WO2014010035A1 - 光コネクタおよび光コネクタを用いたサーバー - Google Patents

光コネクタおよび光コネクタを用いたサーバー Download PDF

Info

Publication number
WO2014010035A1
WO2014010035A1 PCT/JP2012/067641 JP2012067641W WO2014010035A1 WO 2014010035 A1 WO2014010035 A1 WO 2014010035A1 JP 2012067641 W JP2012067641 W JP 2012067641W WO 2014010035 A1 WO2014010035 A1 WO 2014010035A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
connector
connector member
housing
magnet
Prior art date
Application number
PCT/JP2012/067641
Other languages
English (en)
French (fr)
Inventor
田中 健一
俊樹 菅原
加藤 猛
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/067641 priority Critical patent/WO2014010035A1/ja
Publication of WO2014010035A1 publication Critical patent/WO2014010035A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3886Magnetic means to align ferrule ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present invention relates to an optical connector, and more particularly to a movable optical connector used when wiring is connected by a plurality of connectors in signal transmission / reception between a substrate and another substrate.
  • an optical signal from an optical transmission / reception module that performs photoelectric conversion (or electro-optical conversion) is formed when an optical signal transmission system is configured.
  • the connection method between optical connectors connected to one end of the transmitting optical fiber or the optical waveguide becomes a problem.
  • the first In order to increase the practicality by optically connecting the optical connector and the optical connector, which are the exits of the optical signal output from the unit substrate having the LSI and electrical wiring laid on the substrate, with sufficient accuracy, the first In addition, it is necessary that the optical axis alignment between the optical connector and the optical connector composed of a plurality of optical fibers or optical waveguides can be achieved with sufficient accuracy.
  • the allowable amount of optical axis deviation is, for example, 20 ⁇ m or less when the optical transmission line such as an optical fiber or an optical waveguide is a multimode optical waveguide.
  • considering mass production of products it is necessary to be able to position and fix with high workability and high accuracy without performing complicated optical axis adjustment work.
  • connection on which means coupling of optical connectors or connection off which means disconnection of connections can be easily performed, and there is a failure part. It is necessary to easily replace only the unit substrate.
  • FIG. 18 is a schematic cross-sectional view of a widely used optical connector.
  • the connection is made using guide pins or housing guides attached to the optical connector.
  • the optical connector and the optical connector are automatically aligned without adjustment by a so-called fitting method. Therefore, the first requirement and the second requirement can be satisfied.
  • a method of connecting an optical connector and an optical connector using a magnet as an alignment mark is known (for example, see Patent Document 1).
  • a magnet is mounted on one connector.
  • the magnet also has a function as an alignment mark for performing high-precision alignment between the connector and the connector.
  • the optical connector and the optical connector are optically coupled. Also in this structure, since the optical axis alignment of the optical connector and the optical connector is automatically achieved without adjustment (self-alignment), it is possible to satisfy the first requirement and the second requirement.
  • connection between the plurality of unit boards is performed via the inter-substrate wiring formed on the rear substrate, connection between a large number of circuit elements is particularly required.
  • the number of wirings in a board and between boards increases, and the increase in the number of wirings causes a problem of wiring congestion and mutual interference between wirings.
  • the cooling system for cooling the unit board may not function due to wiring congestion.
  • the connection between the unit substrates via the inter-board wiring formed on the back substrate causes an increase or variation in the inter-circuit element wiring length, which causes an increase in signal delay and a clock skew.
  • an optical connector of the present invention is, for example, an optical connector including a first connector member and a second connector member
  • the first connector member includes a housing and a housing.
  • the second connector member includes a housing An optical fiber through hole passing through the housing, a fixing portion for fixing the optical fiber provided in the housing, and a second alignment portion provided on the surface of the housing, the first alignment portion
  • a magnet is provided in a portion connected to the second alignment portion on the surface of the first
  • a magnetic body is provided in a portion connected to the magnet on the surface of the second alignment portion, the magnet of the first connector member, By connecting the magnetic body of the 2 connector member, By connecting the member members together, the optical fiber fixed to the first connector member and the optical fiber fixed to the second connector member are optically connected. It further has a shielding means.
  • an optical connector that can be easily connected and disconnected between connectors even when the number of connectors is plural.
  • an optical connector it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off. It is a figure explaining the signal transmission / reception performed between the unit board
  • a control lever installed at each terminal is used to connect and disconnect the connector. It is a figure explaining the server using the optical connector and several unit board
  • an optical connector it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off. It is a figure explaining the basic composition of the optical connector by the 2nd Embodiment of this invention. In an optical connector, it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off. It is a figure explaining the basic composition of the optical connector by the 3rd Embodiment of this invention. In an optical connector, it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off.
  • an optical connector it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off. It is a figure explaining the basic composition of the optical connector by the 8th Embodiment of this invention. In an optical connector, it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off. It is a figure explaining the basic composition of the optical connector by a 9th embodiment of the present invention. In an optical connector, it is a figure explaining the state (a) in which a connection between optical connectors is on, and the state (b) in which a connection between optical connectors is off.
  • an optical connector device having a magnetic shielding means and having a self-alignment magnet mechanism will be described.
  • the magnetic shielding means referred to in this specification means means for weakening the magnetic force acting between the magnet and the metal.
  • the configuration in which this means is realized will be described in each embodiment.
  • FIG. 1A and 1B are configuration diagrams of an optical connector device according to the present embodiment, where FIG. 1A shows a connector connection state, and FIG. 1B shows a connector disconnection state.
  • FIG. 2 is an enlarged view of a connection portion between the connectors in FIG. 1, (a) shows a connection state between the magnet and the magnetic material, and (b) shows a separation state between the magnet and the magnetic material.
  • the connector member A is composed of a connector housing and a receptacle which is an alignment unit.
  • a through hole for passing an optical fiber and a fixing portion for fixing the optical fiber are provided in the connector housing.
  • the connector member B includes a connector housing and a receptacle.
  • the receptacle is configured to fit on a rail attached to the connector housing, the receptacle can be freely moved out and retracted with respect to the connector housing. It has become. With this structure, even when the connector member A and the connector member B are fixed to a server blade or the like, the connection on state can be realized by moving only the receptacle from the connection off state between these connectors.
  • one of the receptacles of the connector member A and the connector member B has a magnetic shielding means, and a magnet is provided instead of the alignment mark. Both connector members are aligned by the attractive force between the magnet and a magnetic material such as metal, and the connected state is maintained.
  • lenses 11a and 11b are attached to the connector member A and the connector member B, respectively.
  • this lens for example, the light emitted from the connector optical fiber becomes collimated light having an enlarged beam size, propagates through the space, and when the light is input to the optical fiber, the enlarged light beam is condensed by the lens 11b. And coupled with the optical fiber.
  • the connection tolerance accuracy between the connector member A and the connector member B is increased 10 times or more, and is less susceptible to dust and dirt in the atmosphere.
  • the connector state of the connector member A and the connector member B is maintained by the magnet mechanism, and the connector member A and the connector member B are held by the magnetic shielding means as shown in FIG. Is cut off.
  • An optical signal has a bandwidth by encoding information in a plurality of frequency components of light transmitted along one optical fiber or a waveguide using wavelength division multiplexing (Wave Division Multiplexing: WDM). It may be enhanced.
  • WDM wavelength division multiplexing
  • the optical transmission medium may comprise a plurality of optical fibers or waveguides. Thereby, each optical fiber or waveguide carries a WDM signal and realizes a high bandwidth per unit area.
  • FIG. 2 explains the details of the connection location between the connectors shown in FIG.
  • the magnet 22 has a structure capable of rotating. It can be controlled manually. Specifically, when the straight line connecting the N pole side and the S pole side of the magnet is parallel to the magnetic material, the lines of magnetic force enter the magnetic material through the yoke 21, and therefore the attractive force between the magnet and the magnetic material. Works, and the magnet and the magnetic material are attached.
