WO2014010044A1 - 静電結合方式非接触給電装置 - Google Patents

静電結合方式非接触給電装置 Download PDF

Info

Publication number
WO2014010044A1
WO2014010044A1 PCT/JP2012/067698 JP2012067698W WO2014010044A1 WO 2014010044 A1 WO2014010044 A1 WO 2014010044A1 JP 2012067698 W JP2012067698 W JP 2012067698W WO 2014010044 A1 WO2014010044 A1 WO 2014010044A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
electrode plates
electrode plate
circuit
Prior art date
Application number
PCT/JP2012/067698
Other languages
English (en)
French (fr)
Inventor
慎二 瀧川
直道 石浦
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to EP12880969.6A priority Critical patent/EP2874275B1/en
Priority to CN201280074651.4A priority patent/CN104488165B/zh
Priority to PCT/JP2012/067698 priority patent/WO2014010044A1/ja
Priority to JP2014524537A priority patent/JP6058003B2/ja
Publication of WO2014010044A1 publication Critical patent/WO2014010044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/04Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode
    • H01G5/14Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of effective area of electrode due to longitudinal movement of electrodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a non-contact power supply device that supplies power to an electric load on a movable portion in a non-contact manner from a fixed portion, and more particularly to an electrostatic coupling type non-contact power supply device in which electrode plates are arranged to face each other at a distance.
  • a linear motor device generally includes a track member in which N poles and S poles of a plurality of magnets are alternately arranged along a moving direction, and a movable portion configured to include an armature having a core and a coil. Is.
  • a deformable power supply cable has been used to supply power to an electric load on a movable part such as a linear motor device.
  • a non-contact power feeding device has been proposed in order to eliminate adverse effects such as an increase in the carrying weight due to a power feeding cable and a risk of disconnection due to metal fatigue.
  • the electromagnetic induction method using a coil has been widely used as a method of a non-contact power feeding device, but recently, an electrostatic coupling method in which a capacitor is configured by an opposing electrode plate has been used.
  • a magnetic resonance method has been studied.
  • the application of the non-contact power feeding device is not limited to the work equipment for substrates, but is spreading to a wide range of fields such as industrial equipment and home appliances in other industries.
  • Patent Document 1 One technical example of this type of non-contact power feeding apparatus is disclosed in Patent Document 1.
  • the power supply device disclosed in Patent Document 1 includes an electric power generation unit, a power transmission element, an impedance detection unit, and a variable matching unit, and has an impedance matching function at a power supply point.
  • the power receiving device disclosed in Patent Document 1 includes a power receiving element, an impedance detection unit, and a variable matching unit, and has an impedance matching function at a connection portion with a load.
  • a wireless power feeding system is configured by a combination of the power feeding device and the power receiving device, and power loss can be reduced.
  • the electromagnetic induction method increases the weight of the coil and increases the total weight of the movable part, and avoids magnetic field interference with the linear motor device. Due to restrictions, the electrostatic coupling method is considered promising.
  • the non-contact power feeding of the electrostatic coupling method it is common to use a resonance circuit in order to ensure a large power feeding capacity. That is, in place of the impedance matching function of Patent Document 1, a function of variably adjusting the frequency of the high-frequency power output from the high-frequency power supply circuit of the fixed portion and controlling so that a large resonance current flows is provided. Thereby, even if the relative position of the movable part with respect to the fixed part changes and the resonance frequency fluctuates, high power supply efficiency can be maintained.
  • a power feeding electrode plate is disposed on the track member of the linear motor device, and a power receiving electrode plate is disposed on the movable portion.
  • the power supply electrode plate and the power reception electrode plate are spaced apart from each other to form a capacitor, whereby non-contact power supply is performed.
  • the raceway member is mechanically distorted by the stress generated when the movable part performs acceleration / deceleration operation, and the separation distance between the power supply electrode plate and the power reception electrode plate changes.
  • the separation distance between the power supply electrode plate and the power reception electrode plate changes even when the flatness of the long power supply electrode plate cannot be secured due to mechanical processing accuracy limitations.
  • the capacitance of the capacitor between the electrode plates fluctuates. If this fluctuation range is large and frequent, even if the output frequency of the high-frequency power supply circuit is controlled, it deviates from the resonance frequency, and the feeding efficiency is reduced. It tends to decline. Furthermore, when the separation distance increases and the capacitance decreases, the resonance frequency increases, and the power supply efficiency decreases mainly for the following two reasons. First, when the output frequency of the high-frequency power supply circuit is increased in accordance with the resonance frequency, the switching operation frequency of the internal switching element increases, and the cumulative amount of power loss (switching loss) generated each time the switching operation is performed increases. Second, a high frequency current flows through a power supply circuit including a high frequency power supply circuit to an electric load to generate a skin effect, and power loss (skin loss) due to the skin effect increases as the frequency increases.
  • the present invention has been made in view of the above-described problems of the background art, and even if the relative position of the movable part with respect to the fixed part changes, the fluctuation of the electrostatic capacity of the electrostatic coupling part (capacitor) is suppressed and is high. It is an object to be solved to provide an electrostatic coupling type non-contact power feeding device capable of maintaining power feeding efficiency.
  • the invention of the electrostatic coupling type non-contact power feeding device according to claim 1 that solves the above-described problem is a high frequency power feeding high frequency power between a plurality of power feeding electrode plates provided in a fixed portion and the plurality of power feeding electrode plates.
  • a power supply circuit a plurality of power receiving electrode plates that are provided in a movable part that is movably mounted on the fixed part, and that receive a high-frequency power in a non-contact manner while facing each of the power feeding electrode plates;
  • An electrostatic coupling type non-contact power feeding apparatus comprising: a power receiving circuit that converts high frequency power received by a plurality of power receiving electrode plates and supplies power to an electric load on the movable part, wherein the movable part with respect to the fixed part When the relative position changes, the capacitances of the plurality of capacitors formed by the power supply electrode plate and the power reception electrode plate facing each other change so as to complement each other.
  • the high-frequency power supply circuit variably adjusts an output frequency of the high-frequency power to perform non-contact power feeding using a resonance circuit, and the capacitances of the plurality of capacitors By compensating each other, fluctuations in the resonance frequency of the resonance circuit are suppressed to be small.
  • the fixed portion has two side wall members extending in parallel with the moving direction of the moving portion, and the movable portion is the fixed portion 2 of the fixed portion.
  • the two side wall members move apart from each other to the inner side surface of the side wall member, and extend to the inner side surface of the two side wall members of the fixing portion in the moving direction.
  • One side capacitor is configured, and is provided on the inner side surface of the two side wall members of the fixed portion so as to extend in the moving direction, and is electrically connected to the other side terminal of the high-frequency power supply circuit.
  • the fixed portion includes a bottom wall member extending in a moving direction of the moving portion, and the movable portion is a bottom wall member of the fixed portion.
  • One of the high-frequency power supply circuits is provided so as to move upwardly apart from the upper surface of the bottom wall member and extend in the movement direction between the upper surface of the bottom wall member of the fixed portion and the bottom surface of the movable portion.
  • the plate includes two one-side capacitors, and is provided to extend in the movement direction between the upper surface of the bottom wall member of the fixed portion and the bottom surface of the movable portion, and the other terminal of the high-frequency power circuit
  • Two other-side capacitors are formed by two other-side power receiving electrode plates electrically connected to the other terminal of the power receiving circuit, and the relative vertical position of the movable portion with respect to the bottom wall member of the fixed portion is When changed, the capacitance of the two one-side capacitors increases on the one hand and decreases on the other to compensate, and the capacitance of the two other-side capacitors increases on the one hand and decreases on the other to compensate .
  • the fixed portion includes two side wall members extending in parallel with the moving direction of the moving portion, and the movable portion is a portion of the fixed portion.
  • Two power supply electrode plates provided between the two side wall members so as to move away from the inner side surface of the side wall member and extend in the moving direction on the inner side surfaces of the two side wall members of the fixing portion;
  • two capacitors are formed by two power receiving electrode plates provided on both side surfaces of the movable portion, and the relative separation position of the movable portion with respect to the two side wall members of the fixed portion changes. The capacitance of the two capacitors increases on the one hand and decreases on the other to compensate.
  • the movable portion is provided in a substrate working device that performs a predetermined operation on the substrate.
  • the electrostatic capacity of the plurality of capacitors formed by the power feeding electrode plate and the power receiving electrode plate that are spaced apart from each other Since the capacitance changes so as to complement each other, fluctuations in the capacitance of the entire power feeding circuit are suppressed. Therefore, the fluctuation of the resonance frequency of the entire power feeding circuit including the high frequency power supply circuit to the electric load can be suppressed, and high power feeding efficiency can be maintained.
  • the high-frequency power supply circuit variably adjusts the output frequency of the high-frequency power to perform non-contact power feeding using the resonance circuit, and the capacitances of the plurality of capacitors complement each other to complement each other. A change in the resonance frequency is suppressed to a small level. Therefore, control for adjusting the output frequency to the resonance frequency is facilitated, and a large frequency difference is not generated between the two, and high power supply efficiency can be maintained.
  • two one-side capacitors and two other-side capacitors are formed between the two side wall members of the fixed portion and both side surfaces of the movable portion, and the relative of the movable portion to the side wall member
  • the fluctuation of the electrostatic capacity of the entire power feeding circuit including the high frequency power supply circuit to the electric load is suppressed. Therefore, when the side wall member is distorted by the stress generated when the movable part is accelerating or decelerating, or when the flatness of the long side wall member cannot be ensured due to processing accuracy restrictions, fluctuations in the resonance frequency of the power feeding circuit are reduced. It can be suppressed and high power supply efficiency can be maintained.
  • two one-side capacitors and two other-side capacitors are formed between the bottom wall member of the fixed portion and the bottom surface of the movable portion, and the relative separation position of the movable portion with respect to the bottom wall member Is changed, the fluctuation of the electrostatic capacity of the entire power feeding circuit including the high frequency power supply circuit to the electric load is suppressed. Therefore, when the bottom wall member is distorted by the stress generated when the movable part is accelerating or decelerating, or when the flatness of the long bottom wall member cannot be secured due to processing accuracy restrictions, the resonance frequency of the feeder circuit Variations can be suppressed and high power supply efficiency can be maintained.
