WO2014002392A1 - Centrifugal multi-blade blower - Google Patents

Centrifugal multi-blade blower Download PDF

Info

Publication number
WO2014002392A1
WO2014002392A1 PCT/JP2013/003549 JP2013003549W WO2014002392A1 WO 2014002392 A1 WO2014002392 A1 WO 2014002392A1 JP 2013003549 W JP2013003549 W JP 2013003549W WO 2014002392 A1 WO2014002392 A1 WO 2014002392A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
peripheral edge
plate
blades
main plate
Prior art date
Application number
PCT/JP2013/003549
Other languages
French (fr)
Japanese (ja)
Inventor
雅晴 酒井
昇一 今東
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to KR1020157001276A priority Critical patent/KR101666923B1/en
Priority to CN201380034234.1A priority patent/CN104411980B/en
Priority to DE112013003213.9T priority patent/DE112013003213T5/en
Priority to US14/410,796 priority patent/US20150192143A1/en
Publication of WO2014002392A1 publication Critical patent/WO2014002392A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type

Definitions

  • the present disclosure relates to a centrifugal multiblade blower that blows out air sucked from the direction of the rotation shaft toward the outside in the radial direction of the rotation shaft.
  • a conventional impeller of a centrifugal multiblade fan has a plurality of blades arranged around a rotating shaft, and blows out air sucked in from the rotating shaft direction outward in the radial direction. Yes.
  • the wind direction changes rapidly from the rotational axis direction to the radial direction in the space near the air suction port in the space between the adjacent blades (hereinafter, the space between the blades).
  • the air hardly flows compared to the opposite side of the suction port in the rotation axis direction.
  • the inner diameter of the impeller 100 on the side plate 130 side is larger than the main plate 120 side (opposite side of the suction port).
  • the inner peripheral edge 111 of the blade 110 on the side plate 130 side is tapered.
  • Patent Document 1 it is assumed that the substantial inflow angle of the air flowing into the blade 110 is constant regardless of the position in the rotation axis direction, and a predetermined direction (for example, a vertical direction) with respect to the inner peripheral edge 111 of the blade 110. ) Is set to within ⁇ 5 ° on each cross-section that intersects. Thereby, the difference between the inlet angle and the inflow angle in the inner peripheral edge 111 on the side plate 130 side is reduced, and separation of the air flow on the side plate 130 side is suppressed.
  • 21 is a meridional view corresponding to the impeller 100 illustrated in FIG.
  • the meridian plane is a plane obtained by rotationally projecting the shape of the blade on the cross section including the rotation axis of the impeller.
  • FIG. 22 and 23 are explanatory diagrams for explaining the problems of the conventional technology.
  • 22 is a cross-sectional view taken along the line XXII-XXII of FIG. 21 (cross-sectional view of the blade 110 on the main plate 120 side)
  • FIG. 23 is a cross-sectional view taken along the line XXIII-XXIII of FIG. 22 and FIG. 23, the inlet angle ⁇ of each blade 110 is set to the tangent line of the inscribed circle passing through the inner peripheral edge portion 111 of each blade (one-dot chain line in the drawing) and the pressure surface 110a side of the inner peripheral edge portion 111. The angle formed with the tangent line (two-dot chain line in the figure) at the inner end of the.
  • the angle formed between the relative inflow velocity V of air obtained by combining the peripheral velocity component and the absolute inflow velocity component and the peripheral velocity component is defined as an inflow angle ⁇ , as shown in FIGS.
  • the inflow angle ⁇ s ′ on the side plate 130 side becomes smaller than the inflow angle ⁇ m ′ on the main plate 120 side.
  • the incident angle ⁇ s ′ on the side plate 130 side is still larger than the incident angle ⁇ m ′ on the main plate 120 side, and air flow separation on the side plate 130 side is sufficiently suppressed. It is difficult. And by the separation of the air flow on the side plate 130 side, the flow velocity on the side plate 130 side on the air outlet side of the impeller 100 decreases.
  • an object of the present disclosure is to provide a centrifugal multiblade fan capable of sufficiently equalizing the flow velocity distribution in the rotation axis direction on the air outlet side of the impeller.
  • centrifugal multiblade blower focusing on the fact that the flow rate on the air outlet side of the impeller increases in proportion to the square of the outer diameter of the impeller under conditions where the rotational speed and the ventilation resistance are constant, A centrifugal multiblade fan has been devised that can achieve uniform flow velocity distribution on the air outlet side of the impeller.
  • an impeller in one aspect of the present disclosure, includes a main plate coupled to the rotation shaft, a plurality of blades disposed around the axis of the rotation shaft, and the other end of the rotation shaft coupled to the main plate, and a rotation A plurality of blades on one end side of the shaft, and the plurality of blades intersect each inner peripheral edge of the plurality of blades on the meridian surface of the impeller in a predetermined direction.
  • the entrance angle on the cross section is uniform over the entire area from the side plate side to the main plate side, and the outer peripheral edges of the plurality of blades are separated from the axis of the rotation axis from the main plate side to the side plate side. It is characterized by being composed.
  • the outer peripheral diameter of the impeller is larger on the side plate side than the main plate side, so that the air outlet side on the side plate side of the impeller is The flow rate can be increased.
  • the flow velocity on the air outlet side on the side plate side of the impeller can be increased as compared with the impeller of the prior art.
  • the flow rate of the inflow air to the inner peripheral edge on the side plate side increases as the flow rate on the air outlet side on the side plate side of the impeller increases. Since the increase in the flow rate of the inflow air to the inner peripheral edge on the side plate side acts on the side where the flow velocity (absolute inflow velocity) on the side plate side increases, the inflow angle on the side plate side can be made closer to the entrance angle.
  • uniform means a state where there is no deviation in the entrance angle in the entire region from the side plate side to the main plate side, or a state where there is only a minute deviation within ⁇ 5 °.
  • the “meridian plane” is a plane obtained by rotationally projecting the shape of the blade on a cross section including the rotation axis of the impeller.
  • the “entrance angle” is an intersection angle between a tangent line of a circle (inscribed circle) passing through each of the inner peripheral edge portions of the plurality of blades and the inner peripheral edge portion of the blades in the radial direction of the rotation axis.
  • the drawing It is a mimetic diagram of an air-conditioner for vehicles provided with a fan concerning a 1st embodiment. It is a perspective view of the impeller of the air blower concerning a 1st embodiment. It is a half sectional view of the impeller of the air blower concerning a 1st embodiment. It is IV arrow line view which shows the blade
  • FIG. 9 is a sectional view taken along line XX in FIG.
  • It is a perspective view of the impeller of the air blower concerning a 2nd embodiment. It is a half sectional view of the impeller of the air blower concerning a 2nd embodiment. It is a top view of the impeller of the air blower concerning a 2nd embodiment. It is a meridian view of the impeller of the air blower concerning 2nd Embodiment. It is a meridian view of the impeller of the air blower which concerns on 3rd Embodiment.
  • FIG. 22 is a sectional view taken along line XXII-XXII in FIG. 21.
  • FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG.
  • the air conditioner 1 has an air conditioning casing 2 that forms an air flow path of blown air that is blown into the vehicle interior.
  • an inside air introduction port 3 for introducing inside air (vehicle compartment air)
  • an outside air introduction port 4 for introducing outside air (vehicle compartment outside air) are formed.
  • an inside / outside air switching door 5 for selectively opening and closing each of the introduction ports 3 and 4 is provided.
  • a blower 7 is arranged on the downstream side of the air flow of the inside / outside air switching door 5, and air introduced from the introduction ports 3, 4 by the blower 7 is supplied to the outlets 14, 15, 17 described later. It is blown toward.
  • the blower 7 is a centrifugal multi-blade blower that blows inhaled air from the direction of the rotation axis toward the outside in the radial direction.
  • a single suction type blower that blows out air sucked from one end side in the rotation axis direction toward the radially outer side is adopted.
  • the blower 7 has an impeller 7a, a scroll casing (casing) 7b, and an electric motor 7c that drives the impeller 7a.
  • the impeller 7a rotates around the rotating shaft 70 and blows air outward in the radial direction, and is made of resin.
  • the scroll casing 7b accommodates the impeller 7a and forms a spiral flow path for collecting air blown from the impeller 7a.
  • the scroll casing 7b is formed with a suction port 74 that opens to one end of the rotary shaft 70.
  • the detail of the impeller 7a of the air blower 7 which concerns on this embodiment is mentioned later.
  • an evaporator 9 is disposed on the downstream side of the air flow of the blower 7, and all the air blown to the blower 7 passes through this evaporator 9.
  • the evaporator 9 of the present embodiment is an air cooling means that cools the blown air by exchanging heat between the refrigerant flowing through the evaporator 9 and the blown air blown from the blower 7.
  • the evaporator 9 constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, a gas-liquid separator, an expansion valve and the like (not shown).
  • a heater core 10 is disposed on the downstream side of the air flow of the evaporator 9.
  • the heater core 10 is an air heating unit that heats the air that has passed through the evaporator 9 by exchanging heat between the engine coolant that cools the engine 11 and the air that has passed through the evaporator 9.
  • a bypass passage 12 is formed in the air conditioning casing 2 so that the air after passing through the evaporator 9 flows around the heater core 10. Then, on the upstream side of the air flow of the heater core 10, the air volume ratio between the air volume passing through the heater core 10 and the air volume passing through the bypass passage 12 is adjusted to adjust the temperature of the air blown into the vehicle interior.
  • An air mix door 13 is provided.
  • the defroster blower outlet 17 for blowing air toward the inner surface is formed.
  • Blowing mode switching doors 18, 19, and 20 are disposed on the upstream side of the airflows of the blowout ports 14, 15, and 17, respectively. By switching and opening these blow mode switching doors 18 to 20, the face mode that blows air toward the upper body of the occupant, the foot mode that blows air toward the lower half of the occupant, and the air toward the inner surface of the vehicle window glass. Switch defroster mode to blow out.
  • the impeller 7a of the air blower 7 of this embodiment is demonstrated.
  • the impeller 7 a of the blower 7 includes a plurality of blades 71, side plates 72, and a main plate 73.
  • the main plate 73 is composed of a disk-shaped member coupled to the rotating shaft 70.
  • the main plate 73 of this embodiment is connected to a portion 71b on the other end side (the lower side in the drawing) of each blade 71 in the rotation axis direction, and is configured to overlap each blade 71 when viewed from the rotation axis direction. Has been.
  • the side plate 72 is connected to a radially outer portion of the rotary shaft 70 on one end side (upper side in the drawing) of each blade 71 in the rotary axis direction.
  • the side plate 72 of the present embodiment is connected so as to cover the outer peripheral edge (blade trailing edge) 712 on one end side in the rotational axis direction of each blade 71 from the radially outer side of the rotational shaft 70.
  • the side plate 72 of the present embodiment has an annular shape (a shroud shape) that is curved so that a portion on one end side in the rotation axis direction is positioned on a radially inner side of the rotation shaft 70 relative to a portion on the other end side. It has become.
  • the side plate 72 of the present embodiment is configured such that the inner peripheral diameter Ds thereof is larger than the outer peripheral diameter Dm of the main plate 73, and has a shape that does not overlap with the main plate 73 when viewed from the direction of the rotation axis. ing.
  • Each blade 71 is disposed around the axis Z of the rotating shaft 70.
  • Each blade 71, side plate 72, and main plate 73 constituting the impeller 7a are integrally formed by resin molding or the like.
  • the impeller 7a configured as described above is the air that flows into the inter-blade space (the space between the blades 71) in the impeller 7a from the suction port 74 on one end side in the rotation axis direction due to the rotation of the rotation shaft 70. Are blown out radially outward of the impeller 7a by centrifugal force.
  • FIGS. 4 to 6 are views taken along arrows in FIG. 3, and show the shape of the blade 71 of the present embodiment.
  • the side plate 72 and the main plate 73 are not shown in FIGS. 4 to 6, and three typical blades 71 in the directions of arrows A to C in FIG. 3 are shown. Yes.
  • each blade 71 has an inner peripheral edge (blade leading edge) 711 formed between the portions 71a and 71b at both ends of the blade 71 on the inner peripheral side of the impeller 7a. Further, as shown in FIG. 5, each blade 71 has an outer peripheral edge portion (blade trailing edge) 712 between portions 71 a and 71 b at both ends of the blade 71 on the outer peripheral side of the impeller 7 a.
  • each blade 71 of the present embodiment has a portion 711 a on one end side in the rotation axis direction in the inner peripheral edge portion 711 in addition to the rotation axis direction in the inner peripheral edge portion 711. It is located in front of the rotation direction R of the impeller 7a rather than the part 711b on the end side.
  • the impeller 7a of the present embodiment is configured to blow out the air sucked from the rotation axis direction toward the radially outer side. For this reason, by positioning the portion 711a on the one end side in the rotation axis direction in the inner peripheral edge 711 in front of the portion 711b on the other end side in the rotation axis direction in the inner peripheral edge 711, the side plate 72 side It becomes easy to suck air into the space between the blades from the rotation axis direction. As a result, the flow rate of air flowing into the space between the blades on the side plate 72 side can be increased.
  • the part 711a on one end side in the rotation axis direction in the inner peripheral edge 711 may be referred to as a forward movement part 711a
  • the part 711b on the other end side in the rotation axis direction in the inner peripheral edge 711 may be referred to as a backward movement part 711b.
  • the “meridional surface” is a surface obtained by rotationally projecting the shape of the blade 71 on a cross section including the rotation shaft 70 in the impeller 7a.
  • the inner peripheral edge 711 of the blade 71 of the present embodiment is such that the inner peripheral diameter on the side plate 72 side of the impeller 7 a is larger than the inner peripheral diameter on the main plate 73 side. It is configured to be separated from the axis Z of the rotary shaft 70 from the 73 side toward the side plate 72 side.
  • the inner peripheral diameter of the impeller 7 a is a diameter of an inscribed circle that passes through the inner peripheral edge 711 of each blade 71 in the radial direction of the rotating shaft 70.
  • the entrance angle ⁇ on each cross section intersecting in a predetermined direction with respect to the inner peripheral edge portion 711 of the blade 71 appearing on the meridional surface of the impeller 7a extends from the side plate 72 side to the main plate 73 side. It is set to be uniform throughout the entire area. “Uniform” means a state where there is no deviation in the entrance angle ⁇ in the entire region from the side plate 72 side to the main plate 73 side, or a state where there is only a minute deviation within ⁇ 5 °.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 8
  • FIG. 10 is a cross-sectional view taken along the line XX in FIG.
  • the IX-IX cross section is a cross section when a portion of the blade 71 on the main plate 73 side is cut in a direction perpendicular to the rotation axis direction.
  • the XX cross section is a cross section when the portion of the side plate 72 in the blade 71 is cut in a direction orthogonal to the axial direction of the rotation axis.
  • the side plates 72 represent the entrance angles ⁇ m and ⁇ s in each cross section orthogonal to the rotation axis direction at the inner peripheral edge 711 of each blade 71.
  • An angle that is uniform over the entire area from the side to the main plate 73 side (for example, an angle of 55 ° to 76 °) is set.
  • the entrance angles ⁇ m and ⁇ s are tangent to the inscribed circle (the dashed line in FIGS. 9 and 10) passing through the inner peripheral edge 711 of the blade 71 and the inner end 713 a of the blade 71 on the positive pressure surface 713 side.
  • the angle formed by the tangent line (two-dot chain line in FIGS. 9 and 10).
  • the air flow on the side plate 72 side can be obtained only by making the inlet angles ⁇ m and ⁇ s of the inner peripheral edge 711 of each blade 71 uniform over the entire region from the side plate 72 side to the main plate 73 side. It is difficult to sufficiently suppress peeling.
  • the outer peripheral edge portion 712 of each blade 71 is arranged on the main plate 73 so that the outer peripheral diameter on the side plate 72 side in the impeller 7 a is larger than the outer peripheral diameter on the main plate 73 side.
  • the shape is separated from the axis Z of the rotary shaft 70 from the side toward the side plate 72 side.
  • the outer peripheral diameter of the impeller 7 a is the diameter of a circumscribed circle passing through the outer peripheral edge 712 of each blade 71 in the radial direction of the rotating shaft 70.
  • the blade 71 of the present embodiment is configured such that the inner peripheral diameter increases from the main plate 73 side to the side plate 72 side, and the outer peripheral diameter increases from the main plate 73 side to the side plate 72 side. (D1> d2, D1> D2).
  • the outer shape becomes a reverse trapezoid shape.
  • the side plate side inner / outer diameter ratio is smaller than the main plate side inner / outer diameter ratio.
  • the air introduced into the air conditioning casing 2 through the inlets 3 and 4 is directed to the outlets 14, 15, and 17 by the blower 7. And blown.
  • the blown air blown by the blower 7 is adjusted to a desired temperature by the evaporator 9, the heater core 10, and the air mix door 13, and blown out from any one of the outlets 14, 15, and 17 into the vehicle interior. Is done.
  • the inner peripheral edge 711 of the blade 71 is moved from the main plate 73 side to the side plate 72 side so that the inner peripheral diameter of the impeller 7a increases from the main plate 73 side toward the side plate 72 side.
  • the shape is away from the axis Z of the rotating shaft 70.
  • the inlet angles ⁇ m and ⁇ s in each cross section orthogonal to the axis of the rotation shaft 70 in the inner peripheral edge 711 of each blade 71 are set over the entire region from the side plate 72 side to the main plate 73 side.
  • the angle is uniform.
  • the outer peripheral edge 712 of the blade 71 has a shape that is separated from the axis Z of the rotary shaft 70 from the main plate 73 side toward the side plate 72 side.
  • the rotational axis direction on the air outlet side of the impeller 7a which becomes a problem when the inlet angles ⁇ m and ⁇ s of the inner peripheral edge portion 711 of each blade 71 are uniform over the entire region from the side plate 72 side to the main plate 73 side, The flow velocity distribution is uniform.
  • the flow rate on the air outlet side of the impeller 7a increases by the square of the outer diameter under conditions where the rotational speed and the ventilation resistance are constant. For this reason, by enlarging the outer peripheral diameter of the impeller 7a on the side plate 72 side rather than the main plate 73 side, the flow rate on the air outlet side on the side plate 72 side of the impeller 7a increases, and accordingly the side plate of the impeller 7a.
  • the flow velocity on the air outlet side on the 72 side becomes faster. That is, the flow rate on the side plate 72 side on the air outlet side of the impeller 7a can be made closer to the flow rate on the main plate 73 side.
  • the flow rate of the inflow air to the inner peripheral edge 711 on the side plate 72 side increases as the flow rate on the air outlet side on the side plate 72 side of the impeller 7a increases.
  • the increase in the flow rate of the inflow air to the inner peripheral edge 711 on the side plate 72 side acts to increase the flow velocity on the side plate 72 side, so that the difference between the inlet angle and the inflow angle on the side plate 72 side can be reduced. .
  • the peripheral speed Us on the side plate 72 side is set to the main plate 73 as shown in FIGS. It becomes faster than the peripheral speed Um on the side (Us> Um).
  • the inflow angle ⁇ s on the side plate 72 side is the main plate 73. This is an angle close to the inflow angle ⁇ m on the side.
  • the entrance angle ⁇ s on the side plate 72 side is aligned with the entrance angle ⁇ m on the main plate 73 side, so the difference (incident angle ⁇ s) between the entrance angle ⁇ s and the inflow angle ⁇ s on the side plate 72 side is. Reduced.
  • the flow velocity distribution in the direction of the rotation axis on the air outlet side of the impeller 7a can be sufficiently uniformed like the flow velocity distribution shown on the right side of the impeller 7a in FIG.
  • noise suppression can be achieved.
  • a portion 711a on one end side in the rotation axis direction in the inner peripheral edge portion 711 is positioned in front of the portion 711b on the other end side in the rotation axis direction in the rotation direction R.
  • the flow rate of air flowing into the inner peripheral edge 711 on the side plate 72 side (absolute inflow rate) can be increased by increasing the flow rate of air flowing into the interblade space on the side plate 72 side.
  • the incident angle ⁇ s on the 72 side can be further reduced.
  • separation of the air flow on the side plate 72 side can be more effectively suppressed.
  • the impeller 7a of this embodiment has a smaller outer diameter of the main plate 73 than the first embodiment. .
  • the main plate 73 and the advancing portion 711a in the inner peripheral edge 711 do not overlap each other.
  • the outer peripheral diameter of 73 is made small.
  • the distance L1 from the axis Z of the rotating shaft 70 to the outer peripheral end of the main plate 73 is from the axis Z of the rotating shaft 70 to the advance portion 711a in the inner peripheral edge 711. It is smaller than the distance L2.
  • each blade 71, side plate 72, and main plate 73 are integrally formed. There is a possibility that the forward movement portion 711a becomes undercut.
  • the outer diameter of the main plate 73 is reduced so that the main plate 73 and the forward movement portion 711a in the inner peripheral edge 711 do not overlap in the rotation axis direction.
  • the molded product can be taken out from the mold by sliding the mold in the direction of the rotation axis.
  • the impeller 7a can be easily manufactured, and the cost can be reduced.
  • the ratio of the outer peripheral diameter D1 to the inner peripheral diameter d1 on the side plate 72 side of the impeller 7a (side plate side inner / outer diameter ratio) is set to the outer peripheral diameter with respect to the inner peripheral diameter d2 on the main plate 73 side.
  • the ratio is larger than the ratio of D2 (main plate side inner / outer diameter ratio) (D1 / d1> D2 / d2).
  • the outer peripheral edge 712 of the blade 71 is configured to be separated from the axis Z of the rotary shaft 70 from the main plate 73 side to the side plate 72 side, and the inner peripheral edge 711 of the blade 71 is set in the rotational axis direction. It is set as the structure extended along. That is, the impeller 7a of the present embodiment has an outer peripheral diameter on the side plate 72 side larger than an outer peripheral diameter on the main plate 73 side, and the inner peripheral diameter on the side plate 72 side and the inner peripheral diameter on the main plate 73 side in the impeller 7a are equal. It has become.
  • the side plate side inner / outer diameter ratio of the impeller 7a is larger than the main plate side inner / outer diameter ratio, the inner peripheral diameter of the impeller 7a on the side plate 72 side does not become too large.
  • An increase in the peripheral speed Us at the inner peripheral edge 711 on the side plate 72 side can be suppressed. That is, according to the configuration of the present embodiment, in addition to the increase in the flow rate on the side plate 72 side, the increase in the peripheral speed at the inner peripheral edge portion 711 on the side plate 72 side that affects the inflow angle at the inner peripheral edge portion 711 on the side plate 72 side. It becomes possible to suppress.
  • a plurality of virtual streamlines imagining the flow direction of the air flowing into the inner peripheral edge 711 of the blade 71 are set, and the inlet angle ⁇ in each cross section on the virtual streamlines is changed from the side plate 72 side to the main plate 73 side.
  • the angle is uniform over the entire area (for example, an angle of 55 ° to 76 °).
  • the first to sixth dividing lines Yd1 to Yd6 are set as virtual streamlines, and the entrances on the respective cross sections on the virtual streamlines Yd1 to Yd6.
  • the angle ⁇ is a uniform angle over the entire range of the inner peripheral edge 711 of the blade 71.
  • the inner peripheral edge 711 of the blade 71 is divided into a predetermined number so that the length along the inner peripheral edge 711 of the blade 71 is equal, and the inner peripheral edge 711 is divided.
  • the dividing point Yin at the inner peripheral edge 711 is set in order from the one end side in the rotation axis direction of the blade 71 in order from the first inner peripheral dividing point Yi1, the second inner peripheral dividing point Yi2,.
  • the sixth inner circumference side dividing point Yi6 is set.
  • the outer peripheral edge 712 of the blade 71 is divided into a predetermined number so that the length along the outer peripheral edge 712 of the blade 71 is uniform, and a dividing point Yon at the outer peripheral edge 712 is set.
  • the dividing point Yon of the outer peripheral edge portion 712 is divided into the first outer peripheral side dividing point Yo1, the second outer peripheral side dividing point Yo2,. It is set as 6 outer peripheral side dividing points Yo6.
  • the dividing lines Yd1 to Yd6) are set as virtual streamlines.
  • blower 7 of the present embodiment has the same effects as those of the first embodiment. Furthermore, according to the blower 7 of this embodiment, there exists an advantage that the design surface of the blade
  • the set number may be set to an arbitrary number (for example, 10).
  • the portion 711a on one end side in the rotation axis direction of the inner peripheral edge 711 is in the rotation direction of the impeller 7a rather than the portion 711b on the other end side in the rotation axis direction.
  • the example located ahead of R was demonstrated, it is not limited to this.
  • the side plate 72 is an annular shape that is curved so that a portion on one end side in the rotation axis direction is positioned on the radially inner side of the rotation shaft 70 relative to a portion on the other end side.
  • the side plate 72 may have an annular shape extending along the rotation axis direction, and may be connected to an outer peripheral edge portion 712 existing on the radially outer side at one end side in the rotation axis direction of each blade 71. .
  • the side plate 72 is connected so as to cover the outer peripheral edge portion 712 of each blade 71 from the radially outer side of the rotating shaft 70 has been described, but the present invention is not limited to this.
  • the side plate 72 may be connected to a portion 71 a on one end side in the rotation axis direction of each blade 71.
  • the main plate 73 and the side plate 72 are viewed from the direction of the rotation axis so as not to cause undercut when the impeller 7a is integrally formed, they do not overlap each other. It is desirable to make it.
  • the main plate 73 and the side plate 72 may be configured to overlap when viewed from the rotation axis direction.
  • the side plate side inner / outer diameter ratio of the impeller 7a is the main plate side inner / outer diameter ratio. If it is a bigger structure, it is good also as a structure which leaves
  • first and second impeller parts 7aa and 7ab configured in the same manner as the impeller 7a described in the above-described embodiments are prepared.
  • the main plates 73a and 73b of the portions 7aa and 7ab may be connected by the connecting member 75.
  • wing 71 in each impeller part 7aa and 7ab has the entrance angle (alpha) on each cross section which cross
  • the outer peripheral edge 712 of the blade 71 in each impeller portion 7aa, 7ab is configured to be separated from the axis Z of the rotary shaft 70 from the main plate 73a, 73b side toward the side plate 72a, 72b side.
  • the entrance angle ⁇ on each cross section orthogonal to the rotational axis direction on the meridional surface of the impeller 7a is made uniform over the entire region from the side plate 72 side to the main plate 73 side.
  • the present invention is not limited to this.
  • the entrance angle ⁇ on each cross section orthogonal to the inner peripheral edge 711 on the meridian surface of the impeller 7a may be uniform over the entire region from the side plate 72 side to the main plate 73 side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A centrifugal multi-blade blower is provided with an impeller (7a) and a casing (7b) that encloses the impeller (7a). The centrifugal multi-blade blower blows, towards the radial outer side of a rotation shaft (70), air which is suctioned from an intake port (74) of the casing (7b) which opens at at least one end of the rotation shaft (70). The impeller (7a) has the following: a main plate (73) connected to the rotation shaft (70); a plurality of blades (71) disposed in the vicinity of the axis of the rotation shaft (70) and configured so that the other end of the rotation shaft (70) is linked to the main plate (73); and a lateral plate (72) that links the blades (71) at the one end of the rotation shaft (70). With respect to the blades (71), an entrance angle (α), on a cross-section intersecting a prescribed direction with respect to each inner circumference edge part (711) of the blades (71) on a meridian plane of the impeller (7a), is uniform in the entire region reaching from the lateral plate (72) to the main plate (73). Further, an outer circumference edge part (712) of the blades (71) is configured so as to be spaced apart from the axis of the rotation shaft (70) from the main plate (73) towards the lateral plate (72).