  • FIG. 2B when the straight line connecting the north and south poles of the magnet is perpendicular to the magnetic material, the magnetic force lines cannot enter the magnetic material and the magnet and the magnetic material are separated. It becomes a state. Thus, by rotating the magnet, the magnet and the magnetic material can be connected and disconnected.
  • 1A and 1B illustrate a case where this mechanism is employed.
  • the movement of the connector member A and the connector member B is in the x, y, z directions, the inclination angles, and the rotation angles ⁇ a, ⁇ b, ⁇ c, respectively, and the connection between the connector member A and the connector member B is Alignment adjustment is performed with high accuracy so as to achieve a highly efficient optical coupling state.
  • the configuration of the present embodiment is an optical connector including a first connector member A and a second connector member B.
  • the first connector member A includes a housing 2 and a housing 2. A through hole for an optical fiber passing through the inside, a fixing portion for fixing the optical fiber 1 provided in the housing 2, and a first alignment portion 3 provided on the surface of the housing 2.
  • the connector member B includes a housing 6, an optical fiber through hole passing through the housing 6, a fixing portion for fixing the optical fiber 1 provided in the housing 6, and a first provided on the surface of the housing 6.
  • the second alignment unit 5 is provided with a magnet on the surface of the first alignment unit 3 connected to the second alignment unit, and the second alignment unit 5 is connected to the surface of the magnet.
  • the part 3 further includes magnetic shielding means.
  • the magnet terminal to be the alignment mark can be formed by patterning, it can be formed with high precision. Since the patterned magnets are in contact with each other, a force is automatically exerted in a direction to correct the misalignment. Since it is not necessary to adopt a special means for high precision connection of the connector, it is possible to save the connector space.
  • FIG. 3A and 3B are configuration diagrams of the optical connector device according to the present embodiment, where FIG. 3A shows a state before connector connection, and FIG. 3B shows a state after connector connection.
  • the connector member 102 and the connector member 108 achieve high-efficiency optical coupling by combining a magnet that also serves as an opposing alignment mark and a magnetic material. That is, as shown in FIG. 3A, the mark 103a on the connector member 102 side and the mark 106a on the connector member 108 side, and similarly 103b and 106b, 103c and 106c, 103d and 106d, 103e and 106e, 103f And the alignment marks 106f are matched to achieve high-precision optical connector connection.
  • the connection state between the connector member 102 and the connector member 108 is held, for example, by the attractive force of the magnet and the magnetic material in the magnet mechanism.
  • signal exchange between the optical transceiver modules is performed as follows.
  • a signal generated from the optical transmission / reception module 101 is transmitted through the optical fiber 109, passes through the connector member 102 and the connector member 108 connected in a highly efficient optical coupling state, and then again passes through the optical fiber 109 to the opposing optical transmission / reception module 101. Sent and detected.
  • the mechanism shown in the first embodiment may be applied to the receptacle (not shown), but the magnetic shielding means is not limited to this.
  • FIG. 4 is a block diagram showing signal transmission / reception between substrates using the optical connector according to the present embodiment.
  • Signal transmission and reception is as follows. An electrical signal from the electronic component 185 of the substrate 150 is first sent to the optical module 184 through the wiring 183, and is converted into an optical signal by performing an electrical-optical conversion in the optical module 184, and then transmitted through an optical fiber. After being sent to the optical fiber again through the optical connector members 161 and 166 and subjected to optical-electrical conversion by the optical module 184 and converted into an electrical signal, the CPU mounted on the other board 151 It is sent to an electronic component 185 such as a memory controller. In this way, signal transmission / reception is realized by optical signal transmission / reception between electronic components mounted on different substrates.
  • large-capacity signal transmission / reception is realized by performing signal transmission / reception between electronic components mounted on different substrates using optical wiring using a plurality of optical connectors. That is, even through the optical connector members 162 and 165, large-capacity signal transmission / reception is realized by performing signal transmission / reception between electronic components mounted on different substrates using optical wiring. Similarly, large-capacity signal transmission / reception is realized by performing signal transmission / reception between the electronic components mounted on different substrates through the optical wiring also through the optical connector members 163 and 164. In general, the number of optical connectors increases as the capacity of signals to be processed increases.
  • the movement of the connector members 161, 162, 163, 164, 165, and 166 becomes the x, y, z directions, the inclination angle, and the rotation angle ⁇ as shown in FIG.
  • the connection is aligned with high accuracy so as to be in a highly efficient optical coupling state.
  • the connection between the connector member 162 and the connector member 165 and the connection between the connector member 163 and the connector member 164 are made with high accuracy.
  • the mechanism shown in the first embodiment may be applied to the receptacle (not shown), but the shielding means is not limited to this.
  • FIG. 5 is a block diagram showing signal transmission / reception between boards using the optical connector device according to the present embodiment.
  • Signal transmission and reception is as follows.
  • An electrical signal from the electronic component 185 of the substrate 150 is first sent to the optical module 184 through the wiring 183, and is converted into an optical signal by performing an electrical-optical conversion in the optical module 184, and then transmitted through an optical fiber. Then, it is transmitted again through the optical fiber via the optical connector members 161 and 166, and is converted into an electrical signal by the optical module 184, and is then mounted on the other substrate 151. It is sent to an electronic component 185 such as a CPU or memory controller. In this way, signal transmission / reception is realized by optical signal transmission / reception between electronic components mounted on different substrates.
  • signal transmission / reception between electronic components mounted on different substrates is performed by first collecting signals at the substrate end and then connecting the optical connector members 161 and 162.
  • each connector member is in the x, y, z direction, the inclination angle, and the rotation angle ⁇ , and the connection between the connector member 161 and the connector member 166 is in a highly efficient optical coupling state. Alignment is performed with high accuracy. Similarly, the connection between the connector member 162 and the connector member 165 and the connection between the connector member 163 and the connector member 164 are also performed.
  • the mechanism shown in the first embodiment may be applied to the receptacle (not shown), but the shielding means is not limited to this.
  • FIG. 6 illustrates a configuration diagram of a server using the optical connector according to the present embodiment and an enlarged view of a unit substrate that configures the server.
  • FIG. 6 shows a diagram in which unit boards 211, 212, 213, 214, 215, and 216 are mounted on the rack 210.
  • the unit substrate is mounted with a large number of electronic components 208 such as a CPU / memory controller on the back surface as well as the front surface.
  • electronic components 208 such as a CPU / memory controller
  • the electrical signal from each electronic component 208 is converted into an optical signal via an optical module (not shown), and is output from the optical fiber outlet of the receptacle 202 in the connector member 201 through the optical fiber.
  • the light is output from the outlet of the optical fiber of the receptacle 204 in the connector member 205 in the same manner as the front surface.
  • the connector member is provided with a control lever 206 for each connector so that the receptacle can move up and down for connection with other connectors.
  • FIG. 6 shows how the unit substrate 213 is inserted and removed.
  • the connector of the unit substrate 213 and the connector of the unit substrate 214 are connected.
  • the wiring of the electronic components on the unit substrate 213 and the electronic components on the unit substrate 214 is completed.
  • the control lever 206 is turned off on the unit board 213 in the rack, the connector of the unit board 213 and the connector of the unit board 214 are disconnected.
  • the unit substrate 213 can be pulled out.
  • FIG. 7 shows a configuration diagram of a server using the optical connector device according to the present embodiment, and an enlarged view of a unit board constituting the server.
  • FIG. 7 shows a diagram in which unit boards 221, 222, 223, 224, 225, and 226 are mounted on the rack 210.
  • the unit substrate is mounted with a large number of electronic components 208 such as a CPU / memory controller on the back surface as well as the front surface.
  • electronic components 208 such as a CPU / memory controller
  • the electrical signal from each electronic component 208 is converted into an optical signal through an optical module (not shown), and is output from the receptacle 202 in the connector member 201 through the optical fiber.
  • the receptacle 204 in the connector member 205 in the same manner as the front surface.
  • the connector is provided with a control lever 209 so that all receptacles can be moved up and down collectively for connection with other connectors.
  • FIG. 7 shows how the unit substrate 223 is inserted and removed.
  • FIG. 8A and 8B are configuration diagrams of the optical connector device according to the present embodiment, in which FIG. 8A shows a connector connection state and FIG. 8B shows a connector disconnection state.