  • the electrostatic capacity of the entire power feeding circuit is kept substantially constant. Therefore, the resonance frequency hardly fluctuates, the output frequency of the high frequency power supply circuit can be stabilized, and high power supply efficiency can be reliably maintained.
  • the movable portion is provided in a substrate working device that performs a predetermined operation on the substrate.
  • the electrostatic coupling type non-contact power feeding device of the present invention is equipped in a substrate working device and can maintain high power feeding efficiency. As a result, the non-contact power feeding device is small and light and low in cost, which can contribute to reduction in the cost of the substrate working equipment.
  • FIG. 5 is a circuit diagram in which the equivalent circuit of FIG. 4 is further simplified.
  • FIG. 1 is a perspective view showing an overall configuration of a component mounting machine 10 to which the electrostatic coupling type non-contact power feeding device 1 according to the first embodiment of the present invention can be applied.
  • the component mounter 10 is a device that mounts a large number of components on a board, and is configured by two sets of component mounting units having the same structure arranged substantially symmetrically.
  • the component mounting unit in a state where the right front cover of FIG. 1 is removed will be described as an example.
  • the width direction of the component mounter 10 from the left back side to the right front side in the figure is the X-axis direction
  • the longitudinal direction of the component mounter 10 is the Y-axis direction.
  • the component mounter 10 is configured by assembling a substrate transport device 110, a component supply device 120, two component transfer devices 130, 140, and the like on a machine base 190.
  • the board transfer device 110 is disposed so as to cross the vicinity of the center in the longitudinal direction of the component mounting machine 10 in the X-axis direction.
  • the substrate transport device 110 has a transport conveyor (not shown) and transports the substrate in the X-axis direction.
  • substrate conveyance apparatus 110 has an unillustrated clamp apparatus, and fixes and hold
  • the component supply device 120 is provided at the front portion (left front side in FIG. 1) and the rear portion (not visible in the drawing) of the component mounter 10.
  • the component supply device 120 includes a plurality of cassette-type feeders 121, and supplies components continuously to the two component transfer devices 130 and 140 from the carrier tape set in each feeder 121.
  • the two component transfer devices 130 and 140 are so-called XY robot type devices that can move in the X-axis direction and the Y-axis direction.
  • the two component transfer apparatuses 130 and 140 are disposed on the front side and the rear side in the longitudinal direction of the component mounter 10 so as to face each other.
  • Each component transfer device 130, 140 has a linear motor device 150 for movement in the Y-axis direction.
  • the linear motor device 150 includes a track member 2 and an auxiliary rail 155 common to the two component transfer devices 130 and 140, and the linear movable unit 3 for each of the two component transfer devices 130 and 140.
  • the track member 2 extends in the Y-axis direction and is formed by a bottom wall member 21 and two side wall members 22 and 23.
  • a plurality of magnets 152 are arranged in line along the Y-axis direction on the inner side surfaces of the side wall members 22 and 23 facing each other.
  • the linear movable part 3 is movably mounted on the upper edges of the side wall members 22 and 23.
  • the linear movable unit 3 includes a movable main body 160, an X-axis rail 161, a mounting head 170, and the like.
  • the movable main body 160 extends in the Y-axis direction, and armatures that generate a propulsive force are disposed on opposite sides of the movable main body 160 so as to face the magnets 152 of the track member 151.
  • the X-axis rail 161 extends from the movable main body 160 in the X-axis direction.
  • One end 162 of the X-axis rail 161 is coupled to the movable main body 160 and the other end 163 is movably mounted on the auxiliary rail 155 so that the X-axis rail 161 moves integrally with the movable main body 160 in the Y-axis direction. It has become.
  • the component mounting head 170 is mounted on the X-axis rail 161 and moves in the X-axis direction.
  • a suction nozzle (not shown) is provided at the lower end of the component mounting head 170. The suction nozzle sucks and collects components from the component supply device 120 using negative pressure and mounts them on the substrate at the mounting work position.
  • a ball screw feed mechanism (not shown) provided on the X-axis rail 161 has an X-axis motor that rotationally drives the ball screw, and drives the component mounting head 170 in the X-axis direction.
  • a plurality of electrical components equipped in the movable part 3 for operating the component mounting head 170 corresponds to the electrical load 8 of the present invention.
  • the armature of the linear motor device 150 is also included in the electric load 8.
  • the component mounter 10 further includes a display setting device 180 for exchanging information with an operator, a camera (not shown) that images a board and components, and the like.
  • FIG. 2 is a cross-sectional view schematically illustrating the main part of the electrostatic coupling type non-contact power feeding device 1 according to the first embodiment.
  • FIG. 2 shows a cross section in the X-axis direction of the track member 2 and the linear movable unit 3 of the component mounting machine 10.
  • the track member 2 corresponds to a part of the fixed portion of the present invention, and extends in the Y-axis direction (the front and back direction in FIG. 2) that is the moving direction of the linear movable portion 3.
  • the track member 2 is formed of a bottom wall member 21 that is elongated in the Y-axis direction, and side wall members 22 and 23 that stand up from both side edges of the bottom wall member 21 and are arranged in parallel on both sides of the linear movable portion 3. ing.
  • a plurality of magnets 152 are arranged in line along the Y-axis direction on the inner side surfaces of the side wall members 22 and 23 facing each other.
  • the power supply electrode plates 41 to 44 are respectively arranged on the upper side and the lower side of the inner side surface of the magnets 152 on both sides.
  • the four power supply electrode plates 41 to 44 in total have the same shape and are elongated strips extending in the Y-axis direction, and are formed using a metal plate or the like.
  • the electrode plate disposed on the upper side of the inner surface of the left magnet 152 is the left one-side feeding electrode plate 41
  • the electrode plate disposed on the upper side of the inner surface of the right magnet 152 is the right side.
  • the electrode plate disposed on the lower side of the inner surface of the left magnet 152 is the electrode plate disposed on the lower side of the left side electrode 152 and the inner surface of the right magnet 152. Is the right-side power feeding electrode plate 44.
  • the linear movable part 3 corresponds to the movable part of the present invention, and the armature is omitted in FIG.
  • the linear movable part 3 has mounted parts 31 and 32 extending from the upper part to both sides in the X-axis direction.
  • the mounted parts 31 and 32 are movably mounted on the upper edges of the side wall members 32 and 33 on both sides via unillustrated linear rolling bearings.
  • the power receiving electrode plates 61 to 64 are respectively arranged on the upper and lower sides of the both sides of the linear movable portion 3.
  • the four power receiving electrode plates 61 to 64 have the same shape and are elongated strips extending in the Y-axis direction, but are shorter than the power feeding electrode plates 41 to 44 and are formed using a metal plate or the like.
  • the electrode plate disposed on the upper side of the left side surface of the linear movable unit 3 is the left one-side power receiving electrode plate 61
  • the electrode plate disposed on the upper side of the right side surface is the right one-side power receiving electrode.
  • the plate 62, the electrode plate disposed below the left side surface is the left other-side power receiving electrode plate 63, and the electrode plate disposed below the right side surface is the right other-side power receiving electrode plate 64. .
  • a first capacitor Cds1 is configured to be opposed to each other.
  • combinations of the other three sets of power supply electrode plates 42 to 44 and power reception electrode plates 62 to 64 are respectively spaced apart from each other to form second to fourth capacitors Cds2 to Cds4.
  • the electromagnetic coupling and the electrostatic coupling are configured. Since the methods are different, they do not interfere with each other. If an electromagnetic coupling type non-contact power feeding device is used, it is necessary to keep the power feeding coil and the power receiving coil away from the magnet 152 and the armature in order to avoid mutual interference of magnetic fields, which is a great limitation.
  • FIG. 3 is a connection diagram schematically illustrating the overall configuration of the electrostatic coupling type non-contact power feeding device 1 of the first embodiment.
  • the electrostatic coupling type non-contact power feeding device 1 includes the above-described four power supply electrode plates 41 to 44, the four power receiving electrode plates 61 to 64, the high frequency power supply circuit 5, the power receiving circuit 7, and the like.
  • the electric load 8 on the linear movable part 3 is fed in a non-contact manner.
  • the power receiving circuit 7 and the electric load 8 are shown together in one rectangular block.
  • the high frequency power supply circuit 5 performs non-contact power supply using a resonance circuit in order to improve power supply efficiency.
  • the high frequency power supply circuit 5 outputs high frequency power in the 100 kHz to MHz band, for example.
  • the output voltage of the high frequency power supply circuit 5 can be adjusted, and examples of the output voltage waveform include a sine wave and a rectangular wave.
  • coils 55 and 56 are appropriately inserted and connected so that series resonance occurs at the output frequency, and the output frequency itself is variably adjusted.
  • the high frequency power supply circuit 5 has one side terminal 51 and another side terminal 52 that output high frequency power, and there is no functional difference between the two terminals 51 and 52. As shown in FIG. 3, the one-side terminal 51 is electrically connected in parallel to the left one-side power supply electrode plate 41 and the right one-side power supply electrode plate 42. The other-side terminal 52 is electrically connected in parallel to the left other-side power feeding electrode plate 43 and the right other-side power feeding electrode plate 44.
  • the power receiving circuit 7 converts the high frequency power received by the power receiving electrode plates 61 to 64 and supplies the electric load 8 with power.
  • the power receiving circuit 7 is configured in accordance with the power supply specification of the electric load 8, and for example, a full-wave rectifier circuit or an inverter circuit is used.
  • the power receiving circuit 7 has a one-side terminal 71 and another-side terminal 72 that receive high-frequency power, and there is no functional difference between the two terminals 71 and 72. As shown in FIG. 3, the one-side terminal 71 is electrically connected in parallel to the left one-side power receiving electrode plate 61 and the right one-side power receiving electrode plate 62.
  • the other side terminal 72 is electrically connected in parallel to the left other side power receiving electrode plate 63 and the right other side power receiving electrode plate 64.
  • the first and second capacitors Cds1, Cds2 correspond to the two one-side capacitors of the present invention.
  • the third and fourth capacitors Cds3 and Cds4 correspond to the two other capacitors of the present invention.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of the electrostatic coupling type non-contact power feeding device 1 of the first embodiment
  • FIG. 5 is a circuit diagram in which the equivalent circuit of FIG. 4 is further simplified. 4 and 5, the power receiving circuit 7 and the electric load 8 are replaced with a simple pure resistance R.
  • the first and second capacitors Cds1 and Cds2 are collectively replaced with an equivalent twelfth capacitor Cds12
  • the third and fourth capacitors Cds3 and Cds4 are collectively replaced with an equivalent thirty-fourth capacitor Cds34.
  • the capacitances C1 to C4 of the capacitors Cds1 to Cds4 are obtained by the following equation (1).
  • the equivalent capacitance C12 of the twelfth capacitor Cds12 and the capacitance C34 of the thirty-fourth capacitor Cds34 are obtained by the following equation (2) because two capacitors are connected in parallel.
  • the twelfth capacitor Cds12 and the thirty-fourth capacitor Cds34 are connected in series in the entire power supply circuit. Therefore, the electrostatic capacitance C good of the entire power feeding circuit and the resonance frequency f good of the power feeding circuit are obtained by the following equations (3) and (4).
  • f good 1 / ⁇ 2 ⁇ (Lc ⁇ C good ) 0.5 ⁇ (4)
  • FIG. 6 is a diagram schematically illustrating when the relative position of the movable unit 3 with respect to the fixed unit 2 has changed.
  • the linear movable portion 3 is displaced relative to the two side wall members 22 and 23 from the center position to the right by the deviation amount L.
