Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 60 ring atoms.
Ar 2 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms substituted by a halogen atom, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted ring forming carbon atom having 6 to 6 carbon atoms. 60 aryl groups or substituted or unsubstituted heteroaryl groups having 5 to 60 ring atoms.
Ar 3 is a substituted or unsubstituted arylene group having 6 to 60 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 60 ring atoms.
L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 ring carbon atoms, or a substituted or unsubstituted hetero condensed ring group having 9 to 60 ring atoms. Or a substituted or unsubstituted fluorenylene group.
 mが2以上の整数であるときに隣接する複数のR11同士が互いに結合して表す置換もしくは無置換の芳香族炭化水素環としては、例えばベンゼン環、ナフタレン環、アントラセン環等が挙げられる。
 前記式(1)~(3)中、各基が有していてもよい置換基としては、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、炭素数7~30のアラルキル基、環形成炭素数6~30のアリールオキシ基、炭素数3~30のアルキルシリル基、炭素数8~40のジアルキルアリールシリル基、炭素数13~50のアルキルジアリールシリル基、炭素数18~60のトリアリールシリル基、環形成炭素数6~30の芳香族炭化水素基、環形成原子数5~30の芳香族複素環基、炭素数1~30のハロアルキル基、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、カルボキシ基から選択される少なくとも一種が挙げられる。これら各基の好ましいものは前記一般式(C-1)中のR11~R18の説明と同じである。
Examples of the substituted or unsubstituted aromatic hydrocarbon ring represented by a plurality of adjacent R 11 bonded to each other when m is an integer of 2 or more include a benzene ring, a naphthalene ring, and an anthracene ring.
In the formulas (1) to (3), the substituents that each group may have include an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and an aralkyl having 7 to 30 carbon atoms. Group, aryloxy group having 6 to 30 ring carbon atoms, alkylsilyl group having 3 to 30 carbon atoms, dialkylarylsilyl group having 8 to 40 carbon atoms, alkyldiarylsilyl group having 13 to 50 carbon atoms, 18 to carbon atoms 60 triarylsilyl groups, aromatic hydrocarbon groups having 6 to 30 ring carbon atoms, aromatic heterocyclic groups having 5 to 30 ring atoms, haloalkyl groups having 1 to 30 carbon atoms, halogen atoms, hydroxyl groups, Examples thereof include at least one selected from a nitro group, a cyano group, and a carboxy group. Preferable examples of these groups are the same as those described for R 11 to R 18 in formula (C-1).
 その他、本発明の有機EL素子は、ドナー性材料のドーピング(n)、アクセプター材料のドーピング(p)により、半導体性を備えた有機層を形成していてもよい。Nドーピングの代表例は、電子輸送層の材料にLiやCs等の金属をドーピングさせるものであり、Pドーピングの代表例は、正孔輸送層の材料にF4TCNQ等のアクセプター材料をドープするものである(例えば、特許第3695714号参照)。 In addition, in the organic EL element of the present invention, an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p). A typical example of N doping is to dope metals such as Li and Cs into the material of the electron transport layer, and a typical example of P doping is to dope acceptor materials such as F4TCNQ into the material of the hole transport layer. (For example, see Japanese Patent No. 3695714).
 また、電子輸送帯域用の他の材料としては、下記一般式(34)~(36)のいずれかで表される化合物を好ましく用いることもできる。
Figure JPOXMLDOC01-appb-C000050
(式中、Xは、窒素原子又は硫黄原子を含んだ縮合環である。Yは、単結合、アルキル基、アルキレン基、シクロアルキル基、アリール基、複素環基、シリル基、エーテル基、あるいはチオエーテル基のいずれか単独又は組み合わせたものである。qは2以上の自然数である。
 また、一般式(34)で表される化合物の分子量は480以上である。)
In addition, as another material for the electron transport zone, a compound represented by any one of the following general formulas (34) to (36) can also be preferably used.
Figure JPOXMLDOC01-appb-C000050
(In the formula, X is a condensed ring containing a nitrogen atom or a sulfur atom. Y is a single bond, an alkyl group, an alkylene group, a cycloalkyl group, an aryl group, a heterocyclic group, a silyl group, an ether group, or Any one or a combination of thioether groups, q is a natural number of 2 or more.
Moreover, the molecular weight of the compound represented by General formula (34) is 480 or more. )
Figure JPOXMLDOC01-appb-C000051
(式中、Aは、フェナントロリン骨格又はベンゾキノリン骨格を有する置換基である。Bは、下記式(35A)で表される構造を有するp価の有機基である。pは、2以上の自然数である。)
Figure JPOXMLDOC01-appb-C000051
(In the formula, A is a substituent having a phenanthroline skeleton or a benzoquinoline skeleton. B is a p-valent organic group having a structure represented by the following formula (35A). P is a natural number of 2 or more. .)