  • FIG. 9 is an enlarged view of the alignment mark portion of FIG. 8, where (a) shows a connection state between the magnet and the magnetic material, and (b) shows a separation state between the magnet and the magnetic material.
  • the connector member A and the connector member B are kept connected by the magnet mechanism, and the connector member A and the connector member B are held by the magnetic shielding means as shown in FIG. 8B. Is cut off.
  • FIG. 9 illustrates the details of the alignment mark shown in FIG. As shown in FIG. 9, the alignment mark is composed of a circular magnet and a wedge-shaped magnetic material.
  • FIG. 9A when the straight line connecting the N pole and the S pole of the magnet is parallel to the magnetic material, the magnetic lines of force enter the magnetic material through the yoke 21.
  • the suction force works between them, and they are in a state of sticking together.
  • the contact surface is only a slope of a wedge-shaped magnetic material.
  • FIG. 9B when the straight line connecting the north and south poles of the magnet is perpendicular to the magnetic material, the magnetic force lines cannot enter the magnetic material and the magnet and the magnetic material are separated. It becomes a state.
  • FIG. 9 since the magnetic material has a wedge shape, the contact surface with the magnet is small, and the rotary magnet and the magnetic material can be easily separated. In this way, by manually rotating the magnet, the magnet and the magnetic material can be easily connected and disconnected.
  • FIG. 8 illustrates a case where this mechanism is employed.
  • FIG. 10A and 10B are configuration diagrams of the optical connector device according to the present embodiment, where FIG. 10A shows a connector connection state, and FIG. 10B shows a connector disconnection state.
  • the connector member A is provided with an opening for inserting a shielding plate.
  • the magnetic material 3 of the connector member A can freely move in the direction of the arrow shown in FIG.
  • the alignment mark is composed of the magnet 4 and the magnetic material 3, the magnet has a circular shape, and the surface of the magnetic material facing the magnet has a wedge shape. Therefore, the contact surface between the magnet and the magnetic material is a wedge-shaped slope as shown in FIG.
  • the connector member A and the connector member B are kept connected by the magnet mechanism by an attractive force on the contact surface between the magnetic material and the magnet.
  • the connector member A and the connector member B are separated by inserting a shielding plate into the connector 1 housing opening, as shown in FIG.
  • the attractive force that holds the connection is only the contact surface between the magnet and the magnetic material, and can be easily separated.
  • FIGS. 11A and 11B are configuration diagrams of the optical connector device according to the present embodiment, in which FIG. 11A shows a connector connected state, and FIG. 11B shows a connector disconnected state.
  • the connector member A is provided with an opening for inserting a shielding plate.
  • the magnetic material 3 of the connector member A can freely move in the direction of the arrow shown in FIG.
  • the alignment mark is composed of the magnet 4 and the magnetic material 3, and the magnet has a circular shape, and the surface of the magnetic material facing the magnet has an area larger than that of the opposite surface. It has a small shape. Therefore, the contact surface between the magnet and the magnetic material is an upper surface having a small trapezoidal area.
  • the connector member A and the connector member B are kept connected by the magnet mechanism by an attractive force on the contact surface between the magnetic material and the magnet.
  • the connector member A and the connector member B are separated by inserting a shielding plate into the opening of the connector member A as shown in FIG.
  • the attractive force holding the connection is only a slight contact surface between the magnet and the magnetic material, and can be easily separated.
  • FIGS. 12A and 12B are configuration diagrams of the optical connector device according to the present embodiment, where FIG. 12A shows a connector connection state and FIG. 12B shows a connector disconnection state.
  • the connector housing and the connector housing B have a structure that does not come into contact with the protrusion 8.
  • the connection state between the connector member A and the connector member B is held by the attractive force of the magnet 3 and the magnetic material 4.
  • the magnet N pole or S pole 12 on the side wall of the connector member A exerts a repulsive force on the connector member A against the connector member B by the magnet N pole or S pole 13 on the side wall of the connector 2.
  • the connection state between the connector 1 and the connector 2 becomes stronger and a connector connection structure that is resistant to external vibrations is obtained.
  • FIGS. 13A and 13B are configuration diagrams of the optical connector device according to the present embodiment, where FIG. 13A shows a connector connection state, and FIG. 13B shows a connector disconnection state.
  • the connector member A and the connector member B have a structure that does not come into contact with the protrusion 8.
  • the connection state between the connector member A and the connector member B is held by the attractive force of the magnet 3 and the magnetic material 4.
  • the magnet 9 of the connector member B has an N pole on the inside and an S pole on the outside
  • a repulsive force acts between the magnet 9 and the magnet 3 due to the N pole on the tip side of the magnet 3 in the connector 2.
  • the magnet 9 of the connector B has an S pole on the inner side and an N pole on the outer side
  • a repulsive force is generated between the magnet 9 and the magnet 3 by the S pole on the tip side of the magnet 3 in the connector member 2. Due to this repulsive force, the connector member A has a structure that is difficult to be displaced laterally with respect to the connector member B, so that the connection state between the connector member A and the connector member B becomes stronger and is resistant to external vibration. It becomes.
  • FIG. 14A and 14B are configuration diagrams of the optical connector device according to the present embodiment, in which FIG. 14A shows a connector connected state, and FIG. 14B shows a connector disconnected state.
  • connection state of the connector member A and the connector member B is held by the attractive force of the electromagnet 4 and the magnetic material 3.
  • the electromagnet 4 can control the timing of the attractive force generation between the electromagnet 4 and the magnetic material 3 by an external electric signal. Therefore, the connection / disconnection state of the connector member A and the connector member B can be controlled by an external operation from a long distance.
  • FIGS. 15A and 15B are configuration diagrams of the optical connector device according to the present embodiment, where FIG. 15A shows a connector connected state, and FIG. 15B shows a connector disconnected state.
  • the connector member A and the connector member B have a structure that does not come into contact with the protrusion 8.
  • the connection state of the connector member A and the connector member B is held by the attractive force between the magnet 4 and the magnetic material 3 that are alignment marks.
  • FIGS. 16A and 16B are configuration diagrams of the optical connector device according to the present embodiment, where FIG. 16A shows a connector connection state and FIG. 16B shows a connector disconnection state.
  • the connector member A and the connector member B have a structure that does not come into contact with the protrusion 8.
  • the connection state between the connector member A and the connector member B is held by the attractive force of the magnet 4 and the magnetic material 3.
  • the connector member B has a rail structure 20 into which a plate-shaped member can be inserted.
  • the connection state between the connector member A and the connector member B In FIG. 16A, a shield plate is interposed between the magnet 4 and the magnetic material 3 using the shield plate and the rail structure 20 that weaken the magnetic force. By inserting, the connector member A and the connector member B can be separated, and the connection between the connector member A and the connector member B is turned off.
  • FIG. 16B shows a connection-off state between the connector member A and the connector member B.
  • FIGS. 17A and 17B are configuration diagrams of the optical connector device according to the present embodiment, in which FIG. 17A shows a connector connected state, and FIG. 17B shows a connector disconnected state.
  • the connector member A and the connector member B have a structure that does not come into contact with the protrusion 8.
  • the connection state of the connector member A and the connector member B is held by the attractive force of the N pole or S pole of the magnet 4 and the S pole or N pole of the magnet 3a.
  • the connector member B has a rail structure 20 into which a plate-shaped member can be inserted.
  • the connection state of the connector member A and the connector member B In FIG. 16A, the shielding plate is inserted between the magnet 4 and the magnetic material 3 using the plate-like magnet and the rail structure 20.
  • the magnet 3a is an N pole and the magnet 4 is an S pole
  • the upper side of the plate-shaped magnet is the N pole and the lower side is the S pole.
  • the magnet 3a is the S pole and the magnet 4 is the N pole
  • the upper side of the plate-shaped magnet is the S pole and the lower side is the N pole.
  • the optical connector is configured to transmit and receive signals between the board and another board.
  • the present invention is not limited to this mode, and a plurality of optical connectors are used.
  • the present invention can be applied to any optical connector device or an optical connector for signal transmission / reception other than between the substrates described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 集積回路等の電子回路が組み込まれている基板と基板の間における大容量信号の送受信を光信号で行なう多チャンネル光インタコネクトにおいて、多数個からなる光ファイバおよび光導波路などの光伝送媒体間における信号を高効率に結合させるための光コネクタ、およびその光コネクタの接続と切り離しを簡易な方法で実現するための光コネクタ接続方法、光コネクタ装置および光コネクタ装置の保守方法を提供するため、光信号を導波する複数の光伝送媒体と複数のコネクタからなる光コネクタ装置において、これら少なくとも2つのコネクタには高精度接続を可能にするアライメント機能を兼ね備えたアライメント機構を有し、且つそれらコネクタには磁石の引力を弱めるための磁力遮蔽手段を併せ持つ。これにより、光伝送媒体である光ファイバおよび光導波路が多数個であってもコネクタ間の接続を高精度に行なうことができ、且つ前記磁力の遮蔽機能によりコネクタ間の接続の切り離しも容易に行なうことができる。

