WO2013191218A1 - 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池 - Google Patents

積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池 Download PDF

Info

Publication number
WO2013191218A1
WO2013191218A1 PCT/JP2013/066879 JP2013066879W WO2013191218A1 WO 2013191218 A1 WO2013191218 A1 WO 2013191218A1 JP 2013066879 W JP2013066879 W JP 2013066879W WO 2013191218 A1 WO2013191218 A1 WO 2013191218A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
sealed battery
aluminum
nugget
electrode
Prior art date
Application number
PCT/JP2013/066879
Other languages
English (en)
French (fr)
Inventor
純太 高須
草間 和幸
善次 水口
長嶺 政隆
和田 圭司
秀政 長嶺
Original Assignee
トヨタ自動車株式会社
ナグシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, ナグシステム株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2013191218A1 publication Critical patent/WO2013191218A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/18Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals
    • B23K11/185Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals of aluminium or aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for manufacturing a laminated aluminum material by joining laminated aluminum foil and an aluminum plate by resistance welding.
  • Patent Document 1 discloses a technique of performing resistance welding after providing a small hole in a laminated aluminum foil. In this technique, an oxide film on the aluminum foil is removed by providing a small hole to create a current path and improve the electrical conductivity during resistance welding.
  • the joining of the laminated aluminum foil is performed, for example, on the positive electrode side of the lithium ion secondary battery.
  • An electrode body of a lithium ion secondary battery is formed by winding an aluminum foil coated with a positive electrode active material, a copper foil coated with a negative electrode active material, and a separator a plurality of times.
  • a portion where the positive electrode active material is not coated becomes a joint portion with the positive electrode terminal and is used as a current collecting portion.
  • the capacity efficiency is increased without changing the size of the battery, it is necessary to increase the active material coating area by reducing the width of the uncoated portion of the active material. It becomes.
  • a circular nugget centered on a small hole provided in the laminated aluminum foil is formed.
  • the nugget area in this case depends on the diameter centered on the small hole. In other words, the nugget area obtained by resistance welding depends on the width direction size of the nugget formation allowable region. Therefore, when the uncoated width of the active material in the laminated aluminum foil is reduced, the nugget area is reduced.
  • the present invention provides a technique capable of securing a sufficient nugget area even when the width of a region where nugget formation is allowed is narrow.
  • a first aspect of the present invention is a method for producing a laminated aluminum material obtained by resistance welding a laminated aluminum foil and an aluminum plate, wherein the small holes formed in the lamination direction of the aluminum foil, A plurality of the aluminum foils are provided along the longitudinal direction of the welded portion, resistance welding between the aluminum foil and the aluminum plate is performed, and an elliptical nugget surrounding the plurality of small holes is formed, thereby forming the aluminum foil. And an aluminum plate.
  • a second aspect of the present invention is a method for manufacturing a sealed battery including the method for manufacturing a laminated aluminum material according to the first aspect of the present invention, wherein the laminated aluminum foil is an electrode included in the sealed battery.
  • the aluminum plate is an electrode terminal included in the sealed battery.
  • the third aspect of the present invention is a sealed battery obtained by the manufacturing method according to the second aspect of the present invention.
  • Another embodiment of the sealed battery of the present invention includes an electrode body in which electrode foils are stacked, and an electrode terminal fixed to the electrode body.
  • the current collector of the electrode foil and the electrode terminal are The nugget is joined by a nugget formed by resistance welding, and the nugget is formed in an elliptical shape having a major axis in the longitudinal direction of the electrode foil.
  • a sufficient nugget area can be ensured even when the width of the region where nugget formation is allowed is narrow.
  • the sealed battery 1 is, for example, a lithium ion secondary battery.
  • the sealed battery 1 houses an electrode body 20 serving as a power generation element in an exterior 10.
  • a positive electrode terminal 31 and a negative electrode terminal 32 connected to the electrode body 20 are provided so as to protrude outward from the exterior 10.