Figure JPOXMLDOC01-appb-C000052
(式中、R4とR5は、それぞれ独立に、アルキル基又はアリール基(フェニル基に縮合したアリール基を含む)である。lとmは、それぞれ独立に、0~5の自然数である。Zは、下記式(35B)から選ばれた少なくとも1種である。)
Figure JPOXMLDOC01-appb-C000052
(Wherein R 4 and R 5 are each independently an alkyl group or an aryl group (including an aryl group fused to a phenyl group), and l and m are each independently a natural number of 0 to 5). Z is at least one selected from the following formula (35B).)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
(式中、R6及びR7は、同じでも異なっていてもよく、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、シアノ基、アシル基、エステル基、カルバモイル基、アミノ基、シリル基、並びに隣接置換基との間に形成される縮合環である。Ar4は、アリール基又はヘテロアリール基である。)
Figure JPOXMLDOC01-appb-C000054
(Wherein R 6 and R 7 may be the same or different, and each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, A condensed ring formed between an alkylthio group, an aryl ether group, an aryl thioether group, an aryl group, a heteroaryl group, a cyano group, an acyl group, an ester group, a carbamoyl group, an amino group, a silyl group, and an adjacent substituent. Ar 4 is an aryl group or a heteroaryl group.)
 本発明の有機EL素子の好ましい形態に、陰極と接する電子輸送帯域の界面領域及び/又は電子輸送帯域中の陰極に近い部位に電子供与性ドーパント及び有機金属錯体の少なくともいずれかを有することも好ましい。このような構成によれば、有機EL素子におけるより一層の発光輝度の向上及び長寿命化が図られる。
 電子供与性ドーパントとしては、アルカリ金属、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属化合物、希土類金属、及び希土類金属化合物等から選ばれた少なくとも1種が挙げられる。
 有機金属錯体としては、アルカリ金属を含む有機金属錯体、アルカリ土類金属を含む有機金属錯体、及び希土類金属を含む有機金属錯体等から選ばれた少なくとも1種が挙げられる。
It is also preferable that the organic EL device of the present invention has at least one of an electron donating dopant and an organometallic complex in an interface region of the electron transport zone in contact with the cathode and / or a site in the electron transport zone near the cathode. . According to such a configuration, it is possible to further improve the light emission luminance and extend the life of the organic EL element.
Examples of the electron donating dopant include at least one selected from alkali metals, alkali metal compounds, alkaline earth metals, alkaline earth metal compounds, rare earth metals, rare earth metal compounds, and the like.
Examples of the organometallic complex include at least one selected from an organometallic complex containing an alkali metal, an organometallic complex containing an alkaline earth metal, an organometallic complex containing a rare earth metal, and the like.
 アルカリ金属としては、リチウム(Li)(仕事関数:2.93eV)、ナトリウム(Na)(仕事関数:2.36eV)、カリウム(K)(仕事関数:2.28eV)、ルビジウム(Rb)(仕事関数:2.16eV)、セシウム(Cs)(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。
 アルカリ土類金属としては、カルシウム(Ca)(仕事関数:2.9eV)、ストロンチウム(Sr)(仕事関数:2.0eV以上2.5eV以下)、バリウム(Ba)(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 希土類金属としては、スカンジウム(Sc)、イットリウム(Y)、セリウム(Ce)、テルビウム(Tb)、イッテルビウム(Yb)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 以上の金属のうち好ましい金属として挙げたものは、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子におけるより一層の発光輝度の向上及び長寿命化が可能である。
Examples of the alkali metal include lithium (Li) (work function: 2.93 eV), sodium (Na) (work function: 2.36 eV), potassium (K) (work function: 2.28 eV), rubidium (Rb) (work Function: 2.16 eV), cesium (Cs) (work function: 1.95 eV), and the like, and those having a work function of 2.9 eV or less are preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
Examples of the alkaline earth metal include calcium (Ca) (work function: 2.9 eV), strontium (Sr) (work function: 2.0 eV to 2.5 eV), barium (Ba) (work function: 2.52 eV). A work function of 2.9 eV or less is particularly preferable.
Examples of the rare earth metal include scandium (Sc), yttrium (Y), cerium (Ce), terbium (Tb), ytterbium (Yb) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
Among the above metals, those listed as preferred metals have particularly high reducing ability, and by adding a relatively small amount to the electron injection region, it is possible to further improve the light emission luminance and extend the life of the organic EL device. .
 アルカリ金属化合物としては、酸化リチウム(Li2O)、酸化セシウム(Cs2O)、酸化カリウム(K2O)等のアルカリ酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化セシウム(CsF)、フッ化カリウム(KF)等のアルカリハロゲン化物等が挙げられ、フッ化リチウム(LiF)、酸化リチウム(Li2O)、フッ化ナトリウム(NaF)が好ましい。
 アルカリ土類金属化合物としては、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)及びこれらを混合したストロンチウム酸バリウム(BaxSr1-xO)(0<x<1)、カルシウム酸バリウム(BaxCa1-xO)(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。
 希土類金属化合物としては、フッ化イッテルビウム(YbF3)、フッ化スカンジウム(ScF3)、酸化スカンジウム(ScO3)、酸化イットリウム(Y23)、酸化セリウム(Ce23)、フッ化ガドリニウム(GdF3)、フッ化テルビウム(TbF3)等が挙げられ、YbF3、ScF3、TbF3が好ましい。
Examples of the alkali metal compound include lithium oxide (Li 2 O), cesium oxide (Cs 2 O), alkali oxides such as potassium oxide (K 2 O), lithium fluoride (LiF), sodium fluoride (NaF), fluorine. Examples thereof include alkali halides such as cesium fluoride (CsF) and potassium fluoride (KF), and lithium fluoride (LiF), lithium oxide (Li 2 O), and sodium fluoride (NaF) are preferable.