Description

遠心式多翼送風機Centrifugal multiblade blower 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年6月26日に出願された日本出願番号2012-142803号と、2013年5月10日に出願された日本出願番号2013-100170号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2012-142803 filed on June 26, 2012 and Japanese Application No. 2013-100170 filed on May 10, 2013. Is used.
 本開示は、回転軸方向から吸入した空気を回転軸の径方向外側に向けて吹き出す遠心式多翼送風機に関する。 The present disclosure relates to a centrifugal multiblade blower that blows out air sucked from the direction of the rotation shaft toward the outside in the radial direction of the rotation shaft.
 従来の遠心式多翼送風機の羽根車は、回転軸の周囲に配設された複数枚の羽根を有しており、回転軸方向から吸入した空気を径方向外側に向けて吹き出すようになっている。 A conventional impeller of a centrifugal multiblade fan has a plurality of blades arranged around a rotating shaft, and blows out air sucked in from the rotating shaft direction outward in the radial direction. Yes.
 この羽根車は、隣り合う羽根と羽根との間の空間(以下、羽根間空間)のうち、空気の吸入口付近の空間において、回転軸方向から径方向へと急激に風向が変化することから、回転軸方向における吸入口の反対側に比べて空気が流れ難い。 In this impeller, the wind direction changes rapidly from the rotational axis direction to the radial direction in the space near the air suction port in the space between the adjacent blades (hereinafter, the space between the blades). The air hardly flows compared to the opposite side of the suction port in the rotation axis direction.
 また、遠心式多翼送風機の羽根車では、羽根の内周縁の入口角(入口条件)と、羽根に流入する空気の流入角(流入条件)とのズレ(入射角)が大きいと、羽根間空間にて空気の流れが剥離して失速する傾向があり、入射角が小さいほど理想的な状態に近づく。 Also, in the impeller of a centrifugal multiblade fan, if there is a large deviation (incident angle) between the inlet angle (inlet condition) of the inner peripheral edge of the blade and the inflow angle (inflow condition) of the air flowing into the blade, There is a tendency that the air flow is separated and stalled in the space, and the smaller the incident angle, the closer to the ideal state.
 ところが、通常の羽根車では、羽根に流入する空気の流れが急激に変化する吸入口側における羽根の内周縁の入口角が、羽根に流入する空気の流れが緩やかに変化する吸入口の反対側における入口角に対して大きく変化する。このため、羽根車における吸入口側では、内周縁に流入する空気の流入条件と羽根に流入する空気の流入条件とのズレが大きくなり易く、吸入口側の羽根間空間にて空気流れの剥離が生じ易くなってしまう。 However, in a normal impeller, the inlet angle of the inner peripheral edge of the blade on the suction port side where the flow of air flowing into the blade changes suddenly is opposite to the suction port where the flow of air flowing into the blade changes slowly. Varies greatly with respect to the entrance angle at. For this reason, on the suction port side of the impeller, the deviation between the inflow condition of the air flowing into the inner peripheral edge and the inflow condition of the air flowing into the blade tends to increase, and the air flow is separated in the space between the blades on the suction port side. Is likely to occur.
 これらに対し、例えば、特許文献1では、図21に示すように、羽根車100の側板130側(吸入口側)の内径が主板120側(吸入口の反対側)よりも大きくなるように、側板130側の羽根110の内周縁部111をテーパ形状としている。これにより、羽根車100の吸入口側における通風抵抗を低減し、回転軸方向から流れる空気が吸入口付近の羽根間空間に流れ易くなるようにしている。 On the other hand, for example, in Patent Document 1, as shown in FIG. 21, the inner diameter of the impeller 100 on the side plate 130 side (suction port side) is larger than the main plate 120 side (opposite side of the suction port). The inner peripheral edge 111 of the blade 110 on the side plate 130 side is tapered. As a result, the airflow resistance on the suction port side of the impeller 100 is reduced, and the air flowing from the rotation axis direction can easily flow into the space between the blades near the suction port.
 さらに、特許文献1では、羽根110に流入する空気の実質的な流入角が回転軸方向の位置によらず一定となるとみなし、羽根110の内周縁部111に対して所定方向(例えば、垂直方向)に交差する各断面上の入口角を±5°以内に設定している。これにより、側板130側の内周縁部111における入口角と流入角との差を縮小し、側板130側における空気流れの剥離を抑制するようにしている。なお、図21は、特許文献1の図20に図示された羽根車100に対応する子午面図である。ここで、子午面は、羽根車における回転軸を含む断面に羽根の形状を回転投影した面である。 Further, in Patent Document 1, it is assumed that the substantial inflow angle of the air flowing into the blade 110 is constant regardless of the position in the rotation axis direction, and a predetermined direction (for example, a vertical direction) with respect to the inner peripheral edge 111 of the blade 110. ) Is set to within ± 5 ° on each cross-section that intersects. Thereby, the difference between the inlet angle and the inflow angle in the inner peripheral edge 111 on the side plate 130 side is reduced, and separation of the air flow on the side plate 130 side is suppressed. 21 is a meridional view corresponding to the impeller 100 illustrated in FIG. Here, the meridian plane is a plane obtained by rotationally projecting the shape of the blade on the cross section including the rotation axis of the impeller.
特開2006-200525号公報JP 2006-200955 A
 上記従来技術の羽根車100では、側板130付近の羽根間空間に空気が流れ易くなるものの、依然として、側板130側における空気流れの剥離を充分に抑制することが難しく、これに起因して羽根車100の空気出口側にて流速分布が生ずるといった問題がある。 In the impeller 100 of the above-described prior art, air easily flows into the space between the blades near the side plate 130, but it is still difficult to sufficiently suppress the separation of the air flow on the side plate 130 side. There is a problem that a flow velocity distribution occurs on the 100 air outlet side.
 以下、この点について図面を用いて説明する。図22および図23は、上記従来技術の問題点を説明する説明図である。図22は、図21のXXII-XXII断面図(主板120側の羽根110の断面図)、図23は、図21のXXIII-XXIII断面図(側板130側の羽根110の断面図)である。なお、図22、図23では、各羽根110の入口角αを、各羽根の内周縁部111を通る内接円の接線(図中の一点鎖線)と、内周縁部111における正圧面110a側の内側端部における接線(図中の二点鎖線)とのなす角度としている。 Hereinafter, this point will be described with reference to the drawings. 22 and 23 are explanatory diagrams for explaining the problems of the conventional technology. 22 is a cross-sectional view taken along the line XXII-XXII of FIG. 21 (cross-sectional view of the blade 110 on the main plate 120 side), and FIG. 23 is a cross-sectional view taken along the line XXIII-XXIII of FIG. 22 and FIG. 23, the inlet angle α of each blade 110 is set to the tangent line of the inscribed circle passing through the inner peripheral edge portion 111 of each blade (one-dot chain line in the drawing) and the pressure surface 110a side of the inner peripheral edge portion 111. The angle formed with the tangent line (two-dot chain line in the figure) at the inner end of the.
 従来技術の羽根車100では、側板130側における羽根車100の内径が、主板120側よりも大きくなっていることから、側板130側における周速度Us’が主板120側における周速度Um’よりも速くなる(Us’>Um’)。 In the prior art impeller 100, since the inner diameter of the impeller 100 on the side plate 130 side is larger than that on the main plate 120 side, the peripheral speed Us ′ on the side plate 130 side is higher than the peripheral speed Um ′ on the main plate 120 side. It becomes faster (Us '> Um').
 また、羽根車100では、図21の破線矢印に示すように、主板120側に比べて、側板130側における羽根間空間に流入する空気の流れ方向の変化が大きくなる。このため、図22、図23に示すように、側板130側における羽根110の内周縁部111に流入する空気の絶対流入速度Cs’は、主板120側における羽根110の内周縁部111に流入する空気の絶対流入速度Cm’よりも遅くなる(Cs’<Cm’)。 Further, in the impeller 100, as shown by a broken line arrow in FIG. 21, a change in the flow direction of the air flowing into the inter-blade space on the side plate 130 side is larger than that on the main plate 120 side. Therefore, as shown in FIGS. 22 and 23, the absolute inflow velocity Cs ′ of the air flowing into the inner peripheral edge 111 of the blade 110 on the side plate 130 side flows into the inner peripheral edge 111 of the blade 110 on the main plate 120 side. It becomes slower than the absolute inflow velocity Cm ′ of air (Cs ′ <Cm ′).
 ここで、周速度成分および絶対流入速度成分を合成して得られる空気の相対流入速度Vと、周速度成分とのなす角度を流入角βと定義したとき、図22、図23に示すように、側板130側における流入角βs’が主板120側における流入角βm’に対して小さくなる。 Here, when the angle formed between the relative inflow velocity V of air obtained by combining the peripheral velocity component and the absolute inflow velocity component and the peripheral velocity component is defined as an inflow angle β, as shown in FIGS. The inflow angle βs ′ on the side plate 130 side becomes smaller than the inflow angle βm ′ on the main plate 120 side.
 このため、上記従来技術の羽根車100の如く、側板130側における入口角αs’を主板120側の入口角αm’に揃える構成とすると、側板130側における入口角αs’と流入角βs’との差(入射角γs’)が、主板120側の入射角γm’よりも大きくなってしまう。 For this reason, when the entrance angle αs ′ on the side plate 130 side is aligned with the entrance angle αm ′ on the main plate 120 side as in the conventional impeller 100, the entrance angle αs ′ and the inflow angle βs ′ on the side plate 130 side (Incident angle γs ′) becomes larger than the incident angle γm ′ on the main plate 120 side.
 このように、上記従来技術の羽根車100によっても、依然として、側板130側における入射角γs’が主板120側の入射角γm’よりも大きくなり、側板130側における空気流れの剥離を充分に抑えることが難しい。そして、側板130側における空気流れの剥離により、羽根車100の空気出口側における側板130側の流速が低下する。 Thus, even with the prior art impeller 100, the incident angle γs ′ on the side plate 130 side is still larger than the incident angle γm ′ on the main plate 120 side, and air flow separation on the side plate 130 side is sufficiently suppressed. It is difficult. And by the separation of the air flow on the side plate 130 side, the flow velocity on the side plate 130 side on the air outlet side of the impeller 100 decreases.
 この結果、例えば、図21の羽根車100の右側に示す流速分布の如く、羽根車100の空気出口側にて側板130側の流速が主板120側に比べて遅くなるといった流速分布が生じてしまう。 As a result, for example, as shown in the flow velocity distribution on the right side of the impeller 100 in FIG. 21, a flow velocity distribution in which the flow velocity on the side plate 130 side becomes slower than that on the main plate 120 side on the air outlet side of the impeller 100 occurs. .
 なお、このような問題は、側板130側の内径が主板120側と同一となっている羽根車100、すなわち、内周縁部111がテーパ形状となっていない羽根車100においても同様に生ずる。内周縁部111がテーパ形状となっていない羽根車100では、側板130側の絶対流入速度Cs’が主板120側よりも遅くなることで、側板130側における流入角βs’が主板120側における流入角βm’に対して小さくなるからである。 Such a problem also occurs in the impeller 100 in which the inner diameter on the side plate 130 side is the same as that on the main plate 120 side, that is, in the impeller 100 in which the inner peripheral edge 111 is not tapered. In the impeller 100 in which the inner peripheral edge 111 is not tapered, the absolute inflow speed Cs ′ on the side plate 130 side becomes slower than the main plate 120 side, so that the inflow angle βs ′ on the side plate 130 side becomes the inflow on the main plate 120 side. This is because it becomes smaller with respect to the angle βm ′.
 本開示は上記点に鑑みて、羽根車の空気出口側における回転軸方向の流速分布を充分に均一化させることが可能な遠心式多翼送風機を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a centrifugal multiblade fan capable of sufficiently equalizing the flow velocity distribution in the rotation axis direction on the air outlet side of the impeller.
 上記目的を達成するため、本発明者らは鋭意検討を重ねた。この結果、遠心式多翼送風機では、回転数および通風抵抗が一定となる条件下で、羽根車の外周径の二乗に比例して羽根車の空気出口側の流量が増加することに着眼し、羽根車の空気出口側における流速分布の均一化を図ることが可能な遠心式多翼送風機を案出した。 In order to achieve the above object, the present inventors made extensive studies. As a result, in the centrifugal multiblade blower, focusing on the fact that the flow rate on the air outlet side of the impeller increases in proportion to the square of the outer diameter of the impeller under conditions where the rotational speed and the ventilation resistance are constant, A centrifugal multiblade fan has been devised that can achieve uniform flow velocity distribution on the air outlet side of the impeller.
 本開示の1つの態様において、羽根車は、回転軸に結合された主板と、回転軸の軸線の周囲に配設され、回転軸の他端側が主板に連結された複数枚の羽根と、回転軸の一端側にて複数枚の羽根を連結する側板と、を有し、複数枚の羽根は、羽根車の子午面上の複数枚の羽根のそれぞれの内周縁部に対して所定方向に交差する断面上での入口角が側板側から主板側に亘る全域で均一となっており、且つ、複数枚の羽根の外周縁部が主板側から側板側に向かって回転軸の軸線から離れるように構成されていることを特徴としている。 In one aspect of the present disclosure, an impeller includes a main plate coupled to the rotation shaft, a plurality of blades disposed around the axis of the rotation shaft, and the other end of the rotation shaft coupled to the main plate, and a rotation A plurality of blades on one end side of the shaft, and the plurality of blades intersect each inner peripheral edge of the plurality of blades on the meridian surface of the impeller in a predetermined direction. The entrance angle on the cross section is uniform over the entire area from the side plate side to the main plate side, and the outer peripheral edges of the plurality of blades are separated from the axis of the rotation axis from the main plate side to the side plate side. It is characterized by being composed.
 このように、側板側から主板側に亘る全域で入口角を均一とした構成において、羽根車の外周径を主板側よりも側板側で大きくすることで、羽根車の側板側における空気出口側の流量を増加させることができる。これにより、従来技術の羽根車よりも、羽根車の側板側における空気出口側の流速を増加させることができる。 In this way, in the configuration in which the inlet angle is uniform over the entire region from the side plate side to the main plate side, the outer peripheral diameter of the impeller is larger on the side plate side than the main plate side, so that the air outlet side on the side plate side of the impeller is The flow rate can be increased. Thereby, the flow velocity on the air outlet side on the side plate side of the impeller can be increased as compared with the impeller of the prior art.