  • the capacitances C1 to C4 of the capacitors Cds1 to Cds4 are obtained by the following equations (5) and (6).
  • equation (5) the denominator on the right side increases and the capacitance C1 of the first capacitor Cds1 decreases
  • equation (6) the denominator on the right side decreases and the capacitance C2 of the second capacitor Cds2 increases. To do.
  • the capacitances C1 and C2 of the first and second capacitors Cds1 and Cds2 change so as to complement each other, and the change in the capacitance C12 of the equivalent twelfth capacitor Cds12 is suppressed.
  • the capacitance C3 of the third capacitor Cds3 decreases, the capacitance C4 of the fourth capacitor Cds4 increases, and changes so as to compensate for each other, and the variation of the equivalent capacitance C34 of the 34th capacitor Cds34. Is suppressed.
  • the capacitance C bad of the entire power feeding circuit increases. Fluctuates.
  • the resonance frequency f bad obtained by Expression (9) fluctuates in the lower direction, and the output frequency of the high frequency power supply circuit 5 can be lowered.
  • the switching loss of the high-frequency power supply circuit 5 can be reduced, and the skin loss caused by the high-frequency current in the middle of the power feeding circuit can be reduced, so that a high power feeding efficiency of a certain level or more can be reliably maintained.
  • the electrostatic coupling type non-contact power feeding device 1 of the first embodiment is equipped in the component mounting machine 10 and can maintain high power feeding efficiency.
  • the non-contact power feeding device 1 is small and light and low in cost, and can contribute to a reduction in device cost of the component mounting machine 10.
  • the power receiving circuit 7 and the electric load 8 may not be replaced with the pure resistance R. Also in this case, the equations (1) to (7) are established, and the qualitative characteristic that high power supply efficiency can be maintained by suppressing the fluctuation of the electrostatic capacity C bad of the entire power feeding circuit and the fluctuation of the resonance frequency f bad. The effect is not changed. Moreover, it cannot be said that there is no possibility that the linear movable part 3 is relatively displaced in the vertical direction with respect to the bottom wall member 21 of the track member 2.
  • the capacitances C1 to C4 of the first to fourth capacitors Cds1 to Cds4 do not change as much as when the interelectrode distances d1 to d4 change, and the power supply efficiency is hardly affected.
  • FIG. 7 is a connection diagram schematically illustrating the overall configuration of the electrostatic coupling type non-contact power feeding device 1A of the second embodiment.
  • the electrostatic coupling type non-contact power feeding device 1A of the second embodiment is installed in the component mounting machine 10 as in the first embodiment. As illustrated, in the second embodiment, a space larger than that of the first embodiment is secured between the bottom wall member 21A of the track member 2A and the bottom surface of the linear movable portion 3A, and the electrode plate 45 is provided in this space. , 46, 65 to 68 are arranged.
  • Electrode plates 45 and 46 are arranged side by side on the left and right in the figure.
  • the two power supply electrode plates 45 and 46 are symmetrical to each other, extend in the Y-axis direction (the front and back direction of the paper surface), and are formed using a metal plate or the like.
  • the left electrode plate is referred to as one-side power supply electrode plate 45
  • the right electrode plate is referred to as the other-side power supply electrode plate 46.
  • no electrode plate is provided on the inner side surfaces of the side wall members 22A and 23A.
  • an upper one-side power receiving electrode plate 65 and a lower one-side power receiving electrode plate 66 that are arranged in parallel vertically with the one-side power feeding electrode plate 45 interposed therebetween are provided on the linear movable portion 3A side.
  • an upper other-side power receiving electrode plate 67 and a lower other-side power receiving electrode plate 68 are provided in parallel with each other with the other-side power feeding electrode plate 46 interposed therebetween.
  • the four power receiving electrode plates 65 to 68 have the same shape and are elongated strips extending in the Y-axis direction, but are shorter than the one side power supply electrode plate 45 and the other side power supply electrode plate 46, and are made of metal. It is formed using a plate or the like.
  • the one-side power feeding electrode plate 45 on the bottom wall member 21A side and the upper one-side power receiving electrode plate 65 on the linear movable portion 3A side always constitute a first capacitor Cds1A so as to face each other.
  • the one-side power feeding electrode plate 45 and the lower one-side power receiving electrode plate 66 always constitute a second capacitor Cds ⁇ b> 2 ⁇ / b> A so as to face each other.
  • the third capacitor Cds3A is configured by the other-side power feeding electrode plate 46 and the upper other-side power receiving electrode plate 67, and the other-side power feeding electrode plate 46 and the lower other-side power receiving electrode plate 68 are the fourth capacitor.
  • Cds4A is configured.
  • the four capacitors Cds1A to Cds4A have substantially the same capacitance, with the facing area and the distance between the electrodes being substantially equal.
  • the one side terminal 51 of the high frequency power supply circuit 5 is electrically connected to the one side power supply electrode plate 45, and the other side terminal 52 is electrically connected to the other side power supply electrode plate 46.
  • one side terminal 71 of the power receiving circuit 7 is electrically connected in parallel to the upper one side power receiving electrode plate 65 and the lower one side power receiving electrode plate 66, and the side terminal 72 is connected to the upper other side power receiving electrode plate 67 and the lower side power receiving electrode plate 67.
  • the other side power receiving electrode plate 68 is electrically connected in parallel.
  • the electrical equivalent circuit is the same as that of the first embodiment shown in FIGS.
  • the relative position of the linear movable portion 3A with respect to the bottom wall member 21A changes up and down from the intermediate height position
  • the relative position of the linear movable portion 3 changes from the central position to the left and right in the first embodiment.
  • the same action occurs. Therefore, also in 2nd Embodiment, the effect similar to 1st Embodiment generate
  • FIG. 8 is a connection diagram schematically illustrating the overall configuration of the electrostatic coupling type non-contact power feeding device 1B of the third embodiment.
  • FIG. 9 is a circuit diagram showing an equivalent circuit of the electrostatic coupling type non-contact power feeding device 1B of the third embodiment.
  • the electrostatic coupling type non-contact power feeding device 1B of the third embodiment is mounted on the component mounting machine 10 as in the first embodiment. As illustrated, in the third embodiment, the electrode plates 4P, 4Q, 6P, and 6Q are simplified, and two capacitors CdsP and CdsQ are formed.
  • power supply electrode plates 4P and 4Q are disposed on the inner side surfaces of the magnets 152 of the two side wall members 22B and 23B of the raceway member 2B, respectively.
  • the two power supply electrode plates 4P and 4Q have the same shape and are elongated strips extending in the Y-axis direction, and are formed using a metal plate or the like.
  • the electrode plate disposed on the inner surface of the left magnet 152 is the one-side power supply electrode plate 4P
  • the electrode plate disposed on the inner surface of the right magnet 152 is the other-side power supply electrode plate 4Q. To do.
  • power receiving electrode plates 6P and 6Q are disposed on both side surfaces of the linear movable portion 3B.
  • the two power receiving electrode plates 6P and 6Q have the same shape and are elongated strips extending in the Y-axis direction, but are shorter than the power feeding electrode plates 4P and 4Q, and are formed using a metal plate or the like.
  • the electrode plate disposed on the left side surface of the linear movable portion 3 is referred to as one side power receiving electrode plate 6P
  • the electrode plate disposed on the right side surface is referred to as the other side power receiving electrode plate 6Q.
  • the one-side power supply electrode plate 4P and the one-side power reception electrode plate 6P are always spaced apart from each other to constitute the first capacitor CdsP. .
  • the other-side power feeding electrode plate 4Q and the other-side power receiving electrode plate 6Q are always spaced apart from each other to constitute the second capacitor CdsQ.
  • the one-side terminal 51 of the high-frequency power supply circuit 5 is electrically connected to the one-side power feeding electrode plate 4P, and the other-side terminal 52 is electrically connected to the other-side power feeding electrode plate 4Q.
  • the one side terminal 71 of the power receiving circuit 7 is electrically connected to the one side power supply / reception electrode plate 6P, and the other side terminal 72 is electrically connected to the other side power reception electrode plate 6Q8.
  • FIG. 10 is a perspective view schematically showing an electrostatic coupling type non-contact power feeding device 9 having a conventional configuration.
  • the side wall member 22C on one side of the track member 2C is shown as a whole, and the side wall member 23C on the other side is partially omitted.
  • two power supply electrode plates 4R and 4S are provided on the upper surface of the bottom wall member 21C of the track member 2C, and two power reception electrode plates 6R and 6S are provided on the bottom surface of the linear movable portion 3C.
  • the two capacitors CdsR and CdsS were configured. Also in the conventional configuration, the configurations and connections of the high-frequency power supply circuit 5 and the power receiving circuit 7 are the same as those in the third embodiment.
  • the electrical equivalent circuit of the conventional configuration matches the equivalent circuit of the third embodiment shown in FIG.
  • the linear movable portions 3B and 3C are relatively displaced in the left-right direction and the up-down direction with respect to the track members 2B and 2C.
  • the distances between the electrodes of the two capacitors CdsR and CdsS are aligned and increased by the deviation amount H, and both the capacitances CR and CS are decreased.
  • the resonance frequency of the power supply circuit is increased, which causes a problem that frequency control of the high-frequency power supply circuit 5 becomes difficult and a problem that switching loss and skin loss increase. That is, the relative displacement in the vertical direction of the linear movable parts 3B and 3C causes a problem in the conventional technique, but does not cause a problem in the third embodiment.
  • the capacitance Cb2 of the entire power feeding circuit is kept substantially constant. Be drunk. Therefore, the resonance frequency hardly fluctuates, the output frequency of the high frequency power supply circuit 5 can be stabilized, and high power supply efficiency can be reliably maintained. Moreover, it can contribute to the reduction of the apparatus cost of the component mounting machine 10.
  • the equivalent capacitance C12 of the twelfth capacitor Cds12 equivalent to the equivalent capacitance C12 is obtained as shown in Expression (7).
  • the capacitance C34 of the 34 capacitor Cds34 is always equal. This is because the forward path from the one side terminal 51 of the high frequency power supply circuit 5 to the one side terminal 71 of the power reception circuit 7 and the return path from the other side terminal 72 of the power reception circuit 7 to the other side terminal 52 of the high frequency power supply circuit 5 are electrically connected. It means that it is balanced on characteristics. That is, since power can always be supplied by a balanced circuit, effects such as high power supply stability against disturbances are also produced. This effect of the balanced circuit occurs also in the second embodiment, and does not occur in the third embodiment.
  • the shape and arrangement of the power supply electrode plates 41 to 46, 4P and 4Q and the power reception electrode plates 61 to 68, 6P and 6Q in the first to third embodiments are examples, and other modes may be adopted. it can.
  • a plurality of sets of L-shaped electrode plates may be opposed to each other.
  • the drive mechanism of the movable parts 3, 3 ⁇ / b> A, 3 ⁇ / b> B need not be the linear motor device 150, and may be a known ball screw feed mechanism, for example.
  • Various other applications and modifications are possible for the present invention.
  • the electrostatic coupling type non-contact power feeding device of the present invention can be used for a substrate working machine such as a component mounting machine, and further has industrial parts for other industries that have a movable part and require non-contact power feeding. Also widely available.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明の静電結合方式非接触給電装置1は、固定部(軌道部材2)に設けられた複数の給電用電極板41~44と、複数の給電用電極板41~44の間に高周波電力を給電する高周波電源回路5と、固定部2に移動可能に装架された可動部(リニア可動部3)に設けられ、複数の給電用電極板41~44にそれぞれ離隔対向して非接触で高周波電力を受け取る複数の受電用電極板61~64と、複数の受電用電極板61~64が受け取った高周波電力を変換して可動部3上の電気負荷8に給電する受電回路7とを備え、固定部2に対する可動部3の相対位置が変化したときに、離隔対向する給電用電極板41~44と受電用電極板61~64とにより構成される複数のコンデンサCds1~Cds4の静電容量C1~C4が互いに補い合うように変化する。これにより、固定部2に対する可動部3の相対位置が変化しても、静電容量の変動が抑制されて高い給電効率を維持できる。

