WO2013191110A1 - Support member for contactless power supply - Google Patents

Support member for contactless power supply Download PDF

Info

Publication number
WO2013191110A1
WO2013191110A1 PCT/JP2013/066513 JP2013066513W WO2013191110A1 WO 2013191110 A1 WO2013191110 A1 WO 2013191110A1 JP 2013066513 W JP2013066513 W JP 2013066513W WO 2013191110 A1 WO2013191110 A1 WO 2013191110A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
support member
less
power feeding
contact power
Prior art date
Application number
PCT/JP2013/066513
Other languages
French (fr)
Japanese (ja)
Inventor
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2013191110A1 publication Critical patent/WO2013191110A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Definitions

  • the present invention relates to a support member for non-contact power feeding.
  • Non-contact power feeding technology for charging devices such as mobile phones is becoming widespread.
  • the primary coil (power receiving side) and the secondary coil (power feeding side) are brought close to each other so that electricity can be exchanged, and the charging efficiency increases as the distance decreases. Therefore, the charging efficiency increases as the thickness of the support member (member for mounting a device such as a mobile phone) disposed between the primary coil and the secondary coil of the non-contact power feeding decreases.
  • a driving portion is arranged so that the power feeding coil is in an optimal position.
  • a space of a certain amount or more is required below the support member so that the drivable area is widened. For this reason, the support member is required to be difficult to bend in order to ensure a certain space or more.
  • the support member since a device such as a mobile phone is placed on the support member, high mechanical strength and scratch resistance are required. Furthermore, the electric field generated by the power feeding coil is transmitted to the power receiving coil via the support member. For this reason, the support member is required to be insulative (is an insulator).
  • Metals etc. have high mechanical strength and are not easily bent. However, if metal or the like is used for the support member, electricity cannot be properly transmitted due to the conductivity of the metal.
  • Resin or the like can receive electricity, but since it is easily bent, when receiving power in a large area, a large space cannot be secured below the support member, and the feeding coil cannot be moved appropriately.
  • the present invention has been made in view of the above circumstances, and its technical problem is to devise a support member that has high mechanical strength, has insulating properties, and is difficult to bend.
  • the present inventor has found that the above technical problem can be solved by using a sheet glass having a high Young's modulus, and proposes the present invention. That is, the non-contact power supply supporting member of the present invention is a plate-like glass and has a Young's modulus of 65 GPa or more. Here, the “Young's modulus” can be measured by a resonance method or the like.
  • the “glass” in the present invention includes crystallized glass in addition to non-tempered glass and tempered glass.
  • the non-contact power supply support member of the present invention has a volume resistivity log ⁇ ( ⁇ ⁇ cm) at 150 ° C. of 5 or more.
  • volume resistivity log ⁇ at 150 ° C.” refers to a value measured at 150 ° C. based on ASTM C657-78.
  • the non-contact power supply support member of the present invention has a thickness of 2 mm or less.
  • the non-contact power supply support member of the present invention has a mechanical strength of 200 MPa or more according to a four-point bending test.
  • the conditions of the four-point bending test are a support span of 50 mm, a load span of 25 mm, and a crosshead descending speed of 0.5 mm / min.
  • the support member for contactless power feeding according to the present invention is such that the glass is a tempered glass having a compressive stress layer on the surface, and has a glass composition of 40% to 80% by weight of SiO 2 and Al 2 O. 3 It is preferable to contain 1 to 25% and Na 2 O 0.5 to 20%.
  • the compressive stress layer is formed by a chemical treatment in the contactless power supply support member of the present invention.
  • the support member for non-contact power feeding according to the present invention has a compressive stress layer with a compressive stress value of 100 MPa or more and a stress depth of 10 ⁇ m or more, and a tensile stress layer formed inside the glass.
  • the tensile stress value is preferably 200 MPa or less.
  • “compressive stress value of compressive stress layer” and “stress depth” are interference fringes observed when a sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). The value calculated from the number of and the interval.
  • the “tensile stress value of the tensile stress layer” refers to a value calculated by the following mathematical formula 1.
  • the glass surface is preferably an unpolished surface.
  • the non-contact power supply supporting member of the present invention has a glass surface roughness Ra of 1.0 nm or less.
  • a non-contact power feeding device of the present invention is characterized by including the above-mentioned support member for non-contact power feeding.
  • the method for producing a support member for contactless power feeding according to the present invention contains, by mass%, SiO 2 40-80%, Al 2 O 3 1-25%, Na 2 O 0.5-20%.
  • a glass raw material prepared so as to have a glass composition is melted and formed into a plate-like glass, and then an ion exchange treatment is performed to form a compressive stress layer on the glass surface.
  • the method for manufacturing a support member for contactless power feeding according to the present invention includes a step of forming into a sheet glass by a downdraw method.
  • the manufacturing method of the support member for non-contact electric power feeding of this invention includes the process of shape
  • the Young's modulus is 65 GPa or more, preferably 70 GPa or more, 73 GPa or more, particularly 75 GPa or more.
  • the size of the non-contact power feeding device is usually 300 mm square or more, and the mass of the PC or the like placed on the support member is also heavy. Therefore, in that case, a higher Young's modulus is more preferable.
  • the volume resistivity log ⁇ ( ⁇ ⁇ cm) at 150 ° C. is preferably 2 or more, preferably 3 or more, preferably 5 or more, particularly preferably 8 or more. The larger this value, the higher the power reception efficiency.
  • the plate thickness is 2.0 mm or less, 1.5 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, particularly 0.5 mm or less. preferable.
  • the smaller the plate thickness the higher the charging efficiency and the weight of the non-contact power feeding device.
  • the non-contact power supply supporting member of the present invention has an advantage that it is difficult to break even if the plate thickness is reduced.
  • molded by the overflow downdraw method thinning and smoothing of glass can be achieved without polishing.
  • the mechanical strength by a four-point bending test is preferably 200 MPa or more, preferably 300 MPa or more, preferably 400 MPa or more, preferably 500 MPa or more, preferably 600 MPa or more, particularly preferably 700 MPa. That's it.
  • the non-contact power supply supporting member of the present invention is preferably tempered glass having a compressive stress layer on the surface.
  • Methods for forming a compressive stress layer on the surface include a physical strengthening method and a chemical strengthening method.
  • a chemical strengthening method is a method of introducing alkali ions having a large ion radius to the surface of the glass by performing an ion exchange treatment at a temperature below the strain point of the glass. If the compressive stress layer is formed by the chemical strengthening method, a desired mechanical strength can be obtained even if the plate thickness of the glass plate is small.
  • a physical strengthening method such as an air cooling strengthening method, it is not easily broken.
  • SiO 2 is a component that forms a glass network, and its content is preferably 40 to 80%, preferably 40 to 71%, preferably 40 to 66%, preferably 40 to 65%, preferably 40%. To 63%, preferably 45 to 63%, preferably 50 to 59%, particularly preferably 55 to 58.5%. If the content of SiO 2 is too large, it becomes difficult to melt or mold the glass, or the thermal expansion coefficient becomes too low to make it difficult to match the thermal expansion coefficient with the surrounding materials. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify. Moreover, a thermal expansion coefficient becomes high and the thermal shock resistance of glass tends to fall.
  • Al 2 O 3 is a component that enhances ion exchange performance. It also has the effect of increasing the strain point and Young's modulus, and its content is preferably 1 to 25%.
  • the content of Al 2 O 3 is too large, it is difficult to forming by the overflow down-draw method or the like is easily devitrified crystal glass deposition.
  • the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient with the surrounding materials, and increasing the high-temperature viscosity, making it difficult to melt.
  • the content of Al 2 O 3 is too small, a possibility arises which can not exhibit a sufficient ion exchange performance.
  • the preferable range of Al 2 O 3 has an upper limit of 21% or less, more preferably 20% or less, more preferably 19% or less, more preferably 18% or less, more preferably 17% or less, and particularly preferably.
  • the lower limit is preferably 7.5% or more, more preferably 8.5% or more, more preferably 9% or more, more preferably 10% or more, more preferably 12% or more, more Preferably it is 13% or more, Most preferably, it is 14% or more.
  • Li 2 O is an ion-exchange component and a component that lowers the high-temperature viscosity and improves meltability and moldability.
  • Li 2 O is a component that improves the Young's modulus.
  • Li 2 O has a large effect of increasing the compressive stress value among alkali metal oxides.
  • the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials.
  • the compressive stress value may be lowered.
  • the content of Li 2 O is preferably 0 to 3.5%, more preferably 0 to 2%, more preferably 0 to 1%, more preferably 0 to 0.5%, more preferably 0 to Most preferably, it is 0.1% and does not contain substantially, that is, it is suppressed to less than 0.01%.
  • Na 2 O is an ion exchange component and a component that lowers the high temperature viscosity and improves the meltability and moldability. Na 2 O is also a component that improves devitrification resistance.
  • the content of Na 2 O is preferably 0.5-20%, more preferably 7-20%, more preferably 10-20%, more preferably 10-19%, more preferably 12-19%, more Preferably it is 12 to 17%, more preferably 13 to 17%, particularly preferably 14 to 17%. If the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials.
  • K 2 O has an effect of promoting ion exchange, and has a high effect of increasing the stress depth among alkali metal oxides. Moreover, it is a component which reduces a high temperature viscosity and improves a meltability and a moldability. K 2 O is also a component that improves devitrification resistance.
  • the content of K 2 O is preferably 0 to 15%. When the content of K 2 O is too large, the thermal expansion coefficient becomes high, or the thermal shock resistance is lowered, the peripheral material and the coefficient of thermal expansion is hardly consistent. Furthermore, there is a tendency that the strain point is excessively lowered, the balance of the glass composition is lacking, and the devitrification resistance is lowered.
  • the upper limit of K 2 O is preferably 12% or less, more preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 5% or less, more preferably 4%. Hereinafter, it is more preferably 3% or less, particularly preferably 2% or less.
  • the glass tends to be devitrified and the thermal expansion coefficient becomes too high. As a result, the thermal shock resistance is lowered, and the thermal expansion coefficient is difficult to match with the surrounding material. Further, there is a case where the total content of alkali metal oxides R 2 O is too large, too lowered strain point, not obtain a high compression stress value. Furthermore, the viscosity in the vicinity of the liquidus temperature may decrease, and it may be difficult to ensure a high liquidus viscosity. Furthermore, there is a possibility that the volume resistivity is lowered and the exchange of electricity between the receiving coil and the feeding coil is hindered.
  • the total amount of R 2 O is preferably 22% or less, more preferably 20% or less, and particularly preferably 19% or less.
  • the total amount of R 2 O is preferably 8% or more, more preferably 10% or more, more preferably 13% or more, and particularly preferably 15% or more.
  • the value of (Na 2 O + K 2 O) / Al 2 O 3 is preferably 0.7 to 2, more preferably 0.8 to 1.6, more preferably 0.9 to 1.6, and more preferably Is set in the range of 1 to 1.6, particularly preferably 1.2 to 1.6, the devitrification resistance can be improved more effectively. If this value is greater than 2, the low temperature viscosity may be excessively decreased, the ion exchange performance may be decreased, the Young's modulus may be decreased, the thermal expansion coefficient may be excessively increased, and the thermal shock resistance may be decreased. In addition, the glass composition may be unbalanced and the glass may be easily devitrified. On the other hand, when this value is smaller than 0.7, the meltability and devitrification resistance are liable to decrease.
  • the range of the mass ratio of K 2 O / Na 2 O is preferably 0-2.
  • the compressive stress value and the stress depth can be changed.
  • the mass ratio is 0.3-2, 0.5-2, 1-2, Alternatively, it is preferable to adjust to 1.2 to 2 or 1.5 to 2.
  • the reason why the upper limit of the mass ratio is set to 2 is that if it exceeds 2, the glass composition is not balanced and the glass is easily devitrified.
  • alkaline earth metal oxide R′O (R ′ is one or more selected from Mg, Ca, Sr, Ba) is a component that can be added for various purposes.
  • R′O alkaline earth metal oxide
  • the total amount of R′O is preferably 0 to 9.9%, more preferably 0 to 8%, more preferably 0 to 6, and particularly preferably 0 to 5%.
  • MgO is a component that lowers the high-temperature viscosity to improve the meltability and formability, and increases the strain point and Young's modulus.
  • MgO has a great effect of improving ion exchange performance.
  • the MgO content is preferably 0 to 6%.
  • the content is preferably 4% or less, more preferably 3% or less, more preferably 2% or less, and particularly preferably 1.5% or less.
  • CaO is a component that lowers the high-temperature viscosity to increase meltability and formability, and increases the strain point and Young's modulus.
  • CaO has a great effect of improving ion exchange performance.
  • the CaO content is preferably 0 to 6%.
  • the content of CaO is increased, the density and thermal expansion coefficient may be increased, the glass may be easily devitrified, and the ion exchange performance may be decreased. Therefore, the content is preferably 4% or less, more preferably 3% or less, and particularly preferably 2.5% or less.
  • SrO and BaO are components that lower the high temperature viscosity to improve the meltability and moldability, and increase the strain point and Young's modulus, and their contents are preferably 0 to 3% each.
  • the content of SrO is preferably 2% or less, preferably 1.5% or less, preferably 1% or less, preferably 0.5% or less, preferably 0.2% or less, particularly preferably 0.1% or less.
  • the content of BaO is preferably 2.5% or less, preferably 2% or less, preferably 1% or less, preferably 0.8% or less, preferably 0.5% or less, preferably 0.2%. Hereinafter, it is particularly preferably 0.1% or less.
  • ZnO is a component that enhances the ion exchange performance, and is particularly effective in increasing the compressive stress value. Further, it is a component having an effect of lowering the high temperature viscosity without lowering the low temperature viscosity, and its content is preferably 0 to 8%. However, if the ZnO content is increased, the glass is phase-divided, the devitrification resistance is decreased, or the density is increased. Therefore, the content is preferably 6% or less, more preferably 4% or less, Particularly preferably, it is 3% or less.
  • SrO + BaO When the total amount of SrO + BaO is regulated to 0 to 5%, the ion exchange performance can be improved more effectively. That is, since SrO and BaO have the effect
  • the preferred range of SrO + BaO is 0 to 3%, more preferably 0 to 2.5%, more preferably 0 to 2%, more preferably 0 to 1%, more preferably 0 to 0.2%, particularly preferably 0. ⁇ 0.1%.
  • SnO 2 has an effect of improving the ion exchange performance, particularly the compressive stress value. Therefore, it is preferably contained in an amount of 0.01 to 3%, more preferably 0.01 to 1.5%, and particularly preferably 0.2%. It is preferable to contain 1 to 1%. When the content of SnO 2 increases, devitrification due to SnO 2 occurs or the glass tends to be easily colored.
  • ZrO 2 has the effect of significantly improving the ion exchange performance, increasing the Young's modulus and strain point, and lowering the high temperature viscosity. Moreover, since it has the effect of increasing the viscosity in the vicinity of the liquid phase viscosity, the ion exchange performance and the liquid phase viscosity can be simultaneously increased by containing a predetermined amount. However, when the content of ZrO 2 is too large, the devitrification resistance may be extremely lowered. Therefore, the lower limit of the content of ZrO 2 may be 0% or more, may be 0.001% or more, may be 0.1% or more, and may be 0.5% or more. 0.8% or more, 1.5% or more, 2.5% or more, 3% or more, or 4% or more. The upper limit may be 10% or less, 8% or less, or 6% or less.
  • B 2 O 3 has the effect of lowering the liquidus temperature, the high temperature viscosity and the density, and has the effect of improving the ion exchange performance, particularly the compressive stress value. If it is too high, the surface may be burned by ion exchange, the water resistance may decrease, or the liquid phase viscosity may decrease. In addition, the stress depth tends to decrease. Therefore, the content of B 2 O 3 is preferably 0 to 6%, preferably 0 to 4%, particularly preferably 0 to 3%.
  • TiO 2 is a component that has an effect of improving ion exchange performance. It also has the effect of reducing the high temperature viscosity. However, when there is too much the content, glass will color, devitrification resistance will fall, or a density will become high. Further, when the melting atmosphere or the raw material is changed, the transmittance is easily changed. Furthermore, when a pattern is formed on the back surface of the non-contact power supply device by screen printing, ink jet, or the like, the design of the pattern is likely to deteriorate.
  • the content of TiO 2 is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 5% or less, more preferably 4% or less, more preferably 2% or less, More preferably, it is 0.7% or less, more preferably 0.5% or less, more preferably 0.1% or less, and particularly preferably 0.01% or less.
  • ZrO 2 and TiO 2 it is preferable to limit ZrO 2 and TiO 2 to the above range, but a reagent may be used as the TiO 2 source and the ZrO 2 source, and from impurities contained in the raw materials and the like. It may be introduced.
  • the content of Al 2 O 3 + ZrO 2 is preferably determined as follows. If the content of Al 2 O 3 + ZrO 2 is preferably more than 12%, preferably 13% or more, preferably 15% or more, preferably 17% or more, preferably 18% or more, preferably 19% or more, The exchange performance can be improved more effectively. However, if the content of Al 2 O 3 + ZrO 2 is too large, the devitrification resistance is extremely lowered. Therefore, the content is preferably 28% or less, and preferably 25% or less. % Or less, preferably 22% or less, and particularly preferably 21% or less.
  • P 2 O 5 is a component that enhances the ion exchange performance, and since the effect of increasing the stress depth is particularly great, its content is preferably 0 to 8%. However, when the content of P 2 O 5 increases, the glass tends to phase-separate or the water resistance and devitrification resistance are liable to decrease. Therefore, the content is preferably 5% or less, more preferably 4% or less. 3% or less is more preferable, and 2% or less is particularly preferable.
  • As a fining agent 0.001 to 3% of one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , F, SO 3 , and Cl may be added.
  • As 2 O 3 and Sb 2 O 3 are preferably used as much as possible in consideration of the environment.
  • Each content is preferably less than 0.1%, particularly less than 0.01%. Is preferable, that is, it is preferably not substantially contained.
  • CeO 2 is a component that lowers the transmittance, and its content is preferably less than 0.1%, particularly preferably less than 0.01%.
  • F may lower the low temperature viscosity and may cause a decrease in compressive stress value.
  • the content of F is preferably less than 0.1%, particularly preferably less than 0.01%, that is, it is preferably not substantially contained.
  • preferred fining agents are SO 3 and Cl, and preferably one or both of SO 3 and Cl is added in an amount of 0.001 to 3%, preferably 0.001 to 1%. It is preferable to add 0.01 to 0.5%, and it is more preferable to add 0.05 to 0.4%.
  • Rare earth oxides such as Nb 2 O 5 , La 2 O 3 , and Gd 2 O 3 are components that increase the Young's modulus.
  • their content is preferably 3% or less, preferably 2% or less, preferably 1% or less, preferably 0.5% or less, and particularly preferably 0.1% or less.
  • Transition metal elements such as Co and Ni that strongly color the soot glass are not preferred because they reduce the transmittance. Furthermore, when the content of the transition metal element is too large, when a pattern is formed on the back surface of the non-contact power feeding device by screen printing, ink jet, or the like, the design of the pattern is likely to be deteriorated. Therefore, the content of the transition metal element is preferably 0.5% or less, preferably 0.1% or less, and particularly preferably 0.05% or less. Therefore, the amount of the raw material or cullet can be adjusted. desirable.
  • a suitable content range of each component can be appropriately selected to obtain a preferable glass composition range. Specific examples are shown below. (1) By mass, SiO 2 40-71%, Al 2 O 3 7.5-21%, Li 2 O 0-2%, Na 2 O 10-19%, K 2 O 0-15%, MgO A glass composition containing 0 to 6%, CaO 0 to 6%, SrO 0 to 3%, BaO 0 to 3%, ZnO 0 to 8%, SnO 2 0.01 to 3%.
  • a glass composition that is ⁇ 10% and substantially free of As 2 O 3 and Sb 2 O 3 .
  • the contactless power supply support member of the present invention is preferably tempered glass having a compressive stress layer on the surface.
  • the compressive stress value of the compressive stress layer is preferably 100 MPa or more, preferably 200 MPa or more, preferably 300 MPa or more, preferably 500 MPa or more, preferably 600 MPa or more, preferably 800 MPa or more, preferably 1000 MPa or more, particularly preferably 1200 MPa or more. is there.
  • the compressive stress increases, the mechanical strength of the tempered glass increases.
  • microcracks may be generated on the surface, which may lower the mechanical strength of the tempered glass.
  • a compressive stress value shall be 2500 Mpa or less.
  • the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO, SnO 2 may be increased, or the content of SrO, BaO may be reduced.
  • what is necessary is just to shorten the time which ion exchange requires, or to lower the temperature of an ion exchange solution.
  • the stress depth is preferably 10 ⁇ m or more, preferably 15 ⁇ m or more, preferably 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the deeper the stress depth the harder the tempered glass breaks even if the tempered glass is deeply damaged.
  • the stress depth is preferably 100 ⁇ m or less, preferably 80 ⁇ m or less, preferably 60 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the content of K 2 O, P 2 O 5 , TiO 2 , or ZrO 2 may be increased, or the content of SrO or BaO may be reduced. Moreover, what is necessary is just to lengthen the time which ion exchange requires, or to raise the temperature of an ion exchange solution.
  • the tensile stress value of the tensile stress layer formed inside the glass is preferably 200 MPa or less, preferably 150 MPa or less, preferably 100 MPa or less, preferably 60 MPa or less, preferably 50 MPa or less, preferably 40 MPa or less, preferably 30 MPa.
  • it is preferably 25 MPa or less, particularly preferably 22 MPa or less.
  • the smaller this value the harder the tempered glass is broken by internal defects. Moreover, it becomes easy to cut
  • the glass surface is preferably an unpolished surface, and the average surface roughness (Ra) of the unpolished surface is preferably 10 mm or less, preferably 5 mm or less, preferably It is 4 mm or less, preferably 3 mm or less, particularly preferably 2 mm or less.
  • the average surface roughness (Ra) may be measured by a method based on SEMI D7-97 “Measurement method of surface roughness of FPD glass substrate”. Although the theoretical strength of glass is inherently very high, it often breaks even at stresses much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the glass surface in a post-molding process such as a polishing process.
  • the non-contact power supply support member of the present invention if the entire effective surface of the glass is unpolished, the glass is more difficult to break. Moreover, in order to prevent the situation which breaks from the cut surface of glass, you may perform a chamfering process, an etching process, etc. to the cut surface of glass. In order to obtain an unpolished surface, glass may be formed by an overflow down draw method.
  • the liquidus temperature is preferably 1200 ° C. or lower, preferably 1050 ° C. or lower, preferably 1030 ° C. or lower, preferably 1010 ° C. or lower, preferably 1000 ° C. or lower, preferably 950 ° C.
  • the temperature is preferably 900 ° C. or lower, particularly preferably 870 ° C. or lower.
  • the content of Na 2 O, K 2 O, B 2 O 3 is increased, or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is increased. Should be reduced.
  • Liquid phase temperature means that glass powder that passes through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m) and remains at 50 mesh (a sieve opening of 300 ⁇ m) is placed in a platinum boat and is placed in a temperature gradient furnace for 24 hours. It refers to the temperature at which crystals precipitate after being held.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, preferably 10 4.3 dPa ⁇ s or more, preferably 10 4.5 dPa ⁇ s or more, preferably 10 5.0 dPa ⁇ s or more, preferably 10 5.4 dPa ⁇ s or more, Preferably 10 5.8 dPa.s. s or more, preferably 10 6.0 dPa ⁇ s or more, preferably 10 6.2 dPa ⁇ s or more.
  • liquid phase viscosity refers to a value obtained by measuring the viscosity at the liquid phase temperature by a platinum ball pulling method.
  • the liquidus temperature is 1200 ° C. or less, if the liquidus viscosity of 10 4.0 dPa ⁇ s or more, it is possible to form the glass sheet by an overflow down draw method.
  • the density is preferably 2.8 g / cm 3 or less, preferably 2.7 g / cm 3 or less, particularly preferably 2.6 g / cm 3 or less.
  • density refers to a value measured by the well-known Archimedes method. In order to reduce the density, the content of SiO 2 , P 2 O 5 , B 2 O 3 is increased or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 is increased. The amount may be reduced.
  • the thermal expansion coefficient in the temperature range of 30 to 380 ° C. is preferably 70 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., preferably 75 ⁇ 10 ⁇ 7 to 110 ⁇ . 10 ⁇ 7 / ° C., preferably 80 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., particularly preferably 85 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient is easily matched with a member such as a metal or an organic adhesive, and peeling of the member such as a metal or an organic adhesive can be prevented.
  • thermal expansion coefficient refers to a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. using a dilatometer.
  • the content of alkali metal oxides and alkaline earth metal oxides may be increased.
  • alkali metal oxides and alkaline earth metal oxides may be increased. What is necessary is just to reduce content.
  • the strain point is preferably 500 ° C. or higher, preferably 540 ° C. or higher, preferably 550 ° C. or higher, and particularly preferably 560 ° C. or higher.
  • the “strain point” refers to a value measured based on the method of ASTM C336. As the strain point is higher, the heat resistance is improved, and the compressive stress layer is less likely to disappear even if the non-contact power supply support member is heat-treated. In addition, when the strain point is high, stress relaxation hardly occurs during the ion exchange treatment, and a high compressive stress value can be obtained. In order to increase the strain point, the content of the alkali metal oxide is reduced or the content of the alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 is increased. Good.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1650 ° C. or less, preferably 1500 ° C. or less, preferably 1450 ° C. or less, preferably 1430 ° C. or less, preferably 1420 ° C. or less. Especially preferably, it is 1400 degrees C or less.
  • “temperature at 10 2.5 dPa ⁇ s” refers to a value measured by a platinum ball pulling method.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s corresponds to the melting temperature of the glass, and the lower the temperature, the more the glass can be melted.
  • the glass plate can be manufactured at low cost.
  • the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 is increased, or SiO 2 , Al 2 O What is necessary is just to reduce the content of 3 .
  • a glass plate is first prepared. Next, it is preferable to perform a strengthening treatment.
  • the glass plate may be cut into a predetermined size before the strengthening treatment, but it is preferable to perform the glass plate after the strengthening treatment because the manufacturing cost can be reduced.
  • the strengthening process is desirably performed by an ion exchange process.
  • the ion exchange treatment can be performed, for example, by immersing the glass plate in a potassium nitrate solution at 400 to 550 ° C. for 1 to 8 hours.
  • optimum conditions may be selected in consideration of the viscosity characteristics of glass, application, plate thickness, internal tensile stress, and the like.
  • a glass raw material prepared so as to have a glass composition within the above composition range is put into a continuous melting furnace, the glass raw material is heated and melted at 1500 to 1600 ° C., clarified, and then supplied to a molding apparatus.
  • the molten glass can be formed into a plate-like glass and slowly cooled.
  • a glass plate In order to form a glass plate into a plate shape, it is preferable to employ an overflow down draw method. If a glass plate is formed by the overflow downdraw method, a glass substrate that is unpolished and has good surface quality can be produced. The reason for this is that, in the case of the overflow down draw method, the surface to be the surface of the glass plate is not in contact with the bowl-shaped refractory, and is molded in a free surface state, so that the glass plate has good surface quality without polishing. This is because it can be molded.
  • the overflow down-draw method is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the molten glass overflowed is joined at the lower end of the bowl-like structure and stretched downward. This is a method for producing a glass plate.
  • a method other than the overflow downdraw method can be adopted.
  • a molding method such as a downdraw method (slot down method, redraw method, etc.), a float method, a rollout method, or a press method can be employed.
  • Tables 1 to 5 show examples of the present invention (sample Nos. 1 to 39). In addition, the display of “not yet” in the table means not measured.
  • the samples shown in Tables 1 to 5 were prepared as follows. First, the glass raw material was prepared so that it might become the glass composition in a table
  • the soot density was measured by the well-known Archimedes method.
  • strain point Ps and the annealing point Ta were measured based on the method of ASTM C336.
  • the soot softening point Ts was measured based on the method of ASTM C338.
  • the temperature at a high temperature viscosity of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s was measured by a platinum ball pulling method.
  • the Young's modulus was measured by the bending resonance method.
  • thermal expansion coefficient ⁇ an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. was measured using a dilatometer.
  • the liquid phase temperature TL is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and putting the glass powder remaining at 50 mesh (a sieve opening of 300 ⁇ m) in a platinum boat, and in a temperature gradient furnace for 24 hours. The temperature at which the crystals were deposited was measured.
  • the liquid phase viscosity log ⁇ TL is the viscosity of the glass at the liquidus temperature.
  • Volume resistivity log ⁇ at 150 ° C.” is a value measured at 150 ° C. based on ASTM C657-78.
  • the obtained glass plate had a density of 2.59 g / cm 3 or less and a thermal expansion coefficient of 77 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C.
  • the liquid phase viscosity is 10 4.6 dPa ⁇ s or more, it can be molded by the overflow down draw method, and the temperature at 10 2.5 dPa ⁇ s is as low as 1612 ° C. It is thought that it can be produced.
  • sample No. Both surfaces 1 to 39 were subjected to optical polishing and then subjected to ion exchange treatment.
  • Sample No. For samples 1 to 8, 13 to 15, 24, 25, 27, and 29 to 39, each sample was placed in KNO 3 molten salt at 430 ° C. for 4 hours. 9-12, 16-23 and 26 were carried out by immersing each sample in KNO 3 molten salt at 460 ° C. for 4 hours. After the ion exchange treatment, each sample is thoroughly washed, and the surface compressive stress value and stress depth are calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the interval between them. did.
  • FSM-6000 surface stress meter
  • the refractive index of the sample was 1.53, and the optical elastic constant was 28 [(nm / cm) / MPa].
  • glass composition differs microscopically in the surface layer of glass, unstrengthened glass and tempered glass do not differ substantially in glass composition as the whole glass. Therefore, characteristic values such as density and viscosity are not substantially different between untempered glass and tempered glass.
  • sample no. A compressive stress of 500 MPa or more was generated on the surfaces of 1 to 27 and 29 to 39, and the depth was 13 ⁇ m or more. When the plate thickness was 1 mm, the internal tensile stress was 43 MPa or less.
  • the evaluation method is as follows. Glass plates with a plate thickness of 0.5 mm and a plate thickness of 0.7 mm were respectively produced, and each glass plate was cut into a size of 35 mm ⁇ 35 mm. Each glass plate thus obtained was subjected to ion exchange treatment at 460 ° C. for 6 hours, 460 ° C. for 8 hours, and 490 ° C. for 6 hours, and then the compression stress value and the stress depth were measured. The results are shown in Table 6. The compressive stress value and the stress depth were measured by the same method as described above, and the internal tensile stress was calculated from these values.
  • Table 7 shows the number of pieces after breaking the glass plate. For reference, the number of pieces of a glass plate (unstrengthened glass plate) having no internal tensile stress without performing ion exchange treatment is also shown. As is apparent from Table 7, it can be understood that when the internal tensile stress is 50 to 94 MPa, the number of pieces is the same as that of the glass plate having the internal stress of 0.
  • the cut surface of the test piece was formed by performing a folding operation after forming the scribe line, and the test piece was arranged so that a tensile stress was applied to the opposite side of the cut surface during the four-point bending test.
  • the fracture stress was calculated from the fracture load obtained from the 4-point bending test, and the Weibull plot was obtained by the average rank method to obtain the Weibull coefficient. The results are shown in Table 8. For reference, a four-point bending test was also performed on a glass plate not subjected to ion exchange treatment (unreinforced glass plate).
  • each sample has a high average fracture stress and a Weibull coefficient and a small variation in strength.
  • sample Nos. 1 to 39 are suitable as non-contact power supply supporting members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention addresses the problem of creating a support member that has a high mechanical strength and an insulation property and that does not tend to bend. This support member for contactless power supply is a plate glass and has a Young's modulus of 65 GPa or more.

