WO2014010486A1 - Solar cell module and manufacturing method for same - Google Patents

Solar cell module and manufacturing method for same Download PDF

Info

Publication number
WO2014010486A1
WO2014010486A1 PCT/JP2013/068258 JP2013068258W WO2014010486A1 WO 2014010486 A1 WO2014010486 A1 WO 2014010486A1 JP 2013068258 W JP2013068258 W JP 2013068258W WO 2014010486 A1 WO2014010486 A1 WO 2014010486A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
adhesive
conductor
cell module
electrode
Prior art date
Application number
PCT/JP2013/068258
Other languages
French (fr)
Japanese (ja)
Inventor
大地 森
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201380036546.6A priority Critical patent/CN104428904A/en
Priority to KR1020157003030A priority patent/KR102019310B1/en
Publication of WO2014010486A1 publication Critical patent/WO2014010486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof.
  • Solar cells are expected as a new energy source because they directly convert clean and inexhaustible sunlight into electricity.
  • the solar cell is used, for example, as a solar cell module in which a plurality of solar cells are connected via tab wires.
  • a type in which solder is applied to the surface of the copper wire has been used.
  • the electrode of the photovoltaic cell and the tab wire were connected via solder.
  • solder connection since a high temperature is required for solder connection, the panel of the light receiving surface is cracked or warped, and a short circuit due to solder that has leaked out (leaked) from the tab wire has occurred, causing problems.
  • connection materials such as conductive adhesives and insulating adhesives have been used as connection materials in place of solder.
  • a solar battery module in which a surface electrode of a solar battery cell and a tab wire are connected via a conductive adhesive has been proposed (see, for example, Patent Document 1).
  • the tab wire is not connected to the solar cell due to curing shrinkage of the conductive adhesive due to heating and pressing when connecting the surface electrode of the solar battery cell and the tab wire, and stress concentration on the conductive adhesive.
  • connection reliability falls, such as peeling from a battery cell. This problem becomes more prominent when the tab line is thinned to increase the light receiving area for the purpose of further increasing the photoelectric efficiency in recent years.
  • an object of the present invention is to provide a solar cell module excellent in connection reliability and a manufacturing method thereof.
  • Means for solving the problems are as follows. That is, ⁇ 1> A solar battery cell having an electrode, a tab wire, and a first adhesive, The electrode of the solar battery cell and the tab wire are connected via the first adhesive, At least in the connection region where the electrode of the solar battery cell and the tab wire are connected, the tab wire has two or more conductors, and the conductors are connected via a second adhesive.
  • This is a solar cell module.
  • ⁇ 2> The solar cell module according to ⁇ 1>, wherein an average thickness in a connecting direction of the conductor is 9 ⁇ m to 200 ⁇ m.
  • ⁇ 3> The ratio (A / B) of the sum (A) of the average thickness ( ⁇ m) in the connecting direction of each conductor in the tab line to the average width ( ⁇ m) (B) of the tab line is 0.009 to The solar cell module according to any one of ⁇ 1> to ⁇ 2>, which is 0.250.
  • ⁇ 4> The solar cell module according to any one of ⁇ 1> to ⁇ 3>, wherein the conductor contains one of copper and aluminum.
  • ⁇ 5> The solar cell module according to any one of ⁇ 1> to ⁇ 4>, wherein the number of conductors in the tab line is 2 to 5.
  • the solar cell module according to any one of ⁇ 1> to ⁇ 5> which is any one of a crystalline solar cell module and a thin film solar cell module.
  • ⁇ 7> The solar cell according to any one of ⁇ 1> to ⁇ 6>, wherein at least one of the first adhesive and the second adhesive is any one of a conductive adhesive and an insulating adhesive. It is a module.
  • the present invention it is possible to provide a solar cell module that can solve the above-described problems, achieve the above-described object, and has excellent connection reliability, and a method for manufacturing the same.
  • FIG. 1 is a schematic top view showing an example of a thin film solar cell module.
  • FIG. 2 is an exploded perspective view showing an example of a crystalline solar cell module.
  • FIG. 3 is a schematic cross-sectional view showing an example of a crystalline solar cell module.
  • FIG. 4 is a schematic cross-sectional view of an example of a tab line used in the present invention.
  • FIG. 5 is a schematic top view of a crystalline solar cell model.
  • FIG. 6 is a cross-sectional photograph of a thin film solar cell model (Example 2) in which tab wires are arranged.
  • the solar cell module of the present invention has at least a solar cell, a tab wire, and a first adhesive, and, if necessary, other resins such as a sealing resin, a moisture-proof backsheet, and a glass plate. It has a member.
  • the electrode of the solar battery cell and the tab wire are connected via the first adhesive.
  • the solar battery cell is not particularly limited as long as it has electrodes, and can be appropriately selected according to the purpose.
  • the solar battery cell has at least a photoelectric conversion element as a photoelectric conversion unit, a finger electrode, and a bus bar electrode. Furthermore, it has other members as required.
  • Examples of the solar battery cell include a thin film solar battery cell and a crystalline solar battery cell.
  • Examples of the thin film solar cell include an amorphous silicon solar cell, a compound solar cell (CIS solar cell, CdS / CdTe solar cell), a dye-sensitized solar cell, and an organic thin film solar cell.
  • microcrystalline silicon solar cells tandem solar cells.
  • Examples of the crystalline solar battery cell include a single crystal silicon solar battery cell and a polycrystalline silicon solar battery cell.
  • the solar battery cell may have a bus bar-less structure having no bus bar electrode.
  • the average thickness of the solar cells is not particularly limited and can be appropriately selected depending on the purpose.
  • the finger electrode is an electrode that collects electricity generated in the photoelectric conversion unit.
  • the finger electrode is formed on the solar battery cell in a direction substantially orthogonal to the tab line.
  • the material of the finger electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silver, gold, copper, tin, and nickel.
  • the average width of the finger electrode is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20 ⁇ m to 200 ⁇ m, and more preferably 20 ⁇ m to 100 ⁇ m.
  • the average width can be obtained, for example, by measuring the width of the finger electrode at any 10 points of the finger electrode and averaging the measured values.
  • the said finger electrode there is no restriction
  • the bus bar electrode is an electrode that further collects electricity collected by the finger electrodes and transmits the electricity to the tab wire.
  • electricity is directly transmitted from the finger electrode to the tab wire.
  • the material of the bus bar electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silver, gold, copper, tin, and nickel.
  • the average width of the bus bar electrode is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 ⁇ m to 5,000 ⁇ m, and more preferably 800 ⁇ m to 2,000 ⁇ m.
  • the average width can be obtained, for example, by measuring the width of the bus bar electrode at any 10 points of the bus bar electrode and averaging the measured values.
  • the method for forming the bus bar electrode is not particularly limited and may be appropriately selected depending on the purpose.
  • a silver paste is printed on the photoelectric conversion element so that the bus bar electrode has a desired pattern shape.
  • Examples of the printing method include screen printing.
  • the bus bar electrode and the finger electrode may be formed simultaneously.
  • the bus bar electrode and the finger electrode are simultaneously formed by screen-printing a silver paste on the photoelectric conversion element using a printing plate having a pattern shape capable of forming a desired bus bar electrode and a desired finger electrode. can do.
  • the conductive adhesive is not particularly limited and may be appropriately selected depending on the purpose.
  • the conductive adhesive contains at least conductive particles, and preferably includes a film-forming resin, a curable resin, and a curing agent.
  • a conductive adhesive containing other components as necessary is also included.
  • Conductive particles-- The conductive particles are not particularly limited and may be appropriately selected depending on the purpose. For example, nickel particles, gold-coated nickel particles, resin particles with a resin core coated with Ni, and resin cores with Ni coated. Furthermore, resin particles whose outermost surface is coated with Au can be mentioned.
  • film-forming resin-- There is no restriction
  • the said curable resin there is no restriction
  • the said curable resin may be hardened
  • epoxy resin There is no restriction
  • the acrylate resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the curable resin is preferably used in combination with a curing agent.
  • the curing agent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • imidazoles represented by 2-ethyl 4-methylimidazole; lauroyl peroxide, butyl peroxide, benzyl peroxide, Organic peroxides such as dilauroyl peroxide, dibutyl peroxide, peroxydicarbonate, benzoyl peroxide; anionic curing agents such as organic amines; cationic curing agents such as sulfonium salts, onium salts, aluminum chelating agents, etc. Is mentioned.
  • combinations of epoxy resins and imidazoles, and combinations of acrylate resins and organic peroxides are particularly preferable.
  • the insulating adhesive is not particularly limited and may be appropriately selected depending on the purpose.
  • the insulating adhesive contains a film-forming resin, a curable resin, and a curing agent, and, if necessary, other Insulating adhesives containing these components may be mentioned.
  • the film-forming resin, the curable resin, the curing agent, and the other components in the insulating adhesive are not particularly limited and may be appropriately selected depending on the purpose.
  • the conductive adhesive Examples thereof include the film-forming resin, the curable resin, the curing agent, and the other components exemplified in the description of the agent.
  • the first adhesive may be used in a liquid form or in a film form when the solar cell module is manufactured.
  • the tab line includes two or more conductors at least in a connection region where the electrode of the solar battery cell and the tab line are connected.
  • the conductors are connected via a second adhesive.
  • the material of the conductor is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include copper, aluminum, iron, gold, silver, nickel, palladium, chromium, molybdenum, and alloys thereof. Can be mentioned.
  • the conductor preferably contains either copper or aluminum.
  • the shape of the conductor is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a flat plate shape.
  • the structure of the conductor is not particularly limited and may be appropriately selected depending on the purpose, and may be a single layer structure or a laminated structure.
  • the single layer structure include a single layer structure made of copper, aluminum, or the like.
  • the laminated structure include a laminated structure having a base material made of copper, aluminum or the like and a plating layer. Examples of the material of the plating layer include gold, silver, tin, and solder.
  • the average thickness in the connecting direction of the conductor is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 9 ⁇ m to 200 ⁇ m, and more preferably 9 ⁇ m to 150 ⁇ m. When the average thickness is less than 9 ⁇ m, the extraction efficiency of electricity generated by the solar battery cells may be lowered, and when it exceeds 200 ⁇ m, the connection reliability may be lowered. When the average thickness is within the more preferable range, it is advantageous in that connection reliability is more excellent.
  • the average thickness can be obtained, for example, by measuring the thickness in the connection direction of the conductor at any 10 points of the conductor and averaging the measured values. It can be said that the connection direction is a direction orthogonal to the surface of the solar battery cell.
  • the number of the conductors in the tab line is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 to 5, and more preferably 2 to 3. If the number exceeds 5, the tab wire may be misaligned in the pressing step when manufacturing the solar cell module, which may result in a decrease in connection reliability and a connection failure. When the number is within the more preferable range, it is advantageous in that connection reliability is more excellent.
  • the material of each of the two or more conductors in the tab line may be the same or different.
  • the average thickness in the connecting direction of the two or more conductors in the tab line may be the same or different.
  • Examples of the structure of the tab line include a structure arranged as follows. (1) Conductor / second adhesive / conductor (2) Conductor / second adhesive / conductor / second adhesive / conductor (3) Conductor / second adhesive / conduct Body / second adhesive / conductor / second adhesive / conductor (4) conductor / second adhesive / conductor / conductor / second adhesive / conductive Body / second adhesive / conductor (5) conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductive Body / second adhesive / conductor (5) conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductive Body / second adhesive / conductor
  • the conductor preferably has a protrusion on its surface.
  • the conductor preferably has a protrusion on its surface.
  • the thickness in the connection direction of the conductor when the conductor has a protrusion on the surface is a thickness of a portion excluding the protrusion.
  • the second adhesive is used in two or more places. At this time, the components of the second adhesive in two or more places are the same. It may be different or different.
  • the average width of the tab line is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 ⁇ m to 10,000 ⁇ m, and more preferably 800 ⁇ m to 4,000 ⁇ m.
  • the average width can be obtained, for example, by measuring the width of the conductor in the tab line at any 10 points of the tab line and averaging the measured values.
  • the width of the conductor is a distance in a direction orthogonal to the connection direction of the conductor.
  • the ratio (A / B) of the sum (A) of the average thickness ( ⁇ m) in the connecting direction of each conductor in the tab line and the average width ( ⁇ m) (B) of the tab line is no particular limitation.
  • it can be appropriately selected, but 0.009 to 0.250 is preferable, and 0.009 to 0.150 is more preferable.
  • the ratio (A / B) is less than 0.009, the extraction efficiency of electricity generated by the solar battery cell may be lowered, and when it exceeds 0.250, the connection reliability may be lowered. is there.
  • the ratio (A / B) is within the more preferable range, it is advantageous in that connection reliability is further improved.
  • the sealing resin is not particularly limited and may be appropriately selected depending on the purpose.
  • ethylene / vinyl acetate copolymer (EVA), ethylene / vinyl acetate / triallyl isocyanurate (EVAT) examples include polyvinyl butyrate (PVB), polyisobutylene (PIB), silicone resin, polyurethane resin, and the like.
  • ⁇ Dampproof back sheet> There is no restriction
  • PET polyethylene terephthalate
  • Al aluminum
  • PET aluminum
  • Al polyethylene
  • PE polyethylene
  • Glass plate> There is no restriction
  • the solar cell module may be a thin film solar cell module using the thin film solar cell or a crystalline solar cell module using the crystal solar cell.
  • FIG. 1 is a schematic top view showing an example of a thin-film solar cell module 200.
  • thin-film solar cells 32 made of thin-film photoelectric conversion elements are arranged in series on a substrate 38 in a planar direction.
  • the surface electrode (not shown) of the thin film solar cell 32c at one end and the surface electrode (not shown) of the thin film solar cell 32d at the other end are provided with a conductive adhesive layer (not shown).
  • a tab wire 3 for power extraction is connected.
  • FIG. 2 is an exploded perspective view showing an example of a crystalline solar cell module.
  • the crystalline solar cell module 1 includes strings 4 in which a plurality of crystalline solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and further includes a matrix 5 in which a plurality of strings 4 are arranged.
  • the matrix 5 is sandwiched between the sealing resin sheets 6, and together with the front cover 7 provided on the light receiving surface side and the moisture-proof back sheet 8 provided on the back surface side. And laminated.
  • the crystalline solar cell module 1 is formed by attaching a metal frame 9 such as aluminum around the periphery.