Description

光コネクタおよび光コネクタを用いたサーバー
 本発明は光コネクタに関し、特に、基板と他の基板との間の信号送受において、配線の接続が複数個のコネクタで行なわれる場合に使用される可動型光コネクタに関する。
 従来、ルータ、サーバ等の情報機器内部において、プロセッサ、他の特定用途向け集積回路(ASIC)、メモリ、記憶装置、及び関連電子回路部などのLSI間または、LSI-バックプレーン間の信号の伝達には、電気配線や基板配線を介した電気信号によりなされてきた。しかし、昨今のMPU(Micro Processing Unit)の高機能化に伴い、半導体チップ間にて必要とされるデータ授受量は著しく増大し、結果として様々な高周波問題が浮上している。そこで高速でクロストークやノイズが少ない光信号伝送方式が採用されるようになってきている。また、近年これらLSI等が搭載されるユニット基板間の信号の伝達にこの光信号伝送方式の採用が検討されてきている。
特表2011-520151
 上述のように、ユニット基板間の信号の伝達に光信号伝送方式の採用する場合、光信号伝送系を構成する際に、光電変換(あるいは、電光変換)を行う光送受信モジュールからの光信号を伝達する光ファイバあるいは光導波路の片端に繋がれた光コネクタ間の接続方法が問題となる。
 基板にLSIや電気配線が敷設されたユニット基板から出力された光信号の出射口である光コネクタと光コネクタとを十分な精度で光学的に接続し、実用性を高めるためには、第1に、複数の光ファイバあるいは光導波路から構成される光コネクタと光コネクタとの光軸合わせを充分な精度で達成できることが必要である。許容される光軸ズレ量は、例えば光ファイバあるいは光導波路などの光伝送路がマルチモード光導波路である場合、20μm以下である。第2に、製品の量産を考慮し、煩雑な光軸調整作業を行なうことなく、作業性よく高精度に位置決め固定できることが必要である。第3に、装置保守、更改の容易性の観点から、ユニット基板を交換する際に、光コネクタの結合を意味する接続オンあるいは接続の切り離しを意味する接続オフが簡単に行え、故障箇所を有するユニット基板のみを容易に交換できる必要がある。
 光コネクタと光コネクタを接続する構造としては、ガイドピンやハウジングを用いて嵌合する構造する方式が知られている。図18は、広く用いられている光コネクタの断面模式図である。この従来例では、図18に示されているように、光コネクタに付与されているガイドピンやハウジングガイドを用いて接続する。この構造ではいわゆる嵌合手法により、光コネクタと光コネクタの光軸合わせが無調整で自動的に達成されるため、上記第1の要件、および第2の要件を満たすことは可能である。
 また、アライメントマークとして磁石を用いて光コネクタと光コネクタを接続する手法も知られている(例えば、特許文献1参照)この従来例では、一方のコネクタに磁石が搭載されている。また、この磁石は、コネクタとコネクタとの高精度位置合わせを行うためのアライメントマークとしての機能も兼ね備えている。この磁石を用いることにより、光コネクタと光コネクタが光結合される。この構造においても、光コネクタと光コネクタの光軸合わせが無調整(セルフアライメント)で自動的に達成されるため、上記第1の要件、および第2の要件を満たすことは可能である。
 しかしながら、上記汎用製品に開示された方式では、光コネクタをハウジングあるいはガイドピンに沿って接続されることになるため、大容量送受信のための複数個からなる光コネクタを接続オンあるいは接続オフする場合、押し付け力あるいは引っ張り力に加えてコネクタ接続状態の保持解除が必要となり、簡単な方法で接続のオンオフを行うことは困難である。したがって、この従来例では上記の第3の要件を満たさないことになる。
 また、従来の光コネクタ装置では、複数枚のユニット基板間の接続を、全て背面基板上に形成された基板間配線を経由して行なっていたため、特に多数の回路素子間の接続を必要とする並列処理装置等ではボード内およびボード間の配線数が増大し、該配線数の増大が配線の輻輳や配線間の相互干渉を引き起こすという問題があった。その上で、ユニット基板を冷やすための冷却システムが配線の輻輳のため、機能しない場合があった。また、背面基板上に形成されたボード間配線を経由したユニット基板間の接続は回路素子間配線長の増加やばらつきをもたらし、信号遅延の増加やクロックスキューを引き起こすという問題があった。
 また、上記の特許文献1記載の磁石接続方式では、磁石同士をリリースする仕組みがないため、接続は実行できるものの、コネクタ接続の切り離しを行なうためには、磁石接続を解除する仕組みが必要となり、複雑な機構の付加による装置の大規模化を招く。すなわち、この従来例では、上記の第2の要件を満たしていないことになる。このため、この従来例の構造では半導体素子に不具合が発生した場合にはラックに収まっている全てユニット基板の交換を余儀なくされるため、実効的な保守コストが高い物になってしまう。
 以上示したように従来の技術では、前記第1から第3のすべての要件を満たすことができないために、作業性よくローコストでLSI等が搭載されているユニット基板間における複数個の光コネクタ同士を充分な精度で光学的に接続し、実用性高くかつ保守性の良い光コネクタ装置を提供できないという課題があった。
 上記の目的を解決するため、本発明の光コネクタは、例えば、第1のコネクタ部材と第2のコネクタ部材とからなる光コネクタであって、第1のコネクタ部材は、筐体と、筐体内を通る光ファイバ用貫通穴と、筐体内に設けられた光ファイバを固定する固定部と、筐体表面に設けられた第1のアライメント部とを有し、第2のコネクタ部材は、筐体と、筐体内を通る光ファイバ用貫通穴と、筐体内に設けられた光ファイバを固定する固定部と、筐体表面に設けられた第2のアライメント部とを有し、第1のアライメント部の表面の第2のアライメント部と接続する部分には磁石が設けられ、第2のアライメント部の表面の磁石と接続する部分には磁性体が設けられ、第1のコネクタ部材の磁石と、第2のコネクタ部材の磁性体が接続することでコネクタ部材同士が接続されることで、第1のコネクタ部材に固定された光ファイバと、第2のコネクタ部材に固定された光ファイバとが光学的に接続され、第1のアライメント部は、磁力遮蔽手段をさらに有することを特徴とする。
 本発明によれば、コネクタの個数が複数であってもコネクタ間における接続および切り離しの容易な光コネクタが提供される。
本発明の第1の実施形態による光コネクタの基本構成を説明する図である。光コネクタ装置において、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の光コネクタにおける遮蔽手段の基本構成を説明する図であり、遮蔽手段において、磁石と磁性材料が接続状態(a)であり、磁石と磁性材料が接続オフ状態(b)を説明する図である。 本発明の光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の光コネクタを用いて、サーバ内のユニット基板とユニット基板の間で行なわれる信号送受を説明する図である。 本発明の光コネクタを用いて、サーバ内のユニット基板とユニット基板の間で行なわれる信号送受を説明する図である。 本発明の光コネクタおよび複数のユニット基板を用いたサーバを説明する図である。コネクタの接続および切り離しには、各端子に設置された制御レバーを用いる。 本発明の光コネクタおよび複数のユニット基板を用いたサーバを説明する図である。コネクタの接続および切り離しには、1つの制御レバーで一括して制御する方法を用いる。 本発明の第1の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の光コネクタにおける遮蔽手段の基本構成を説明する図であり、遮蔽手段において、磁石と磁性材料が接続状態(a)であり、磁石と磁性材料が接続オフ状態(b)を説明する図である。 本発明の第1の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第2の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第3の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第4の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第5の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第7の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第8の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 本発明の第9の実施形態による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。 従来例による光コネクタの基本構成を説明する図である。光コネクタにおいて、光コネクタ間で接続がオンの状態(a)であり、光コネクタ間で接続がオフの状態(b)を説明する図である。
 本発明の15の実施の形態例はいずれも磁力遮蔽手段を有し、且つセルフ-アライメント磁石機構を合わせ持った光コネクタ装置について説明する。本明細書で言う磁力遮蔽手段とは、磁石と金属との間に働く磁力を弱める手段をいう。どのような構成でこの手段を実現しているかについては、各実施例中で述べることとする。
 以下、本発明に係る諸々の実施形態の構成及び作用について、図面を参照して説明する。なお、図面では、光伝送媒体として光ファイバを用いる。また、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
 まず、図1を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図1は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。図2は、図1におけるコネクタ間の接続箇所の拡大図であり、(a)は磁石と磁性材料の接続状態、(b)は磁石と磁性材料の切り離し状態を表す。
 図1に示されるように、コネクタ部材Aは、コネクタ筐体とアライメント部であるレセプタクルから構成される。コネクタ筐体内には、光ファイバを通すための貫通穴と、光ファイバを固定するための固定部が設けられている。コネクタ部材Bも、同様に、コネクタ筐体とレセプタクルから構成されている。さらに、例えば、レセプタクルはコネクタ筐体に付与されているレールに嵌まる構成になっているため、このレセプタクルはコネクタ筐体に対して「出る」と「引っ込む」という動きが自由に行なわれる構造になっている。この構造により、コネクタ部材Aとコネクタ部材Bをサーバーブレード等に固定した場合でも、これらのコネクタ間において接続オフ状態からレセプタクルのみが可動することにより、接続オン状態を実現することができる。
 このように、コネクタ部材Aとコネクタ部材Bのレセプタクルのいずれか一方は磁力遮蔽手段を有し、アライメントマークの代わりに磁石を設けている。両コネクタ部材は、磁石と金属等の磁性体との引力によりアライメントされ、接続状態が保持される。
 また、コネクタ部材A、コネクタ部材Bにはレンズ11a、11bが装着されている。このレンズにより、例えば、コネクタ光ファイバからの出射光は、ビームサイズが拡大されたコリメート光となり空間を伝播し、光ファイバへ入力する際には、前記拡大されたビーム光がレンズ11bにより集光され、光ファイバと結合する。これにより、コネクタ部材Aとコネクタ部材Bの接続トレランス精度が10倍以上に拡大すると共に、大気中のごみやちりの影響を受けにくくなっている。
 図1(a)に示されるように、前記磁石機構によりコネクタ部材Aとコネクタ部材Bは接続状態が維持され、図1(b)に示されるように磁力遮蔽手段によりコネクタ部材Aとコネクタ部材Bの切り離しがなされる。
 光信号は、波長分割多重通信(Wave Division Multiplexing :WDM)を用いて、1個の光ファイバまたは導波路に沿って送信される光の複数周波数成分中の情報を符号化することにより帯域幅を増強してもよい。高密な構成においては、光伝送媒体は複数の光ファイバまたは導波路を備えてもよい。それにより、光ファイバまたは導波路の各々がWDM信号を搬送して単位面積毎の高帯域を実現する。
 次に、磁力遮蔽手段について説明する。図2は、図1に示されるコネクタ間の接続箇所の詳細を説明している。図2(a)に示されるように、磁石22は回転が可能な構造になっており。手動にて制御できるようになっている。具体的には、磁石のN極側とS極側を結ぶ直線が磁性材料に対して平行の場合には、磁力線がヨーク21を通じて磁性材料に侵入するため、磁石と磁性材料の間で吸引力が働き、磁石と磁性材料がくっついた状態になる。一方、図2(b)に示されるように、磁石のN極とS極を結ぶ直線が磁性材料に対して垂直の場合には、磁力線が磁性材料に進入できないため磁石と磁性材料は離れた状態となる。このようにして、磁石を回転することにより、磁石と磁性材料との接続および切り離しが可能になる。図1(a)および(b)は、この機構を採用した場合を説明している。
 コネクタ部材A、コネクタ部材Bの可動は、それぞれ、図1に示されるようにx、y、z方向、傾斜角、および回転角θa、θb、θcとなり、コネクタ部材Aとコネクタ部材Bの接続は、高効率光結合状態となるようにアライメント調整が高精度になされる。
 以上を踏まえ、本実施例の構成としては、第1のコネクタ部材Aと第2のコネクタ部材Bとからなる光コネクタであって、第1のコネクタ部材Aは、筐体2と、筐体2内を通る光ファイバ用貫通穴と、筐体2内に設けられた光ファイバ1を固定する固定部と、筐体2表面に設けられた第1のアライメント部3とを有し、第2のコネクタ部材Bは、筐体6と、筐体6内を通る光ファイバ用貫通穴と、筐体6内に設けられた光ファイバ1を固定する固定部と、筐体6表面に設けられた第2のアライメント部5とを有し、第1のアライメント部3の表面の第2のアライメント部と接続する部分には磁石が設けられ、第2のアライメント部5の表面の磁石と接続する部分には磁性体が設けられ、第1のコネクタ部材Aの磁石と、第2のコネクタ部材Bの磁性体が接続することでコネクタ部材同士が接続されることで、第1のコネクタ部材Aに固定された光ファイバ1と、第2のコネクタ部材Bに固定された光ファイバ1とが光学的に接続され、第1のアライメント部3は、磁力遮蔽手段をさらに有することを特徴とする。
 第1実施の形態例によれば、アライメントマークとなる磁石端子はパターニングによって形成できるので、高精度な配置で形成できる。パターン化した磁石同士が接触するため、自動的にアライメントのずれを補正する方向に力が働く。コネクタの高精度接続のために特別の手段を採用する必要がないので、コネクタの省スペース化を図れる。
 以下、異なる図において使用される同一の参照符号は、同様又は同一の要素を示す。
 まず、図3を参照して、本発明の一実施の形態に係る磁力遮蔽手段付きコネクタの全体構成について説明する。図3は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続前の状態、(b)はコネクタ接続後の状態を表す。
 図3(a)に示されるように、コネクタ部材102とコネクタ部材108は対向するアライメントマークを兼ねる磁石と磁性材料を合わせることで高効率光結合が実現する。即ち、図3(a)に示されるように、コネクタ部材102側のマーク103aとコネクタ部材108側のマーク106a、以下同様に、103bと106b、103cと106c、103dと106d、103eと106e、103fと106fのアライメントマークの形状を合わせれば高精度光コネクタ接続が実現される。その上で、コネクタ部材102とコネクタ部材108の接続状態は、図3(b)に示されるように、例えば磁石機構における磁石と磁性材料の引き合う力で保持される。
 図3(b)に示されるように、光送受信モジュール間における信号授受は、以下のように行なわれる。光送受信モジュール101から発生した信号は、光ファイバ109を通じて伝送され、高効率光結合状態で接続されたコネクタ部材102とコネクタ部材108を通過した後、再度光ファイバ109を通じて対向する光送受信モジュール101に送られ、検出される。
 磁力遮蔽手段については、例えば、実施例1に示す機構がレセプタクルに付与される場合が考えられる(図示せず)が、磁力遮蔽手段はこれに限らない。
 まず、図4を参照して、本発明の一実施の形態に係る磁力遮蔽手段付きコネクタを用いた基板間信号授受を示す装置全体構成について説明する。図4は、本実施の形態に係る光コネクタを用いた基板間信号授受を示す構成図を表す。
 図4に示されるように、基板150に搭載されているCPUやメモリーコントローラ等のような電子部品185からの信号と基板151に搭載されているCPUやメモリーコントローラ等のような電子部品185との信号の送受信は以下のようになる。基板150の電子部品185からの電気信号は、配線183を通じて最初に光モジュール184に送られ、前記光モジュール184において電気-光変換が行なわれ光信号に変換された後、光ファイバにて伝送、光コネクタ部材161と166を介して、再度光ファイバに送られ、光モジュール184にて光―電気変換が行なわれ電気信号に変換された後、もう一方の基板上151に搭載されているCPUやメモリーコントローラ等のような電子部品185に送られる。このようにして、異なる基板に搭載されている電子部品間における信号送受を光配線で行うことで、信号送受信が実現される。
 上述したように、異なる基板に搭載されている電子部品間における信号送受を複数の光コネクタを用いた光配線で行うことで、大容量信号送受信が実現される。即ち、光コネクタ部材162と165を介しても、異なる基板に搭載されている電子部品間における信号送受を光配線を用いて行うことで、大容量信号送受信が実現される。同様にして、光コネクタ部材163と164を介しても、異なる基板に搭載されている電子部品間における信号送受を光配線で行うことで、大容量信号送受信が実現される。一般に、処理する信号の容量が増加すると光コネクタの数が増加する。
 コネクタ部材161、162、163、164、165、166の可動は、各々、図4に示されるようにx、y、z方向、傾斜角、および回転角θとなり、コネクタ部材161とコネクタ部材166の接続は、高効率光結合状態となるようにアライメントが高精度になされる。コネクタ部材162とコネクタ部材165の接続、コネクタ部材163とコネクタ部材164の接続も同様に高精度になされる。
 磁力遮蔽手段については、例えば、実施例1に示す機構がレセプタクルに付与される場合が考えられる(図示せず)が、遮蔽手段はこれに限らない。
 まず、図5を参照して、本発明の一実施の形態に係る磁力遮蔽手段付きコネクタを用いた基板間信号授受を示す装置全体構成について説明する。図5は、本実施の形態に係る光コネクタ装置を用いた基板間信号授受を示す構成図を表す。
 図5に示されるように、基板150に搭載されているCPUやメモリーコントローラ等のような電子部品185からの信号と基板151に搭載されているCPUやメモリーコントローラ等のような電子部品185との信号の送受信は以下のようになる。基板150の電子部品185からの電気信号は、配線183を通じて、最初に光モジュール184に送られ、光モジュール184おいて電気-光変換が行なわれ光信号に変換された後、光ファイバにて伝送、光コネクタ部材161と166を介して、再度光ファイバにて伝送され、光モジュール184にて光―電気変換が行なわれ電気信号に変換された後、もう一方の基板151上に搭載されているCPUやメモリーコントローラ等のような電子部品185に送られる。このようにして、異なる基板に搭載されている電子部品間における信号送受を光配線で行うことで、信号送受信が実現される。
 このようにして、異なる基板に搭載されている電子部品間における信号送受は、信号をまず基板端にまとめた上で、光コネクタ部材161と162を接続して行なわれる。
 各コネクタ部材の可動は、図5に示されるようにx、y、z方向、傾斜角、および回転角θとなり、コネクタ部材161とコネクタ部材166の接続は、高効率光結合状態となるようにアライメントが高精度になされる。同様にして、コネクタ部材162とコネクタ部材165の接続、コネクタ部材163とコネクタ部材164の接続も行なわれる。
 磁力遮蔽手段については、例えば、実施例1に示す機構がレセプタクルに付与される場合が考えられる(図示せず)が、遮蔽手段はこれに限らない。
 まず、図6を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタを用いたサーバの構成について説明する。図6は、本実施の形態に係る光コネクタを用いたサーバの構成図およびそのサーバを構成しているユニット基板を拡大した図を表す。
 一般に、サーバは数十枚のユニット基板から構成される。図6は、ラック210にユニット基板211、212、213、214、215、216が実装された図を示している。
 また、図6の拡大図に示すように、ユニット基板には、表面のみならず裏面にもCPU/メモリーコントローラなどの電子部品208が数多く搭載されている。各電子部品208からの電気信号は、表面の場合、光モジュール(図示せず)を介して光信号に変換され、光ファイバを通じて、コネクタ部材201におけるレセプタクル202の光ファイバの出口から出力される。裏面の場合、表面と同様にして、コネクタ部材205におけるレセプタクル204の光ファイバの出口から出力される。コネクタ部材には、他コネクタとの接続のため、レセプタクルが上下に可動するように各コネクタごとに制御レバー206が付与されている。
 一方、図6に示すように、サーバにおいては、故障・修理・保守点検等の必要があり、ユニット基板をサーバラックから抜差しする場合がある。図6は、ユニット基板213を抜き差しする様子を示している。
 図6に示すように、ラックにユニット基板213を差し込んだ後、制御レバー206をONすれば、ユニット基板213のコネクタとユニット基板214のコネクタとが接続される。コネクタ間の接続が完了すれば、ユニット基板213の電子部品とユニット基板214の電子部品の配線が完了する。図6に示すように、ラックにユニット基板213において、制御レバー206をオフすれば、ユニット基板213のコネクタとユニット基板214のコネクタとが切り離される。コネクタ間の切り離しが完了すれば、ユニット基板213を引き出すことができる。
 まず、図7を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタを用いたサーバの構成について説明する。図7は、本実施の形態に係る光コネクタ装置を用いたサーバの構成図およびそのサーバを構成しているユニット基板を拡大した図を表す。
 一般に、サーバは数十枚のユニット基板から構成される。図7は、ラック210にユニット基板221、222、223、224、225、226が実装された図を示している。
 また、図7の拡大図に示すように、ユニット基板には、表面のみならず裏面にもCPU/メモリーコントローラなどの電子部品208が数多く搭載されている。各電子部品208からの電気信号は、表面の場合、光モジュール(図示せず)を介して光信号に変換され、光ファイバを通じて、コネクタ部材201におけるレセプタクル202から出力される。裏面の場合、表面と同様にして、コネクタ部材205におけるレセプタクル204から出力される。コネクタには、他コネクタとの接続のため、全てのレセプタクルが一括して上下に可動するようにコネクタに制御レバー209が付与されている。
 一方、図7に示すように、サーバにおいては、故障・修理・保守点検等の必要があり、ユニット基板をサーバラックから抜差しする場合がある。図7は、ユニット基板223を抜き差しする様子を示している。
 図7に示すように、ラックにユニット基板223を差し込んだ後、制御レバー209をONすれば、ユニット基板223のコネクタ部材とユニット基板224のコネクタ部材とが接続される。コネクタ間の接続が完了すれば、ユニット基板223の電子部品とユニット基板224の電子部品の配線が完了する。図7に示すように、ユニット基板223において、制御レバー209をオフすれば、ユニット基板223のコネクタ部材とユニット基板224のコネクタとが切り離される。コネクタ間の切り離しが完了すれば、ユニット基板223を引き出すことができる。
 まず、図8を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図8は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(B)はコネクタ切り離し状態を表す。図9は、図8のアライメントマーク部分の拡大図であり、(a)は磁石と磁性材料の接続状態、(b)は磁石と磁性材料の切り離し状態を表す。
 次に、本発明の第7実施の形態例について図8を参照して説明する。第7実施の形態例については、第1実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図8(a)に示されるように、前記磁石機構によりコネクタ部材Aとコネクタ部材Bは接続状態が維持され、図8(b)に示されるように磁力遮蔽手段によりコネクタ部材Aとコネクタ部材Bの切り離しがなされる。
 図9は、図8に示されるアライメントマークの詳細を説明している。図9に示すように、アライメントマークは円形状の磁石とくさび形状の磁性材料から構成されている。
 図9(a)に示されるように、磁石のN極とS極を結ぶ直線が磁性材料に対して平行の場合には、磁力線がヨーク21を通じて磁性材料に侵入するため、磁石と磁性材料の間で吸引力が働き、両者がくっついた状態にある。ただし、接触面はくさび形状の磁性材料の斜面のみとなっている。一方、図9(b)に示されるように、磁石のN極とS極を結ぶ直線が磁性材料に対して垂直の場合には、磁力線が磁性材料に進入できないため磁石と磁性材料は離れた状態となる。また、図9に示すように、磁性材料は、くさび形状であるため、磁石との接触面が小さく、回転磁石と磁性材料の切り離しが容易に行うことができる。このようにして、手動にて磁石を回転することにより、磁石と磁性材料との接続および切り離しが容易に行なうことができる。図8は、この機構を採用した場合を説明している。
 まず、図10を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図10は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第8実施の形態例について図10を参照して説明する。第8実施の形態例については、第1実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図10に示されるように、コネクタ部材Aには遮蔽板を挿入するための開口部が設けられている。開口部には、遮蔽板を挿入するためのレール機構があってもよい。コネクタ部材Aの磁性材料3は、コネクタ部材Aの中で図10に示す矢印の向きに自由に動ける。
 一方、アライメントマークは磁石4と磁性材料3から構成され、磁石は円形の形状をしており、磁性材料は磁石と対向する面はくさび形状をしている。したがって、前記磁石と前記磁性材料の接触面は、図10に示すように、くさび形状の斜面となっている。
 図10(a)に示すように、前記磁石機構によりコネクタ部材Aとコネクタ部材Bは接続状態の保持は、磁性材料と磁石の接触面における引力でなされている。コネクタ部材Aとコネクタ部材Bの切り離しは、図10(b)に示されるように、コネクタ1筐体開口部に遮蔽板を挿入することにより行なわれる。接続を保持している引力は、磁石と磁性材料の接触面のみであり、容易に切り離しが可能となる。
 まず、図11を参照して、本発明の一実施の形態に係る磁力遮蔽手段光コネクタの構成について説明する。図11は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第9実施の形態例について図11を参照して説明する。第9実施の形態例については、第1実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図11に示されるように、コネクタ部材Aには遮蔽板を挿入するための開口部が設けられている。開口部には、遮蔽板を挿入するためのレール機構があってもよい。コネクタ部材Aの磁性材料3は、コネクタ筐体の中で図10に示す矢印の向きに自由に動くことができる。
 一方、図11に示されるように、アライメントマークは磁石4と磁性材料3から構成され、磁石は円形状をしており、磁性材料は磁石と対向する面はその反対側の面よりも面積の小さい形状をしている。したがって、前記磁石と前記磁性材料の接触面は、台形の形状の面積の小さな上面となっている。
 図11(a)に示すように、前記磁石機構によりコネクタ部材Aとコネクタ部材Bは接続状態の保持は、磁性材料と磁石の接触面における引力でなされている。コネクタ部材Aとコネクタ部材Bの切り離しは、図11(b)に示されるように、コネクタ部材Aの開口部に遮蔽板を挿入することにより行なわれる。接続を保持している引力は、磁石と磁性材料のわずかな接触面のみであり、容易に切り離しが可能となる。
 まず、図12を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図12は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第10実施の形態例について図12を参照して説明する。第10実施の形態例については、第1実施、第8実施、あるいは第9実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図12に示されるように、コネクタ筐体とコネクタ筐体Bは、突起8により接触しない構造になっている。その上で、コネクタ部材Aとコネクタ部材Bの接続状態は、磁石3と磁性材料4の引力で保持される。また、コネクタ部材Aの側壁にある磁石N極もしくはS極12は、コネクタ2の側壁にある磁石N極もしくはS極13により、コネクタ部材Bに対してコネクタ部材Aには反発力が働く。この反発力を利用して、コネクタ1とコネクタ2の接続状態は、より強固となり、外部振動に強いコネクタ接続構造となる。
 まず、図13を参照して、本発明の一実施の形態に係る磁力遮蔽手段光コネクタの構成について説明する。図13は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第11実施の形態例について図13を参照して説明する。第11実施の形態例については、第1実施、第8実施、あるいは第9実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図13に示されるように、コネクタ部材Aとコネクタ部材Bは、突起8により接触しない構造になっている。その上で、コネクタ部材Aとコネクタ部材Bの接続状態は、磁石3と磁性材料4の引力で保持される。一方、コネクタ部材Bの磁石9は、内側がN極、外側がS極の場合は、コネクタ2にある磁石3の先端側のN極により、磁石9と磁石3の間には反発力が働く、また、コネクタBの磁石9は、内側がS極、外側がN極の場合は、コネクタ部材2にある磁石3の先端側のS極により、磁石9と磁石3の間には反発力が働く。この反発力により、コネクタ部材Aはコネクタ部材Bに対して横方向にズレにくい構造になっているため、コネクタ部材Aとコネクタ部材Bの接続状態は、より強固となり、外部振動に強いコネクタ接続構造となる。
 まず、図14を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図14は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第12実施の形態例について図14を参照して説明する。第12実施の形態例については、第1実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図14に示されるように、コネクタ部材Aとコネクタ部材Bの接続状態は、電磁石4と磁性材料3の引力で保持される。電磁石4は、外部からの電気信号により、電磁石4と磁性材料3との間における引力の発生のタイミングを制御することができる。したがって、遠距離からの外部操作により、コネクタ部材Aとコネクタ部材Bの接続と切り離しの状態を制御することができる。
 まず、図15を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図15は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第11実施の形態例について図15を参照して説明する。第11実施の形態例については、第1実施、第8実施、あるいは第9実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図15に示されるように、コネクタ部材Aとコネクタ部材Bは、突起8により接触しない構造になっている。その上で、コネクタ部材Aとコネクタ部材Bの接続状態は、アライメントマークである磁石4と磁性材料3との引力で保持される。
 まず、図16を参照して、本発明の一実施の形態に係る磁力遮蔽手段光コネクタの構成について説明する。図16は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第11実施の形態例について図16を参照して説明する。第11実施の形態例については、第1実施、第8実施、あるいは第9実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図16に示されるように、コネクタ部材Aとコネクタ部材Bは、突起8により接触しない構造になっている。その上で、コネクタ部材Aとコネクタ部材Bの接続状態は、磁石4と磁性材料3の引力で保持される。また、図16に示されるように、コネクタ部材Bには板形状のものを挿入できるレール構造20を有している。図16に示されるように、コネクタ部材Aとコネクタ部材Bの接続状態図16(a)において、磁力を弱める遮蔽板とレール構造20を用いて、磁石4と磁性材料3の間に遮蔽板を挿入することにより、コネクタ部材Aとコネクタ部材Bの切り離しが可能となり、コネクタ部材Aとコネクタ部材Bの接続オフ状態となる。コネクタ部材Aとコネクタ部材Bの接続オフ状態を図16(b)に示す。
 まず、図17を参照して、本発明の一実施の形態に係る磁力遮蔽手段付き光コネクタの構成について説明する。図17は、本実施の形態に係る光コネクタ装置の構成図であり、(a)はコネクタ接続状態、(b)はコネクタ切り離し状態を表す。
 次に、本発明の第11実施の形態例について図17を参照して説明する。第11実施の形態例については、第1実施、第8実施、あるいは第9実施の形態例と同様な点の説明を省略し、相違する点のみを説明する。
 図17に示されるように、コネクタ部材Aとコネクタ部材Bは、突起8により接触しない構造になっている。その上で、コネクタ部材Aとコネクタ部材Bの接続状態は、磁石4のN極あるいはS極と磁石3aのS極あるいはN極の引力で保持される。また、図17に示されるように、コネクタ部材Bには板形状のものを挿入できるレール構造20を有している。
 図17に示されるように、コネクタ部材Aとコネクタ部材Bの接続状態図16(a)において、板状の磁石とレール構造20を用いて、磁石4と磁性材料3の間に遮蔽板を挿入する。磁石3aがN極、磁石4がS極の場合、板状の磁石の上側がN極、下側がS極となる。一方、磁石3aがS極、磁石4がN極の場合、板状の磁石の上側がS極、下側がN極となる。この板状の磁石の挿入により、コネクタ部材Aとコネクタ部材Bの切り離しが可能となり、コネクタ部材Aとコネクタ部材Bの接続オフ状態となる。コネクタ部材Aとコネクタ部材Bの接続オフ状態を図16(b)に示す。
 以上では、基板と他の基板との間で行なわれる信号送受のための光コネクタ置として構成した例で説明したが、本発明は、この形態に限定されることはなく、複数の光コネクタからなる光コネクタ装置、または、前記に示す基板間以外の信号送受のための光コネクタなどあらゆるものに適用可能である。
A、B、161、162、163、164、165、166、201、205 コネクタ部材
1、7、109、181 光ファイバ
2、5、104、110、202、204 レセプタクル
3 磁石
4、4a 磁性材料
6、102、108 コネクタ筐体
8 コネクタ間接触防止突起
10 遮蔽板挿入口
11 遮蔽板
12、13、14、15、16、17、18、19 磁石のN極および磁石のS極
20 遮蔽板用レール
21 遮蔽板
11a、11b、105 レンズ
21 磁性体(ヨーク)
22 回転磁石
23 非磁性体
24 磁性体(鉄)
101 光送受信モジュール
103a、103b、103c、103d、103e、103f、106a、106b、106c、106d、106e、106f アライメントマーク
150、151 ユニット基板
171、172、173 光コネクタの接続
183 電気配線
184 光モジュール
185、208 電子部品
203、211、212、213、214、215、216、221、222、223、224、225、226 ユニット基板
206、209 制御レバー
207 柱構造
210 ラック。