Description

静電結合方式非接触給電装置
 本発明は、可動部上の電気負荷に固定部から非接触で給電する非接触給電装置に関し、より詳細には、電極板を離隔対向して配置した静電結合方式非接触給電装置に関する。
 多数の部品が実装された基板を生産する基板用作業機器として、はんだ印刷機、部品実装機、リフロー機、基板検査機などがあり、これらを基板搬送装置で連結して基板生産ラインを構築する場合が多い。これらの基板用作業機器の多くは基板の上方を移動して所定の作業を行う可動部を備えており、可動部を駆動する一手段としてリニアモータ装置を用いることができる。リニアモータ装置は、移動方向に沿い複数の磁石のN極およびS極が交互に列設された軌道部材と、コアおよびコイルを有する電機子を含んで構成された可動部とを備えるのが一般的である。リニアモータ装置を始めとする可動部上の電気負荷に給電するために、従来から変形可能な給電用ケーブルが用いられてきた。また、近年では、給電用ケーブルによる荷搬重量の増加や金属疲労による断線のリスクなどの弊害を解消するために、非接触給電装置の適用が提案されている。
 非接触給電装置の方式として、従来からコイルを用いた電磁誘導方式が多用されてきたが、最近では対向する電極板によりコンデンサを構成した静電結合方式も用いられるようになってきており、他に磁界共鳴方式なども検討されている。非接触給電装置の用途は、基板用作業機器に限定されるものではなく、他の業種の産業用機器や家電製品などの幅広い分野に広まりつつある。この種の非接触給電装置の一技術例が特許文献1に開示されている。
 特許文献1に開示された給電装置は、電力生成部と、送電素子と、インピーダンス検出部および可変整合部を備えて、給電点におけるインピーダンス整合機能を有している。同様に、特許文献1に開示された受電装置は、受電素子と、インピーダンス検出部および可変整合部を備えて、負荷との接続部におけるインピーダンス整合機能を有している。そして、この給電装置と受電装置との組合せによりワイヤレス給電システムが構成され、電力損失を低減できるとされている。つまり、送電素子と受電素子との相対位置関係の変化や負荷の変動により給電装置および受電装置の等価回路が変化しても、変化に追従してインピーダンスを整合させることにより高い給電効率を維持できる。
 ここで、基板用作業機器に非接触給電装置を装備する場合に、電磁誘導方式ではコイルが重量化して可動部の総重量が大きくなり、また、リニアモータ装置との磁界干渉を避ける構成上の制約が生じるため、静電結合方式が有望と考えられる。静電結合方式の非接触給電では、大きな給電容量を確保するために共振回路を利用するのが一般的になっている。つまり、特許文献1のインピーダンス整合機能に代えて、固定部の高周波電源回路から出力する高周波電力の周波数を可変に調整し、大きな共振電流が流れるように制御する機能を具備する。これにより、固定部に対する可動部の相対位置が変化して共振周波数が変動しても、高い給電効率を維持できる。
特開2011-223739号公報
 ところで、基板用作業機器に装備する静電結合方式非接触給電装置では、リニアモータ装置の軌道部材に給電用電極板を配置し、可動部に受電用電極板を配置する。給電用電極板と受電用電極板とは離隔対向してコンデンサを構成し、これにより非接触給電が行われる。このような構造の場合、可動部が加減速動作する際に発生する応力で軌道部材がメカ的に歪み、給電用電極板と受電用電極板との離間距離が変化することが懸念される。その他、メカ的な加工精度の制約で長い給電用電極板の平坦度を確保できない場合にも、給電用電極板と受電用電極板との離間距離が変化すると想定される。
 離間距離が変化すると電極板間のコンデンサの静電容量が変動し、この変動幅が大きくかつ多頻度であると、高周波電源回路の出力周波数を制御しても共振周波数から外れて、給電効率が低下しがちになる。さらに、離間距離が増加して静電容量が減少する場合には共振周波数が高くなり、主に次の二つの理由で給電効率が低下する。まず、共振周波数に合わせて高周波電源回路の出力周波数を高くすると、内部のスイッチング素子のスイッチング動作頻度が増加し、スイッチング動作のたびに発生する電力損失の累積量(スイッチング損失)が増加する。二番目に、高周波電源回路から電気負荷までを含んだ給電回路に高周波電流が流れて表皮効果が発生し、表皮効果による電力損失(表皮損失)は周波数が高いほど増加する。
 本発明は、上記背景技術の問題点に鑑みてなされたもので、固定部に対する可動部の相対位置が変化しても、静電結合部(コンデンサ)の静電容量の変動が抑制されて高い給電効率を維持できる静電結合方式非接触給電装置を提供することを解決すべき課題とする。
 上記課題を解決する請求項1に係る静電結合方式非接触給電装置の発明は、固定部に設けられた複数の給電用電極板と、前記複数の給電用電極板の間に高周波電力を給電する高周波電源回路と、前記固定部に移動可能に装架された可動部に設けられ、前記複数の給電用電極板にそれぞれ離隔対向して非接触で高周波電力を受け取る複数の受電用電極板と、前記複数の受電用電極板が受け取った高周波電力を変換して前記可動部上の電気負荷に給電する受電回路とを備えた静電結合方式非接触給電装置であって、前記固定部に対する前記可動部の相対位置が変化したときに、離隔対向する給電用電極板と受電用電極板とにより構成される複数のコンデンサの静電容量が互いに補い合うように変化する。
 請求項2に係る発明は、請求項1において、前記高周波電源回路は、前記高周波電力の出力周波数を可変に調整して共振回路を用いた非接触給電を行い、前記複数のコンデンサの静電容量が互いに補い合うことで前記共振回路の共振周波数の変動が小さく抑制される。
 請求項3に係る発明は、請求項1または2において、前記固定部は、前記移動部の移動方向に平行に延在する2つの側壁部材を有し、前記可動部は、前記固定部の2つの側壁部材の間で前記側壁部材の内側面に離隔して移動し、前記固定部の2つの側壁部材の内側面に移動方向に延在するように設けられ前記高周波電源回路の一側端子に電気接続された2枚の一側給電用電極板と、前記可動部の両方の側面に設けられ前記受電回路の一側端子に電気接続された2枚の一側受電用電極板とにより2個の一側コンデンサが構成され、前記固定部の2つの側壁部材の内側面に移動方向に延在するように設けられ前記高周波電源回路の他側端子に電気接続された2枚の他側給電用電極板と、前記可動部の両方の側面に設けられ前記受電回路の他側端子に電気接続された2枚の他側受電用電極板とにより2個の他側コンデンサが構成され、前記固定部の2つの側壁部材に対する前記可動部の相対離隔位置が変化したときに、2個の一側コンデンサの静電容量が一方で増加し他方で減少して補い合い、かつ、2個の他側コンデンサの静電容量が一方で増加し他方で減少して補い合う。
 請求項4に係る発明は、請求項1または2において、前記固定部は、前記移動部の移動方向に延在する底壁部材を有し、前記可動部は、前記固定部の底壁部材の上方で前記底壁部材の上面に離隔して移動し、前記固定部の底壁部材の上面と前記可動部の底面との間に移動方向に延在するように設けられ前記高周波電源回路の一側端子に電気接続された一側給電用電極板と、前記一側給電用電極板を挟んで上下に配設され前記受電回路の一側端子に電気接続された2枚の一側受電用電極板とにより2個の一側コンデンサが構成され、前記固定部の底壁部材の上面と前記可動部の底面との間に移動方向に延在するように設けられ前記高周波電源回路の他側端子に電気接続された他側給電用電極板と、前記他側給電用電極板を挟んで上下に配設され前記受電回路の他側端子に電気接続された2枚の他側受電用電極板とにより2個の他側コンデンサが構成され、前記固定部の前記底壁部材に対する前記可動部の相対上下位置が変化したときに、2個の一側コンデンサの静電容量が一方で増加し他方で減少して補い合い、かつ、2個の他側コンデンサの静電容量が一方で増加し他方で減少して補い合う。
 請求項5に係る発明は、請求項1または2において、前記固定部は、前記移動部の移動方向に平行に延在する2つの側壁部材を有し、前記可動部は、前記固定部の2つの側壁部材の間で前記側壁部材の内側面に離隔して移動し、前記固定部の2つの側壁部材の内側面に移動方向に延在するように設けられた2枚の給電用電極板と、前記可動部の両方の側面に設けられた2枚の受電用電極板とにより2個のコンデンサが構成され、前記固定部の2つの側壁部材に対する前記可動部の相対離隔位置が変化したときに、2個のコンデンサの静電容量が一方で増加し、他方で減少して補い合う。
 請求項6に係る発明は、請求項1~5のいずれか一項において、前記可動部は、基板に所定の作業を行う基板用作業機器に装備されている。
 請求項1に係る非接触給電装置の発明では、固定部に対する可動部の相対位置が変化したときに、離隔対向する給電用電極板と受電用電極板とにより構成される複数のコンデンサの静電容量が互いに補い合うように変化するので、給電回路全体の静電容量の変動が抑制される。したがって、高周波電源回路から電気負荷までを含んだ給電回路全体の共振周波数の変動を抑制でき、高い給電効率を維持できる。
 請求項2に係る発明では、高周波電源回路は、高周波電力の出力周波数を可変に調整して共振回路を用いた非接触給電を行い、複数のコンデンサの静電容量が互いに補い合うことで共振回路の共振周波数の変化が小さく抑制される。したがって、出力周波数を共振周波数に合わせ込む制御が容易になって両者の間に大きな周波数差の生じることがなくなり、高い給電効率を維持できる。
 請求項3に係る発明では、固定部の2つの側壁部材と可動部の両方の側面との間に2個の一側コンデンサおよび2個の他側コンデンサが構成され、側壁部材に対する可動部の相対離隔位置が変化したときに、高周波電源回路から電気負荷までを含んだ給電回路全体の静電容量の変動が抑制される。したがって、可動部が加減速動作する際に発生する応力で側壁部材が歪む場合や、あるいは、加工精度の制約で長い側壁部材の平坦度を確保できない場合などに、給電回路の共振周波数の変動を抑制でき、高い給電効率を維持できる。
 さらに、定量的な検討によれば、2つの側壁部材に対する可動部の相対離隔位置が中央位置から左右いずれかに偏移したときに、給電回路全体の静電容量は増加する方向に変動する。したがって、共振周波数は低い方向に変動し、高周波電源回路の出力周波数を低くできてスイッチング損失を低減でき、さらには給電回路の途中で高周波電流により生じる表皮損失を低減できる。これにより、一定以上の高い給電効率を確実に維持できる。
