WO2014007446A1 - 셀룰러 통신과 d2d 통신 간의 간섭을 제어하는 방법 및 장치 - Google Patents

셀룰러 통신과 d2d 통신 간의 간섭을 제어하는 방법 및 장치 Download PDF

Info

Publication number
WO2014007446A1
WO2014007446A1 PCT/KR2012/011817 KR2012011817W WO2014007446A1 WO 2014007446 A1 WO2014007446 A1 WO 2014007446A1 KR 2012011817 W KR2012011817 W KR 2012011817W WO 2014007446 A1 WO2014007446 A1 WO 2014007446A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
communication
srn
cellular
resource
Prior art date
Application number
PCT/KR2012/011817
Other languages
English (en)
French (fr)
Inventor
김학성
양모찬
임이랑
오선애
신오순
신요안
Original Assignee
엘지전자 주식회사
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 성균관대학교 산학협력단 filed Critical 엘지전자 주식회사
Priority to US14/412,655 priority Critical patent/US9521682B2/en
Priority to KR1020147034869A priority patent/KR102099820B1/ko
Publication of WO2014007446A1 publication Critical patent/WO2014007446A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/001Orthogonal indexing scheme relating to orthogonal multiplex systems using small cells within macro cells, e.g. femto, pico or microcells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for controlling interference between cellular communication and device-to-device (D2D) communication.
  • D2D device-to-device
  • D2D communication using the same spectrum as conventional cellular communication has many advantages. In terms of user equipment (UE), high throughput, low delay, and power consumption can be expected. In addition, if cellular communication and D2D communication are performed at the same time, the frequency reuse gain is improved. In contrast to the gain that can be obtained by using the uplink / downlink through the base station in cellular communication, the gain that can be obtained by using a single link in D2D communication is called a hop gain. D2D communication extends the coverage of existing cellular networks and may provide a new type of peer to peer (P2P).
  • P2P peer to peer
  • D2D communication using the same spectrum as the existing cellular communication has some problems.
  • 3GPP 3rd generation partnership project
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • D2D device-to-device
  • An object of the present invention is to provide a method for controlling interference between cellular communication and device-to-device (D2D) communication using a shared relay node (SRN) and an apparatus using the same.
  • D2D device-to-device
  • SRN shared relay node
  • an interference control method between cellular communication and device-to-device (D2D) communication includes overhearing a downlink control channel transmitted from a cellular base station to a cellular terminal, determining an interference candidate resource to be subjected to interference control based on the downlink control channel, and the interference candidate. And transmitting the interference control message to the D2D terminal using the resource.
  • D2D device-to-device
  • the method may further include determining an interference candidate terminal to be subjected to interference control based on a power of a signal transmitted from the cellular terminal.
  • the interference control message may be generated such that maximum power is allocated to the interference candidate resource.
  • a method for controlling interference between cellular communication and device-to-device (D2D) communication includes performing spectrum sensing to obtain information about an interference candidate resource that is subject to interference control, and transmitting an interference control message including information about the interference candidate resource to a cellular base station.
  • D2D device-to-device
  • the interference candidate resource may be a resource used for the D2D communication.
  • the spectrum sensing may be performed only while the D2D communication is performed.
  • an interference control apparatus between cellular communication and device-to-device (D2D) communication
  • the apparatus includes a processor for implementing a radio frequency (RF) unit and a radio interface protocol for transmitting and receiving radio signals.
  • the processor overhears a downlink control channel transmitted from a cellular base station to a cellular terminal, determines an interference candidate resource to be subjected to interference control based on the downlink control channel, and uses the interference candidate resource.
  • the interference control message is transmitted to the D2D terminal.
  • an interference control apparatus between cellular communication and device-to-device (D2D) communication
  • the apparatus includes a processor for implementing a radio frequency (RF) unit and a radio interface protocol for transmitting and receiving radio signals.
  • the processor performs spectrum sensing to obtain information on interference candidate resources to be subjected to interference control, and transmits an interference control message including information on the interference candidate resources to a cellular base station.
  • RF radio frequency
  • the quality of service (QoS) of the UE can be guaranteed by controlling the interference between the cellular communication and the D2D communication.
  • 1 is an example of an interference scenario occurring in downlink.
  • 2 is an example of an interference scenario occurring in uplink.
  • 3 and 4 illustrate the effect of device-to-device (D2D) communication on other cells.
  • D2D device-to-device
  • FIG. 5 is an example showing the structure of a wireless communication system according to the present invention.
  • FIG. 6 shows an example of resource allocation in a wireless communication system to which the present invention is applied.
  • ISI inter system interference
  • FIG. 8 illustrates dynamic resource allocation in a wireless communication system according to an embodiment of the present invention.
  • FIG. 9 shows an example of resource allocation according to the embodiment of FIG. 7.
  • FIG. 10 is an example illustrating a signal flow for each entity in the embodiment of FIG. 7.
  • FIG 11 illustrates an ISI control method according to another embodiment of the present invention.
  • FIG. 12 shows an example of resource allocation according to the embodiment of FIG. 11.
  • FIG. 13 is an example illustrating a signal flow for each entity in the embodiment of FIG. 11.
  • FIG. 14 is a flowchart illustrating an interference control method between cellular communication and D2D communication according to an embodiment of the present invention.
  • 15 is a flowchart illustrating an interference control method between cellular communication and D2D communication according to another embodiment of the present invention.
  • SRN shared relay node
  • the cellular network system includes at least one enhanced node-B (eNB).
  • the eNB provides services for a particular geographic area (generally called a cell).
  • User equipment (UE) may be fixed or mobile, and in other terms, such as mobile station (MS), mobile terminal (MT), user terminal (UT), subscriber station (SS), wireless device (wireless device), etc. Can be called.
  • An eNB generally refers to a fixed station for communicating with a UE, and may be referred to in other terms such as a base station (BS), a base transceiver system (BTS), an access point, and the like.
  • BS base station
  • BTS base transceiver system
  • an access point and the like.
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • An eNB that provides a communication service for a serving cell is called a serving eNB.
  • a serving eNB In a cellular network system, there is another cell adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor eNB.
  • the serving cell and the neighbor cell are determined relatively based on the UE.
  • downlink means communication from the eNB to the UE
  • uplink means communication from the UE to the eNB.
  • the transmitter is part of the eNB and the receiver may be part of the UE.
  • the transmitter may be part of the UE and the receiver may be part of the eNB.
  • D2D communication means that direct communication is performed between UEs without the help of an eNB.
  • D2D communication has many advantages, such as ensuring high throughput and low delay and extending the coverage of existing cellular networks. However, if the D2D communication uses the same resources as the cellular communication, interference may occur between the cellular communication and the D2D communication.
  • 1 is an example of an interference scenario occurring in downlink.
  • UE2 may be affected by interference generated by D2D communication between UE3 and UE4 as well as inter-cell interference (ICI) generated by eNB1.
  • ICI inter-cell interference
  • ICI inter-cell interference
  • SINR Signal to Interference-plus-Noise Ratio
  • 2 is an example of an interference scenario occurring in uplink.
  • UE2 existing at a cell boundary transmits an uplink signal with high power for smooth communication with an eNB.
  • UE3 and UE4 perform D2D communication using the same resource in the vicinity of UE2, UE3 is subjected to strong interference by the uplink signal of UE2.
  • 3 and 4 illustrate the effect of device-to-device (D2D) communication on other cells.
  • D2D device-to-device
  • the D2D UE may be assisted by an eNB in link formation.
  • the UE of the neighboring cell may be interfered by the D2D communication, or the D2D communication may be interfered by the UE of the neighboring cell. That is, UE3 may interfere with the downlink signal of UE1 located in the neighboring cell (FIG. 3) or may interfere with the uplink signal by UE2 located in the neighboring cell (FIG. 4).
  • FIG. 5 is an example showing the structure of a wireless communication system according to the present invention.
  • a cellular network in which three eNBs share one shared relay node (SRN) is formed. That is, the SRN is disposed at the center of three cells, and uses this to control interference.
  • the interference controlled by the SRN includes not only inter-cell interference (ICI) generated at the cell boundary but also interference generated between cellular communication and D2D communication.
  • the SRN may serve as a data relay to improve throughput of cell boundaries for each cell.
  • ISI inter system interference
  • FFR fractional frequency reuse
  • the SRN according to the present invention is functionally similar to Type 2 (Type II) of 3GPP LTE-Advanced, but may further require the following functions.
  • the SRN does not have a separate cell (ID: idendtifier). That is, it does not create separate cells.
  • the SRN may perform relaying for 3GPP LTE Rel-8 UE. That is, the SRN may transmit a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the UE cannot recognize the presence of the SRN. In other words, the SNR is transparent to the UE.
  • the SRN may transmit control information such as a physical downlink control channel (PDCCH) and a physical uplink control channel (PUCCH) to the eNB through X2 signaling.
  • control information may be transmitted to the UE through a dedicated control channel.
  • the SRN may restore control information such as PDCCH and PUCCH.
  • the SRN may use existing X2 signaling or newly defined X2 signaling to share control information with the eNB.
  • the SRN may overhear a downlink signal and / or an uplink signal between the eNB and the UE.
  • the downlink signal and / or the uplink signal are normally decoded, the corresponding signal is relayed.
  • the SRN can hier uplink sounding reference signal (SRS) to measure channel quality for the link from the UE to the SRN, and can change the modulation and coding scheme (MCS) level based thereon. have. In the case of time division duplex (TDD), this may be extended to the link from the SRN to the UE.
  • SRS uplink sounding reference signal
  • MCS modulation and coding scheme
  • the SRN may scan the neighboring UE for control of the ICI.
  • the SRN may overhear the uplink SRS from the UE to the eNB and determine whether the corresponding UE is adjacent based on the uplink SRS. For example, it may be determined whether the corresponding UE is adjacent based on a predetermined threshold.
  • the SRN may overhear the D2D signal transmitted from the D2D transmitting UE to the D2D receiving UE and may determine whether the corresponding UEs are adjacent to each other. For example, it may be determined whether the corresponding UEs are adjacent based on a predetermined threshold value.
  • the SRN may overhear the downlink signal from the eNB to the UE and share information about the PDCCH and the PDSCH.
  • the SRN may overhear an uplink signal from the UE to the eNB and share information about the PUCCH and the PUSCH.
  • the SRN may overhear a CTS (Clear to Send) signal of a UE performing D2D communication, and may share information about a channel quality indicator (CQI).
  • CTS Call to Send
  • CQI channel quality indicator
  • the SRN may perform spectrum sensing while the UE performing the D2D communication transmits data.