  • each crystalline solar cell 2X, 2Y, 2Z of the crystalline solar cell module has a crystalline photoelectric conversion element 10 made of a silicon substrate.
  • the crystalline photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 serving as a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11.
  • the crystalline photoelectric conversion element 10 is provided with an Al back electrode 13 made of aluminum on the back side opposite to the light receiving surface. Then, the bus bar electrode 11 on the surface of the solar battery cell 2 and the Al back electrode 13 of the adjacent solar battery cell 2 are electrically connected by the tab wire 3, thereby constituting the strings 4 connected in series. .
  • the connection between the tab wire 3 and the bus bar electrode 11 and the connection between the tab wire 3 and the Al back electrode 13 are performed by, for example, the conductive adhesive film 17.
  • FIG. 4 is a schematic cross-sectional view showing an example of a tab line.
  • the tab wire 3 is a laminated body in which a first conductor 3a, a second adhesive 3b, and a second conductor 3c are laminated in this order.
  • the second adhesive 3b is formed using, for example, a conductive adhesive film.
  • the manufacturing method of the solar cell module of the present invention includes at least a disposing step, a covering step, a pressing step, and a heating step, and further includes other steps as necessary.
  • the manufacturing method of the solar cell module of this invention can be used suitably for manufacture of the said solar cell module of this invention.
  • the arrangement step at least a first adhesive, a first conductor, a second adhesive, and a second conductor are arranged in this order on the electrode of the solar battery cell. If there is, there is no restriction
  • the first conductor, the second adhesive, and the second conductor form a tab line in the solar cell module of the present invention.
  • Examples of the solar battery cell include the solar battery cell exemplified in the description of the solar battery module of the present invention.
  • first adhesive and the second adhesive examples include the first adhesive and the second adhesive exemplified in the description of the solar cell module of the present invention.
  • the average thickness in the connecting direction of the first adhesive and the second adhesive is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m. Preferably, 10 ⁇ m to 35 ⁇ m is more preferable.
  • the average thickness can be obtained, for example, by measuring the thickness in the connecting direction at any 10 points of the first adhesive and the second adhesive and averaging the measured values.
  • Examples of the first conductor and the second conductor include the conductors exemplified in the description of the solar cell module of the present invention.
  • a film-like conductive adhesive (conductive adhesive film, first adhesive) slit to the same width as the bus bar electrode is placed on the bus bar electrode of the solar battery cell. Subsequently, a copper foil (first conductor) having the same width as that of the bus bar electrode is placed on the first adhesive. Subsequently, a film-like conductive adhesive (conductive adhesive film, second adhesive) slit to the same width as the bus bar electrode is placed on the first conductor. Subsequently, a copper foil (second conductor) having the same width as that of the bus bar electrode is placed on the second adhesive.
  • positioning process can be performed by the above.
  • a two-layer body in which a film-like conductive adhesive (adhesive) is placed on a copper foil (conductor) is prepared.
  • the width of the two-layer body is set to the same width as the bus bar electrode of the solar battery cell.
  • the two-layer body (first two-layer body) is placed on the bus bar electrode of the solar battery cell so that the adhesive (first adhesive) and the bus bar electrode are in contact with each other.
  • another two-layer body is placed on the placed two-layer body (first two-layer body), and the first two-layer body conductor (first And the second two-layer adhesive (second adhesive) are in contact with each other.
  • positioning process can be performed by the above.
  • a four-layer body in which two two-layer bodies on which a film-like conductive adhesive (adhesive) is placed on a copper foil (conductor) is prepared.
  • the width of the four-layer body is set to the same width as the bus bar electrode of the solar battery cell.
  • the four-layer body is placed on the bus bar electrode of the solar battery cell so that the adhesive (first adhesive) and the bus bar electrode are in contact with each other.
  • positioning process can be performed by the above.
  • the first conductor, the second conductor, and the electrode of the solar battery cell may be electrically connected or may not be electrically connected.
  • the covering step is not particularly limited as long as it is a step of covering the solar battery cell with a sealing resin and further covering the sealing resin with either a moisture-proof backsheet or a glass plate. Can be selected as appropriate.
  • the above solar cell module manufacturing method is preferably performed using a decompression laminator.
  • the method using the reduced pressure laminator can be carried out with reference to the method described in JP 2010-283059 A, for example.
  • the sealing resin, the moisture-proof backsheet, and the glass plate are not particularly limited and can be appropriately selected according to the purpose.
  • examples thereof include a sealing resin, the moisture-proof backsheet, and the glass plate.
  • the pressing step is not particularly limited as long as it is a step of pressing either the moisture-proof backsheet or the glass plate, and can be appropriately selected according to the purpose.
  • the pressure to press and the time to press are arbitrary.
  • the heating step is not particularly limited as long as it is a step of heating the heating stage on which the solar battery cell is placed, and can be appropriately selected according to the purpose.
  • the sealing resin can be heated by heating the heating stage. Further, the first adhesive and the second adhesive can be heated.
  • the heating temperature in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 ° C to 250 ° C, more preferably 100 ° C to 200 ° C.
  • sealing may be insufficient, and when it exceeds 250 ° C., an organic resin contained in an adhesive, a sealing resin, or the like may be thermally decomposed.
  • the heating temperature is within the more preferable range, it is advantageous in terms of sealing reliability.
  • the heating time in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 second to 1 hour, more preferably 5 seconds to 30 minutes, and particularly preferably 10 seconds to 20 minutes. preferable. If the heating time is less than 1 second, sealing may be insufficient. When the heating time is within the particularly preferable range, it is advantageous in terms of sealing reliability.
  • the order of starting the pressing step and the heating step is not particularly limited and may be appropriately selected depending on the purpose.
  • the pressing step and the heating step cause the first conductor, One conductor, the second conductor, and the electrode of the solar battery cell may be electrically connected.
  • the solar cell module of the present invention is manufactured. Further, for example, the solar cell module of the present invention can be manufactured by forming a matrix in which a plurality of strings in which a plurality of solar cells are directly connected are arranged and sealing the matrix.
  • Example 1 ⁇ Production of solar cell module model> -conductor- A copper foil (average thickness 9 ⁇ m) slit to an average width of 2,000 ⁇ m was used as the conductor.
  • -Conductive adhesive film- A conductive adhesive film (SP100 series, average thickness 25 ⁇ m, manufactured by Sony Chemical & Information Device Co., Ltd.) was prepared and used by slitting to an average width of 2,000 ⁇ m.
  • a conductive adhesive film (first adhesive), a conductor (first conductor), a conductive adhesive film (second adhesive), and a conductor on the electrode of the thin-film solar cell model (Second conductor) was disposed in this order, and then temporarily attached.
  • the temporary bonding conditions were a heating temperature of 70 ° C., a pressure of 0.5 MPa, and 1 second, and a heating tool was used.
  • a thin film solar cell model with a tab line in which the first adhesive and the tab wire were laminated on the electrode of the thin film solar cell model was obtained.
  • the tab wire is a laminated body in which a first conductor, a second adhesive, and a second conductor are laminated. Two laminates were arranged on the electrode of the thin-film solar cell model with an interval of 8.0 cm.
  • the obtained thin-film solar cell model with tab wires was covered with a sealing resin, and the sealing resin was further covered with a moisture-proof backsheet.
  • a sealing resin an ethylene / vinyl acetate copolymer having a thickness of 500 ⁇ m was used.
  • a PET film was used for the back sheet.
  • the sealing resin was sealed with a laminator. Specifically, vacuuming was performed at 100 ° C. for 5 minutes, followed by laminating at a press time of 5 minutes and 0.1 MPa, and then curing in an oven at 155 ° C. for 45 minutes. As described above, a thin film solar cell module model was obtained.
  • the resistance value between two tab wires of the obtained thin film solar cell module model was measured. Resistance values after initial, after TC200, and after TC400 were measured using a digital multimeter (manufactured by Yokogawa Electric Co., Ltd., digital multimeter 7555), and evaluated according to the following evaluation criteria.
  • the TC200 has a temperature rise from ⁇ 40 ° C. to 85 ° C. (temperature rise rate 2 ° C./min), hold at 85 ° C. for 35 minutes, and temperature drop from 85 ° C. to ⁇ 40 ° C. (temperature drop rate 2 ° C./min) ), And a 35 minute hold at ⁇ 40 ° C. for one cycle and a test for 200 cycles.
  • the TC400 indicates a test in which the cycle is performed 400 times.
  • ⁇ Evaluation criteria ⁇ : Less than 10 m ⁇ ⁇ : 10 m ⁇ or more and less than 20 m ⁇ ⁇ : 20 m ⁇ or more and less than 100 m ⁇ ⁇ : 100 m ⁇ or more
  • Example 2 In Example 1, except that the material of the conductor, the average thickness of the conductor, and the average width of the tab line were respectively changed to the material of the conductor, the average thickness of the conductor, and the average width of the tab line shown in Table 1.
  • a thin film solar cell module model was prepared and evaluated. The results are shown in Table 1.
  • the average width of the conductive adhesive film was 800 ⁇ m.
  • the average width of the conductive adhesive film was 1,500 ⁇ m.
  • FIG. A tab wire formed by connecting the first conductor 3a and the second conductor 3c via the second adhesive 3b is disposed on the thin-film solar cell model 32a via the conductive adhesive film 17. Has been.
  • Example 9 In Example 1, except that a conductive adhesive film (third adhesive) and a conductor (third conductor) were further arranged in this order on the second conductor during temporary attachment. In the same manner as in Example 1, a thin film solar cell module model was prepared and evaluated. The results are shown in Table 1.
  • Example 10 As a crystalline solar cell model, a glass substrate on which finger electrodes 12 with an average width of 100 ⁇ m and bus bar electrodes 11 with an average width of 2,000 ⁇ m were formed as shown in FIG. Specifically, a pattern of finger electrodes 12 and bus bar electrodes 11 as shown in FIG. 5 is formed by screen printing and baking a silver paste on a glass substrate (length 125 mm ⁇ width 125 mm ⁇ thickness 0.7 mm). Crystalline solar cell model 2 ′ was obtained. On the bus bar electrode of the obtained crystalline solar cell model, the conductive adhesive film (first adhesive) shown in Example 1 and the conductor (first conductor) shown in Example 1 were implemented.
  • the conductive adhesive film (second adhesive) shown in Example 1 and the conductor (second conductor) shown in Example 1 were disposed in this order, and then temporarily attached.
  • the temporary bonding conditions were a heating temperature of 70 ° C., a pressure of 0.5 MPa, and 1 second, and a heating tool was used.
  • a crystalline solar cell model with a tab line in which the first adhesive and the tab line were laminated on the bus bar electrode of the crystalline solar cell model was obtained.
  • the tab wire is a laminated body in which a first conductor, a second adhesive, and a second conductor are laminated.
  • Example 1 a crystalline solar cell module model was prepared and evaluated in the same manner as in Example 1, except that the tabbed crystalline solar cell model obtained above was used. The results are shown in Table 1.
  • Example 1 the average thickness of the first conductor, the average thickness of the second conductor, and the average width of the tab line are the average thickness of the first conductor described in Table 2, and the second conductor A thin film solar cell module model was prepared and evaluated in the same manner as in Example 1 except that the average thickness and the average width of the tab line were changed. The results are shown in Table 2.
  • Example 14 In Example 4, a thin-film solar cell module model was prepared and evaluated in the same manner as in Example 4 except that the average thickness of the conductive adhesive film was changed to 10 ⁇ m. The results are shown in Table 2.
  • Example 15 a thin-film solar cell module model was produced and evaluated in the same manner as in Example 4 except that the average thickness of the conductive adhesive film was changed to 35 ⁇ m. The results are shown in Table 2.
  • soldered tab wire obtained above was arranged on the electrode of the thin-film solar cell model prepared in Example 1 so that the electrode and the solder of the soldered tab wire were in contact with each other. Two soldered tab wires were arranged, and the interval between them was the same as in Example 1. Then, using a soldering iron, it was heated at a heating temperature of 240 ° C. to obtain a thin film solar cell model with a tab wire.
  • the obtained thin-film solar cell model with tab wires was covered with a sealing resin, and the sealing resin was further covered with a moisture-proof backsheet.
  • a sealing resin an ethylene / vinyl acetate copolymer having a thickness of 500 ⁇ m was used.
  • a PET film was used for the back sheet.
  • the sealing resin was sealed with a laminator. Specifically, vacuuming was performed at 100 ° C. for 5 minutes, followed by laminating at a press time of 5 minutes and 0.1 MPa, and then curing in an oven at 155 ° C. for 45 minutes.
  • a thin film solar cell module model was obtained.
  • the obtained thin film solar cell module model was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 A thin-film solar cell module in the same manner as in Example 1, except that the average thickness of the first conductor was changed to 400 ⁇ m and the second adhesive and the second conductor were not used in Example 1. A model was created and evaluated. The results are shown in Table 2.
  • Comparative Example 3 In Comparative Example 1, a thin-film solar cell module was prepared and evaluated in the same manner as Comparative Example 1 except that the average thickness of the copper foil was changed to 200 ⁇ m. The results are shown in Table 2.
  • Comparative Example 4 a thin-film solar cell module was produced and evaluated in the same manner as in Comparative Example 2 except that the average thickness of the first conductor was changed to 200 ⁇ m. The results are shown in Table 2.
  • the solar cell modules produced in Examples 1 to 15 were excellent in connection reliability.
  • As the average thickness of the conductor it was confirmed that 9 ⁇ m to 150 ⁇ m was very preferable because the conduction resistance was very excellent even after TC400 (see, for example, Examples 1 to 4 and Example 11).
  • As the sum of the average thicknesses of the conductors in the tab wire it was confirmed that 18 ⁇ m to 300 ⁇ m was very preferable because the conduction resistance was very excellent even after TC400 (for example, Examples 1 to 4 and Example 11). reference).
  • the conduction resistance is very excellent even after TC400. From the point, it was confirmed that 0.009 to 0.150 is very preferable (for example, see Examples 1 to 4, 8 to 9, and 11).
  • the material of the conductor it was confirmed that both copper and aluminum have excellent connection reliability (for example, see Examples 4 and 6).
  • the type of the solar cell module it was confirmed that the connection reliability was excellent in both the thin-film solar cell module and the crystalline solar cell module (for example, see Examples 4 and 10).
  • Comparative Examples 1 and 2 the conduction resistance was very large in TC200 and TC400, and the connection reliability was not sufficient. Further, in Comparative Examples 3 and 4, the conduction resistance increased with TC400, and the connection reliability was not sufficient.
  • the solar cell module of the present invention is excellent in connection reliability, it can be particularly suitably used for a solar cell module in which the tab line is thinned to increase the light receiving area for the purpose of increasing the photoelectric efficiency.