  • the exterior 10 includes a container 11 that houses the electrode body 20 and a lid 12 to which the positive electrode terminal 31 and the negative electrode terminal 32 are fixed.
  • One surface of the container 11 is opened, and the opening surface is closed by the lid 12.
  • the opening surface of the container 11 and the outer periphery of the lid 12 are welded, and the interior of the exterior 10 is sealed. More specifically, the positive electrode terminal 31 and the negative electrode terminal 32 to which the electrode body 20 is fixed are fixed to the lid 12 to form a lid assembly, and then the electrode body 20 is accommodated in the container 11. Next, the outer surface of the container 11 is sealed by welding the opening surface of the container 11 and the outer periphery of the lid 12.
  • the electrode body 20 is a wound body obtained by laminating and winding the positive foil 21 and the negative foil 22 with the separator 23 interposed therebetween.
  • the positive electrode foil 21 and the negative electrode foil 22 are electrode foils, and an electrode active material serving as a power generation element is coated on a part thereof.
  • An electrolytic solution is injected into the sealed exterior 10 to impregnate the electrode body 20 with the electrolytic solution. When a chemical reaction occurs between the electrode active material of the electrode body 20 and the electrolyte contained in the electrolytic solution, charging to the electrode body 20 and discharging from the electrode body 20 are performed.
  • the electrode body 20 it winds so that the uncoated part in which the electrode active material is not applied may protrude on both sides of a winding surface, respectively. That is, the uncoated portions of the positive electrode foil 21 and the negative electrode foil 22 are wound so as to be disposed at both ends of the electrode body 20 in the winding axis direction.
  • the electrode body 20 may be a laminated body in which a positive foil 21, a negative foil 22, and a separator 23 are laminated. In this case, it laminates
  • the positive terminal 31 and the negative terminal 32 are electrode terminals of the sealed battery 1.
  • the positive electrode terminal 31 and the negative electrode terminal 32 are joined to the uncoated portions of the positive electrode foil 21 and the negative electrode foil 22 in the exterior 10, respectively. That is, the uncoated part of the positive electrode foil 21 and the negative electrode foil 22 is used as a current collecting part of the electrode body 20.
  • the sealed battery 1 is a lithium ion secondary battery
  • an aluminum foil is used for the positive foil 21 and a copper foil is used for the negative foil 22. Further, aluminum is used as the material of the positive electrode terminal 31, and copper is used as the material of the negative electrode terminal 32.
  • the uncoated part (current collector part) of the positive foil 21 and the positive terminal 31 are joined by a nugget 40 formed by resistance welding.
  • the nugget 40 is a melt-solidified portion generated by resistance welding, and is formed in an elliptical shape having a major axis in the longitudinal direction of the current collecting portion of the positive foil 21. That is, the elliptical nugget 40 extending in the longitudinal direction of the welded portion (nugget formation allowable region) with the positive electrode terminal 31 in the positive electrode foil 21 is formed.
  • the battery capacity of the sealed battery 1 depends on the amount of the electrode active material of the electrode body 20 that is a power generation element. That is, when increasing the capacity of the sealed battery 1, it is required to increase the coating width of the electrode active material of the positive foil 21 and the negative foil 22 and reduce the width of the uncoated portion.
  • the nugget 40 is formed in an elliptical shape along the longitudinal direction of the uncoated portion, so that the nugget formation allowable region is used to the maximum, and it is necessary for joining even when the width of the weldable region is small. A large nugget area can be secured.
  • the manufacturing process of the laminated aluminum material includes a small hole forming process and a resistance welding process.
  • FIG. 5 and 6 show a process of providing a plurality (for example, three) of small holes 60 in the positive electrode foil 21.
  • FIG. 1 In the small hole forming step, the positive electrode foil 21 and the positive electrode terminal 31 are overlapped, and the contact plate 61 is disposed on the outer surface on the positive electrode foil 21 side, and then the needle 62 having a plurality of needle points is pressed against the contact plate. 61 and the positive electrode foil 21 are provided with small holes 60.