  • the SRN may perform ICI control based on the information shared by 10 to 13.
  • the ICI control method includes all methods using information shared by 10. to 13.
  • overhearing is to open an untargeted signal
  • an SRN listens to a signal transmitted from an eNB to a UE.
  • To open the untargeted signal it must be able to decode the control channel of another UE.
  • an identifier (ID: idendtifier) of the UE, an authority for the UE, and / or authentication may be required.
  • a UE performing cellular communication is referred to as a macro UE (MUE)
  • a UE performing D2D communication is referred to as a D2D UE (DUE: Device-to-Device UE).
  • both downlink and uplink may exist in the same time-domain, and downlink and uplink in the frequency-domain. Links can be separated.
  • the same frequency resource may be used for cellular communication and D2D communication due to frequency reuse.
  • ISI may occur.
  • ISI inter system interference
  • the SRN overhears the PDCCH transmitted from the eNB to the MUE (S710).
  • the SRN may have an ID of the corresponding MUE to decode the PDCCH, and the decoded PDCCH may be stored and recorded in a buffer.
  • the SRN can control ISI for all MUEs located in the periphery, but can also control ISI only for a specific MUE. That is, the SRN may determine the MUE requiring ISI control in the MUE located in the vicinity and control the ISI only for the corresponding MUE. For example, the SRN may overhear an uplink signal of the MUE and determine whether to perform ISI control on the corresponding MUE. If the ISI control is necessary MUE S, it defines the MUE that does not require the control by ICI T can be expressed as shown in equation (1).
  • the SRN may determine whether to perform ISI control on the MUE by overhearing the uplink signal of the MUE, for example, the PUCCH. If the ISI control is necessary MUE S, defines the MUE that does not require ISI controlled by T can be expressed as shown in equation (1).
  • ⁇ MUE is the power of the uplink signal overheated in the SRN
  • is a predetermined threshold.
  • the SRN determines that the MUE as a MUE S requiring ISI control.
  • the power of the uplink signal is large, it may mean that the corresponding MUE is located near the SRN or that the channel state between the corresponding MUE and the eNB is not good. Accordingly, the SRN may overhear the uplink signal of the MUE and determine whether to perform ISI control for the corresponding MUE.
  • the SRN may obtain information about downlink and uplink resources allocated to the MUE through PDCCH decoding.
  • the SRN performs a series of processes for controlling the ISI based on the obtained information (S720).
  • the SRN may determine a resource for which ISI may occur based on the obtained information. Since the session of the D2D communication is generally started regardless of the uplink / downlink of the cellular network, the ISI changes according to the state of the link regardless of the link direction of the cellular network. Accordingly, the SRN may determine an uplink / downlink resource of the MUE requiring ISI control as an interference candidate resource for which ISI may occur.
  • the SRN overhears the message.
  • the SRN transmits a message for controlling ISI to the Rx DUE (S730).
  • the message may include a current channel state, information on whether there is a conflict in the allocated resource, a command for disabling / prohibiting allocation for a specific resource, and the like, and is generated to allocate the maximum power to the interference candidate resource.
  • the message may be transmitted in a broadcast manner.
  • Tx DUE If the Rx DUE receiving the RTS message sends a Clear to Send (CTS) message, the SRN overhears the message. Tx DUE allocates resources for D2D communication based on the CTS message and the CQI information. Finally, the Tx DUE performs D2D communication with the Rx DUE through the allocated resources.
  • CTS Clear to Send
  • the SRN may perform spectrum sensing while D2D communication is performed to add resources used for D2D communication to interference candidate resources (S740).
  • FIG. 8 illustrates dynamic resource allocation in a wireless communication system according to an embodiment of the present invention.
  • the eNB dynamically selects all resource blocks (RBs) using various scheduling methods such as Proportional Fairness (PF) and Maximum Carrier to Interference and Noise Ratio (CINR). Can be assigned.
  • PF Proportional Fairness
  • CINR Maximum Carrier to Interference and Noise Ratio
  • resource blocks may be non-overlap as shown in FIG. 8.
  • FIG. 9 shows an example of resource allocation according to the embodiment of FIG. 7.
  • the SRN overhears the PDCCH transmitted from the eNB to the MUE and determines an interference candidate resource.
  • the SRN also generates an interference control message so that maximum power is allocated to the interference candidate resource. Thereafter, if the Tx DUE transmits an RTS message to the Rx DUE, the SRN may send an interference control message to the Rx DUE to instruct the user to prohibit the use of the corresponding resource.
  • the Rx DUE receives the interference control message from the SRN and performs dynamic resource allocation using resources other than the interference candidate resource. That is, the resources used for cellular communication are not used for the protection of cellular communication.
  • FIG. 10 is an example illustrating a signal flow for each entity in the embodiment of FIG. 7.
  • the SRN overhears the PDCCH transmitted by the eNB to the MUE (S1010).
  • the SRN decodes the PDCCH to obtain information about a resource allocated to the MUE, and generates an interference control message based on the obtained information (S1020).
  • the interference control message may include a current channel state, information on whether a collision occurs in the allocated resource, a command for allocating / prohibiting allocation for a specific resource, information on a resource in which ISI may occur, and the like.
  • SRN overhears the D2D session request message transmitted from the eNB to the Tx DUE.
  • the SRN transmits an interference control message to the Rx DUE (S1030).
  • SRN overhears the CTS message sent from the Rx DUE to the Tx DUE.
  • the SRN performs spectrum sensing while D2D communication is performed (S1040).
  • Steps S1010 to S1040 may be performed recursively, and details thereof are as described above with reference to FIG. 7 and will be omitted.
  • FIG 11 illustrates an ISI control method according to another embodiment of the present invention.
  • the SRN overhears the message. Thereafter, the RTS message transmitted from the Tx DUE to the Rx DUE and the CTS message transmitted from the Rx DUE to the Tx DUE are overheared (S1110). At this time, the CQI of the Tx DUE-Rx DUE link may be obtained.
  • the SRN can control the ISI for all D2D links located in the periphery, but can also control the ISI for only a specific link. That is, the SRN may determine an interference control target link for a link requiring ISI control among D2D links located nearby, and control ISI only for the corresponding link. For example, the SRN may determine whether to perform ISI control on the link based on the power of signals transmitted in the Tx DUE and the Rx DUE. If a link requiring ISI control is defined as D , it can be expressed as Equation 2.
  • Max (a, b) represents the larger value of a and b
  • ⁇ Tx_DUE is the power of the Tx DUE signal (eg, RTS) overheated in the SRN
  • ⁇ Rx_DUE is the signal of the Rx DUE overheated in the SRN.
  • is a predetermined threshold.
  • the SRN performs spectrum sensing while D2D communication is performed (S1120). It is practically difficult to perform spectral sensing in every slot. Therefore, the SRN may perform spectrum sensing only for slots through which D2D communication is performed.
  • the SRN may obtain information about a resource used by the Tx DUE and the Rx DUE for D2D communication through spectrum sensing.
  • the resources used for D2D communication are likely to cause ISI, so it is desirable not to allow spectrum access. Accordingly, the SRN generates and transmits an interference control message including information on resources used for D2D communication to the eNB (S1130).
  • the eNB determines resources to be allocated to the MUE in resources that are allowed for spectrum access, that is, resources not used for D2D communication.
  • FIG. 12 shows an example of resource allocation according to the embodiment of FIG. 11.
  • the SRN obtains information about a resource used for D2D communication through spectrum sensing and delivers the information to the eNB, and the eNB determines a resource allocated to the MUE in the remaining resources except for the resource used for the D2D communication.
  • R ⁇ RB3, RB4, RB43, RB45, RB47 ⁇ is used for D2D communication.
  • FIG. 13 is an example illustrating a signal flow for each entity in the embodiment of FIG. 11.
  • the SRN overhears the D2D session request transmitted from the eNB to the Tx DUE, the RTS transmitted from the Tx DUE to the Rx DUE, and the CTS transmitted from the Rx DUX to the Tx DUE.
  • the SRN obtains information about a resource used for D2D communication through spectrum sensing (S1310).
  • the SRN transmits an interference control message including information about a resource used for D2D communication to the eNB (S1320).
  • the eNB determines the resource to be allocated to the MUE in the resource not used for D2D communication based on this.
  • FIG. 7 and the embodiment of FIG. 11 are described separately according to the entity through which the interference control message is transmitted, the embodiment of FIG. 7 and the embodiment of FIG. 11 may be merged and implemented.
  • FIG. 14 is a flowchart illustrating an interference control method between cellular communication and D2D communication according to an embodiment of the present invention.
  • the SRN overhears the downlink control channel transmitted from the eNB, that is, the cellular base station, to the MUE, that is, the cellular terminal (S710).
  • the SRN determines the interference candidate resource that is the interference control target (S720). That is, the SRN may obtain information about a resource allocated to the cellular terminal by decoding the downlink control channel and determine an interference candidate resource based on the obtained information.
  • the interference candidate resource may be a resource allocated to the interference candidate terminal.
  • the SRN transmits an interference control message to the D2D terminal using the interference candidate resource (S730).
  • the interference control message may include a current channel state, information on whether a collision occurs in the allocated resource, a command for disabling / prohibiting allocation of interference candidate resources, and the like, and is generated to allocate maximum power to the interference candidate resource.
  • 15 is a flowchart illustrating an interference control method between cellular communication and D2D communication according to another embodiment of the present invention.
  • the SRN performs spectrum sensing to obtain information about an interference candidate resource that is an object of interference control (S1510 and S1520).
  • the interference candidate resource may mean a resource used for D2D communication.
  • the SRN may perform spectrum sensing only while D2D communication is performed, and for this, the SRN may request a D2D session transmitted from the eNB to the Tx DUE, an RTS transmitted from the Tx DUE to the Rx DUE, and a Tx DUE in the Rx DUX. You can overhear the CTS that is sent to it.
  • the SRN transmits an interference control message including information on interference candidate resources to an eNB, that is, a cellular base station (S1530).
  • the interference control message may include a current channel state, information on whether a collision occurs in the allocated resource, a command for allocating / prohibiting allocation of interference candidate resources, and the like.
  • SRN shared relay node
  • the SRN 1600 includes a processor 1610, a memory 1620, and an RF unit 1630.
  • the memory 1620 is connected to the processor 1610 and stores various information for driving the processor 1610.
  • the RF unit 1630 is connected to the processor 1610 to transmit and / or receive a radio signal.
  • Processor 1610 implements the proposed functions, processes, and / or methods. In the embodiments of FIGS. 7 to 15, the operation of the SRN may be implemented by the processor 1610.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 방법이 제공된다. 간섭 제어 장치는 셀룰러 기지국에서 셀룰러 단말로 전송되는 하향링크 제어 채널을 오버히어(overhear)한다. 상기 제어 장치는 상기 하향링크 제어 채널에 기반하여 간섭 제어의 대상이 되는 간섭 후보 자원을 결정한다. 상기 제어 장치는 상기 간섭 후보 자원을 사용하는 D2D 단말로 간섭 제어 메시지를 전송하는 단계를 포함한다.