Examples of the alkaline earth metal compound include barium oxide (BaO), strontium oxide (SrO), calcium oxide (CaO), and barium strontium oxide (Ba x Sr 1-x O) (0 <x <1), Examples thereof include barium calcium oxide (Ba x Ca 1-x O) (0 <x <1), and BaO, SrO, and CaO are preferable.
The rare earth metal compound, ytterbium fluoride (YbF 3), scandium fluoride (ScF 3), scandium oxide (ScO 3), yttrium oxide (Y 2 O 3), cerium oxide (Ce 2 O 3), gadolinium fluoride (GdF 3), include such terbium fluoride (TbF 3) is, YbF 3, ScF 3, TbF 3 are preferable.
 有機金属錯体としては、上記の通り、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも1つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、β-ジケトン類、アゾメチン類、及びそれらの誘導体等が好ましいが、これらに限定されるものではない。 The organometallic complex is not particularly limited as long as it contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion as a metal ion as described above. The ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyl oxazole, hydroxyphenyl thiazole, hydroxydiaryl thiadiazole, hydroxydiaryl thiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines, and derivatives thereof are preferred, but are not limited thereto.
 前記電子供与性ドーパント及び有機金属錯体の添加形態としては、界面領域に層状又は島状に形成することが好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパント及び有機金属錯体の少なくともいずれかを蒸着しながら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、有機物中に電子供与性ドーパント及び有機金属錯体の少なくともいずれかを分散する方法が好ましい。分散濃度は通常、モル比で有機物:電子供与性ドーパント及び/又は有機金属錯体=100:1~1:100であり、好ましくは5:1~1:5である。 The addition form of the electron donating dopant and the organometallic complex is preferably formed in a layered or island shape in the interface region. As a forming method, while depositing at least one of an electron donating dopant and an organometallic complex by a resistance heating vapor deposition method, an organic material as a light emitting material or an electron injection material for forming an interface region is simultaneously deposited, and an electron is deposited in the organic material. A method of dispersing at least one of the donor dopant and the organometallic complex is preferable. The dispersion concentration is usually organic substance: electron donating dopant and / or organometallic complex in a molar ratio of 100: 1 to 1: 100, preferably 5: 1 to 1: 5.
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm以上15nm以下で形成する。
 電子供与性ドーパント及び有機金属錯体の少なくともいずれかを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパント及び有機金属錯体の少なくともいずれかを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05~1nmで形成する。
 また、本発明の有機EL素子における、主成分と、電子供与性ドーパント及び有機金属錯体の少なくともいずれかの割合としては、モル比で、主成分:電子供与性ドーパント及び/又は有機金属錯体=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
In the case where at least one of the electron donating dopant and the organometallic complex is formed in a layered form, after forming the light emitting material or the electron injecting material that is the organic layer at the interface in a layered form, at least one of the electron donating dopant and the organometallic complex is formed. These are vapor-deposited by a resistance heating vapor deposition method alone, preferably with a layer thickness of 0.1 nm to 15 nm.
In the case where at least one of an electron donating dopant and an organometallic complex is formed in an island shape, a light emitting material or an electron injecting material which is an organic layer at the interface is formed in an island shape, and then the electron donating dopant and the organometallic complex are formed. At least one of them is vapor-deposited by a resistance heating vapor deposition method, preferably with an island thickness of 0.05 to 1 nm.
In the organic EL device of the present invention, the ratio of at least one of the main component and the electron donating dopant and the organometallic complex is, as a molar ratio, the main component: the electron donating dopant and / or the organometallic complex = 5. It is preferably 1 to 1: 5, and more preferably 2: 1 to 1: 2.
(陰極)
 陰極としては、電子注入・輸送層又は発光層に電子を注入するため、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属等が挙げられる。
 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μm、好ましくは50~200nmである。
(cathode)
As the cathode, in order to inject electrons into the electron injecting / transporting layer or the light emitting layer, a material having a small work function (4 eV or less) metal, an alloy, an electrically conductive compound and a mixture thereof are used. Specific examples of such electrode materials include sodium, sodium / potassium alloy, magnesium, lithium, magnesium / silver alloy, aluminum / aluminum oxide, aluminum / lithium alloy, indium, rare earth metal, and the like.
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
Here, when light emitted from the light emitting layer is taken out from the cathode, it is preferable that the transmittance with respect to the light emitted from the cathode is larger than 10%.
The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 1 μm, preferably 50 to 200 nm.
(絶縁層)
 有機EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することもできる。
 絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられ、これらの混合物や積層物を用いてもよい。
(Insulating layer)
Since organic EL elements apply an electric field to an ultrathin film, pixel defects are likely to occur due to leaks or shorts. In order to prevent this, an insulating thin film layer can be inserted between the pair of electrodes.
Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, silicon oxide, and oxide. Germanium, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, vanadium oxide, and the like may be used, and a mixture or laminate of these may be used.