  • the small holes 60 are small-diameter circular cracks formed in the stacking direction of the positive electrode foil 21, and a plurality of small holes 60 are continuously provided at predetermined intervals in the longitudinal direction of the uncoated portion of the positive electrode foil 21.
  • the backing plate 61 is a protective member for avoiding direct contact between the positive foil 21 and the pressing tool or electrode.
  • the small holes 60 By forming the small holes 60, the surface coating of aluminum oxide existing on the surface of the positive electrode foil 21 can be removed. Since the portion where the oxide film has been removed has a lower resistance than the other portions, it can be used as a conductive portion through which current easily passes during the resistance welding process.
  • the depth of the small hole 60 is preferably provided so as to form a protrusion that penetrates the positive electrode foil 21 in the thickness direction and rises toward the positive electrode terminal 31.
  • the conduction portion can be formed in the entire thickness direction of the positive electrode foil 21, accurate energization in the resistance welding process can be ensured.
  • the depth of the small hole 60 is only required to be able to form a conductive portion having a lower resistance value than other portions in the positive electrode foil 21, for example, about 1/3 to 1/2 of the thickness of the positive electrode foil 21. It is also possible to create a conduction path during resistance welding.
  • the electrode pair 70 is used to energize while pressing the positive foil 21 and the positive terminal 31 through the contact plate 61.
  • the nugget 40 is formed by heating and melting the energized portion and then solidifying. In this way, the positive foil 21 and the positive terminal 31 are welded, and the laminated aluminum material 50 joined by the nugget 40 is manufactured.
  • the nugget 40 is formed to spread radially from the position where the small hole 60 is formed.
  • the laminated aluminum material 50 is formed through the small hole forming process and the resistance welding process.
  • resistance welding is performed by providing a plurality of small holes 60 along the longitudinal direction of the uncoated portion in a state where the nugget formation allowable region is regulated in the width direction of the uncoated portion of the positive foil 21.
  • An oval nugget 40 corresponding to the formation position of the small hole 60 is formed while securing a conduction portion at the time.
  • each needle tip of the needle 62 is preferably about 1 [mm], for example.
  • the small hole forming process may be a primary welding process
  • the resistance welding process may be a secondary welding process
  • a two-stage welding process may be used.
  • the oxide film present on the surface of the positive electrode foil 21 is removed by the needle 62, and at the same time, a current flows between the needle 62 and the electrode 63, so that the periphery of the needle 62 is melted by Joule heat by energization and temporarily. A melt-solidified portion 64 is formed. Thereby, the conduction
  • the area of the nugget 40 in the sealed battery 1 is preferably set to such an extent that, for example, when the electrode body 20 is accommodated in the exterior 10, a bonding strength that does not cause peeling can be secured.
  • the shape of the nugget 40 can be changed depending on the number of small holes 60 formed, the formation location, and the like, and can be appropriately set so as to ensure the nugget area. In other words, the number of small holes 60 to be formed may be determined in order to ensure an appropriate nugget area.
  • the pressurization / drilling with the needle 62 has the same effect even when performed from the positive electrode terminal 31 side.
  • the manufacturing process of the sealed battery goes through the following processes such as the electrode body manufacturing process, the lid SUB-ASSY manufacturing process including the laminated aluminum material manufacturing process, the exterior welding process, the electrolytic solution pouring process, the initial charging process, the aging process, etc.
  • the sealed battery 1 is manufactured as a product.
  • Each process other than the laminated aluminum material manufacturing process is realized by using a known technique, and detailed description thereof is omitted.
  • the coating width of the electrode active material in the electrode body 20 can be increased, and the capacity of the battery can be increased.
  • the present invention is applicable to a technique for manufacturing a laminated aluminum material by joining laminated aluminum foil and an aluminum plate by resistance welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 本発明の第一態様は、積層されたアルミニウム箔とアルミニウム板とを抵抗溶接することにより得られる積層アルミニウム材を製造する方法であって、前記アルミニウム箔の積層方向に形成される小孔を、前記アルミニウム箔の溶接部の長手方向に沿って複数設け、前記アルミニウム箔とアルミニウム板との抵抗溶接を行い、前記複数の小孔の周囲を取り囲む楕円形状のナゲットを形成することによって、前記アルミニウム箔とアルミニウム板とを接合することを特徴とする。これにより、ナゲット形成が許容されている領域の幅が狭い場合でも、十分なナゲット面積を確保できる。