Description

非接触給電用支持部材Non-contact power supply support member
 本発明は、非接触給電用支持部材に関する。 The present invention relates to a support member for non-contact power feeding.
  携帯電話等のデバイスを充電するための非接触給電技術が普及しつつある。非接触給電では、一次コイル(受電側)と二次コイル(給電側)を接近させることで電気のやり取りが可能になり、その距離が短くなる程、充電効率が高くなる。よって、非接触給電の一次コイルと二次コイルの間に配置される支持部材(携帯電話等のデバイスを載置するため部材)の厚みが小さい程、充電効率が高くなる。 非 Non-contact power feeding technology for charging devices such as mobile phones is becoming widespread. In the non-contact power feeding, the primary coil (power receiving side) and the secondary coil (power feeding side) are brought close to each other so that electricity can be exchanged, and the charging efficiency increases as the distance decreases. Therefore, the charging efficiency increases as the thickness of the support member (member for mounting a device such as a mobile phone) disposed between the primary coil and the secondary coil of the non-contact power feeding decreases.
  一方、非接触給電デバイスには、受電側のコイルがどこに位置しても、最大の充電効率を得るために、給電コイルが最適な位置になるように駆動部分が配置されているものがある。この場合、支持部材の下部には、駆動可能な面積が広くなるように、一定以上の空間が必要になる。このため、支持部材には、一定以上の空間を確保するために、撓み難さが求められる。 On the other hand, in some non-contact power feeding devices, in order to obtain the maximum charging efficiency regardless of where the coil on the power receiving side is located, a driving portion is arranged so that the power feeding coil is in an optimal position. In this case, a space of a certain amount or more is required below the support member so that the drivable area is widened. For this reason, the support member is required to be difficult to bend in order to ensure a certain space or more.
  また、支持部材の上には、携帯電話等のデバイスが載置されるため、高い機械的強度、耐傷性が求められる。更に、給電コイルが発生させる電場は、支持部材を介して受電コイルに伝わる。このため、支持部材は絶縁性(絶縁体であること)が求められる。 Moreover, since a device such as a mobile phone is placed on the support member, high mechanical strength and scratch resistance are required. Furthermore, the electric field generated by the power feeding coil is transmitted to the power receiving coil via the support member. For this reason, the support member is required to be insulative (is an insulator).
  金属等は、機械的強度が高く、撓み難い。しかし、金属等を支持部材に用いると、金属の導電性によって電気を適正に伝えることができない。 Metals etc. have high mechanical strength and are not easily bent. However, if metal or the like is used for the support member, electricity cannot be properly transmitted due to the conductivity of the metal.
  樹脂等は、電気の受給が可能であるが、撓み易いため、広い面積で受電する場合、支持部材の下方に広い空間を確保できず、給電コイルを適正に移動させることができない。 Resin or the like can receive electricity, but since it is easily bent, when receiving power in a large area, a large space cannot be secured below the support member, and the feeding coil cannot be moved appropriately.
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、機械的強度が高く、絶縁性を有し、しかも撓み難い支持部材を創案することである。 The present invention has been made in view of the above circumstances, and its technical problem is to devise a support member that has high mechanical strength, has insulating properties, and is difficult to bend.
  本発明者は、種々の検討を行った結果、高ヤング率の板状ガラスを用いることにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の非接触給電用支持部材は、板状のガラスであり、且つヤング率が65GPa以上であることを特徴とする。ここで、「ヤング率」は、共振法等で測定可能である。なお、本発明でいう「ガラス」には、非強化ガラス、強化ガラス以外に、結晶化ガラスも含まれる。 As a result of various studies, the present inventor has found that the above technical problem can be solved by using a sheet glass having a high Young's modulus, and proposes the present invention. That is, the non-contact power supply supporting member of the present invention is a plate-like glass and has a Young's modulus of 65 GPa or more. Here, the “Young's modulus” can be measured by a resonance method or the like. The “glass” in the present invention includes crystallized glass in addition to non-tempered glass and tempered glass.
  第二に、本発明の非接触給電用支持部材は、150℃における体積抵抗率logρ(Ω・cm)が5以上であることが好ましい。ここで、「150℃における体積抵抗率logρ」は、150℃において、ASTM  C657-78に基づいて測定した値を指す。 Second, it is preferable that the non-contact power supply support member of the present invention has a volume resistivity log ρ (Ω · cm) at 150 ° C. of 5 or more. Here, “volume resistivity logρ at 150 ° C.” refers to a value measured at 150 ° C. based on ASTM C657-78.
  第三に、本発明の非接触給電用支持部材は、厚みが2mm以下であることが好ましい。 Third, it is preferable that the non-contact power supply support member of the present invention has a thickness of 2 mm or less.
  第四に、本発明の非接触給電用支持部材は、4点曲げ試験による機械的強度が200MPa以上であることが好ましい。ここで、4点曲げ試験の条件は、支持スパン50mm、ロードスパン25mm、クロスヘッド降下スピード0.5mm/分とする。 Fourth, it is preferable that the non-contact power supply support member of the present invention has a mechanical strength of 200 MPa or more according to a four-point bending test. Here, the conditions of the four-point bending test are a support span of 50 mm, a load span of 25 mm, and a crosshead descending speed of 0.5 mm / min.
  第五に、本発明の非接触給電用支持部材は、前記ガラスが、表面に圧縮応力層を有する強化ガラスであり、且つガラス組成として、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有することが好ましい。 Fifth, the support member for contactless power feeding according to the present invention is such that the glass is a tempered glass having a compressive stress layer on the surface, and has a glass composition of 40% to 80% by weight of SiO 2 and Al 2 O. 3 It is preferable to contain 1 to 25% and Na 2 O 0.5 to 20%.
  第六に、本発明の非接触給電用支持部材は、前記圧縮応力層が化学的処理によって形成されてなることが好ましい。 Sixth, it is preferable that the compressive stress layer is formed by a chemical treatment in the contactless power supply support member of the present invention.
  第七に、本発明の非接触給電用支持部材は、圧縮応力層の圧縮応力値が100MPa以上で且つ応力深さが10μm以上であって、前記ガラスの内部に形成されている引張応力層の引っ張り応力値が200MPa以下であることが好ましい。ここで、「圧縮応力層の圧縮応力値」及び「応力深さ」は、表面応力計(例えば、株式会社東芝製FSM-6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。「引張応力層の引っ張り応力値」は、下記数式1で計算された値を指す。 Seventh, the support member for non-contact power feeding according to the present invention has a compressive stress layer with a compressive stress value of 100 MPa or more and a stress depth of 10 μm or more, and a tensile stress layer formed inside the glass. The tensile stress value is preferably 200 MPa or less. Here, “compressive stress value of compressive stress layer” and “stress depth” are interference fringes observed when a sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). The value calculated from the number of and the interval. The “tensile stress value of the tensile stress layer” refers to a value calculated by the following mathematical formula 1.
(数1)
 引っ張り応力値=(圧縮応力値×応力深さ)/(板厚-応力深さ×2)
(Equation 1)
Tensile stress value = (compressive stress value x stress depth) / (plate thickness-stress depth x 2)
  第八に、本発明の非接触給電用支持部材は、前記ガラスの表面が未研磨面であることが好ましい。 Eighth, in the contactless power supply support member of the present invention, the glass surface is preferably an unpolished surface.
 第九に、本発明の非接触給電用支持部材は、前記ガラスの表面粗さRaが1.0nm以下であることが好ましい。 Ninth, it is preferable that the non-contact power supply supporting member of the present invention has a glass surface roughness Ra of 1.0 nm or less.
 第十に、本発明の非接触給電デバイスは、上記の非接触給電用支持部材を備えることを特徴とする。 Tenth, a non-contact power feeding device of the present invention is characterized by including the above-mentioned support member for non-contact power feeding.
 第十一に、本発明の非接触給電用支持部材の製造方法は、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有するガラス組成となるように調合したガラス原料を溶融し、板状のガラスに成形した後、イオン交換処理を行ってガラス表面に圧縮応力層を形成することを特徴とする。 Eleventh, the method for producing a support member for contactless power feeding according to the present invention contains, by mass%, SiO 2 40-80%, Al 2 O 3 1-25%, Na 2 O 0.5-20%. A glass raw material prepared so as to have a glass composition is melted and formed into a plate-like glass, and then an ion exchange treatment is performed to form a compressive stress layer on the glass surface.
 第十二に、本発明の非接触給電用支持部材の製造方法は、ダウンドロー法にて板状のガラスに成形する工程を含むことが好ましい。 Twelfth, it is preferable that the method for manufacturing a support member for contactless power feeding according to the present invention includes a step of forming into a sheet glass by a downdraw method.
 第十三に、本発明の非接触給電用支持部材の製造方法は、オーバーフローダウンドロー法にて板状のガラスに成形する工程を含むことが好ましい。 13thly, it is preferable that the manufacturing method of the support member for non-contact electric power feeding of this invention includes the process of shape | molding in plate-shaped glass by the overflow down draw method.
  本発明の非接触給電用支持部材において、ヤング率は65GPa以上であり、好ましくは70GPa以上、73GPa以上、特に75GPa以上である。ヤング率が高い程、非接触給電デバイス上に携帯電話等を載置した際に、ガラスが撓み難くなる。 In the support member for non-contact power feeding according to the present invention, the Young's modulus is 65 GPa or more, preferably 70 GPa or more, 73 GPa or more, particularly 75 GPa or more. The higher the Young's modulus, the harder the glass bends when a mobile phone or the like is placed on the non-contact power feeding device.
  机等の上で非接触給電用デバイスを使用する場合は、非接触給電用デバイスの大きさが通常300mm角以上になり、更に支持部材の上に載置されるPC等の質量も重くなる。よって、その場合は、ヤング率が高い方がより好ましい。 When a non-contact power feeding device is used on a table or the like, the size of the non-contact power feeding device is usually 300 mm square or more, and the mass of the PC or the like placed on the support member is also heavy. Therefore, in that case, a higher Young's modulus is more preferable.
  本発明の非接触給電用支持部材において、150℃における体積抵抗率logρ (Ω・cm)は、好ましくは2以上、好ましくは3以上、好ましくは5以上、特に好ましくは8以上である。この値が大きい程、受電効率が高くなる。 In the non-contact power supply support member of the present invention, the volume resistivity logρ (Ω · cm) at 150 ° C. is preferably 2 or more, preferably 3 or more, preferably 5 or more, particularly preferably 8 or more. The larger this value, the higher the power reception efficiency.
  本発明の非接触給電用支持部材において、板厚は2.0mm以下、1.5mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.6mm以下、特に0.5mm以下が好ましい。板厚が小さい程、充電効率が高くなると共に、非接触給電デバイスを軽量化することできる。特に、机等の上に非接触給電デバイスを配置する場合には、机等の質量を低減することができる。また、本発明の非接触用給電支持部材は、板厚を小さくしても、破壊し難い利点を有している。なお、オーバーフローダウンドロー法でガラスを成形すると、ガラスの薄肉化や平滑化を無研磨で達成することができる。 In the support member for contactless power feeding of the present invention, the plate thickness is 2.0 mm or less, 1.5 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, particularly 0.5 mm or less. preferable. The smaller the plate thickness, the higher the charging efficiency and the weight of the non-contact power feeding device. In particular, when a non-contact power feeding device is arranged on a desk or the like, the mass of the desk or the like can be reduced. Further, the non-contact power supply supporting member of the present invention has an advantage that it is difficult to break even if the plate thickness is reduced. In addition, when glass is shape | molded by the overflow downdraw method, thinning and smoothing of glass can be achieved without polishing.
 本発明の非接触給電用支持部材において、4点曲げ試験による機械的強度は、好ましくは200MPa以上、好ましくは300MPa以上、好ましくは400MPa以上、好ましくは500MPa以上、好ましくは600MPa以上、特に好ましくは700MPa以上である。 In the support member for non-contact power feeding of the present invention, the mechanical strength by a four-point bending test is preferably 200 MPa or more, preferably 300 MPa or more, preferably 400 MPa or more, preferably 500 MPa or more, preferably 600 MPa or more, particularly preferably 700 MPa. That's it.
  本発明の非接触給用電支持部材は、表面に圧縮応力層を有する強化ガラスであることが好ましい。表面に圧縮応力層を形成する方法には、物理強化法と化学強化法があり、本発明では、化学強化法で圧縮応力層を形成することが好ましい。化学強化法は、ガラスの歪点以下の温度でイオン交換処理を行うことにより、ガラスの表面にイオン半径が大きいアルカリイオンを導入する方法である。化学強化法で圧縮応力層を形成すれば、ガラス板の板厚が小さくても、所望の機械的強度を得ることができる。更に、圧縮応力層を形成した後に、強化ガラスを切断しても、風冷強化法等の物理強化法とは異なり、容易に破壊することがない。 The non-contact power supply supporting member of the present invention is preferably tempered glass having a compressive stress layer on the surface. Methods for forming a compressive stress layer on the surface include a physical strengthening method and a chemical strengthening method. In the present invention, it is preferable to form a compressive stress layer by a chemical strengthening method. The chemical strengthening method is a method of introducing alkali ions having a large ion radius to the surface of the glass by performing an ion exchange treatment at a temperature below the strain point of the glass. If the compressive stress layer is formed by the chemical strengthening method, a desired mechanical strength can be obtained even if the plate thickness of the glass plate is small. Furthermore, even if the tempered glass is cut after forming the compressive stress layer, unlike a physical strengthening method such as an air cooling strengthening method, it is not easily broken.
  本発明の非接触給電用支持部材において、上記範囲に板状ガラスのガラス組成を限定した理由を以下に説明する。なお、以下の説明において、%表示は、特に断りがない限り、質量%を指す。 The reason why the glass composition of the sheet glass is limited to the above range in the non-contact power supply supporting member of the present invention will be described below. In the following description, “%” indicates mass% unless otherwise specified.
  SiO2は、ガラスのネットワークを形成する成分であり、その含有量は、好ましくは40~80%、好ましくは40~71%、好ましくは40~66%、好ましくは40~65%、好ましくは40~63%、好ましくは45~63%、好ましくは50~59%、特に好ましくは55~58.5%である。SiO2の含有量が多過ぎると、ガラスの溶融や成形が難しくなったり、熱膨張係数が低くなり過ぎて、周辺材料と熱膨張係数が整合し難くなる。一方、SiO2の含有量が少な過ぎると、ガラス化し難くなる。また、熱膨張係数が高くなり、ガラスの耐熱衝撃性が低下し易くなる。 SiO 2 is a component that forms a glass network, and its content is preferably 40 to 80%, preferably 40 to 71%, preferably 40 to 66%, preferably 40 to 65%, preferably 40%. To 63%, preferably 45 to 63%, preferably 50 to 59%, particularly preferably 55 to 58.5%. If the content of SiO 2 is too large, it becomes difficult to melt or mold the glass, or the thermal expansion coefficient becomes too low to make it difficult to match the thermal expansion coefficient with the surrounding materials. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify. Moreover, a thermal expansion coefficient becomes high and the thermal shock resistance of glass tends to fall.