〔有機EL素子の製造方法〕
 以上例示した材料及び形成方法により陽極、発光層、正孔輸送層、及び必要に応じて電子注入・輸送層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
 以下、透光性基板上に陽極/正孔輸送層/発光層/電子注入・輸送層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
 まず、適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次に、この陽極上に1層以上の正孔輸送層を順次設ける。正孔輸送層の形成は、真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔輸送層を形成する場合、その蒸着条件は使用する化合物(正孔輸送層の材料)、目的とする正孔輸送層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50~450℃、真空度10-7~10-3Torr、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚5nm~5μmの範囲で適宜選択することが好ましい。
[Method for producing organic EL element]
An organic EL element can be produced by forming an anode, a light emitting layer, a hole transport layer, and an electron injection / transport layer as required, and further forming a cathode by the materials and the formation methods exemplified above. Moreover, an organic EL element can also be produced from the cathode to the anode in the reverse order.
Hereinafter, an example of manufacturing an organic EL device having a structure in which an anode / hole transport layer / light emitting layer / electron injection / transport layer / cathode are sequentially provided on a translucent substrate will be described.
First, a thin film made of an anode material is formed on a suitable light-transmitting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm, to produce an anode. Next, one or more hole transport layers are sequentially provided on the anode. The hole transport layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. However, it is easy to obtain a uniform film and pinholes are not easily generated. It is preferable to form by a vacuum evaporation method. When forming a hole transport layer by vacuum deposition, the deposition conditions vary depending on the compound used (the material of the hole transport layer), the crystal structure and recombination structure of the target hole transport layer, etc. The source temperature is preferably selected from the range of 50 to 450 ° C., the degree of vacuum of 10 −7 to 10 −3 Torr, the deposition rate of 0.01 to 50 nm / second, the substrate temperature of −50 to 300 ° C., and the film thickness of 5 nm to 5 μm. .
 次に、正孔輸送層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔輸送層と同じような条件範囲の中から選択することができる。
 次に、この発光層上に電子注入・輸送層を設ける。正孔輸送層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔輸送層、発光層と同様の条件範囲から選択することができる。
 最後に陰極を積層して有機EL素子を得ることができる。
 陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
 この有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
 なお、有機EL素子に直流電圧を印加する場合、陽極を+、陰極を-の極性にして、5~40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が-の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
 本発明の有機EL素子は、蛍光発光層を有する場合には、青色発光が得られる傾向にある。一方、燐光発光層を有する場合には、黄色発光、緑色発光又は青色発光が得られる傾向にあり、多くは黄色発光又は緑色発光が得られる傾向にある。
Next, the formation of a light emitting layer in which a light emitting layer is provided on the hole transport layer is also performed by thinning the organic light emitting material using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting. However, it is preferably formed by a vacuum deposition method from the viewpoint that a homogeneous film is easily obtained and pinholes are hardly generated. In the case of forming a light emitting layer by a vacuum vapor deposition method, the vapor deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as that of the hole transport layer.
Next, an electron injection / transport layer is provided on the light emitting layer. As with the hole transport layer and the light emitting layer, it is preferable to form by a vacuum evaporation method because it is necessary to obtain a homogeneous film. Deposition conditions can be selected from the same condition ranges as the hole transport layer and the light emitting layer.
Finally, an organic EL element can be obtained by laminating a cathode.
The cathode is made of metal, and vapor deposition or sputtering can be used. However, vacuum deposition is preferred to protect the underlying organic layer from damage during film formation.
The organic EL element is preferably manufactured from the anode to the cathode consistently by a single vacuum.
When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to a negative polarity. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an alternating voltage is applied, uniform light emission is observed only when the anode has a positive polarity and the cathode has a negative polarity. The AC waveform to be applied may be arbitrary.
When the organic EL device of the present invention has a fluorescent light emitting layer, blue light emission tends to be obtained. On the other hand, when the phosphorescent light emitting layer is provided, yellow light emission, green light emission or blue light emission tends to be obtained, and in many cases, yellow light emission or green light emission tends to be obtained.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例1(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記アクセプター材料を蒸着し、膜厚5nmのアクセプター層を成膜した。このアクセプター層上に、第一正孔輸送材料として下記化合物(HT-100)を蒸着し、膜厚55nmの第一正孔輸送層を成膜した。第一正孔輸送層の成膜に続けて、第二正孔輸送材料として下記化合物(HT-200)を蒸着し、膜厚10nmの第二正孔輸送層を成膜した。
 この第二正孔輸送層上に、ホスト材料である化合物(1)とドーパント材料である化合物(2)[(1):(2)=39.6:0.4(膜厚比)]とを厚さ40nmで共蒸着し、発光層を得た。
 続いて、この発光層上に、厚さ25nmで化合物(C)を、厚さ5nmで電子輸送材料(ET-100)を、厚さ1nmでLiFを、厚さ80nmで金属Alを順次積層し、陰極を形成した。なお、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。
 化合物(1)、(2)、(C)及び電子輸送材料(ET-100)の物性を表1及び表2に示す。
Example 1 (Production of organic EL device)
A 25 mm × 75 mm × 1.1 mm glass substrate with an ITO transparent electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and further UV (Ultraviolet) ozone cleaned for 30 minutes.