 請求項4に係る発明では、固定部の底壁部材と可動部の底面との間に2個の一側コンデンサおよび2個の他側コンデンサが構成され、底壁部材に対する可動部の相対離隔位置が変化したときに、高周波電源回路から電気負荷までを含んだ給電回路全体の静電容量の変動が抑制される。したがって、可動部が加減速動作する際に発生する応力で底壁部材が歪む場合や、あるいは、加工精度の制約で長い底壁部材の平坦度を確保できない場合などに、給電回路の共振周波数の変動を抑制でき、高い給電効率を維持できる。
 さらに、定量的な検討によれば、底壁部材に対する可動部の相対離隔位置が中間高さ位置から上下いずれかに偏移したときに、給電回路全体の静電容量は増加する方向に変動する。したがって、共振周波数は低い方向に変動し、高周波電源回路の出力周波数を低くできてスイッチング損失を低減でき、さらには電線路の途中で高周波電流により生じる表皮損失を低減できる。これにより、一定以上の高い給電効率を確実に維持できる。
 請求項5に係る発明では、固定部の2つの側壁部材と可動部の両方の側面との間に2個のコンデンサが構成され、側壁部材に対する可動部の相対離隔位置が変化したときに、2個のコンデンサの静電容量が一方で増加し、他方で減少して補い合う。したがって、可動部が加減速動作する際に発生する応力で側壁部材が歪む場合や、あるいは、加工精度の制約で長い側壁部材の平坦度を確保できない場合などに、高周波電源回路から電気負荷までを含んだ給電回路の共振周波数の変動を抑制でき、高い給電効率を維持できる。
 さらに、定量的な検討によれば、底壁部材に対する可動部の相対離隔位置が中央位置から左右いずれかに偏移しても、給電回路全体の静電容量は概ね一定に保たれる。したがって、共振周波数は殆ど変動せず、高周波電源回路の出力周波数を安定化できて、高い給電効率を確実に維持できる。
 請求項6に係る発明では、可動部は、基板に所定の作業を行う基板用作業機器に装備されている。本発明の静電結合方式非接触給電装置は、基板用作業機器に装備されて、高い給電効率を維持することができる。これにより、非接触給電装置は小形軽量でコスト低廉となり、基板用作業機器の装置コストの低減に資することができる。
本発明の第1実施形態の静電結合方式非接触給電装置を適用できる部品実装機の全体構成を示した斜視図である。 第1実施形態の静電結合方式非接触給電装置の要部を模式的に説明する断面図である。 第1実施形態の静電結合方式非接触給電装置の全体構成を模式的に説明する結線図である。 第1実施形態の静電結合方式非接触給電装置の等価回路を示す回路図である。 図4の等価回路をさらに簡易化した回路図である。 固定部に対する可動部の相対位置が変化したときを模式的に例示説明する図である。 第2実施形態の静電結合方式非接触給電装置の全体構成を模式的に説明する結線図である。 第3実施形態の静電結合方式非接触給電装置の全体構成を模式的に説明する結線図である。 第3実施形態の静電結合方式非接触給電装置の等価回路を示す回路図である。 従来構成の静電結合方式非接触給電装置を模式的に示す斜視図である。
 まず、本発明を適用できる部品実装機10について、図1を参考にして説明する。図1は、本発明の第1実施形態の静電結合方式非接触給電装置1を適用できる部品実装機10の全体構成を示した斜視図である。部品実装機10は、基板に多数の部品を実装する装置であり、2セットの同一構造の部品実装ユニットが概ね左右対称に配置されて構成されている。ここでは、図1の右手前側のカバーを取り外した状態の部品実装ユニットを例にして説明する。なお、図中の左奥側から右手前側に向かう部品実装機10の幅方向をX軸方向とし、部品実装機10の長手方向をY軸方向とする。
 部品実装機10は、基板搬送装置110、部品供給装置120、2つの部品移載装置130、140などが機台190に組み付けられて構成されている。基板搬送装置110は、部品実装機10の長手方向の中央付近をX軸方向に横断するように配設されている。基板搬送装置110は、図略の搬送コンベアを有しており、基板をX軸方向に搬送する。また、基板搬送装置110は、図略のクランプ装置を有しており、基板を所定の実装作業位置に固定および保持する。部品供給装置120は、部品実装機10の長手方向の前部(図1の左前側)及び後部(図には見えない)に設けられている。部品供給装置120は、複数のカセット式フィーダ121を有し、各フィーダ121にセットされたキャリアテープから2つの部品移載装置130、140に連続的に部品を供給するようになっている。
 2つの部品移載装置130、140は、X軸方向およびY軸方向に移動可能ないわゆるXYロボットタイプの装置である。2つの部品移載装置130、140は、部品実装機10の長手方向の前側および後側に、相互に対向するように配設されている。各部品移載装置130、140は、Y軸方向の移動のためのリニアモータ装置150を有している。
 リニアモータ装置150は、2つの部品移載装置130、140に共通な軌道部材2および補助レール155と、2つの部品移載装置130、140ごとのリニア可動部3で構成されている。軌道部材2は、Y軸方向に延在し、底壁部材21、および2つの側壁部材22、23で形成されている。側壁部材22、23の向かい合う内側面にはそれぞれ、Y軸方向に沿って複数の磁石152が列設されている。リニア可動部3は、側壁部材22、23の上縁に移動可能に装架されている。
 リニア可動部3は、可動本体部160、X軸レール161、および実装ヘッド170などで構成されている。可動本体部160は、Y軸方向に延在しており、その両側面には軌道部材151の磁石152に対向して推進力を発生する電機子が配設されている。X軸レール161は、可動本体部160からX軸方向に延在している。X軸レール161は、一端162が可動本体部160に結合され、他端163が補助レール155に移動可能に装架されており、可動本体部160と一体的にY軸方向に移動するようになっている。
 部品実装ヘッド170は、X軸レール161に装架され、X軸方向に移動するようになっている。部品実装ヘッド170の下端には図略の吸着ノズルが設けられている。吸着ノズルは、負圧を利用して部品供給装置120から部品を吸着採取し、実装作業位置の基板に実装する。X軸レール161上に設けられた図略のボールねじ送り機構は、ボールねじを回転駆動するX軸モータを有しており、部品実装ヘッド170をX軸方向に駆動する。部品実装ヘッド170を動作させるために可動部3に装備された複数の電装品は、本発明の電気負荷8に相当する。なお、リニアモータ装置150の電機子も電気負荷8に含まれている。
 部品実装機10は、他に、オペレータと情報を交換するための表示設定装置180および、基板や部品を撮像する図略のカメラなどを備えている。
 次に、本発明の第1実施形態の静電結合方式非接触給電装置1について、図2~図6を参考にして説明する。図2は、第1実施形態の静電結合方式非接触給電装置1の要部を模式的に説明する断面図である。図2は、部品実装機10の軌道部材2およびリニア可動部3のX軸方向の断面を示している。
 軌道部材2は、本発明の固定部の一部に相当し、リニア可動部3の移動方向となるY軸方向(図2の紙面表裏方向)に延在している。軌道部材2は、Y軸方向に細長い底壁部材21、および底壁部材21の両方の側縁からそれぞれ起立しリニア可動部3を挟んで両側に平行配置された側壁部材22、23で形成されている。側壁部材22、23の向かい合う内側面にはそれぞれ、Y軸方向に沿って複数の磁石152が列設されている。
 両側の磁石152の内側面の上側および下側にそれぞれ給電用電極板41~44が配設されている。合計で4枚の給電用電極板41~44は全て同じ形状でY軸方向に延在する細長い帯状であり、金属板などを用いて形成されている。図2で、左側の磁石152の内側面の上側に配設された電極板を左一側給電用電極板41、右側の磁石152の内側面の上側に配設された電極板を右一側給電用電極板42、左側の磁石152の内側面の下側に配設された電極板を左他側給電用電極板43、右側の磁石152の内側面の下側に配設された電極板を右他側給電用電極板44とする。
 リニア可動部3は、本発明の可動部に相当し、図2で電機子は省略されている。リニア可動部3は、その上部からX軸方向の両側に拡がった被装架部31、32を有している。被装架部31、32は、図略の直線ころがり軸受を介して、両側の側壁部材32、33の上縁に移動可能に装架されている。
 リニア可動部3の両側の側面の上側および下側にそれぞれ受電用電極板61~64が配設されている。合計で4枚の受電用電極板61~64は全て同じ形状でY軸方向に延在する細長い帯状であるが、給電用電極板41~44よりも短く、金属板などを用いて形成されている。図2で、リニア可動部3の左側の側面の上側に配設された電極板を左一側受電用電極板61、右側の側面の上側に配設された電極板を右一側受電用電極板62、左側の側面の下側に配設された電極板を左他側受電用電極板63、右側の側面の下側に配設された電極板を右他側受電用電極板64とする。
 ここで、リニア可動部3のY軸方向の位置が変化しても、側壁部材22側の左一側給電用電極板41とリニア可動部3側の左一側受電用電極板61とは常に離隔対向して第1コンデンサCds1を構成する。同様に、他の3組の給電用電極板42~44と受電用電極板62~64の組合せもそれぞれ、離隔対向して第2~第4コンデンサCds2~Cds4を構成する。リニア可動部3が2つの側壁部材22、23の中間の中央位置を占める良好な状態で、各コンデンサCds1~Cds4の電極間距離d1~d4は、基準電極間距離Dに一致している(d1=d2=d3=d4=D)。したがって、良好な状態で、各コンデンサCds1~Cds4の対向面積Sおよび電極間距離d1~d4が一致して、各静電容量C1~C4は一致している。
 このように、リニアモータ装置150の磁石152と電機子とが対向する電磁結合部の空間内にコンデンサCds1~Cds4(静電結合部)を重畳させて構成しても、電磁結合と静電結合の方式が異なるので相互に干渉しない。仮に、電磁結合方式非接触給電装置を用いる場合には、磁界の相互干渉を避けるために、給電用コイルおよび受電用コイルを磁石152および電機子から遠ざける必要があり、大きな制約になる。
 次に、図3は、第1実施形態の静電結合方式非接触給電装置1の全体構成を模式的に説明する結線図である。静電結合方式非接触給電装置1は、前述した4枚の給電用電極板41~44、前述した4枚の受電用電極板61~64、高周波電源回路5、および受電回路7などで構成されており、リニア可動部3上の電気負荷8に非接触で給電する。なお、図3では、受電回路7と電気負荷8とを一つの矩形ブロックにまとめて示している。