  Al23は、イオン交換性能を高める成分である。また歪点やヤング率を高める効果もあり、その含有量は1~25%が好ましい。Al23の含有量が多過ぎると、ガラスに失透結晶が析出し易くなってオーバーフローダウンドロー法等による成形が困難になる。また熱膨張係数が低くなり過ぎて、周辺材料と熱膨張係数が整合し難くなったり、高温粘性が高くなり溶融し難くなる。Al23の含有量が少な過ぎると、十分なイオン交換性能を発揮できない虞が生じる。上記観点から、Al23の好適な範囲は上限が21%以下、より好ましくは20%以下、より好ましくは19%以下、より好ましくは18%以下、より好ましくは17%以下、特に好ましくは16.5%以下であり、また下限は7.5%以上が好ましく、より好ましくは8.5%以上、より好ましくは9%以上、より好ましくは10%以上、より好ましくは12%以上、より好ましくは13%以上、特に好ましくは14%以上である。 Al 2 O 3 is a component that enhances ion exchange performance. It also has the effect of increasing the strain point and Young's modulus, and its content is preferably 1 to 25%. When the content of Al 2 O 3 is too large, it is difficult to forming by the overflow down-draw method or the like is easily devitrified crystal glass deposition. In addition, the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient with the surrounding materials, and increasing the high-temperature viscosity, making it difficult to melt. When the content of Al 2 O 3 is too small, a possibility arises which can not exhibit a sufficient ion exchange performance. From the above viewpoint, the preferable range of Al 2 O 3 has an upper limit of 21% or less, more preferably 20% or less, more preferably 19% or less, more preferably 18% or less, more preferably 17% or less, and particularly preferably. The lower limit is preferably 7.5% or more, more preferably 8.5% or more, more preferably 9% or more, more preferably 10% or more, more preferably 12% or more, more Preferably it is 13% or more, Most preferably, it is 14% or more.
  Li2Oは、イオン交換成分であると共に、高温粘度を低下させて溶融性や成形性を向上させる成分である。また、Li2Oは、ヤング率を向上させる成分である。更に、Li2Oは、アルカリ金属酸化物の中では圧縮応力値を高める効果が大きい。しかし、Li2Oの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなる。また、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に、低温粘性が低下し過ぎて、応力緩和が起こり易くなると、かえって圧縮応力値が低くなる場合がある。従って、Li2Oの含有量は、好ましくは0~3.5%、より好ましくは0~2%、より好ましくは0~1%、より好ましくは0~0.5%、より好ましくは0~0.1%であり、実質的に含有しないこと、つまり0.01%未満に抑えることが最も好ましい。 Li 2 O is an ion-exchange component and a component that lowers the high-temperature viscosity and improves meltability and moldability. Li 2 O is a component that improves the Young's modulus. Furthermore, Li 2 O has a large effect of increasing the compressive stress value among alkali metal oxides. However, when the content of Li 2 O is too large, and decreases the liquidus viscosity, it tends glass devitrified. In addition, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials. Furthermore, if the low-temperature viscosity is too low and stress relaxation is likely to occur, the compressive stress value may be lowered. Therefore, the content of Li 2 O is preferably 0 to 3.5%, more preferably 0 to 2%, more preferably 0 to 1%, more preferably 0 to 0.5%, more preferably 0 to Most preferably, it is 0.1% and does not contain substantially, that is, it is suppressed to less than 0.01%.
  Na2Oは、イオン交換成分であると共に、高温粘度を低下させて、溶融性や成形性を向上させる成分である。また、Na2Oは、耐失透性を改善する成分でもある。Na2Oの含有量は、好ましくは0.5~20%、より好ましくは7~20%、より好ましくは10~20%、より好ましくは10~19%、より好ましくは12~19%、より好ましくは12~17%、より好ましくは13~17%、特に好ましくは14~17%である。Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また、歪点が低下し過ぎたり、ガラス組成のバランスを欠き、かえって耐失透性が低下する傾向がある。一方、Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低くなり過ぎたり、イオン交換性能が低下し易くなる。 Na 2 O is an ion exchange component and a component that lowers the high temperature viscosity and improves the meltability and moldability. Na 2 O is also a component that improves devitrification resistance. The content of Na 2 O is preferably 0.5-20%, more preferably 7-20%, more preferably 10-20%, more preferably 10-19%, more preferably 12-19%, more Preferably it is 12 to 17%, more preferably 13 to 17%, particularly preferably 14 to 17%. If the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials. Moreover, there is a tendency that the strain point is excessively lowered, the balance of the glass composition is lacking, and the devitrification resistance is lowered. On the other hand, if too small content of Na 2 O, lowered the melting property, become too coefficient of thermal expansion is low, it tends to decrease the ion exchange performance.
  K2Oは、イオン交換を促進する効果があり、アルカリ金属酸化物の中では応力深さを深くする効果が高い。また、高温粘度を低下させて、溶融性や成形性を高める成分である。また、K2Oは、耐失透性を改善する成分でもある。K2Oの含有量は0~15%が好ましい。K2Oの含有量が多過ぎると、熱膨張係数が高くなり、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に、歪点が低下し過ぎたり、ガラス組成のバランスを欠き、かえって耐失透性が低下する傾向がある。よって、K2Oの上限は12%以下であることが好ましく、より好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは5%以下、より好ましくは4%以下、より好ましくは3%以下、特に好ましくは2%以下である。 K 2 O has an effect of promoting ion exchange, and has a high effect of increasing the stress depth among alkali metal oxides. Moreover, it is a component which reduces a high temperature viscosity and improves a meltability and a moldability. K 2 O is also a component that improves devitrification resistance. The content of K 2 O is preferably 0 to 15%. When the content of K 2 O is too large, the thermal expansion coefficient becomes high, or the thermal shock resistance is lowered, the peripheral material and the coefficient of thermal expansion is hardly consistent. Furthermore, there is a tendency that the strain point is excessively lowered, the balance of the glass composition is lacking, and the devitrification resistance is lowered. Therefore, the upper limit of K 2 O is preferably 12% or less, more preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 5% or less, more preferably 4%. Hereinafter, it is more preferably 3% or less, particularly preferably 2% or less.
  アルカリ金属酸化物R2O(RはLi、Na、Kから選ばれる1種以上)の合量が多くなり過ぎると、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また、アルカリ金属酸化物R2Oの合量が多過ぎると、歪点が低下し過ぎて、高い圧縮応力値が得られない場合がある。更に、液相温度付近の粘性が低下し、高い液相粘度を確保することが困難となる場合がある。更に、体積抵抗率が低下して、受電コイル-給電コイル間の電気のやりとりを阻害する虞がある。よって、R2Oの合量は、好ましくは22%以下、より好ましくは20%以下、特に好ましくは19%以下である。一方、R2Oの合量が少な過ぎると、イオン交換性能や溶融性が低下する場合がある。よって、R2Oの合量は、好ましくは8%以上、より好ましくは10%以上、より好ましくは13%以上、特に好ましくは15%以上である。 If the total amount of the alkali metal oxide R 2 O (R is one or more selected from Li, Na, K) becomes too large, the glass tends to be devitrified and the thermal expansion coefficient becomes too high. As a result, the thermal shock resistance is lowered, and the thermal expansion coefficient is difficult to match with the surrounding material. Further, there is a case where the total content of alkali metal oxides R 2 O is too large, too lowered strain point, not obtain a high compression stress value. Furthermore, the viscosity in the vicinity of the liquidus temperature may decrease, and it may be difficult to ensure a high liquidus viscosity. Furthermore, there is a possibility that the volume resistivity is lowered and the exchange of electricity between the receiving coil and the feeding coil is hindered. Therefore, the total amount of R 2 O is preferably 22% or less, more preferably 20% or less, and particularly preferably 19% or less. On the other hand, if the total amount of R 2 O is too small, the ion exchange performance and meltability may decrease. Therefore, the total amount of R 2 O is preferably 8% or more, more preferably 10% or more, more preferably 13% or more, and particularly preferably 15% or more.
  また、(Na2O+K2O)/Al23の値を、好ましくは0.7~2、より好ましくは0.8~1.6、より好ましくは0.9~1.6、より好ましくは1~1.6、特に好ましくは1.2~1.6の範囲に設定すると、耐失透性をより効果的に向上させることが可能となる。この値が2より大きくなると、低温粘性が低下し過ぎて、イオン交換性能が低下したり、ヤング率が低下したり、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下する場合がある。また、ガラス組成のバランスを欠いて、ガラスが失透し易くなることがある。一方、この値が0.7より小さくなると、溶融性や耐失透性が低下し易くなる。 The value of (Na 2 O + K 2 O) / Al 2 O 3 is preferably 0.7 to 2, more preferably 0.8 to 1.6, more preferably 0.9 to 1.6, and more preferably Is set in the range of 1 to 1.6, particularly preferably 1.2 to 1.6, the devitrification resistance can be improved more effectively. If this value is greater than 2, the low temperature viscosity may be excessively decreased, the ion exchange performance may be decreased, the Young's modulus may be decreased, the thermal expansion coefficient may be excessively increased, and the thermal shock resistance may be decreased. In addition, the glass composition may be unbalanced and the glass may be easily devitrified. On the other hand, when this value is smaller than 0.7, the meltability and devitrification resistance are liable to decrease.
  また、K2O/Na2Oの質量比の範囲は、0~2が好ましい。K2O/Na2Oの質量比を変化させると、圧縮応力値と応力深さを変化させることが可能になる。圧縮応力値を高く設定したい場合には、上記質量比が、0~0.3、又は、0~0.2となるように調整することが好ましい。一方、応力深さをより深くしたり、短時間で深い圧縮応力層を形成したい場合には、上記質量比が、0.3~2、もしくは、0.5~2、もしくは、1~2、もしくは、1.2~2、又は、1.5~2となるように調整することが好ましい。ここで、上記質量比の上限を2に設定した理由は、2より大きくなると、ガラス組成のバランスを欠いて、ガラスが失透し易くなるからである。 The range of the mass ratio of K 2 O / Na 2 O is preferably 0-2. When the mass ratio of K 2 O / Na 2 O is changed, the compressive stress value and the stress depth can be changed. When it is desired to set the compressive stress value high, it is preferable to adjust the mass ratio to be 0 to 0.3 or 0 to 0.2. On the other hand, when it is desired to increase the stress depth or to form a deep compressive stress layer in a short time, the mass ratio is 0.3-2, 0.5-2, 1-2, Alternatively, it is preferable to adjust to 1.2 to 2 or 1.5 to 2. Here, the reason why the upper limit of the mass ratio is set to 2 is that if it exceeds 2, the glass composition is not balanced and the glass is easily devitrified.
  例えば、アルカリ土類金属酸化物R’O(R’はMg、Ca、Sr、Baから選ばれる1種以上)は、種々の目的で添加可能な成分である。しかし、R’Oの合量が多くなると、密度や熱膨張係数が高くなったり、耐失透性が低下したりすることに加えて、イオン交換性能が低下する傾向がある。よって、R’Oの合量は、好ましくは0~9.9%、より好ましくは0~8%、より好ましくは0~6、特に好ましくは0~5%である。 For example, alkaline earth metal oxide R′O (R ′ is one or more selected from Mg, Ca, Sr, Ba) is a component that can be added for various purposes. However, when the total amount of R′O increases, the density and thermal expansion coefficient increase and devitrification resistance decreases, and in addition, ion exchange performance tends to decrease. Therefore, the total amount of R′O is preferably 0 to 9.9%, more preferably 0 to 8%, more preferably 0 to 6, and particularly preferably 0 to 5%.
  MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が大きい。MgOの含有量は0~6%が好ましい。しかし、MgOの含有量が多くなると、密度、熱膨張係数が高くなったり、ガラスが失透し易くなる。したがって、その含有量は、好ましくは4%以下、より好ましくは3%以下、より好ましくは2%以下、特に好ましくは1.5%以下である。 MgO is a component that lowers the high-temperature viscosity to improve the meltability and formability, and increases the strain point and Young's modulus. Among alkaline earth metal oxides, MgO has a great effect of improving ion exchange performance. The MgO content is preferably 0 to 6%. However, when the content of MgO increases, the density and thermal expansion coefficient increase, and the glass tends to devitrify. Therefore, the content is preferably 4% or less, more preferably 3% or less, more preferably 2% or less, and particularly preferably 1.5% or less.
  CaOは、高温粘度を低下させて溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が大きい。CaOの含有量は0~6%が好ましい。しかし、CaOの含有量が多くなると、密度、熱膨張係数が高くなったり、ガラスが失透し易くなったり、更にはイオン交換性能が低下する場合がある。したがって、その含有量は、好ましくは4%以下、より好ましくは3%以下、特に好ましくは2.5%以下である。 CaO is a component that lowers the high-temperature viscosity to increase meltability and formability, and increases the strain point and Young's modulus. Among alkaline earth metal oxides, CaO has a great effect of improving ion exchange performance. The CaO content is preferably 0 to 6%. However, when the content of CaO is increased, the density and thermal expansion coefficient may be increased, the glass may be easily devitrified, and the ion exchange performance may be decreased. Therefore, the content is preferably 4% or less, more preferably 3% or less, and particularly preferably 2.5% or less.
  SrO及びBaOは、高温粘度を低下させて溶融性や成形性を向上させたり、歪点やヤング率を高める成分であり、その含有量は各々0~3%が好ましい。SrOやBaOの含有量が多くなると、イオン交換性能が低下する傾向がある。また、密度、熱膨張係数が高くなったり、ガラスが失透し易くなる。SrOの含有量は、好ましくは2%以下、好ましくは1.5%以下、好ましくは1%以下、好ましくは0.5%以下、好ましくは0.2%以下、特に好ましくは0.1%以下である。また、BaOの含有量は、好ましくは2.5%以下、好ましくは2%以下、好ましくは1%以下、好ましくは0.8%以下、好ましくは0.5%以下、好ましくは0.2%以下、特に好ましくは0.1%以下である。 SrO and BaO are components that lower the high temperature viscosity to improve the meltability and moldability, and increase the strain point and Young's modulus, and their contents are preferably 0 to 3% each. When the content of SrO or BaO increases, the ion exchange performance tends to decrease. Further, the density and the thermal expansion coefficient are increased, and the glass is easily devitrified. The content of SrO is preferably 2% or less, preferably 1.5% or less, preferably 1% or less, preferably 0.5% or less, preferably 0.2% or less, particularly preferably 0.1% or less. It is. The content of BaO is preferably 2.5% or less, preferably 2% or less, preferably 1% or less, preferably 0.8% or less, preferably 0.5% or less, preferably 0.2%. Hereinafter, it is particularly preferably 0.1% or less.
  ZnOは、イオン交換性能を高める成分であり、特に、圧縮応力値を高くする効果が大きい。また、低温粘性を低下させずに高温粘性を低下させる効果を有する成分であり、その含有量は0~8%が好ましい。しかし、ZnOの含有量が多くなると、ガラスが分相したり、耐失透性が低下したり、密度が高くなるため、その含有量は、好ましくは6%以下、より好ましくは4%以下、特に好ましくは3%以下である。 ZnO is a component that enhances the ion exchange performance, and is particularly effective in increasing the compressive stress value. Further, it is a component having an effect of lowering the high temperature viscosity without lowering the low temperature viscosity, and its content is preferably 0 to 8%. However, if the ZnO content is increased, the glass is phase-divided, the devitrification resistance is decreased, or the density is increased. Therefore, the content is preferably 6% or less, more preferably 4% or less, Particularly preferably, it is 3% or less.
  SrO+BaOの合量を0~5%に規制すると、イオン交換性能をより効果的に向上させることができる。つまりSrOとBaOは、上述の通り、イオン交換反応を阻害する作用があるため、これらの成分を多く含むことは、強化ガラスの機械的強度を高める上で不利である。SrO+BaOの好ましい範囲は0~3%、より好ましくは0~2.5%、より好ましくは0~2%、より好ましくは0~1%、より好ましくは0~0.2%、特に好ましくは0~0.1%である。 When the total amount of SrO + BaO is regulated to 0 to 5%, the ion exchange performance can be improved more effectively. That is, since SrO and BaO have the effect | action which inhibits an ion exchange reaction as mentioned above, containing many of these components is disadvantageous when raising the mechanical strength of tempered glass. The preferred range of SrO + BaO is 0 to 3%, more preferably 0 to 2.5%, more preferably 0 to 2%, more preferably 0 to 1%, more preferably 0 to 0.2%, particularly preferably 0. ~ 0.1%.