The glass substrate with the transparent electrode line after the cleaning is mounted on the substrate holder of the vacuum deposition apparatus, and the following acceptor material is deposited on the surface where the transparent electrode line is formed so as to cover the transparent electrode. The acceptor layer was formed. On this acceptor layer, the following compound (HT-100) was deposited as a first hole transport material to form a first hole transport layer having a thickness of 55 nm. Subsequent to the formation of the first hole transport layer, the following compound (HT-200) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
On this second hole transport layer, the compound (1) as a host material and the compound (2) as a dopant material [(1) :( 2) = 39.6: 0.4 (film thickness ratio)] and Was co-evaporated with a thickness of 40 nm to obtain a light emitting layer.
Subsequently, a compound (C) having a thickness of 25 nm, an electron transport material (ET-100) having a thickness of 5 nm, LiF having a thickness of 1 nm, and metal Al having a thickness of 80 nm were sequentially stacked on the light emitting layer. A cathode was formed. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 Å / min.
Tables 1 and 2 show the physical properties of the compounds (1), (2), (C) and the electron transport material (ET-100).
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
(移動度の比較)
 本発明の有機EL素子の一態様では、発光層はホスト材料及びドーパント材料を含有し、該ホスト材料の電子移動度は正孔移動度よりも大きく、かつ該ホスト材料及び該ドーパント材料の混合物の電子移動度は正孔移動度より小さいことを特徴とする。
 表2に示すように、実施例1で用いたホスト材料およびドーパント材料においては、ホスト材料である化合物(1)の電子移動度は正孔移動度よりも大きく、ホスト材料である化合物(1)とドーパント材料である化合物(2)の混合物の電子移動度は正孔移動度より小さいことが判る。
(Comparison of mobility)
In one embodiment of the organic EL device of the present invention, the light emitting layer contains a host material and a dopant material, the electron mobility of the host material is larger than the hole mobility, and the mixture of the host material and the dopant material The electron mobility is smaller than the hole mobility.
As shown in Table 2, in the host material and dopant material used in Example 1, the electron mobility of the compound (1) as the host material is larger than the hole mobility, and the compound (1) as the host material. It can be seen that the electron mobility of the mixture of the compound (2) which is a dopant material is smaller than the hole mobility.
(有機EL素子の発光性能評価)
 以上のように作製した有機EL素子を、室温(25℃)及び85℃にて、直流電流駆動により発光させ、輝度(cd/m2)、電流密度を測定し、電流密度15mA/cm2における素子寿命 LT95(輝度が95%にまで低減するまでの時間)及び素子寿命 LT70(輝度が70%にまで低減するまでの時間)を求めた。結果を表3に示す。
(Emission performance evaluation of organic EL elements)
The organic EL device produced as described above was caused to emit light by direct current drive at room temperature (25 ° C.) and 85 ° C., and the luminance (cd / m 2 ) and current density were measured, and the current density was 15 mA / cm 2 . The element life LT95 (time until the luminance was reduced to 95%) and the element life LT70 (time until the luminance was reduced to 70%) were determined. The results are shown in Table 3.
比較例1
 実施例1において、化合物(C)の層を設けず、代わりに電子輸送材料(ET-100)の厚さを30nmとした以外は同様にして有機EL素子を作製し、発光性能評価を行った。結果を表3に示す。
Comparative Example 1
In Example 1, an organic EL device was prepared in the same manner except that the layer of the compound (C) was not provided, and the thickness of the electron transport material (ET-100) was changed to 30 nm, and the light emission performance was evaluated. . The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 表3において、実施例1と比較例1との対比から、本発明の有機EL素子は、室温及び高温下にて素子寿命LT70が改善されることが分かる。さらに、素子寿命LT95の対比から、本発明の有機EL素子は、初期輝度の低下が著しく改善されることが分かる。 In Table 3, it can be seen from the comparison between Example 1 and Comparative Example 1 that the organic EL element of the present invention has improved element lifetime LT70 at room temperature and high temperature. Furthermore, it can be seen from the comparison of the element lifetime LT95 that the organic EL element of the present invention has a marked improvement in the decrease in the initial luminance.