 その上、羽根車の側板側における空気出口側の流量増加に伴い側板側における内周縁部への流入空気の流量が増える。この側板側における内周縁部への流入空気の流量増加は、側板側における流速(絶対流入速度)が速くなる方に作用することから、側板側における流入角を入口角に近づけることができる。 Furthermore, the flow rate of the inflow air to the inner peripheral edge on the side plate side increases as the flow rate on the air outlet side on the side plate side of the impeller increases. Since the increase in the flow rate of the inflow air to the inner peripheral edge on the side plate side acts on the side where the flow velocity (absolute inflow velocity) on the side plate side increases, the inflow angle on the side plate side can be made closer to the entrance angle.
 これにより、従来技術の羽根車よりも、側板側での空気流れの剥離を抑制でき、側板側での空気流れの剥離に伴う側板側における空気出口側の流速低下を緩和させることができる。 This makes it possible to suppress the separation of the air flow on the side plate side as compared with the impeller of the prior art, and to alleviate the decrease in the flow velocity on the air outlet side on the side plate side due to the separation of the air flow on the side plate side.
 以上のことから、本開示の遠心式多翼送風機によれば、従来技術の羽根車にて問題となる羽根車の空気出口側における回転軸方向の流速分布を充分に均一化させることが可能となる。 From the above, according to the centrifugal multiblade fan of the present disclosure, it is possible to sufficiently uniform the flow velocity distribution in the rotation axis direction on the air outlet side of the impeller, which is a problem in the impeller of the prior art. Become.
 ここで、「均一」とは、側板側から主板側に亘る全域で入口角にズレがない状態、若しくは、±5°以内の微小なズレしかない状態を意味する。また、「子午面」とは、羽根車における回転軸を含む断面に羽根の形状を回転投影した面である。さらに、「入口角」は、回転軸の径方向において、複数枚の羽根における内周縁部それぞれを通る円(内接円)の接線と羽根の内周縁部との交差角度である。 Here, “uniform” means a state where there is no deviation in the entrance angle in the entire region from the side plate side to the main plate side, or a state where there is only a minute deviation within ± 5 °. The “meridian plane” is a plane obtained by rotationally projecting the shape of the blade on a cross section including the rotation axis of the impeller. Further, the “entrance angle” is an intersection angle between a tangent line of a circle (inscribed circle) passing through each of the inner peripheral edge portions of the plurality of blades and the inner peripheral edge portion of the blades in the radial direction of the rotation axis.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態に係る送風機を備える車両用の空調装置の模式図である。 第1実施形態に係る送風機の羽根車の斜視図である。 第1実施形態に係る送風機の羽根車の半断面図である。 図3に示す羽根部分を示すIV矢視図である。 図3に示す羽根部分を示すV矢視図である。 図3に示す羽根部分を示すVI矢視図である。 第1実施形態に係る羽根車全体の子午面図である。 第1実施形態に係る羽根車の要部の子午面図である。 図8におけるIX-IX断面図である。 図8におけるX-X断面図である。 第2実施形態に係る送風機の羽根車の斜視図である。 第2実施形態に係る送風機の羽根車の半断面図である。 第2実施形態に係る送風機の羽根車の上面図である。 第2実施形態に係る送風機の羽根車の子午面図である。 第3実施形態に係る送風機の羽根車の子午面図である。 第4実施形態に係る送風機の羽根車要部の子午面図である。 変形例に係る送風機の羽根車の子午面図である。 変形例に係る送風機の羽根車の子午面図である。 変形例に係る送風機の羽根車の斜視図である。 変形例に係る送風機の羽根車の半断面図である。 従来技術の羽根車の要部を示す子午面図である。 図21におけるXXII-XXII断面図である。 図22におけるXXIII-XXIII断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is a mimetic diagram of an air-conditioner for vehicles provided with a fan concerning a 1st embodiment. It is a perspective view of the impeller of the air blower concerning a 1st embodiment. It is a half sectional view of the impeller of the air blower concerning a 1st embodiment. It is IV arrow line view which shows the blade | wing part shown in FIG. FIG. 4 is a V arrow view showing the blade portion shown in FIG. 3. FIG. 4 is a VI arrow view showing a blade portion shown in FIG. 3. It is a meridional view of the whole impeller which concerns on 1st Embodiment. It is a meridian view of the principal part of the impeller which concerns on 1st Embodiment. It is IX-IX sectional drawing in FIG. FIG. 9 is a sectional view taken along line XX in FIG. It is a perspective view of the impeller of the air blower concerning a 2nd embodiment. It is a half sectional view of the impeller of the air blower concerning a 2nd embodiment. It is a top view of the impeller of the air blower concerning a 2nd embodiment. It is a meridian view of the impeller of the air blower concerning 2nd Embodiment. It is a meridian view of the impeller of the air blower which concerns on 3rd Embodiment. It is a meridian view of the impeller principal part of the air blower concerning 4th Embodiment. It is a meridional view of the impeller of the air blower which concerns on a modification. It is a meridional view of the impeller of the air blower which concerns on a modification. It is a perspective view of the impeller of the air blower concerning a modification. It is a half sectional view of the impeller of the air blower concerning a modification. It is a meridian view which shows the principal part of the impeller of a prior art. FIG. 22 is a sectional view taken along line XXII-XXII in FIG. 21. FIG. 23 is a sectional view taken along line XXIII-XXIII in FIG.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を省略することがある。
(第1実施形態)
 第1実施形態について説明する。本実施形態では、本開示に係る遠心式多翼送風機を、水冷エンジンを搭載した車両の空調装置1に適用している。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts may be denoted by the same reference numerals and description thereof may be omitted.
(First embodiment)
A first embodiment will be described. In this embodiment, the centrifugal multiblade fan according to the present disclosure is applied to an air conditioner 1 for a vehicle equipped with a water-cooled engine.
 図1に示すように、空調装置1は、車室内へ送風される送風空気の空気流路を形成する空調ケーシング2を有している。空調ケーシング2における空気流れ最上流側部位には、内気(車室内空気)を導入するための内気導入口3、および外気(車室外空気)を導入するための外気導入口4が形成されると共に、これら各導入口3、4を選択的に開閉する内外気切替ドア5が設けられている。 As shown in FIG. 1, the air conditioner 1 has an air conditioning casing 2 that forms an air flow path of blown air that is blown into the vehicle interior. At the most upstream side of the air flow casing 2 in the air conditioning casing 2, an inside air introduction port 3 for introducing inside air (vehicle compartment air) and an outside air introduction port 4 for introducing outside air (vehicle compartment outside air) are formed. In addition, an inside / outside air switching door 5 for selectively opening and closing each of the introduction ports 3 and 4 is provided.
 内外気切替ドア5の空気流れ下流側には、送風機7が配設されており、この送風機7により各導入口3、4から導入された空気が、後述する各吹出口14、15、17に向けて送風される。 A blower 7 is arranged on the downstream side of the air flow of the inside / outside air switching door 5, and air introduced from the introduction ports 3, 4 by the blower 7 is supplied to the outlets 14, 15, 17 described later. It is blown toward.
 送風機7は、回転軸方向から吸入した空気を径方向外側に向けて吹き出す遠心式多翼送風機である。本実施形態では、送風機7として、回転軸方向の一端側から吸い込んだ空気を径方向外側に向けて吹き出す片吸込式の送風機を採用している。 The blower 7 is a centrifugal multi-blade blower that blows inhaled air from the direction of the rotation axis toward the outside in the radial direction. In the present embodiment, as the blower 7, a single suction type blower that blows out air sucked from one end side in the rotation axis direction toward the radially outer side is adopted.
 送風機7は、羽根車7a、スクロールケーシング(ケーシング)7b、および羽根車7aを駆動する電動モータ7cを有している。羽根車7aは、回転軸70を中心に回転して空気を径方向外側に向けて吹き出すもので、樹脂により構成されている。スクロールケーシング7bは、羽根車7aを収容すると共に羽根車7aから吹き出される空気を集合させる渦巻き状の流路を形成するものである。なお、スクロールケーシング7bには、回転軸70の一端側に開口する吸入口74が形成されている。なお、本実施形態に係る送風機7の羽根車7aの詳細については後述する。 The blower 7 has an impeller 7a, a scroll casing (casing) 7b, and an electric motor 7c that drives the impeller 7a. The impeller 7a rotates around the rotating shaft 70 and blows air outward in the radial direction, and is made of resin. The scroll casing 7b accommodates the impeller 7a and forms a spiral flow path for collecting air blown from the impeller 7a. The scroll casing 7b is formed with a suction port 74 that opens to one end of the rotary shaft 70. In addition, the detail of the impeller 7a of the air blower 7 which concerns on this embodiment is mentioned later.
 また、送風機7の空気流れ下流側には、蒸発器9が配設されており、送風機7に送風された空気は全てこの蒸発器9を通過する。本実施形態の蒸発器9は、その内部を流通する冷媒と送風機7から送風された送風空気とを熱交換させて、送風空気を冷却する空気冷却手段である。この蒸発器9は、図示しない圧縮機、凝縮器、気液分離器、膨張弁等とともに、蒸気圧縮式の冷凍サイクルを構成している。 Further, an evaporator 9 is disposed on the downstream side of the air flow of the blower 7, and all the air blown to the blower 7 passes through this evaporator 9. The evaporator 9 of the present embodiment is an air cooling means that cools the blown air by exchanging heat between the refrigerant flowing through the evaporator 9 and the blown air blown from the blower 7. The evaporator 9 constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, a gas-liquid separator, an expansion valve and the like (not shown).
 蒸発器9の空気流れ下流側には、ヒータコア10が配設されている。ヒータコア10は、エンジン11を冷却するエンジン冷却水と蒸発器9通過後の空気を熱交換させて、蒸発器9通過後の空気を加熱する空気加熱手段である。 A heater core 10 is disposed on the downstream side of the air flow of the evaporator 9. The heater core 10 is an air heating unit that heats the air that has passed through the evaporator 9 by exchanging heat between the engine coolant that cools the engine 11 and the air that has passed through the evaporator 9.
 また、空調ケーシング2には、蒸発器9通過後の空気を、ヒータコア10を迂回して流すバイパス通路12が形成されている。そして、ヒータコア10の空気流れ上流側には、ヒータコア10を通過する空気の風量と、バイパス通路12を通過する空気の風量との風量割合を調整して、車室内に吹き出す空気の温度を調整するエアミックスドア13が配設されている。 Further, a bypass passage 12 is formed in the air conditioning casing 2 so that the air after passing through the evaporator 9 flows around the heater core 10. Then, on the upstream side of the air flow of the heater core 10, the air volume ratio between the air volume passing through the heater core 10 and the air volume passing through the bypass passage 12 is adjusted to adjust the temperature of the air blown into the vehicle interior. An air mix door 13 is provided.
 また、空調ケーシング2の空気流れ最下流部位には、乗員の上半身に向けて空気を吹き出すためのフェイス吹出口14、乗員の足元に向けて空気を吹き出すためのフット吹出口15、および窓ガラス16の内面に向けて空気を吹き出すためのデフロスタ吹出口17が形成されている。 Further, at the most downstream portion of the air flow of the air conditioning casing 2, a face outlet 14 for blowing air toward the upper body of the occupant, a foot outlet 15 for blowing air toward the feet of the occupant, and a window glass 16. The defroster blower outlet 17 for blowing air toward the inner surface is formed.
 これら各吹出口14、15、17の空気流れ上流側には、それぞれ吹出モード切替ドア18、19、20が配設されている。これら吹出モード切替ドア18~20を切替開閉することで、乗員の上半身に向けて空気を吹き出すフェイスモード、乗員の下半身に向けて空気を吹き出すフットモード、および車両窓ガラスの内面に向けて空気を吹き出すデフロスタモードを切り替える。 Blowing mode switching doors 18, 19, and 20 are disposed on the upstream side of the airflows of the blowout ports 14, 15, and 17, respectively. By switching and opening these blow mode switching doors 18 to 20, the face mode that blows air toward the upper body of the occupant, the foot mode that blows air toward the lower half of the occupant, and the air toward the inner surface of the vehicle window glass. Switch defroster mode to blow out.
 続いて、本実施形態の送風機7の羽根車7aについて説明する。図2の斜視図、および図3の半断面図に示すように、送風機7の羽根車7aは、複数枚の羽根71、側板72、および主板73を有して構成されている。 Then, the impeller 7a of the air blower 7 of this embodiment is demonstrated. As shown in the perspective view of FIG. 2 and the half cross-sectional view of FIG. 3, the impeller 7 a of the blower 7 includes a plurality of blades 71, side plates 72, and a main plate 73.
 主板73は、回転軸70に結合された円盤状の部材で構成されている。本実施形態の主板73は、各羽根71における回転軸方向の他端側(紙面下方側)の部位71bに連結されており、回転軸方向から見たときに、各羽根71と重なり合うように構成されている。 The main plate 73 is composed of a disk-shaped member coupled to the rotating shaft 70. The main plate 73 of this embodiment is connected to a portion 71b on the other end side (the lower side in the drawing) of each blade 71 in the rotation axis direction, and is configured to overlap each blade 71 when viewed from the rotation axis direction. Has been.
 側板72は、各羽根71における回転軸方向の一端側(紙面上方側)における回転軸70の径方向外側の部位に連結されている。本実施形態の側板72は、各羽根71における回転軸方向の一端側の外周縁部(翼後縁)712を回転軸70の径方向外側から覆うように連結されている。より具体的には、本実施形態の側板72は、回転軸方向の一端側の部位が他端側の部位よりも回転軸70の径方向内側に位置するように湾曲した環形状(シュラウド形状)となっている。なお、本実施形態の側板72は、その内周径Dsが主板73の外周径Dmよりも大きくなるように構成されており、回転軸方向から見たときに主板73と重なり合わない形状となっている。 The side plate 72 is connected to a radially outer portion of the rotary shaft 70 on one end side (upper side in the drawing) of each blade 71 in the rotary axis direction. The side plate 72 of the present embodiment is connected so as to cover the outer peripheral edge (blade trailing edge) 712 on one end side in the rotational axis direction of each blade 71 from the radially outer side of the rotational shaft 70. More specifically, the side plate 72 of the present embodiment has an annular shape (a shroud shape) that is curved so that a portion on one end side in the rotation axis direction is positioned on a radially inner side of the rotation shaft 70 relative to a portion on the other end side. It has become. Note that the side plate 72 of the present embodiment is configured such that the inner peripheral diameter Ds thereof is larger than the outer peripheral diameter Dm of the main plate 73, and has a shape that does not overlap with the main plate 73 when viewed from the direction of the rotation axis. ing.