  R’Oの合量をR2Oの合量で除した値が大きくなると、耐失透性が低下する傾向が現れる。よって、質量分率でR’O/R2Oの値を0.5以下に規制することが好ましく、0.4以下に規制することがより好ましく、特に0.3以下に規制することが好ましい。 When the value obtained by dividing the total amount of R′O by the total amount of R 2 O increases, the tendency of the devitrification resistance to decrease appears. Therefore, it is preferable to restrict the value of R′O / R 2 O to 0.5 or less by mass fraction, more preferably to 0.4 or less, and particularly preferably to 0.3 or less. .
  SnO2は、イオン交換性能、特に圧縮応力値を向上させる効果があるため、0.01~3%含有することが好ましく、0.01~1.5%含有することがより好ましく、特に0.1~1%含有することが好ましい。SnO2の含有量が多くなると、SnO2に起因する失透が発生したり、ガラスが着色し易くなる傾向がある。 SnO 2 has an effect of improving the ion exchange performance, particularly the compressive stress value. Therefore, it is preferably contained in an amount of 0.01 to 3%, more preferably 0.01 to 1.5%, and particularly preferably 0.2%. It is preferable to contain 1 to 1%. When the content of SnO 2 increases, devitrification due to SnO 2 occurs or the glass tends to be easily colored.
  ZrO2は、イオン交換性能を顕著に向上させると共に、ヤング率や歪点を高くし、高温粘性を低下させる効果がある。また、液相粘度付近の粘性を高める効果があるため、所定量含有させることで、イオン交換性能と液相粘度を同時に高めることができる。但し、ZrO2の含有量が多くなり過ぎると、耐失透性が極端に低下する場合がある。よって、ZrO2の含有量の下限値は0%以上であってもよく、0.001%以上であってもよく、0.1%以上であってもよく、0.5%以上であってもよく、0.8%以上であってもよく、1.5%以上であってもよく、2.5%以上であってもよく、3%以上であってもよく、4%以上であってもよく、また上限値は10%以下であってもよく、8%以下であってもよく、6%以下であってもよい。 ZrO 2 has the effect of significantly improving the ion exchange performance, increasing the Young's modulus and strain point, and lowering the high temperature viscosity. Moreover, since it has the effect of increasing the viscosity in the vicinity of the liquid phase viscosity, the ion exchange performance and the liquid phase viscosity can be simultaneously increased by containing a predetermined amount. However, when the content of ZrO 2 is too large, the devitrification resistance may be extremely lowered. Therefore, the lower limit of the content of ZrO 2 may be 0% or more, may be 0.001% or more, may be 0.1% or more, and may be 0.5% or more. 0.8% or more, 1.5% or more, 2.5% or more, 3% or more, or 4% or more. The upper limit may be 10% or less, 8% or less, or 6% or less.
  B23は、液相温度、高温粘度及び密度を低下させる効果を有すると共に、イオン交換性能、特に圧縮応力値を向上させる効果があるため、上記成分と共に含有できるが、その含有量が多過ぎると、イオン交換によって表面にヤケが発生したり、耐水性が低下したり、液相粘度が低下する虞がある。また、応力深さが低下する傾向にある。よって、B23の含有量は、好ましくは0~6%、好ましくは0~4%、特に好ましくは0~3%である。 B 2 O 3 has the effect of lowering the liquidus temperature, the high temperature viscosity and the density, and has the effect of improving the ion exchange performance, particularly the compressive stress value. If it is too high, the surface may be burned by ion exchange, the water resistance may decrease, or the liquid phase viscosity may decrease. In addition, the stress depth tends to decrease. Therefore, the content of B 2 O 3 is preferably 0 to 6%, preferably 0 to 4%, particularly preferably 0 to 3%.
  TiO2は、イオン交換性能を向上させる効果がある成分である。また、高温粘度を低下させる効果がある。しかし、その含有量が多過ぎると、ガラスが着色したり、耐失透性が低下したり、密度が高くなる。また、溶融雰囲気や原料を変更した時、透過率が変化し易くなる。更に、スクリーン印刷、インクジェット等によって、非接触給電デバイスの裏面に模様を形成する場合、その模様のデザイン性が低下し易くなる。よって、TiO2の含有量は、好ましくは10%以下、より好ましくは8%以下、より好ましくは6%以下、より好ましくは5%以下、より好ましくは4%以下、より好ましくは2%以下、より好ましくは0.7%以下、より好ましくは0.5%以下、より好ましくは0.1%以下、特に好ましくは0.01%以下である。 TiO 2 is a component that has an effect of improving ion exchange performance. It also has the effect of reducing the high temperature viscosity. However, when there is too much the content, glass will color, devitrification resistance will fall, or a density will become high. Further, when the melting atmosphere or the raw material is changed, the transmittance is easily changed. Furthermore, when a pattern is formed on the back surface of the non-contact power supply device by screen printing, ink jet, or the like, the design of the pattern is likely to deteriorate. Therefore, the content of TiO 2 is preferably 10% or less, more preferably 8% or less, more preferably 6% or less, more preferably 5% or less, more preferably 4% or less, more preferably 2% or less, More preferably, it is 0.7% or less, more preferably 0.5% or less, more preferably 0.1% or less, and particularly preferably 0.01% or less.
  本発明において、イオン交換性能向上の観点から、ZrO2とTiO2を上記範囲に規制することが好ましいが、TiO2源、ZrO2源として試薬を用いてもよく、原料等に含まれる不純物から導入してもよい。 In the present invention, from the viewpoint of improving ion exchange performance, it is preferable to limit ZrO 2 and TiO 2 to the above range, but a reagent may be used as the TiO 2 source and the ZrO 2 source, and from impurities contained in the raw materials and the like. It may be introduced.
  耐失透性とイオン交換性能を両立する観点から、Al23+ZrO2の含有量を以下のように定めることが好ましい。Al23+ZrO2の含有量が好ましくは12%超、好ましくは13%以上、好ましくは15%以上、好ましくは17%以上、好ましくは18%以上、好ましくは19%以上であれば、イオン交換性能をより効果的に向上させることが可能になる。しかし、Al23+ZrO2の含有量が多過ぎると、耐失透性が極端に低下するため、その含有量を28%以下とすることが好ましく、25%以下とすることが好ましく、23%以下とすることが好ましく、22%以下とすることが好ましく、特に21%以下とすることが好ましい。 From the viewpoint of achieving both devitrification resistance and ion exchange performance, the content of Al 2 O 3 + ZrO 2 is preferably determined as follows. If the content of Al 2 O 3 + ZrO 2 is preferably more than 12%, preferably 13% or more, preferably 15% or more, preferably 17% or more, preferably 18% or more, preferably 19% or more, The exchange performance can be improved more effectively. However, if the content of Al 2 O 3 + ZrO 2 is too large, the devitrification resistance is extremely lowered. Therefore, the content is preferably 28% or less, and preferably 25% or less. % Or less, preferably 22% or less, and particularly preferably 21% or less.
  P25は、イオン交換性能を高める成分であり、特に、応力深さを深くする効果が大きいため、その含有量を0~8%とすることが好ましい。しかし、P25の含有量が多くなると、ガラスが分相したり、耐水性や耐失透性が低下し易くするため、その含有量は5%以下が好ましく、4%以下がより好ましく、3%以下がより好ましく、特に2%以下が好ましい。 P 2 O 5 is a component that enhances the ion exchange performance, and since the effect of increasing the stress depth is particularly great, its content is preferably 0 to 8%. However, when the content of P 2 O 5 increases, the glass tends to phase-separate or the water resistance and devitrification resistance are liable to decrease. Therefore, the content is preferably 5% or less, more preferably 4% or less. 3% or less is more preferable, and 2% or less is particularly preferable.
  清澄剤として、As23、Sb23、CeO2、F、SO3、Clの群から選択された一種又は二種以上を0.001~3%添加してもよい。ただし、As23及びSb23は環境に対する配慮から、使用は極力控えることが好ましく、各々の含有量は0.1%未満であることが好ましく、特に0.01%未満であることが好ましく、つまり実質的に含有しないことが好ましい。CeO2は、透過率を低下させる成分であり、その含有量は、好ましくは0.1%未満、特に0.01%未満であることが好ましい。Fは、低温粘性を低下させ、圧縮応力値の低下を招く虞がある。よって、Fの含有量は、0.1%未満であることが好ましく、特に0.01%未満であることが好ましく、つまり実質的に含有しないことが好ましい。従って、好ましい清澄剤は、SO3とClであり、SO3とClの1者又は両者を、0.001~3%添加することが好ましく、0.001~1%添加することが好ましく、0.01~0.5%添加することが好ましく、更には0.05~0.4%添加することが好ましい。 As a fining agent, 0.001 to 3% of one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , F, SO 3 , and Cl may be added. However, As 2 O 3 and Sb 2 O 3 are preferably used as much as possible in consideration of the environment. Each content is preferably less than 0.1%, particularly less than 0.01%. Is preferable, that is, it is preferably not substantially contained. CeO 2 is a component that lowers the transmittance, and its content is preferably less than 0.1%, particularly preferably less than 0.01%. F may lower the low temperature viscosity and may cause a decrease in compressive stress value. Therefore, the content of F is preferably less than 0.1%, particularly preferably less than 0.01%, that is, it is preferably not substantially contained. Accordingly, preferred fining agents are SO 3 and Cl, and preferably one or both of SO 3 and Cl is added in an amount of 0.001 to 3%, preferably 0.001 to 1%. It is preferable to add 0.01 to 0.5%, and it is more preferable to add 0.05 to 0.4%.
  Nb25、La23、Gd23等の希土類酸化物は、ヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に含有させると耐失透性が低下する。よって、それらの含有量は、好ましくは3%以下、好ましくは2%以下、好ましくは1%以下、好ましくは0.5%以下、特に好ましくは0.1%以下である。 Rare earth oxides such as Nb 2 O 5 , La 2 O 3 , and Gd 2 O 3 are components that increase the Young's modulus. However, the cost of the raw material itself is high, and if it is contained in a large amount, the devitrification resistance is lowered. Therefore, their content is preferably 3% or less, preferably 2% or less, preferably 1% or less, preferably 0.5% or less, and particularly preferably 0.1% or less.
  ガラスを強く着色するようなCo、Ni等の遷移金属元素は、透過率を低下させるため好ましくない。更に、遷移金属元素の含有量が多過ぎると、スクリーン印刷、インクジェット等によって、非接触給電デバイスの裏面に模様を形成する場合、その模様のデザイン性が低下し易くなる。よって、遷移金属元素の含有量は、好ましくは0.5%以下、好ましくは0.1%以下、特に好ましくは0.05%以下であり、そのために原料又はカレットの使用量を調整することが望ましい。 Transition metal elements such as Co and Ni that strongly color the soot glass are not preferred because they reduce the transmittance. Furthermore, when the content of the transition metal element is too large, when a pattern is formed on the back surface of the non-contact power feeding device by screen printing, ink jet, or the like, the design of the pattern is likely to be deteriorated. Therefore, the content of the transition metal element is preferably 0.5% or less, preferably 0.1% or less, and particularly preferably 0.05% or less. Therefore, the amount of the raw material or cullet can be adjusted. desirable.
  Pb、Bi等の物質は、環境に対する配慮から、その酸化物の含有量をそれぞれ0.1%未満に制限することが好ましい。 It is preferable to limit the oxide content of each of the substances such as Pb and Bi to less than 0.1% in consideration of the environment.
  本発明の非接触給電用支持部材において、各成分の好適な含有範囲を適宜選択し、好ましいガラス組成範囲とすることができる。その具体例を以下に示す。
(1)質量%で、SiO2 40~71%、Al23 7.5~21%、Li2O 0~2%、Na2O 10~19%、K2O 0~15%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%を含有するガラス組成。
(2)質量%で、SiO2 40~71%、Al23 7.5~21%、Li2O 0~2%、Na2O 10~19%、K2O 0~15%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%、ZrO2 0~10%を含有するガラス組成。
(3)質量%で、SiO2 40~71%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~19%、K2O 0~10%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%を含有するガラス組成。
(4)質量%で、SiO2 40~71%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~19%、K2O 0~10%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%、ZrO2 0~10%を含有するガラス組成。
(5)質量%で、SiO2 40~71%、Al23 9~19%、B23 0~6%、Li2O 0~2%、Na2O 10~19%、K2O 0~15%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~6%、SnO2 0.1~1%、ZrO2 0.001~10%であり、実質的にAs23及びSb23を含有しないガラス組成。
(6)質量%で、SiO2 40~71%、Al23 9~18%、B23 0~4%、Li2O 0~2%、Na2O 11~17%、K2O 0~6%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~6%、SnO2 0.1~1%、ZrO2 0.001~10%であり、実質的にAs23及びSb23を含有しないガラス組成。
(7)質量%で、SiO2 40~63%、Al23 9~17.5%、B23 0~3%、Li2O 0~0.1%、Na2O 10~17%、K2O 0~7%、MgO 0~5%、CaO 0~4%、SrO+BaO 0~3%、SnO2 0.01~2%であり、実質的にAs23及びSb23を含有せず、質量分率で(Na2O+K2O)/Al23の値が0.9~1.6、K2O/Na2O 0~0.4であるガラス組成。
(8)質量%で、SiO2 40~71%、Al23 3~21%、Li2O 0~2%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.001~3%を含有するガラス組成。
(9)質量%で、SiO2 40~71%、Al23 8~21%、Li2O 0~2%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.001~3%を含有し、実質的にAs23及びSb23を含有しないことを特徴とするガラス組成。
(10)質量%で、SiO2 40~65%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.001~3%を含有し、質量分率で(Na2O+K2O)/Al23の値が0.7~2であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
(11)質量%で、SiO2 40~65%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.01~3%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が0.9~1.7であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
(12)質量%で、SiO2 40~63%、Al23 9~19%、B23 0~3%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.1%、SnO2 0.01~3%、ZrO2 0.001~10%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が1.2~1.6であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
(13)質量%で、SiO2 40~63%、Al23 9~17.5%、B23 0~3%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.1%、SnO2 0.01~3%、ZrO2 0.1~8%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が1.2~1.6であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
(14)質量%で、SiO2 40~59%、Al23 10~15%、B23 0~3%、Li2O 0~0.1%、Na2O 10~20%、K2O 0~7%、MgO 0~5%、TiO2 0~0.1%、SnO2 0.01~3%、ZrO2 1~8%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が1.2~1.6であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
In the support member for non-contact power feeding of the present invention, a suitable content range of each component can be appropriately selected to obtain a preferable glass composition range. Specific examples are shown below.
(1) By mass, SiO 2 40-71%, Al 2 O 3 7.5-21%, Li 2 O 0-2%, Na 2 O 10-19%, K 2 O 0-15%, MgO A glass composition containing 0 to 6%, CaO 0 to 6%, SrO 0 to 3%, BaO 0 to 3%, ZnO 0 to 8%, SnO 2 0.01 to 3%.
(2) By mass%, SiO 2 40-71%, Al 2 O 3 7.5-21%, Li 2 O 0-2%, Na 2 O 10-19%, K 2 O 0-15%, MgO A glass composition containing 0-6%, CaO 0-6%, SrO 0-3%, BaO 0-3%, ZnO 0-8%, SnO 2 0.01-3%, ZrO 2 0-10%.
(3) By mass%, SiO 2 40-71%, Al 2 O 3 8.5-21%, Li 2 O 0-1%, Na 2 O 10-19%, K 2 O 0-10%, MgO A glass composition containing 0 to 6%, CaO 0 to 6%, SrO 0 to 3%, BaO 0 to 3%, ZnO 0 to 8%, SnO 2 0.01 to 3%.
(4) By mass%, SiO 2 40 to 71%, Al 2 O 3 8.5 to 21%, Li 2 O 0 to 1%, Na 2 O 10 to 19%, K 2 O 0 to 10%, MgO A glass composition containing 0-6%, CaO 0-6%, SrO 0-3%, BaO 0-3%, ZnO 0-8%, SnO 2 0.01-3%, ZrO 2 0-10%.
(5) By mass%, SiO 2 40-71%, Al 2 O 3 9-19%, B 2 O 3 0-6%, Li 2 O 0-2%, Na 2 O 10-19%, K 2 O 0-15%, MgO 0-6%, CaO 0-6%, SrO 0-3%, BaO 0-3%, ZnO 0-6%, SnO 2 0.1-1%, ZrO 2 0.001 A glass composition that is ˜10% and substantially free of As 2 O 3 and Sb 2 O 3 .
(6) By mass, SiO 2 40-71%, Al 2 O 3 9-18%, B 2 O 3 0-4%, Li 2 O 0-2%, Na 2 O 11-17%, K 2 O 0-6%, MgO 0-6%, CaO 0-6%, SrO 0-3%, BaO 0-3%, ZnO 0-6%, SnO 2 0.1-1%, ZrO 2 0.001 A glass composition that is ˜10% and substantially free of As 2 O 3 and Sb 2 O 3 .
(7) By mass, SiO 2 40 to 63%, Al 2 O 3 9 to 17.5%, B 2 O 3 0 to 3%, Li 2 O 0 to 0.1%, Na 2 O 10 to 17 %, K 2 O 0-7%, MgO 0-5%, CaO 0-4%, SrO + BaO 0-3%, SnO 2 0.01-2%, substantially As 2 O 3 and Sb 2 O. 3 , a glass composition having a mass fraction of (Na 2 O + K 2 O) / Al 2 O 3 of 0.9 to 1.6 and K 2 O / Na 2 O of 0 to 0.4.
(8) By mass%, SiO 2 40 to 71%, Al 2 O 3 3 to 21%, Li 2 O 0 to 2%, Na 2 O 10 to 20%, K 2 O 0 to 9%, MgO 0 to Glass composition containing 5%, TiO 2 0-0.5%, SnO 2 0.001-3%.
(9) By mass%, SiO 2 40-71%, Al 2 O 3 8-21%, Li 2 O 0-2%, Na 2 O 10-20%, K 2 O 0-9%, MgO 0- A glass composition comprising 5%, TiO 2 0 to 0.5%, SnO 2 0.001 to 3%, and substantially free of As 2 O 3 and Sb 2 O 3 .
(10) By mass%, SiO 2 40-65%, Al 2 O 3 8.5-21%, Li 2 O 0-1%, Na 2 O 10-20%, K 2 O 0-9%, MgO It contains 0 to 5%, TiO 2 0 to 0.5%, SnO 2 0.001 to 3%, and the value of (Na 2 O + K 2 O) / Al 2 O 3 is 0.7 to 2 in terms of mass fraction. A glass composition characterized by being substantially free of As 2 O 3 , Sb 2 O 3 and F.