Description

셀룰러 통신과 D2D 통신 간의 간섭을 제어하는 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 자세하게는 셀룰러 통신과 D2D (Device-to-Device) 통신 간의 간섭을 제어하는 방법 및 장치에 관한 것이다.
기존의 셀룰러 통신과 동일한 스펙트럼을 사용하는 D2D(Device-to-Device) 통신은 많은 장점을 가진다. 단말(UE: User Equipment)의 측면에서는 높은 처리율(throughput), 낮은 지연(delay) 및 소비 전력의 절약 등을 기대할 수 있다. 또한, 셀룰러 통신과 D2D 통신이 동시에 수행되면, 주파수 재사용 이득이 향상된다. 셀룰러 통신에서 기지국을 통한 상향링크/하향링크를 이용하는 얻을 수 있는 이득에 대비하여, D2D 통신에서 단일 링크를 이용하여 얻을 수 있는 이득을 '홉 이득(hop gain)'이라 한다. D2D 통신은 기존의 셀룰러 네트워크의 커버리지를 확장하며, 새로운 형식의 P2P(Peer to Peer)를 제공할 수도 있다.
하지만, 위와 같은 장점에도 불구하고 기존의 셀룰러 통신과 동일한 스펙트럼을 사용하는 D2D 통신은 몇 가지 문제점을 가지고 있다. 특히, OFDMA(Orthogonal Frequency Division Multiple Access)를 사용하는 3GPP(3rd generation partnership project) LTE(Long Term Evolution)-Advanced에 기반한 매크로 셀 내에서 D2D 통신이 수행되는 경우, 매크로 셀과 D2D 통신 사이에 무시할 수 없는 크기의 간섭이 발생할 수 있다. 이러한 간섭은 매크로 UE(macro UE)에 통신 단절과 같은 예상치 못한 피해를 끼칠 수 있다.
따라서, 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭을 제어하는 방법 및 장치가 요구된다.
본 발명의 목적은 SRN(Shared Relay Node)을 이용하여 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭을 제어하는 방법 및 이를 이용하는 장치를 제공함에 있다.
본 발명의 일 실시예에 따르면 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 방법이 제공된다. 상기 방법은 셀룰러 기지국에서 셀룰러 단말로 전송되는 하향링크 제어 채널을 오버히어(overhear)하는 단계, 상기 하향링크 제어 채널에 기반하여 간섭 제어의 대상이 되는 간섭 후보 자원을 결정하는 단계, 및 상기 간섭 후보 자원을 사용하는 D2D 단말로 간섭 제어 메시지를 전송하는 단계를 포함한다.
상기 방법은 상기 셀룰러 단말로부터 전송되는 신호의 파워에 기반하여 간섭 제어의 대상이 되는 간섭 후보 단말을 결정하는 단계를 더 포함할 수 있다.
상기 간섭 제어 메시지는 상기 간섭 후보 자원에 최대 파워가 할당되도록 생성될 수 있다.
본 발명의 다른 일 실시예에 따르면 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 방법이 제공된다. 상기 방법은 스펙트럼 센싱을 수행하여 간섭 제어의 대상이 되는 간섭 후보 자원에 관한 정보를 획득하는 단계, 및 셀룰러 기지국으로 상기 간섭 후보 자원에 관한 정보를 포함하는 간섭 제어 메시지를 전송하는 단계를 포함한다.
상기 간섭 후보 자원은 상기 D2D 통신에 사용되는 자원일 수 있다.
상기 스펙트럼 센싱은 상기 D2D 통신이 수행되는 동안에만 수행될 수 있다.
본 발명의 또다른 일 실시예에 따르면 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 장치가 제공된다. 상기 장치는 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 무선 인터페이스 프로토콜을 구현하는 프로세서를 포함한다. 상기 프로세서는 셀룰러 기지국에서 셀룰러 단말로 전송되는 하향링크 제어 채널을 오버히어(overhear)하고, 상기 하향링크 제어 채널에 기반하여 간섭 제어의 대상이 되는 간섭 후보 자원을 결정하고 및 상기 간섭 후보 자원을 사용하는 D2D 단말로 간섭 제어 메시지를 전송한다.
본 발명의 또다른 일 실시예에 따르면 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 장치가 제공된다. 상기 장치는 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 무선 인터페이스 프로토콜을 구현하는 프로세서를 포함한다. 상기 프로세서는 스펙트럼 센싱을 수행하여 간섭 제어의 대상이 되는 간섭 후보 자원에 관한 정보를 획득하고, 셀룰러 기지국으로 상기 간섭 후보 자원에 관한 정보를 포함하는 간섭 제어 메시지를 전송한다.
셀룰러 통신과 D2D 통신간의 간섭을 제어함으로써 단말의 QoS(Quality of Service)를 보장할 수 있다.
도 1은 하향링크에서 발생되는 간섭 시나리오의 일 예이다.
도 2는 상향링크에서 발생되는 간섭 시나리오의 일 예이다.
도 3 및 4는 D2D(Device-to-Device) 통신이 다른 셀에 끼치는 영향을 나타낸다.
도 5는 본 발명에 따른 무선 통신 시스템의 구조를 나타낸 일 예이다.
도 6은 본 발명이 적용되는 무선 통신 시스템에서의 자원 할당의 일 예를 나타낸다.
도 7은 본 발명의 일 실시예에 따른 ISI(Inter System Interference) 제어 방법을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 무선 통신 시스템에서의 동적 자원 할당을 나타낸다.
도 9는 도 7의 실시예에 따른 자원 할당의 일 예를 나타낸다.
도 10은 도 7의 실시예에 있어서 각 엔티티(entity)별 신호의 흐름을 나타낸 일 예이다.
도 11은 본 발명의 다른 일 실시예에 따른 ISI 제어 방법을 나타낸다.
도 12는 도 11의 실시예에 따른 자원 할당의 일 예를 나타낸다.
도 13은 도 11의 실시예에 있어서 각 엔티티(entity)별 신호의 흐름을 나타낸 일 예이다.
도 14는 본 발명의 일 실시예에 따른 셀룰러 통신과 D2D 통신 간의 간섭 제어 방법을 나타낸 흐름도이다.
도 15는 본 발명의 다른 일 실시예에 따른 셀룰러 통신과 D2D 통신 간의 간섭 제어 방법을 나타낸 흐름도이다.
도 16은 본 발명의 실시예가 구현되는 SRN(Shared Relay Node)을 나타낸 블록도이다.
셀룰러 네트워크 시스템은 적어도 하나의 기지국(eNB: enhanced Node-B)을 포함한다. eNB는 특정한 지리적 영역(일반적으로 셀이라고 함)에 대해 서비스를 제공한다. 단말(UE: User Equipment)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscriber Station), 무선 기기(wireless device) 등 다른 용어로 불릴 수 있다. eNB는 일반적으로 UE와 통신하는 고정된 지점(fixed station)을 말하며, BS(Base Station), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
UE는 통상적으로 하나의 셀에 속하는데, UE가 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 eNB를 서빙 eNB이라 한다. 셀룰러 네트워크 시스템에서는 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 eNB라 한다. 서빙 셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