Abstract

A solar cell module comprising tab lines, a first adhesive, and solar cells having electrodes. The electrodes of the solar cells and the tab lines are connected by the first adhesive. The solar cell module is formed by the tab lines having two or more electrical conductors in a connection region where at least the electrodes of the solar cells and the tab lines connect, and by the electrical conductors being connected to each other by a second adhesive.

Description

太陽電池モジュール及びその製造方法Solar cell module and manufacturing method thereof
 本発明は、太陽電池モジュール及びその製造方法に関する。 The present invention relates to a solar cell module and a manufacturing method thereof.
 太陽電池は、クリーンで無尽蔵に供給される太陽光を直接電気に変換するため、新しいエネルギー源として期待されている。 Solar cells are expected as a new energy source because they directly convert clean and inexhaustible sunlight into electricity.
 前記太陽電池は、例えば、タブ線を介して複数の太陽電池セルを接続した太陽電池モジュールとして用いられている。
 従来のタブ線は、銅線表面にハンダを塗布したタイプが使用されていた。そして、太陽電池セルの電極とタブ線とは、ハンダを介して接続されていた。しかし、ハンダ接続には高温が必要であることから、受光面のパネル割れや反り、タブ線からはみ出した(漏洩した)ハンダによるショートなどが発生し、不具合の原因となっていた。
The solar cell is used, for example, as a solar cell module in which a plurality of solar cells are connected via tab wires.
As the conventional tab wire, a type in which solder is applied to the surface of the copper wire has been used. And the electrode of the photovoltaic cell and the tab wire were connected via solder. However, since a high temperature is required for solder connection, the panel of the light receiving surface is cracked or warped, and a short circuit due to solder that has leaked out (leaked) from the tab wire has occurred, causing problems.
 そこで、ハンダに代わる接続材料として導電性接着剤、絶縁性接着剤などの接着剤が使用されてきている。例えば、太陽電池セルの表面電極とタブ線とが導電性接着剤を介して接続された太陽電池モジュールが提案されている(例えば、特許文献1参照)。
 しかし、この提案の技術では、太陽電池セルの表面電極とタブ線とを接続する際の加熱及び押圧による導電性接着剤の硬化収縮、及び導電性接着剤への応力集中により、タブ線が太陽電池セルから剥離されるなどして接続信頼性が低下するという問題がある。この問題は、近年の更なる高光電効率化を目的とした受光面積増大のためにタブ線が細線化されると、より顕著になる。
Therefore, adhesives such as conductive adhesives and insulating adhesives have been used as connection materials in place of solder. For example, a solar battery module in which a surface electrode of a solar battery cell and a tab wire are connected via a conductive adhesive has been proposed (see, for example, Patent Document 1).
However, in this proposed technique, the tab wire is not connected to the solar cell due to curing shrinkage of the conductive adhesive due to heating and pressing when connecting the surface electrode of the solar battery cell and the tab wire, and stress concentration on the conductive adhesive. There exists a problem that connection reliability falls, such as peeling from a battery cell. This problem becomes more prominent when the tab line is thinned to increase the light receiving area for the purpose of further increasing the photoelectric efficiency in recent years.
 したがって、接続信頼性が優れる太陽電池モジュール及びその製造方法の提供が求められているのが現状である。 Therefore, at present, provision of a solar cell module having excellent connection reliability and a method for manufacturing the same is required.
特開2010-258006号公報JP 2010-258006 A
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、接続信頼性が優れる太陽電池モジュール及びその製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a solar cell module excellent in connection reliability and a manufacturing method thereof.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 電極を有する太陽電池セルと、タブ線と、第1の接着剤とを有し、
 前記太陽電池セルの電極と前記タブ線とが、前記第1の接着剤を介して接続され、
 少なくとも前記太陽電池セルの電極と前記タブ線とが接続する接続領域において、前記タブ線が2以上の導電体を有し、かつ前記導電体どうしが第2の接着剤を介して接続されてなることを特徴とする太陽電池モジュールである。
 <2> 導電体の接続方向の平均厚みが、9μm~200μmである前記<1>に記載の太陽電池モジュールである。
 <3> タブ線における各導電体の接続方向の平均厚み(μm)の合計(A)と、タブ線の平均幅(μm)(B)との比(A/B)が、0.009~0.250である前記<1>から<2>のいずれかに記載の太陽電池モジュールである。
 <4> 導電体が、銅及びアルミニウムのいずれかを含有する前記<1>から<3>のいずれかに記載の太陽電池モジュールである。
 <5> タブ線における導電体の数が、2~5である前記<1>から<4>のいずれかに記載の太陽電池モジュールである。
 <6> 結晶系太陽電池モジュール及び薄膜系太陽電池モジュールのいずれかである前記<1>から<5>のいずれかに記載の太陽電池モジュールである。
 <7> 第1の接着剤及び第2の接着剤の少なくともいずれかが、導電性接着剤及び絶縁性接着剤のいずれかである前記<1>から<6>のいずれかに記載の太陽電池モジュールである。
 <8> 太陽電池セルの電極上に、少なくとも第1の接着剤と、第1の導電体と、第2の接着剤と、第2の導電体とをこの順で配置する配置工程と、
 前記太陽電池セルを封止用樹脂により覆い、更に前記封止用樹脂を防湿性バックシート及びガラスプレートのいずれかにより覆う被覆工程と、
 前記防湿性バックシート及びガラスプレートのいずれかを押圧する押圧工程と、
 前記太陽電池セルが載置された加熱ステージを加熱する加熱工程と、を少なくとも含むことを特徴とする太陽電池モジュールの製造方法である。
Means for solving the problems are as follows. That is,
<1> A solar battery cell having an electrode, a tab wire, and a first adhesive,
The electrode of the solar battery cell and the tab wire are connected via the first adhesive,
At least in the connection region where the electrode of the solar battery cell and the tab wire are connected, the tab wire has two or more conductors, and the conductors are connected via a second adhesive. This is a solar cell module.
<2> The solar cell module according to <1>, wherein an average thickness in a connecting direction of the conductor is 9 μm to 200 μm.
<3> The ratio (A / B) of the sum (A) of the average thickness (μm) in the connecting direction of each conductor in the tab line to the average width (μm) (B) of the tab line is 0.009 to The solar cell module according to any one of <1> to <2>, which is 0.250.
<4> The solar cell module according to any one of <1> to <3>, wherein the conductor contains one of copper and aluminum.
<5> The solar cell module according to any one of <1> to <4>, wherein the number of conductors in the tab line is 2 to 5.
<6> The solar cell module according to any one of <1> to <5>, which is any one of a crystalline solar cell module and a thin film solar cell module.
<7> The solar cell according to any one of <1> to <6>, wherein at least one of the first adhesive and the second adhesive is any one of a conductive adhesive and an insulating adhesive. It is a module.
<8> An arrangement step of arranging at least the first adhesive, the first conductor, the second adhesive, and the second conductor in this order on the electrode of the solar battery cell;
A covering step of covering the solar battery cell with a sealing resin, and further covering the sealing resin with either a moisture-proof backsheet or a glass plate;
A pressing step of pressing either the moisture-proof backsheet or the glass plate;
And a heating step of heating the heating stage on which the solar battery cell is placed.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、接続信頼性が優れる太陽電池モジュール及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a solar cell module that can solve the above-described problems, achieve the above-described object, and has excellent connection reliability, and a method for manufacturing the same.
図1は、薄膜系太陽電池モジュールの一例を示す概略上面図である。FIG. 1 is a schematic top view showing an example of a thin film solar cell module. 図2は、結晶系太陽電池モジュールの一例を示す分解斜視図である。FIG. 2 is an exploded perspective view showing an example of a crystalline solar cell module. 図3は、結晶系太陽電池モジュールの一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a crystalline solar cell module. 図4は、本発明に用いるタブ線の一例の概略断面図である。FIG. 4 is a schematic cross-sectional view of an example of a tab line used in the present invention. 図5は、結晶系太陽電池セルモデルの概略上面図である。FIG. 5 is a schematic top view of a crystalline solar cell model. 図6は、タブ線が配置された薄膜系太陽電池セルモデル(実施例2)の断面写真である。FIG. 6 is a cross-sectional photograph of a thin film solar cell model (Example 2) in which tab wires are arranged.
(太陽電池モジュール)
 本発明の太陽電池モジュールは、太陽電池セルと、タブ線と、第1の接着剤とを少なくとも有し、更に必要に応じて、封止用樹脂、防湿性バックシート、ガラスプレートなどのその他の部材を有する。
 前記太陽電池モジュールにおいては、前記太陽電池セルの電極と前記タブ線とが、前記第1の接着剤を介して接続されている。
(Solar cell module)
The solar cell module of the present invention has at least a solar cell, a tab wire, and a first adhesive, and, if necessary, other resins such as a sealing resin, a moisture-proof backsheet, and a glass plate. It has a member.
In the solar battery module, the electrode of the solar battery cell and the tab wire are connected via the first adhesive.
<太陽電池セル>
 前記太陽電池セルとしては、電極を有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、光電変換部としての光電変換素子と、フィンガー電極と、バスバー電極とを少なくとも有し、更に必要に応じて、その他の部材を有する。
<Solar cell>
The solar battery cell is not particularly limited as long as it has electrodes, and can be appropriately selected according to the purpose.For example, the solar battery cell has at least a photoelectric conversion element as a photoelectric conversion unit, a finger electrode, and a bus bar electrode. Furthermore, it has other members as required.
 前記太陽電池セルとしては、例えば、薄膜系太陽電池セル、結晶系太陽電池セルなどが挙げられる。前記薄膜系太陽電池セルとしては、例えば、非晶質シリコン太陽電池セル、化合物系太陽電池セル(CIS太陽電池セル、CdS/CdTe太陽電池セル)、色素増感太陽電池セル、有機薄膜太陽電池セル、微結晶シリコン太陽電池セル(タンデム型太陽電池セル)などが挙げられる。前記結晶系太陽電池セルとしては、例えば、単結晶シリコン太陽電池セル、多結晶シリコン太陽電池セルなどが挙げられる。 Examples of the solar battery cell include a thin film solar battery cell and a crystalline solar battery cell. Examples of the thin film solar cell include an amorphous silicon solar cell, a compound solar cell (CIS solar cell, CdS / CdTe solar cell), a dye-sensitized solar cell, and an organic thin film solar cell. And microcrystalline silicon solar cells (tandem solar cells). Examples of the crystalline solar battery cell include a single crystal silicon solar battery cell and a polycrystalline silicon solar battery cell.
 前記太陽電池セルは、バスバー電極を有さないバスバーレス構造であってもよい。 The solar battery cell may have a bus bar-less structure having no bus bar electrode.
 前記太陽電池セルの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。 The average thickness of the solar cells is not particularly limited and can be appropriately selected depending on the purpose.
-フィンガー電極-
 前記フィンガー電極は、前記光電変換部において生成した電気を収集する電極である。前記フィンガー電極は、前記太陽電池セル上において、前記タブ線とほぼ直交する方向に形成されている。
-Finger electrode-
The finger electrode is an electrode that collects electricity generated in the photoelectric conversion unit. The finger electrode is formed on the solar battery cell in a direction substantially orthogonal to the tab line.
 前記フィンガー電極の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、銀、金、銅、錫、ニッケルなどが挙げられる。 The material of the finger electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silver, gold, copper, tin, and nickel.
 前記フィンガー電極の平均幅としては、特に制限はなく、目的に応じて適宜選択することができるが、20μm~200μmが好ましく、20μm~100μmがより好ましい。
 前記平均幅は、例えば、前記フィンガー電極の任意の10点において前記フィンガー電極の幅を測定し、測定した値を平均することにより求めることができる。
The average width of the finger electrode is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20 μm to 200 μm, and more preferably 20 μm to 100 μm.
The average width can be obtained, for example, by measuring the width of the finger electrode at any 10 points of the finger electrode and averaging the measured values.
 前記フィンガー電極の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記フィンガー電極が所望のパターン形状になるように、銀ペーストを前記光電変換素子上に印刷することにより形成することができる。前記印刷方法としては、例えば、スクリーン印刷などが挙げられる。 There is no restriction | limiting in particular as a formation method of the said finger electrode, According to the objective, it can select suitably, For example, silver paste is printed on the said photoelectric conversion element so that the said finger electrode may become a desired pattern shape. Can be formed. Examples of the printing method include screen printing.
-バスバー電極-
 前記バスバー電極は、前記フィンガー電極で収集した電気を更に収集し前記タブ線へ伝える電極である。
 なお、バスバーレス構造の太陽電池セルでは、前記フィンガー電極から直接前記タブ線へ電気が伝えられる。
-Bus bar electrode-
The bus bar electrode is an electrode that further collects electricity collected by the finger electrodes and transmits the electricity to the tab wire.
In the solar cell having a bus barless structure, electricity is directly transmitted from the finger electrode to the tab wire.
 前記バスバー電極の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、銀、金、銅、錫、ニッケルなどが挙げられる。 The material of the bus bar electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include silver, gold, copper, tin, and nickel.
 前記バスバー電極の平均幅としては、特に制限はなく、目的に応じて適宜選択することができるが、500μm~5,000μmが好ましく、800μm~2,000μmがより好ましい。
 前記平均幅は、例えば、前記バスバー電極の任意の10点において前記バスバー電極の幅を測定し、測定した値を平均することにより求めることができる。
The average width of the bus bar electrode is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 μm to 5,000 μm, and more preferably 800 μm to 2,000 μm.
The average width can be obtained, for example, by measuring the width of the bus bar electrode at any 10 points of the bus bar electrode and averaging the measured values.
 前記バスバー電極の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記バスバー電極が所望のパターン形状になるように、銀ペーストを前記光電変換素子上に印刷することにより形成することができる。前記印刷方法としては、例えば、スクリーン印刷などが挙げられる。
 前記バスバー電極と前記フィンガー電極とは、同時に形成してもよい。例えば、所望のバスバー電極と所望のフィンガー電極とを形成可能なパターン形状の印刷版を用いて、光電変換素子上に銀ペーストをスクリーン印刷することにより、前記バスバー電極と前記フィンガー電極とを同時に形成することができる。
The method for forming the bus bar electrode is not particularly limited and may be appropriately selected depending on the purpose. For example, a silver paste is printed on the photoelectric conversion element so that the bus bar electrode has a desired pattern shape. Can be formed. Examples of the printing method include screen printing.
The bus bar electrode and the finger electrode may be formed simultaneously. For example, the bus bar electrode and the finger electrode are simultaneously formed by screen-printing a silver paste on the photoelectric conversion element using a printing plate having a pattern shape capable of forming a desired bus bar electrode and a desired finger electrode. can do.
<第1の接着剤>
 前記第1の接着剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、導電性接着剤、絶縁性接着剤などが挙げられる。
<First adhesive>
There is no restriction | limiting in particular as said 1st adhesive agent, According to the objective, it can select suitably, For example, a conductive adhesive, an insulating adhesive agent, etc. are mentioned.
-導電性接着剤-
 前記導電性接着剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、導電性粒子を少なくとも含有し、好ましくは膜形成樹脂と、硬化性樹脂と、硬化剤とを含有し、更に必要に応じて、その他の成分を含有する導電性接着剤などが挙げられる。
-Conductive adhesive-
The conductive adhesive is not particularly limited and may be appropriately selected depending on the purpose. For example, the conductive adhesive contains at least conductive particles, and preferably includes a film-forming resin, a curable resin, and a curing agent. A conductive adhesive containing other components as necessary is also included.
--導電性粒子--
 前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニッケル粒子、金被覆ニッケル粒子、樹脂コアをNiで被覆した樹脂粒子、樹脂コアをNiで被覆し、更に最表面をAuで被覆した樹脂粒子などが挙げられる。
--- Conductive particles--
The conductive particles are not particularly limited and may be appropriately selected depending on the purpose. For example, nickel particles, gold-coated nickel particles, resin particles with a resin core coated with Ni, and resin cores with Ni coated. Furthermore, resin particles whose outermost surface is coated with Au can be mentioned.
--膜形成樹脂--
 前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、フェノキシ樹脂が特に好ましい。
--- Film-forming resin--
There is no restriction | limiting in particular as said film formation resin, According to the objective, it can select suitably, For example, phenoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin Resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, phenoxy resin is particularly preferable.
--硬化性樹脂--
 前記硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、アクリレート樹脂などが挙げられる。
 前記硬化性樹脂は、前記太陽電池モジュールにおいては、それ単独で硬化していてもよいし、後述する硬化剤により硬化していてもよい。
--Curable resin--
There is no restriction | limiting in particular as said curable resin, According to the objective, it can select suitably, For example, an epoxy resin, an acrylate resin, etc. are mentioned.
In the said solar cell module, the said curable resin may be hardened | cured independently, and may be hardened with the hardening | curing agent mentioned later.
---エポキシ樹脂---
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
---Epoxy resin---
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, those modified epoxy resins, alicyclic type An epoxy resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
---アクリレート樹脂---
 前記アクリレート樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、前記アクリレートをメタクリレートにしたものが挙げられ、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--- Acrylate resin ---
The acrylate resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol Propane triacrylate, dimethylol tricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2, 2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, tris (acryloxyethyl) i Cyanurates, such as urethane acrylate, and the like. These may be used individually by 1 type and may use 2 or more types together.
Moreover, what made the said acrylate into the methacrylate is mentioned, These may be used individually by 1 type and may use 2 or more types together.
--硬化剤--
 前記硬化性樹脂は、硬化剤と併用するのが好ましい。前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2-エチル4-メチルイミダゾールに代表されるイミダゾール類;ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイド等の有機過酸化物;有機アミン類等のアニオン系硬化剤;スルホニウム塩、オニウム塩、アルミニウムキレート剤等のカチオン系硬化剤などが挙げられる。
 これらの中でも、エポキシ樹脂とイミダゾール類との組合せ、アクリレート樹脂と有機過酸化物との組合せが特に好ましい。
--- Curing agent-
The curable resin is preferably used in combination with a curing agent. The curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, imidazoles represented by 2-ethyl 4-methylimidazole; lauroyl peroxide, butyl peroxide, benzyl peroxide, Organic peroxides such as dilauroyl peroxide, dibutyl peroxide, peroxydicarbonate, benzoyl peroxide; anionic curing agents such as organic amines; cationic curing agents such as sulfonium salts, onium salts, aluminum chelating agents, etc. Is mentioned.
Among these, combinations of epoxy resins and imidazoles, and combinations of acrylate resins and organic peroxides are particularly preferable.
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シランカップリング剤、充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などが挙げられる。前記その他の成分の添加量は、特に制限はなく、目的に応じて適宜選択することができる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a silane coupling agent, a filler, a softener, an accelerator, anti-aging agent, a coloring agent (pigment, dye) , Organic solvents, ion catcher agents and the like. There is no restriction | limiting in particular in the addition amount of the said other component, According to the objective, it can select suitably.
-絶縁性接着剤-
 前記絶縁性接着剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、膜形成樹脂と、硬化性樹脂と、硬化剤とを含有し、更に必要に応じて、その他の成分を含有する絶縁性接着剤などが挙げられる。
 前記絶縁性接着剤における前記膜形成樹脂、前記硬化性樹脂、前記硬化剤、及び前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性接着剤の説明において例示した前記膜形成樹脂、前記硬化性樹脂、前記硬化剤、及び前記その他の成分がそれぞれ挙げられる。
-Insulating adhesive-
The insulating adhesive is not particularly limited and may be appropriately selected depending on the purpose. For example, the insulating adhesive contains a film-forming resin, a curable resin, and a curing agent, and, if necessary, other Insulating adhesives containing these components may be mentioned.
The film-forming resin, the curable resin, the curing agent, and the other components in the insulating adhesive are not particularly limited and may be appropriately selected depending on the purpose. For example, the conductive adhesive Examples thereof include the film-forming resin, the curable resin, the curing agent, and the other components exemplified in the description of the agent.
 前記第1の接着剤は、前記太陽電池モジュールを作製する際には、液状で使用されてもよいし、フィルム状で使用されてもよい。 The first adhesive may be used in a liquid form or in a film form when the solar cell module is manufactured.
<タブ線>
 前記タブ線は、少なくとも前記太陽電池セルの電極と前記タブ線とが接続する接続領域において、2以上の導電体を有する。前記導電体どうしは、第2の接着剤を介して接続されている。
<Tab line>
The tab line includes two or more conductors at least in a connection region where the electrode of the solar battery cell and the tab line are connected. The conductors are connected via a second adhesive.
-導電体-
 前記導電体の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウム、鉄、金、銀、ニッケル、パラジウム、クロム、モリブデン、及びこれらの合金などが挙げられる。
 前記導電体は、銅及びアルミニウムのいずれかを含有することが好ましい。
-conductor-
The material of the conductor is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include copper, aluminum, iron, gold, silver, nickel, palladium, chromium, molybdenum, and alloys thereof. Can be mentioned.
The conductor preferably contains either copper or aluminum.
 前記導電体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。 The shape of the conductor is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a flat plate shape.
 前記導電体の構造としては、特に制限はなく、目的に応じて適宜選択することができ、単層構造であってもよいし、積層構造であってもよい。前記単層構造としては、例えば、銅、アルミニウムなどをその材質とする単層構造が挙げられる。前記積層構造としては、例えば、銅、アルミニウムなどを材質とする基材と、メッキ層とを有する積層構造などが挙げられる。前記メッキ層の材質としては、例えば、金、銀、錫、ハンダなどが挙げられる。 The structure of the conductor is not particularly limited and may be appropriately selected depending on the purpose, and may be a single layer structure or a laminated structure. Examples of the single layer structure include a single layer structure made of copper, aluminum, or the like. Examples of the laminated structure include a laminated structure having a base material made of copper, aluminum or the like and a plating layer. Examples of the material of the plating layer include gold, silver, tin, and solder.
 前記導電体の接続方向の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、9μm~200μmが好ましく、9μm~150μmがより好ましい。前記平均厚みが、9μm未満であると、太陽電池セルにより生成された電気の取出し効率が低下することがあり、200μmを超えると、接続信頼性が低下することがある。前記平均厚みが、前記より好ましい範囲内であると、接続信頼性がより優れる点で有利である。
 前記平均厚みは、例えば、前記導電体の任意の10点において前記導電体の接続方向の厚みを測定し、測定した値を平均することにより求めることができる。
 前記接続方向は、太陽電池セル表面に直交する方向ということもできる。
The average thickness in the connecting direction of the conductor is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 9 μm to 200 μm, and more preferably 9 μm to 150 μm. When the average thickness is less than 9 μm, the extraction efficiency of electricity generated by the solar battery cells may be lowered, and when it exceeds 200 μm, the connection reliability may be lowered. When the average thickness is within the more preferable range, it is advantageous in that connection reliability is more excellent.
The average thickness can be obtained, for example, by measuring the thickness in the connection direction of the conductor at any 10 points of the conductor and averaging the measured values.
It can be said that the connection direction is a direction orthogonal to the surface of the solar battery cell.
 前記タブ線における前記導電体の数としては、特に制限はなく、目的に応じて適宜選択することができるが、2~5が好ましく、2~3がより好ましい。前記数が、5を超えると、前記太陽電池モジュールを製造する際の押圧工程において前記タブ線の位置ズレが生じ、これにより接続信頼性の低下及び接続不良が生じることがある。前記数が、前記より好ましい範囲内であると、接続信頼性がより優れる点で有利である。 The number of the conductors in the tab line is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 to 5, and more preferably 2 to 3. If the number exceeds 5, the tab wire may be misaligned in the pressing step when manufacturing the solar cell module, which may result in a decrease in connection reliability and a connection failure. When the number is within the more preferable range, it is advantageous in that connection reliability is more excellent.
 前記タブ線における前記2以上の導電体の各導電体の材質は、同じであってもよいし、異なっていてもよい。
 前記タブ線における前記2以上の導電体の各接続方向の平均厚みは、同じであってもよいし、異なっていてもよい。
The material of each of the two or more conductors in the tab line may be the same or different.
The average thickness in the connecting direction of the two or more conductors in the tab line may be the same or different.
 前記タブ線の構造としては、例えば、以下のように配列された構造などが挙げられる。
 (1)導電体/第2の接着剤/導電体
 (2)導電体/第2の接着剤/導電体/第2の接着剤/導電体
 (3)導電体/第2の接着剤/導電体/第2の接着剤/導電体/第2の接着剤/導電体
 (4)導電体/第2の接着剤/導電体/第2の接着剤/導電体/第2の接着剤/導電体/第2の接着剤/導電体
 (5)導電体/第2の接着剤/導電体/第2の接着剤/導電体/第2の接着剤/導電体/第2の接着剤/導電体/第2の接着剤/導電体
Examples of the structure of the tab line include a structure arranged as follows.
(1) Conductor / second adhesive / conductor (2) Conductor / second adhesive / conductor / second adhesive / conductor (3) Conductor / second adhesive / conduct Body / second adhesive / conductor / second adhesive / conductor (4) conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductive Body / second adhesive / conductor (5) conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductor / second adhesive / conductive Body / second adhesive / conductor
 前記第1の接着剤、及び前記第2の接着剤に絶縁性接着剤を用いる場合には、前記太陽電池セルの電極との電気的接続及び互いの導電体の電気的接続がしやすいように、前記導電体は、その表面に突起を有していることが好ましい。前記突起の材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。なお、前記導電体がその表面に突起を有する場合の前記導電体の接続方向の厚みとは、突起を除いた部分の厚みである。 When an insulating adhesive is used for the first adhesive and the second adhesive, the electrical connection with the electrodes of the solar battery cell and the electrical connection between the conductors are facilitated. The conductor preferably has a protrusion on its surface. There is no restriction | limiting in particular as a material of the said protrusion, a shape, a magnitude | size, and a structure, According to the objective, it can select suitably. In addition, the thickness in the connection direction of the conductor when the conductor has a protrusion on the surface is a thickness of a portion excluding the protrusion.
-第2の接着剤-
 前記第2の接着剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の接着剤と同様の接着剤などが挙げられる。前記第1の接着剤の成分と前記第2の接着剤の成分とは、同じであってよいし、異なっていてもよい。
-Second adhesive-
There is no restriction | limiting in particular as said 2nd adhesive agent, According to the objective, it can select suitably, For example, the adhesive agent similar to the said 1st adhesive agent etc. are mentioned. The component of the first adhesive and the component of the second adhesive may be the same or different.
 前記タブ線において前記導電体の数が3以上の場合、前記第2の接着剤は2箇所以上に用いられるが、そのとき、2箇所以上の前記第2の接着剤の成分は、同じであってもよいし、異なっていてもよい。 When the number of the conductors in the tab line is 3 or more, the second adhesive is used in two or more places. At this time, the components of the second adhesive in two or more places are the same. It may be different or different.
 前記タブ線の平均幅としては、特に制限はなく、目的に応じて適宜選択することができるが、500μm~10,000μmが好ましく、800μm~4,000μmがより好ましい。
 前記平均幅は、例えば、前記タブ線の任意の10点において前記タブ線における前記導電体の幅を測定し、測定した値を平均することにより求めることができる。前記導電体の幅とは、前記導電体における接続方向に直交する方向の距離である。
The average width of the tab line is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 500 μm to 10,000 μm, and more preferably 800 μm to 4,000 μm.
The average width can be obtained, for example, by measuring the width of the conductor in the tab line at any 10 points of the tab line and averaging the measured values. The width of the conductor is a distance in a direction orthogonal to the connection direction of the conductor.
 前記タブ線における各導電体の接続方向の平均厚み(μm)の合計(A)と、前記タブ線の平均幅(μm)(B)との比(A/B)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.009~0.250が好ましく、0.009~0.150がより好ましい。前記比(A/B)が、0.009未満であると、太陽電池セルにより生成された電気の取出し効率が低下することがあり、0.250を超えると、接続信頼性が低下することがある。前記比(A/B)が、前記より好ましい範囲内であると、接続信頼性がより優れる点で有利である。 There is no particular limitation on the ratio (A / B) of the sum (A) of the average thickness (μm) in the connecting direction of each conductor in the tab line and the average width (μm) (B) of the tab line. Depending on the purpose, it can be appropriately selected, but 0.009 to 0.250 is preferable, and 0.009 to 0.150 is more preferable. When the ratio (A / B) is less than 0.009, the extraction efficiency of electricity generated by the solar battery cell may be lowered, and when it exceeds 0.250, the connection reliability may be lowered. is there. When the ratio (A / B) is within the more preferable range, it is advantageous in that connection reliability is further improved.
<封止用樹脂>
 前記封止用樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、ポリイソブチレン(PIB)、シリコーン樹脂、ポリウレタン樹脂などが挙げられる。
<Resin for sealing>
The sealing resin is not particularly limited and may be appropriately selected depending on the purpose. For example, ethylene / vinyl acetate copolymer (EVA), ethylene / vinyl acetate / triallyl isocyanurate (EVAT), Examples include polyvinyl butyrate (PVB), polyisobutylene (PIB), silicone resin, polyurethane resin, and the like.
<防湿性バックシート>
 前記防湿性バックシートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレンテレフタレート(PET)、アルミニウム(Al)、PETとAlとポリエチレン(PE)の積層体などが挙げられる。
<Dampproof back sheet>
There is no restriction | limiting in particular as said moisture-proof backsheet, According to the objective, it can select suitably, For example, the laminated body of polyethylene terephthalate (PET), aluminum (Al), PET, Al, and polyethylene (PE) etc. Can be mentioned.
<ガラスプレート>
 前記ガラスプレートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ソーダ石灰フロートガラスプレートなどが挙げられる。
<Glass plate>
There is no restriction | limiting in particular as said glass plate, According to the objective, it can select suitably, For example, a soda-lime float glass plate etc. are mentioned.
 前記太陽電池モジュールは、前記薄膜系太陽電池セルを用いた薄膜系太陽電池モジュールであってもよいし、前記結晶系太陽電池セルを用いた結晶系太陽電池モジュールであってもよい。 The solar cell module may be a thin film solar cell module using the thin film solar cell or a crystalline solar cell module using the crystal solar cell.
 本発明の太陽電池モジュールの一例を、図を用いて説明する。
 図1は、薄膜系太陽電池モジュール200の一例を示す概略上面図である。図1の薄膜系太陽電池モジュール200は、基材38上に、薄膜系光電変換素子からなる薄膜系太陽電池セル32が、直列に平面方向に配列されている。そして、一方の末端の薄膜系太陽電池セル32cの表面電極(不図示)及び他方の末端の薄膜系太陽電池セル32dの表面電極(不図示)には、導電性接着層(不図示)を介して、電力取り出し用のタブ線3が接続されている。
An example of the solar cell module of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic top view showing an example of a thin-film solar cell module 200. In the thin-film solar cell module 200 of FIG. 1, thin-film solar cells 32 made of thin-film photoelectric conversion elements are arranged in series on a substrate 38 in a planar direction. Then, the surface electrode (not shown) of the thin film solar cell 32c at one end and the surface electrode (not shown) of the thin film solar cell 32d at the other end are provided with a conductive adhesive layer (not shown). Thus, a tab wire 3 for power extraction is connected.
 図2は、結晶系太陽電池モジュールの一例を示す分解斜視図である。結晶系太陽電池モジュール1は、複数の結晶系太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、更にストリングス4を複数配列したマトリクス5を備える。そして、結晶系太陽電池モジュール1は、マトリクス5が封止用樹脂のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられた防湿性のバックシート8とともに一括してラミネートされる。最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより、結晶系太陽電池モジュール1が形成される。 FIG. 2 is an exploded perspective view showing an example of a crystalline solar cell module. The crystalline solar cell module 1 includes strings 4 in which a plurality of crystalline solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and further includes a matrix 5 in which a plurality of strings 4 are arranged. In the crystalline solar cell module 1, the matrix 5 is sandwiched between the sealing resin sheets 6, and together with the front cover 7 provided on the light receiving surface side and the moisture-proof back sheet 8 provided on the back surface side. And laminated. Finally, the crystalline solar cell module 1 is formed by attaching a metal frame 9 such as aluminum around the periphery.
 また、図3に示すように、結晶系太陽電池モジュールの各結晶系太陽電池セル2X、2Y、2Zは、シリコン基板からなる結晶系光電変換素子10を有する。結晶系光電変換素子10には、受光面側に表面電極となるバスバー電極11と、バスバー電極11とほぼ直交する方向に形成された集電極であるフィンガー電極12とが設けられている。また、結晶系光電変換素子10には、受光面と反対の裏面側に、アルミニウムからなるAl裏面電極13が設けられている。
 そして、タブ線3によって、太陽電池セル2の表面のバスバー電極11と、隣接する太陽電池セル2のAl裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11との接続、及びタブ線3とAl裏面電極13との接続は、例えば、導電性接着フィルム17によって行う。
Moreover, as shown in FIG. 3, each crystalline solar cell 2X, 2Y, 2Z of the crystalline solar cell module has a crystalline photoelectric conversion element 10 made of a silicon substrate. The crystalline photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 serving as a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11. The crystalline photoelectric conversion element 10 is provided with an Al back electrode 13 made of aluminum on the back side opposite to the light receiving surface.
Then, the bus bar electrode 11 on the surface of the solar battery cell 2 and the Al back electrode 13 of the adjacent solar battery cell 2 are electrically connected by the tab wire 3, thereby constituting the strings 4 connected in series. . The connection between the tab wire 3 and the bus bar electrode 11 and the connection between the tab wire 3 and the Al back electrode 13 are performed by, for example, the conductive adhesive film 17.
 図4は、タブ線の一例を示す概略断面図である。タブ線3は、第1の導電体3aと第2の接着剤3bと第2の導電体3cとがこの順で積層された積層体である。第2の接着剤3bは、例えば、導電性接着フィルムを用いて形成される。 FIG. 4 is a schematic cross-sectional view showing an example of a tab line. The tab wire 3 is a laminated body in which a first conductor 3a, a second adhesive 3b, and a second conductor 3c are laminated in this order. The second adhesive 3b is formed using, for example, a conductive adhesive film.
(太陽電池モジュールの製造方法)
 本発明の太陽電池モジュールの製造方法は、配置工程と、被覆工程と、押圧工程と、加熱工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 本発明の太陽電池モジュールの製造方法は、本発明の前記太陽電池モジュールの製造に好適に用いることができる。
(Method for manufacturing solar cell module)
The manufacturing method of the solar cell module of the present invention includes at least a disposing step, a covering step, a pressing step, and a heating step, and further includes other steps as necessary.
The manufacturing method of the solar cell module of this invention can be used suitably for manufacture of the said solar cell module of this invention.
<配置工程>
 前記配置工程としては、太陽電池セルの電極上に、少なくとも第1の接着剤と、第1の導電体と、第2の接着剤と、第2の導電体とをこの順で配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 なお、前記第1の導電体と、前記第2の接着剤と、前記第2の導電体とが、本発明の前記太陽電池モジュールにおいてタブ線を形成する。
<Arrangement process>
As the arrangement step, at least a first adhesive, a first conductor, a second adhesive, and a second conductor are arranged in this order on the electrode of the solar battery cell. If there is, there is no restriction | limiting in particular, According to the objective, it can select suitably.
The first conductor, the second adhesive, and the second conductor form a tab line in the solar cell module of the present invention.
 前記太陽電池セルとしては、例えば、本発明の前記太陽電池モジュールの説明において例示した前記太陽電池セルなどが挙げられる。 Examples of the solar battery cell include the solar battery cell exemplified in the description of the solar battery module of the present invention.
 前記第1の接着剤及び前記第2の接着剤としては、例えば、本発明の前記太陽電池モジュールの説明において例示した前記第1の接着剤及び前記第2の接着剤がそれぞれ挙げられる。
 前記第1の接着剤及び前記第2の接着剤の接続方向における平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、3μm~100μmが好ましく、5μm~50μmがより好ましく、10μm~35μmがより好ましい。
 前記平均厚みは、例えば、前記第1の接着剤及び前記第2の接着剤の任意の10点において接続方向の厚みを測定し、測定した値を平均することにより求めることができる。
Examples of the first adhesive and the second adhesive include the first adhesive and the second adhesive exemplified in the description of the solar cell module of the present invention.
The average thickness in the connecting direction of the first adhesive and the second adhesive is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 3 μm to 100 μm, more preferably 5 μm to 50 μm. Preferably, 10 μm to 35 μm is more preferable.
The average thickness can be obtained, for example, by measuring the thickness in the connecting direction at any 10 points of the first adhesive and the second adhesive and averaging the measured values.
 前記第1の導電体及び前記第2の導電体としては、例えば、本発明の前記太陽電池モジュールの説明において例示した前記導電体などが挙げられる。 Examples of the first conductor and the second conductor include the conductors exemplified in the description of the solar cell module of the present invention.
 前記配置工程の一例を説明する。
 前記太陽電池セルのバスバー電極上に、前記バスバー電極と同じ幅にスリットしたフィルム状の導電性接着剤(導電性接着フィルム、第1の接着剤)を置く。続いて、前記第1の接着剤上に、前記バスバー電極と同じ幅の銅箔(第1の導電体)を置く。続いて、前記第1の導電体上に、前記バスバー電極と同じ幅にスリットしたフィルム状の導電性接着剤(導電性接着フィルム、第2の接着剤)を置く。続いて、前記第2の接着剤上に、前記バスバー電極と同じ幅の銅箔(第2の導電体)を置く。以上により配置工程を行うことができる。