(11) By mass, SiO 2 40 to 65%, Al 2 O 3 8.5 to 21%, Li 2 O 0 to 1%, Na 2 O 10 to 20%, K 2 O 0 to 9%, MgO It contains 0-5%, TiO 2 0-0.5%, SnO 2 0.01-3%, MgO + CaO + SrO + BaO 0-8%, and the value of (Na 2 O + K 2 O) / Al 2 O 3 by mass fraction Is a glass composition characterized by being 0.9 to 1.7 and substantially free of As 2 O 3 , Sb 2 O 3 and F.
(12) By mass%, SiO 2 40 to 63%, Al 2 O 3 9 to 19%, B 2 O 3 0 to 3%, Li 2 O 0 to 1%, Na 2 O 10 to 20%, K 2 O 0-9%, MgO 0-5%, TiO 2 0-0.1%, SnO 2 0.01-3%, ZrO 2 0.001-10%, MgO + CaO + SrO + BaO 0-8% The value of (Na 2 O + K 2 O) / Al 2 O 3 is 1.2 to 1.6 in terms of percentage, and is substantially free of As 2 O 3 , Sb 2 O 3 and F. Glass composition.
(13) By mass%, SiO 2 40 to 63%, Al 2 O 3 9 to 17.5%, B 2 O 3 0 to 3%, Li 2 O 0 to 1%, Na 2 O 10 to 20%, Contains K 2 O 0-9%, MgO 0-5%, TiO 2 0-0.1%, SnO 2 0.01-3%, ZrO 2 0.1-8%, MgO + CaO + SrO + BaO 0-8%, mass The value of (Na 2 O + K 2 O) / Al 2 O 3 is 1.2 to 1.6 in terms of fraction, and is substantially free of As 2 O 3 , Sb 2 O 3 and F. Glass composition.
(14) By mass%, SiO 2 40 to 59%, Al 2 O 3 10 to 15%, B 2 O 3 0 to 3%, Li 2 O 0 to 0.1%, Na 2 O 10 to 20%, Contains K 2 O 0-7%, MgO 0-5%, TiO 2 0-0.1%, SnO 2 0.01-3%, ZrO 2 1-8%, MgO + CaO + SrO + BaO 0-8%, The value of (Na 2 O + K 2 O) / Al 2 O 3 is 1.2 to 1.6 in terms of percentage, and is substantially free of As 2 O 3 , Sb 2 O 3 and F. Glass composition.
  本発明の非接触給電用支持部材は、表面に圧縮応力層を有する強化ガラスであることが好ましい。圧縮応力層の圧縮応力値は、好ましくは100MPa以上、好ましくは200MPa以上、好ましくは300MPa以上、好ましくは500MPa以上、好ましくは600MPa以上、好ましくは800MPa以上、好ましくは1000MPa以上、特に好ましくは1200MPa以上である。圧縮応力が大きくなるにつれて、強化ガラスの機械的強度が高くなる。一方、表面に極端に大きな圧縮応力が形成されると、表面にマイクロクラックが発生し、かえって強化ガラスの機械的強度が低下する虞がある。また、強化ガラスに内在する引っ張り応力が極端に高くなる虞があるため、圧縮応力値を2500MPa以下とするのが好ましい。なお圧縮応力値を大きくするには、Al23、TiO2、ZrO2、MgO、ZnO、SnO2の含有量を増加させたり、SrO、BaOの含有量を低減すればよい。また、イオン交換に要する時間を短くしたり、イオン交換溶液の温度を下げればよい。 The contactless power supply support member of the present invention is preferably tempered glass having a compressive stress layer on the surface. The compressive stress value of the compressive stress layer is preferably 100 MPa or more, preferably 200 MPa or more, preferably 300 MPa or more, preferably 500 MPa or more, preferably 600 MPa or more, preferably 800 MPa or more, preferably 1000 MPa or more, particularly preferably 1200 MPa or more. is there. As the compressive stress increases, the mechanical strength of the tempered glass increases. On the other hand, if an extremely large compressive stress is formed on the surface, microcracks may be generated on the surface, which may lower the mechanical strength of the tempered glass. Moreover, since there exists a possibility that the tensile stress which exists in tempered glass may become extremely high, it is preferable that a compressive stress value shall be 2500 Mpa or less. In order to increase the compressive stress value, the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO, SnO 2 may be increased, or the content of SrO, BaO may be reduced. Moreover, what is necessary is just to shorten the time which ion exchange requires, or to lower the temperature of an ion exchange solution.
  応力深さは、好ましくは10μm以上、好ましくは15μm以上、好ましくは20μm以上、特に好ましくは30μm以上である。応力深さが深い程、強化ガラスに深い傷が付いても、強化ガラスが割れ難くなる。一方、強化ガラスが切断し難くなったり、内部の引っ張り応力が極端に高くなって破損する虞れがある。よって、応力深さは、好ましくは100μm以下、好ましくは80μm以下、好ましくは60μm以下、特に好ましくは50μm以下である。なお、応力深さを深くするには、K2O、P25、TiO2、ZrO2の含有量を増加させたり、SrO、BaOの含有量を低減すればよい。また、イオン交換に要する時間を長くしたり、イオン交換溶液の温度を高めればよい。 The stress depth is preferably 10 μm or more, preferably 15 μm or more, preferably 20 μm or more, and particularly preferably 30 μm or more. The deeper the stress depth, the harder the tempered glass breaks even if the tempered glass is deeply damaged. On the other hand, there is a possibility that the tempered glass becomes difficult to cut, or the internal tensile stress becomes extremely high and breaks. Therefore, the stress depth is preferably 100 μm or less, preferably 80 μm or less, preferably 60 μm or less, and particularly preferably 50 μm or less. In order to increase the stress depth, the content of K 2 O, P 2 O 5 , TiO 2 , or ZrO 2 may be increased, or the content of SrO or BaO may be reduced. Moreover, what is necessary is just to lengthen the time which ion exchange requires, or to raise the temperature of an ion exchange solution.
  ガラスの内部に形成されている引張応力層の引っ張り応力値は、好ましくは200MPa以下、好ましくは150MPa以下、好ましくは100MPa以下、好ましくは60MPa以下、好ましくは50MPa以下、好ましくは40MPa以下、好ましくは30MPa以下、好ましくは25MPa以下、特に好ましくは22MPa以下である。この値が小さくなる程、内部の欠陥によって強化ガラスが破損し難くなる。また、強化ガラスを安定して切断し易くなる。更に、切断時の寸法変化を少なくすることが可能になる。しかし、内部の引っ張り応力値が極端に小さくなると、表面の圧縮応力値や応力深さが低下する。よって、内部の引っ張り応力値は、好ましくは1MPa以上、好ましくは10MPa以上、特に好ましくは15MPa以上である。 The tensile stress value of the tensile stress layer formed inside the glass is preferably 200 MPa or less, preferably 150 MPa or less, preferably 100 MPa or less, preferably 60 MPa or less, preferably 50 MPa or less, preferably 40 MPa or less, preferably 30 MPa. Hereinafter, it is preferably 25 MPa or less, particularly preferably 22 MPa or less. The smaller this value, the harder the tempered glass is broken by internal defects. Moreover, it becomes easy to cut | disconnect tempered glass stably. Furthermore, it becomes possible to reduce the dimensional change at the time of cutting. However, when the internal tensile stress value becomes extremely small, the surface compressive stress value and the stress depth are lowered. Therefore, the internal tensile stress value is preferably 1 MPa or more, preferably 10 MPa or more, and particularly preferably 15 MPa or more.
  本発明の非接触給電用支持部材は、ガラスの表面が未研磨面であることが好ましく、未研磨の表面の平均表面粗さ(Ra)は、好ましくは10Å以下、好ましくは5Å以下、好ましくは4Å以下、好ましくは3Å以下、特に好ましくは2Å以下である。なお、平均表面粗さ(Ra)は、SEMI D7-97「FPDガラス基板の表面粗さの測定方法」に準拠した方法により測定すればよい。ガラスの理論強度は本来非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これはガラス表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。それ故、ガラス表面を未研磨とすれば、本来のガラスの機械的強度が損なわれず、ガラスが破壊し難くなる。また、ガラス表面を未研磨とすれば、ガラスの製造工程で研磨工程を省略できるため、ガラスの製造コストを下げることができる。本発明の非接触給電用支持部材において、ガラスの有効面全体を未研磨とすれば、ガラスが更に破壊し難くなる。また、ガラスの切断面から破壊に至る事態を防止するため、ガラスの切断面に面取り加工やエッチング処理等を行ってもよい。なお、未研磨の表面を得るためには、オーバーフローダウンドロー法でガラスを成形すればよい。 In the non-contact power supply support member of the present invention, the glass surface is preferably an unpolished surface, and the average surface roughness (Ra) of the unpolished surface is preferably 10 mm or less, preferably 5 mm or less, preferably It is 4 mm or less, preferably 3 mm or less, particularly preferably 2 mm or less. The average surface roughness (Ra) may be measured by a method based on SEMI D7-97 “Measurement method of surface roughness of FPD glass substrate”. Although the theoretical strength of glass is inherently very high, it often breaks even at stresses much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the glass surface in a post-molding process such as a polishing process. Therefore, if the glass surface is not polished, the mechanical strength of the original glass is not impaired and the glass is difficult to break. Further, if the glass surface is not polished, the polishing process can be omitted in the glass manufacturing process, so that the glass manufacturing cost can be reduced. In the non-contact power supply support member of the present invention, if the entire effective surface of the glass is unpolished, the glass is more difficult to break. Moreover, in order to prevent the situation which breaks from the cut surface of glass, you may perform a chamfering process, an etching process, etc. to the cut surface of glass. In order to obtain an unpolished surface, glass may be formed by an overflow down draw method.
  本発明の非接触給電用支持部材において、液相温度は、好ましくは1200℃以下、好ましくは1050℃以下、好ましくは1030℃以下、好ましくは1010℃以下、好ましくは1000℃以下、好ましくは950℃以下、好ましくは900℃以下、特に好ましくは870℃以下である。液相温度を低下させるには、Na2O、K2O、B23の含有量を増加したり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を低減すればよい。なお、「液相温度」とは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。 In the support member for contactless power feeding according to the present invention, the liquidus temperature is preferably 1200 ° C. or lower, preferably 1050 ° C. or lower, preferably 1030 ° C. or lower, preferably 1010 ° C. or lower, preferably 1000 ° C. or lower, preferably 950 ° C. The temperature is preferably 900 ° C. or lower, particularly preferably 870 ° C. or lower. To lower the liquidus temperature, the content of Na 2 O, K 2 O, B 2 O 3 is increased, or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is increased. Should be reduced. “Liquid phase temperature” means that glass powder that passes through a standard sieve 30 mesh (a sieve opening of 500 μm) and remains at 50 mesh (a sieve opening of 300 μm) is placed in a platinum boat and is placed in a temperature gradient furnace for 24 hours. It refers to the temperature at which crystals precipitate after being held.
  液相粘度は、好ましくは104.0dPa・s以上、好ましくは104.3dPa・s以上、好ましくは104.5dPa・s以上、好ましくは105.0dPa・s以上、好ましくは105.4dPa・s以上、好ましくは105.8dPa.s以上、好ましくは106.0dPa・s以上、好ましくは106.2dPa・s以上である。液相粘度を上昇させるには、Na2O、K2Oの含有量を増加したり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を低減すればよい。なお、「液相粘度」とは、液相温度における粘度を白金球引き上げ法で測定した値を指す。 The liquid phase viscosity is preferably 10 4.0 dPa · s or more, preferably 10 4.3 dPa · s or more, preferably 10 4.5 dPa · s or more, preferably 10 5.0 dPa · s or more, preferably 10 5.4 dPa · s or more, Preferably 10 5.8 dPa.s. s or more, preferably 10 6.0 dPa · s or more, preferably 10 6.2 dPa · s or more. In order to increase the liquid phase viscosity, the content of Na 2 O and K 2 O may be increased, or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 and ZrO 2 may be reduced. . The “liquid phase viscosity” refers to a value obtained by measuring the viscosity at the liquid phase temperature by a platinum ball pulling method.
  なお、液相粘度が高く、液相温度が低い程、耐失透性が優れると共に、成形性に優れている。そして、液相温度が1200℃以下、液相粘度が104.0dPa・s以上であれば、オーバーフローダウンドロー法でガラス板を成形することができる。 In addition, the higher the liquidus viscosity and the lower the liquidus temperature, the better the devitrification resistance and the better the moldability. The liquidus temperature is 1200 ° C. or less, if the liquidus viscosity of 10 4.0 dPa · s or more, it is possible to form the glass sheet by an overflow down draw method.
  本発明の非接触給電用支持部材において、密度は、好ましくは2.8g/cm3以下、好ましくは2.7g/cm3以下、特に好ましくは2.6g/cm3以下である。密度が低い程、ガラスの軽量化を図ることができる。ここで、「密度」とは、周知のアルキメデス法で測定した値を指す。なお、密度を低下させるには、SiO2、P25、B23の含有量を増加させたり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO2、TiO2の含有量を低減すればよい。 In the support member for contactless power feeding of the present invention, the density is preferably 2.8 g / cm 3 or less, preferably 2.7 g / cm 3 or less, particularly preferably 2.6 g / cm 3 or less. The lower the density, the lighter the glass. Here, “density” refers to a value measured by the well-known Archimedes method. In order to reduce the density, the content of SiO 2 , P 2 O 5 , B 2 O 3 is increased or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 is increased. The amount may be reduced.
  本発明の非接触給電用支持部材において、30~380℃の温度範囲における熱膨張係数は、好ましくは70×10-7~110×10-7/℃、好ましくは75×10-7~110×10-7/℃、好ましくは80×10-7~110×10-7/℃、特に好ましくは85×10-7~110×10-7/℃である。熱膨張係数を上記範囲とすれば、金属、有機系接着剤等の部材と熱膨張係数が整合し易くなり、金属、有機系接着剤等の部材の剥離を防止することができる。ここで、「熱膨張係数」とは、ディラトメーターを用いて、30~380℃の温度範囲における平均熱膨張係数を測定した値を指す。なお、熱膨張係数を上昇させるには、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増加さればよく、逆に低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減すればよい。 In the contactless power supply support member of the present invention, the thermal expansion coefficient in the temperature range of 30 to 380 ° C. is preferably 70 × 10 −7 to 110 × 10 −7 / ° C., preferably 75 × 10 −7 to 110 ×. 10 −7 / ° C., preferably 80 × 10 −7 to 110 × 10 −7 / ° C., particularly preferably 85 × 10 −7 to 110 × 10 −7 / ° C. When the thermal expansion coefficient is within the above range, the thermal expansion coefficient is easily matched with a member such as a metal or an organic adhesive, and peeling of the member such as a metal or an organic adhesive can be prevented. Here, “thermal expansion coefficient” refers to a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. using a dilatometer. In order to increase the coefficient of thermal expansion, the content of alkali metal oxides and alkaline earth metal oxides may be increased. To decrease the coefficient of thermal expansion, alkali metal oxides and alkaline earth metal oxides may be increased. What is necessary is just to reduce content.
  本発明の非接触給電用支持部材において、歪点は、好ましくは500℃以上、好ましくは540℃以上、好ましくは550℃以上、特に好ましくは560℃以上である。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。歪点が高い程、耐熱性が向上し、非接触給電用支持部材に熱処理を施したとしても、圧縮応力層が消失し難くなる。また、歪点が高いと、イオン交換処理の時に応力緩和が生じ難くなり、高い圧縮応力値を得ることが可能になる。なお、歪点を高くするためには、アルカリ金属酸化物の含有量を低減させたり、アルカリ土類金属酸化物、Al23、ZrO2、P25の含有量を増加させればよい。 In the support member for non-contact power feeding of the present invention, the strain point is preferably 500 ° C. or higher, preferably 540 ° C. or higher, preferably 550 ° C. or higher, and particularly preferably 560 ° C. or higher. Here, the “strain point” refers to a value measured based on the method of ASTM C336. As the strain point is higher, the heat resistance is improved, and the compressive stress layer is less likely to disappear even if the non-contact power supply support member is heat-treated. In addition, when the strain point is high, stress relaxation hardly occurs during the ion exchange treatment, and a high compressive stress value can be obtained. In order to increase the strain point, the content of the alkali metal oxide is reduced or the content of the alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 is increased. Good.