Description

積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池
 本発明は、積層されたアルミニウム箔とアルミニウム板とを抵抗溶接により接合し、積層アルミニウム材を製造する技術に関する。
 特許文献1には、積層したアルミニウム箔に小孔を設けてから抵抗溶接を行う技術が開示されている。この技術では、小孔を設けることによりアルミニウム箔の酸化被膜を除去して、電流の通り道を作り、抵抗溶接の際の通電性を向上する。
 積層したアルミニウム箔の接合は、例えば、リチウムイオン二次電池の正極側で実施される。リチウムイオン二次電池の電極体は、正極活物質が塗工されたアルミニウム箔、負極活物質が塗工された銅箔、及び、セパレータを複数回巻回することによって形成される。このように積層されたアルミニウム箔において、正極活物質が塗工されていない部位(未塗工部)が正極端子との接合部となり、集電部として利用される。
特開2006-326622号公報
 リチウムイオン二次電池では、高容量化が進められる一方で、電池外装の大型化は避けられている。このような要請に応えるため、電池の大きさを変えずに容量効率を上げようとすると、活物質の未塗工部の幅を減少させて、活物質の塗工面積を増大させることが必要となる。
 特許文献1に記載の技術を用いて、積層されたアルミニウム箔と正極端子とを接合する場合、積層アルミニウム箔に設けられる小孔を中心とした円形のナゲットが形成される。この場合のナゲット面積は、小孔を中心とした径に依存する。
 言い換えれば、抵抗溶接に寄って得られるナゲット面積は、ナゲット形成許容領域の幅方向の大きさに依存する。従って、積層アルミニウム箔における活物質の未塗工幅を減少させると、ナゲット面積が小さくなってしまう。
 本発明は、ナゲット形成が許容されている領域の幅が狭い場合でも、十分なナゲット面積を確保できる技術を提供する。
 本発明の第一態様は、積層されたアルミニウム箔とアルミニウム板とを抵抗溶接することにより得られる積層アルミニウム材を製造する方法であって、前記アルミニウム箔の積層方向に形成される小孔を、前記アルミニウム箔の溶接部の長手方向に沿って複数設け、前記アルミニウム箔とアルミニウム板との抵抗溶接を行い、前記複数の小孔の周囲を取り囲む楕円形状のナゲットを形成することによって、前記アルミニウム箔とアルミニウム板とを接合することを特徴とする。
 本発明の第一態様に係る積層アルミニウム材の製造方法の好ましい実施形態では、前記複数の小孔を設ける際に、電流を印加することにより、アルミニウム箔及びアルミニウム板に一時的な溶融凝固部を形成する。
 本発明の第二態様は、本発明の第一態様に係る積層アルミニウム材の製造方法を含む密閉型電池の製造方法であって、前記積層されたアルミニウム箔は、前記密閉型電池に含まれる電極箔であり、前記アルミニウム板は、前記密閉型電池に含まれる電極端子である。
 本発明の第三態様は、本発明の第二態様に係る製造方法によって得られる密閉型電池である。
 本発明の密閉型電池の他の実施形態は、電極箔を積層した電極体と、前記電極体に固定される電極端子とを具備し、前記電極箔の集電部と、前記電極端子とは、抵抗溶接によって形成されるナゲットによって接合され、前記ナゲットは、前記電極箔の長手方向を長径とする楕円形状に形成されることを特徴とする。
 本発明によれば、ナゲット形成が許容されている領域の幅が狭い場合でも、十分なナゲット面積を確保できる。接合部の周囲への影響を考慮して、超音波溶接を用いることができない構成に対して、本発明を適用することが特に有効である。
密閉型電池の概略構成を示す斜視図である。 密閉型電池の分解図である。 正極箔と正極端子の接合部を示す拡大図である。 積層アルミニウム材の製造工程を示すフローチャートである。 小孔形成工程を示す図である。 小孔形成工程を示す平面図である。 抵抗溶接工程を示す図である。 抵抗溶接工程を示す平面図である。 小孔形成工程に用いる針の好ましい実施形態である。 密閉型電池の製造工程を示すフローチャートである。
 図1及び図2に密閉型電池1の構成を示す。密閉型電池1は、例えばリチウムイオン二次電池である。
 密閉型電池1は、外装10に発電要素となる電極体20を収容する。電極体20と接続される正極端子31、負極端子32がそれぞれ外装10の外方に突出して設けられる。
 外装10は、電極体20を収容する容器11と、正極端子31及び負極端子32が固定される蓋12を含む。容器11の一面が開口されており、蓋12によってその開口面が塞がれる。容器11の開口面と蓋12の外周は溶接され、外装10の内部が密閉される。