 なお、本発明(の有機エレクトロルミネッセンス素子用材料)において、水素原子とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。また、「環形成炭素数」とは、飽和環、不飽和環又は芳香環を構成する炭素原子の数を意味し、「環形成原子数」とは、へテロ環(飽和環、不飽和環及び芳香環を含む。)を構成する炭素原子及びヘテロ原子の数を意味する。但し、アラルキル基等の様に非環状炭化水素基と環状炭化水素基とを有する場合には、単に「炭素数」と記載し、この場合、その基の非環状炭化水素基(環状炭化水素基上の置換基を除く。)の炭素数と、環状炭化水素基の環形成炭素数との合計を示す。
 また、本明細書において、各化合物の各基の説明において好ましい基を挙げているが、何ら断りがなくとも、その好ましい基同士の組み合わせについても好ましいことを示しており、各基の好ましいものは、自由に組み合わせることができる。同様に、好ましい数値範囲などの好ましいとするあらゆる記載も、自由に選択する又は自由に組み合わせることができる。
 本発明の有機EL素子は、テレビ、携帯電話、又はパーソナルコンピュータ等の表示装置や、照明又は車両用灯具の発光装置等の電子機器として好適に使用できる。例えば、深赤発光を呈する面状発光機器としての利用も可能であり、その中でも、主に、熱負荷の高い車載用途(テールランプ、ブレーキランプなど)に有用である。
In the present invention (the material for an organic electroluminescence device), the hydrogen atom includes isotopes having different neutron numbers, that is, light hydrogen (protium), deuterium (triuterium), and tritium. . In addition, “ring carbon number” means the number of carbon atoms constituting a saturated ring, unsaturated ring or aromatic ring, and “ring atom number” means a hetero ring (saturated ring, unsaturated ring). And the number of carbon atoms and hetero atoms constituting the aromatic ring. However, when it has an acyclic hydrocarbon group and a cyclic hydrocarbon group such as an aralkyl group, it is simply described as “the number of carbon atoms”. In this case, the acyclic hydrocarbon group of the group (cyclic hydrocarbon group) The total number of carbon atoms of the cyclic hydrocarbon group and the number of ring-forming carbon atoms of the cyclic hydrocarbon group.
Further, in the present specification, preferred groups are mentioned in the explanation of each group of each compound, but without any notice, it is shown that a preferred combination of the preferred groups is preferred. Can be combined freely. Similarly, any description that may be preferred, such as a preferred numerical range, can be freely selected or combined freely.
The organic EL device of the present invention can be suitably used as an electronic device such as a display device such as a television, a mobile phone, or a personal computer, or a light emitting device for lighting or a vehicle lamp. For example, it can be used as a planar light emitting device that emits deep red light, and among them, it is mainly useful for in-vehicle applications (tail lamps, brake lamps, etc.) with a high heat load.
 本発明の有機EL素子は、室温及び高温下にて素子寿命が向上し、さらに初期輝度の低下が著しく抑制される。そのため、テレビ、携帯電話、又はパーソナルコンピュータ等の表示装置や、照明又は車両用灯具等の発光装置等の電子機器に利用できる。 In the organic EL device of the present invention, the device life is improved at room temperature and high temperature, and further, the decrease in the initial luminance is remarkably suppressed. Therefore, it can be used for electronic devices such as a display device such as a television, a mobile phone, or a personal computer, and a light emitting device such as an illumination or a vehicle lamp.

Claims (10)

  1.  第1電極、有機薄膜層、第2電極をこの順に有し、かつ前記有機薄膜層が、前記第1電極側から順に、正孔輸送帯域、発光層、電子輸送帯域を有する有機エレクトロルミネッセンス素子であって、
     発光層がホスト材料及びドーパント材料を含有し、該ホスト材料の電子移動度は正孔移動度より大きく、一方、該ホスト材料及び該ドーパント材料の混合物の電子移動度は正孔移動度より小さく、
     かつ、前記電子輸送帯域がエネルギーギャップ3.2eV以上の材料を含有する領域を有しており、該領域が発光層と接していることを特徴とする有機エレクトロルミネッセンス素子。
    An organic electroluminescence device having a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer having a hole transport zone, a light emitting layer, and an electron transport zone in this order from the first electrode side. There,
    The emissive layer contains a host material and a dopant material, the electron mobility of the host material is greater than the hole mobility, while the electron mobility of the mixture of the host material and the dopant material is less than the hole mobility;
    The organic electroluminescence device is characterized in that the electron transport zone has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
  2.  前記エネルギーギャップ3.2eV以上の材料のイオン化ポテンシャル(Ip)が、前記ホスト材料のイオン化ポテンシャル(Ip)より0.3~0.8eV大きい、請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the ionization potential (Ip) of the material having an energy gap of 3.2 eV or more is 0.3 to 0.8 eV greater than the ionization potential (Ip) of the host material.
  3.  前記エネルギーギャップ3.2eV以上の材料の電子親和力(Af)が、前記ホスト材料の電子親和力(Af)より0.2~0.7eV小さい、請求項1又は2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein an electron affinity (Af) of the material having an energy gap of 3.2 eV or more is 0.2 to 0.7 eV smaller than an electron affinity (Af) of the host material.
  4.  前記ドーパント材料のエネルギーギャップが2.5eV以下である、請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。 4. The organic electroluminescence device according to claim 1, wherein an energy gap of the dopant material is 2.5 eV or less.
  5.  前記エネルギーギャップ3.2eV以上の材料のイオン化ポテンシャル(Ip)と、前記ドーパント材料のイオン化ポテンシャル(Ip)との差が0.3eV以下である、請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子。 The organic electro according to any one of claims 1 to 4, wherein a difference between an ionization potential (Ip) of the material having an energy gap of 3.2 eV or more and an ionization potential (Ip) of the dopant material is 0.3 eV or less. Luminescence element.
  6.  前記ホスト材料の電子親和力(Af)と前記ドーパント材料の電子親和力(Af)の差が0.7eV以上である、請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence device according to claim 1, wherein a difference between an electron affinity (Af) of the host material and an electron affinity (Af) of the dopant material is 0.7 eV or more.