일반적으로 하향링크(downlink)는 eNB에서 UE로의 통신의 의미하며, 상향링크(uplink)는 UE에서 eNB로의 통신을 의미한다. 하향링크에서 송신기는 eNB의 일부이고, 수신기는 UE의 일부분일 수 있다. 상향링크에서 송신기는 UE의 일부분이고, 수신기는 eNB의 일부분일 수 있다.
D2D 통신은 eNB의 도움 없이 UE들 사이에서 직접 통신이 수행되는 것을 의미한다. D2D 통신은 높은 처리율(throughput) 및 낮은 지연(delay)을 보장하고, 기존의 셀룰러 네트워크의 커버리지를 확장하는 등 많은 장점을 가진다. 그러나, D2D 통신이 셀룰러 통신과 동일한 자원을 사용하는 경우, 셀룰러 통신과 D2D 통신 사이에 간섭이 발생할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 하향링크에서 발생되는 간섭 시나리오의 일 예이다.
도 1을 참조하면, UE2는 eNB1에 의해 발생되는 셀 간 간섭(ICI: Inter Cell Interference)뿐만 아니라 UE3과 UE4 간의 D2D 통신에 의해 발생되는 간섭에도 영향을 받을 수 있다. 특히, 셀 경계에 존재하는 UE는 eNB와의 SINR(Signal to Interference-plus-Noise Ratio)이 낮으므로 이러한 간섭이 치명적일 수 있다.
도 2는 상향링크에서 발생되는 간섭 시나리오의 일 예이다.
도 2를 참조하면, 셀 경계에 존재하는 UE2는 eNB와의 원활한 통신을 위해 높은 파워로 상향링크 신호를 전송한다. UE2의 주변에서 UE3과 UE4가 동일한 자원을 사용하여 D2D 통신을 수행하는 경우, UE3은 UE2의 상향링크 신호에 의해 강한 간섭을 받게 된다.
도 3 및 4는 D2D(Device-to-Device) 통신이 다른 셀에 끼치는 영향을 나타낸다.
셀 내의 간섭을 최소화하는 최적의 자원을 할당하기 위해, D2D 단말은 링크 형성 과정에서 eNB의 도움을 받을 수 있다. 그러나, D2D 통신이 셀 경계에서 수행되는 경우에는 D2D 통신에 의해 인접 셀의 UE가 간섭을 받게 되거나, 인접 셀의 UE에 의해 D2D 통신이 간섭을 받게 될 수 있다. 즉, UE3이 인접 셀에 위치하는 UE1의 하향링크 신호에 간섭을 주거나(도 3), 인접 셀에 위치하는 UE2에 의해 상향링크 신호에 간섭을 받을 수 있다(도 4).
도 5는 본 발명에 따른 무선 통신 시스템의 구조를 나타낸 일 예이다.
도 5를 참조하면, 3개의 eNB가 하나의 SRN(Shared Relay Node)을 공유하는 셀룰러 네트워크가 형성된다. 즉, SRN이 3개의 셀의 중심에 배치되고, 이를 이용하여 간섭을 제어한다. 이때, SRN이 제어하는 간섭은 셀 경계에서 발생되는 셀 간 간섭(ICI: Inter Cell Interference)뿐만 아니라 셀룰러 통신과 D2D 통신 사이에서 발생되는 간섭을 포함한다. 또한, SRN은 각 셀에 대하여 셀 경계의 처리율 향상을 위해 데이터 중계 역할을 수행할 수 있다.
이하, 설명의 편의를 위해 셀룰러 통신과 D2D 통신 간의 간섭을 ISI(Inter System Interference)라 한다. 또한, 셀룰러 네트워크 시스템의 부분 주파수 재사용(FFR: Fractional Frequency Reuse)은 1으로 가정하고, 셀룰러 통신과 D2D 통신은 동일한 자원을 사용하는 것으로 가정한다.
한편, 본 발명에 따른 SRN은 3GPP LTE-Advanced의 타입 2(Type Ⅱ)과 기능적으로 유사하지만, 다음과 같은 기능이 추가적으로 요구될 수 있다.
1. SRN은 별도의 셀(ID: idendtifier)를 가지지 않는다. 즉, 별개의 셀을 생성하지 않는다.
2. SRN은 3GPP LTE Rel-8 UE를 위한 릴레잉(relaying)을 수행할 수 있다. 즉, SRN은 PDSCH(Physical Downlink Shared Channel)를 전송할 수 있다.
3. UE는 SRN의 존재를 인식할 수 없다. 즉, SNR은 UE에 투명(transparent)하다.
4. SRN은 X2 시그널링(signaling)을 통해 PDCCH(Physical Downlink Control Channel)와 PUCCH(Physical Uplink Control Channel)과 같은 제어 정보를 eNB로 전송할 수 있다. 또한, 전용 제어 채널(dedicated control channel)을 통해 제어 정보를 UE로 전송할 수 있다.
5. SRN은 PDCCH와 PUCCH와 같은 제어 정보를 복원할 수 있다.
6. SRN은 eNB와 제어 정보를 공유하기 위해 기존의 X2 시그널링 또는 새롭게 정의된 X2 시그널링을 이용할 수 있다.
7. SRN은 eNB와 UE 간의 하향링크 신호 및/또는 상향링크 신호를 오버히어(overhear)할 수 있다. 하향링크 신호 및/또는 상향링크 신호를 정상적으로 디코딩(decoding)한 경우, 해당 신호를 릴레이한다.
8. SRN은 상향링크 SRS(Sounding Reference Signal)을 오버히어하여, UE에서 SRN로의 링크에 대한 채널 품질을 측정할 수 있고, 이에 기반하여 MCS(Modulation and. Coding Scheme) 레벨(level)을 변경할 수 있다. TDD(Time Division Duplex)의 경우, SRN에서 UE로의 링크에도 이를 확장하여 적용할 수 있다.
9. SRN은 ICI의 제어를 위해 인접하는 UE를 스캔할 수 있다.
- SRN은 UE에서 eNB로의 상향링크 SRS를 오버히어하고, 이에 기반하여 해당 UE가 인접하는지를 판별할 수 있다. 예컨대, 소정의 임계값(threshold)을 기준으로 해당 UE가 인접하는지를 판별할 수 있다.
- SRN은 D2D 송신 UE에서 D2D 수신 UE로 전송되는 D2D 신호를 오버히어하고, 이에 기반하여 해당 UE들이 인접하는지를 판별할 수 있다. 예컨대, 소정의 임계값을 기준으로 해당 UE들이 인접하는지를 판별할 수 있다.
10. SRN은 eNB에서 UE로의 하향링크 신호를 오버히어하여 PDCCH와 PDSCH에 관한 정보를 공유할 수 있다.
11. SRN은 UE에서 eNB로의 상향링크 신호를 오버히어하여 PUCCH와 PUSCH(Physical Uplink Shared Channel)에 관한 정보를 공유할 수 있다.
12. SRN은 D2D 통신을 수행하는 UE의 CTS(Clear to Send) 신호를 오버히어하여, CQI(Channel Quality Indicator)에 관한 정보를 공유할 수 있다.
13. SRN은 D2D 통신을 수행하는 UE가 데이터를 전송하는 동안에 스펙트럼 센싱을 수행할 수 있다.
14. SRN은 10 내지 13에 의해 공유된 정보에 기반하여 ICI 제어를 수행할 수 있다. 여기서, ICI 제어 방법은 10. 내지 13.에 의해 공유된 정보를 이용하는 모든 방법을 포함한다.
상술한 조건들은 모두 만족되는 것이 바람직하나, 모든 조건이 만족되어야만 하는 것은 아니다. 즉, 상술한 조건은 필수적인 조건은 아니며, 선택적으로 고려될 수 있다.
한편, 오버히어는 타겟(target)되지 않은 신호를 열어보는 것으로, 예컨대 SRN이 eNB에서 UE로 전송되는 신호를 리스닝(listening)하는 것을 의미한다. 타겟되지 않은 신호를 열어보기 위해서는 다른 UE의 제어 채널을 디코딩할 수 있어야 한다. 이를 위해, 해당 UE의 식별자(ID: idendtifier), 해당 UE에 대한 권한(authority) 및 또는 인증(authentication)이 요구될 수 있다.