 より詳細には、電極体20が固定された正極端子31及び負極端子32を蓋12に固定して、蓋集合体を構成した上で、電極体20を容器11内に収容する。次に、容器11の開口面と蓋12の外周を溶接して外装10を密閉する。
 電極体20は、正極箔21、及び負極箔22を、セパレータ23を介して積層して巻回することにより得られる巻回体である。正極箔21及び負極箔22は、電極箔であり、その一部には、発電要素となる電極活物質が塗工されている。
 密閉された外装10に電解液が注液され、電極体20に電解液を含浸させる。電極体20の電極活物質と電解液に含まれる電解質との間で化学反応が起こることによって、電極体20への充電及び電極体20からの放電が行われる。
 電極体20において、電極活物質が塗工されていない未塗工部が巻回面両側にそれぞれ突出するように巻回される。つまり、正極箔21及び負極箔22における未塗工部は、電極体20の巻回軸方向両端に配置されるように巻回される。
 なお、電極体20は、正極箔21、負極箔22、セパレータ23を積層した積層体としても良い。この場合、積層体の側面から正極箔21及び負極箔22の未塗工部が突出するように積層される。
 正極端子31及び負極端子32は、密閉型電池1の電極端子である。正極端子31及び負極端子32は、外装10内において、それぞれ正極箔21及び負極箔22の未塗工部と接合される。つまり、正極箔21及び負極箔22の未塗工部は、電極体20の集電部として利用される。
 密閉型電池1をリチウムイオン二次電池とした場合、正極箔21にアルミニウム箔、負極箔22に銅箔がそれぞれ用いられる。また、正極端子31の材料としてアルミニウム、負極端子32の材料として銅がそれぞれ用いられる。
 図3に示すように、正極箔21の未塗工部(集電部)と正極端子31は、抵抗溶接によって形成されるナゲット40によって接合される。ナゲット40は、抵抗溶接によって生じる溶融凝固部であり、正極箔21の集電部における長手方向を長径とする楕円形状に形成される。つまり、正極箔21における正極端子31との溶接部(ナゲット形成許容領域)の長手方向に延びる楕円形状のナゲット40が形成される。
 密閉型電池1の電池容量は、発電要素である電極体20の電極活物質の量に依存する。つまり、密閉型電池1の高容量化を図る場合、正極箔21及び負極箔22の電極活物質の塗工幅を大きくし、未塗工部の幅を小さくすることが求められる。
 本実施形態では、ナゲット40を未塗工部の長手方向に沿った楕円形状に形成することによって、ナゲット形成許容領域を最大限に利用して、溶接可能領域の幅が小さい場合でも接合に必要なナゲット面積を確保することができる。従って、未塗工部の幅を最大限に小さくし、発電領域の面積を大きくしたリチウムイオン二次電池を得ることができ、電池容量効率を向上できる。
 特に、正極側に圧力型CIDを設ける装置構成の密閉型電池の場合は、正極箔と正極端子との接合に超音波溶接を用いることが困難となるが、本実施形態のような抵抗溶接を用いた接合方法を採用することで係る課題を解決することができる。
 以下では、図4から図8を参照して、ナゲット40を形成する方法、つまり、積層されたアルミニウム箔である正極箔21と、アルミニウム材料によって構成される板材である正極端子31とを接合して積層アルミニウム材50を製造する方法について説明する。
 図4に示すように、積層アルミニウム材の製造工程は、小孔形成工程及び抵抗溶接工程を含む。
 図5及び図6は、正極箔21に複数(例えば三つ)の小孔60を設ける工程を示す。
 小孔形成工程では、正極箔21と正極端子31とを重ね、正極箔21側の外側面に当て板61を配置した上で、複数の針先を有する針62を押し当てることによって、当て板61及び正極箔21に小孔60を設ける。小孔60は、正極箔21の積層方向に形成される小径円形状の亀裂であって、複数の小孔60が正極箔21の未塗工部の長手方向に所定間隔を開けて連続して設けられ、未塗工部の幅方向中央に直線的に配置される。当て板61は、正極箔21と押圧工具、電極との直接の接触を避けるための保護部材である。
 小孔60を形成することによって、正極箔21の表面に存在する酸化アルミニウムの表面被膜を除去することができる。酸化被膜が除去された部位は他の部位よりも抵抗が低くなるため、抵抗溶接工程の際に電流が通りやすい導通部として利用することができる。
 小孔60の深さは、正極箔21を厚み方向に貫通して正極端子31側に***する突起を形成する程度に設けられることが好ましい。係る場合、正極箔21の厚み方向全域に導通部を形成できるため、抵抗溶接工程での正確な通電を確保することができる。
 しかし、小孔60の深さは、正極箔21に他の部位よりも抵抗値の低い導通部を形成することができれば良く、例えば、正極箔21の厚みの1/3から1/2程度としても抵抗溶接時の導通経路を作ることが可能である。
 図7及び図8は、小孔60が設けられた状態の正極箔21と正極端子31とを抵抗溶接により接合する工程を示す。
 抵抗溶接工程では、電極対70を用いて、当て板61を介して正極箔21及び正極端子31を押圧しつつ、通電する。これにより、通電部位を加熱して溶融させ、その後凝固することによって、ナゲット40を形成する。このようにして、正極箔21と正極端子31を溶接し、ナゲット40により接合された積層アルミニウム材50を製造する。
 このとき、電極対70からの電流は抵抗値の小さい小孔60の周囲を優先的に通ることから、ナゲット40は小孔60の形成位置から放射状に広がるように形成される。上述のように小孔60は正極箔21の未塗工部の長手方向に沿って連続的に複数設けられているため、それぞれの小孔60を中心とした円形状のナゲットが結合されて、長手方向を長径とする楕円形状のナゲット40が形成される。
 以上のように、小孔形成工程及び抵抗溶接工程を経て、積層アルミニウム材50が形成される。
 積層アルミニウム材50においては、ナゲット形成許容領域が正極箔21の未塗工部の幅方向に規制されている状態で、未塗工部の長手方向に沿って小孔60を複数設けて抵抗溶接時の導通部を確保し、小孔60の形成位置に応じた楕円形状のナゲット40が形成される。これにより、ナゲット形成が許容されている領域の幅方向が小さい場合でも十分なナゲット面積を確保することができ、抵抗溶接による接合を実現している。
 近距離に複数配置される針先を有する針62用いて、小孔60を穿設することにより、一つ一つの針先にかかる圧力を分散させることができ、針62の耐久性を向上することができる。また、針62に対する当て板61、正極箔21、及び正極端子31の位置決め精度を向上できる。
 また、針62の各針先の先端径は、例えば1[mm]程度とすることが好ましい。
 図9に示すように、小孔形成工程において、針62の裏側に電極63を配置して、針62を押し当てて小孔60を設ける際に、針62と電極63間に微小な電流を印加して通電する構成としても良い。言い換えれば、小孔形成工程を一次溶接工程とし、抵抗溶接工程を二次溶接工程として、二段階の溶接工程としても良い。
 この場合、針62によって正極箔21の表面に存在する酸化被膜を除去すると同時に、針62及び電極63間に電流が流れることにより、針62の周囲が通電によるジュール熱で溶融されて、一時的に溶融凝固部64が形成される。これにより、小孔60が形成される部位周辺に、より電流が流れやすい導通部を作ることができる。
 密閉型電池1におけるナゲット40の面積は、例えば電極体20を外装10内に収容する際に、剥離が生じない接合強度を確保できる程度に設定されることが好ましい。
 また、ナゲット40の形状は、小孔60の形成個数、形成箇所等によって変更可能であり、上記ナゲット面積を確保できるように適宜設定可能である。言い換えれば、適宜のナゲット面積を確保すべく、小孔60の形成個数等を決定すれば良い。
 また、針62による加圧・穿設は、正極端子31側から行った場合でも同様の効果を奏する。
 以下、図10を参照して、密閉型電池1の製造する工程について説明する。
 密閉型電池の製造工程は、電極体製造工程、積層アルミニウム材製造工程を含む蓋SUB-ASSY製造工程、外装溶接工程、電解液注液工程、初期充電工程、エージング工程等の後工程を経て、密閉型電池1が製品として製造される。ここにおける、積層アルミニウム材製造工程以外の各工程は、公知の技術を用いて実現されるものであり、詳細な説明は省略する。
 上述のような密閉型電池の製造工程によって得られる密閉型電池1では、電極体20における電極活物質の塗工幅を大きく取ることができ、電池の高容量化が可能である。特に、密閉型電池1の装置構成として、正極側に圧力型CIDを設ける構成を採用する場合は、正極箔と正極端子との接合に超音波溶接を用いることが困難となるが、本実施形態のような抵抗溶接を用いた接合方法を採用し、積層アルミニウム材を製造することで係る課題を解決することができる。
 本発明は、積層されたアルミニウム箔とアルミニウム板とを抵抗溶接により接合し、積層アルミニウム材を製造する技術に利用可能である。
 1:密閉型電池、10:外装、11:容器、12:蓋、20:電極体、21:正極箔(アルミニウム箔)、22:負極箔、31:正極端子(アルミニウム板)、40:ナゲット、50:積層アルミニウム材