An example of the arrangement step will be described.
A film-like conductive adhesive (conductive adhesive film, first adhesive) slit to the same width as the bus bar electrode is placed on the bus bar electrode of the solar battery cell. Subsequently, a copper foil (first conductor) having the same width as that of the bus bar electrode is placed on the first adhesive. Subsequently, a film-like conductive adhesive (conductive adhesive film, second adhesive) slit to the same width as the bus bar electrode is placed on the first conductor. Subsequently, a copper foil (second conductor) having the same width as that of the bus bar electrode is placed on the second adhesive. An arrangement | positioning process can be performed by the above.
 前記配置工程の他の一例を説明する。
 まず、銅箔(導電体)上にフィルム状の導電性接着剤(接着剤)を載せた2層体を準備する。前記2層体の幅は、前記太陽電池セルのバスバー電極と同じ幅にしておく。
 続いて、前記太陽電池セルのバスバー電極上に、前記接着剤(第1の接着剤)と前記バスバー電極とが接するように、前記2層体(第1の2層体)を置く。更に、置かれた前記2層体(第1の2層体)の上に、もう1つの2層体(第2の2層体)を、前記第1の2層体の導電体(第1の導電体)と前記第2の2層体の接着剤(第2の接着剤)とが接するように置く。以上により配置工程を行うことができる。
Another example of the arrangement step will be described.
First, a two-layer body in which a film-like conductive adhesive (adhesive) is placed on a copper foil (conductor) is prepared. The width of the two-layer body is set to the same width as the bus bar electrode of the solar battery cell.
Subsequently, the two-layer body (first two-layer body) is placed on the bus bar electrode of the solar battery cell so that the adhesive (first adhesive) and the bus bar electrode are in contact with each other. Further, another two-layer body (second two-layer body) is placed on the placed two-layer body (first two-layer body), and the first two-layer body conductor (first And the second two-layer adhesive (second adhesive) are in contact with each other. An arrangement | positioning process can be performed by the above.
 前記配置工程の他の一例を説明する。
 まず、銅箔(導電体)上にフィルム状の導電性接着剤(接着剤)を載せた2層体を2つ重ねた4層体を準備する。前記4層体の幅は、前記太陽電池セルのバスバー電極と同じ幅にしておく。
 続いて、前記太陽電池セルのバスバー電極上に、前記接着剤(第1の接着剤)と前記バスバー電極とが接するように、前記4層体を置く。以上により配置工程を行うことができる。
Another example of the arrangement step will be described.
First, a four-layer body in which two two-layer bodies on which a film-like conductive adhesive (adhesive) is placed on a copper foil (conductor) is prepared. The width of the four-layer body is set to the same width as the bus bar electrode of the solar battery cell.
Subsequently, the four-layer body is placed on the bus bar electrode of the solar battery cell so that the adhesive (first adhesive) and the bus bar electrode are in contact with each other. An arrangement | positioning process can be performed by the above.
 前記配置工程後には、前記第1の導電体、前記第2の導電体、及び前記太陽電池セルの電極が、電気的に接続されていてもよいし、電気的に接続されていなくてもよい。 After the arrangement step, the first conductor, the second conductor, and the electrode of the solar battery cell may be electrically connected or may not be electrically connected. .
<被覆工程>
 前記被覆工程としては、前記太陽電池セルを封止用樹脂により覆い、更に前記封止用樹脂を防湿性バックシート及びガラスプレートのいずれかにより覆う工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Coating process>
The covering step is not particularly limited as long as it is a step of covering the solar battery cell with a sealing resin and further covering the sealing resin with either a moisture-proof backsheet or a glass plate. Can be selected as appropriate.
 以上のような前記太陽電池モジュールの製造方法は、減圧ラミネーターを用いて行うことが好ましい。前記減圧ラミネーターを用いる方法は、例えば、特開2010-283059号公報に記載の方法を参考にして行うことができる。 The above solar cell module manufacturing method is preferably performed using a decompression laminator. The method using the reduced pressure laminator can be carried out with reference to the method described in JP 2010-283059 A, for example.
 前記封止用樹脂、前記防湿性バックシート、及び前記ガラスプレートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記太陽電池モジュールの説明において例示した前記封止用樹脂、前記防湿性バックシート、及び前記ガラスプレートがそれぞれ挙げられる。 The sealing resin, the moisture-proof backsheet, and the glass plate are not particularly limited and can be appropriately selected according to the purpose. For example, the examples exemplified in the description of the solar cell module of the present invention. Examples thereof include a sealing resin, the moisture-proof backsheet, and the glass plate.
<押圧工程及び加熱工程>
 前記押圧工程としては、前記防湿性バックシート及びガラスプレートのいずれかを押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。押圧する圧力、及び押圧する時間は、任意である。
<Pressing step and heating step>
The pressing step is not particularly limited as long as it is a step of pressing either the moisture-proof backsheet or the glass plate, and can be appropriately selected according to the purpose. The pressure to press and the time to press are arbitrary.
 前記加熱工程としては、前記太陽電池セルが載置された加熱ステージを加熱する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。前記加熱ステージを加熱することにより、前記封止用樹脂を加熱することができる。また、前記第1の接着剤、及び前記第2の接着剤を加熱することもできる。 The heating step is not particularly limited as long as it is a step of heating the heating stage on which the solar battery cell is placed, and can be appropriately selected according to the purpose. The sealing resin can be heated by heating the heating stage. Further, the first adhesive and the second adhesive can be heated.
 前記加熱工程における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、50℃~250℃が好ましく、100℃~200℃がより好ましい。前記加熱温度が、50℃未満であると、封止が不十分となることがあり、250℃を超えると、接着剤、封止用樹脂などに含まれる有機樹脂が熱分解することがある。前記加熱温度が、前記より好ましい範囲内であると、封止の信頼性の点で有利である。 The heating temperature in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 ° C to 250 ° C, more preferably 100 ° C to 200 ° C. When the heating temperature is less than 50 ° C., sealing may be insufficient, and when it exceeds 250 ° C., an organic resin contained in an adhesive, a sealing resin, or the like may be thermally decomposed. When the heating temperature is within the more preferable range, it is advantageous in terms of sealing reliability.
 前記加熱工程における加熱時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1秒間~1時間が好ましく、5秒間~30分間がより好ましく、10秒間~20分間が特に好ましい。前記加熱時間が、1秒間未満であると、封止が不十分となることがある。前記加熱時間が、前記特に好ましい範囲内であると、封止の信頼性の点で有利である。 The heating time in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 second to 1 hour, more preferably 5 seconds to 30 minutes, and particularly preferably 10 seconds to 20 minutes. preferable. If the heating time is less than 1 second, sealing may be insufficient. When the heating time is within the particularly preferable range, it is advantageous in terms of sealing reliability.
 前記押圧工程、及び前記加熱工程を開始する順序としては、特に制限はなく、目的に応じて適宜選択することができる。 The order of starting the pressing step and the heating step is not particularly limited and may be appropriately selected depending on the purpose.
 前記配置工程において、前記第1の導電体、前記第2の導電体、及び前記太陽電池セルの電極が、電気的に接続されていない場合には、前記押圧工程及び前記加熱工程により、前記第1の導電体、前記第2の導電体、及び前記太陽電池セルの電極を電気的に接続してもよい。 In the arrangement step, when the first conductor, the second conductor, and the electrode of the solar battery cell are not electrically connected, the pressing step and the heating step cause the first conductor, One conductor, the second conductor, and the electrode of the solar battery cell may be electrically connected.
 以上のようにすることにより、本発明の太陽電池モジュールが製造される。
 また、例えば、太陽電池セルを直接に複数接続したストリングスを更に複数配列したマトリクスを形成し、それを封止することにより、本発明の太陽電池モジュールを作製することもできる。
By doing so, the solar cell module of the present invention is manufactured.
Further, for example, the solar cell module of the present invention can be manufactured by forming a matrix in which a plurality of strings in which a plurality of solar cells are directly connected are arranged and sealing the matrix.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
<太陽電池モジュールモデルの作製>
-導電体-
 導電体として、平均幅2,000μmにスリットした銅箔(平均厚み9μm)を用いた。
(Example 1)
<Production of solar cell module model>
-conductor-
A copper foil (average thickness 9 μm) slit to an average width of 2,000 μm was used as the conductor.
-導電性接着フィルム-
 導電性接着フィルム(SP100シリーズ、平均厚み25μm、ソニーケミカル&インフォメーションデバイス株式会社製)を用意し、平均幅2,000μmにスリットして用いた。
-Conductive adhesive film-
A conductive adhesive film (SP100 series, average thickness 25 μm, manufactured by Sony Chemical & Information Device Co., Ltd.) was prepared and used by slitting to an average width of 2,000 μm.
-薄膜系太陽電池モジュールモデルの作製-
 全面に銀電極が形成されたガラス基板(縦100mm×横100mm×厚み0.7mm)を用意した。これを薄膜系太陽電池セルモデルとする。
-Fabrication of thin-film solar cell module model-
A glass substrate (length 100 mm × width 100 mm × thickness 0.7 mm) having a silver electrode formed on the entire surface was prepared. This is a thin film solar cell model.
 薄膜系太陽電池セルモデルの電極上に、導電性接着フィルム(第1の接着剤)と、導電体(第1の導電体)と、導電性接着フィルム(第2の接着剤)と、導電体(第2の導電体)とを、この順に配置した後、仮貼りした。仮貼りする条件は、加熱温度70℃、圧力0.5MPa、1秒間とし、加熱ツールを用いて行った。
 以上により、薄膜系太陽電池セルモデルの電極上に、第1の接着剤と、タブ線とが積層されたタブ線付き薄膜系太陽電池セルモデルを得た。なお、前記タブ線は、第1の導電体と、第2の接着剤と、第2の導電体とが積層した積層体である。この積層体は、薄膜系太陽電池セルモデルの電極上に、8.0cmの間隔を置いて2本配置した。
A conductive adhesive film (first adhesive), a conductor (first conductor), a conductive adhesive film (second adhesive), and a conductor on the electrode of the thin-film solar cell model (Second conductor) was disposed in this order, and then temporarily attached. The temporary bonding conditions were a heating temperature of 70 ° C., a pressure of 0.5 MPa, and 1 second, and a heating tool was used.
As described above, a thin film solar cell model with a tab line in which the first adhesive and the tab wire were laminated on the electrode of the thin film solar cell model was obtained. The tab wire is a laminated body in which a first conductor, a second adhesive, and a second conductor are laminated. Two laminates were arranged on the electrode of the thin-film solar cell model with an interval of 8.0 cm.
 続いて、得られたタブ線付き薄膜系太陽電池セルモデルを封止用樹脂により覆い、更に前記封止用樹脂を防湿性バックシートにより覆った。前記封止用樹脂には、厚み500μmのエチレン/酢酸ビニル共重合体を用いた。バックシートにはPETフィルムを用いた。
 そして、前記封止用樹脂をラミネーターにより封止を行った。具体的には、100℃にて真空引きを5分間行った後、プレス時間5分間、0.1MPaにてラミネートし、その後、オーブンにて155℃、45分間で硬化を行った。
 以上により、薄膜系太陽電池モジュールモデルを得た。
Subsequently, the obtained thin-film solar cell model with tab wires was covered with a sealing resin, and the sealing resin was further covered with a moisture-proof backsheet. As the sealing resin, an ethylene / vinyl acetate copolymer having a thickness of 500 μm was used. A PET film was used for the back sheet.
The sealing resin was sealed with a laminator. Specifically, vacuuming was performed at 100 ° C. for 5 minutes, followed by laminating at a press time of 5 minutes and 0.1 MPa, and then curing in an oven at 155 ° C. for 45 minutes.
As described above, a thin film solar cell module model was obtained.
<評価>
 上記で得られた薄膜系太陽電池モジュールを以下の評価に供した。結果を表1に示す。
<Evaluation>
The thin film solar cell module obtained above was subjected to the following evaluation. The results are shown in Table 1.
-接続信頼性-
 得られた薄膜系太陽電池モジュールモデルの2本のタブ線間の抵抗値を測定した。
 初期、TC200後、及びTC400後の抵抗値をデジタルマルチメータ(横河電気株式会社製、デジタルマルチメータ7555)を用いて測定し、下記評価基準で評価した。
 なお、前記TC200は、-40℃から85℃への昇温(昇温速度2℃/分間)、85℃での35分間ホールド、85℃から-40℃への降温(降温速度2℃/分間)、及び-40℃での35分間ホールドを1サイクルとし、それを200サイクル行う試験を示す。前記TC400は、前記サイクルを400サイクル行う試験を示す。
 〔評価基準〕
  ◎: 10mΩ未満
  ○: 10mΩ以上20mΩ未満
  △: 20mΩ以上100mΩ未満
  ×: 100mΩ以上
-Connection reliability-
The resistance value between two tab wires of the obtained thin film solar cell module model was measured.
Resistance values after initial, after TC200, and after TC400 were measured using a digital multimeter (manufactured by Yokogawa Electric Co., Ltd., digital multimeter 7555), and evaluated according to the following evaluation criteria.
The TC200 has a temperature rise from −40 ° C. to 85 ° C. (temperature rise rate 2 ° C./min), hold at 85 ° C. for 35 minutes, and temperature drop from 85 ° C. to −40 ° C. (temperature drop rate 2 ° C./min) ), And a 35 minute hold at −40 ° C. for one cycle and a test for 200 cycles. The TC400 indicates a test in which the cycle is performed 400 times.
〔Evaluation criteria〕
◎: Less than 10 mΩ ○: 10 mΩ or more and less than 20 mΩ Δ: 20 mΩ or more and less than 100 mΩ ×: 100 mΩ or more
(実施例2~8)
 実施例1において、導電体の材質、導電体の平均厚み、及びタブ線の平均幅を表1に記載の導電体の材質、導電体の平均厚み、及びタブ線の平均幅にそれぞれ変えた以外は、実施例1と同様にして、薄膜系太陽電池モジュールモデルを作製し、評価を行った。結果を表1に示す。
 なお、実施例7では、導電性接着フィルムの平均幅を800μmにした。実施例8では、導電性接着フィルムの平均幅を1,500μmにした。
 ここで、タブ線が配置された薄膜系太陽電池セルモデル(実施例2)の断面写真を図6に示す。第1の導電体3aと第2の導電体3cとが第2の接着剤3bを介して接続されてなるタブ線が、導電性接着フィルム17を介して薄膜系太陽電池セルモデル32a上に配置されている。
(Examples 2 to 8)
In Example 1, except that the material of the conductor, the average thickness of the conductor, and the average width of the tab line were respectively changed to the material of the conductor, the average thickness of the conductor, and the average width of the tab line shown in Table 1. In the same manner as in Example 1, a thin film solar cell module model was prepared and evaluated. The results are shown in Table 1.
In Example 7, the average width of the conductive adhesive film was 800 μm. In Example 8, the average width of the conductive adhesive film was 1,500 μm.
Here, the cross-sectional photograph of the thin film solar cell model (Example 2) in which the tab wires are arranged is shown in FIG. A tab wire formed by connecting the first conductor 3a and the second conductor 3c via the second adhesive 3b is disposed on the thin-film solar cell model 32a via the conductive adhesive film 17. Has been.
(実施例9)
 実施例1において、仮貼りの際に、第2の導電体上に、更に導電性接着フィルム(第3の接着剤)と、導電体(第3の導電体)とをこの順で配置した以外は、実施例1と同様にして、薄膜系太陽電池モジュールモデルを作製し、評価を行った。結果を表1に示す。
Example 9
In Example 1, except that a conductive adhesive film (third adhesive) and a conductor (third conductor) were further arranged in this order on the second conductor during temporary attachment. In the same manner as in Example 1, a thin film solar cell module model was prepared and evaluated. The results are shown in Table 1.
(実施例10)
 結晶系太陽電池セルモデルとして、図5に示すような平均幅が100μmのフィンガー電極12及び平均幅が2,000μmのバスバー電極11が形成されたガラス基板を作製した。具体的には、ガラス基板(縦125mm×横125mm×厚み0.7mm)上に銀ペーストをスクリーン印刷及び焼成することにより、図5に示すようなフィンガー電極12及びバスバー電極11のパターンを形成し、結晶系太陽電池セルモデル2’を得た。
 得られた結晶系太陽電池セルモデルのバスバー電極上に、実施例1に示す導電性接着フィルム(第1の接着剤)と、実施例1に示す導電体(第1の導電体)と、実施例1に示す導電性接着フィルム(第2の接着剤)と、実施例1に示す導電体(第2の導電体)とを、この順に配置した後、仮貼りした。仮貼りする条件は、加熱温度70℃、圧力0.5MPa、1秒間とし、加熱ツールを用いて行った。
 以上により、結晶系太陽電池セルモデルのバスバー電極上に、第1の接着剤と、タブ線とが積層されたタブ線付き結晶系太陽電池セルモデルを得た。なお、前記タブ線は、第1の導電体と、第2の接着剤と、第2の導電体とが積層した積層体である。
 実施例1において、上記で得られたタブ線付き結晶系太陽電池セルモデルを用いた以外は、実施例1と同様にして、結晶系太陽電池モジュールモデルを作製し、評価を行った。結果を表1に示す。
(Example 10)
As a crystalline solar cell model, a glass substrate on which finger electrodes 12 with an average width of 100 μm and bus bar electrodes 11 with an average width of 2,000 μm were formed as shown in FIG. Specifically, a pattern of finger electrodes 12 and bus bar electrodes 11 as shown in FIG. 5 is formed by screen printing and baking a silver paste on a glass substrate (length 125 mm × width 125 mm × thickness 0.7 mm). Crystalline solar cell model 2 ′ was obtained.
On the bus bar electrode of the obtained crystalline solar cell model, the conductive adhesive film (first adhesive) shown in Example 1 and the conductor (first conductor) shown in Example 1 were implemented. The conductive adhesive film (second adhesive) shown in Example 1 and the conductor (second conductor) shown in Example 1 were disposed in this order, and then temporarily attached. The temporary bonding conditions were a heating temperature of 70 ° C., a pressure of 0.5 MPa, and 1 second, and a heating tool was used.
In this way, a crystalline solar cell model with a tab line in which the first adhesive and the tab line were laminated on the bus bar electrode of the crystalline solar cell model was obtained. The tab wire is a laminated body in which a first conductor, a second adhesive, and a second conductor are laminated.
In Example 1, a crystalline solar cell module model was prepared and evaluated in the same manner as in Example 1, except that the tabbed crystalline solar cell model obtained above was used. The results are shown in Table 1.
(実施例11~13)
 実施例1において、第1の導電体の平均厚み、第2の導電体の平均厚み、及びタブ線の平均幅を表2に記載の第1の導電体の平均厚み、第2の導電体の平均厚み、及びタブ線の平均幅に変えた以外は、実施例1と同様にして、薄膜系太陽電池モジュールモデルを作製し、評価を行った。結果を表2に示す。
(Examples 11 to 13)
In Example 1, the average thickness of the first conductor, the average thickness of the second conductor, and the average width of the tab line are the average thickness of the first conductor described in Table 2, and the second conductor A thin film solar cell module model was prepared and evaluated in the same manner as in Example 1 except that the average thickness and the average width of the tab line were changed. The results are shown in Table 2.
(実施例14)
 実施例4において、導電性接着フィルムの平均厚みを10μmに変えた以外は、実施例4と同様にして、薄膜系太陽電池モジュールモデルを作製し、評価を行った。結果を表2に示す。
(Example 14)
In Example 4, a thin-film solar cell module model was prepared and evaluated in the same manner as in Example 4 except that the average thickness of the conductive adhesive film was changed to 10 μm. The results are shown in Table 2.
(実施例15)
 実施例4において、導電性接着フィルムの平均厚みを35μmに変えた以外は、実施例4と同様にして、薄膜系太陽電池モジュールモデルを作製し、評価を行った。結果を表2に示す。
(Example 15)
In Example 4, a thin-film solar cell module model was produced and evaluated in the same manner as in Example 4 except that the average thickness of the conductive adhesive film was changed to 35 μm. The results are shown in Table 2.
(比較例1)
-ハンダ付きタブ線の作製-
 平均厚み400μmの銅箔を平均幅2mm(2,000μm)にスリットにした。
 スリットした銅箔に、Sn(96.5質量%)/Ag(3質量%)/Cu(0.5質量%)の鉛フリーハンダをメッキして、ハンダ付きタブ線を得た。
(Comparative Example 1)
-Production of soldered tab wire-
Copper foil having an average thickness of 400 μm was slit into an average width of 2 mm (2,000 μm).
The slit copper foil was plated with Sn (96.5 mass%) / Ag (3 mass%) / Cu (0.5 mass%) lead-free solder to obtain a soldered tab wire.
-タブ線付き薄膜系太陽電池セルモデルの作製-
 実施例1で用意した薄膜系太陽電池セルモデルの電極上に、上記で得られたハンダ付きタブ線を、前記電極と前記ハンダ付きタブ線のハンダとが接するように配置した。前記ハンダ付タブ線は、2本配置し、その間隔は、実施例1と同様にした。
 その後、ハンダごてを用いて、加熱温度240℃で加熱しタブ線付き薄膜系太陽電池セルモデルを得た。
-Fabrication of thin-film solar cell model with tab wires-
The soldered tab wire obtained above was arranged on the electrode of the thin-film solar cell model prepared in Example 1 so that the electrode and the solder of the soldered tab wire were in contact with each other. Two soldered tab wires were arranged, and the interval between them was the same as in Example 1.
Then, using a soldering iron, it was heated at a heating temperature of 240 ° C. to obtain a thin film solar cell model with a tab wire.
-薄膜系太陽電池モジュールモデルの作製-
 続いて、得られたタブ線付き薄膜系太陽電池セルモデルを封止用樹脂により覆い、更に前記封止用樹脂を防湿性バックシートにより覆った。前記封止用樹脂には、厚み500μmのエチレン/酢酸ビニル共重合体を用いた。バックシートにはPETフィルムを用いた。
 そして、前記封止用樹脂をラミネーターにより封止を行った。具体的は、100℃にて真空引きを5分間行った後、プレス時間5分間、0.1MPaにてラミネートし、その後、オーブンにて155℃、45分間で硬化を行った。
 以上により、薄膜系太陽電池モジュールモデルを得た。
 得られた薄膜系太陽電池モジュールモデルについて、実施例1と同様にして評価を行った。結果を表2に示す。
-Fabrication of thin-film solar cell module model-
Subsequently, the obtained thin-film solar cell model with tab wires was covered with a sealing resin, and the sealing resin was further covered with a moisture-proof backsheet. As the sealing resin, an ethylene / vinyl acetate copolymer having a thickness of 500 μm was used. A PET film was used for the back sheet.
The sealing resin was sealed with a laminator. Specifically, vacuuming was performed at 100 ° C. for 5 minutes, followed by laminating at a press time of 5 minutes and 0.1 MPa, and then curing in an oven at 155 ° C. for 45 minutes.
As described above, a thin film solar cell module model was obtained.
The obtained thin film solar cell module model was evaluated in the same manner as in Example 1. The results are shown in Table 2.
(比較例2)
 実施例1において、第1の導電体の平均厚みを400μmに変え、かつ第2の接着剤及び第2の導電体を用いなかった以外は、実施例1と同様にして、薄膜系太陽電池モジュールモデルを作製し、評価を行った。結果を表2に示す。
(Comparative Example 2)
A thin-film solar cell module in the same manner as in Example 1, except that the average thickness of the first conductor was changed to 400 μm and the second adhesive and the second conductor were not used in Example 1. A model was created and evaluated. The results are shown in Table 2.
(比較例3)
 比較例1において、銅箔の平均厚みを200μmに変えた以外は、比較例1と同様にして、薄膜系太陽電池セルモジュールを作製し、評価を行った。結果を表2に示す。
(Comparative Example 3)
In Comparative Example 1, a thin-film solar cell module was prepared and evaluated in the same manner as Comparative Example 1 except that the average thickness of the copper foil was changed to 200 μm. The results are shown in Table 2.
(比較例4)
 比較例2において、第1の導電体の平均厚みを200μmに変えた以外は、比較例2と同様にして、薄膜系太陽電池セルモジュールを作製し、評価を行った。結果を表2に示す。
(Comparative Example 4)
In Comparative Example 2, a thin-film solar cell module was produced and evaluated in the same manner as in Comparative Example 2 except that the average thickness of the first conductor was changed to 200 μm. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~15で作製した太陽電池モジュールは、接続信頼性が優れていることが確認できた。
 導電体の平均厚みとしては、TC400後も導通抵抗が非常に優れる点から、9μm~150μmが非常に好ましいことが確認できた(例えば、実施例1~4、及び実施例11参照)。タブ線における導電体の平均厚みの合計としては、TC400後も導通抵抗が非常に優れる点から、18μm~300μmが非常に好ましいことが確認できた(例えば、実施例1~4、及び実施例11参照)。
 タブ線における各導電体の平均厚み(μm)の合計(A)と、タブ線の平均幅(μm)(B)との比(A/B)としては、TC400後も導通抵抗が非常に優れる点から、0.009~0.150が非常に好ましいことが確認できた(例えば、実施例1~4、8~9、11参照)。
 導電体の材質としては、銅及びアルミニウムのいずれでも、接続信頼性が優れることが確認できた(例えば、実施例4及び6参照)。
 太陽電池モジュールの種類としては、薄膜系太陽電池モジュール及び結晶系太陽電池モジュールのいずれでも、接続信頼性が優れることが確認できた(例えば、実施例4及び10参照)
 一方、比較例1及び2では、TC200及びTC400で導通抵抗が非常に大きくなり、接続信頼性が十分ではなかった。また、比較例3及び4では、TC400で導通抵抗が大きくなり、接続信頼性が十分ではなかった。
It was confirmed that the solar cell modules produced in Examples 1 to 15 were excellent in connection reliability.
As the average thickness of the conductor, it was confirmed that 9 μm to 150 μm was very preferable because the conduction resistance was very excellent even after TC400 (see, for example, Examples 1 to 4 and Example 11). As the sum of the average thicknesses of the conductors in the tab wire, it was confirmed that 18 μm to 300 μm was very preferable because the conduction resistance was very excellent even after TC400 (for example, Examples 1 to 4 and Example 11). reference).
As the ratio (A / B) of the sum (A) of the average thickness (μm) of each conductor in the tab wire and the average width (μm) (B) of the tab wire, the conduction resistance is very excellent even after TC400. From the point, it was confirmed that 0.009 to 0.150 is very preferable (for example, see Examples 1 to 4, 8 to 9, and 11).
As the material of the conductor, it was confirmed that both copper and aluminum have excellent connection reliability (for example, see Examples 4 and 6).
As the type of the solar cell module, it was confirmed that the connection reliability was excellent in both the thin-film solar cell module and the crystalline solar cell module (for example, see Examples 4 and 10).
On the other hand, in Comparative Examples 1 and 2, the conduction resistance was very large in TC200 and TC400, and the connection reliability was not sufficient. Further, in Comparative Examples 3 and 4, the conduction resistance increased with TC400, and the connection reliability was not sufficient.
 本発明の太陽電池モジュールは、接続信頼性に優れることから、高光電効率化を目的とした受光面積増大のためにタブ線が細線化された太陽電池モジュールに特に好適に用いることができる。 Since the solar cell module of the present invention is excellent in connection reliability, it can be particularly suitably used for a solar cell module in which the tab line is thinned to increase the light receiving area for the purpose of increasing the photoelectric efficiency.
  1   結晶系太陽電池モジュール
  2   結晶系太陽電池セル
  3   タブ線
  3a  第1の導電体
  3b  第2の接着剤
  3c  第2の導電体
  4   ストリングス
  5   マトリクス
  6   シート
  7   表面カバー
  8   バックシート
  9   金属フレーム
  10  結晶系光電変換素子
  11  バスバー電極
  12  フィンガー電極
  13  Al裏面電極
  17  導電性接着フィルム
  32  薄膜系太陽電池セル
  32a 薄膜系太陽電池セルモデル
  38  基材
  200 薄膜系太陽電池モジュール
 