도 6은 본 발명이 적용되는 무선 통신 시스템에서의 자원 할당의 일 예를 나타낸다. 이하, 설명의 편의를 위해 셀룰러 통신을 수행하는 UE를 매크로 UE(MUE: Macro UE), D2D 통신을 수행하는 UE를 D2D UE(DUE: Device-to-Device UE)라 한다.
무선 자원이 FDD(Frequency Division Duplexing)로 할당되는 경우, 일반적인 FDD에 따르면 동일한 시간 영역(time-domain)에서 하향링크와 상향링크가 모두 존재할 수 있고, 주파수 영역(frequency-domain)에서 하향링크와 상향링크가 구분될 수 있다.
반면에, 셀룰러 통신과 D2D 통신이 혼재되어 있는 무선 통신 시스템에서는 주파수 재사용으로 인해 셀룰러 통신과 D2D 통신에 동일한 주파수 자원이 이용될 수 있다. 따라서, ISI가 발생할 수 있다.
도 7은 본 발명의 일 실시예에 따른 ISI(Inter System Interference) 제어 방법을 나타낸다.
SRN은 eNB에서 MUE로 전송되는 PDCCH를 오버히어한다(S710). SRN은 PDCCH를 디코딩하기 위해 해당 MUE의 ID를 가질 수 있으며, 디코딩된 PDCCH는 버퍼에 저장 및 기록될 수 있다.
한편, SRN은 주변에 위치하는 모든 MUE에 대해 ISI를 제어할 수 있지만, 특정 MUE에 대해서만 ISI를 제어할 수도 있다. 즉, SRN은 주변에 위치하는 MUE에서 ISI 제어가 필요한 MUE를 결정하고, 해당 MUE에 대해서만 ISI를 제어할 수 있다. 예를 들어, SRN은 MUE의 상향링크 신호를 오버히어하고, 이에 기반하여 해당 MUE에 대해 ISI 제어를 수행할 것인지를 결정할 수 있다. ISI 제어가 필요한 MUE를 S, ICI 제어가 필요하지 않는 MUE를 T로 정의하면 수학식 1과 같이 나타낼 수 있다.
이때, SRN은 MUE의 상향링크 신호, 예컨대 PUCCH를 오버히어함으로써 해당 MUE에 ISI 제어를 수행할 것인지를 결정할 수 있다. ISI 제어가 필요한 MUE를 S, ISI 제어가 필요하지 않는 MUE를 T로 정의하면 수학식 1과 같이 나타낼 수 있다.
[수학식 1]
S = { MUE | γ MUE > Γ }
T = { MUE | S C }
여기서, γ MUE 는 SRN에서 오버히어된 상향링크 신호의 파워, Γ는 소정의 임계값(threshold)이다. 수학식 1을 참조하면, SRN은 MUE의 상향링크 신호의 수신 파워가 임계값보다 큰 경우, 해당 MUE를 ISI 제어가 필요한 MUE S로 결정한다. 상향링크 신호의 파워가 크다는 것은 해당 MUE가 SRN에 가까이 위치하거나, 해당 MUE와 eNB 간의 채널 상태가 좋지 않다는 것을 의미할 수 있다. 따라서, SRN은 MUE의 상향링크 신호를 오버히어하여 해당 MUE에 대해 위해 ISI 제어를 수행할 것인지를 결정할 수 있다.
한편, SRN은 PDCCH 디코딩을 통해 MUE에 할당되는 하향링크 및 상향링크 자원에 관한 정보를 획득할 수 있다. SRN은 획득한 정보에 기반하여 ISI를 제어하기 위한 일련의 과정을 수행한다(S720).
예를 들어, SRN은 획득한 정보에 기반하여 ISI가 발생할 수 있는 자원을 결정할 수 있다. D2D 통신의 세션(session)은 셀룰러 네트워크의 상향링크/하향링크와 무관하게 시작되는 것이 일반적이므로, ISI는 셀룰러 네트워크의 링크의 방향과 관계없이 링크의 상태에 따라 변하게 된다. 따라서, SRN은 ISI 제어가 필요한 MUE의 상향링크/하향링크 자원을 ISI가 발생할 수 있는 간섭 후보 자원으로 결정할 수 있다.
eNB가 D2D 통신을 위해 D2D 송신 UE, 즉 Tx DUE로 D2D 세션 요청 메시지를 전송하면, SRN은 상기 메시지를 오버히어한다.
이후, Tx DUE가 D2D 수신 UE, 즉 Rx DUE에 전송하는 RTS(Request to Send) 메시지가 오버히어되면, SRN은 Rx DUE로 ISI를 제어하기 위한 메시지를 전송한다(S730). 상기 메시지는 현재의 채널 상태, 할당된 자원에 충돌이 일어나는지에 대한 정보, 특정 자원에 대한 할당 반대/금지 명령 등을 포함할 수 있으며, 간섭 후보 자원에 최대 파워가 할당되도록 생성된다. 상기 메시지는 브로드캐스트(broadcast) 방식으로 전송될 수 있다.
RTS 메시지를 수신한 Rx DUE가 CTS(Clear to Send) 메시지를 전송하면, SRN은 상기 메시지를 오버히어한다. Tx DUE는 CTS 메시지 및 CQI 정보에 기반하여 D2D 통신을 위한 자원을 할당한다. 최종적으로 Tx DUE는 할당된 자원을 통해 Rx DUE와 D2D 통신을 수행한다.
한편, SRN은 D2D 통신이 수행되는 동안 스펙트럼 센싱을 수행하여 D2D 통신에 사용되는 자원을 간섭 후보 자원에 추가할 수 있다(S740).
도 8은 본 발명의 일 실시예에 따른 무선 통신 시스템에서의 동적 자원 할당을 나타낸다.
부분 주파수 재사용을 1로 가정하면, eNB는 PF(Proportional Fairness)와 최대(Max) CINR(Carrier to Interference and Noise Ratio)와 같은 다양한 스케줄링 방법을 이용하여 모든 자원 블록(RB: Resource Block)을 동적으로 할당할 수 있다.
또한, SRN과 HeNB 간의 링크가 전용 채널(dedicated channel)로 할당된다면, 도 8과 같이 자원 블록은 중첩되지 않을 수 있다(non-overlap).
도 9는 도 7의 실시예에 따른 자원 할당의 일 예를 나타낸다.
상술한 바와 같이, SRN은 eNB에서 MUE로 전송되는 PDCCH를 오버히어하고, 간섭 후보 자원을 결정한다. 또한, SRN은 간섭 후보 자원에 최대 파워가 할당되도록 간섭 제어 메시지를 생성한다. 이후, Tx DUE가 Rx DUE에 RTS 메시지를 전송하면, SRN은 Rx DUE에 간섭 제어 메시지를 전송하여 해당 자원에 대해 사용을 금지할 것을 명령할 수 있다.
도 9를 참조하면, R = {RB3, RB4, RB43, RB45, RB47}에 ISI가 발생할 수 있다. 따라서, SRN은 R = {RB3, RB4, RB43, RB45, RB47}을 간섭 후보 자원으로 결정하고, 상기 자원에 최대 파워가 할당되도록 간섭 제어 메시지를 생성한다. Rx DUE는 SRN으로부터 간섭 제어 메시지를 수신하고, 간섭 후보 자원을 제외한 다른 자원을 사용하여 동적 자원 할당을 수행한다. 즉, 셀룰러 통신의 보호를 위해 셀룰러 통신에 사용되는 자원을 사용하지 않는다.
도 10은 도 7의 실시예에 있어서 각 엔티티(entity)별 신호의 흐름을 나타낸 일 예이다.
도 10을 간단히 설명하면, SRN은 eNB가 MUE로 전송하는 PDCCH를 오버히어한다(S1010).
SRN은 PDCCH를 디코딩하여 MUE에 할당되는 자원에 관한 정보를 획득하고, 획득된 정보에 기반하여 간섭 제어 메시지를 생성한다(S1020). 상기 간섭 제어 메시지는 현재의 채널 상태, 할당된 자원에 충돌이 일어나는지에 대한 정보, 특정 자원에 대한 할당 반대/금지 명령(command), ISI가 발생할 수 있는 자원에 관한 정보 등을 포함할 수 있다.
SRN은 eNB에서 Tx DUE로 전송되는 D2D 세션 요청 메시지를 오버히어한다.
Tx DUE가 Rx DUE로 RTS 메시지를 전송할 때, SRN은 Rx DUE로 간섭 제어 메시지를 전송한다(S1030).