Claims (5)

  1.  積層されたアルミニウム箔とアルミニウム板とを抵抗溶接することにより得られる積層アルミニウム材を製造する方法であって、
     前記アルミニウム箔の積層方向に形成される小孔を、前記アルミニウム箔の溶接部の長手方向に沿って複数設け、
     前記アルミニウム箔とアルミニウム板との抵抗溶接を行い、前記複数の小孔の周囲を取り囲む楕円形状のナゲットを形成することによって、前記アルミニウム箔とアルミニウム板とを接合することを特徴とする積層アルミニウム材の製造方法。
  2.  前記複数の小孔を設ける際に、電流を印加することにより、アルミニウム箔及びアルミニウム板に一時的な溶融凝固部を形成する請求項1に記載の積層アルミニウム材の製造方法。
  3.  請求項1又は2に記載の積層アルミニウム材の製造方法を含む密閉型電池の製造方法であって、
     前記積層されたアルミニウム箔は、前記密閉型電池に含まれる電極箔であり、前記アルミニウム板は、前記密閉型電池に含まれる電極端子である密閉型電池の製造方法。
  4.  請求項3に記載の密閉型電池の製造方法によって得られる密閉型電池。
  5.  電極箔を積層した電極体と、前記電極体に固定される電極端子とを具備する密閉型電池であって、
     前記電極箔の集電部と、前記電極端子とは、抵抗溶接によって形成されるナゲットによって接合され、前記ナゲットは、前記電極箔の長手方向を長径とする楕円形状に形成されることを特徴とする密閉型電池。 
PCT/JP2013/066879 2012-06-20 2013-06-19 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池 WO2013191218A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-139089 2012-06-20
JP2012139089A JP5876380B2 (ja) 2012-06-20 2012-06-20 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法

Publications (1)

Publication Number Publication Date
WO2013191218A1 true WO2013191218A1 (ja) 2013-12-27

Family

ID=49768812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066879 WO2013191218A1 (ja) 2012-06-20 2013-06-19 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池

Country Status (2)