 各羽根71は、回転軸70の軸線Zの周囲に配設されている。これら羽根車7aを構成する各羽根71、側板72、主板73は、樹脂モールディング等により一体成形されている。 Each blade 71 is disposed around the axis Z of the rotating shaft 70. Each blade 71, side plate 72, and main plate 73 constituting the impeller 7a are integrally formed by resin molding or the like.
 このように構成される羽根車7aは、回転軸70の回転により、回転軸方向の一端側の吸入口74から羽根車7a内の羽根間空間(各羽根71の間の空間)に流入した空気を、遠心力により羽根車7aの径方向外側に向けて吹き出すようになっている。 The impeller 7a configured as described above is the air that flows into the inter-blade space (the space between the blades 71) in the impeller 7a from the suction port 74 on one end side in the rotation axis direction due to the rotation of the rotation shaft 70. Are blown out radially outward of the impeller 7a by centrifugal force.
 続いて、本実施形態の羽根71の形状について説明する。図4~図6は、図3における各矢視図であり、本実施形態の羽根71の形状を示している。なお、説明の都合上、図4~図6では、側板72および主板73の図示を省略すると共に、図3中の各矢印A~Cの方向における代表的な3枚の羽根71を図示している。 Subsequently, the shape of the blade 71 of the present embodiment will be described. 4 to 6 are views taken along arrows in FIG. 3, and show the shape of the blade 71 of the present embodiment. For convenience of explanation, the side plate 72 and the main plate 73 are not shown in FIGS. 4 to 6, and three typical blades 71 in the directions of arrows A to C in FIG. 3 are shown. Yes.
 各羽根71には、図4に示すように、羽根車7aの内周側における羽根71の両端の部位71a、71b間に内周縁部(翼前縁)711が形成されている。また、各羽根71には、図5に示すように、羽根車7aの外周側における羽根71の両端の部位71a、71b間に外周縁部(翼後縁)712が形成されている。 As shown in FIG. 4, each blade 71 has an inner peripheral edge (blade leading edge) 711 formed between the portions 71a and 71b at both ends of the blade 71 on the inner peripheral side of the impeller 7a. Further, as shown in FIG. 5, each blade 71 has an outer peripheral edge portion (blade trailing edge) 712 between portions 71 a and 71 b at both ends of the blade 71 on the outer peripheral side of the impeller 7 a.
 本実施形態の各羽根71は、図6に示すように、回転軸方向から見たとき、内周縁部711における回転軸方向の一端側の部位711aが、内周縁部711における回転軸方向の他端側における部位711bよりも羽根車7aの回転方向Rの前方に位置している。 As shown in FIG. 6, each blade 71 of the present embodiment has a portion 711 a on one end side in the rotation axis direction in the inner peripheral edge portion 711 in addition to the rotation axis direction in the inner peripheral edge portion 711. It is located in front of the rotation direction R of the impeller 7a rather than the part 711b on the end side.
 前述のように、本実施形態の羽根車7aは、回転軸方向から吸い込んだ空気を径方向外側に向けて吹き出す構成となっている。このため、内周縁部711における回転軸方向の一端側の部位711aを、内周縁部711における回転軸方向の他端側の部位711bよりも回転方向Rの前方に位置させることにより、側板72側にて回転軸方向から羽根間空間に空気を吸い込み易くなる。この結果、側板72側の羽根間空間に流入する空気の流量を増加させることができる。なお、以下では、内周縁部711における回転軸方向の一端側の部位711aを前進部位711aと呼び、内周縁部711における回転軸方向の他端側の部位711bを後退部位711bと呼ぶことがある。 As described above, the impeller 7a of the present embodiment is configured to blow out the air sucked from the rotation axis direction toward the radially outer side. For this reason, by positioning the portion 711a on the one end side in the rotation axis direction in the inner peripheral edge 711 in front of the portion 711b on the other end side in the rotation axis direction in the inner peripheral edge 711, the side plate 72 side It becomes easy to suck air into the space between the blades from the rotation axis direction. As a result, the flow rate of air flowing into the space between the blades on the side plate 72 side can be increased. In the following, the part 711a on one end side in the rotation axis direction in the inner peripheral edge 711 may be referred to as a forward movement part 711a, and the part 711b on the other end side in the rotation axis direction in the inner peripheral edge 711 may be referred to as a backward movement part 711b. .
 続いて、各羽根71の内周縁部711および外周縁部712の具体的な形状について、図7、図8の子午面図を用いて説明する。なお、「子午面」とは、羽根車7aにおける回転軸70を含む断面に羽根71の形状を回転投影した面である。 Subsequently, specific shapes of the inner peripheral edge portion 711 and the outer peripheral edge portion 712 of each blade 71 will be described with reference to meridional views of FIGS. The “meridional surface” is a surface obtained by rotationally projecting the shape of the blade 71 on a cross section including the rotation shaft 70 in the impeller 7a.
 図7、図8に示すように、本実施形態の羽根71の内周縁部711は、羽根車7aにおける側板72側の内周径が主板73側の内周径よりも大きくなるように、主板73側から側板72側に向かって回転軸70の軸線Zから離れる構成となっている。なお、羽根車7aの内周径は、回転軸70の径方向において、各羽根71の内周縁部711を通る内接円の直径である。 As shown in FIGS. 7 and 8, the inner peripheral edge 711 of the blade 71 of the present embodiment is such that the inner peripheral diameter on the side plate 72 side of the impeller 7 a is larger than the inner peripheral diameter on the main plate 73 side. It is configured to be separated from the axis Z of the rotary shaft 70 from the 73 side toward the side plate 72 side. The inner peripheral diameter of the impeller 7 a is a diameter of an inscribed circle that passes through the inner peripheral edge 711 of each blade 71 in the radial direction of the rotating shaft 70.
 ところで、遠心式多翼送風機では、羽根71の内周縁部711における入口角αと、内周縁部711に流入する空気の流入角βとの差(入射角γ)が大きいと、羽根間空間に剥離領域が形成されて失速することから、入射角γが小さいほど理想的な状態となる。 By the way, in the centrifugal multiblade blower, if the difference (incidence angle γ) between the inlet angle α at the inner peripheral edge 711 of the blade 71 and the inflow angle β of air flowing into the inner peripheral edge 711 is large, the space between the blades is reduced. Since the separation region is formed and stalls, the smaller the incident angle γ, the more ideal the state becomes.
 しかし、通常の遠心式多翼送風機では、主板73側に比べて、側板72側の内周縁部711における入口角αと流入角βとの差が大きくなり易く、側板72側の羽根間空間にて空気流れの剥離が生じ易いといった傾向がある。 However, in a normal centrifugal multiblade fan, the difference between the inlet angle α and the inflow angle β at the inner peripheral edge 711 on the side plate 72 side is likely to be larger than that on the main plate 73 side, and the interblade space on the side plate 72 side is larger. Therefore, the air flow tends to be peeled off.
 そこで、本実施形態では、羽根車7aの子午面上に現れる羽根71の内周縁部711に対して所定方向に交差する各断面上での入口角αを、側板72側から主板73側に亘る全域で均一となるように設定している。なお、「均一」とは、側板72側から主板73側に亘る全域で入口角αにズレがない状態、若しくは、±5°以内の微小なズレしかない状態を意味する。 Therefore, in the present embodiment, the entrance angle α on each cross section intersecting in a predetermined direction with respect to the inner peripheral edge portion 711 of the blade 71 appearing on the meridional surface of the impeller 7a extends from the side plate 72 side to the main plate 73 side. It is set to be uniform throughout the entire area. “Uniform” means a state where there is no deviation in the entrance angle α in the entire region from the side plate 72 side to the main plate 73 side, or a state where there is only a minute deviation within ± 5 °.
 ここで、図9は、図8のIX-IX断面図であり、図10は、図8のX-X断面図である。なお、IX-IX断面は、羽根71における主板73側の部位を回転軸方向と直交する方向に切断したときの断面である。また、X-X断面は、羽根71における側板72の部位を回転軸の軸線向と直交する方向に切断したときの断面である。 Here, FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 8, and FIG. 10 is a cross-sectional view taken along the line XX in FIG. The IX-IX cross section is a cross section when a portion of the blade 71 on the main plate 73 side is cut in a direction perpendicular to the rotation axis direction. Further, the XX cross section is a cross section when the portion of the side plate 72 in the blade 71 is cut in a direction orthogonal to the axial direction of the rotation axis.
 具体的には、本実施形態では、図9、図10に示すように、各羽根71の内周縁部711における回転軸方向に対して直交する各断面での入口角αm、αsを、側板72側から主板73側に亘る全域で均一となる角度(例えば、55°~76°の角度)に設定している。 Specifically, in the present embodiment, as shown in FIGS. 9 and 10, the side plates 72 represent the entrance angles αm and αs in each cross section orthogonal to the rotation axis direction at the inner peripheral edge 711 of each blade 71. An angle that is uniform over the entire area from the side to the main plate 73 side (for example, an angle of 55 ° to 76 °) is set.
 本実施形態では、入口角αm、αsを羽根71の内周縁部711を通る内接円の接線(図9、図10中の一点鎖線)と、羽根71の正圧面713側の内側端部713aにおける接線(図9、図10中の二点鎖線)とのなす角度としている。 In the present embodiment, the entrance angles αm and αs are tangent to the inscribed circle (the dashed line in FIGS. 9 and 10) passing through the inner peripheral edge 711 of the blade 71 and the inner end 713 a of the blade 71 on the positive pressure surface 713 side. The angle formed by the tangent line (two-dot chain line in FIGS. 9 and 10).
 ここで、上記問題として説明したように、各羽根71の内周縁部711の入口角αm、αsを、側板72側から主板73側に亘る全域で均一するだけでは、側板72側における空気流れの剥離を充分に抑制することが難しい。 Here, as explained as the above problem, the air flow on the side plate 72 side can be obtained only by making the inlet angles αm and αs of the inner peripheral edge 711 of each blade 71 uniform over the entire region from the side plate 72 side to the main plate 73 side. It is difficult to sufficiently suppress peeling.
 このため、本実施形態では、図7に示すように、羽根車7aにおける側板72側の外周径が主板73側の外周径よりも大きくなるように、各羽根71の外周縁部712を主板73側から側板72側に向かって回転軸70の軸線Zから離れる形状としている。なお、羽根車7aの外周径は、回転軸70の径方向において、各羽根71の外周縁部712を通る外接円の直径である。 For this reason, in this embodiment, as shown in FIG. 7, the outer peripheral edge portion 712 of each blade 71 is arranged on the main plate 73 so that the outer peripheral diameter on the side plate 72 side in the impeller 7 a is larger than the outer peripheral diameter on the main plate 73 side. The shape is separated from the axis Z of the rotary shaft 70 from the side toward the side plate 72 side. The outer peripheral diameter of the impeller 7 a is the diameter of a circumscribed circle passing through the outer peripheral edge 712 of each blade 71 in the radial direction of the rotating shaft 70.
 具体的には、本実施形態の羽根71は、主板73側から側板72側に向かって内周径が大きくなり、且つ、主板73側から側板72側に向かって外周径が大きくなるように構成されている(d1>d2、D1>D2)。これにより、本実施形態の羽根車7aは、外形状が逆台形状となっている。 Specifically, the blade 71 of the present embodiment is configured such that the inner peripheral diameter increases from the main plate 73 side to the side plate 72 side, and the outer peripheral diameter increases from the main plate 73 side to the side plate 72 side. (D1> d2, D1> D2). Thereby, as for the impeller 7a of this embodiment, the outer shape becomes a reverse trapezoid shape.
 さらに、本実施形態では、側板側内外径比が主板側内外径比よりも小さくなっている。なお、側板側内外径比は、羽根車7aの側板72側における内周径d1に対する外周径D1の比(=D1/d1)であり、主板側内外径比は、主板73側における内周径d2に対する外周径D2の比(D2/d2)である。 Furthermore, in this embodiment, the side plate side inner / outer diameter ratio is smaller than the main plate side inner / outer diameter ratio. The side plate side inner / outer diameter ratio is the ratio of the outer peripheral diameter D1 to the inner peripheral diameter d1 on the side plate 72 side of the impeller 7a (= D1 / d1), and the main plate side inner / outer diameter ratio is the inner peripheral diameter on the main plate 73 side. It is a ratio (D2 / d2) of the outer peripheral diameter D2 to d2.
 次に、本実施形態の空調装置1の作動を説明する。乗員の操作等により空調装置1の運転が開始されると、各導入口3、4を介して空調ケーシング2内に導入された空気が、送風機7にて各吹出口14、15、17に向けて送風される。送風機7にて送風された送風空気は、蒸発器9、ヒータコア10、エアミックスドア13にて所望の温度に調整され、各吹出口14、15、17の何れかの吹出口から車室内に吹き出される。 Next, the operation of the air conditioner 1 of this embodiment will be described. When the operation of the air conditioner 1 is started by an occupant's operation or the like, the air introduced into the air conditioning casing 2 through the inlets 3 and 4 is directed to the outlets 14, 15, and 17 by the blower 7. And blown. The blown air blown by the blower 7 is adjusted to a desired temperature by the evaporator 9, the heater core 10, and the air mix door 13, and blown out from any one of the outlets 14, 15, and 17 into the vehicle interior. Is done.
 ここで、本実施形態の送風機7では、羽根車7aの内周径が主板73側から側板72側に向かって大きくなるように、羽根71の内周縁部711を主板73側から側板72側に向かって回転軸70の軸線Zから離れる形状としている。これにより、羽根車7aの側板72側における通風抵抗を低減し、回転軸方向から流れる空気を側板72側の羽根間空間に流れ易くすることができる。 Here, in the blower 7 of the present embodiment, the inner peripheral edge 711 of the blade 71 is moved from the main plate 73 side to the side plate 72 side so that the inner peripheral diameter of the impeller 7a increases from the main plate 73 side toward the side plate 72 side. The shape is away from the axis Z of the rotating shaft 70. Thereby, the ventilation resistance in the side plate 72 side of the impeller 7a can be reduced, and the air flowing from the rotation axis direction can easily flow into the space between the blades on the side plate 72 side.
 また、本実施形態の送風機7では、各羽根71の内周縁部711における回転軸70の軸線に対して直交する各断面での入口角αm、αsを側板72側から主板73側に亘る全域で均一な角度としている。これにより、通常の遠心式多翼送風機に比べて、側板72側における空気流れの剥離を抑えて、回転軸方向から流れる空気を、吸入口74付近の羽根間空間へ流れ易くすることができる。 Further, in the blower 7 of the present embodiment, the inlet angles αm and αs in each cross section orthogonal to the axis of the rotation shaft 70 in the inner peripheral edge 711 of each blade 71 are set over the entire region from the side plate 72 side to the main plate 73 side. The angle is uniform. Thereby, compared with a normal centrifugal multiblade fan, separation of the air flow on the side plate 72 side can be suppressed, and the air flowing from the rotation axis direction can be easily flowed to the space between the blades near the suction port 74.
 さらに、本実施形態の送風機7では、羽根71の外周縁部712を主板73側から側板72側に向かって回転軸70の軸線Zから離れる形状としている。これにより、各羽根71の内周縁部711の入口角αm、αsを側板72側から主板73側に亘る全域で均一な角度とした際に問題となる羽根車7aの空気出口側における回転軸方向の流速分布の均一化を図っている。 Furthermore, in the blower 7 of the present embodiment, the outer peripheral edge 712 of the blade 71 has a shape that is separated from the axis Z of the rotary shaft 70 from the main plate 73 side toward the side plate 72 side. As a result, the rotational axis direction on the air outlet side of the impeller 7a, which becomes a problem when the inlet angles αm and αs of the inner peripheral edge portion 711 of each blade 71 are uniform over the entire region from the side plate 72 side to the main plate 73 side, The flow velocity distribution is uniform.
 この点について説明すると、遠心式多翼送風機では、回転数および通風抵抗が一定の条件下において、羽根車7aの空気出口側における流量が外周径の二乗で増加する。このため、羽根車7aの外周径を主板73側よりも側板72側で拡大することにより、羽根車7aの側板72側における空気出口側の流量が増加し、これに伴って羽根車7aの側板72側における空気出口側の流速が速くなる。すなわち、羽根車7aの空気出口側における側板72側の流速を主板73側の流速に近づけることができる。 Describing this point, in the centrifugal multiblade fan, the flow rate on the air outlet side of the impeller 7a increases by the square of the outer diameter under conditions where the rotational speed and the ventilation resistance are constant. For this reason, by enlarging the outer peripheral diameter of the impeller 7a on the side plate 72 side rather than the main plate 73 side, the flow rate on the air outlet side on the side plate 72 side of the impeller 7a increases, and accordingly the side plate of the impeller 7a. The flow velocity on the air outlet side on the 72 side becomes faster. That is, the flow rate on the side plate 72 side on the air outlet side of the impeller 7a can be made closer to the flow rate on the main plate 73 side.
 その上、羽根車7aの側板72側における空気出口側の流量増加に伴い側板72側における内周縁部711への流入空気の流量が増える。この側板72側における内周縁部711への流入空気の流量増加は、側板72側における流速が速くなる方に作用することから側板72側における入口角と流入角との差を縮小させることができる。 Furthermore, the flow rate of the inflow air to the inner peripheral edge 711 on the side plate 72 side increases as the flow rate on the air outlet side on the side plate 72 side of the impeller 7a increases. The increase in the flow rate of the inflow air to the inner peripheral edge 711 on the side plate 72 side acts to increase the flow velocity on the side plate 72 side, so that the difference between the inlet angle and the inflow angle on the side plate 72 side can be reduced. .
 すなわち、本実施形態では、側板72側における羽根車7aの内径が、主板73側よりも大きくなっていることから、図9、図10に示すように、側板72側における周速度Usが主板73側における周速度Umよりも速くなる(Us>Um)。 That is, in this embodiment, since the inner diameter of the impeller 7a on the side plate 72 side is larger than that on the main plate 73 side, the peripheral speed Us on the side plate 72 side is set to the main plate 73 as shown in FIGS. It becomes faster than the peripheral speed Um on the side (Us> Um).
 これに対して、側板72側における羽根71の内周縁部711に流入する空気の絶対流入速度は、内周縁部711への流入空気の流量増加に伴う流速の増加分Cpだけ速い速度(=Cs+Cp)となる。 On the other hand, the absolute inflow speed of the air flowing into the inner peripheral edge portion 711 of the blade 71 on the side plate 72 side is a speed that is faster by the increase Cp of the flow velocity accompanying the increase in the flow rate of the inflowing air to the inner peripheral edge portion 711 (= Cs + Cp )
 ここで、周速度成分および流入速度成分を合成して得られる空気の相対流入速度Vと、周速度成分とのなす角度を流入角βと定義したとき、側板72側における流入角βsが主板73側における流入角βmに近い角度となる。 Here, when the angle formed by the relative inflow velocity V of air obtained by combining the peripheral velocity component and the inflow velocity component and the peripheral velocity component is defined as the inflow angle β, the inflow angle βs on the side plate 72 side is the main plate 73. This is an angle close to the inflow angle βm on the side.
 本実施形態の羽根車7aでは、側板72側における入口角αsを主板73側の入口角αmに揃えているので、側板72側における入口角αsと流入角βsとの差(入射角γs)が縮小される。 In the impeller 7a of the present embodiment, the entrance angle αs on the side plate 72 side is aligned with the entrance angle αm on the main plate 73 side, so the difference (incident angle γs) between the entrance angle αs and the inflow angle βs on the side plate 72 side is. Reduced.
 これにより、側板72側での空気流れの剥離が充分に抑制されることで、側板72側での空気流れの剥離に伴う側板72側における空気出口側の流速低下を緩和させることができる。このため、羽根車7aの空気出口側における側板72側の流速を主板73側の流速に一層近づけることが可能となる。 Thereby, separation of the air flow on the side plate 72 side is sufficiently suppressed, so that a decrease in the flow velocity on the air outlet side on the side plate 72 side due to separation of the air flow on the side plate 72 side can be mitigated. For this reason, the flow velocity on the side plate 72 side on the air outlet side of the impeller 7a can be made closer to the flow velocity on the main plate 73 side.
 この結果、例えば、図8の羽根車7aの右側に示す流速分布の如く、羽根車7aの空気出口側における回転軸方向の流速分布を充分に均一化させることが可能となり、送風機7の効率向上および騒音抑制を図ることができる。 As a result, for example, the flow velocity distribution in the direction of the rotation axis on the air outlet side of the impeller 7a can be sufficiently uniformed like the flow velocity distribution shown on the right side of the impeller 7a in FIG. In addition, noise suppression can be achieved.
 特に、本実施形態では、内周縁部711における回転軸方向の一端側の部位711aを回転軸方向の他端側における部位711bよりも回転方向Rの前方に位置させる構成としている。 Particularly, in the present embodiment, a portion 711a on one end side in the rotation axis direction in the inner peripheral edge portion 711 is positioned in front of the portion 711b on the other end side in the rotation axis direction in the rotation direction R.
 これによれば、側板72側の羽根間空間に流入する空気の流量の増加により、側板72側における内周縁部711に流入する空気の流速(絶対流入速度)を増加させることができるので、側板72側における入射角γsを一層縮小させることが可能となる。この結果、側板72側での空気流れの剥離をより効果的に抑制可能となる。
(第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、第1実施形態に対して主板73の形状を変更した例について説明する。なお、本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
According to this, the flow rate of air flowing into the inner peripheral edge 711 on the side plate 72 side (absolute inflow rate) can be increased by increasing the flow rate of air flowing into the interblade space on the side plate 72 side. The incident angle γs on the 72 side can be further reduced. As a result, separation of the air flow on the side plate 72 side can be more effectively suppressed.
(Second Embodiment)
Next, a second embodiment will be described. This embodiment demonstrates the example which changed the shape of the main board 73 with respect to 1st Embodiment. In the present embodiment, description of the same or equivalent parts as in the first embodiment will be omitted or simplified.
 本実施形態の羽根車7aは、図11の斜視図、図12の半断面図、および図13の上面図に示すように、第1実施形態に対して主板73の外周径を小さくしている。具体的には、本実施形態では、図13に示すように、羽根車7aを回転軸方向から見たときに、主板73と内周縁部711における前進部位711aとが重なり合わないように、主板73の外周径を小さくしている。 As shown in the perspective view of FIG. 11, the half sectional view of FIG. 12, and the top view of FIG. 13, the impeller 7a of this embodiment has a smaller outer diameter of the main plate 73 than the first embodiment. . Specifically, in this embodiment, as shown in FIG. 13, when the impeller 7a is viewed from the direction of the rotation axis, the main plate 73 and the advancing portion 711a in the inner peripheral edge 711 do not overlap each other. The outer peripheral diameter of 73 is made small.
 より詳しくは、図14の子午面図に示すように、回転軸70の軸線Zから主板73の外周端までの距離L1が、回転軸70の軸線Zから内周縁部711における前進部位711aまでの距離L2よりも小さくなっている。 More specifically, as shown in the meridional view of FIG. 14, the distance L1 from the axis Z of the rotating shaft 70 to the outer peripheral end of the main plate 73 is from the axis Z of the rotating shaft 70 to the advance portion 711a in the inner peripheral edge 711. It is smaller than the distance L2.
 その他の構成については、第1実施形態と同様である。従って、本実施形態の送風機7によれば、第1実施形態と同等の効果を奏する。 Other configurations are the same as those in the first embodiment. Therefore, according to the air blower 7 of this embodiment, there exists an effect equivalent to 1st Embodiment.
 ここで、内周縁部711における前進部位711aを後退部位711bよりも回転方向Rの前方に位置させる構成(三次元翼)とすると、各羽根71、側板72、および主板73を一体成形する際に、前進部位711aがアンダーカットとなってしまう虞がある。 Here, when the forward part 711a in the inner peripheral edge 711 is configured to be positioned in front of the backward part 711b in the rotational direction R (three-dimensional wing), each blade 71, side plate 72, and main plate 73 are integrally formed. There is a possibility that the forward movement portion 711a becomes undercut.
 これに対して本実施形態では、主板73の外周径を小さくして、主板73と内周縁部711における前進部位711aとが回転軸方向に重なり合わない形状としている。このため、少なくとも主板73と各羽根71とをモールディングにより一体成形する場合に、型枠を回転軸方向にスライドさせることで型枠から成形品を取り出すことが可能となる。この結果、羽根車7aを簡易に製造することが可能となり、コスト低減を図ることができる。
(第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、第1、第2実施形態に対して羽根車7aの形状を変更した例について説明する。なお、本実施形態では、第1、第2実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
On the other hand, in the present embodiment, the outer diameter of the main plate 73 is reduced so that the main plate 73 and the forward movement portion 711a in the inner peripheral edge 711 do not overlap in the rotation axis direction. For this reason, when at least the main plate 73 and each blade 71 are integrally formed by molding, the molded product can be taken out from the mold by sliding the mold in the direction of the rotation axis. As a result, the impeller 7a can be easily manufactured, and the cost can be reduced.
(Third embodiment)
Next, a third embodiment will be described. This embodiment demonstrates the example which changed the shape of the impeller 7a with respect to 1st, 2nd embodiment. In the present embodiment, description of the same or equivalent parts as in the first and second embodiments will be omitted or simplified.
 本実施形態では、図15に示すように、羽根車7aの側板72側における内周径d1に対する外周径D1の比(側板側内外径比)を、主板73側における内周径d2に対する外周径D2の比(主板側内外径比)よりも大きくなる構成としている(D1/d1>D2/d2)。 In this embodiment, as shown in FIG. 15, the ratio of the outer peripheral diameter D1 to the inner peripheral diameter d1 on the side plate 72 side of the impeller 7a (side plate side inner / outer diameter ratio) is set to the outer peripheral diameter with respect to the inner peripheral diameter d2 on the main plate 73 side. The ratio is larger than the ratio of D2 (main plate side inner / outer diameter ratio) (D1 / d1> D2 / d2).
 具体的には、本実施形態では、羽根71の外周縁部712を主板73側から側板72側に向かって回転軸70の軸線Zから離れる構成とし、羽根71の内周縁部711を回転軸方向に沿って延びる構成としている。つまり、本実施形態の羽根車7aは、側板72側の外周径が主板73側の外周径よりも大きく、羽根車7aにおける側板72側の内周径と主板73側の内周径とが同等となっている。 Specifically, in the present embodiment, the outer peripheral edge 712 of the blade 71 is configured to be separated from the axis Z of the rotary shaft 70 from the main plate 73 side to the side plate 72 side, and the inner peripheral edge 711 of the blade 71 is set in the rotational axis direction. It is set as the structure extended along. That is, the impeller 7a of the present embodiment has an outer peripheral diameter on the side plate 72 side larger than an outer peripheral diameter on the main plate 73 side, and the inner peripheral diameter on the side plate 72 side and the inner peripheral diameter on the main plate 73 side in the impeller 7a are equal. It has become.
 その他の構成については、第1実施形態と同様であり、本実施形態の送風機7によれば、第1実施形態の効果と同様の効果を奏する。 Other configurations are the same as those in the first embodiment, and according to the blower 7 of the present embodiment, the same effects as those of the first embodiment are achieved.
 ここで、第1実施形態の如く、側板側内外径比(=D1/d1)を主板側内外径比(D2/d2)よりも小さい構成とした場合、羽根車7aの側板72側の内周径が大きくなり過ぎると、側板72側の内周縁部711における周速度Usが増大してしまう。この結果、側板72側の内周縁部711における流入角βsが小さくなり、側板72側の内周縁部711における入口角αsと流入角βsとの差が拡大してしまう虞がある。 Here, as in the first embodiment, when the side plate side inner / outer diameter ratio (= D1 / d1) is smaller than the main plate side inner / outer diameter ratio (D2 / d2), the inner periphery of the impeller 7a on the side plate 72 side. If the diameter becomes too large, the peripheral speed Us at the inner peripheral edge 711 on the side plate 72 side will increase. As a result, the inflow angle βs at the inner peripheral edge 711 on the side plate 72 side becomes small, and the difference between the inlet angle αs and the inflow angle βs at the inner peripheral edge 711 on the side plate 72 side may increase.
 これに対して、本実施形態では、羽根車7aの側板側内外径比を主板側内外径比よりも大きい構成としているので、羽根車7aの側板72側の内周径が大きくなり過ぎず、側板72側の内周縁部711における周速度Usの増加を抑制できる。つまり、本実施形態の構成によれば、側板72側の流量増加に加えて、側板72側の内周縁部711における流入角に影響を及ぼす側板72側の内周縁部711における周速度の増加を抑制することが可能となる。 On the other hand, in this embodiment, since the side plate side inner / outer diameter ratio of the impeller 7a is larger than the main plate side inner / outer diameter ratio, the inner peripheral diameter of the impeller 7a on the side plate 72 side does not become too large. An increase in the peripheral speed Us at the inner peripheral edge 711 on the side plate 72 side can be suppressed. That is, according to the configuration of the present embodiment, in addition to the increase in the flow rate on the side plate 72 side, the increase in the peripheral speed at the inner peripheral edge portion 711 on the side plate 72 side that affects the inflow angle at the inner peripheral edge portion 711 on the side plate 72 side. It becomes possible to suppress.
 これにより、側板72側の内周縁部711における流入角βsが大きくなり、側板72側の内周縁部711における入口角αsと流入角βsとの差が縮小されるので、側板72側における剥離を効果的に抑制することが可能となる。
(第4実施形態)
 次に、第4実施形態について説明する。なお、本実施形態では、第1~第3実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
As a result, the inflow angle βs at the inner peripheral edge 711 on the side plate 72 side is increased, and the difference between the inlet angle αs and the inflow angle βs at the inner peripheral edge 711 on the side plate 72 side is reduced. It becomes possible to suppress effectively.
(Fourth embodiment)
Next, a fourth embodiment will be described. In the present embodiment, description of the same or equivalent parts as in the first to third embodiments will be omitted or simplified.
 本実施形態では、羽根71の内周縁部711に流入する空気の流れ方向を仮想した仮想流線を複数設定し、仮想流線上における各断面での入口角αを側板72側から主板73側に亘る全域で均一な角度(例えば、55°~76°の角度)としている。 In the present embodiment, a plurality of virtual streamlines imagining the flow direction of the air flowing into the inner peripheral edge 711 of the blade 71 are set, and the inlet angle α in each cross section on the virtual streamlines is changed from the side plate 72 side to the main plate 73 side. The angle is uniform over the entire area (for example, an angle of 55 ° to 76 °).
 具体的には、本実施形態では、図16に示すように、第1~第6分割線Yd1~Yd6を仮想流線として設定し、各仮想流線Yd1~Yd6上における各断面上での入口角αが、羽根71の内周縁部711の全範囲に亘って均一な角度となるようにしている。 Specifically, in the present embodiment, as shown in FIG. 16, the first to sixth dividing lines Yd1 to Yd6 are set as virtual streamlines, and the entrances on the respective cross sections on the virtual streamlines Yd1 to Yd6. The angle α is a uniform angle over the entire range of the inner peripheral edge 711 of the blade 71.
 ここで、仮想流線の設定について説明すると、羽根71の内周縁部711を羽根71の内周縁部711に沿った長さが均等になるように所定数に分割し、内周縁部711における分割点Yinを設定する。なお、本実施形態では、内周縁部711における分割点Yinを、羽根71の回転軸方向の一端側から順に、第1内周側分割点Yi1、第2内周側分割点Yi2、・・・、第6内周側分割点Yi6として設定している。 Here, the setting of the virtual streamline will be described. The inner peripheral edge 711 of the blade 71 is divided into a predetermined number so that the length along the inner peripheral edge 711 of the blade 71 is equal, and the inner peripheral edge 711 is divided. Set the point Yin. In the present embodiment, the dividing point Yin at the inner peripheral edge 711 is set in order from the one end side in the rotation axis direction of the blade 71 in order from the first inner peripheral dividing point Yi1, the second inner peripheral dividing point Yi2,. , The sixth inner circumference side dividing point Yi6 is set.
 同様に、羽根71の外周縁部712を羽根71の外周縁部712に沿った長さが均等になるように所定数に分割し、外周縁部712における分割点Yonを設定する。なお、本実施形態では、外周縁部712の分割点Yonを、羽根71の回転軸方向の一端側から順に、第1外周側分割点Yo1、第2外周側分割点Yo2、・・・、第6外周側分割点Yo6として設定している。 Similarly, the outer peripheral edge 712 of the blade 71 is divided into a predetermined number so that the length along the outer peripheral edge 712 of the blade 71 is uniform, and a dividing point Yon at the outer peripheral edge 712 is set. In this embodiment, the dividing point Yon of the outer peripheral edge portion 712 is divided into the first outer peripheral side dividing point Yo1, the second outer peripheral side dividing point Yo2,. It is set as 6 outer peripheral side dividing points Yo6.
 そして、内周側分割点Yinおよび外周側分割点Yonのうち、羽根71の回転軸方向の一端側から順に数えた際に、同一番目となる分割点同士を結んだ線(第1~第6分割線Yd1~Yd6)を仮想流線として設定する。 Of the inner circumferential side dividing point Yin and the outer circumferential side dividing point Yon, when counting sequentially from one end side in the rotation axis direction of the blade 71, lines connecting the same division points (first to sixth lines). The dividing lines Yd1 to Yd6) are set as virtual streamlines.
 その他の構成については、第1実施形態と同様であり、本実施形態の送風機7によれば、第1実施形態と同様の効果を奏する。さらに、本実施形態の送風機7によれば、羽根71の設計面が交差せず、羽根車7aにおける羽根71の設計が行い易くなるといった利点がある。 Other configurations are the same as those of the first embodiment, and the blower 7 of the present embodiment has the same effects as those of the first embodiment. Furthermore, according to the blower 7 of this embodiment, there exists an advantage that the design surface of the blade | wing 71 does not cross | intersect and it becomes easy to design the blade | wing 71 in the impeller 7a.
 なお、本実施形態では、羽根71の内周縁部711および外周縁部712を6つに分割して6本の仮想流線を設定する例について説明したが、これに限定されず、仮想流線の設定本数は任意の本数(例えば、10本)に設定してもよい。 In the present embodiment, the example in which the inner peripheral edge 711 and the outer peripheral edge 712 of the blade 71 are divided into six and six virtual streamlines are set has been described. The set number may be set to an arbitrary number (for example, 10).
 以上、本開示の実施形態について説明したが、本開示はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、例えば、以下のように種々変形可能である。 The embodiment of the present disclosure has been described above, but the present disclosure is not limited thereto, and various modifications can be made as follows, for example, without departing from the scope described in each claim.
 (1)上述の各実施形態では、羽根71の形状として、内周縁部711における回転軸方向の一端側の部位711aが、回転軸方向の他端側における部位711bよりも羽根車7aの回転方向Rの前方に位置する例について説明したが、これに限定されない。例えば、主板73側から側板72側に向かって内周縁部711の位置が、羽根車7aの回転方向Rの後方に位置する羽根71を採用してもよい。 (1) In each of the above-described embodiments, as the shape of the blade 71, the portion 711a on one end side in the rotation axis direction of the inner peripheral edge 711 is in the rotation direction of the impeller 7a rather than the portion 711b on the other end side in the rotation axis direction. Although the example located ahead of R was demonstrated, it is not limited to this. For example, you may employ | adopt the blade | wing 71 located in the back of the rotation direction R of the impeller 7a in the position of the inner peripheral edge part 711 toward the side plate 72 side from the main plate 73 side.
 (2)上述の各実施形態では、側板72を、回転軸方向の一端側の部位が他端側の部位よりも回転軸70の径方向内側に位置するように湾曲した環形状とする例を説明したが、これに限定されない。例えば、図17に示すように、側板72を回転軸方向に沿って延びる円環形状とし、各羽根71における回転軸方向の一端側における径方向外側に存する外周縁部712に連結してもよい。 (2) In each of the above-described embodiments, the side plate 72 is an annular shape that is curved so that a portion on one end side in the rotation axis direction is positioned on the radially inner side of the rotation shaft 70 relative to a portion on the other end side. Although described, it is not limited to this. For example, as shown in FIG. 17, the side plate 72 may have an annular shape extending along the rotation axis direction, and may be connected to an outer peripheral edge portion 712 existing on the radially outer side at one end side in the rotation axis direction of each blade 71. .
 また、上述の各実施形態では、側板72が各羽根71の外周縁部712を回転軸70の径方向外側から覆うように連結される例について説明したが、これに限定されない。例えば、図18に示すように、側板72を各羽根71の回転軸方向の一端側における部位71aに連結してもよい。 Further, in each of the above-described embodiments, the example in which the side plate 72 is connected so as to cover the outer peripheral edge portion 712 of each blade 71 from the radially outer side of the rotating shaft 70 has been described, but the present invention is not limited to this. For example, as shown in FIG. 18, the side plate 72 may be connected to a portion 71 a on one end side in the rotation axis direction of each blade 71.
 いずれの形状を採用する場合であっても、羽根車7aを一体成形する際にアンダーカットが生じないように、主板73と側板72とを回転軸方向から見たときに、互いに重なり合わないようにすることが望ましい。勿論、羽根車7aを一体成形可能であれば、主板73と側板72とを回転軸方向から見たときに重なり合うように構成してもよい。 Whichever shape is adopted, when the main plate 73 and the side plate 72 are viewed from the direction of the rotation axis so as not to cause undercut when the impeller 7a is integrally formed, they do not overlap each other. It is desirable to make it. Of course, as long as the impeller 7a can be integrally formed, the main plate 73 and the side plate 72 may be configured to overlap when viewed from the rotation axis direction.
 (3)上述の第3実施形態では、羽根71の内周縁部711を回転軸方向に沿って延びる構成とする例について説明したが、羽根車7aの側板側内外径比が主板側内外径比よりも大きい構成であれば、羽根71の内周縁部711を主板73側から側板72側に向かって回転軸70の軸線Zから離れる構成としてもよい。 (3) In the above-described third embodiment, the example in which the inner peripheral edge 711 of the blade 71 extends along the rotation axis direction has been described, but the side plate side inner / outer diameter ratio of the impeller 7a is the main plate side inner / outer diameter ratio. If it is a bigger structure, it is good also as a structure which leaves | separates the inner peripheral edge part 711 of the blade | wing 71 from the axis line Z of the rotating shaft 70 toward the side plate 72 side from the main plate 73 side.
 (4)上述の各実施形態では、送風機7として片吸込式の送風機を採用する例を説明したが、これに限らず、回転軸方向の両側から空気を吸い込む両吸込式の送風機を採用してもよい。 (4) In each of the above-described embodiments, an example in which a single suction type blower is employed as the blower 7 has been described. However, the present invention is not limited thereto, and a double suction type blower that sucks air from both sides in the rotation axis direction is employed. Also good.
 この場合、例えば、図19や図20に示すように、上述の各実施形態で説明した羽根車7aと同様に構成された第1、第2羽根車部7aa、7abを用意し、各羽根車部7aa、7abの主板73a、73bを連結部材75で連結すればよい。 In this case, for example, as shown in FIGS. 19 and 20, first and second impeller parts 7aa and 7ab configured in the same manner as the impeller 7a described in the above-described embodiments are prepared. The main plates 73a and 73b of the portions 7aa and 7ab may be connected by the connecting member 75.
 なお、各羽根車部7aa、7abにおける各羽根71は、羽根車7aの子午面上での内周縁部711に対して所定方向に交差する各断面上での入口角αが側板72a、72b側から主板73a、73b側に亘る全域で均一となっているものとする。さらに、各羽根車部7aa、7abにおける羽根71の外周縁部712が主板73a、73b側から側板72a、72b側に向かって回転軸70の軸線Zから離れるように構成されているものとする。 In addition, each blade | wing 71 in each impeller part 7aa and 7ab has the entrance angle (alpha) on each cross section which cross | intersects the predetermined direction with respect to the inner peripheral part 711 on the meridian surface of the impeller 7a side plate 72a, 72b side To the main plates 73a and 73b. Further, it is assumed that the outer peripheral edge 712 of the blade 71 in each impeller portion 7aa, 7ab is configured to be separated from the axis Z of the rotary shaft 70 from the main plate 73a, 73b side toward the side plate 72a, 72b side.
 (5)上述の第1実施形態では、羽根車7aの子午面上での回転軸方向に直交する各断面上での入口角αを側板72側から主板73側に亘る全域で均一とする例について説明したが、これに限定されない。例えば、羽根車7aの子午面上での内周縁部711に対して直交する各断面上での入口角αを側板72側から主板73側に亘る全域で均一としてもよい。 (5) In the first embodiment described above, the entrance angle α on each cross section orthogonal to the rotational axis direction on the meridional surface of the impeller 7a is made uniform over the entire region from the side plate 72 side to the main plate 73 side. However, the present invention is not limited to this. For example, the entrance angle α on each cross section orthogonal to the inner peripheral edge 711 on the meridian surface of the impeller 7a may be uniform over the entire region from the side plate 72 side to the main plate 73 side.
 (6)上述の各実施形態では、車両用の空調装置1に送風機7を適用する例を説明したが、車両用に限らず他の空調装置に適用してもよい。 (6) In each of the above-described embodiments, the example in which the blower 7 is applied to the vehicle air conditioner 1 has been described, but the present invention may be applied not only to the vehicle but also to other air conditioners.
 (7)上述の各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。なお、上述の各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 (7) The above-described embodiments are not irrelevant and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Needless to say.
 また、上述の各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 Further, in each of the above-described embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly indicated that it is particularly essential and clearly specified in principle. It is not limited to the specific number except in a limited case.
 さらに、上述の各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 Furthermore, in each of the above-described embodiments, when referring to the shape, positional relationship, etc. of the component, etc., unless specifically stated or limited in principle to a specific shape, positional relationship, etc. The positional relationship is not limited.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (8)

  1.  回転軸(70)を中心に回転する羽根車(7a)、および前記羽根車(7a)を収容するケーシング(7b)を備え、少なくとも回転軸(70)の一端側に開口する前記ケーシング(7b)の吸入口(74)から吸入した空気を前記回転軸(70)の径方向外側に向けて吹き出す遠心式多翼送風機において、
     前記羽根車(7a)は、
     前記回転軸(70)に結合された主板(73)と、
     前記回転軸(70)の軸線の周囲に配設され、前記回転軸(70)の他端側が前記主板(73)に連結された複数枚の羽根(71)と、
     前記回転軸(70)の一端側にて前記複数枚の羽根(71)を連結する側板(72)と、を有し、
     前記複数枚の羽根(71)は、前記羽根車(7a)の子午面上の前記複数枚の羽根(71)のそれぞれの内周縁部(711)に対して所定方向に交差する断面上での入口角(α)が前記側板(72)側から前記主板(73)側に亘る全域で均一となっており、且つ、前記複数枚の羽根(71)の外周縁部(712)が前記主板(73)側から前記側板(72)側に向かって前記回転軸(70)の軸線から離れるように構成されていることを特徴とする遠心式多翼送風機。
    The casing (7b), which includes an impeller (7a) that rotates about the rotation shaft (70), and a casing (7b) that houses the impeller (7a), and that opens at least on one end side of the rotation shaft (70). In the centrifugal multiblade blower that blows out the air sucked from the suction port (74) toward the radially outer side of the rotating shaft (70),
    The impeller (7a)
    A main plate (73) coupled to the rotating shaft (70);
    A plurality of blades (71) disposed around the axis of the rotary shaft (70) and connected to the main plate (73) at the other end of the rotary shaft (70);
    A side plate (72) connecting the plurality of blades (71) on one end side of the rotating shaft (70),
    The plurality of blades (71) are on a cross section intersecting in a predetermined direction with respect to respective inner peripheral edges (711) of the plurality of blades (71) on the meridional surface of the impeller (7a). The entrance angle (α) is uniform over the entire area from the side plate (72) side to the main plate (73) side, and the outer peripheral edge (712) of the plurality of blades (71) is the main plate ( 73) A centrifugal multiblade fan configured to be away from the axis of the rotary shaft (70) from the side toward the side plate (72).
  2.  前記複数枚の羽根(71)は、前記内周縁部(711)における前記回転軸(70)の一端側の部位(711a)が、前記内周縁部(711)における前記回転軸(70)の他端側の部位(711b)よりも前記羽根車(7a)の回転方向(R)の前方に位置していることを特徴とする請求項1に記載の遠心式多翼送風機。 In the plurality of blades (71), a portion (711a) on one end side of the rotating shaft (70) in the inner peripheral edge (711) is in addition to the rotating shaft (70) in the inner peripheral edge (711). The centrifugal multiblade fan according to claim 1, wherein the centrifugal multiblade fan is located in front of the end portion (711b) in the rotational direction (R) of the impeller (7a).
  3.  前記主板(73)は、前記回転軸(70)方向において前記内周縁部(711)における前記回転軸(70)の一端側(711a)の部位と重なり合わないように前記複数枚の羽根(71)における前記回転軸(70)の他端側に連結されていることを特徴とする請求項2に記載の遠心式多翼送風機。 The main plate (73) has a plurality of blades (71) so as not to overlap a portion of one end side (711a) of the rotation shaft (70) in the inner peripheral edge (711) in the direction of the rotation shaft (70). The centrifugal multiblade fan according to claim 2, wherein the centrifugal multiblade fan is connected to the other end of the rotating shaft (70).
  4.  前記側板(72)は、前記複数枚の羽根(71)における前記回転軸(70)の一端側における前記回転軸(70)の径方向外側に存する部位(712)に連結されていることを特徴とする請求項1ないし3のいずれか1つに記載の遠心式多翼送風機。 The side plate (72) is connected to a portion (712) existing on the radially outer side of the rotation shaft (70) on one end side of the rotation shaft (70) in the plurality of blades (71). The centrifugal multiblade fan according to any one of claims 1 to 3.
  5.  前記側板(72)は、前記複数枚の羽根(71)における前記回転軸(70)の一端側における部位(71a)に連結されていることを特徴とする請求項1ないし3のいずれか1つに記載の遠心式多翼送風機。 The said side plate (72) is connected with the site | part (71a) in the one end side of the said rotating shaft (70) in the said several blade | wing (71), The one of Claim 1 thru | or 3 characterized by the above-mentioned. The centrifugal multiblade blower described in 1.
  6.  前記複数枚の羽根(71)は、前記回転軸(70)方向に対して直交する断面でのそれぞれの入口角(α)が、前記側板(72)側から前記主板(73)側に亘る全域で均一となっていることを特徴とする請求項1ないし5のいずれか1つに記載の遠心式多翼送風機。 In the plurality of blades (71), each inlet angle (α) in a cross section orthogonal to the direction of the rotation axis (70) has a whole area extending from the side plate (72) side to the main plate (73) side. The centrifugal multiblade fan according to any one of claims 1 to 5, wherein the centrifugal multiblade fan is uniform.
  7.  前記内周縁部(711)を周縁に沿った長さが等しくなるように所定数に分割し、前記複数枚の羽根(71)のそれぞれの外周縁部(712)を周縁に沿った長さが等しくなるように前記所定数に分割した際、前記内周縁部(711)における分割点、および前記外周縁部(712)における分割点のうち、同一番目の分割点同士を結んだ線を仮想流線としたとき、
     前記複数枚の羽根(71)は、前記仮想流線上における各断面でのそれぞれの入口角(α)が、前記側板(72)側から前記主板(73)側に亘る全域で均一となっていることを特徴とする請求項1ないし5のいずれか1つに記載の遠心式多翼送風機。
    The inner peripheral edge (711) is divided into a predetermined number so that the length along the peripheral edge is equal, and the outer peripheral edge (712) of each of the plurality of blades (71) has a length along the peripheral edge. When dividing into the predetermined number so as to be equal, a line connecting the same division points among the division points in the inner peripheral edge portion (711) and the division points in the outer peripheral edge portion (712) is virtually flowed. When a line
    Each of the plurality of blades (71) has a uniform inlet angle (α) in each cross section on the virtual streamline over the entire area from the side plate (72) side to the main plate (73) side. The centrifugal multiblade blower according to any one of claims 1 to 5, wherein the centrifugal multiblade blower is provided.
  8.  前記羽根車(7a)の前記側板(72)側における内周径(d1)に対する外周径(D1)の比を側板側内外径比(D1/d1)とし、前記羽根車(7a)の前記主板(73)側における内周径(d2)に対する外周径(D2)の比を主板側内外径比(D2/d2)としたとき、
     前記羽根車(7a)は、前記側板側内外径比(D1/d1)が前記主板側内外径比(D2/d2)よりも大きくなっていることを特徴とする請求項1ないし7のいずれか1つに記載の遠心式多翼送風機。
    The ratio of the outer peripheral diameter (D1) to the inner peripheral diameter (d1) on the side plate (72) side of the impeller (7a) is the side plate side inner / outer diameter ratio (D1 / d1), and the main plate of the impeller (7a) When the ratio of the outer peripheral diameter (D2) to the inner peripheral diameter (d2) on the (73) side is the main plate side inner / outer diameter ratio (D2 / d2),
    8. The impeller (7a) according to claim 1, wherein the side plate side inner / outer diameter ratio (D1 / d1) is larger than the main plate side inner / outer diameter ratio (D2 / d2). The centrifugal multiblade blower as described in one.
PCT/JP2013/003549 2012-06-26 2013-06-06 Centrifugal multi-blade blower WO2014002392A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157001276A KR101666923B1 (en) 2012-06-26 2013-06-06 Centrifugal multi-blade blower
CN201380034234.1A CN104411980B (en) 2012-06-26 2013-06-06 Centrifugal multi-blade pressure fan
DE112013003213.9T DE112013003213T5 (en) 2012-06-26 2013-06-06 Vielflügelzentrifugalgebläse
US14/410,796 US20150192143A1 (en) 2012-06-26 2013-06-06 Centrifugal multi-blade blower

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-142803 2012-06-26
JP2012142803 2012-06-26
JP2013100170A JP2014029149A (en) 2012-06-26 2013-05-10 Centrifugal multi-blade fan
JP2013-100170 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014002392A1 true WO2014002392A1 (en) 2014-01-03

Family

ID=49782594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003549 WO2014002392A1 (en) 2012-06-26 2013-06-06 Centrifugal multi-blade blower

Country Status (6)

Country Link
US (1) US20150192143A1 (en)
JP (1) JP2014029149A (en)
KR (1) KR101666923B1 (en)
CN (1) CN104411980B (en)
DE (1) DE112013003213T5 (en)
WO (1) WO2014002392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083865A (en) * 2018-08-16 2018-12-25 泛仕达机电股份有限公司 A kind of forward multiple wing centrifugal blower and its impeller

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150685A1 (en) * 2013-03-15 2014-09-25 Regal Beloit America, Inc. Fan
US9523370B2 (en) * 2014-04-07 2016-12-20 Hanon Systems Blower with curved blades
DE102015100107B4 (en) * 2015-01-07 2019-11-28 Halla Visteon Climate Control Corporation Blower wheel of a blower arrangement for an air conditioning system of a caterpillar
US9926832B2 (en) * 2015-04-24 2018-03-27 Briggs & Stratton Corporation Reverse fin cooling fan
US10167766B2 (en) 2015-04-24 2019-01-01 Briggs & Stratton Corporation Reverse fin cooling fan
KR102403728B1 (en) * 2015-10-07 2022-06-02 삼성전자주식회사 Turbofan for air conditioning apparatus
US10030667B2 (en) * 2016-02-17 2018-07-24 Regal Beloit America, Inc. Centrifugal blower wheel for HVACR applications
JP2018096323A (en) * 2016-12-15 2018-06-21 株式会社ヴァレオジャパン Blower
JP6973417B2 (en) * 2019-01-07 2021-11-24 株式会社デンソー Centrifugal blower
WO2020161850A1 (en) * 2019-02-07 2020-08-13 三菱電機株式会社 Centrifugal air blower and air conditioner using same
KR20220060844A (en) * 2020-11-05 2022-05-12 엘지전자 주식회사 Centrifugal fan for refrigerator
GB2602987B (en) * 2021-01-22 2023-01-11 Cool T Ltd Fan apparatus and method of use
CN117267169B (en) * 2023-11-23 2024-03-12 广东顺威精密塑料股份有限公司 Multi-wing centrifugal impeller with variable inlet angle and centrifugal fan using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789897U (en) * 1980-11-21 1982-06-02
JPS61116198U (en) * 1984-12-29 1986-07-22
JPH0388998A (en) * 1989-08-31 1991-04-15 Daikin Ind Ltd Centrifugal fan and method thereof
JP2001065496A (en) * 1999-08-26 2001-03-16 Zexel Valeo Climate Control Corp Centrifugal fan
JP2002180995A (en) * 2000-12-12 2002-06-26 Mitsubishi Heavy Ind Ltd Blower and air conditioner with the blower
JP2003035293A (en) * 2001-07-19 2003-02-07 Daikin Ind Ltd Impeller for centrifugal blower and centrifugal blower equipped therewith
JP2004515677A (en) * 2000-12-04 2004-05-27 ロバート ボッシュ コーポレーション High efficiency integrated centrifugal blower
JP2006200525A (en) * 2004-12-24 2006-08-03 Denso Corp Multi-blade centrifugal blower
JP2011052626A (en) * 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd Multi-blade centrifugal fan and air conditioner using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469772A (en) * 1967-07-19 1969-09-30 Donald A Mcdonald Air moving apparatus
JPS57105597A (en) * 1980-12-24 1982-07-01 Hitachi Ltd Multiblade fan
JPS58158195U (en) * 1982-04-19 1983-10-21 株式会社日立製作所 Resin multi-blade fan
JPH06193593A (en) * 1992-12-24 1994-07-12 Nisshinbo Ind Inc Impeller for centrifugal blower
US6299409B1 (en) * 1998-04-10 2001-10-09 Denso Corporation Centrifugal type blower unit
JP2003090298A (en) * 2001-09-17 2003-03-28 Nippon Soken Inc Centrifugal fan
JP5287772B2 (en) * 2010-03-16 2013-09-11 株式会社デンソー Centrifugal multi-blade fan

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789897U (en) * 1980-11-21 1982-06-02
JPS61116198U (en) * 1984-12-29 1986-07-22
JPH0388998A (en) * 1989-08-31 1991-04-15 Daikin Ind Ltd Centrifugal fan and method thereof
JP2001065496A (en) * 1999-08-26 2001-03-16 Zexel Valeo Climate Control Corp Centrifugal fan
JP2004515677A (en) * 2000-12-04 2004-05-27 ロバート ボッシュ コーポレーション High efficiency integrated centrifugal blower
JP2002180995A (en) * 2000-12-12 2002-06-26 Mitsubishi Heavy Ind Ltd Blower and air conditioner with the blower
JP2003035293A (en) * 2001-07-19 2003-02-07 Daikin Ind Ltd Impeller for centrifugal blower and centrifugal blower equipped therewith
JP2006200525A (en) * 2004-12-24 2006-08-03 Denso Corp Multi-blade centrifugal blower
JP2011052626A (en) * 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd Multi-blade centrifugal fan and air conditioner using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083865A (en) * 2018-08-16 2018-12-25 泛仕达机电股份有限公司 A kind of forward multiple wing centrifugal blower and its impeller
CN109083865B (en) * 2018-08-16 2023-08-22 泛仕达机电股份有限公司 Forward multi-wing centrifugal fan and impeller thereof

Also Published As

Publication number Publication date
US20150192143A1 (en) 2015-07-09
CN104411980B (en) 2016-12-28
KR101666923B1 (en) 2016-10-17
JP2014029149A (en) 2014-02-13
KR20150031296A (en) 2015-03-23
CN104411980A (en) 2015-03-11
DE112013003213T5 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2014002392A1 (en) Centrifugal multi-blade blower
JP4872293B2 (en) Centrifugal multiblade blower
KR101607791B1 (en) Cross-flow fan
JP6213275B2 (en) Blower
WO2014162552A1 (en) Propeller fan, blower device, and outdoor equipment
US6984111B2 (en) Multiblade blower
US20140315479A1 (en) Turbo fan and ceiling type air conditioner using thereof
WO2016174851A1 (en) Vehicular air-conditioning apparatus
WO2015059884A1 (en) Centrifugal air blower and air-conditioning device
US7473078B2 (en) Centrifugal blower
JPH1193893A (en) Centrifugal multiblade fan
JP2016196208A (en) Indoor air conditioning unit and air blower
CN111376675B (en) Air supply unit of air conditioner for vehicle with double-layer structure
JP4411724B2 (en) Centrifugal blower
JP6098504B2 (en) Air conditioner for vehicles
JP6174339B2 (en) Centrifugal blower and vehicle air conditioner equipped with the same
WO2016170577A1 (en) Turbofan and air-conditioning device
TWI664381B (en) Air conditioner
WO2018110597A1 (en) Blower
WO2018025532A1 (en) Vehicle air-conditioning device
JP6973363B2 (en) Blower
WO2021085086A1 (en) Blower
JP2019011694A (en) Centrifugal blower for vehicular air conditioner
EP3978764A1 (en) Centrifugal blower
JP6588052B2 (en) Centrifugal blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14410796

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130032139

Country of ref document: DE

Ref document number: 112013003213

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157001276

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13809939

Country of ref document: EP

Kind code of ref document: A1