Claims (9)

  1.  第1のコネクタ部材と第2のコネクタ部材とからなる光コネクタであって、
     前記第1のコネクタ部材は、筐体と、前記筐体内を通る光ファイバ用貫通穴と、前記筐体内に設けられた前記光ファイバを固定する固定部と、前記筐体表面に設けられた第1のアライメント部とを有し、
     前記第2のコネクタ部材は、筐体と、前記筐体内を通る光ファイバ用貫通穴と、前記筐体内に設けられた前記光ファイバを固定する固定部と、前記筐体表面に設けられた第2のアライメント部とを有し、
     前記第1のアライメント部の表面の前記第2のアライメント部と接続する部分には磁石が設けられ、
     前記第2のアライメント部の表面の前記磁石と接続する部分には磁性体が設けられ、
     前記第1のコネクタ部材の前記磁石と、前記第2のコネクタ部材の前記磁性体が接続することでコネクタ部材同士が接続されることで、前記第1のコネクタ部材に固定された前記光ファイバと、前記第2のコネクタ部材に固定された前記光ファイバとが光学的に接続され、
     前記第1のアライメント部は、磁力遮蔽手段をさらに有することを特徴とする光コネクタ。
  2.  請求項1記載の光コネクタであって、
     前記磁力遮蔽手段として、前記磁石を回転させる制御部をさらに有する、ことを特徴とする光コネクタ。
  3.  請求項1記載の光コネクタであって、
     前記筐体表面の前記貫通穴の開口部には、レンズをさらに有することを特徴とする光コネクタ。
  4.  請求項1記載の光コネクタであって、
     前記第1のアライメント部と、前記第2のアライメント部とは、磁力遮蔽板が挿入される空隙を介して接続されることを特徴とする光コネクタ。
  5.  請求項4記載の光コネクタであって、
     前記第1のコネクタ部材および前記第2のコネクタ部材は、前記磁力遮蔽板を挿入するレールを、さらに有することを特徴とする光コネクタ。
  6.  請求項1記載の光コネクタであって、
     前記第1のアライメント部の表面には、接触防止突起をさらに有し、
     前記第2のアライメント部と前記接触防止突起とが接触し、前記第1のアライメント部と前記第2のアライメント部とは離間していることを特徴とする光コネクタ。
  7.  請求項6記載の光コネクタであって、
     前記磁性体は、前記第2のコネクタ部材の前記筐体に接する面と、前記第1のアライメント部に接する面とを有し、
     前記磁性体の面のうち、前記磁石に接する面の面積は、前記第2のコネクタ部材の前記筐体に接する面の面積よりも小さいことを特徴とする光コネクタ。
  8.  請求項1記載の光コネクタであって、
     前記第1のコネクタ部材の前記筐体は、前記筐体の内側にレールをさらに有し、
     前記磁力遮蔽手段として、前記レールに沿って、前記筐体内に前記第1のアライメント部が引っ込むことを特徴とする光コネクタ。
  9.  ラックと、
     ユニット基板と、
     前記ユニット基板上に設けられた、CPUとメモリと光モジュールと、
     前記ユニット基板上の光モジュールと、該ユニット基板とは異なるユニット基板上の光モジュールとを光学的に接続する光コネクタと、を有し、
     第1のコネクタ部材と第2のコネクタ部材とからなる光コネクタであって、
     前記第1のコネクタ部材は、筐体と、前記筐体内を通る光ファイバ用貫通穴と、前記筐体内に設けられた前記光ファイバを固定する固定部と、前記筐体表面に設けられたアライメント用磁石と、を有する第1のアライメント部とを有し、
     前記第2のコネクタ部材は、筐体と、前記筐体内を通る光ファイバ用貫通穴と、前記筐体内に設けられた前記光ファイバを固定する固定部と、前記筐体表面に設けられた前記磁石と接続する磁性体を有する第2のアライメント部とを有し、
     前記第1のコネクタ部材の前記磁石と、前記第2のコネクタ部材の前記磁性体が接続することでコネクタ部材同士が接続されることで、前記第1のコネクタ部材に固定された前記光ファイバと、前記第2のコネクタ部材に固定された前記光ファイバとが光学的に接続され、
     前記第1のアライメント部は、磁力遮蔽手段を、さらに有することを特徴とするサーバ。
PCT/JP2012/067641 2012-07-11 2012-07-11 光コネクタおよび光コネクタを用いたサーバー WO2014010035A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067641 WO2014010035A1 (ja) 2012-07-11 2012-07-11 光コネクタおよび光コネクタを用いたサーバー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/067641 WO2014010035A1 (ja) 2012-07-11 2012-07-11 光コネクタおよび光コネクタを用いたサーバー