Country Link
JP (1) JP5876380B2 (ja)
WO (1) WO2013191218A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932214A (zh) * 2015-02-27 2016-09-07 三洋电机株式会社 二次电池及其制造方法
WO2020056951A1 (zh) * 2018-09-18 2020-03-26 优尼恩电机(大连)有限公司 多层金属焊接装置及其焊接方法
US10797292B2 (en) 2015-09-28 2020-10-06 Gs Yuasa International Ltd. Energy storage device, method of manufacturing energy storage device, current collector, and cover member
EP4362151A1 (en) * 2022-10-04 2024-05-01 Prime Planet Energy & Solutions, Inc. Battery cell and method of manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508299B1 (en) * 2016-09-05 2021-11-24 Nag System Co., Ltd. Method for manufacturing laminated metal foil
JP6878878B2 (ja) * 2016-12-26 2021-06-02 三洋電機株式会社 二次電池の製造方法および二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108247U (ja) * 1989-02-16 1990-08-28
JP2006326622A (ja) * 2005-05-25 2006-12-07 Nag System Co Ltd 積層したアルミニウム箔の抵抗溶接方法
JP2008004274A (ja) * 2006-06-20 2008-01-10 Honda Motor Co Ltd 蓄電素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892786A (ja) * 1994-07-29 1996-04-09 Furukawa Electric Co Ltd:The 抵抗スポット溶接性および成形性に優れたアルミニウム合金板およびその製造方法
JPH10193132A (ja) * 1996-11-13 1998-07-28 Toyota Central Res & Dev Lab Inc アルミニウム合金製部材のスポット溶接方法
JP4835025B2 (ja) * 2005-04-14 2011-12-14 トヨタ自動車株式会社 蓄電装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108247U (ja) * 1989-02-16 1990-08-28
JP2006326622A (ja) * 2005-05-25 2006-12-07 Nag System Co Ltd 積層したアルミニウム箔の抵抗溶接方法
JP2008004274A (ja) * 2006-06-20 2008-01-10 Honda Motor Co Ltd 蓄電素子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932214A (zh) * 2015-02-27 2016-09-07 三洋电机株式会社 二次电池及其制造方法
US10797292B2 (en) 2015-09-28 2020-10-06 Gs Yuasa International Ltd. Energy storage device, method of manufacturing energy storage device, current collector, and cover member
WO2020056951A1 (zh) * 2018-09-18 2020-03-26 优尼恩电机(大连)有限公司 多层金属焊接装置及其焊接方法
EP4362151A1 (en) * 2022-10-04 2024-05-01 Prime Planet Energy & Solutions, Inc. Battery cell and method of manufacturing same

Also Published As

Publication number Publication date
JP2014000594A (ja) 2014-01-09
JP5876380B2 (ja) 2016-03-02

Similar Documents

Publication Publication Date Title
KR100842493B1 (ko) 이금속 박판의 용접 방법, 이금속 박판 접합체, 전기디바이스 및 전기 디바이스 집합체
JP5884908B2 (ja) 電池の製造方法
US7867644B2 (en) Secondary battery and secondary battery manufacturing method
WO2013191218A1 (ja) 積層アルミニウム材の製造方法及びそれを含む密閉型電池の製造方法、並びに、密閉型電池
JP4588331B2 (ja) 角形電池とその製造方法
JP5195208B2 (ja) 電池及び電池の製造方法
US20140349167A1 (en) Method for manufacturing packed electrode, and packed electrode, secondary battery and heat sealing machine
KR20110017821A (ko) 이차 전지 및 그 제조 방법
JP2014212012A (ja) 二次電池の製造方法および二次電池
US10181594B2 (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2003217562A (ja) コイン型電池
EP2946868B1 (en) Method of manufacturing a sealed battery
JP2014018810A (ja) 抵抗溶接装置、及びそれを用いた抵抗溶接方法
JP2020013733A (ja) 蓄電装置、及び蓄電装置の製造方法
JP5962280B2 (ja) 電極の製造方法
WO2006090511A1 (ja) 電気デバイス集合体の製造方法
JP5158435B2 (ja) 電池及びその製造方法
EP3508299B1 (en) Method for manufacturing laminated metal foil
JP2018041818A (ja) 蓄電デバイス、蓄電モジュール、及び、蓄電モジュールの製造方法
JP2020004643A (ja) 蓄電装置
JP6601161B2 (ja) 溶接構造体の製造方法
US9281542B2 (en) Electricity storage device and welding method
JP2014056672A (ja) 蓄電装置、及び蓄電装置の製造方法
JP2014072134A (ja) 蓄電装置の製造方法、及び蓄電装置
JP5692592B2 (ja) 電気化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806065

Country of ref document: EP

Kind code of ref document: A1