SRN은 Rx DUE에서 Tx DUE로 전송되는 CTS 메시지를 오버히어한다.
SRN은 D2D 통신이 수행되는 동안 스펙트럼 센싱을 수행한다(S1040).
단계 S1010 내지 S1040은 재귀적(recursive)으로 수행될 수 있으며, 자세한 내용은 도 7을 통해 상술한 바와 같으므로 생략하기로 한다.
도 11은 본 발명의 다른 일 실시예에 따른 ISI 제어 방법을 나타낸다.
D2D 통신을 위해 eNB가 Tx DUE로 D2D 세션 요청 메시지를 전송하면, SRN은 상기 메시지를 오버히어한다. 이후, Tx DUE에서 Rx DUE로 전송되는 RTS 메시지와 Rx DUE에서 Tx DUE로 전송되는 CTS 메시지를 오버히어한다(S1110). 이때, Tx DUE-Rx DUE 링크의 CQI를 획득할 수 있다.
한편, SRN은 주변에 위치하는 모든 D2D 링크에 대해 ISI를 제어할 수 있지만, 특정 링크에 대해서만 ISI를 제어할 수도 있다. 즉, SRN은 주변에 위치하는 D2D 링크들 중에서 ISI 제어가 필요한 링크를 간섭 제어 대상 링크를 결정하고, 해당 링크에 대해서만 ISI를 제어할 수 있다. 예를 들어, SRN은 Tx DUE 및 Rx DUE에서 전송되는 신호의 파워에 기반하여 해당 링크에 대해 ISI 제어를 수행할 것인지를 결정할 수 있다. ISI 제어가 필요한 링크를 D로 정의하면 수학식 2와 같이 나타낼 수 있다.
[수학식 2]
D = { DUE | Max(γ Tx_DUE,γ Rx_DUE) Γ}
여기서, Max(a,b)는 a와 b중 큰 값을 나타내고, γ Tx_DUE는 SRN에서 오버히어된 Tx DUE의 신호(예컨대, RTS)의 파워, γ Rx_DUE는 SRN에서 오버히어된 Rx DUE의 신호(예컨대, CTS)의 파워, Γ는 소정의 임계값(threshold)이다.
SRN은 D2D 통신이 수행되는 동안 스펙트럼 센싱을 수행한다(S1120). 모든 슬롯에서 스펙트럼 센싱을 수행되는 것은 현실적으로 어렵다. 따라서, SRN은 D2D 통신이 수행되는 슬롯에 대해서만 스펙트럼 센싱을 수행할 수 있다.
한편, SRN은 스펙트럼 센싱을 통해 Tx DUE와 Rx DUE가 D2D 통신에 사용하는 자원에 관한 정보를 획득할 수 있다. D2D 통신에 사용되는 자원은 ISI가 발생할 가능성이 있으므로 스펙트럼 접근을 허용하지 않는 것이 바람직하다. 따라서, SRN은 D2D 통신에 사용되는 자원에 관한 정보를 포함하는 간섭 제어 메시지를 생성하여 eNB에 전송한다(S1130).
이후, eNB는 자원을 할당하는 경우 스펙트럼 접근이 허용되는 자원, 즉 D2D 통신에 사용되지 않는 자원에서 MUE에 할당할 자원을 결정한다.
도 12는 도 11의 실시예에 따른 자원 할당의 일 예를 나타낸다.
상술한 바와 같이, SRN은 스펙트럼 센싱을 통해 D2D 통신에 사용되는 자원에 관한 정보를 획득하여 eNB에 전달하고, eNB는 D2D 통신에 사용되는 자원을 제외한 나머지 자원에서 MUE에 할당되는 자원을 결정한다.
도 12를 참조하면, D2D 통신에 R = {RB3, RB4, RB43, RB45, RB47}이 사용되고 있다. SRN는 eNB가 R = {RB3, RB4, RB43, RB45, RB47}를 MUE에 할당하면 ISI가 발생할 수 있음을 eNB에 알리고, eNB는 R을 제외한 나머지 자원에서 MUE에 할당할 자원을 결정한다. 즉, D2D 통신의 보호를 위해 D2D 통신에 사용되는 자원을 사용하지 않는다.
도 13은 도 11의 실시예에 있어서 각 엔티티(entity)별 신호의 흐름을 나타낸 일 예이다.
도 13을 간단히 설명하면, SRN은 eNB에서 Tx DUE로 전송되는 D2D 세션 요청, Tx DUE에서 Rx DUE로 전송되는 RTS 및 Rx DUX에서 Tx DUE로 전송되는 CTS를 오버히어 한다.
SRN은 스펙트럼 센싱을 통해 D2D 통신에 사용되는 자원에 관한 정보를 획득한다(S1310).
SRN은 D2D 통신에 사용되는 자원에 관한 정보를 포함하는 간섭 제어 메시지를 eNB에 전송한다(S1320). eNB는 이에 기반하여 D2D 통신에 사용되지 않는 자원에서 MUE에 할당할 자원을 결정한다.
상술한 과정들은 재귀적(recursive)으로 수행될 수 있으며, 자세한 내용은 도 11을 통해 상술한 바와 같으므로 생략하기로 한다.
한편, 도 7의 실시예와 도 11의 실시예는 간섭 제어 메시지가 전송되는 엔티티에 따라 구분하여 설명하였지만, 도 7의 실시예와 도 11의 실시예는 병합되어 구현될 수 있다.
도 14는 본 발명의 일 실시예에 따른 셀룰러 통신과 D2D 통신 간의 간섭 제어 방법을 나타낸 흐름도이다.
SRN은 eNB, 즉 셀룰러 기지국에서 MUE, 즉 셀룰러 단말로 전송되는 하향링크 제어 채널을 오버히어한다(S710).
SRN은 간섭 제어 대상이 되는 간섭 후보 자원을 결정한다(S720). 즉, SRN은 하향링크 제어 채널을 디코딩하여 셀룰러 단말에 할당되는 자원에 관한 정보를 획득하고, 획득된 정보에 기반하여 간섭 후보 자원을 결정할 수 있다.
한편, 셀룰러 단말로부터 전송되는 신호의 파워에 기반하여 간섭 제어의 대상이 되는 간섭 후보 단말을 결정하는 경우, 상기 간섭 후보 자원은 상기 간섭 후보 단말에 할당되는 자원일 수 있다.
SRN은 상기 간섭 후보 자원을 사용하는 D2D 단말로 간섭 제어 메시지를 전송한다(S730). 상기 간섭 제어 메시지는 현재의 채널 상태, 할당된 자원에 충돌이 일어나는지에 대한 정보, 간섭 후보 자원에 대한 할당 반대/금지 명령 등을 포함할 수 있으며, 간섭 후보 자원에 최대 파워가 할당되도록 생성된다.
도 15는 본 발명의 다른 일 실시예에 따른 셀룰러 통신과 D2D 통신 간의 간섭 제어 방법을 나타낸 흐름도이다.
SRN은 스펙트럼 센싱을 수행하여 간섭 제어의 대상이 되는 간섭 후보 자원에 관한 정보를 획득한다(S1510, S1520). 상기 간섭 후보 자원은 D2D 통신에 사용되는 자원을 의미할 수 있다. 또한, SRN은 D2D 통신이 수행되는 동안에만 스펙트럼 센싱을 수행할 수 있고, 이를 위해, SRN은 eNB에서 Tx DUE로 전송되는 D2D 세션 요청, Tx DUE에서 Rx DUE로 전송되는 RTS 및 Rx DUX에서 Tx DUE로 전송되는 CTS를 오버히어 할 수 있다.
SRN은 eNB, 즉 셀룰러 기지국으로 간섭 후보 자원에 관한 정보를 포함하는 간섭 제어 메시지를 전송한다(S1530). 상기 간섭 제어 메시지는 현재의 채널 상태, 할당된 자원에 충돌이 일어나는지에 대한 정보, 간섭 후보 자원에 대한 할당 반대/금지 명령 등을 포함할 수 있다.
도 16은 본 발명의 실시예가 구현되는 SRN(Shared Relay Node)을 나타낸 블록도이다.
SRN(1600)은 프로세서(processor, 1610), 메모리(memory, 1620) 및 RF부(RF unit, 1630)을 포함한다. 메모리(1620)는 프로세서(1610)와 연결되어, 프로세서(1610)를 구동하기 위한 다양한 정보를 저장한다. RF부(1630)는 프로세서(1610)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
프로세서(1610)는 제안된 기능, 과정 및/또는 방법을 구현한다. 도 7 내지 15 실시예에서 SRN의 동작은 프로세서(1610)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 순서도에 나타낸 단계들은 배타적이지 않으며, 다른 단계에 포함되거나 삭제될 수 있다.