  7.  第1電極、有機薄膜層、第2電極をこの順に有し、かつ前記有機薄膜層が、前記第1電極側から順に、正孔輸送帯域、発光層、電子輸送帯域を有する有機エレクトロルミネッセンス素子であって、
     発光層がホスト材料及びドーパント材料を含有し、該ホスト材料の電子親和力(Af)と該ドーパント材料の電子親和力(Af)との差が0.7eV以上であり、
     かつ、前記電子輸送帯域がエネルギーギャップ3.2eV以上の材料を含有する領域を有しており、該領域が発光層と接していることを特徴とする有機エレクトロルミネッセンス素子。
    An organic electroluminescence device having a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer having a hole transport zone, a light emitting layer, and an electron transport zone in this order from the first electrode side. There,
    The light emitting layer contains a host material and a dopant material, and the difference between the electron affinity (Af) of the host material and the electron affinity (Af) of the dopant material is 0.7 eV or more,
    The organic electroluminescence device is characterized in that the electron transport zone has a region containing a material having an energy gap of 3.2 eV or more, and the region is in contact with the light emitting layer.
  8.  第1電極、有機薄膜層、第2電極をこの順に有し、かつ前記有機薄膜層が、前記第1電極側から順に、正孔輸送帯域、発光層、電子輸送帯域を有する有機エレクトロルミネッセンス素子であって、
     発光層がホスト材料及びドーパント材料を含有し、該ホスト材料が下記一般式(1)で表される化合物であり、
     かつ、前記電子輸送帯域が下記一般式(C)で表される化合物を含有する領域を有しており、該領域が発光層と接していることを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Q10、Q20、Q30、Q40、Q50、Q60、Q70、Q80、Q110、Q120、Q130及びQ140は、それぞれ水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数2~20のアルキニル基、置換もしくは無置換の環形成炭素数3~20のシクロアルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換のアミノ基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のアルキルチオ基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の環形成炭素数6~30のアリールチオ基、置換もしくは無置換の炭素数2~20のアルケニル基、置換もしくは無置換の環形成炭素数5~20のシクロアルケニル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の複素環基、ハロゲン原子、アシル基、カルボキシル基、エステル基、カルバモイル基又はシリル基を表し、これらは同一でも異なるものであってもよい。)
        Ar11-Az   (C)
    (式(C)中、Ar11は、置換もしくは無置換のカルバゾリル基、又は置換もしくは無置換のカルバゾリル基が1つ以上置換した環形成炭素数6~30の芳香族炭化水素基である。Azは、置換又は無置換の環形成原子数6の含窒素複素環基である。)
    An organic electroluminescence device having a first electrode, an organic thin film layer, and a second electrode in this order, and the organic thin film layer having a hole transport zone, a light emitting layer, and an electron transport zone in this order from the first electrode side. There,
    The light emitting layer contains a host material and a dopant material, and the host material is a compound represented by the following general formula (1):
    And the said electron transport zone | band has the area | region containing the compound represented by the following general formula (C), This area | region is in contact with the light emitting layer, The organic electroluminescent element characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), Q 10 , Q 20 , Q 30 , Q 40 , Q 50 , Q 60 , Q 70 , Q 80 , Q 110 , Q 120 , Q 130 and Q 140 are each a hydrogen atom, substituted or Unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted ring formation Aryl group having 6 to 30 carbon atoms, substituted or unsubstituted amino group, substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted alkylthio group having 1 to 20 carbon atoms, substituted or unsubstituted Aryloxy group having 6 to 30 ring carbon atoms, substituted or unsubstituted arylthio group having 6 to 30 ring carbon atoms, substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, substituted or unsubstituted ring forming carbon Number 5 ~ 0 represents a cycloalkenyl group, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted heterocyclic group, a halogen atom, an acyl group, a carboxyl group, an ester group, a carbamoyl group, or a silyl group. May be the same or different.)
    Ar 11 -Az (C)
    (In the formula (C), Ar 11 is a substituted or unsubstituted carbazolyl group or an aromatic hydrocarbon group having 6 to 30 ring carbon atoms substituted with one or more substituted or unsubstituted carbazolyl groups. Az. Is a substituted or unsubstituted nitrogen-containing heterocyclic group having 6 ring atoms.)
  9.  前記ドーパント材料が下記一般式(2)で表される化合物である、請求項8に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R15~R21のうち少なくとも一つは芳香環を含む置換基かあるいは隣接置換基との間に縮合環を形成し、残りはそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン原子、ハロアルキル基、ハロアルケニル基、ハロアルキニル基、シアノ基、アルデヒド基、アシル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環及び脂肪族環の中から選ばれる。
     R15~R21は同一でも異なったものであってもよく、置換基を有していてもよい。Xは炭素又は窒素であるが、窒素の場合には上記-R21は存在しない。)
    The organic electroluminescent element of Claim 8 whose said dopant material is a compound represented by following General formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), at least one of R 15 to R 21 forms a condensed ring with a substituent containing an aromatic ring or an adjacent substituent, and the rest are each independently a hydrogen atom, an alkyl group, Cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen atom, haloalkyl group, halo An alkenyl group, a haloalkynyl group, a cyano group, an aldehyde group, an acyl group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group, a siloxanyl group, a condensed ring formed between adjacent substituents, and Selected from the aliphatic ring.