DESCRIPTION OF SYMBOLS 1 Crystalline solar cell module 2 Crystalline solar cell 3 Tab wire 3a 1st conductor 3b 2nd adhesive agent 3c 2nd conductor 4 Strings 5 Matrix 6 Sheet 7 Surface cover 8 Back sheet 9 Metal frame 10 Crystal System photoelectric conversion element 11 Bus bar electrode 12 Finger electrode 13 Al back electrode 17 Conductive adhesive film 32 Thin film solar cell 32a Thin film solar cell model 38 Base material 200 Thin film solar cell module

Claims (8)

  1.  電極を有する太陽電池セルと、タブ線と、第1の接着剤とを有し、
     前記太陽電池セルの電極と前記タブ線とが、前記第1の接着剤を介して接続され、
     少なくとも前記太陽電池セルの電極と前記タブ線とが接続する接続領域において、前記タブ線が2以上の導電体を有し、かつ前記導電体どうしが第2の接着剤を介して接続されてなることを特徴とする太陽電池モジュール。
    A solar cell having an electrode, a tab wire, and a first adhesive;
    The electrode of the solar battery cell and the tab wire are connected via the first adhesive,
    At least in the connection region where the electrode of the solar battery cell and the tab wire are connected, the tab wire has two or more conductors, and the conductors are connected via a second adhesive. A solar cell module characterized by that.
  2.  導電体の接続方向の平均厚みが、9μm~200μmである請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein an average thickness in the connecting direction of the conductor is 9 μm to 200 μm.
  3.  タブ線における各導電体の接続方向の平均厚み(μm)の合計(A)と、タブ線の平均幅(μm)(B)との比(A/B)が、0.009~0.250である請求項1から2のいずれかに記載の太陽電池モジュール。 The ratio (A / B) of the sum (A) of the average thickness (μm) in the connecting direction of each conductor in the tab line to the average width (μm) (B) of the tab line is 0.009 to 0.250. The solar cell module according to any one of claims 1 to 2.
  4.  導電体が、銅及びアルミニウムのいずれかを含有する請求項1から3のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the conductor contains one of copper and aluminum.
  5.  タブ線における導電体の数が、2~5である請求項1から4のいずれかに記載の太陽電池モジュール。 5. The solar cell module according to claim 1, wherein the number of conductors in the tab wire is 2 to 5.
  6.  結晶系太陽電池モジュール及び薄膜系太陽電池モジュールのいずれかである請求項1から5のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 5, which is either a crystalline solar cell module or a thin film solar cell module.
  7.  第1の接着剤及び第2の接着剤の少なくともいずれかが、導電性接着剤及び絶縁性接着剤のいずれかである請求項1から6のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 6, wherein at least one of the first adhesive and the second adhesive is either a conductive adhesive or an insulating adhesive.
  8.  太陽電池セルの電極上に、少なくとも第1の接着剤と、第1の導電体と、第2の接着剤と、第2の導電体とをこの順で配置する配置工程と、
     前記太陽電池セルを封止用樹脂により覆い、更に前記封止用樹脂を防湿性バックシート及びガラスプレートのいずれかにより覆う被覆工程と、
     前記防湿性バックシート及びガラスプレートのいずれかを押圧する押圧工程と、
     前記太陽電池セルが載置された加熱ステージを加熱する加熱工程と、を少なくとも含むことを特徴とする太陽電池モジュールの製造方法。
    An arrangement step of arranging at least the first adhesive, the first conductor, the second adhesive, and the second conductor in this order on the electrode of the solar battery cell;
    A covering step of covering the solar battery cell with a sealing resin, and further covering the sealing resin with either a moisture-proof backsheet or a glass plate;
    A pressing step of pressing either the moisture-proof backsheet or the glass plate;
    And a heating step of heating the heating stage on which the solar cells are placed. A method for manufacturing a solar cell module, comprising:
PCT/JP2013/068258 2012-07-10 2013-07-03 Solar cell module and manufacturing method for same WO2014010486A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380036546.6A CN104428904A (en) 2012-07-10 2013-07-03 Solar cell module and manufacturing method for same
KR1020157003030A KR102019310B1 (en) 2012-07-10 2013-07-03 Solar cell module and manufacturing method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-154583 2012-07-10
JP2012154583A JP5889738B2 (en) 2012-07-10 2012-07-10 Solar cell module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014010486A1 true WO2014010486A1 (en) 2014-01-16

Family

ID=49915947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068258 WO2014010486A1 (en) 2012-07-10 2013-07-03 Solar cell module and manufacturing method for same

Country Status (5)

Country Link
JP (1) JP5889738B2 (en)
KR (1) KR102019310B1 (en)
CN (1) CN104428904A (en)
TW (1) TWI590482B (en)
WO (1) WO2014010486A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043518A1 (en) * 2015-09-08 2017-03-16 デクセリアルズ株式会社 Solar battery module manufacturing method, solar battery module, and solar battery cell connecting method
CN107170841B (en) * 2017-06-07 2021-01-22 苏州携创新能源科技有限公司 Solar cell photovoltaic module and solar cell photovoltaic module
CN109346560A (en) * 2018-11-27 2019-02-15 江苏拓正茂源新能源有限公司 A kind of preparation method of solar battery core
WO2023037885A1 (en) * 2021-09-13 2023-03-16 株式会社カネカ Solar battery device and solar battery module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252062A (en) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd Solar cell device
WO2009019929A1 (en) * 2007-08-09 2009-02-12 Mitsubishi Electric Corporation Solar battery panel
JP2009054981A (en) * 2007-08-02 2009-03-12 Sanyo Electric Co Ltd Solar cell module and method for manufacturing the same
JP2011159725A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Base for solar cell module, method of manufacturing the same, and solar cell module
JP2012038777A (en) * 2010-08-03 2012-02-23 Mitsubishi Electric Corp Solar battery module and manufacturing method of solar battery module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207795A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Solar cell element and solar cell module
JP4697194B2 (en) * 2006-10-13 2011-06-08 日立化成工業株式会社 Solar cell connection method and solar cell module
WO2010021301A1 (en) * 2008-08-22 2010-02-25 三洋電機株式会社 Solar cell module
JP5446420B2 (en) 2009-04-21 2014-03-19 デクセリアルズ株式会社 Solar cell module and manufacturing method thereof
JP5158238B2 (en) * 2010-08-26 2013-03-06 日立化成株式会社 Adhesive film for solar cell electrode and method for producing solar cell module using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252062A (en) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd Solar cell device
JP2009054981A (en) * 2007-08-02 2009-03-12 Sanyo Electric Co Ltd Solar cell module and method for manufacturing the same
WO2009019929A1 (en) * 2007-08-09 2009-02-12 Mitsubishi Electric Corporation Solar battery panel
JP2011159725A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Base for solar cell module, method of manufacturing the same, and solar cell module
JP2012038777A (en) * 2010-08-03 2012-02-23 Mitsubishi Electric Corp Solar battery module and manufacturing method of solar battery module

Also Published As

Publication number Publication date
TW201403843A (en) 2014-01-16
KR20150032889A (en) 2015-03-30
JP2014017398A (en) 2014-01-30
JP5889738B2 (en) 2016-03-22
TWI590482B (en) 2017-07-01
CN104428904A (en) 2015-03-18
KR102019310B1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
EP2774173B1 (en) Interdigitated foil interconnect for rear-contact solar cells
JP5159725B2 (en) Solar cell string and solar cell module using the same
US20080236655A1 (en) Solar module manufacturing processes
JP2939075B2 (en) Solar cell module
JP5877604B2 (en) Method for manufacturing solar cell module, solar cell module, and tab wire connection method
JP6567103B2 (en) Thin film solar cell module and method for manufacturing thin film solar cell module
US20090250109A1 (en) Acrylic pressure sensitive adhesive composition, double coated adhesive sheet, and photovoltaic device
KR101441264B1 (en) Solar cell module, method for producing solar cell module, solar cell, and method for connecting tab wire
WO2012005318A1 (en) Solar cell module and method for manufacturing solar cell module
JP5089456B2 (en) Crimping apparatus and solar cell module manufacturing method
JP5889701B2 (en) Crystalline solar cell module and manufacturing method thereof
JP5889738B2 (en) Solar cell module and manufacturing method thereof
WO2015008646A1 (en) Conductive adhesive tape, conductive adhesive tape connection method, solar cell module, and production method therefor
JP2011222744A (en) Tab wire for connecting solar battery, connection method and solar battery module
JP4585652B2 (en) Photovoltaic element and method for producing photovoltaic element
JP2017055112A (en) Manufacturing method for solar cell module, solar cell module, and connection method for solar cell module
JP6097483B2 (en) Crystalline solar cell module
WO2017043518A1 (en) Solar battery module manufacturing method, solar battery module, and solar battery cell connecting method
JP6492570B2 (en) Crystalline solar cell module and manufacturing method thereof
JP2017175016A (en) Manufacturing method of solar cell module, solar cell module, connection method for solar cell module, and laminate
JP2017147302A (en) Solar cell module
JP2016100438A (en) Crystalline solar battery module and method for manufacturing the same
JP2014090111A (en) Wiring material with conductive paste and process of manufacturing the same, and solar cell module and process of manufacturing the same
JP2001345466A (en) Photovoltaic element and method of manufacturing the element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817118

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157003030

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13817118

Country of ref document: EP

Kind code of ref document: A1