Claims (11)

  1. 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 방법에 있어서,
    셀룰러 기지국에서 셀룰러 단말로 전송되는 하향링크 제어 채널을 오버히어(overhear)하는 단계;
    상기 하향링크 제어 채널에 기반하여 간섭 제어의 대상이 되는 간섭 후보 자원을 결정하는 단계; 및
    상기 간섭 후보 자원을 사용하는 D2D 단말로 간섭 제어 메시지를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 셀룰러 단말로부터 전송되는 신호의 파워에 기반하여 간섭 제어의 대상이 되는 간섭 후보 단말을 결정하는 단계를 더 포함하되,
    상기 간섭 후보 자원은 상기 간섭 후보 단말에 할당되는 자원인 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 간섭 후보 단말은 상기 간섭 후보 단말로부터 전송되는 신호의 파워가 소정의 임계값보다 큰 단말인 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 간섭 제어 메시지는 상기 간섭 후보 자원에 최대 파워가 할당되도록 생성되는 것을 특징으로 하는 방법.
  5. 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 방법에 있어서,
    스펙트럼 센싱을 수행하여 간섭 제어의 대상이 되는 간섭 후보 자원에 관한 정보를 획득하는 단계; 및
    셀룰러 기지국으로 상기 간섭 후보 자원에 관한 정보를 포함하는 간섭 제어 메시지를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 간섭 후보 자원은 상기 D2D 통신에 사용되는 자원인 것을 특징으로 하는 방법.
  7. 제 5 항에 있어서,
    상기 스펙트럼 센싱은 상기 D2D 통신이 수행되는 동안 수행되는 것을 특징으로 하는 방법.
  8. 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 연결되어, 무선 인터페이스 프로토콜을 구현하는 프로세서를 포함하고, 상기 프로세서는
    셀룰러 기지국에서 셀룰러 단말로 전송되는 하향링크 제어 채널을 오버히어(overhear)하고,
    상기 하향링크 제어 채널에 기반하여 간섭 제어의 대상이 되는 간섭 후보 자원을 결정하고, 및
    상기 간섭 후보 자원을 사용하는 D2D 단말로 간섭 제어 메시지를 전송하는 것을 특징으로 하는 장치.
  9. 제 8 항에 있어서,
    제 8항에 있어서, 상기 간섭 제어 메시지는 상기 간섭 후보 자원에 최대 파워가 할당되도록 생성되는 것을 특징으로 하는 장치.
  10. 셀룰러 통신과 D2D(Device-to-Device) 통신 간의 간섭 제어 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 연결되어, 무선 인터페이스 프로토콜을 구현하는 프로세서를 포함하고, 상기 프로세서는
    스펙트럼 센싱을 수행하여 간섭 제어의 대상이 되는 간섭 후보 자원에 관한 정보를 획득하고, 및
    셀룰러 기지국으로 상기 간섭 후보 자원에 관한 정보를 포함하는 간섭 제어 메시지를 전송하는 것을 특징으로 하는 장치.
  11. 제 10 항에 있어서,
    상기 스펙트럼 센싱은 상기 D2D 통신이 수행되는 동안 수행되는 것을 특징으로 하는 장치.
PCT/KR2012/011817 2012-07-02 2012-12-28 셀룰러 통신과 d2d 통신 간의 간섭을 제어하는 방법 및 장치 WO2014007446A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/412,655 US9521682B2 (en) 2012-07-02 2012-12-28 Method and apparatus for controlling interference between cellular communication and D2D communication
KR1020147034869A KR102099820B1 (ko) 2012-07-02 2012-12-28 셀룰러 통신과 d2d 통신 간의 간섭을 제어하는 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261666941P 2012-07-02 2012-07-02
US61/666,941 2012-07-02

Publications (1)

Publication Number Publication Date
WO2014007446A1 true WO2014007446A1 (ko) 2014-01-09

Family

ID=49882179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011817 WO2014007446A1 (ko) 2012-07-02 2012-12-28 셀룰러 통신과 d2d 통신 간의 간섭을 제어하는 방법 및 장치

Country Status (3)

Country Link
US (1) US9521682B2 (ko)
KR (1) KR102099820B1 (ko)
WO (1) WO2014007446A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137687A1 (ko) * 2014-03-10 2015-09-17 엘지전자(주) 단말 간 통신을 지원하는 무선 통신 시스템에서 자원 할당 방법 및 이를 위한 장치
WO2015142109A1 (ko) * 2014-03-20 2015-09-24 엘지전자 주식회사 무선 통신 시스템에서 d2d 신호를 송신하는 방법 및 이를 위한 장치
KR20160127029A (ko) * 2014-02-26 2016-11-02 퀄컴 인코포레이티드 D2d 통신들에 대한 부분 주파수 재사용 (ffr) 을 위한 시그널링
TWI575674B (zh) * 2014-12-19 2017-03-21 Youngtek Electronics Corp Stacked wafer bonding process
CN110061764A (zh) * 2019-04-17 2019-07-26 南京邮电大学 基于noma和中继技术的协作d2d传输方案
CN112994759A (zh) * 2021-02-04 2021-06-18 南京邮电大学 一种基于ofdm的协作中继d2d通信方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480081B2 (en) * 2013-03-15 2016-10-25 Huawei Technologies Co., Ltd. System and method for interference cancellation using terminal cooperation
CN104105185B (zh) * 2013-04-03 2018-11-27 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及***
CN110177358B (zh) * 2013-05-01 2022-06-14 三星电子株式会社 用于设备到设备通信***的方法和装置
WO2015096029A1 (zh) * 2013-12-24 2015-07-02 华为技术有限公司 数据传输方法和设备
KR101525978B1 (ko) * 2014-10-06 2015-06-05 숭실대학교산학협력단 간섭 인지 기반의 d2d 자원 할당 방법 및 그 장치
CN112188585A (zh) 2014-12-12 2021-01-05 索尼公司 用于无线通信的装置和方法
KR101963050B1 (ko) * 2017-11-27 2019-03-27 고려대학교 산학협력단 에너지 수확 기반 간섭채널 통신 시스템에서 자원 할당 방법
CN115942373A (zh) * 2021-09-29 2023-04-07 维沃移动通信有限公司 信息传输方法、装置、终端设备及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110046231A (ko) * 2009-10-28 2011-05-04 엘지전자 주식회사 무선통신 시스템에서 셀간 간섭을 완화하는 장치 및 방법
KR20120050456A (ko) * 2009-07-22 2012-05-18 콸콤 인코포레이티드 피어-투-피어 통신으로 인한 간섭의 완화를 위한 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9072060B2 (en) * 2008-06-03 2015-06-30 Nokia Technologies Oy Method, apparatus and computer program for power control to mitigate interference
US8554200B2 (en) * 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
US8885507B2 (en) * 2009-12-11 2014-11-11 Nokia Corporation Method, apparatus and computer program product for allocating resources in wireless communication network
US8401562B2 (en) * 2010-11-17 2013-03-19 Nokia Corporation Apparatus and method employing scheduler behavior aware predictive resource selection in a communication system
US8914055B2 (en) * 2012-03-21 2014-12-16 Telefonaktiebolaget L M Ericsson (Publ) Dynamic resource selection to reduce interference that results from direct device to device communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050456A (ko) * 2009-07-22 2012-05-18 콸콤 인코포레이티드 피어-투-피어 통신으로 인한 간섭의 완화를 위한 방법 및 장치
KR20110046231A (ko) * 2009-10-28 2011-05-04 엘지전자 주식회사 무선통신 시스템에서 셀간 간섭을 완화하는 장치 및 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
POTEVIO: "On the application of type II and type I relay", 3GPP TSG-RAN WG1 #57, 4 May 2009 (2009-05-04), SAN FRANCISCO, USA *
YANG, MO CHAN ET AL.: "A Shared Relay-Assisted Interference Avoidance for D2D Communications in Cellular Networks", KOREA INSTITUTE OF COMMUNICATION AND INFORMATION SCIENCES, SUMMER CONFERENCE, 21 June 2012 (2012-06-21) *
YANG, MO CHAN ET AL.: "Intercell Interference Management Technology using Multi-cell Shared Relay in 3GPP LTE-Advanced Network", SK TELECOMMUNICATIONS REVIEW, 4G SYSTEM, SPECIAL ISSURE, vol. 21, no. 5, October 2011 (2011-10-01), pages 799 - 818 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160127029A (ko) * 2014-02-26 2016-11-02 퀄컴 인코포레이티드 D2d 통신들에 대한 부분 주파수 재사용 (ffr) 을 위한 시그널링
KR102372696B1 (ko) 2014-02-26 2022-03-08 퀄컴 인코포레이티드 D2d 통신들에 대한 부분 주파수 재사용 (ffr) 을 위한 시그널링
WO2015137687A1 (ko) * 2014-03-10 2015-09-17 엘지전자(주) 단말 간 통신을 지원하는 무선 통신 시스템에서 자원 할당 방법 및 이를 위한 장치
WO2015142109A1 (ko) * 2014-03-20 2015-09-24 엘지전자 주식회사 무선 통신 시스템에서 d2d 신호를 송신하는 방법 및 이를 위한 장치
US10182372B2 (en) 2014-03-20 2019-01-15 Lg Electronics Inc. Method for transmitting D2D signal in wireless communication system and device therefor
TWI575674B (zh) * 2014-12-19 2017-03-21 Youngtek Electronics Corp Stacked wafer bonding process
CN110061764A (zh) * 2019-04-17 2019-07-26 南京邮电大学 基于noma和中继技术的协作d2d传输方案
CN110061764B (zh) * 2019-04-17 2022-05-10 南京邮电大学 基于noma和中继技术的协作d2d传输方案
CN112994759A (zh) * 2021-02-04 2021-06-18 南京邮电大学 一种基于ofdm的协作中继d2d通信方法

Also Published As

Publication number Publication date
KR20150035599A (ko) 2015-04-06
KR102099820B1 (ko) 2020-04-13
US9521682B2 (en) 2016-12-13
US20150173088A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
WO2014007446A1 (ko) 셀룰러 통신과 d2d 통신 간의 간섭을 제어하는 방법 및 장치
US11374647B2 (en) Mobile communications system, communications terminals and methods for coordinating relay communications
US9154987B2 (en) Relay-to-relay interference coordination in a wireless communication network
JP5981671B2 (ja) 基地局、ユーザ端末及びプロセッサ
WO2018059292A1 (en) System and method for d2d communication
EP2903377B1 (en) Mobile communication system
WO2014017498A1 (ja) 移動通信システム
WO2012173443A2 (ko) 무선 접속 시스템에서 무선 자원 할당 방법 및 이를 위한 장치
WO2010068012A2 (ko) 무선 통신 시스템에서 매크로 기지국에 의해 수행되는 공백 영역 해제 방법 및 장치
WO2011021837A2 (ko) 협력형 다중 안테나 송수신 시스템에서 그룹-특이적 정보를 송수신하는 방법 및 시스템
US9763273B2 (en) Mobile communication system, user terminal, base station, processor, and communication control method
KR20110049623A (ko) 이동통신 시스템에서의 상향링크 코디네이션 방법 및 그 단말
WO2014050557A1 (ja) 移動通信システム、基地局及びユーザ端末
RU2759800C2 (ru) Устройство связи, способ связи и программа
WO2016171420A1 (en) Method for transmitting a buffer status reporting for lte-wlan aggregation system and a device therefor
WO2017183865A2 (ko) FeD2D 환경에서 간섭을 고려하여 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2019194603A1 (ko) 비면허 대역에서 간섭을 완화하는 방법 및 장치
WO2016181538A1 (ja) 無線通信システム、基地局、通信端末及び無線通信システムの制御方法
WO2016010276A1 (ko) 데이터 재전송 처리 방법 및 그 장치
WO2016122112A1 (ko) Laa를 지원하는 무선 통신 시스템에서 경로 손실 추정 방법 및 장치
WO2014007445A1 (ko) HetNet 시스템에서 셀 간 간섭을 제어하는 방법 및 장치
WO2016181537A1 (ja) 無線通信システム、基地局、通信端末及び無線通信システムの制御方法
WO2014007531A1 (ko) 이동통신망에서의 상향링크 전송 제어 방법과 그 장치
WO2018208054A1 (ko) 무선 통신 시스템에서 단말의 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2018012878A1 (ko) 새로운 무선 액세스 망에서 단말을 위한 동기화 신호 및 시스템 정보를 송수신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147034869

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14412655

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12880289

Country of ref document: EP

Kind code of ref document: A1