  本発明の非接触給電用支持部材において、102.5dPa・sにおける温度は、好ましくは1650℃以下、好ましくは1500℃以下、好ましくは1450℃以下、好ましくは1430℃以下、好ましくは1420℃以下、特に好ましくは1400℃以下である。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。高温粘度102.5dPa・sにおける温度は、ガラスの溶融温度に相当しており、この温度が低い程、低温でガラスを溶融することができる。従って、この温度が低い程、溶融窯等のガラスの製造設備への負担が小さくなる共に、泡品位を向上させることができる。結果として、ガラス板を安価に製造することができる。なお、102.5dPa・sにおける温度を低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B23、TiO2の含有量を増加させたり、SiO2、Al23の含有量を低減すればよい。 In the support member for contactless power feeding according to the present invention, the temperature at 10 2.5 dPa · s is preferably 1650 ° C. or less, preferably 1500 ° C. or less, preferably 1450 ° C. or less, preferably 1430 ° C. or less, preferably 1420 ° C. or less. Especially preferably, it is 1400 degrees C or less. Here, “temperature at 10 2.5 dPa · s” refers to a value measured by a platinum ball pulling method. The temperature at a high temperature viscosity of 10 2.5 dPa · s corresponds to the melting temperature of the glass, and the lower the temperature, the more the glass can be melted. Therefore, the lower the temperature, the less the burden on glass manufacturing equipment such as a melting kiln, and the foam quality can be improved. As a result, the glass plate can be manufactured at low cost. In order to lower the temperature at 10 2.5 dPa · s, the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 is increased, or SiO 2 , Al 2 O What is necessary is just to reduce the content of 3 .
  本発明の非接触給電用支持部材を製造するには、まずガラス板を作製する。次いで、強化処理を施すことが好ましい。ガラス板を所定サイズに切断するのは、強化処理の前でもよいが、強化処理後に行う方が製造コストを低減できるため好ましい。強化処理は、イオン交換処理にて行うことが望ましい。イオン交換処理は、例えば400~550℃の硝酸カリウム溶液中にガラス板を1~8時間浸漬することによって行うことができる。イオン交換処理の条件は、ガラスの粘度特性、用途、板厚、内部の引っ張り応力等を考慮して最適な条件を選択すればよい。 製造 In order to manufacture the non-contact power supply support member of the present invention, a glass plate is first prepared. Next, it is preferable to perform a strengthening treatment. The glass plate may be cut into a predetermined size before the strengthening treatment, but it is preferable to perform the glass plate after the strengthening treatment because the manufacturing cost can be reduced. The strengthening process is desirably performed by an ion exchange process. The ion exchange treatment can be performed, for example, by immersing the glass plate in a potassium nitrate solution at 400 to 550 ° C. for 1 to 8 hours. As the conditions for the ion exchange treatment, optimum conditions may be selected in consideration of the viscosity characteristics of glass, application, plate thickness, internal tensile stress, and the like.
  本発明に係るガラスは、上記組成範囲内のガラス組成となるように調合したガラス原料を連続溶融炉に投入し、ガラス原料を1500~1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを板状のガラスに成形し、徐冷することにより製造することができる。 In the glass according to the present invention, a glass raw material prepared so as to have a glass composition within the above composition range is put into a continuous melting furnace, the glass raw material is heated and melted at 1500 to 1600 ° C., clarified, and then supplied to a molding apparatus. In addition, the molten glass can be formed into a plate-like glass and slowly cooled.
  ガラスを板状に成形するには、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法でガラス板を成形すれば、未研磨で表面品位が良好なガラス基板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されることにより、無研磨で表面品位が良好なガラス板を成形できるからである。ここで、オーバーフローダウンドロー法は、溶融状態のガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを桶状構造物の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。 In order to form a glass plate into a plate shape, it is preferable to employ an overflow down draw method. If a glass plate is formed by the overflow downdraw method, a glass substrate that is unpolished and has good surface quality can be produced. The reason for this is that, in the case of the overflow down draw method, the surface to be the surface of the glass plate is not in contact with the bowl-shaped refractory, and is molded in a free surface state, so that the glass plate has good surface quality without polishing. This is because it can be molded. Here, the overflow down-draw method is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the molten glass overflowed is joined at the lower end of the bowl-like structure and stretched downward. This is a method for producing a glass plate.
  なお、高い表面品位が要求されない場合には、オーバーフローダウンドロー法以外の方法を採用することができる。例えば、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法、ロールアウト法、プレス法等の成形方法を採用することができる。 Of course, when high surface quality is not required, a method other than the overflow downdraw method can be adopted. For example, a molding method such as a downdraw method (slot down method, redraw method, etc.), a float method, a rollout method, or a press method can be employed.
 以下、本発明を実施例に基づいて説明する。なお、本発明は、以下の実施例に何ら限定されない。以下の実施例は単なる例示である。 Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples. The following examples are merely illustrative.
 表1~5は、本発明の実施例(試料No.1~39)を示している。なお、表中の「未」の表示は、未測定を意味している。 Tables 1 to 5 show examples of the present invention (sample Nos. 1 to 39). In addition, the display of “not yet” in the table means not measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
  次のようにして表1~5の各試料を作製した。まず、表中のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1580℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して板状に成形した。得られたガラス板について、種々の特性を評価した。 The samples shown in Tables 1 to 5 were prepared as follows. First, the glass raw material was prepared so that it might become the glass composition in a table | surface, and it melted at 1580 degreeC for 8 hours using the platinum pot. Thereafter, the molten glass was poured onto a carbon plate and formed into a plate shape. Various characteristics were evaluated about the obtained glass plate.
  密度は、周知のアルキメデス法によって測定した。 The soot density was measured by the well-known Archimedes method.
  歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて測定した。 The strain point Ps and the annealing point Ta were measured based on the method of ASTM C336.
  軟化点Tsは、ASTM C338の方法に基づいて測定を行った。 The soot softening point Ts was measured based on the method of ASTM C338.
  高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した。 The temperature at a high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, 10 2.5 dPa · s was measured by a platinum ball pulling method.
  ヤング率は、曲げ共振法により測定した。 The Young's modulus was measured by the bending resonance method.
  熱膨張係数αは、ディラトメーターを用いて、30~380℃の温度範囲における平均熱膨張係数を測定した。 平均 As for the thermal expansion coefficient α, an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. was measured using a dilatometer.
  液相温度TLは、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した。 The liquid phase temperature TL is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), and putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) in a platinum boat, and in a temperature gradient furnace for 24 hours. The temperature at which the crystals were deposited was measured.
  液相粘度logηTLは、液相温度におけるガラスの粘度である。 The liquid phase viscosity log ηTL is the viscosity of the glass at the liquidus temperature.
  「150℃における体積抵抗率logρ」は、150℃において、ASTM  C657-78に基づいて測定した値である。 “Volume resistivity logρ at 150 ° C.” is a value measured at 150 ° C. based on ASTM C657-78.
  その結果、得られたガラス板は、密度が2.59g/cm3以下、熱膨張係数が77×10-7~100×10-7/℃であった。また、液相粘度が104.6dPa・s以上であるため、オーバーフローダウンドロー法で成形が可能であり、しかも102.5dPa・sにおける温度が1612℃以下と低いため、大量のガラス板を効率良く作製し得るものと考えられる。 As a result, the obtained glass plate had a density of 2.59 g / cm 3 or less and a thermal expansion coefficient of 77 × 10 −7 to 100 × 10 −7 / ° C. Moreover, since the liquid phase viscosity is 10 4.6 dPa · s or more, it can be molded by the overflow down draw method, and the temperature at 10 2.5 dPa · s is as low as 1612 ° C. It is thought that it can be produced.
  続いて、試料No.1~39の両表面に光学研磨を施した後、イオン交換処理を行った。試料No.1~8、13~15、24、25、27、29~39については、430℃のKNO3溶融塩中に各試料を4時間、試料No.9~12、16~23及び26については、460℃のKNO3溶融塩中に各試料を4時間浸漬することで行った。イオン交換処理後、各試料を十分に洗浄し、表面応力計(株式会社東芝製FSM-6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力値と応力深さを算出した。算出に当たり、試料の屈折率を1.53、光学弾性定数を28[(nm/cm)/MPa]とした。なお、未強化ガラスと強化ガラスは、ガラスの表層において微視的にガラス組成が異なっているものの、ガラス全体としてはガラス組成が実質的に相違していない。従って、密度、粘度等の特性値は、未強化ガラスと強化ガラスで実質的に相違していない。 Subsequently, sample No. Both surfaces 1 to 39 were subjected to optical polishing and then subjected to ion exchange treatment. Sample No. For samples 1 to 8, 13 to 15, 24, 25, 27, and 29 to 39, each sample was placed in KNO 3 molten salt at 430 ° C. for 4 hours. 9-12, 16-23 and 26 were carried out by immersing each sample in KNO 3 molten salt at 460 ° C. for 4 hours. After the ion exchange treatment, each sample is thoroughly washed, and the surface compressive stress value and stress depth are calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the interval between them. did. In the calculation, the refractive index of the sample was 1.53, and the optical elastic constant was 28 [(nm / cm) / MPa]. In addition, although glass composition differs microscopically in the surface layer of glass, unstrengthened glass and tempered glass do not differ substantially in glass composition as the whole glass. Therefore, characteristic values such as density and viscosity are not substantially different between untempered glass and tempered glass.
  その結果、試料No.1~27、29~39の表面に500MPa以上の圧縮応力が発生しており、且つその深さは13μm以上であった。また、板厚1mmの場合、内部の引っ張り応力が43MPa以下であった。 As a result, sample no. A compressive stress of 500 MPa or more was generated on the surfaces of 1 to 27 and 29 to 39, and the depth was 13 μm or more. When the plate thickness was 1 mm, the internal tensile stress was 43 MPa or less.
  試料No.15のガラス板を用いて、板厚やイオン交換処理の条件を変えることにより、内部の引っ張り応力が異なる試験片を作製した。その結果を表6に示す。 Sample No. Using 15 glass plates, test pieces having different internal tensile stresses were prepared by changing the plate thickness and ion exchange treatment conditions. The results are shown in Table 6.
  次に、各試験片につき、内部の引っ張り応力による破損の状態を評価した。評価方法は、以下の通りである。板厚0.5mmと板厚0.7mmのガラス板をそれぞれ作製し、各ガラス板を35mm×35mmの大きさに切り出した。こうして得られた各ガラス板について、460℃-6時間、460℃-8時間、490℃-6時間の各条件でイオン交換処理を行った後、圧縮応力値と応力深さを測定した。その結果を表6に示す。なお、圧縮応力値、応力深さは、上記と同様の方法で測定したものであり、その値から内部の引っ張り応力を計算した。 Next, the state of breakage due to internal tensile stress was evaluated for each test piece. The evaluation method is as follows. Glass plates with a plate thickness of 0.5 mm and a plate thickness of 0.7 mm were respectively produced, and each glass plate was cut into a size of 35 mm × 35 mm. Each glass plate thus obtained was subjected to ion exchange treatment at 460 ° C. for 6 hours, 460 ° C. for 8 hours, and 490 ° C. for 6 hours, and then the compression stress value and the stress depth were measured. The results are shown in Table 6. The compressive stress value and the stress depth were measured by the same method as described above, and the internal tensile stress was calculated from these values.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
  続いて、ガラス板の表面に形成された傷が内部の引っ張り応力領域まで達した時に、ガラス板が破損するかどうかを調査した。ホイールチップ材質がダイヤモンドであるスクライブマシンを使用し、エアー圧を0.3MPa、ホイールチップ刃角度を125°、ホイールチップ研磨グレードをD521に設定した上で、ホイールチップをガラス板の表面に叩きつけてガラス板を破壊した。 Subsequently, it was investigated whether or not the glass plate was damaged when the scratch formed on the surface of the glass plate reached the internal tensile stress region. Use a scribing machine with wheel tip material made of diamond, set air pressure to 0.3 MPa, wheel tip blade angle to 125 °, wheel tip polishing grade to D521, and hit the wheel tip against the surface of the glass plate. The glass plate was destroyed.
  表7は、ガラス板を破壊した後の破片の数を示したものである。また、参考のため、イオン交換処理を行わず、内部の引っ張り応力が0のガラス板(未強化ガラス板)の破片の数も示した。表7から明らかなように、内部の引っ張り応力が50~94MPaであれば、内部応力が0のガラス板と同程度の破片の数となることが理解できる。 Table 7 shows the number of pieces after breaking the glass plate. For reference, the number of pieces of a glass plate (unstrengthened glass plate) having no internal tensile stress without performing ion exchange treatment is also shown. As is apparent from Table 7, it can be understood that when the internal tensile stress is 50 to 94 MPa, the number of pieces is the same as that of the glass plate having the internal stress of 0.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
  試料No.15に係るガラスについて、オーバーフローダウンドロー法で成形を行い、板厚0.7mmと0.5mmのガラス板を作製した。次に、得られたガラス板を寸法40mm×80mmに切断加工した。更に、460℃-6時間の条件で、得られたガラス板をKNO3溶液中に浸漬してイオン交換処理を行った後、流水洗浄し、4点曲げ試験の試験片を得た。最後に、各試験片につき4点曲げ試験を行った。4点曲げ試験の条件は、支持スパン50mm、ロードスパン25mm、クロスヘッド降下スピード0.5mm/分であった。なお、試験片の切断面は、スクライブラインの形成後に折割り操作を行うことにより形成されており、4点曲げ試験時に切断面の反対側に引っ張り応力がかかるように試験片を配置した。4点曲げ試験から得られた破壊荷重から破壊応力を算出すると共に、平均値ランク法によりワイブルプロットを行い、ワイブル係数を求めた。その結果を表8に示す。なお、参考のため、イオン交換処理を施していないガラス板(未強化ガラス板)についても4点曲げ試験を行った。 Sample No. About the glass which concerns on 15, it shape | molded with the overflow down-draw method, and produced the glass plate of plate thickness 0.7mm and 0.5mm. Next, the obtained glass plate was cut into a size of 40 mm × 80 mm. Further, the obtained glass plate was immersed in a KNO 3 solution under conditions of 460 ° C. for 6 hours and subjected to ion exchange treatment, and then washed with running water to obtain a test piece for a four-point bending test. Finally, a 4-point bending test was performed on each test piece. The conditions of the 4-point bending test were a support span of 50 mm, a load span of 25 mm, and a crosshead descending speed of 0.5 mm / min. The cut surface of the test piece was formed by performing a folding operation after forming the scribe line, and the test piece was arranged so that a tensile stress was applied to the opposite side of the cut surface during the four-point bending test. The fracture stress was calculated from the fracture load obtained from the 4-point bending test, and the Weibull plot was obtained by the average rank method to obtain the Weibull coefficient. The results are shown in Table 8. For reference, a four-point bending test was also performed on a glass plate not subjected to ion exchange treatment (unreinforced glass plate).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
  表8から、各試料は、平均破壊応力とワイブル係数が高く、強度のばらつきが小さいことが分かる。 It can be seen from Table 8 that each sample has a high average fracture stress and a Weibull coefficient and a small variation in strength.
  以上の実験から明らかなように、表1~5の試料No.1~39は、非接触給電支持部材として好適である。 As is clear from the experiments above, the sample Nos. 1 to 39 are suitable as non-contact power supply supporting members.

Claims (13)

  1.   板状のガラスであり、且つヤング率が65GPa以上であることを特徴とする非接触給電用支持部材。 A support member for non-contact power feeding, which is a glass plate and has a Young's modulus of 65 GPa or more.
  2.   150℃における体積抵抗率logρ (Ω・cm)が5以上であることを特徴とする請求項1に記載の非接触給電用支持部材。 The volume resistivity log ρ (Ω · cm) at 150 ° C. is 5 or more, and the support member for contactless power feeding according to claim 1.
  3.   厚みが2mm以下であることを特徴とする請求項1又は2に記載の非接触給電用支持部材。 The support member for non-contact power feeding according to claim 1 or 2, wherein the thickness of the ridge is 2 mm or less.
  4.   4点曲げ試験による機械的強度が200MPa以上であることを特徴とする請求項1~3の何れか一項に記載の非接触給電用支持部材。 The support member for contactless power feeding according to any one of claims 1 to 3, wherein the mechanical strength according to a four-point bending test is 200 MPa or more.
  5.   前記ガラスが、表面に圧縮応力層を有する強化ガラスであり、且つガラス組成として、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有することを特徴とする請求項1~4の何れか一項に記載の非接触給電用支持部材。 The glass is a tempered glass having a compressive stress layer on the surface, and the glass composition is SiO 2 40-80%, Al 2 O 3 1-25%, Na 2 O 0.5-20% by mass%. The support member for non-contact power feeding according to any one of claims 1 to 4, characterized by comprising:
  6.   前記圧縮応力層が化学的処理によって形成されてなることを特徴とする請求項5に記載の非接触給電用支持部材。 The contact member for contactless power feeding according to claim 5, wherein the compressive stress layer is formed by chemical treatment.
  7.  前記圧縮応力層の圧縮応力値が100MPa以上で且つ応力深さが10μm以上であって、前記ガラスの内部に形成されている引張応力層の引っ張り応力値が200MPa以下であることを特徴とする請求項5又は6に記載の非接触給電用支持部材。 The compressive stress value of the compressive stress layer is 100 MPa or more, the stress depth is 10 μm or more, and the tensile stress value of the tensile stress layer formed inside the glass is 200 MPa or less. Item 7. The support member for contactless power feeding according to Item 5 or 6.
  8. 前記ガラスの表面が未研磨面であることを特徴とする請求項1~7の何れか一項に記載の非接触給電用支持部材。 The contactless power supply support member according to any one of claims 1 to 7, wherein a surface of the glass is an unpolished surface.
  9.  前記ガラスの表面粗さRaが1.0nm以下であることを特徴とする請求項1~8の何れか一項に記載の非接触給電用支持部材。 The support member for contactless power feeding according to any one of claims 1 to 8, wherein the glass has a surface roughness Ra of 1.0 nm or less.
  10.  請求項1~8の何れか一項に記載の非接触給電用支持部材を備えることを特徴とする非接触給電デバイス。 A non-contact power feeding device comprising the non-contact power feeding support member according to any one of claims 1 to 8.
  11.  質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有するガラス組成となるように調合したガラス原料を溶融し、板状のガラスに成形した後、イオン交換処理を行ってガラス表面に圧縮応力層を形成することを特徴とする非接触給電用支持部材の製造方法。 Glass raw material prepared so as to have a glass composition containing 40% to 80% SiO 2 , 1 to 25% Al 2 O 3, and 0.5 to 20% Na 2 O by mass% is melted to obtain a plate-like glass A method for producing a support member for non-contact power feeding, comprising forming a compression stress layer on a glass surface by performing ion exchange treatment after forming into a glass.
  12.  ダウンドロー法にて板状のガラスに成形する工程を含むことを特徴とする請求項11に記載の非接触給電用支持部材の製造方法。 The method for producing a support member for contactless power feeding according to claim 11, comprising a step of forming the glass into a plate-like glass by a downdraw method.
  13.  オーバーフローダウンドロー法にて板状のガラスに成形する工程を含むことを特徴とする請求項11に記載の非接触給電用支持部材の製造方法。 The method for producing a support member for non-contact power feeding according to claim 11, comprising a step of forming into a sheet glass by an overflow down draw method.
PCT/JP2013/066513 2012-06-18 2013-06-14 Support member for contactless power supply WO2013191110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012136584A JP5954690B2 (en) 2012-06-18 2012-06-18 Non-contact power supply support member
JP2012-136584 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013191110A1 true WO2013191110A1 (en) 2013-12-27