 高周波電源回路5は、給電効率の向上を図るために、共振回路を用いた非接触給電を行う。高周波電源回路5は、例えば、100kHz~MHz帯の高周波電力を出力する。高周波電源回路5の出力電圧は調整可能とされており、出力電圧波形として正弦波や矩形波などを例示できる。高周波電源回路5は、出力周波数で直列共振が発生するように、内部に適宜コイル55、56が挿入接続され、さらに出力周波数自体も可変に調整される。
 高周波電源回路5は高周波電力を出力する一側端子51および他側端子52を有しており、2つの端子51、52に機能上の違いは無い。図3に示されるように、一側端子51は、左一側給電用電極板41および右一側給電用電極板42に並列に電気接続されている。他側端子52は、左他側給電用電極板43および右他側給電用電極板44に並列に電気接続されている。
 受電回路7は、受電用電極板61~64が受け取った高周波電力を変換して、電気負荷8に給電する。受電回路7は、電気負荷8の電源仕様に合わせて回路構成されており、例えば、全波整流回路やインバータ回路などが用いられる。受電回路7は、高周波電力を受け取る一側端子71および他側端子72を有しており、2つの端子71、72に機能上の違いは無い。図3に示されるように、一側端子71は、左一側受電用電極板61および右一側受電用電極板62に並列に電気接続されている。他側端子72は、左他側受電用電極板63および右他側受電用電極板64に並列に電気接続されている。
 上述のように結線すると、第1および第2コンデンサCds1、Cds2は、本発明の2個の一側コンデンサに相当する。また、第3および第4コンデンサCds3、Cds4は、本発明の2個の他側コンデンサに相当する。これにより、高周波電源回路5から電気負荷8までを含んだ全体の給電回路は、図4に示される等価回路に置き換えて考えることができる。
 次に、第1実施形態の静電結合方式非接触給電装置1の作用および効果について説明する。図4は第1実施形態の静電結合方式非接触給電装置1の等価回路を示す回路図であり、図5は、図4の等価回路をさらに簡易化した回路図である。図4および図5で、受電回路7および電気負荷8は、簡略な純抵抗Rに置き換えられている。また、図5では、第1および第2コンデンサCds1、Cds2をまとめて等価な第12コンデンサCds12に置き換え、第3および第4コンデンサCds3、Cds4をまとめて等価な第34コンデンサCds34に置き換えている。
 装置1が良好な状態の場合、各コンデンサCds1~Cds4の静電容量C1~C4は、次式(1)で求められる。
   C1=C2=C3=C4=εS/D………(1)
ただし、電極間の対向面積S、基準電極間距離D、電極間の誘電率ε(空気の誘電率)である。また図5で、等価な第12コンデンサCds12の静電容量C12、および第34コンデンサCds34の静電容量C34はそれぞれ、2つのコンデンサの並列接続であることから、次式(2)で求められる。
   C12=C1+C2=C34=C3+C4=2C1=2εS/D………(2)
 ここで、図5に示される回路図を見れば分かるように、全体の給電回路において第12コンデンサCds12と第34コンデンサCds34は直列接続されている。したがって、給電回路全体の静電容量Cgood、および給電回路の共振周波数fgoodは、次式(3)および(4)で求められる。
   Cgood=C12/2=εS/D………(3)
   fgood=1/{2π(Lc・Cgood0.5}………(4)
ただし、高周波電源回路5の内部のコイル55、56のインダクタンスLcである。
 次に、装置1が良好な状態と言えず、固定部2に対して可動部3が相対変位した場合を考える。このような場合は、例えば、リニア可動部3が加減速動作する際に発生する応力で側壁部材22、23が歪む場合や、あるいは、加工精度の制約で長い側壁部材22、23の平坦度を確保できない場合などに発生し得る。図6は、固定部2に対する可動部3の相対位置が変化したときを模式的に例示説明する図である。図6では、2つの側壁部材22、23に対してリニア可動部3が偏移量Lだけ中央位置から右方に相対変位している。したがって、図中の左側の第1および第3コンデンサCds1、Cds3では、偏移量Lだけ電極間距離d1、d3が基準電極間距離Dよりも増加する(d1=d3=D+L)。逆に、図中の右側の第2および第4コンデンサCds2、Cds4では、偏移量Lだけ電極間距離d2、d4が基準電極間距離Dよりも減少する(d2=d4=D-L)。
 このとき、各コンデンサCds1~Cds4の静電容量C1~C4は、次式(5)および(6)で求められる。
   C1=C3=εS/(D+L)………(5)
   C2=C4=εS/(D-L)………(6)
式(5)では、右辺の分母が増加して第1コンデンサCds1の静電容量C1が減少し、式(6)では、右辺の分母が減少して第2コンデンサCds2の静電容量C2が増加する。つまり、第1および第2コンデンサCds1、Cds2の静電容量C1、C2が互いに補い合うように変化し、等価な第12コンデンサCds12の静電容量C12の変化が抑制されている。同様に、第3コンデンサCds3の静電容量C3が減少し、第4コンデンサCds4の静電容量C4が増加して、互いに補い合うように変化し、等価な第34コンデンサCds34の静電容量C34の変動が抑制されている。
 したがって、第1実施形態の静電結合方式非接触給電装置1の定性的な効果として、リニア可動部153が中央位置から偏移したときに、等価な第12コンデンサCds12の静電容量C12、および等価な第34コンデンサCds34の静電容量C34の変動を抑制できる。これにより、共振周波数fgoodの変動が抑制されて、高い給電効率を維持できる。
 さらに、定量的な検討を続ける。式(5)(6)に基づいて、等価な第12コンデンサCds12の静電容量C12、および第34コンデンサCds34の静電容量C34は、次式(7)で求められる。
   C12=C34=C1+C2=2εSD/(D-L)………(7)
また、このときの給電回路全体の静電容量Cbad、および給電回路の共振周波数fbadは、次式(8)および(9)で求められる。
   Cbad=C12/2=εSD/(D-L)………(8)
   fbad=1/{2π(Lc・Cbad0.5}………(9)
式(8)で、L=0のときに静電容量Cbadは最小となり、式(3)の静電容量Cgoodに一致する。
 つまり、第1実施形態の静電結合方式非接触給電装置1の定量的な効果として、リニア可動部3が中央位置から偏移したときに、給電回路全体の静電容量Cbadは増加する方向に変動する。このとき、式(9)で求められる共振周波数fbadは低い方向に変動し、高周波電源回路5の出力周波数を下げられる。これにより、高周波電源回路5のスイッチング損失を低減でき、さらには給電回路の途中で高周波電流により生じる表皮損失を低減でき、一定以上の高い給電効率を確実に維持できる。
 さらに、第1実施形態の静電結合方式非接触給電装置1は、部品実装機10に装備されて、高い給電効率を維持することができる。これにより、非接触給電装置1は小形軽量でコスト低廉となり、部品実装機10の装置コストの低減に資することができる。
 なお、第1実施形態で、厳密には、受電回路7および電気負荷8を純抵抗Rに置き換えられない場合もある。この場合にも式(1)~(7)は成立し、給電回路全体の静電容量Cbadの変動を抑制し、共振周波数fbadの変動を抑制して、高い給電効率を維持できるという定性的な効果は変わらない。また、リニア可動部3が軌道部材2の底壁部材21に対して上下方向に相対変位するおそれが無いとは言えない。このとき、第1~第4コンデンサCds1~Cds4の静電容量C1~C4は、電極間距離d1~d4が変化した場合ほどには著変せず、給電効率への影響は殆ど生じない。
 次に、第2実施形態の静電結合方式非接触給電装置1Aについて、図7を参考にして、第1実施形態と異なる点を主に説明する。図7は、第2実施形態の静電結合方式非接触給電装置1Aの全体構成を模式的に説明する結線図である。第2実施形態の静電結合方式非接触給電装置1Aは、第1実施形態と同様に、部品実装機10に装備されている。図示されるように、第2実施形態では、軌道部材2Aの底壁部材21Aとリニア可動部3Aの底面との間に第1実施形態よりも大きな空間が確保され、この空間内に電極板45、46、65~68が配置されている。
 詳述すると、軌道部材2Aの底壁部材21Aの上面とリニア可動部3Aの底面との間の概ね中間の高さに、底壁部材21Aから立ち上がったのち水平方向に延在する2枚の給電用電極板45、46が、図中の左右に並んで配設されている。2枚の給電用電極板45、46は互いに対称形状であり、Y軸方向(紙面の表裏方向)に延在しており、金属板などを用いて形成されている。図2で、左側の電極板を一側給電用電極板45、右側の電極板を他側給電用電極板46とする。なお、第1実施形態と異なり、側壁部材22A、23Aの内側面に電極板は配設されていない。
 一方、リニア可動部3A側には、一側給電用電極板45を挟んで上下に平行に配置された上一側受電用電極板65および下一側受電用電極板66が設けられている。同様に、リニア可動部3A側には、他側給電用電極板46を挟んで上下に平行に配置された上他側受電用電極板67および下他側受電用電極板68が設けられている。合計で4枚の受電用電極板65~68は全て同じ形状でY軸方向に延在する細長い帯状であるが、一側給電用電極板45や他側給電用電極板46よりも短く、金属板などを用いて形成されている。
 ここで、底壁部材21A側の一側給電用電極板45とリニア可動部3A側の上一側受電用電極板65とは、常に離隔対向して第1コンデンサCds1Aを構成している。また、一側給電用電極板45と下一側受電用電極板66とは、常に離隔対向して第2コンデンサCds2Aを構成している。同様に、他側給電用電極板46と上他側受電用電極板67とで第3コンデンサCds3Aを構成し、他側給電用電極板46と下他側受電用電極板68とで第4コンデンサCds4Aを構成している。4個のコンデンサCds1A~Cds4Aは、対向面積および電極間距離が概ね等しく、概ね等しい静電容量を有している。
 また、高周波電源回路5の一側端子51は一側給電用電極板45に電気接続され、他側端子52は他側給電用電極板46に電気接続されている。さらに、受電回路7の一側端子71は、上一側受電用電極板65および下一側受電用電極板66に並列に電気接続され、側端子72は上他側受電用電極板67および下他側受電用電極板68に並列に電気接続されている。
 第2実施形態において、電気的な等価回路は、図4および図5に示された第1実施形態と同一になる。第2実施形態では、底壁部材21Aに対するリニア可動部3Aの相対位置が中間高さ位置から上下に変化すると、第1実施形態でリニア可動部3の相対位置が中央位置から左右に変化したときと同様の作用が発生する。したがって、第2実施形態においても第1実施形態と同様の効果が発生して、高い給電効率を確実に維持でき、かつ部品実装機10の装置コストの低減に資することができる。
 なお、第2実施形態で、リニア可動部3Aが軌道部材2Aの側壁部材22A、23Aに対して左右方向に相対変位するおそれが無いとは言えない。このとき、電極間距離が変化しないので、第1~第4コンデンサCds1A~Cds4Aの静電容量は著変せず、給電効率への影響は殆ど生じない。
 次に、第3実施形態の静電結合方式非接触給電装置1Bについて、図8および図9を参考にして、第1実施形態と異なる点を主に説明する。図8は、第3実施形態の静電結合方式非接触給電装置1Bの全体構成を模式的に説明する結線図である。また、図9は第3実施形態の静電結合方式非接触給電装置1Bの等価回路を示す回路図である。第3実施形態の静電結合方式非接触給電装置1Bは、第1実施形態と同様に、部品実装機10に装備されている。図示されるように、第3実施形態では、電極板4P、4Q、6P、6Qが簡略化されて、構成されるコンデンサCdsP、CdsQが2個になっている。
 詳述すると、軌道部材2Bの2つの側壁部材22B、23Bの磁石152の内側面に、それぞれ給電用電極板4P、4Qが配設されている。2枚の給電用電極板4P、4Qは同じ形状でY軸方向に延在する細長い帯状であり、金属板などを用いて形成されている。図8で、左側の磁石152の内側面に配設された電極板を一側給電用電極板4P、右側の磁石152の内側面に配設された電極板を他側給電用電極板4Qとする。
 一方、リニア可動部3Bの両側の側面にそれぞれ受電用電極板6P、6Qが配設されている。2枚の受電用電極板6P、6Qは同じ形状であり、Y軸方向に延在する細長い帯状であるが給電用電極板4P、4Qよりも短く、金属板などを用いて形成されている。図8で、リニア可動部3の左側の側面に配設された電極板を一側受電用電極板6P、右側の側面に配設された電極板を他側受電用電極板6Qとする。
 ここで、リニア可動部3BのY軸方向の位置が変化しても、一側給電用電極板4Pと一側受電用電極板6Pとは常に離隔対向して第1コンデンサCdsPを構成している。同様に、他側給電用電極板4Qと他側受電用電極板6Qとは常に離隔対向して第2コンデンサCdsQを構成している。
 また、高周波電源回路5の一側端子51は一側給電用電極板4Pに電気接続され、他側端子52は他側給電用電極板4Qに電気接続されている。さらに、受電回路7の一側端子71は、一側受給電用電極板6Pに電気接続され、他側端子72は他側受電用電極板6Q8に電気接続されている。これにより、高周波電源回路5から電気負荷8までを含んだ全体の給電回路は、図9に示される等価回路に置き換えて考えることができる。
 リニア可動部3Bが2つの側壁部材22B、23Bの中間の中央位置を占める良好な状態で、2つのコンデンサCdsP、CdsQの電極間距離dP~dQは、基準電極間距離Dに一致している(dP=dQ=D)。したがって、良好な状態で、2つのコンデンサCdsP、CdsQの対向面積Sおよび電極間距離dP、dQが一致して、2つの静電容量CP、CQは次式(10)で求められる値に一致している。
   CP=CQ=εS/D………(10)
また、このときの給電回路全体の静電容量Cg2は、次式(11)で求められる。
   Cg2=CP/2=εS/2D………(11)
 次に、第3実施形態の静電結合方式非接触給電装置1Bの作用および効果について、従来構成と比較して説明する。図10は、従来構成の静電結合方式非接触給電装置9を模式的に示す斜視図である。図10で、軌道部材2Cの一側の側壁部材22Cは全体が示され、他側の側壁部材23Cは一部省略されている。図示されるように、従来構成では、軌道部材2Cの底壁部材21Cの上面に2枚の給電用電極板4R、4S、リニア可動部3Cの底面に2枚の受電用電極板6R、6Sが配置されて、2つのコンデンサCdsR、CdsS(静電容量CR、CS)が構成されていた。また、従来構成においても、高周波電源回路5および受電回路7の構成および結線は第3実施形態と同一になっている。
 したがって、従来構成の電気的な等価回路は、図9に示される第3実施形態の等価回路と一致する。ここで、第3実施形態および従来構成において、リニア可動部3B、3Cが、軌道部材2B、2Cに対して左右方向および上下方向に相対変位する場合を考える。
 まず、リニア可動部3B、3Cが2つの側壁部材(22Bと23B、22Cと23C)の中間の中央位置から右方に偏移量Lだけ相対変位した場合を考える。すると第3実施形態では、第1コンデンサCdsPの電極間距離dPは、偏移量Lだけ基準電極間距離Dよりも増加する(dP=D+L)。逆に、第2コンデンサCdsQの電極間距離dQは、偏移量Lだけ基準電極間距離Dよりも減少する(dQ=D-L)。
 このとき、2つのコンデンサCdsP、CdsQの静電容量CP、CQは、次式(12)および(13)で求められる。
   CP=εS/(D+L)………(12)
   CQ=εS/(D-L)………(13)
さらに、このときの給電回路全体の静電容量Cb2を、次式(14)で求めると、式(11)の静電容量Cg2に一致する。
   Cb2=(CP・CQ)/(CP+CQ)=εS/2D………(13)
つまり、第3実施形態では、リニア可動部3Bが中央位置から左右に偏移しても、2つのコンデンサCdsP、CdsQが補い合うように変化して、給電回路全体の静電容量Cb2が変化しない。
 一方、従来技術では、リニア可動部3が中央位置から左右に偏移しても、それぞれのコンデンサCdsR、CdsSの電極間距離が変化しないので、静電容量CR、CSは著変せず、給電効率への影響は殆ど生じない。つまり、リニア可動部3B、3Cの左右方向の相対変位では、第3実施形態および従来技術の双方で高い給電効率を維持できる。
 次に、リニア可動部3B、3Cが中間高さ位置から底壁部材21B、21Cの上方に偏移量Hだけ相対変位した場合を考える。すると第3実施形態では、リニア可動部3が上方に偏移しても、それぞれのコンデンサCdsP、CdsQの電極間距離が変化しないので、静電容量CP、CQは著変せず、給電効率への影響は殆ど生じない。
 一方、従来技術では、2つのコンデンサCdsR、CdsSの電極間距離が揃って偏移量Hだけ増加し、両方の静電容量CR、CSが揃って減少してしまう。これにより、給電回路の共振周波数が増加するため、高周波電源回路5の周波数制御が難しくなる弊害や、スイッチング損失および表皮損失が増加するという弊害が生じる。つまり、リニア可動部3B、3Cの上下方向の相対変位では、従来技術で弊害が生じるのに対して、第3実施形態では弊害は生じない。
また、第3実施形態では、側壁部材22B、23Bに対するリニア可動部3Bの相対離隔位置が中央位置から左右いずれかに偏移しても、給電回路全体の静電容量Cb2は概ね一定に保たれる。したがって、共振周波数は殆ど変動せず、高周波電源回路5の出力周波数を安定化できて、高い給電効率を確実に維持できる。また、部品実装機10の装置コストの低減に資することができる。
 なお、第1実施形態では、軌道部材2に対してリニア可動部3が相対変位したとき、式(7)に示されるように、等価な第12コンデンサCds12の静電容量C12と、等価な第34コンデンサCds34の静電容量C34とが常に等しくなる。これは、高周波電源回路5の一側端子51から受電回路7の一側端子71までの往路と、受電回路7の他側端子72から高周波電源回路5の他側端子52までの復路とが電気特性の上で平衡していることを意味する。つまり、常に平衡回路で給電できるため、外乱に対する給電安定性が高いなどの効果も生じる。この平衡回路の効果は第2実施形態でも発生し、第3実施形態では発生しない。
 また、第1~第3実施形態における給電用電極板41~46、4P、4Qおよび受電用電極板61~68、6P、6Qの形状および配置は例であり、他の態様を採用することもできる。例えば、複数組の断面L字形状の電極板同士を離隔対向させるようにしてもよい。さらに、可動部3、3A、3Bの駆動機構は、リニアモータ装置150である必要はなく、例えば、周知のボールねじ送り機構であってもよい。本発明は、その他にも様々な応用や変形が可能である。
 本発明の静電結合方式非接触給電装置は、部品実装機を始めとする基板用作業機器に利用でき、さらに、可動部を有して非接触給電を必要とする他の業種の産業用機器にも広く利用できる。
  1、1A、1B:静電結合方式非接触給電装置
  2、2A、2B、2C:軌道部材(固定部)
     21、21A、21B、21C:底壁部材
     22、22A、22B、22C:側壁部材
     23、23A、23B、23C:側壁部材
  3、3A、3B、3C:リニア可動部(可動部)
  41:左一側給電用電極板  42:右一側給電用電極板
  43:左他側給電用電極板  44:右他側給電用電極板
  45:一側給電用電極板   46:他側給電用電極板
  4P:一側給電用電極板   4Q:他側給電用電極板
  5:高周波電源回路  55、56:コイル
  61:左一側受電用電極板  62:右一側受電用電極板
  63:左他側受電用電極板  64:右他側受電用電極板
  65:上一側受電用電極板  66:下一側受電用電極板
  67:上他側受電用電極板  68:下他側受電用電極板
  6P:一側受電用電極板   6Q:他側受電用電極板
  7:受電回路
  8:電気負荷
  9:従来構成の静電結合方式非接触給電装置
  10:部品実装機
     110:基板搬送装置  120:部品供給装置
     130、140:部品移載装置  150:リニアモータ装置
     160:可動本体部  161:X軸レール
     170:実装ヘッド  180:表示設定装置  190:機台
  d1~d4、dP、dQ:電極間距離  L:偏移量
  Cds1~Cds4:第1~第4コンデンサ
  Cds12、Cds34:等価な第12および第34コンデンサ
  Cds1A~Cds14:第1~第4コンデンサ
  CdsP:第1コンデンサ  CdsQ:第2コンデンサ
  Lc:インダクタンス

