WO2013190999A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2013190999A1
WO2013190999A1 PCT/JP2013/065608 JP2013065608W WO2013190999A1 WO 2013190999 A1 WO2013190999 A1 WO 2013190999A1 JP 2013065608 W JP2013065608 W JP 2013065608W WO 2013190999 A1 WO2013190999 A1 WO 2013190999A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotor
oil supply
input shaft
peripheral surface
Prior art date
Application number
PCT/JP2013/065608
Other languages
English (en)
French (fr)
Inventor
林 裕人
久保 秀人
祥平 松本
修士 湯本
康二 吉原
弘文 藤原
清 上辻
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to CN201380031986.2A priority Critical patent/CN104380581A/zh
Priority to US14/409,250 priority patent/US20150180313A1/en
Priority to EP13807869.6A priority patent/EP2863522A1/en
Publication of WO2013190999A1 publication Critical patent/WO2013190999A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/005Machines with only rotors, e.g. counter-rotating rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium

Definitions

  • This invention relates to a rotating electrical machine.
  • the rotating electrical machine described in Patent Document 1 is connected to an input shaft to which the driving force of an engine is transmitted and is disposed on the innermost side, and an input side at a position radially outside the input side rotor.
  • an oil storage member for storing oil as a coolant is installed over the entire periphery, and the oil storage member includes the input shaft and the input side rotor. It is connected to the input shaft by a connecting member so as to rotate together. Oil is stored in an oil reservoir between both ends of the oil storage member along the axial direction of the input shaft in the oil storage member and sandwiching the connecting member therebetween, and the oil stored in both ends of the oil storage member A plurality of oil outlets for ejecting the oil are formed.
  • the input shaft is formed with an oil passage through which oil is supplied from the outside and a plurality of oil discharge ports for ejecting the oil to the oil reservoir of the oil storage member. Therefore, the oil supplied to the input shaft flows through the oil passage to the oil reservoir, cools the input side rotor, and is then discharged from the oil discharge port by the centrifugal force of the input side rotor.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotating electrical machine that reduces costs by reducing processing during manufacture.
  • a rotating electrical machine includes a rotating shaft and a rotor that has a conductor capable of generating a rotating magnetic field and is provided on the peripheral surface of the rotating shaft so as to be integrally rotatable.
  • the rotary shaft has an oil supply path that passes through the inside of the rotary shaft, and an oil supply hole that extends from the oil supply path to the peripheral surface of the rotary shaft and opens to face the rotor.
  • An oil passage is arranged to face the peripheral surface and communicates with the oil supply hole.
  • the rotating electrical machine includes a rotating shaft, a conductor capable of generating a rotating magnetic field, a rotor provided so as to be integrally rotatable on a peripheral surface of the rotating shaft, an oil reservoir, and an oil reservoir
  • An oil supply mechanism that supplies oil to the rotating shaft, the rotating shaft passing through the inside of the rotating shaft, and an oil that extends from the oil supplying path to the peripheral surface of the rotating shaft and opens to face the rotor
  • the oil supply mechanism has a supply hole and an oil receiving hole that extends from the oil supply path to the peripheral surface of the rotating shaft and opens at a portion protruding from the rotor of the rotating shaft, and the oil supply mechanism supplies oil to the oil receiving hole.
  • the rotating electric machine it is possible to reduce the cost by reducing the processing at the time of manufacture.
  • FIG. 1 is a schematic cross-sectional side view showing a configuration of a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG.
  • a rotating electrical machine 101 according to an embodiment of the present invention will be described as a double rotor type rotating electrical machine mounted on a hybrid vehicle equipped with an engine.
  • the rotating electrical machine 101 has a housing 1.
  • the housing 1 includes a motor housing 1a that includes a first rotor 10, a second rotor 20, and a stator 30, and an oil housing 1c that forms an oil reservoir 3 that stores oil 2 that cools the first rotor 10 and the like.
  • a baffle plate 1b sandwiched between the motor housing 1a and the oil housing 1c to form a partition wall. Therefore, the casing 1 is formed by connecting the baffle plate 1b between the motor housing 1a and the oil housing 1c and connecting them together.
  • the first rotor 10 constitutes a rotor
  • the second rotor 20 constitutes an outer rotor.
  • An oil reservoir 1a1 is formed near the bottom of the motor housing 1a by the motor housing 1a and the baffle plate 1b, and an oil reservoir is formed by the oil housing 1c and the baffle plate 1b near the bottom of the oil housing 1c. Part 3 is formed.
  • the baffle plate 1b is formed with a plate communication hole 1b1 at a position near the bottom of the motor housing 1a.
  • the plate communication hole 1b1 communicates the oil reservoir 1a1 with the oil reservoir 3.
  • the rotating electrical machine 101 has an input shaft 40 that penetrates the motor housing 1a and the oil housing 1c and extends at both ends to the outside.
  • the input shaft 40 is disposed above the oil reservoir 1 a 1 and the oil reservoir 3 inside the housing 1. Further, the end 40a of the input shaft 40 protruding from the oil housing 1c is mechanically connected to an engine (not shown).
  • the slip ring 4 is attached to the end of the input shaft 40 protruding from the motor housing 1a so as to rotate integrally.
  • the slip ring 4 is electrically connected to the inverter via a brush (not shown), and can supply and demand alternating current with the inverter.
  • the input shaft 40 constitutes a rotating shaft.
  • a direction from the input shaft 40 toward the oil reservoir 1a1 and the oil reservoir 3 is referred to as a downward direction, and the opposite direction is referred to as an upward direction.
  • the rotating electrical machine 101 is mounted on an automobile with the oil reservoir 1a1 and the oil reservoir 3 positioned below.
  • the input shaft 40 includes a first input shaft portion 41, a second input shaft portion 42, and a third input shaft portion 43 that are integrated by being fitted to each other.
  • the first input shaft portion 41 has a substantially bottomed cylindrical shape, extends from the inside of the motor housing 1a to the outside through the oil housing 1c, and is mechanically connected to an engine (not shown). .
  • the first input shaft portion 41 has an outer diameter that changes in the middle thereof, a small diameter portion 41a that forms an end portion on the oil housing 1c side, and a large diameter portion 41c that forms an end portion on the motor housing 1a side, It has a medium diameter part 41b which is located between the small diameter part 41a and the large diameter part 41c and has an outer diameter between the small diameter part 41a and the large diameter part 41c.
  • the medium diameter part 41b and the large diameter part 41c are located in the motor housing 1a.
  • a bottomed cylindrical shaft hole 44 is formed in the first input shaft portion 41 along the axial direction from the large diameter portion 41c to the middle of the small diameter portion 41a.
  • the shaft hole 44 opens at the end of the large-diameter portion 41c and is reduced in diameter in four steps toward the small-diameter portion 41a. That is, the shaft hole 44 includes a cylindrical fitting hole 44d that opens at the end of the large-diameter portion 41c, and a cylinder that is adjacent to the fitting hole 44d in the axial direction and has an inner diameter smaller than that of the fitting hole 44d.
  • Shaped third oil passage portion 44c, cylindrical second oil passage portion 44b that is axially adjacent to third oil passage portion 44c and smaller in inner diameter than third oil passage portion 44c, and second oil passage portion 44b is formed by a cylindrical first oil passage portion 44a that is adjacent to 44b in the axial direction and has a smaller inner diameter than the second oil passage portion 44b.
  • the first oil passage portion 44a, the second oil passage portion 44b, and the third oil passage portion 44c constitute an oil supply passage.
  • the third oil passage portion 44c is located inside the large diameter portion 41c. Further, on the outer peripheral surface of the large diameter portion 41c, two outer peripheral grooves 41ca and 41cb are formed adjacent to each other across the partition wall along the circumferential direction, and the outer peripheral grooves 41ca and 41cb are formed on the partition wall between each other. They are communicated with each other by formed communication grooves (not shown). Further, inside the large-diameter portion 41c, shaft-side oil supply passages 41cc (see FIG. 2) communicating the third oil passage portion 44c with the outer peripheral groove 41ca are mutually radially radiated from the third oil passage portion 44c. A plurality are formed at intervals.
  • the second oil passage portion 44b is located from the inside of the large diameter portion 41c to the inside of the medium diameter portion 41b.
  • the first oil passage portion 44a is located from the inside of the medium diameter portion 41b to the inside of the small diameter portion 41a. Further, in the inside of the small diameter portion 41a, oil receiving holes 41ab communicating the first oil passage portion 44a with the outer peripheral surface 41aa which is the peripheral surface of the small diameter portion 41a are radially equal from the first oil passage portion 44a. A plurality are formed at intervals (see FIG. 3).
  • the second input shaft portion 42 has a bottomed cylindrical shape and extends from the inside of the motor housing 1a to the outside.
  • a spline along the axial direction is formed on the outer peripheral surface of the end 42a on the inner side of the motor housing 1a in the second input shaft portion 42, or a male screw is formed.
  • the second input shaft portion 42 is connected to the first input shaft portion 41 by inserting the end portion 42a into the fitting hole portion 44d and fitting the splines with each other or by screwing.
  • a lock nut 42e is screwed from the outside to a male screw formed adjacent to the spline or male screw on the outer peripheral surface of the end portion 42a of the second input shaft portion 42, and the lock nut 42e.
  • the cylindrical recessed part 42c is formed in the inside toward the edge part 42a from the edge part 42b on the opposite side to the edge part 42a.
  • a plurality of conductor rods 4a connected to the slip ring 4 are disposed in the recess 42c.
  • a connection terminal 4b is connected to one end of the conductor rod 4a located in the recess 42c, and the connection terminal 4b extends from the recess 42c through the second input shaft portion 42 to the outside.
  • the other end of the conductor rod 4 a extends to the outside of the recess 42 c and is connected to the slip ring 4.
  • the recess 42c is filled with a base material 42d made of resin.
  • the base material 42d electrically insulates the conductor rod 4a from the periphery of the second input shaft portion 42 and the like, and supports the slip ring 4 and the conductor rod 4a.
  • the first input shaft portion 41 and the second input shaft portion 42 that are connected to each other the first input shaft portion 41 is rotatably supported by the oil housing 1c via a bearing 45a.
  • a space between the housing 1c and the housing 1c is hermetically sealed with an annular sealing material 45b.
  • the second input shaft portion 42 is rotatably supported by the motor housing 1a via a bearing 46a, and the second input shaft portion 42 and the motor housing 1a are sealed in a watertight manner by an annular sealing material 46b. Yes.
  • the third input shaft portion 43 has a substantially cylindrical shape, surrounds the outer periphery of the first input shaft portion 41 from the large diameter portion 41 c to a part of the medium diameter portion 41 b, and the first input shaft portion 41. It is provided so that it may fit in.
  • the third input shaft portion 43 and the first input shaft portion 41 are fitted to each other by splines, keys, grooves, and the like formed on the inner and outer peripheral surfaces thereof. Thereby, the 3rd input shaft part 43 can be united with the 1st input shaft part 41, and can rotate the periphery of the center axis
  • the third input shaft portion 43 includes first rotor oil supply holes 43 c that penetrate from the inner peripheral surface 43 a to the outer peripheral surface 43 b that is the peripheral surface, and are radially spaced from each other. A plurality of layers are formed radially.
  • the first rotor oil supply hole 43c is formed at a position facing the outer circumferential groove 41ca formed on the outer circumferential surface of the first input shaft portion 41, and communicates with the outer circumferential groove 41ca. Further, the first rotor oil supply hole 43 c is formed at a position between the shaft-side oil supply paths 41 cc in the radial direction of the cross section of the first input shaft portion 41.
  • the first rotor oil supply hole 43c is arranged with the radial position in the cross section of the first input shaft portion 41 shifted from the shaft-side oil supply passage 41cc.
  • the first rotor oil supply hole 43c constitutes an oil supply hole.
  • a plurality of first rotor oil supply holes 43 c are also formed at positions facing the outer circumferential groove 41 cb formed on the outer circumferential surface of the first input shaft portion 41, and communicate with the outer circumferential groove 41 ca.
  • the rotating electrical machine 101 has a cylindrical first rotor 10 provided so as to surround the outer periphery in the radial direction of the third input shaft portion 43 of the input shaft 40 in the motor housing 1a.
  • the first rotor 10 has a cylindrical first core 11 surrounding the third input shaft portion 43 and an annular shape in the circumferential direction in the vicinity of the outer peripheral surface 11 b of the first core 11.
  • the first coil 12 is a winding that is embedded and protrudes from the end portions 11 c and 11 d of the first core 11.
  • the first core 11 is made of a magnetic material such as iron.
  • a portion of the first coil 12 that protrudes from the end 11 c of the first core 11 is electrically connected to a connection terminal 4 b that is connected to a conductor rod 4 a extending from the slip ring 4.
  • the first coil 12 constitutes a conductor.
  • a plurality of key fitting protrusions 11e having a rectangular cross section and having a belt shape are formed on the inner peripheral surface 11a of the first core 11 facing the third input shaft portion 43 so as to protrude radially inward.
  • the key fitting protrusion 11e is key-fitted into a plurality of key fitting grooves 43d having a rectangular cross section formed on the outer peripheral surface 43b of the third input shaft portion 43, whereby the first core 11 is It can rotate integrally with the three input shaft portions 43.
  • a plurality of cutout grooves 11 f are formed in the inner peripheral surface 11 a of the first core 11 at positions facing the first rotor oil supply hole 43 c of the third input shaft portion 43.
  • Each of the cutout grooves 11f communicates with each of the first rotor oil supply holes 43c, further extends along the cylindrical axis direction of the first core 11, and opens at both end portions 11c and 11d of the first core 11. . Therefore, the notch groove 11 f communicates the first rotor oil supply hole 43 c to the outside of both end portions 11 c and 11 d of the first core 11.
  • the notch groove 11f which has the above-mentioned structure can be formed only by making a cut in the press work at the time of manufacture of the first core 11, the formation thereof is easy. Further, the notch groove 11f is formed in the vicinity of the boundary between the inner peripheral surface 11a of the first core 11 and the input shaft 40 (third input shaft portion 43), and therefore the first groove 11 near the outer peripheral surface 11b of the first core 11 is formed. The formation of one coil 12 is not affected.
  • the notch groove 11f constitutes an oil passage.
  • the rotating electrical machine 101 has a cylindrical second rotor 20 provided so as to surround the outer periphery in the radial direction of the first rotor 10 in the motor housing 1a.
  • the second rotor 20 includes a cylindrical second core 21 that surrounds the outer peripheral surface 11 b of the first core 11 of the first rotor 10 and is provided so as to be rotatable relative to the first core 11.
  • a plurality of first permanent magnets 22 annularly embedded in the vicinity of the inner peripheral surface 21a of the second core 21 facing the outer peripheral surface 11b and the outer peripheral surface of the second core 21 facing the inner peripheral surface 21a.
  • a plurality of second permanent magnets 23 are embedded in the vicinity of 21b in an annular shape along the circumferential direction.
  • the second core 21 is made of a magnetic material such as iron.
  • the first permanent magnet 22 constitutes a field.
  • the rotating electrical machine 101 is provided so as to wrap around the input shaft 40 and the first rotor 10 and to support the second rotor 20 by sandwiching it from both end portions 21 c and 21 d of the second core 21.
  • the substantially bottomed cylindrical rotor brackets 51 and 52 are provided in the motor housing 1a.
  • the rotor brackets 51 and 52 together with the second rotor 20 form a first rotor accommodating space 53 including the first rotor 10 therein, and blocks the first rotor 10 from the outside.
  • the rotor brackets 51 and 52 constitute a support.
  • the first rotor bracket 51 is disposed on the end 21c side, that is, on the slip ring 4 side with respect to the second core 21, and is integrally connected to the second core 21 with a fastener (not shown) or the like.
  • the first rotor bracket 51 has a bearing 51a at an inner portion through which the second input shaft portion 42 of the input shaft 40 passes. Thereby, the 1st rotor bracket 51 is supported by the 2nd input shaft part 42 via the bearing 51a so that relative rotation is possible.
  • the first rotor bracket 51 is formed with a plurality of oil relief openings 51b penetrating through the wall of the first rotor bracket 51 on the slip ring 4 side of the end 11c of the first core 11 of the first rotor 10. ing.
  • the oil relief opening 51 b communicates the first rotor housing space 53 to the outside of the first rotor bracket 51.
  • the second rotor bracket 52 is disposed on the end 21d side, that is, the oil housing 1c side with respect to the second core 21, and is integrally connected to the second core 21 with a fastener or the like (not shown).
  • the second rotor bracket 52 is integrally connected to a substantially cylindrical output shaft 60 provided so as to surround the outer periphery in the radial direction of the first input shaft portion 41 of the input shaft 40 with a fastener.
  • the second rotor bracket 52 has a plurality of oil relief openings 52b penetrating through the wall of the second rotor bracket 52 on the oil housing 1c side of the end 11d of the first core 11 of the first rotor 10. ing.
  • the oil relief opening 52 b communicates the first rotor housing space 53 to the outside of the second rotor bracket 52.
  • the output shaft 60 extends from the connecting portion with the second rotor bracket 52 into the oil housing 1c. Further, the output shaft 60 has a bearing 61 at a portion facing the middle diameter portion 41 b of the first input shaft portion 41, and is supported by the first input shaft portion 41 through the bearing 61 so as to be relatively rotatable. Yes.
  • the second rotor bracket 52 is also supported by the first input shaft portion 41 via the output shaft 60 and the bearing 61 so as to be relatively rotatable.
  • a pinion gear 71 is connected to the outer peripheral surface 60a of the output shaft 60 located in the oil housing 1c by spline engagement or key fitting. The pinion gear 71 can rotate around the input shaft 40 integrally with the output shaft 60. Therefore, the second rotor 20, the rotor brackets 51 and 52, the output shaft 60, and the pinion gear 71 can be integrally rotated relative to the input shaft 40.
  • a driven gear 72 is provided in the oil housing 1 c, and the driven gear 72 is engaged with the pinion gear 71 and immersed in the oil 2 in the oil reservoir 3.
  • a drive shaft (not shown) is integrally connected to the driven gear 72, and the drive shaft extends to the outside of the oil housing 1c and is mechanically connected to the wheels of the automobile via a differential or the like. Therefore, the rotational driving force of the second rotor 20 is transmitted to the wheels of the automobile via the pinion gear 71 and the driven gear 72 to drive them. Since the oil 2 in the oil reservoir 3 is constantly supplied to the gear forming surface of the driven gear 72, the engaging portion of the driven gear 72 and the pinion gear 71 is lubricated by the oil 2.
  • the rotating electrical machine 101 has a cylindrical stator 30 provided so as to surround the outer periphery in the radial direction of the second rotor 20 in a state of being fixed in the motor housing 1a.
  • the stator 30 surrounds the outer peripheral surface 21b (see FIG. 2) of the second core 21 of the second rotor 20 and is provided with a cylindrical stator core 31 provided so that the second core 21 can rotate relative to the second core 21.
  • a stator coil 32 is embedded in the vicinity of the inner peripheral surface of the stator core 31 facing the outer peripheral surface 21b in a ring shape along the circumferential direction and protrudes from both end portions of the stator core 31.
  • the stator core 31 is made of a magnetic material such as iron.
  • the stator coil 32 is electrically connected to an inverter (not shown) provided outside the housing 1 so that AC current can be supplied to and supplied from the inverter.
  • the rotating electrical machine 101 has an oil supply mechanism 80 in the first input shaft portion 41 of the input shaft 40 between the output shaft 60 and the bearing 45a.
  • the oil supply mechanism 80 is provided so as to surround an oil pump 81 immersed in the oil 2 in the oil reservoir 3 and a portion where the oil receiving hole 41ab in the small diameter portion 41a of the first input shaft portion 41 opens.
  • a rotary joint 83 and an oil supply pipe 82 communicating the oil pump 81 with the inside of the rotary joint 83 are provided.
  • the rotary joint 83 includes a cylindrical main body part 83a provided so as to surround the outer periphery in the radial direction of the small diameter part 41a of the first input shaft part 41, and an annular sealing material provided inside both end parts of the main body part 83a. 83b and 83c.
  • the annular sealing materials 83b and 83c are provided between the cylindrical inner peripheral surface 83aa of the main body portion 83a and the cylindrical outer peripheral surface 41aa of the small diameter portion 41a, and the space is sealed in a watertight manner.
  • an annular inner circumferential groove 83ab is formed along the circumferential direction on the inner circumferential surface 83aa of the main body portion 83a.
  • the inner circumferential groove 83ab communicates with all the oil receiving holes 41ab.
  • a communication hole 83ac that extends downward from the inner circumferential groove 83ab and opens to the outside of the main body 83a is formed in the main body 83a.
  • the communication hole 83ac is connected to the oil supply pipe 82.
  • the main body portion 83a is fixed to the oil housing 1c, so that the input shaft 40 rotates relative to the main body portion 83a.
  • the oil 2 sucked up by the oil pump 81 is also supplied to the shaft hole in the input shaft 40 through the oil supply pipe 82, the communication hole 83ac, the inner circumferential groove 83ab, and the oil receiving hole 41ab. 44 can be supplied.
  • the oil 2 in the oil reservoir 3 is supplied to the first rotor 10 according to the following procedure. To be cooled.
  • the oil 2 in the oil reservoir 3 is sucked up by the oil pump 81 of the oil supply mechanism 80 and is pumped through the oil supply pipe 82 into the inner peripheral groove 83ab of the main body 83a of the rotary joint 83.
  • the oil 2 in the inner circumferential groove 83ab is pumped into the first oil passage portion 44a of the shaft hole 44 in the input shaft 40 through the oil receiving hole 41ab regardless of whether or not the input shaft 40 is rotated.
  • the oil 2 in the first oil passage portion 44a passes through the second oil passage portion 44b in the shaft hole 44 and is pumped to the third oil passage portion 44c.
  • the oil 2 in the third oil passage portion 44c is branched by being sent to a plurality of shaft-side oil supply passages 41cc extending radially from the third oil passage portion 44c. Further, the oil 2 in each shaft-side oil supply passage 41cc is sent to the outer peripheral groove 41ca, and a part of the oil 2 in the outer peripheral groove 41ca is sent to the adjacent outer peripheral groove 41cb, and then a plurality of first rotor oils It branches and is sent to the supply hole 43c, and is sent in the some notch groove 11f formed in the internal peripheral surface 11a of the 1st core 11 of the 1st rotor 10.
  • the supply of the oil 2 from the third oil passage portion 44c into the notch groove 11f is caused by the pressure of the oil pump 81 and the outside in the radial direction of the cross section of the input shaft 40 when the input shaft 40 is rotated. And the centrifugal force generated toward The shaft-side oil supply passage 41cc disperses the oil 2 in the third oil passage portion 44c over the entire cross-sectional direction of the input shaft 40, and the outer peripheral groove 41ca collects the dispersed oil 2 once to collect the oil.
  • the distribution in the circumferential direction of 2 is equalized.
  • the first rotor oil supply hole 43c supplies the oil 2 to each of the cutout grooves 11f arranged evenly in the circumferential direction of the inner peripheral surface 11a of the first core 11. Thereby, the oil 2 is evenly supplied to the respective cutout grooves 11f.
  • the oil 2 in the notch groove 11f flows in the notch groove 11f along the axial direction, and is discharged from both end portions 11c and 11d of the first core 11 into the first rotor accommodating space 53.
  • the oil 2 exchanges heat with the first core 11 of the first rotor 10 and cools it in the process of flowing through the notch groove 11f.
  • the oil 2 discharged into the first rotor accommodating space 53 is discharged from the oil relief openings 51b and 52b of the rotor brackets 51 and 52 to the outside of the rotor brackets 51 and 52 in the motor housing 1a.
  • the oil flows down to the oil reservoir 1a1 at the bottom.
  • the rotating electrical machine 101 includes the input shaft 40 and the first coil 12 capable of generating a rotating magnetic field, and is provided on the outer peripheral surface 43b of the input shaft 40 so as to be integrally rotatable.
  • the input shaft 40 includes oil passage portions 44 a to 44 c that pass through the inside of the input shaft 40, and a first rotor that extends from the third oil passage portion 44 c to the outer peripheral surface 43 b of the input shaft 40 and that faces the first rotor 10. And an oil supply hole 43c.
  • the first rotor 10 has a notch groove 11f that is arranged to face the outer peripheral surface 43b of the input shaft 40 and communicates with the first rotor oil supply hole 43c.
  • the oil path for cooling the first rotor 10 is formed with the oil passage portions 44a to 44c and the first rotor oil supply hole 43c extending from the third oil passage portion 44c in the input shaft 40, Furthermore, since it is only necessary to form the notch groove 11f in the first rotor 10, processing during manufacturing can be reduced, thereby enabling cost reduction. Furthermore, by making the notch groove 11f into a groove shape that can be formed together by pressing the first core 11 of the first rotor 10, the processing effort during manufacturing can be further reduced. And the notch groove 11f is formed in the site
  • the formation of the notch groove 11f affects the formation of the first coil 12 arranged in the first core 11 at a position that is not in the vicinity of the inner peripheral surface 11a, for example, from the center of the first core 11 to the outer peripheral surface 11b side. Don't give. Therefore, since the notch groove 11f and the first coil 12 can be formed individually, it is possible to reduce the processing effort during manufacturing.
  • the oil that has circulated through the cutout groove 11f of the first rotor 10 may flow out from the side of the first rotor 10 or the like and flow down to the bottom of the housing 1, so that the oil circulation path Can be limited to a narrow area in the housing 1. Therefore, oil can be prevented from adhering to the slip ring 4 without requiring a special structure.
  • the rotating electrical machine 101 also includes an oil reservoir 3 and an oil supply mechanism 80 that supplies oil in the oil reservoir 3 to the input shaft 40.
  • the input shaft 40 has an oil receiving hole 41ab that extends from the first oil passage portion 44a to the outer peripheral surface 41aa of the input shaft 40 and opens to the small diameter portion 41a of the input shaft 40 that protrudes from the first rotor 10.
  • the oil supply mechanism 80 rotatably connects an oil pump 81 that pumps oil from the oil reservoir 3 and an input shaft 40 to an oil supply pipe 82 that extends from the oil pump 81, and an oil receiving hole in the input shaft 40. 41 ab and a rotary joint 83 communicating with the oil supply pipe 82.
  • the oil receiving hole 41ab is not on the end surface of the input shaft 40 but on the outer peripheral surface 41aa, when the drive device is directly connected to the end portion of the input shaft 40, etc. Therefore, it is possible to eliminate the processing of the oil passage or the like to the oil receiving hole 41ab in the connecting portion.
  • the first input shaft portion 41 includes oil passage portions 44a to 44c and fitting holes 44d extending in the axial direction, outer peripheral grooves 41ca and 41cb, and a shaft side extending in the radial direction.
  • An oil supply path 41cc and an oil receiving hole 41ab are formed, a first rotor oil supply hole 43c extending in the radial direction is formed in the third input shaft portion 43, and these input shaft portions 41 to 43 are simply assembled to each other.
  • a path for supplying oil to the notch groove 11f of the first rotor 10 through the input shaft 40 can be formed. Therefore, it is possible to simplify the formation of the oil supply path in the input shaft 40 and reduce the number of work steps for forming the oil supply path.
  • the rotating electrical machine 101 includes a second rotor 20 that is provided on the outer side in the radial direction of the first rotor 10 and is rotatable relative to the first rotor 10.
  • the second rotor 20 has a first permanent magnet 22 disposed so as to face the conductor (first coil 12) of the first rotor 10. Further, the second rotor 20 is supported by rotor brackets 51 and 52 that are rotatably supported by the input shaft 40 and surround the first rotor 10.
  • the oil passes through the input shaft 40 and faces the outer peripheral surface 43 b of the input shaft 40. Since the first rotor 10 is supplied to the cutout groove 11f of the first rotor 10, the first rotor 10 can be reliably cooled. Further, the rotating electrical machine 101 does not have a complicated structure such as a system in which oil is supplied and circulated from the upper part where the stator is provided, which has been generally adopted for oil cooling of a rotating electrical machine with a built-in transaxle. The first rotor 10 can be oil-cooled.
  • the oil flows from the third oil passage portion 44c of the input shaft 40 to the cutout groove 11f of the first rotor 10 so that the shaft-side oil supply passage 41cc, the outer peripheral grooves 41ca and 41cb. And the first rotor oil supply hole 43c, but is not limited to this.
  • the shaft-side oil supply passage 41cc may be extended so as to reach the notch groove 11f from the third oil passage portion 44c only through the shaft-side oil supply passage 41cc.
  • the shaft-side oil supply passage 41cc, the first rotor oil supply hole 43c, and the oil receiving hole 41ab are formed in a plurality, but the present invention is not limited to this, and any of them is not limited thereto. There should be more than one.
  • only the notch groove 11f of the first rotor 10 along the cylindrical axis of the first rotor 10 is formed, but is not limited thereto.
  • One or more grooves along the circumferential direction of the first rotor 10 may be formed, and the grooves may communicate the notch grooves 11f extending in the axial direction. Thereby, the contact area of oil and the 1st rotor 10 can be increased.
  • the first coil 10 is provided in the first rotor 10
  • the first permanent magnet 22 and the second permanent magnet 23 are provided in the second rotor 20
  • the stator coil 32 is provided in the stator 30.
  • the present invention is not limited to this, and it is sufficient that the first coil 12 is provided in the first rotor 10.
  • the first permanent magnet 22 and the second permanent magnet 23 that are annularly provided in two rows in the vicinity of the inner peripheral surface 21 a and the outer peripheral surface 21 b are It may be embedded in a ring in a row near the center.
  • permanent magnets and coils may be embedded in the vicinity of the inner peripheral surface 21 a and the outer peripheral surface 21 b of the second core 21 of the second rotor 20, and the permanent magnets may be embedded in the stator 30.
  • the first permanent magnet 22 and the second permanent magnet 23 are used as field magnets, but the present invention is not limited to this, and an electromagnet may be used.
  • the rotary electric machine 101 of the embodiment was a double rotor type rotary electric machine, it is not limited to this, and it is sufficient if there is at least one rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 回転電機101は、入力軸40と、回転磁界を発生可能な第一コイル12を有し且つ入力軸40の外周面43bに一体回転可能に設けられる第一ロータ10とを備える。入力軸40は、入力軸40の内部を通るオイル通路部44a~44cと、第三オイル通路部44cから入力軸40の外周面43bに延び且つ第一ロータ10に対向して開口する第一ロータオイル供給穴43cとを有する。第一ロータ10は、入力軸40の外周面43bに対向するように配置され且つ第一ロータオイル供給穴43cに連通する切欠溝11fを有する。

Description

回転電機
 この発明は、回転電機に関する。
 電磁気を利用して回転子を回転させ、回転子に巻線を含む回転電機では、巻線に交流電流が流されると回転子が発熱するため、回転子を冷却するための冷却構造が設けられる。
 例えば、特許文献1に記載された回転電機は、エンジンの駆動力が伝達される入力軸に連結され且つ最も内側に配置される入力側ロータと、入力側ロータより径方向外側の位置で入力側ロータと対向して配置され且つ変速機に延びる出力軸が連結された出力側ロータと、出力側ロータより径方向外側の位置で出力側ロータと対向して配置され且つステータケースに固定されたステータとを有している。
 入力側ロータと入力軸との間における入力側ロータの内周には、冷却液としてのオイルを貯留するためのオイル貯留部材が全周にわたって設置され、オイル貯留部材は、入力軸及び入力側ロータと共に回転するように入力軸に連結部材によって連結されている。オイルは、オイル貯留部材において入力軸の軸線方向に沿い且つ連結部材を間に挟む、オイル貯留部材の両端部同士の間のオイル溜まりに貯留され、オイル貯留部材の両端部には貯留されたオイルを噴出するためのオイル噴出口が複数形成されている。また、入力軸には、外部からオイルが供給されるオイル通路と、オイル貯留部材のオイル溜まりへオイルを噴出させるための複数のオイル吐出口が形成されている。よって、入力軸に供給されたオイルは、オイル通路を通ってオイル溜まりに流れて入力側ロータを冷却した後、入力側ロータの遠心力によってオイル吐出口から吐出される。
特開2011-62061号公報
 しかしながら、特許文献1の回転電機では、入力軸の内部を流れるオイルをオイル溜まりに噴出させるために入力軸に複数の穴が形成され、さらに、オイル貯留部材内のオイルを外部に噴出させるために、オイル貯留部材の両端部に多数の穴が形成されているため、製造時に多数の穴あけ加工が必要となり、コストアップに繋がるという問題がある。
 この発明は上記のような問題を解決するためになされたものであり、製造時の加工を低減することによってコスト低減を図る回転電機を提供することを目的とする。
 上記の課題を解決するために、この発明に係る回転電機は、回転シャフトと、回転磁界を発生可能な導体を有し、回転シャフトの周囲面に一体回転可能に設けられる回転子とを備え、回転シャフトは、回転シャフトの内部を通るオイル供給路と、オイル供給路から回転シャフトの周囲面に延び、回転子に対向して開口するオイル供給穴とを有し、回転子は、回転シャフトの周囲面に対向するように配置され且つオイル供給穴に連通するオイル通路を有する。
 また、この発明に係る回転電機は、回転シャフトと、回転磁界を発生可能な導体を有し、回転シャフトの周囲面に一体回転可能に設けられる回転子と、オイル貯留部と、オイル貯留部内のオイルを回転シャフトに供給するオイル供給機構とを備え、回転シャフトは、回転シャフトの内部を通るオイル供給路と、オイル供給路から回転シャフトの周囲面に延び、回転子に対向して開口するオイル供給穴と、オイル供給路から回転シャフトの周囲面に延び、回転シャフトにおける回転子から突出する部位に開口するオイル受入穴とを有し、オイル供給機構は、オイル受入穴にオイルを供給する。
 この発明に係る回転電機によれば、製造時の加工を低減することによってコストを低減することが可能になる。
この発明の実施の形態に係る回転電機の構成を示す模式断面側面図である。 図1のII-II線に沿った模式断面図である。 図1のIII-III線に沿った模式断面図である。
実施の形態
 以下、この発明の実施の形態について添付図面に基づいて説明する。
 この発明の実施の形態に係る回転電機101を、エンジンを備えるハイブリッド自動車に搭載されるダブルロータ型の回転電機として説明する。
 図1を参照すると、回転電機101は、筐体1を有している。筐体1は、第一ロータ10、第二ロータ20及びステータ30を内部に含むモータハウジング1aと、第一ロータ10等を冷却するオイル2を貯留するオイル貯留部3を形成するオイルハウジング1cと、モータハウジング1a及びオイルハウジング1cによって挟持されて隔壁を構成するバッフルプレート1bとを有している。よって、モータハウジング1a及びオイルハウジング1cの間にバッフルプレート1bを挟むようにして、これらを互いに連結することで、筐体1が形成される。
 ここで、第一ロータ10は回転子を構成し、第二ロータ20は外側回転子を構成している。
 そして、モータハウジング1a内の底部付近では、モータハウジング1aとバッフルプレート1bとによって、オイル溜まり部1a1が形成され、オイルハウジング1c内の底部付近では、オイルハウジング1cとバッフルプレート1bとによって、オイル貯留部3が形成される。
 また、バッフルプレート1bには、モータハウジング1aの底部付近の位置にプレート連通穴1b1が形成されており、プレート連通穴1b1は、オイル溜まり部1a1をオイル貯留部3に連通する。これにより、オイル溜まり部1a1及びオイル貯留部3に貯留されるオイルは、同レベルとなるが、各空間内でオイル2に生じる流れ等の乱れが別の空間のオイル2に与える影響が、低減される。
 また、回転電機101は、モータハウジング1a及びオイルハウジング1cを貫通して両端部が外部に延びる入力軸40を有している。そして、入力軸40は、筐体1の内部において、オイル溜まり部1a1及びオイル貯留部3の上方に配置されている。さらに、入力軸40のオイルハウジング1cから突出する端部40aは、図示しないエンジンに機械的に連結されている。一方、入力軸40のモータハウジング1aから突出する端部には、スリップリング4が一体に回転するように取り付けられている。スリップリング4は、図示しないブラシを介してインバータに電気的に接続され、インバータとの間で交流電流の需給を行うことができる。入力軸40は、回転シャフトを構成している。
 ここで、入力軸40からオイル溜まり部1a1及びオイル貯留部3に向かう方向を下方と呼び、その反対方向を上方と呼ぶ。回転電機101は、オイル溜まり部1a1及びオイル貯留部3を下方に位置させて自動車に搭載される。
 また、入力軸40は、互いに嵌合させることによって一体化される第一入力軸部41、第二入力軸部42及び第三入力軸部43によって構成されている。
 第一入力軸部41は、略有底円筒状の形状を有しており、モータハウジング1aの内部からオイルハウジング1cを貫通して外部に延在し、図示しないエンジンに機械的に連結される。第一入力軸部41は、その途中で外径が変化しており、オイルハウジング1c側の端部を形成する小径部41aと、モータハウジング1a側の端部を形成する大径部41cと、小径部41a及び大径部41cの間に位置し且つ小径部41a及び大径部41cの間の外径をした中径部41bとを有している。中径部41b及び大径部41cは、モータハウジング1a内に位置する。
 さらに、第一入力軸部41には、大径部41cから小径部41aの途中までにわたって、有底円筒状の軸穴44が軸方向に沿って形成されている。
 軸穴44は、大径部41cの端部で開口し、小径部41aに向かうに従って、四段階に縮径している。つまり、軸穴44は、大径部41cの端部で開口する円筒状の嵌合穴部44dと、嵌合穴部44dに軸方向に隣接し且つ嵌合穴部44dよりも内径が小さい円筒状の第三オイル通路部44cと、第三オイル通路部44cに軸方向に隣接し且つ第三オイル通路部44cよりも内径が小さい円筒状の第二オイル通路部44bと、第二オイル通路部44bに軸方向に隣接し且つ第二オイル通路部44bよりも内径が小さい円筒状の第一オイル通路部44aとによって構成されている。
 ここで、第一オイル通路部44a、第二オイル通路部44b及び第三オイル通路部44cは、オイル供給路を構成している。
 嵌合穴部44dの内周面には、軸方向に沿ったスプライン、またはメスネジが形成されている。
 第三オイル通路部44cは、大径部41cの内側に位置している。
 また、大径部41cの外周面には、周方向に沿って2つの外周溝41ca及び41cbが隔壁を挟んで隣り合って形成されており、外周溝41ca及び41cbは、互いの間の隔壁に形成された図示しない連通溝によって互いに連通している。さらに、大径部41cの内部では、第三オイル通路部44cを外周溝41caに連通する軸側オイル供給路41cc(図2参照)が、第三オイル通路部44cから径方向に放射状に互いに等間隔をあけて複数形成されている。
 第二オイル通路部44bは、大径部41cの内側から中径部41bの内側にわたって位置している。
 第一オイル通路部44aは、中径部41bの内側から小径部41aの内側にわたって位置している。
 また、小径部41aの内部では、第一オイル通路部44aを小径部41aの周囲面である外周面41aaに連通するオイル受入穴41abが、第一オイル通路部44aから径方向に放射状に互いに等間隔をあけて複数形成されている(図3参照)。
 第二入力軸部42は、有底円筒状の形状を有しており、モータハウジング1aの内部から外部に延在している。第二入力軸部42におけるモータハウジング1a内部側の端部42aの外周面には軸方向に沿ったスプラインが形成されているか、またはオスネジが形成されている。端部42aを嵌合穴部44d内に挿入して互いのスプラインを嵌合させることによるか、またはネジ締結することにより、第二入力軸部42が第一入力軸部41に連結される。さらに、図1に示すように、第二入力軸部42の端部42aの外周面において上記のスプライン又はオスネジに隣接して形成されたオスネジに外側からロックナット42eを螺合させ、ロックナット42eを第一入力軸部41に対して締め付けることによって、第一入力軸部41及び第二入力軸部42が、一体に回転することができるように互いに固定される。このとき、第二入力軸部42の端部42aが、第一入力軸部41の第三オイル通路部44cの一方の端部を閉鎖する。
 また、第二入力軸部42では、端部42aと反対側の端部42bから端部42aに向かって円筒状の凹部42cが内部に形成されている。
 凹部42c内には、スリップリング4に接続される複数の導体棒4aが配置されている。凹部42c内に位置する導体棒4aの一方の端部には接続端子4bが接続され、接続端子4bは、凹部42cから第二入力軸部42を貫通して外部に延びている。導体棒4aの他方の端部は、凹部42cの外部に延び、スリップリング4に接続されている。
 また、凹部42c内には、樹脂からなる基礎材42dが充填されている。基礎材42dは、導体棒4aを第二入力軸部42等の周囲から電気的に絶縁すると共に、スリップリング4及び導体棒4aを支持する。
 互いに連結された第一入力軸部41及び第二入力軸部42において、第一入力軸部41は、ベアリング45aを介してオイルハウジング1cによって回転自在に支持され、第一入力軸部41とオイルハウジング1cとの間は、環状のシール材45bによって水密に封止されている。第二入力軸部42は、ベアリング46aを介してモータハウジング1aによって回転自在に支持され、第二入力軸部42とモータハウジング1aとの間は、環状のシール材46bによって水密に封止されている。
 第三入力軸部43は、略円筒状の形状を有しており、大径部41cから中径部41bの一部にわたって第一入力軸部41の外側周囲を囲み且つ第一入力軸部41に嵌合するようにして設けられている。例えば、第三入力軸部43及び第一入力軸部41はそれぞれ、その内周面及び外周面に形成されたスプラインや、キー及び溝等によって、互いに嵌合する。これにより、第三入力軸部43は、第一入力軸部41と一体となって、その中心軸周りに回転することができる。
 また、図2を参照すると、第三入力軸部43には、その内周面43aから周囲面である外周面43bに貫通する第一ロータオイル供給穴43cが、互いに等間隔をあけて径方向に放射状に複数形成されている。第一ロータオイル供給穴43cは、第一入力軸部41の外周面に形成された外周溝41caに対向する位置に形成され、外周溝41caに連通する。さらに、第一ロータオイル供給穴43cは、第一入力軸部41の断面の径方向で、軸側オイル供給路41cc同士の間となる位置に形成されている。つまり、第一ロータオイル供給穴43cは、軸側オイル供給路41ccに対して、第一入力軸部41の断面における径方向位置をずらして配置されている。
 ここで、第一ロータオイル供給穴43cは、オイル供給穴を構成している。
 また、図1に戻り、第一ロータオイル供給穴43cは、第一入力軸部41の外周面に形成された外周溝41cbに対向する位置にも複数形成され、外周溝41caに連通する。
 また、回転電機101は、入力軸40の第三入力軸部43の径方向外側の周囲を囲むようにして設けられた円筒状の第一ロータ10を、モータハウジング1a内に有している。
 図2をあわせて参照すると、第一ロータ10は、第三入力軸部43の周囲を囲む円筒状の第一コア11と、第一コア11の外周面11b近傍に周方向に沿って環状に埋め込まれる共に第一コア11の端部11c及び11dから突出する巻線である第一コイル12とを有している。第一コア11は、鉄等の磁性体から形成されている。第一コイル12における第一コア11の端部11cから突出する部位は、スリップリング4から延びる導体棒4aに接続された接続端子4bに、電気的に接続されている。
 ここで、第一コイル12は、導体を構成している。
 第一コア11における第三入力軸部43に対向する内周面11aには、矩形状断面をもち帯状をした複数のキー嵌合突起11eが径方向内側に向かって突出形成されている。キー嵌合突起11eは、第三入力軸部43の外周面43bに形成された矩形状断面をもつ複数のキー嵌合溝43dに、キー嵌合し、それにより、第一コア11は、第三入力軸部43と一体に回転することができる。
 また、第一コア11の内周面11aには、第三入力軸部43の第一ロータオイル供給穴43cと対向する位置に、複数の切欠溝11fが形成されている。切欠溝11fはそれぞれ、第一ロータオイル供給穴43cそれぞれに連通しており、さらに、第一コア11の円筒軸方向に沿って延び、第一コア11の両端部11c及び11dで開口している。よって、切欠溝11fは、第一ロータオイル供給穴43cを、第一コア11の両端部11c及び11dの外部に連通する。なお、上述の構成を有する切欠溝11fは、第一コア11の製造時のプレス加工の中で切り込みを入れるだけで形成可能であるため、その形成が容易である。また、切欠溝11fは、第一コア11の内周面11aと入力軸40(第三入力軸部43)との境界付近に形成されるため、第一コア11の外周面11b近傍での第一コイル12の形成に影響を与えない。
 ここで、切欠溝11fは、オイル通路を構成している。
 また、回転電機101は、第一ロータ10の径方向外側の周囲を囲むようにして設けられた円筒状の第二ロータ20をモータハウジング1a内に有している。
 第二ロータ20は、第一ロータ10の第一コア11の外周面11bを囲み且つ第一コア11に対して相対回転可能に設けられた円筒状の第二コア21と、第一コア11の外周面11bに対向する第二コア21の内周面21a近傍に周方向に沿って環状に埋め込まれた複数の第一永久磁石22と、内周面21aに対向する第二コア21の外周面21b近傍に周方向に沿って環状に埋め込まれた複数の第二永久磁石23とを有している。第二コア21は、鉄等の磁性体から形成されている。
 ここで、第一永久磁石22は、界磁を構成している。
 図1を参照すると、回転電機101は、入力軸40及び第一ロータ10の周囲を包み且つ第二ロータ20を第二コア21の両端部21c及び21dから挟持して支持するようにして設けられた略有底円筒状のロータブラケット51及び52を、モータハウジング1a内に有している。ロータブラケット51及び52は、第二ロータ20と共に、その内部に第一ロータ10を含む第一ロータ収容空間53を形成し、第一ロータ10をその外部から遮断している。
 ここで、ロータブラケット51及び52は、支持体を構成している。
 第一ロータブラケット51は、第二コア21に対して端部21c側つまりスリップリング4側に配置され、第二コア21に図示しない締結具等で一体に連結されている。第一ロータブラケット51は、入力軸40の第二入力軸部42が貫通するその内側の部位にベアリング51aを有している。これにより、第一ロータブラケット51は、ベアリング51aを介して第二入力軸部42によって相対回転自在に支持される。さらに、第一ロータブラケット51には、第一ロータ10の第一コア11の端部11cのスリップリング4側に、第一ロータブラケット51の壁部を貫通するオイル逃がし開口部51bが複数形成されている。オイル逃がし開口部51bは、第一ロータ収容空間53を第一ロータブラケット51の外部に連通する。
 第二ロータブラケット52は、第二コア21に対して端部21d側つまりオイルハウジング1c側に配置され、第二コア21に図示しない締結具等で一体に連結されている。第二ロータブラケット52は、入力軸40の第一入力軸部41の径方向外側の周囲を囲むようにして設けられた略円筒状の出力軸60に締結具で一体に連結されている。さらに、第二ロータブラケット52には、第一ロータ10の第一コア11の端部11dのオイルハウジング1c側に、第二ロータブラケット52の壁部を貫通するオイル逃がし開口部52bが複数形成されている。オイル逃がし開口部52bは、第一ロータ収容空間53を第二ロータブラケット52の外部に連通する。
 出力軸60は、第二ロータブラケット52との連結部からオイルハウジング1c内に延在している。さらに、出力軸60は、第一入力軸部41の中径部41bに対向する部位にベアリング61を有しており、ベアリング61を介して第一入力軸部41によって相対回転自在に支持されている。そして、第二ロータブラケット52も、出力軸60及びベアリング61を介して第一入力軸部41によって相対回転自在に支持されている。
 また、オイルハウジング1c内に位置する出力軸60の外周面60aには、ピニオンギヤ71が、スプライン係合、キー嵌合等で連結されて設けられている。ピニオンギヤ71は、出力軸60と一体となって、入力軸40の周りを回転することができる。
 よって、第二ロータ20、ロータブラケット51及び52、出力軸60並びにピニオンギヤ71は、一体となって、入力軸40に対してその周りを相対回転することができる。
 また、オイルハウジング1c内には、ドリブンギヤ72が設けられており、ドリブンギヤ72は、ピニオンギヤ71とギヤ係合し、オイル貯留部3内のオイル2に浸漬している。さらに、ドリブンギヤ72には、図示しない駆動軸が一体に連結されており、駆動軸は、オイルハウジング1cの外部に延出し、デファレンシャル等を介して自動車の車輪と機械的に連結されている。よって、第二ロータ20の回転駆動力は、ピニオンギヤ71及びドリブンギヤ72を介して、自動車の車輪に伝達しこれらを駆動させる。なお、ドリブンギヤ72のギヤ形成面にはオイル貯留部3内のオイル2が常時供給されるため、ドリブンギヤ72及びピニオンギヤ71の係合部は、オイル2によって潤滑される。
 また、回転電機101は、第二ロータ20の径方向外側の周囲を囲むようにして設けられた円筒状のステータ30を、モータハウジング1a内に固定した状態で有している。
 ステータ30は、第二ロータ20の第二コア21の外周面21b(図2参照)を囲み且つ第二コア21が相対回転できるように設けられた円筒状のステータコア31と、第二コア21の外周面21bに対向するステータコア31の内周面近傍に周方向に沿って環状に埋め込まれる共にステータコア31の両端部から突出するステータコイル32とを有している。ステータコア31は、鉄等の磁性体から形成されている。ステータコイル32は、筐体1の外部に設けられた図示しないインバータと電気的に接続され、インバータとの間で交流電流の需給を行うことができる。
 また、回転電機101は、出力軸60とベアリング45aとの間の入力軸40の第一入力軸部41に、オイル供給機構80を有している。
 オイル供給機構80は、オイル貯留部3内のオイル2に浸漬されたオイルポンプ81と、第一入力軸部41の小径部41aにおけるオイル受入穴41abが開口する部位を取り囲むようにして設けられたロータリジョイント83と、オイルポンプ81をロータリジョイント83の内部に連通するオイル供給管82とを有している。
 ロータリジョイント83は、第一入力軸部41の小径部41aの径方向外側の周囲を囲むようにして設けられた円筒状の本体部83aと、本体部83aの両端部内側に設けられた環状のシール材83b及び83cとを有している。環状のシール材83b及び83cは、本体部83aの円筒状の内周面83aaと小径部41aの円筒状の外周面41aaとの間に設けられ、この間を水密に封止する。
 また、図3をあわせて参照すると、本体部83aの内周面83aaには、周方向に沿って環状の内周溝83abが形成されている。内周溝83abは、全てのオイル受入穴41abと連通する。さらに、本体部83aには、内周溝83abから下方に向かって延び、本体部83aの外部に開口する連通穴83acが形成されている。連通穴83acは、オイル供給管82と接続される。さらにまた、本体部83aは、オイルハウジング1cに固定されており、このため、入力軸40は、本体部83aに対して相対回転する。よって、オイルポンプ81によって吸い上げられるオイル2は、回転状態の入力軸40に対しても、オイル供給管82、連通穴83ac、内周溝83ab及びオイル受入穴41abを通じて、入力軸40内の軸穴44に供給されることが可能である。
 図1及び図2をあわせて参照すると、上述の構成を有する回転電機101では、第一ロータ10には、以下の手順でオイル貯留部3内のオイル2が供給され、供給されたオイル2によって冷却される。
 つまり、オイル貯留部3内のオイル2は、オイル供給機構80のオイルポンプ81によって吸い上げられ、オイル供給管82を通じてロータリジョイント83の本体部83aの内周溝83ab内に圧送される。内周溝83ab内のオイル2は、入力軸40の回転の有無に関係なく、オイル受入穴41abを通じて入力軸40内の軸穴44の第一オイル通路部44a内に圧送される。第一オイル通路部44a内のオイル2は、軸穴44内の第二オイル通路部44bを通過して、第三オイル通路部44cに圧送される。第三オイル通路部44c内のオイル2は、第三オイル通路部44cから放射状に延びる複数の軸側オイル供給路41ccに送られ分岐する。さらに、各軸側オイル供給路41cc内のオイル2は、外周溝41caに送られると共に、外周溝41ca内のオイル2の一部が隣接する外周溝41cbに送られ、その後複数の第一ロータオイル供給穴43cへ分岐して送られ、そして第一ロータ10の第一コア11の内周面11aに形成された複数の切欠溝11f内に送られる。
 このとき、第三オイル通路部44cから切欠溝11f内へのオイル2の供給は、オイルポンプ81による圧送圧力と、入力軸40が回転されている場合には、入力軸40の断面径方向外側に向かって発生する遠心力とによって、行われる。
 なお、軸側オイル供給路41ccは、第三オイル通路部44c内のオイル2を入力軸40の断面方向全体に分散させ、外周溝41caは、分散されたオイル2を一旦集約することで、オイル2の周方向の分布を均等化する。さらに、第一ロータオイル供給穴43cは、第一コア11の内周面11aの周方向に均等に配置された切欠溝11fのそれぞれにオイル2を供給する。これにより、各切欠溝11fには、オイル2が均等に供給される。
 そして、切欠溝11f内のオイル2は、切欠溝11f内を軸方向に沿って流通し、第一コア11の両端部11c及び11dから、第一ロータ収容空間53内に放出される。オイル2は、切欠溝11f内を流通する過程で、第一ロータ10の第一コア11と熱交換しこれを冷却する。
 また、第一ロータ収容空間53内に放出されたオイル2は、ロータブラケット51及び52のオイル逃がし開口部51b及び52bから、モータハウジング1a内のロータブラケット51及び52外部に放出され、モータハウジング1aの底部のオイル溜まり部1a1に流下する。
 このように、この発明の実施の形態に係る回転電機101は、入力軸40と、回転磁界を発生可能な第一コイル12を有し且つ入力軸40の外周面43bに一体回転可能に設けられる第一ロータ10とを備える。入力軸40は、入力軸40の内部を通るオイル通路部44a~44cと、第三オイル通路部44cから入力軸40の外周面43bに延び且つ第一ロータ10に対向して開口する第一ロータオイル供給穴43cとを有する。第一ロータ10は、入力軸40の外周面43bに対向するように配置され且つ第一ロータオイル供給穴43cに連通する切欠溝11fを有する。
 これによって、回転電機101では、第一ロータ10を冷却するオイル経路は、入力軸40にオイル通路部44a~44cと第三オイル通路部44cから延びる第一ロータオイル供給穴43cとを形成し、さらに、第一ロータ10に切欠溝11fを形成するのみでよいため、製造時の加工を低減するができ、それによりコスト低減が可能になる。さらに、切欠溝11fを、第一ロータ10の第一コア11のプレス加工で一緒に形成できるような溝形状とすることによって、製造時の加工手間をさらに低減することができる。そして、切欠溝11fは、第一コア11における入力軸40の外周面43bに対向する部位、つまり内周面11aに形成される。このため、切欠溝11fの形成は、第一コア11において、例えば第一コア11の中央から外周面11b側といった内周面11aの近傍でない位置に配置される第一コイル12の形成に影響を与えない。よって、切欠溝11f及び第一コイル12は個別に形成することができるため、製造時の加工手間を低減することができる。
 また、回転電機101では、第一ロータ10の切欠溝11fを流通したオイルは、第一ロータ10の側部等から流出させ筐体1内の底部に流下させればよいため、オイルの循環経路を筐体1内の狭い領域に限定することができる。よって、特別な構造を必要とすることなく、スリップリング4にオイルが付着することを防ぐことができる。
 また、回転電機101は、オイル貯留部3と、オイル貯留部3内のオイルを入力軸40に供給するオイル供給機構80とを備える。入力軸40は、第一オイル通路部44aから入力軸40の外周面41aaに延び且つ第一ロータ10から突出する入力軸40の小径部41aに開口するオイル受入穴41abを有する。オイル供給機構80は、オイル貯留部3のオイルを圧送するオイルポンプ81と、入力軸40をオイルポンプ81から延びるオイル供給管82に対して回転自在に連結すると共に、入力軸40のオイル受入穴41abをオイル供給管82に連通するロータリジョイント83とを有する。
 これによって、オイルは、入力軸40の外周面41aaから内部に供給される。そして、外周面41aaのオイル受入穴41abにロータリジョイント83を設けることによって、入力軸40が回転しても、オイルポンプ81によって送られるオイルは、オイル受入穴41abを通って入力軸40のオイル通路部44a~44cに確実に供給される。さらに、上述の構成は、入力軸40の外周面41aaにオイル受入穴41abを形成し、ロータリジョイント83を設けるだけの簡易な構成によって達成することができる。また、オイル受入穴41abが入力軸40の端面になく外周面41aaにあるため、入力軸40の端部に駆動装置を直接連結する場合などに、オイル受入穴41abを連結部分から外れる位置とするだけでよく、連結部分におけるオイル受入穴41abへのオイル通路等の加工を不要にすることができる。
 また、回転電機101の入力軸40では、第一入力軸部41に、軸方向に延びるオイル通路部44a~44c及び嵌合穴部44dと、外周溝41ca及び41cbと、径方向に延びる軸側オイル供給路41cc及びオイル受入穴41abとを形成し、第三入力軸部43に、径方向に延びる第一ロータオイル供給穴43cを形成し、これら入力軸部41~43を互いに組み付けるのみで、入力軸40内を通り第一ロータ10の切欠溝11fにオイルを供給する経路を形成することができる。よって、入力軸40におけるオイル供給経路の形成を簡易にすると共に、オイル供給経路を形成する作業工数を低減することができる。
 また、回転電機101は、第一ロータ10の径方向外側に設けられ且つ第一ロータ10に対して相対回転可能である第二ロータ20を備える。第二ロータ20は、第一ロータ10の導体(第一コイル12)と対向するように配置された第一永久磁石22を有する。さらに、第二ロータ20は、入力軸40によって回転自在に支持され且つ第一ロータ10を囲むロータブラケット51及び52によって、支持される。
 上述のように、第一ロータ10がロータブラケット51及び52によって囲まれる構成であっても、回転電機101では、オイルは、入力軸40の内部を通って、入力軸40の外周面43bに対向する第一ロータ10の切欠溝11fに供給されるため、第一ロータ10を確実に冷却することができる。さらに、回転電機101は、トランスアクスル内蔵の回転電機の油冷却で一般的に採用されてきた、ステータが設けられた上部からオイルを供給して循環させる方式のような複雑な構造を有することなく、第一ロータ10を油冷却することができる。
 また、実施の形態の回転電機101では、オイルは、入力軸40の第三オイル通路部44cから第一ロータ10の切欠溝11fに至るまでに、軸側オイル供給路41cc、外周溝41ca及び41cb、並びに第一ロータオイル供給穴43cを経由していたが、これに限定されるものでない。軸側オイル供給路41ccを延長し、第三オイル通路部44cから軸側オイル供給路41ccのみを介して切欠溝11fに至るようにしてもよい。
 また、実施の形態の回転電機101では、軸側オイル供給路41cc、第一ロータオイル供給穴43c、及びオイル受入穴41abは複数形成されていたが、これに限定されるものでなく、いずれも一つ以上あればよい。
 また、実施の形態の回転電機101では、第一ロータ10の切欠溝11fとして、第一ロータ10の円筒軸に沿ったもののみが形成されていたが、これに限定されるものでない。第一ロータ10の周方向に沿った1つ以上の溝を形成し、この溝が、軸方向に延びる切欠溝11f同士を連通するようにしてもよい。これにより、オイルと第一ロータ10との接触面積を増大させることができる。
 また、実施の形態の回転電機101では、第一ロータ10に第一コイル12が設けられ、第二ロータ20に第一永久磁石22及び第二永久磁石23が設けられ、ステータ30にステータコイル32が設けられていたが、これに限定されるものでなく、第一ロータ10に第一コイル12が設けられていればよい。例えば、第二ロータ20の第二コア21において、内周面21a及び外周面21bの近傍に二列で環状に設けられた第一永久磁石22及び第二永久磁石23は、第二コア21の中央付近に一列で環状に埋め込まれてもよい。又は、第二ロータ20の第二コア21の内周面21a及び外周面21bそれぞれの近傍に、永久磁石及びコイルを埋め込み、ステータ30に永久磁石を埋め込んでもよい。
 また、実施の形態の回転電機101では、界磁として第一永久磁石22及び第二永久磁石23を使用していたが、これに限定されるものでなく、電磁石であってもよい。
 また、実施の形態の回転電機101は、ダブルロータ型の回転電機であったが、これに限定されるものでなく、少なくとも1つのロータがあればよい。
 2 オイル、3 オイル貯留部、10 第一ロータ(回転子)、11f 切欠溝(オイル通路)、12 第一コイル(導体)、20 第二ロータ(外側回転子)、22 第一永久磁石(界磁)、40 入力軸(回転シャフト)、41a 小径部(回転シャフトにおける回転子から突出する部位)、41aa 外周面(回転シャフトの周囲面)、41ab オイル受入穴、43b 外周面(回転シャフトの周囲面)、43c 第一ロータオイル供給穴(オイル供給穴)、44a~44c オイル通路部(オイル供給路)、51 第一ロータブラケット(支持体)、52 第二ロータブラケット(支持体)、80 オイル供給機構、81 オイルポンプ、82 オイル供給管、83 ロータリジョイント、101 回転電機。

Claims (7)

  1.  回転電機において、
     回転シャフトと、
     回転磁界を発生可能な導体を有し、前記回転シャフトの周囲面に一体回転可能に設けられる回転子と
    を備え、
     前記回転シャフトは、
     前記回転シャフトの内部を通るオイル供給路と、
     前記オイル供給路から前記回転シャフトの周囲面に延び、前記回転子に対向して開口するオイル供給穴とを有し、
     前記回転子は、前記回転シャフトの周囲面に対向するように配置され且つ前記オイル供給穴に連通するオイル通路を有する回転電機。
  2.  回転電機において、
     回転シャフトと、
     回転磁界を発生可能な導体を有し、前記回転シャフトの周囲面に一体回転可能に設けられる回転子と、
     オイル貯留部と、 
     前記オイル貯留部内のオイルを前記回転シャフトに供給するオイル供給機構と
    を備え、
     前記回転シャフトは、
     前記回転シャフトの内部を通るオイル供給路と、
     前記オイル供給路から前記回転シャフトの周囲面に延び、前記回転子に対向して開口するオイル供給穴と、
     前記オイル供給路から前記回転シャフトの周囲面に延び、前記回転シャフトにおける前記回転子から突出する部位に開口するオイル受入穴とを有し、
     前記オイル供給機構は、前記オイル受入穴にオイルを供給する回転電機。
  3.  前記オイル供給機構は、
     前記オイル貯留部のオイルを圧送するポンプと、
     前記回転シャフトを前記ポンプから延びるオイル供給管に対して回転自在に連結すると共に、前記回転シャフトの前記オイル受入穴を前記オイル供給管に連通するロータリジョイントとを有する請求項2に記載の回転電機。
  4.  前記回転子は、前記回転シャフトの周囲面に対向するように配置され且つ前記オイル供給穴に連通するオイル通路を有する請求項2または3に記載の回転電機。
  5.  前記回転子の径方向外側に設けられ且つ前記回転子に対して相対回転可能である外側回転子をさらに備え、
     前記外側回転子は、前記回転子の前記導体と対向するように配置された界磁を有する請求項1~4のいずれか一項に記載の回転電機。
  6.  前記外側回転子は、前記回転シャフトによって回転自在に支持され且つ前記回転子を囲む支持体によって、支持される請求項5に記載の回転電機。
  7.  オイル貯留部と、前記オイル貯留部内のオイルを前記回転シャフトに供給するオイル供給機構とをさらに備え、
     前記回転シャフトは、前記オイル供給路から前記回転シャフトの周囲面に延び、前記回転シャフトにおける前記回転子から突出する部位に開口するオイル受入穴を有し、
     前記オイル供給機構は、
     前記オイル貯留部のオイルを圧送するポンプと、
     前記回転シャフトを前記ポンプから延びるオイル供給管に対して回転自在に連結すると共に、前記回転シャフトの前記オイル受入穴を前記オイル供給管に連通するロータリジョイントとを有する請求項1並びに請求項1を引用する請求項5及び6のいずれか一項に記載の回転電機。
PCT/JP2013/065608 2012-06-19 2013-06-05 回転電機 WO2013190999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380031986.2A CN104380581A (zh) 2012-06-19 2013-06-05 旋转电机
US14/409,250 US20150180313A1 (en) 2012-06-19 2013-06-05 Rotating electric machine
EP13807869.6A EP2863522A1 (en) 2012-06-19 2013-06-05 Rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012137610A JP2014003807A (ja) 2012-06-19 2012-06-19 回転電機
JP2012-137610 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013190999A1 true WO2013190999A1 (ja) 2013-12-27

Family

ID=49768600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065608 WO2013190999A1 (ja) 2012-06-19 2013-06-05 回転電機

Country Status (5)

Country Link
US (1) US20150180313A1 (ja)
EP (1) EP2863522A1 (ja)
JP (1) JP2014003807A (ja)
CN (1) CN104380581A (ja)
WO (1) WO2013190999A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054564A1 (en) * 2015-02-09 2016-08-10 Toyota Jidosha Kabushiki Kaisha Rotary electric machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204794A1 (de) * 2016-03-23 2017-09-28 Thyssenkrupp Ag Rotorsegment einer elektrischen Maschine
US10574118B2 (en) * 2016-04-05 2020-02-25 Denso Corporation Rotating electric machine
DE112017003996T5 (de) * 2016-08-09 2019-04-18 Nidec Corporation Antriebsvorrichtung
US11136975B2 (en) * 2016-08-09 2021-10-05 Nidec Corporation Drive apparatus having oil passage defined in stopper body
WO2019021696A1 (ja) * 2017-07-28 2019-01-31 日本電産株式会社 モータ
WO2019049394A1 (ja) * 2017-09-06 2019-03-14 三菱電機株式会社 回転電機
RU2688929C1 (ru) * 2018-02-05 2019-05-23 АО "ПКК Миландр" Электрическая машина
CN111987817B (zh) * 2019-05-24 2023-11-24 北京金风科创风电设备有限公司 电机及电机的装配方法
DE102019218531A1 (de) * 2019-11-29 2021-06-02 Zf Friedrichshafen Ag Antriebseinheit, umfassend eine elektrische Maschine und ein Getriebe
CN113014040A (zh) * 2021-03-30 2021-06-22 哈尔滨理工大学 一种外转子轮毂电机的轴向分段内定子的水冷冷却结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956010A (ja) * 1995-01-31 1997-02-25 Denso Corp 車両用駆動装置及びその駆動制御方法
JP2005006428A (ja) * 2003-06-12 2005-01-06 Toyota Motor Corp 回転電機におけるロータ構造
JP2011062061A (ja) 2009-09-14 2011-03-24 Toyota Central R&D Labs Inc 回転電機
JP2011254580A (ja) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd 回転電機の冷却構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629634A (en) * 1970-07-06 1971-12-21 Gen Motors Corp Conduit arrangement for a liquid-cooled dynamoelectric machine
US4600848A (en) * 1985-05-24 1986-07-15 Sundstrand Corporation Cooling of dynamoelectric machines
JPH0810976B2 (ja) * 1989-01-25 1996-01-31 ファナック株式会社 モータの液冷構造
KR100294390B1 (ko) * 1995-06-08 2001-09-17 히로시 하또리 전기차량을구동하기위한시스템및그방법
EP1416616B1 (en) * 2002-10-26 2010-06-09 LG Electronics Inc. Electric motor
JP2005006248A (ja) * 2003-06-16 2005-01-06 Canon Inc 水晶振動子およびその製造方法
JP3979389B2 (ja) * 2004-01-09 2007-09-19 日産自動車株式会社 電動機のロータ冷却構造
US6909210B1 (en) * 2004-02-06 2005-06-21 Emerson Electric Co. Cooling system for dynamoelectric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956010A (ja) * 1995-01-31 1997-02-25 Denso Corp 車両用駆動装置及びその駆動制御方法
JP2005006428A (ja) * 2003-06-12 2005-01-06 Toyota Motor Corp 回転電機におけるロータ構造
JP2011062061A (ja) 2009-09-14 2011-03-24 Toyota Central R&D Labs Inc 回転電機
JP2011254580A (ja) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd 回転電機の冷却構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054564A1 (en) * 2015-02-09 2016-08-10 Toyota Jidosha Kabushiki Kaisha Rotary electric machine
JP2016146704A (ja) * 2015-02-09 2016-08-12 トヨタ自動車株式会社 回転電機

Also Published As

Publication number Publication date
CN104380581A (zh) 2015-02-25
EP2863522A1 (en) 2015-04-22
JP2014003807A (ja) 2014-01-09
US20150180313A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
WO2013190999A1 (ja) 回転電機
JP5445675B2 (ja) 回転機
JP5146363B2 (ja) 電動機
KR102118028B1 (ko) 전동식 펌프
CN110247497B (zh) 旋转电机的转子
US8497608B2 (en) Electric machine cooling system and method
JP5594350B2 (ja) 電動機
JP2014135817A (ja) 回転電機
JP6950499B2 (ja) 回転電機、及び回転電機における蓋部材の取り付け方法
JP6509288B2 (ja) 車両駆動装置
WO2013054385A1 (ja) 動力伝達装置
JP2018038099A (ja) 電動モータ
US20120293027A1 (en) Rotating electrical machine and housing for rotating electrical machine
US20200389071A1 (en) Rotary electric machine
CN113498572B (zh) 具有内部冷却通路的电机
JP2018014857A (ja) 電動モータの冷却構造
US20200395821A1 (en) Rotary electric machine
JP2018025127A (ja) ポンプ装置
JP5892091B2 (ja) マルチギャップ型回転電機
CN114520567B (zh) 驱动装置
CN116458037A (zh) 转子、旋转电机
WO2019208082A1 (ja) モータユニット
CN114696509B (zh) 液冷式电动马达
WO2020031999A1 (ja) モータ
WO2022176225A1 (ja) 回転電機、および駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409250

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013807869

Country of ref document: EP