Family

ID=49768707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066513 WO2013191110A1 (en) 2012-06-18 2013-06-14 Support member for contactless power supply

Country Status (2)

Country Link
JP (1) JP5954690B2 (en)
WO (1) WO2013191110A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049400A1 (en) * 2014-09-25 2016-03-31 Corning Incorporated Uv blocking for improved transmission glasses
WO2016170931A1 (en) * 2015-04-23 2016-10-27 日本電気硝子株式会社 Strengthened glass
CN110267924A (en) * 2017-02-24 2019-09-20 株式会社小原 Sintered glass ceramics
EP3772491A1 (en) * 2019-08-08 2021-02-10 Corning Incorporated Chemically-strengthenable glasses for laminates
CN116102255A (en) * 2023-01-09 2023-05-12 清远南玻节能新材料有限公司 Boron aluminum silicate glass and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596894B2 (en) * 2014-05-20 2019-10-30 日本電気硝子株式会社 Tempered glass plate and manufacturing method thereof
JP6593676B2 (en) * 2015-03-02 2019-10-23 日本電気硝子株式会社 Laminated body and semiconductor package manufacturing method
US11066323B2 (en) 2015-06-26 2021-07-20 Corning Incorporated Glass with high surface strength
JP7280546B2 (en) * 2017-11-09 2023-05-24 日本電気硝子株式会社 Glass plate and wavelength conversion package using the same
JP7150852B2 (en) * 2018-08-09 2022-10-11 株式会社オハラ crystallized glass substrate
CN112512984B (en) * 2018-08-09 2022-11-15 株式会社小原 Crystallized glass substrate
CN113272262A (en) * 2018-11-30 2021-08-17 康宁公司 Glass article exhibiting high compressive stress, automotive interior system comprising such glass article and method of making same
WO2021096714A1 (en) * 2019-11-12 2021-05-20 Corning Incorporated High cte, high uv transmittance, and high young's modulus glass
JP7296539B2 (en) * 2019-11-18 2023-06-23 Agc株式会社 Supporting glass substrate and laminate
JP7174788B2 (en) * 2021-02-17 2022-11-17 株式会社オハラ crystallized glass substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089259A (en) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd Glass substrate
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
WO2010095736A1 (en) * 2009-02-23 2010-08-26 日本電気硝子株式会社 Glass film for lithium ion battery
JP2012016125A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Non-contact power supply system, and metal foreign substance detector of non-contact power supply system
JP2012019666A (en) * 2010-07-09 2012-01-26 Sony Corp Wireless charging device and wireless charging system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047701A (en) * 2002-07-11 2004-02-12 Jfe Steel Kk Planar magnetic element for noncontact charger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089259A (en) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd Glass substrate
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
WO2010095736A1 (en) * 2009-02-23 2010-08-26 日本電気硝子株式会社 Glass film for lithium ion battery
JP2012016125A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Non-contact power supply system, and metal foreign substance detector of non-contact power supply system
JP2012019666A (en) * 2010-07-09 2012-01-26 Sony Corp Wireless charging device and wireless charging system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695821B (en) * 2014-09-25 2020-06-11 美商康寧公司 Glass articles
US11498865B2 (en) 2014-09-25 2022-11-15 Corning Incorporated UV blocking for improved transmission glasses
CN107001113A (en) * 2014-09-25 2017-08-01 康宁股份有限公司 UV for the glass with improved translucency is obstructed
WO2016049400A1 (en) * 2014-09-25 2016-03-31 Corning Incorporated Uv blocking for improved transmission glasses
TWI771589B (en) * 2014-09-25 2022-07-21 美商康寧公司 Glass articles
US10501365B2 (en) 2014-09-25 2019-12-10 Corning Incorporated UV blocking for improved transmission glasses
JPWO2016170931A1 (en) * 2015-04-23 2018-02-15 日本電気硝子株式会社 Tempered glass
US11236015B2 (en) 2015-04-23 2022-02-01 Nippon Electric Glass Co., Ltd. Tempered glass
WO2016170931A1 (en) * 2015-04-23 2016-10-27 日本電気硝子株式会社 Strengthened glass
CN110267924B (en) * 2017-02-24 2021-12-31 株式会社小原 Crystallized glass
CN110267924A (en) * 2017-02-24 2019-09-20 株式会社小原 Sintered glass ceramics
EP3772491A1 (en) * 2019-08-08 2021-02-10 Corning Incorporated Chemically-strengthenable glasses for laminates
CN116102255A (en) * 2023-01-09 2023-05-12 清远南玻节能新材料有限公司 Boron aluminum silicate glass and preparation method thereof

Also Published As

Publication number Publication date
JP2014001094A (en) 2014-01-09
JP5954690B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5954690B2 (en) Non-contact power supply support member
JP5867574B2 (en) Tempered glass substrate and manufacturing method thereof
JP5743125B2 (en) Tempered glass and tempered glass substrate
JP2009013052A (en) Hardened glass substrate, and method for production thereof
JP2009084075A (en) Reinforced glass substrate and glass, and method for manufacturing reinforced glass substrate
WO2014002932A1 (en) Glass substrate for organic el device and manufacturing method therefor
JP5796905B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807862

Country of ref document: EP

Kind code of ref document: A1