Claims (6)

  1.  固定部に設けられた複数の給電用電極板と、
     前記複数の給電用電極板の間に高周波電力を給電する高周波電源回路と、
     前記固定部に移動可能に装架された可動部に設けられ、前記複数の給電用電極板にそれぞれ離隔対向して非接触で高周波電力を受け取る複数の受電用電極板と、
     前記複数の受電用電極板が受け取った高周波電力を変換して前記可動部上の電気負荷に給電する受電回路とを備えた静電結合方式非接触給電装置であって、
     前記固定部に対する前記可動部の相対位置が変化したときに、離隔対向する給電用電極板と受電用電極板とにより構成される複数のコンデンサの静電容量が互いに補い合うように変化する静電結合方式非接触給電装置。
  2.  請求項1において、
     前記高周波電源回路は、前記高周波電力の出力周波数を可変に調整して共振回路を用いた非接触給電を行い、
     前記複数のコンデンサの静電容量が互いに補い合うことで前記共振回路の共振周波数の変動が小さく抑制される静電結合方式非接触給電装置。
  3.  請求項1または2において、
     前記固定部は、前記移動部の移動方向に平行に延在する2つの側壁部材を有し、
     前記可動部は、前記固定部の2つの側壁部材の間で前記側壁部材の内側面に離隔して移動し、
     前記固定部の2つの側壁部材の内側面に移動方向に延在するように設けられ前記高周波電源回路の一側端子に電気接続された2枚の一側給電用電極板と、前記可動部の両方の側面に設けられ前記受電回路の一側端子に電気接続された2枚の一側受電用電極板とにより2個の一側コンデンサが構成され、
     前記固定部の2つの側壁部材の内側面に移動方向に延在するように設けられ前記高周波電源回路の他側端子に電気接続された2枚の他側給電用電極板と、前記可動部の両方の側面に設けられ前記受電回路の他側端子に電気接続された2枚の他側受電用電極板とにより2個の他側コンデンサが構成され、
     前記固定部の2つの側壁部材に対する前記可動部の相対離隔位置が変化したときに、2個の一側コンデンサの静電容量が一方で増加し他方で減少して補い合い、かつ、2個の他側コンデンサの静電容量が一方で増加し他方で減少して補い合う静電結合方式非接触給電装置。
  4.  請求項1または2において、
     前記固定部は、前記移動部の移動方向に延在する底壁部材を有し、
     前記可動部は、前記固定部の底壁部材の上方で前記底壁部材の上面に離隔して移動し、
     前記固定部の底壁部材の上面と前記可動部の底面との間に移動方向に延在するように設けられ前記高周波電源回路の一側端子に電気接続された一側給電用電極板と、前記一側給電用電極板を挟んで上下に配設され前記受電回路の一側端子に電気接続された2枚の一側受電用電極板とにより2個の一側コンデンサが構成され、
     前記固定部の底壁部材の上面と前記可動部の底面との間に移動方向に延在するように設けられ前記高周波電源回路の他側端子に電気接続された他側給電用電極板と、前記他側給電用電極板を挟んで上下に配設され前記受電回路の他側端子に電気接続された2枚の他側受電用電極板とにより2個の他側コンデンサが構成され、
     前記固定部の前記底壁部材に対する前記可動部の相対上下位置が変化したときに、2個の一側コンデンサの静電容量が一方で増加し他方で減少して補い合い、かつ、2個の他側コンデンサの静電容量が一方で増加し他方で減少して補い合う静電結合方式非接触給電装置。
  5.  請求項1または2において、
     前記固定部は、前記移動部の移動方向に平行に延在する2つの側壁部材を有し、
     前記可動部は、前記固定部の2つの側壁部材の間で前記側壁部材の内側面に離隔して移動し、
     前記固定部の2つの側壁部材の内側面に移動方向に延在するように設けられた2枚の給電用電極板と、前記可動部の両方の側面に設けられた2枚の受電用電極板とにより2個のコンデンサが構成され、
     前記固定部の2つの側壁部材に対する前記可動部の相対離隔位置が変化したときに、2個のコンデンサの静電容量が一方で増加し、他方で減少して補い合う静電結合方式非接触給電装置。
  6.  請求項1~5のいずれか一項において、前記可動部は、基板に所定の作業を行う基板用作業機器に装備されている静電結合方式非接触給電装置。
PCT/JP2012/067698 2012-07-11 2012-07-11 静電結合方式非接触給電装置 WO2014010044A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12880969.6A EP2874275B1 (en) 2012-07-11 2012-07-11 Electrostatic-coupling contactless power supply device
CN201280074651.4A CN104488165B (zh) 2012-07-11 2012-07-11 静电耦合方式非接触供电装置
PCT/JP2012/067698 WO2014010044A1 (ja) 2012-07-11 2012-07-11 静電結合方式非接触給電装置
JP2014524537A JP6058003B2 (ja) 2012-07-11 2012-07-11 静電結合方式非接触給電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067698 WO2014010044A1 (ja) 2012-07-11 2012-07-11 静電結合方式非接触給電装置

Publications (1)

Publication Number Publication Date
WO2014010044A1 true WO2014010044A1 (ja) 2014-01-16

Family

ID=49915547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067698 WO2014010044A1 (ja) 2012-07-11 2012-07-11 静電結合方式非接触給電装置

Country Status (4)

Country Link
EP (1) EP2874275B1 (ja)
JP (1) JP6058003B2 (ja)
CN (1) CN104488165B (ja)
WO (1) WO2014010044A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677283A (zh) * 2018-12-26 2019-04-26 张治国 小功率道路行驶充电方法及***
DE102019120428A1 (de) 2019-07-29 2021-02-04 Bayerische Motoren Werke Aktiengesellschaft Energieübertragungsvorrichtung zum drahtlosen Übertragen von elektrischer Energie, sowie Verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312942A (ja) * 1996-05-21 1997-12-02 Hitachi Ltd 非接触式集電方法およびその装置
WO2007063693A1 (ja) * 2005-11-30 2007-06-07 Thk Co., Ltd. ワイヤレスアクチュエータ
JP2009296857A (ja) * 2008-06-09 2009-12-17 Sony Corp 伝送システム、給電装置、受電装置、及び伝送方法
JP2011223739A (ja) 2010-04-09 2011-11-04 Sony Corp 給電装置、受電装置、およびワイヤレス給電システム
JP2012085404A (ja) * 2010-10-08 2012-04-26 Murata Mfg Co Ltd 電力伝送システム及び電子棚札システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519262A (en) * 1992-11-17 1996-05-21 Wood; Mark B. Near field power coupling system
JP3778874B2 (ja) * 2001-05-23 2006-05-24 株式会社椿本チエイン 非接触給電装置
DE102009003846A1 (de) * 2009-04-29 2010-11-04 Weidmüller Interface GmbH & Co. KG System zur berührungslosen Energie- und Datenversorgung von Busteilnehmermodulen
JP2011019293A (ja) * 2009-07-07 2011-01-27 Takenaka Komuten Co Ltd 電力供給システム
JP5170054B2 (ja) * 2009-10-07 2013-03-27 国立大学法人宇都宮大学 電力供給システム、及びそのための可動体と固定体
JP5603509B2 (ja) * 2012-01-18 2014-10-08 古河電気工業株式会社 無線電力伝送システム、送電装置、および、受電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312942A (ja) * 1996-05-21 1997-12-02 Hitachi Ltd 非接触式集電方法およびその装置
WO2007063693A1 (ja) * 2005-11-30 2007-06-07 Thk Co., Ltd. ワイヤレスアクチュエータ
JP2009296857A (ja) * 2008-06-09 2009-12-17 Sony Corp 伝送システム、給電装置、受電装置、及び伝送方法
JP2011223739A (ja) 2010-04-09 2011-11-04 Sony Corp 給電装置、受電装置、およびワイヤレス給電システム
JP2012085404A (ja) * 2010-10-08 2012-04-26 Murata Mfg Co Ltd 電力伝送システム及び電子棚札システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874275A4

Also Published As

Publication number Publication date
CN104488165A (zh) 2015-04-01
EP2874275B1 (en) 2021-03-31
CN104488165B (zh) 2018-06-22
EP2874275A4 (en) 2016-05-04
JP6058003B2 (ja) 2017-01-11
EP2874275A1 (en) 2015-05-20
JPWO2014010044A1 (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
JP6095661B2 (ja) 非接触給電装置
WO2014006685A1 (ja) 静電結合方式非接触給電装置
CN108028549A (zh) 非接触供电装置
JP6076355B2 (ja) 非接触給電装置
JP6161683B2 (ja) 静電結合方式非接触給電装置
JP6058003B2 (ja) 静電結合方式非接触給電装置
JP6170057B2 (ja) 静電結合方式非接触給電装置およびその制御方法
CN108604822B (zh) 非接触供电装置
WO2014049869A1 (ja) 非接触給電装置
JP6104231B2 (ja) 静電結合方式非接触給電装置
JP6049743B2 (ja) 静電結合方式非接触給電装置
WO2017094119A1 (ja) 非接触給電装置
WO2014091584A1 (ja) 静電結合方式非接触給電装置
WO2017163388A1 (ja) 非接触給電装置
WO2016016930A1 (ja) 非接触給電装置
JP2017147848A (ja) 非接触給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524537

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012880969

Country of ref document: EP