    R 15 to R 21 may be the same or different, and may have a substituent. X is carbon or nitrogen, but in the case of nitrogen, the above -R 21 does not exist. )
  10.  請求項1~9のいずれかに記載の有機エレクトロルミネッセンス素子を搭載した電子機器。 An electronic device equipped with the organic electroluminescent element according to any one of claims 1 to 9.
PCT/JP2013/068794 2012-07-13 2013-07-09 Organic electroluminescence element and electronic apparatus WO2014010611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-158155 2012-07-13
JP2012158155 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010611A1 true WO2014010611A1 (en) 2014-01-16

Family

ID=49916063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068794 WO2014010611A1 (en) 2012-07-13 2013-07-09 Organic electroluminescence element and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2014010611A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056559A1 (en) * 2014-10-07 2016-04-14 出光興産株式会社 Organic electroluminescent element and electronic device
WO2018021377A1 (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Light-emitting particles and compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045780A (en) * 2005-08-11 2007-02-22 Semiconductor Energy Lab Co Ltd Phenanthroline derivative compound, its manufacturing method and electron transporting material, light emitting device, light emitter and electronic equipment utilizing the same
WO2008047744A1 (en) * 2006-10-16 2008-04-24 Toray Industries, Inc. Light-emitting device
WO2008111554A1 (en) * 2007-03-09 2008-09-18 Idemitsu Kosan Co., Ltd. Organic el device and display
WO2010084852A1 (en) * 2009-01-23 2010-07-29 東レ株式会社 Light-emitting element material and light-emitting element
JP2010189305A (en) * 2009-02-17 2010-09-02 Chemiprokasei Kaisha Ltd New bisphenanthroline derivative, electron transportation material comprising the same and organic electroluminescent device including the same
US20120126208A1 (en) * 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045780A (en) * 2005-08-11 2007-02-22 Semiconductor Energy Lab Co Ltd Phenanthroline derivative compound, its manufacturing method and electron transporting material, light emitting device, light emitter and electronic equipment utilizing the same
WO2008047744A1 (en) * 2006-10-16 2008-04-24 Toray Industries, Inc. Light-emitting device
WO2008111554A1 (en) * 2007-03-09 2008-09-18 Idemitsu Kosan Co., Ltd. Organic el device and display
WO2010084852A1 (en) * 2009-01-23 2010-07-29 東レ株式会社 Light-emitting element material and light-emitting element
JP2010189305A (en) * 2009-02-17 2010-09-02 Chemiprokasei Kaisha Ltd New bisphenanthroline derivative, electron transportation material comprising the same and organic electroluminescent device including the same
US20120126208A1 (en) * 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056559A1 (en) * 2014-10-07 2016-04-14 出光興産株式会社 Organic electroluminescent element and electronic device
JPWO2016056559A1 (en) * 2014-10-07 2017-07-20 出光興産株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
JP2020161843A (en) * 2014-10-07 2020-10-01 出光興産株式会社 Organic electroluminescent element and electronic device
US11043638B2 (en) 2014-10-07 2021-06-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
WO2018021377A1 (en) * 2016-07-26 2018-02-01 富士フイルム株式会社 Light-emitting particles and compound

Similar Documents

Publication Publication Date Title
JP5988887B2 (en) Aromatic amine derivatives, organic electroluminescence devices and electronic devices
US9601708B2 (en) Organic light emitting device and materials for use in same
JP5870045B2 (en) Biscarbazole derivative and organic electroluminescence device using the same
US9604972B2 (en) Nitrogen-containing heteroaromatic ring compound
JP2013236055A (en) Organic electroluminescent element
EP2540707A1 (en) Substituted pyridyl compound and organic electroluminescent element
WO2011155508A1 (en) Organic electroluminescent element
JP6093872B2 (en) Aromatic amine compound, organic electroluminescence device and electronic device
WO2012176818A1 (en) Organic electroluminescent element
WO2014104346A1 (en) Organic electroluminescent element
JP2012156499A (en) Organic electroluminescent element
WO2014087913A1 (en) Organic electroluminescent element
TW201302973A (en) Novel organic electroluminescent compounds and an organic electroluminescent device using the same
JP2014049539A (en) Organic electroluminescent element
JP6189296B2 (en) Organic electroluminescence device
JP2014094935A (en) Compound, and organic electroluminescent element using the same
KR20170076426A (en) Compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2013177386A (en) Aromatic amine derivative, organic electroluminescent element, and electronic device
JP2015051966A (en) Electron transport material and organic electroluminescent element using the same
KR20170060831A (en) Compound for organic electroluminescent device and organic electroluminescent device comprising the same
WO2014057659A1 (en) Compound, and organic electroluminescent element produced using same
WO2014010611A1 (en) Organic electroluminescence element and electronic apparatus
KR20160061522A (en) Compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2016066631A (en) Organic electroluminescent element
JP6088324B2 (en) Nitrogen-containing aromatic heterocyclic derivative, material for organic electroluminescence device, and organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP