WO2014000384A1 - 显示面板及其驱动方法、显示装置 - Google Patents

显示面板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2014000384A1
WO2014000384A1 PCT/CN2012/086021 CN2012086021W WO2014000384A1 WO 2014000384 A1 WO2014000384 A1 WO 2014000384A1 CN 2012086021 W CN2012086021 W CN 2012086021W WO 2014000384 A1 WO2014000384 A1 WO 2014000384A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
gate
driving
tfts
tft
Prior art date
Application number
PCT/CN2012/086021
Other languages
English (en)
French (fr)
Inventor
郭瑞
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/128,226 priority Critical patent/US9460674B2/en
Publication of WO2014000384A1 publication Critical patent/WO2014000384A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular, to a display panel, a driving method thereof, and a display device. Background technique
  • LCD Liquid Crystal Display
  • a source driver IC with a source line for driving the source of the TFT
  • a driver The gate of the TFT gate is composed of a gate driver integrated circuit (gate driver IC) and a backlight module.
  • a TFT on the display panel corresponds to one sub-pixel.
  • a plurality of sub-pixels are arranged in an array on the display panel, called a pixel array.
  • Each thin film field effect transistor is connected to a capacitor. When the thin film field effect transistor is energized, the optical rotation of the liquid crystal molecules filled in the thin film field effect transistor is used to change the degree of optical rotation of the liquid crystal molecules, so that the corresponding sub-pixels display corresponding colors.
  • the gate driving integrated circuit drives the gate of the thin film field effect transistor connected to the gate line to be turned on or off, and the capacitor connected to the thin film field effect transistor when the gate of the thin film field effect transistor is turned on
  • the source driving integrated circuit drives the source line to output a corresponding driving signal.
  • each gate line of the gate driving integrated circuit is connected to the gate of one row of TFTs, and each source line of the source driving integrated circuit is connected to the source of one column of TFTs.
  • the gate of a row of TFTs is turned on during screen display.
  • the pixel flip is performed by changing the polarity of the driving signal output from the source driving circuit of the source driving integrated circuit.
  • the dot inversion method is the best picture quality. , the minimum flashing.
  • the effect of the point flip is as shown in Fig. 3.
  • the core idea of the flip mode is that the polarity of each adjacent two source lines is opposite under the Y frame, and the same source line is under the Y+1 frame.
  • the voltage on the opposite side is opposite to the polarity of the Y frame picture, and the polarity of each adjacent two source lines is opposite, thereby achieving the purpose of preventing liquid crystal aging and reducing power consumption, wherein Y is greater than or equal to 1. Integer.
  • the driving signal carried by each data line (source line) after each scanning line scanning time in the same screen is used.
  • the polarity is reversed once, thus consuming a large amount of energy, and it is easy to raise the temperature of the source driving integrated circuit on the liquid crystal display panel.
  • the polarity of the voltage on the red sub-pixel of the first row and the first column is positive, and the polarity of the voltage corresponding to the red sub-pixel of the first row of the second row is negative, so When the polar driver switches from the first row to the second row, the polarity on the first source line S1 changes from positive to negative.
  • the present invention provides a display panel, a display device, and a driving method of the display panel, which reduce power consumption while ensuring picture quality.
  • the present invention provides a display panel including a display substrate of a plurality of thin film transistors (TFTs) distributed in an array, a source driving integrated circuit that drives a TFT source through a source line, and a gate of a TFT gate through a gate line.
  • TFTs thin film transistors
  • Driving integrated circuit wherein
  • the gate driving integrated circuit is connected to the plurality of gate lines, each gate line is connected to the gate of the adjacent N rows of TFTs, and the different gate lines are connected to the gates of different rows of TFTs, N is an integer, and 1 ⁇ N ⁇ The total number of TFT lines, and N is a multiple of 2;
  • the source driver integrated circuit is connected to the plurality of source lines, and the sources of the different TFTs connected to the same gate line are respectively connected to different source lines, and are connected to different gate lines, in the same column and spaced apart *
  • the sources of the TFTs of the N1 TFTs are connected to the same source line, g is an integer, and N g*N ⁇ the total number of lines of the TFT.
  • the present invention also provides a display device comprising the above display panel.
  • the invention also provides a driving method of the above display panel, comprising:
  • the gate driving integrated circuit drives each gate line one by one in a scanning order, thereby driving the gates of the N rows of TFTs connected to the gate lines to be simultaneously turned on;
  • the source driving integrated circuit drives each source line to output a corresponding driving signal.
  • the display panel, the display device and the driving method of the display panel provided by the invention have the following beneficial effects: at the same time, the gates of the plurality of rows of TFTs are simultaneously turned on, ensuring the opening time of each TFT gate, one gate The line connects the gates of the multi-row TFTs, so that it is not necessary to frequently perform polarity inversion when implementing pixel flipping, thereby reducing power consumption while ensuring picture quality.
  • DRAWINGS 1 is a structural frame diagram of a conventional display panel;
  • FIG. 2 is a schematic diagram of implementing driving in a conventional display panel
  • FIG. 3 is a schematic diagram showing the polarity of a source line output driving signal of a conventional pixel flipping
  • FIG. 4 is a schematic diagram of a sub-pixel array corresponding to a TFT on a conventional display panel
  • FIG. 5 is a schematic diagram showing a distribution of a sub-pixel array corresponding to a TFT on a display panel according to Embodiment 1 of the present invention
  • FIG. 6 is a polarity signal diagram of a source line output driving signal for implementing pixel inversion in Embodiment 1 of the present invention
  • FIG. 7 is a schematic diagram showing the polarity of a source line output driving signal for implementing pixel inversion in Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram showing a distribution of a sub-pixel array corresponding to a TFT on a display panel according to Embodiment 3 of the present invention
  • FIG. 9 is a schematic diagram showing a polarity of a source line output driving signal for implementing pixel inversion in Embodiment 3 of the present invention.
  • Embodiments of the present invention provide a display panel including a display substrate of a plurality of TFTs distributed in an array, a source driving integrated circuit that drives a TFT source through a source line (Source line), and is driven by a gate line (Gate line) A gate drive integrated circuit of a TFT gate.
  • a TFT corresponds to a sub-pixel (Sub Pixel), which is a basic element constituting a pixel.
  • the gate driving integrated circuit is connected to the plurality of gate lines, each gate line is connected to the gate of the adjacent N rows of TFTs, 1 ⁇ N ⁇ the total number of rows of TFTs, and different gate lines are connected to different rows.
  • the gates of the TFTs that is, the rows in which the TFTs connected to the gate lines are located do not overlap, and the gates of the TFTs of each row are connected to only one gate line;
  • the source driver integrated circuit is connected to the plurality of source lines, and the sources of the different TFTs connected to the same gate line are respectively connected to different source lines, and are connected to different gate lines, in the same column and spaced apart *
  • the sources of the TFTs of the N1 TFTs are connected to the same source line, g is a positive integer, and N ⁇ g * N ⁇ total number of TFT rows.
  • the gate driving integrated circuit drives each gate line one by one in a scanning order, and one gate line connects the gates of the plurality of rows of TFTs, thereby driving the gates of the N rows of TFTs connected to the gate lines to be simultaneously turned on,
  • the source driving integrated circuit drives the output of each source line Corresponding drive signals to achieve pixel flipping.
  • the gate of the TFT is turned on.
  • the gates of the TFTs corresponding to the plurality of sub-pixels are simultaneously turned on, so the turn-on time can be slightly longer, which ensures the on-time of the gate on each TFT, thereby ensuring the picture.
  • the gates of the TFTs corresponding to the plurality of rows of sub-pixels are simultaneously turned on, so that the gate lines are reduced to the original 1/N, so the number of scans is also reduced to 1/N.
  • the polarity of the driving signal carried by each data line (source line) is inverted every two frames, thereby greatly reducing the power consumption and preventing the temperature of the source driving integrated circuit on the liquid crystal display panel from rising.
  • the source driving integrated circuit driving each source line to output a corresponding driving signal specifically includes: for the same frame picture, the source signals of the source lines connected to the sources of each adjacent two TFTs are opposite in polarity; In the two adjacent frames, the polarity of the drive signals output from the source lines connected to the source of the same TFT is reversed, thereby achieving a dot flip effect.
  • the embodiment of the present invention does not limit the types of sub-pixels and the arrangement of sub-pixels distributed on the display panel.
  • each pixel of the prior art is composed of three sub-pixels of red, green, and blue (RGB). Since each pixel of the liquid crystal is composed of three sub-pixels of RGB, the liquid crystal molecules are combined into RGB light pixels to form an arbitrary color light. Therefore, the more vivid the three primary colors of RGB, the wider the range of colors that can be represented; conversely, the three primary colors are not bright, and the range of colors that can be displayed is narrow. At this stage, because it can not display more vivid colors than the three primary colors, the application of RGB three primary color technology can not fully restore the color that can be perceived by natural human eyes. The traditional three primary colors have insufficient color performance in the yellow and blue-green fields.
  • red, green, blue, and white (RGBW) seed pixels constituting a pixel are distributed on the display panel, and four seed pixels of each pixel are distributed in a horizontal direction or in a rectangular shape; or
  • red, green, blue, and yellow (RGBY) seed pixels constituting a pixel are distributed on the display panel, and four seed pixels of each pixel are distributed in a horizontal direction or in a rectangular shape.
  • RGBW red, green, blue, and yellow
  • sub-pixels of other colors may be used to constitute each pixel, and the number of sub-pixels constituting each pixel is not limited to four.
  • the four seed pixels of R, G, B, and W are sequentially arranged in a word distribution, and of course, other arrangements may be used.
  • the four seed pixels of R, G, B, and Y are sequentially arranged in a word distribution, and of course, other arrangements may be used.
  • the R and G of each pixel are sequentially arranged in the upper row, B, W Arrange in the next row.
  • R and G of each pixel are sequentially arranged in the upper row, and B and Y are sequentially arranged in the lower row.
  • This embodiment changes the manner in which only one row of gates is turned on at the same time in the conventional driving mode, ensures the charging time of the charging capacitor, ensures the display effect, and also changes the pixel arrangement form of the existing liquid crystal panel, replacing the original RGBW-subpixel RGB sub-pixels, where RGB determines the color of the pixel display, W increases the brightness of the pixel display; or replaces the original RGB sub-pixel with RGBY sub-pixels to achieve a wider color gamut.
  • RGBW or RGBY pixels can also be changed with the core idea unchanged.
  • the N rows of TFTs connected to each of the gate lines display a complete pixel point.
  • the number of rows of TFTs connected to each gate line is N. Multiples.
  • N is a multiple of 4. In this way, when the sub-pixels of each pixel are distributed in a horizontal direction or in a rectangular shape, it is ensured that the complete pixel points are displayed. Further preferably, N is 4 in this embodiment.
  • the embodiment of the present invention further provides a display device, which includes the display panel provided by the above embodiment, and the specific structure of the display panel will not be described in detail herein.
  • the embodiment of the invention further provides a driving method for the above display panel, comprising:
  • the gate driving integrated circuit drives each gate line one by one in a scanning order, thereby simultaneously driving the gates of the N rows of TFTs connected to the gate lines to be turned on;
  • the source driving integrated circuit drives each source line to output a corresponding driving signal.
  • one TFT corresponds to one sub-pixel
  • the source driving integrated circuit drives each source line to output a corresponding driving signal, so that the sub-pixel exhibits a point flipping manner.
  • the source driving integrated circuit drives each of the source lines to output a corresponding driving signal, so that the sub-pixels are in a flipped manner.
  • the source signals of the source lines connected to the sources of the adjacent TFTs are opposite in polarity; for the adjacent two frames, the source signals of the source lines connected to the source of the same TFT are driven. The opposite is true.
  • Example 1 A preferred embodiment of the display panel of the present invention is given below by taking four seed pixels as an example.
  • Example 1 A preferred embodiment of the display panel of the present invention is given below by taking four seed pixels as an example.
  • the display panel comprises a display panel of a plurality of TFTs distributed in an array, a source driving integrated circuit with a source line for driving the source of the TFT, and a gate with a gate line for driving the gate of the TFT.
  • the pole drive integrated circuit and the backlight module are composed.
  • the distribution of the pixel array (Pixel Array) on the display panel is shown in Fig. 5. Each pixel is composed of RGBW four-seeded pixels, and the four-subpixel RGBW of each pixel is distributed in a horizontal direction.
  • Each gate line of the gate driving integrated circuit is connected to the gates of adjacent four rows of TFTs, and different gate lines are connected to the gates of different rows of TFTs; the sources of different TFTs connected to the same gate line are respectively The sources of the TFTs connected to different source lines and connected in different columns on the different gate lines and separated by g*4-l TFTs are connected to the same source line, and g is a positive integer.
  • a TFT connected to the first row and the first column connected to the first gate line D1, and a TFT connected to the second row and the first column connected to the second gate line D2 is connected to S1;
  • the TFTs on the first gate line D1 in the second row and the first column are connected to the TFTs connected to the second row and the first column on the second gate line D2, and are connected to the first strip;
  • On the gate line D1 the TFTs located in the third row and the first column are connected to the TFTs connected to the second gate line D2 and the seventh row and the first column on S3; and connected to the first gate line D1.
  • the TFTs located in the fourth row and the first column are connected to the TFTs connected to the second row and the first column on the second gate line D2, and are sequentially analogized.
  • the gate driving integrated circuit drives the gate lines one by one in the scanning order, thereby simultaneously driving the gates of the four rows of TFTs connected to one gate line, and the source driving when the gates of the four rows of TFTs are turned on.
  • the integrated circuit drives each source line to output a corresponding driving signal to implement pixel flipping.
  • the gate driving integrated circuit drives the gate line D1
  • the TFTs numbered G1, G2, G3, and G4 on the pixel array are simultaneously turned on, and the source driving integrated circuit outputs data of the corresponding pixel; when the gate is driven When the integrated circuit driving gate line Di is turned on, the pixel array is numbered as
  • the TFTs of G[4(i-1)+1], G[4(il)+2], G[4(il)+3], G[4(il)+4] are simultaneously turned on, K i ⁇ ( The number of rows of the TFT is divided by the integer obtained by 4.
  • the source driver integrated circuit drives each source line to output a corresponding driving signal to realize pixel flipping.
  • the core idea of the flipping mode is that the source of each adjacent two TFTs is connected to the same frame picture.
  • the driving signals of the polar line outputs have opposite polarities; for two adjacent frames, the driving signals of the source lines connected to the same TFT are opposite in polarity.
  • the polarity of the driving signal voltage outputted on the same source line of the source driving integrated circuit under the Y frame is the same, 4(kl)+l, 4(kl) +2 4(kl)+3, 4(kl)+4 source lines have opposite polarities on each adjacent two source lines, lk (the total number of source lines divided by 4), Y+1 frame
  • the polarity of the driving signal voltage outputted on the same source line of the source driving integrated circuit under the screen is opposite to that of the Y frame, and 4(kl)+l, 4(kl)+2, 4(kl)+3, 4 (kl) + 4 source lines have opposite polarities on each adjacent two source lines.
  • the yellow and blue-green expressiveness is insufficient, and the yellow, gold, blue-green, and other conventional three primary color technologies are more vividly reproduced. , stretched the blue color gamut, improved the expressiveness of blue, green and yellow, and effectively used the yellow wavelength to achieve a wider color gamut.
  • the display panel comprises a display panel of a plurality of TFTs distributed in an array, a source driving integrated circuit with a source line for driving the source of the TFT, and a gate with a gate line for driving the gate of the TFT.
  • the pole drive integrated circuit and the backlight module are composed.
  • the pixel array pixel array on the display panel is shown in Fig. 8. Each pixel is composed of RGBW four-seeded pixels, and the four-subpixel RGBW of each pixel is rectangular.
  • Each gate line of the gate driving integrated circuit is connected to the gates of adjacent four rows of TFTs, and different gate lines are connected to the gates of different rows of TFTs; the sources of different TFTs connected to the same gate line are respectively The sources of the TFTs connected to different source lines and connected in different columns on the different gate lines and separated by g*4-l TFTs are connected to the same source line, and g is a positive integer.
  • a TFT connected to the first row and the first column connected to the first gate line D1, and a TFT connected to the second row and the first column connected to the second gate line D2 is connected to S1;
  • the TFTs on the first gate line D1 in the second row and the first column are connected to the TFTs connected to the second row and the first column on the second gate line D2, and are connected to the first strip;
  • On the gate line D1 the TFTs located in the third row and the first column are connected to the TFTs connected to the second gate line D2 and the seventh row and the first column on S3; and connected to the first gate line D1.
  • the TFTs located in the fourth row and the first column are connected to the TFTs connected to the second row and the first column on the second gate line D2, and are sequentially analogized.
  • the gate driving integrated circuit drives the gate lines one by one in the scanning order, thereby simultaneously driving the gates of the four rows of TFTs connected to the gate lines, and the source driving integration when the gates of the four rows of TFTs are turned on.
  • the circuit drives each source line to output a corresponding driving signal to implement pixel flipping.
  • the gate driving integrated circuit drives the gate line D1
  • the pixel array is numbered G1
  • the TFTs of G2, G3, and G4 are simultaneously turned on, and the source driving circuit outputs the data of the corresponding pixel;
  • the gate driving integrated circuit drives the gate line Di to be turned on, the pixel array is numbered
  • the TFTs of G[4(i-1)+1], G[4(il)+2], G[4(il)+3], G[4(il)+4] are simultaneously turned on, K i ⁇ ( The number of rows of the TFT is divided by the integer obtained by 4.
  • the source driver integrated circuit drives each source line to output a corresponding driving signal to realize pixel flipping.
  • the core idea of the flipping mode is that the source line output of each adjacent two TFTs is connected to the same frame picture.
  • the driving signals have opposite polarities; for adjacent two frames, the driving signals of the source lines connected to the same TFT are opposite in polarity.
  • the polarity of the driving signal voltage outputted on the same source line of the source driving integrated circuit under the Y frame is the same, 4(kl)+l, 4(kl) +2
  • 4(kl)+3, 4(kl)+4 source lines have opposite polarities on each adjacent two source lines, lk (the total number of source lines divided by 4), Y+1 frame
  • the polarity of the driving signal voltage outputted on the same source line of the source driving integrated circuit under the screen is opposite to that of the Y frame, and 4(kl)+l, 4(kl)+2, 4(kl)+3, 4 (kl) + 4 source lines have opposite polarities on each adjacent two source lines. Therefore, the purpose of preventing liquid crystal aging and reducing power consumption is achieved, wherein Y is an integer greater than or equal to 1.
  • the difference between this embodiment and the first embodiment is that the sub-pixels corresponding to the TFTs are distributed in different ways.
  • the display panel with a resolution of m*n (m represents a column and n represents a row) is implemented.
  • the gate drive integrated circuit data line required by the example 1 is n/4, and the source drive integrated circuit data line is 16 m.
  • the gate drive integrated circuit data line required in this embodiment is n/2, and the source drive integrated circuit data line It is 8m.
  • the yellow and blue green colors are insufficiently compensated, and the yellow, gold, blue, and other conventional three primary color technologies are more vividly reproduced.
  • stretched the blue color gamut improved the expressiveness of blue, green and yellow, and effectively used the yellow wavelength to achieve a wider color gamut.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板及其驱动方法、显示装置,包括以阵列分布的多个TFT的显示面板、源极驱动集成电路、栅极驱动集成电路,栅极驱动集成电路连接多条栅极线,每条栅极线连接相邻的N行TFT的栅极,且不同栅极线连接不同行的TFT的栅极,N为大于1的整数;源极驱动集成电路连接多条源极线,连接在同一条栅极线上的不同TFT的源极分别与不同的源极线连接,且连接在不同栅极线上、位于同一列并间隔g*N-l个TFT的TFT的源极连接在同一条源极线上。该面板能够在提高像素充电吋间的同吋降低能量消耗和***温度。

Description

显示面板及其驱动方法、 显示装置 技术领域
本发明涉及半导体技术领域, 尤其涉及一种显示面板及其驱动方法, 显 示装置。 背景技术
目前液晶显示面板的架构如图 1所示。 LCD ( Liquid Crystal Display, 液 晶显示器 )由分布着多个薄膜场效应晶体管 TFT的显示面板、驱动 TFT源极 的带有源极线( Source线 ) 的源极驱动集成电路( Source Driver IC )、 驱动 TFT栅极的带有栅极线 ( Gate线 ) 的栅极驱动集成电路 ( Gate Driver IC ) 以 及背光模块组成。 显示面板上一个 TFT对应一个子像素。 多个子像素在显示 面板上呈阵列分布, 称为像素阵列。 每个薄膜场效应晶体管连接有电容。 薄 膜场效应晶体管通电时, 利用薄膜场效应晶体管处填充的液晶分子的旋光性 能, 改变液晶分子的旋光程度, 使对应的子像素显示相应的颜色。
在时序控制器的控制下, 栅极驱动集成电路驱动与栅极线连接的薄膜场 效应晶体管的栅极开启或关闭, 在薄膜场效应晶体管的栅极开启时, 与薄膜 场效应晶体管连接的电容开始充电, 源极驱动集成电路驱动源极线输出相应 的驱动信号。
根据现有的驱动方式, 如图 2所示, 栅极驱动集成电路的每条栅极线与 一行 TFT的栅极连接 ,源极驱动集成电路的每条源极线与一列 TFT的源极连 接。 在进行画面显示时, 同一时间, 开启一行 TFT的栅极。
为了减少闪烁以保证画面显示质量, 通过改变源极驱动集成电路驱动源 极线输出的驱动信号的极性进行像素翻转, 在像素翻转方式中, 点翻转(dot inversion ) 方式得到的画面品质最好, 闪烁最小。
点翻转的效果图如附图 3所示,该翻转方式的核心思想是第 Y帧画面下, 每相邻两条源极线上的极性相反; Y+1帧画面下同一条源极线上的电压与 Y 帧画面时的极性相反, 且每相邻两条源极线上的极性相反, 从而达到既能防 止液晶老化又能降低功耗的目的, 其中 Y为大于等于 1的整数。
但是如附图 2和附图 3所示, 基于该结构下釆用点翻转方式在同一画面 下每经过一个扫描线扫描时间后, 每条数据线(源极线)所载的驱动信号的 极性就要翻转一次, 因而消耗大量的能量, 并且容易使液晶显示面板上源极 驱动集成电路的温度升高。 例如为了实现点翻转的效果, 假设第一行第一列 的红色子像素上的电压极性为正, 第二行第一列的红色子像素对应的电压极 性就要为负, 因此当栅极驱动器从驱动第一行转为第二行时, 第一条源极线 S1上的极性就会由正变为负。 发明内容
本发明提供一种显示面板、 显示装置以及显示面板的驱动方法, 在保证 画面品质的同时降低了功耗。
本发明提供一种显示面板, 包括以阵列分布的多个薄膜晶体管 (TFT ) 的显示基板、 通过源极线驱动 TFT源极的源极驱动集成电路、 通过栅极线驱 动 TFT栅极的栅极驱动集成电路, 其中 ,
栅极驱动集成电路连接多条栅极线,每条栅极线连接相邻的 N行 TFT的 栅极, 且不同栅极线连接不同行 TFT的栅极, N为整数, 且 1<N < TFT总行 数, 且 N为 2的倍数;
源极驱动集成电路连接多条源极线, 连接在同一条栅极线上的不同 TFT 的源极分别与不同的源极线连接, 且连接在不同栅极线上、 位于同一列并间 隔 g*N-l个 TFT的 TFT的源极连接在同一条源极线上, g为整数,且 N g*N < TFT总行数。
本发明还提供了一种显示装置, 包括上述显示面板。
本发明还提供一种上述显示面板的驱动方法, 包括:
栅极驱动集成电路按扫描顺序逐条驱动各栅极线 , 从而驱动与栅极线连 接的 N行 TFT的栅极同时开通;
在 N行 TFT的栅极开通时,源极驱动集成电路驱动各源极线输出相应的 驱动信号。
利用本发明提供的显示面板、 显示装置以及显示面板的驱动方法, 具有 以下有益效果: 在同一时间内, 多行 TFT的栅极同时开启, 保证了每个 TFT 栅极的开启时间, 一条栅极线连接多行 TFT的栅极, 使得在实现像素翻转时 不需要频繁进行极性翻转, 从而在保证画面品质的同时降低了功耗。 附图说明 图 1为现有显示面板的结构框架图;
图 2为现有显示面板中实现驱动的示意图;
图 3为现有实现像素翻转的源极线输出驱动信号的极性示意图; 图 4为现有显示面板上 TFT对应的子像素阵列分布示意图;
图 5为本发明实施例 1中显示面板上 TFT对应的子像素阵列分布示意图; 图 6为本发明实施例 1中实现像素翻转的源极线输出驱动信号的极性信 号图;
图 7为本发明实施例 1中实现像素翻转的源极线输出驱动信号的极性示 意图;
图 8为本发明实施例 3中显示面板上 TFT对应的子像素阵列分布示意图; 图 9为本发明实施例 3中实现像素翻转的源极线输出驱动信号的极性示 意图。 具体实施方式
下面结合附图和实施例对本发明提供的显示面板及其驱动方法进行更详 细地说明。
本发明实施例提供一种显示面板, 包括以阵列分布的多个 TFT的显示基 板、 通过源极线( Source线 )驱动 TFT源极的源极驱动集成电路、 通过栅极 线( Gate线 )驱动 TFT栅极的栅极驱动集成电路。 在显示面板上, 一个 TFT 对应一个子像素 (Sub Pixel ), 子像素是构成像素的基本元素。
本实施例中, 栅极驱动集成电路连接多条栅极线, 每条栅极线连接相邻 的 N行 TFT的栅极, 1<N < TFT总行数, 且不同栅极线连接不同行的 TFT 的栅极, 即各栅极线连接的 TFT所在的行不重叠,每行 TFT的栅极仅与一条 栅极线连接;
源极驱动集成电路连接多条源极线, 连接在同一条栅极线上的不同 TFT 的源极分别与不同的源极线连接, 且连接在不同栅极线上、 位于同一列并间 隔 g*N-l个 TFT的 TFT的源极连接在同一条源极线上, g为正整数,且 N<g*N < TFT总行数。
优选地, 栅极驱动集成电路按扫描顺序逐条驱动各栅极线, 由于一条栅 极线连接多行 TFT的栅极, 从而驱动与该条栅极线连接的 N行 TFT的栅极 同时开通, 在 N行 TFT的栅极开通时, 源极驱动集成电路驱动各源极线输出 相应的驱动信号, 以实现像素翻转。
本发明实施例中, 改变传统驱动方式中同一时间只有一行子像素对应的
TFT的栅极开启的方式, 在同一时间内, 多行子像素对应的 TFT的栅极同时 开启, 因此开启时间可以稍长一些, 保证了每个 TFT上栅极的开启时间, 从 而保证了画面的显示效果。 本发明实施例中, 由于驱动一条栅极线, 多行子 像素对应的 TFT的栅极同时开启, 因此栅极线减少为原来的 1/N, 因此扫描 次数也减少为原来的 1/N, 每条数据线 (源极线)所载的驱动信号的极性每 两帧翻转一次, 从而大大降低了功耗, 不会使液晶显示面板上源极驱动集成 电路的温度升高。
优选地,源极驱动集成电路驱动各源极线输出相应的驱动信号具体包括: 对于同一帧画面, 每相邻两个 TFT的源极连接的源极线输出的驱动信号极性 相反; 对于相邻的两帧画面, 同一 TFT的源极连接的源极线输出的驱动信号 极性相反, 从而实现点翻转效果。
本发明实施例对显示面板上分布的子像素的种类及子像素的排列方式不 作限定。
如图 4所示, 现有技术每个像素由红、 绿、 蓝(RGB )三个子像素组成, 由于液晶每个像素由 RGB三个子像素组成, 通过液晶分子后依靠 RGB像素 组合成任意颜色光, 因此 RGB三原色越鲜艳, 那么可以表示的颜色范围就越 广; 反之, 三原色不鲜艳, 所能显示的颜色范围就窄。 现阶段, 因为其无法 显示比三原色更鲜艳的颜色,应用 RGB三原色技术并不能全面还原自然界人 眼所能感知的色彩, 传统三原色在黄色和蓝绿色领域的色彩表现能力不足。
依照本发明优选实施例, 所述显示面板上分布有组成像素的红、 绿、 蓝 和白 (RGBW ) 四种子像素, 各像素的四种子像素呈横向一字分布或呈矩形 分布; 或者, 所述显示面板上分布有组成像素的红、 绿、 蓝、 黄(RGBY ) 四种子像素, 每个像素的四种子像素呈横向一字分布或呈矩形分布。 当然, 根据实际需要, 还可以釆用其它颜色的子像素来构成每个像素, 而且构成每 个像素的子像素的数量也不限于四种。
优选地, 呈一字分布时, R、 G、 B、 W四种子像素依次排列呈一字分布, 当然, 也可以是其他排列方式。 或者, R、 G、 B、 Y四种子像素依次排列呈 一字分布, 当然, 也可以是其他排列方式。
优选地, 呈矩形分布时, 每个像素的 R、 G依次排列在上面一行, B、 W 依次排列在下面一行。 或者, 每个像素的 R、 G依次排列在上面一行, B、 Y 依次排列在下面一行。
本实施例改变传统驱动方式中同一时间只有一行栅极开启的方式, 保证 充电电容的充电时间, 保证了显示效果, 同时还改变现有液晶面板的像素排 列形式, 以 RGBW-子像素替代原有的 RGB子像素, 其中, R-G-B决定像素 显示的颜色, W增加像素显示的亮度; 或以 RGBY子像素替代原有的 RGB 子像素, 以实现更广阔的色域。
当然, 还可以在核心思想不变的情况下将白色或黄色像素变为其他子像 素, 以便增加相应颜色的表现力或使某一子像素 (某几个子像素) 更大或更 小以增加或减小相应颜色的表现力。 RGBW或 RGBY像素相对位置排布亦可 在核心思想不变的情况下做相应变化。
同样, 为了实现像素逐行显示的效果, 每条栅极线连接的 N行 TFT显示 时呈现完整的像素点, 优选地, 本实施例中, 每条栅极线连接的 TFT行数 N 为 2的倍数。 优选地, 每个像素的四种子像素呈横向一字分布或者矩形分布 时, N为 4的倍数。 这样在每个像素的子像素呈横向一字分布或呈矩形分布 时, 可以保证显示的是完整的像素点。 进一步优选地, 本实施例中 N为 4。
本发明还实施例还提供一种显示装置, 该显示装置包括上述实施例提供 的显示面板, 这里不再详述显示面板的具体结构。
本发明实施例还提供一种上述显示面板的驱动方法, 包括:
栅极驱动集成电路按扫描顺序逐条驱动各栅极线 , 从而同时驱动与栅极 线连接的 N行 TFT的栅极开通;
在 N行 TFT的栅极开通时,源极驱动集成电路驱动各源极线输出相应的 驱动信号。
优选地, 一个 TFT对应一个子像素, 源极驱动集成电路驱动各源极线输 出相应的驱动信号, 使所述子像素呈现点翻转的翻转方式。
优选地, 源极驱动集成电路驱动各源极线输出相应的驱动信号, 使所述 子像素呈现点翻转的翻转方式, 具体包括:
对于同一帧画面, 每相邻两个 TFT的源极连接的源极线输出的驱动信号 极性相反; 对于相邻的两帧画面, 同一 TFT的源极连接的源极线输出的驱动 信号极性相反。
下面以釆用四种子像素为例给出本发明显示面板的优选实施例。 实施例 1
本实施例中显示面板由一个以阵列分布的多个 TFT的显示面板、 一个驱 动 TFT源极的带有源极线的源极驱动集成电路、一个驱动 TFT栅极的带有栅 极线的栅极驱动集成电路以及背光模块组成。 显示面板上的像素阵列 (Pixel Array )分布示意图如图 5所示, 每个像素由 RGBW四种子像素组成, 每个 像素的四种子像素 RGBW呈横向一字分布。
栅极驱动集成电路的每条栅极线连接相邻 4行 TFT的栅极, 且不同栅极 线连接不同行的 TFT的栅极;连接在同一条栅极线上的不同 TFT的源极分别 与不同的源极线连接,且连接在不同栅极线上位于同一列并间隔 g*4-l个 TFT 的 TFT的源极连接在同一条源极线上, g为正整数。 如连接在第 1条栅极线 D1上、 位于第 1行第 1列的 TFT, 与连接在第 2条栅极线 D2上、 位于第 5 行第 1列的 TFT连接在 S1上; 连接在第 1条栅极线 D1上、 位于第 2行第 1 列的 TFT, 与连接在第 2条栅极线 D2上、 位于第 6行第 1列的 TFT连接在 S2上; 连接在第 1条栅极线 D1上、 位于第 3行第 1列的 TFT, 与连接在第 2条栅极线 D2上、 第 7行第 1列的 TFT连接在 S3上; 连接在第 1条栅极线 D1上、 位于第 4行第 1列的 TFT, 与连接在第 2条栅极线 D2上、 位于第 8 行第 1列的 TFT连接在 S4上, 依次类推。
在驱动方面 , 栅极驱动集成电路按扫描顺序逐条驱动各栅极线 , 从而同 时驱动与一条栅极线连接的 4行 TFT的栅极开通,在 4行 TFT的栅极开通时, 源极驱动集成电路驱动各源极线输出相应的驱动信号, 以实现像素翻转。
具体地, 当栅极驱动集成电路驱动栅极线 D1时,像素阵列上编号为 Gl、 G2、 G3、 G4的 TFT同时开通, 同时源极驱动集成电路上输出对应像素的数 据; 当栅极驱动集成电路驱动栅极线 Di开启时, 像素阵列上编号为
G[4(i-1)+1]、 G[4(i-l)+2]、 G[4(i-l)+3]、 G[4(i-l)+4] 的 TFT同时开通, K i < ( TFT的行数除以 4得到的整数)。
源极驱动集成电路驱动各源极线输出相应的驱动信号实现像素翻转的方 式如图 6和图 7所示, 该翻转方式的核心思想是对于同一帧画面, 每相邻两 个 TFT连接的源极线输出的驱动信号极性相反; 对于相邻的两帧画面, 同一 TFT连接的源极线输出的驱动信号极性相反。
对应图 5所示的像素阵列, 具体地, 第 Y帧画面下源极驱动集成电路的 同一条源极线上输出的驱动信号电压极性相同, 第 4(k-l)+l、 4(k-l)+2、 4(k-l)+3、 4(k-l)+4条源极线上每相邻两条源极线上的极性相反, l k (源 极线总数除以 4得到的整数), Y+1帧画面下源极驱动集成电路的同一条源极 线上输出的驱动信号电压极性与 Y帧时相反,第 4(k-l)+l、4(k-l)+2、4(k-l)+3、 4(k-l)+4条源极线上每相邻两条源极线上的极性相反。 从而达到既能防止液 晶老化又能降低功耗的目的, 其中 Y为大于等于 1的整数。
实施例 2
本实施例除了将实施例 1中的白色像素换为黄色像素其他不变, 从而弥 补黄色和蓝绿色的表现力不足, 可以更加生动地再现黄色、 金色、 蓝绿色等 传统三原色技术难以表现的色彩, 拉伸了蓝色的表现色域, 提高了蓝色、 绿 色和黄色的表现力, 更能够有效的使用黄色波长, 实现更广阔的色域。
实施例 3
本实施例中显示面板由一个以阵列分布的多个 TFT的显示面板、 一个驱 动 TFT源极的带有源极线的源极驱动集成电路、一个驱动 TFT栅极的带有栅 极线的栅极驱动集成电路以及背光模块组成。 显示面板上的像素阵列像素阵 列分布示意图如图 8所示, 每个像素由 RGBW四种子像素组成, 每个像素的 四种子像素 RGBW呈矩形分布。
栅极驱动集成电路的每条栅极线连接相邻 4行 TFT的栅极, 且不同栅极 线连接不同行的 TFT的栅极;连接在同一条栅极线上的不同 TFT的源极分别 与不同的源极线连接,且连接在不同栅极线上位于同一列并间隔 g*4-l个 TFT 的 TFT的源极连接在同一条源极线上, g为正整数。 如连接在第 1条栅极线 D1上、 位于第 1行第 1列的 TFT, 与连接在第 2条栅极线 D2上、 位于第 5 行第 1列的 TFT连接在 S1上; 连接在第 1条栅极线 D1上、 位于第 2行第 1 列的 TFT, 与连接在第 2条栅极线 D2上、 位于第 6行第 1列的 TFT连接在 S2上; 连接在第 1条栅极线 D1上、 位于第 3行第 1列的 TFT, 与连接在第 2条栅极线 D2上、 第 7行第 1列的 TFT连接在 S3上; 连接在第 1条栅极线 D1上、 位于第 4行第 1列的 TFT, 与连接在第 2条栅极线 D2上、 位于第 8 行第 1列的 TFT连接在 S4上, 依次类推。
在驱动方面 , 栅极驱动集成电路按扫描顺序逐条驱动各栅极线 , 从而同 时驱动与栅极线连接的 4行 TFT的栅极开通, 在 4行 TFT的栅极开通时, 源 极驱动集成电路驱动各源极线输出相应的驱动信号, 以实现像素翻转。
具体地, 当栅极驱动集成电路驱动栅极线 D1时,像素阵列上编号为 Gl、 G2、 G3、 G4的 TFT同时开通, 同时源极驱动集成电路上输出对应像素的数 据; 当栅极驱动集成电路驱动栅极线 Di开启时, 像素阵列上编号为
G[4(i-1)+1]、 G[4(i-l)+2]、 G[4(i-l)+3]、 G[4(i-l)+4] 的 TFT同时开通, K i < ( TFT的行数除以 4得到的整数)。
源极驱动集成电路驱动各源极线输出相应的驱动信号实现像素翻转的方 式如图 9所示, 该翻转方式的核心思想是对于同一帧画面, 每相邻两个 TFT 连接的源极线输出的驱动信号极性相反; 对于相邻的两帧画面, 同一 TFT连 接的源极线输出的驱动信号极性相反。
对应图 8所示的像素阵列, 具体地, 第 Y帧画面下源极驱动集成电路的 同一条源极线上输出的驱动信号电压极性相同, 第 4(k-l)+l、 4(k-l)+2、
4(k-l)+3、 4(k-l)+4条源极线上每相邻两条源极线上的极性相反, l k (源 极线总数除以 4得到的整数), Y+1帧画面下源极驱动集成电路的同一条源极 线上输出的驱动信号电压极性与 Y帧时相反,第 4(k-l)+l、4(k-l)+2、4(k-l)+3、 4(k-l)+4条源极线上每相邻两条源极线上的极性相反。 从而达到既能防止液 晶老化又能降低功耗的目的, 其中 Y为大于等于 1的整数。
本实施例与实施例 1的不同之处在于 TFT对应的子像素的分布方式不 同, 对于实施例 1来说, 对于分辨率为 m*n ( m代表列, n代表行) 的显示 面板, 实施例 1需要的栅极驱动集成电路数据线为 n/4, 源极驱动集成电路数 据线为 16m, 本实施例需要的栅极驱动集成电路数据线为 n/2, 源极驱动集成 电路数据线为 8m。 实施例 4
本实施例除了将实施例 3中的白色像素换为黄色像素其他不变, 从而弥 补黄色和蓝绿色的表现力不足, 可以更加生动地再现黄色、 金色、 蓝色等传 统三原色技术难以表现的色彩, 拉伸了蓝色的表现色域, 提高了蓝色、 绿色 和黄色的表现力, 更能够有效的使用黄色波长, 实现更广阔的色域。
本发明上述实施例,在同一时间内,多行栅极同时开启,保证了每个 TFT 上栅极的开启时间。相对于具有相同分辨率的传统 RGB三色液晶屏来说, 增 加了数据线的数量, 但栅极扫描线的数量减小为原来的 1/4或 1/2, 保证了栅 极的开启时间, 可以有效地提高画面的品质。 同时, 增加的像素可以用来提 高背光的利用率、 降低功耗或者扩大色域。 翻转方式上釆用源极驱动集成电 路侧的列翻转 ( column inversion ), 以实现面板侧像素点翻转的效果, 从而在 保证画面品质的同时降低了功耗。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1. 一种显示面板, 包括以阵列分布的多个薄膜晶体管 TFT的显示基板、 通过源极线驱动 TFT源极的源极驱动集成电路、通过栅极线驱动 TFT栅极的 栅极驱动集成电路, 其特征在于,
栅极驱动集成电路连接多条栅极线,每条栅极线连接相邻的 N行 TFT的 栅极, 且不同栅极线连接不同行 TFT的栅极, N为整数, 且 1<N < TFT总行 数;
源极驱动集成电路连接多条源极线, 连接在同一条栅极线上的不同 TFT 的源极分别与不同的源极线连接, 且连接在不同栅极线上、 位于同一列并间 隔 g*N-l个 TFT的 TFT的源极连接在同一条源极线上, g为整数,且 N g*N < TFT总行数。
2. 如权利要求 1所述的显示面板, 其特征在于, 一个 TFT对应一个子 像素, 所述显示面板上分布有组成像素的四种子像素, 每个像素的四种子像 素呈横向一字分布或呈矩形分布。
3. 如权利要求 2所述的显示面板, 其特征在于, 所述四种子像素为红、 绿、 蓝和白, 或者为红、 绿、 蓝、 黄。
4. 如权利要求 1所述的显示面板, 其特征在于, 所述 N为 2的倍数。
5. 如权利要求 2或 3所述的显示面板, 其特征在于, 每个像素的四种子 像素呈横向一字分布或矩形分布时, N为 4的倍数。
6. 如权利要求 1所述的显示面板, 其特征在于,
所述栅极驱动集成电路按扫描顺序逐条驱动各栅极线 , 从而驱动与栅极 线连接的 N行 TFT的栅极同时开通;
在 N行 TFT的栅极开通时,所述源极驱动集成电路驱动各源极线输出相 应的驱动信号。
7. 如权利要求 6所述的显示面板, 其特征在于, 源极驱动集成电路驱动 各源极线输出相应的驱动信号具体包括:
对于同一帧画面, 每相邻两个 TFT的源极连接的源极线输出的驱动信号 极性相反; 对于相邻的两帧画面, 同一 TFT的源极连接的源极线输出的驱动 信号极性相反。
8. 一种显示装置, 其特征在于, 包括权利要求 1~7任一项所述的显示面 板。
9. 一种用于权利要求 1所述的显示面板的驱动方法,其特征在于, 包括: 栅极驱动集成电路按扫描顺序逐条驱动各栅极线 , 从而驱动与栅极线连 接的 N行 TFT的栅极同时开通;
在 N行 TFT的栅极开通时,源极驱动集成电路驱动各源极线输出相应的 驱动信号。
10. 如权利要求 9所述的方法, 其特征在于, 一个 TFT对应一个子像素, 源极驱动集成电路驱动各源极线输出相应的驱动信号, 使所述子像素呈现点 翻转的翻转方式。
11. 如权利要求 10所述的方法, 其特征在于, 源极驱动集成电路驱动各 源极线输出相应的驱动信号具体包括:
对于同一帧画面, 每相邻两个 TFT的源极连接的源极线输出的驱动信号 极性相反; 对于相邻的两帧画面, 同一 TFT的源极连接的源极线输出的驱动 信号极性相反。
PCT/CN2012/086021 2012-06-26 2012-12-06 显示面板及其驱动方法、显示装置 WO2014000384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/128,226 US9460674B2 (en) 2012-06-26 2012-12-06 Display panel and driving method thereof, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102148979A CN102750919A (zh) 2012-06-26 2012-06-26 一种显示面板及其驱动方法、显示装置
CN201210214897.9 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014000384A1 true WO2014000384A1 (zh) 2014-01-03

Family

ID=47031049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086021 WO2014000384A1 (zh) 2012-06-26 2012-12-06 显示面板及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US9460674B2 (zh)
CN (1) CN102750919A (zh)
WO (1) WO2014000384A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778794B (zh) * 2012-03-26 2015-10-07 北京京东方光电科技有限公司 一种液晶显示器及液晶显示面板
CN102707525B (zh) * 2012-05-24 2015-01-28 北京京东方光电科技有限公司 一种阵列基板、液晶显示面板和液晶显示装置
CN102750919A (zh) * 2012-06-26 2012-10-24 北京京东方光电科技有限公司 一种显示面板及其驱动方法、显示装置
KR20160042329A (ko) * 2014-10-08 2016-04-19 삼성디스플레이 주식회사 표시 장치
CN104464631B (zh) * 2014-12-23 2017-04-05 京东方科技集团股份有限公司 一种显示面板的驱动方法及显示面板、显示装置
TWI559277B (zh) * 2015-04-15 2016-11-21 Display and its scanning method
CN105575354B (zh) 2016-03-09 2018-08-14 武汉华星光电技术有限公司 用于显示面板的驱动电路
WO2017036430A2 (en) * 2016-11-28 2017-03-09 Viewtrix Technology Co., Ltd Distributive-driving of display panel
US10930226B2 (en) * 2017-04-24 2021-02-23 Sharp Kabushiki Kaisha Liquid crystal display device with time-division driving
CN106991953A (zh) * 2017-05-11 2017-07-28 惠科股份有限公司 像素驱动电路、驱动方法及显示装置
KR102562943B1 (ko) * 2018-09-12 2023-08-02 엘지디스플레이 주식회사 표시 장치
US10761389B2 (en) * 2018-09-14 2020-09-01 Chongqing Hkc Optoelectronics Technology Co., Ltd. Pixel arrangement and display panel
CN109949773A (zh) * 2019-03-25 2019-06-28 信利半导体有限公司 一种液晶面板的极性翻转方法及装置
CN110322827B (zh) * 2019-08-15 2022-05-10 成都辰显光电有限公司 一种显示面板的数字驱动方法和显示面板
US11488551B1 (en) * 2019-08-30 2022-11-01 Meta Platforms Technologies, Llc Pulsed backlight unit in liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001062A (ko) * 2003-06-26 2005-01-06 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 구동방법
CN101221337A (zh) * 2008-01-28 2008-07-16 京东方科技集团股份有限公司 液晶显示装置阵列基板及驱动方法
CN101833210A (zh) * 2010-05-13 2010-09-15 友达光电股份有限公司 液晶显示面板
CN102750919A (zh) * 2012-06-26 2012-10-24 北京京东方光电科技有限公司 一种显示面板及其驱动方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076416A (ja) * 2004-12-27 2008-04-03 Sharp Corp 表示パネルの駆動装置、表示パネル及びそれを備えた表示装置並びに表示パネルの駆動方法
KR101100890B1 (ko) * 2005-03-02 2012-01-02 삼성전자주식회사 액정표시장치 및 그 구동방법
TWI355632B (en) * 2006-09-26 2012-01-01 Au Optronics Corp The device for liquid crystal display with rgbw co
JP2009175468A (ja) * 2008-01-25 2009-08-06 Hitachi Displays Ltd 表示装置
US20120200615A1 (en) * 2009-10-22 2012-08-09 Sharp Kabushiki Kaisha Liquid crystal display device
CN102725676B (zh) * 2010-01-29 2015-10-07 夏普株式会社 液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001062A (ko) * 2003-06-26 2005-01-06 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 구동방법
CN101221337A (zh) * 2008-01-28 2008-07-16 京东方科技集团股份有限公司 液晶显示装置阵列基板及驱动方法
CN101833210A (zh) * 2010-05-13 2010-09-15 友达光电股份有限公司 液晶显示面板
CN102750919A (zh) * 2012-06-26 2012-10-24 北京京东方光电科技有限公司 一种显示面板及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20140125644A1 (en) 2014-05-08
US9460674B2 (en) 2016-10-04
CN102750919A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2014000384A1 (zh) 显示面板及其驱动方法、显示装置
TWI635471B (zh) 顯示裝置與子畫素轉換方法
TWI637378B (zh) 液晶顯示器
KR101782054B1 (ko) 액정 표시장치와 이의 구동방법
WO2018094803A1 (zh) Rgbw四基色显示面板的驱动方法
US8922603B2 (en) Multi-primary color display device
WO2017185871A1 (zh) 一种显示面板的驱动方法、显示面板及显示装置
KR102063346B1 (ko) 액정표시장치
WO2017219420A1 (zh) 高解析度解复用器驱动电路
KR102200271B1 (ko) Rgbw 4원색 패널 구동 아키텍쳐
CN107633827B (zh) 显示面板的驱动方法及显示装置
CN104280938A (zh) 彩色显示面板及显示装置
KR20110067227A (ko) 액정표시장치 및 그 구동방법
TWI408648B (zh) 液晶顯示器之驅動方法
WO2020098095A1 (zh) 显示面板、显示面板的驱动方法和显示装置
KR101560236B1 (ko) 액정표시장치
WO2013097442A1 (zh) 液晶显示面板及驱动方法
KR20050095150A (ko) 액정표시장치
US20090251403A1 (en) Liquid crystal display panel
US10360869B2 (en) Liquid crystal panel driving circuit and liquid crystal display device
KR101343498B1 (ko) 액정표시장치
KR20130020308A (ko) 액정패널의 구동방법
KR101119906B1 (ko) 표시장치
KR101001052B1 (ko) 액정표시패널 및 그 구동방법
KR20080102677A (ko) 액정표시장치의 구동회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14128226

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879805

Country of ref document: EP

Kind code of ref document: A1