Publications (1)

Publication Number Publication Date
WO2014010035A1 true WO2014010035A1 (ja) 2014-01-16

Family

ID=49915538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067641 WO2014010035A1 (ja) 2012-07-11 2012-07-11 光コネクタおよび光コネクタを用いたサーバー

Country Status (1)

Country Link
WO (1) WO2014010035A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022153354A1 (ja) * 2021-01-12 2022-07-21 日本電信電話株式会社 光モジュールの実装構造および光実装ボード
EP3230778B1 (en) * 2014-12-14 2023-10-25 Telescent Inc. High reliability robotic cross-connect systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0173774U (ja) * 1987-11-06 1989-05-18
JPH04286882A (ja) * 1991-03-18 1992-10-12 Toyota Autom Loom Works Ltd バッテリ式フォークリフトのバッテリコネクタ装置
JPH10255894A (ja) * 1997-03-11 1998-09-25 Sumitomo Electric Ind Ltd 電磁着脱コネクタ
JP2005045490A (ja) * 2003-07-28 2005-02-17 Kyocera Corp 携帯端末機器のコネクタ構造
JP2006515102A (ja) * 2002-09-13 2006-05-18 マグコード アーゲー 電気接続装置
JP2009510674A (ja) * 2005-09-26 2009-03-12 アップル インコーポレイテッド 電子装置の電磁コネクタ
JP2011520151A (ja) * 2008-05-09 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 近接自由空間光インターコネクト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0173774U (ja) * 1987-11-06 1989-05-18
JPH04286882A (ja) * 1991-03-18 1992-10-12 Toyota Autom Loom Works Ltd バッテリ式フォークリフトのバッテリコネクタ装置
JPH10255894A (ja) * 1997-03-11 1998-09-25 Sumitomo Electric Ind Ltd 電磁着脱コネクタ
JP2006515102A (ja) * 2002-09-13 2006-05-18 マグコード アーゲー 電気接続装置
JP2005045490A (ja) * 2003-07-28 2005-02-17 Kyocera Corp 携帯端末機器のコネクタ構造
JP2009510674A (ja) * 2005-09-26 2009-03-12 アップル インコーポレイテッド 電子装置の電磁コネクタ
JP2011520151A (ja) * 2008-05-09 2011-07-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 近接自由空間光インターコネクト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3230778B1 (en) * 2014-12-14 2023-10-25 Telescent Inc. High reliability robotic cross-connect systems
EP4336232A3 (en) * 2014-12-14 2024-06-26 Telescent Inc. High reliability robotic cross-connect systems
WO2022153354A1 (ja) * 2021-01-12 2022-07-21 日本電信電話株式会社 光モジュールの実装構造および光実装ボード

Similar Documents

Publication Publication Date Title
US11863917B2 (en) Assembly of network switch ASIC with optical transceivers
US9036952B2 (en) Electro-optical assembly for silicon photonic chip and electro-optical carrier
TWI529437B (zh) 資料中心光學(dco)邊緣安裝收發器總成與其維修方法、以及插頭連接器
JP4462269B2 (ja) 光電気集積回路素子およびそれを用いた伝送装置
US9582450B2 (en) Rack, server and assembly comprising such a rack and at least one server
EP3028083B1 (en) Opto-electrical transceiver module and active optical cable
WO2010098171A1 (ja) 光導波路および光導波路モジュール
Bamiedakis et al. A 40 Gb/s optical bus for optical backplane interconnections
WO2013046415A1 (ja) 光モジュール
KR20040034387A (ko) 광학 도파관 접속용의 계단 구조 제공 장치 및 광학도파관 형성 방법
US8867231B2 (en) Electronic module packages and assemblies for electrical systems
CN114035285B (zh) 一种光模块
JP2005182053A (ja) 光学バックプレーン・システムのためのカプラ・アセンブリ
Bamiedakis et al. Low-cost PCB-integrated 10-Gb/s optical transceiver built with a novel integration method
JP2009288614A (ja) 平面型光導波路アレイモジュールとその製造方法
US20080080807A1 (en) Opto-electronic connector module and opto-electronic communication module having the same
WO2014010035A1 (ja) 光コネクタおよび光コネクタを用いたサーバー
US10120148B2 (en) Devices with optical ports in fan-out configurations
CN110764196B (zh) 用于光纤阵列与平面光波导耦合的无导销可插拔对准结构
US8947796B2 (en) Telecentric optical assembly
Immonen et al. Development of electro‐optical PCBs with polymer waveguides for high‐speed intra‐system interconnects
US20150102211A1 (en) Telecentric Optical Assembly
CN109100833A (zh) 平行耦合的光电集成线路板接插件及其制作方法
WO2015033450A1 (ja) 光路変換コネクタ
KR0174407B1 (ko) 인쇄회로기판의 광신호 상호연결장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP