WO2013190832A1 - Heat-resistant flame-retardant insulated wire - Google Patents

Heat-resistant flame-retardant insulated wire Download PDF

Info

Publication number
WO2013190832A1
WO2013190832A1 PCT/JP2013/003794 JP2013003794W WO2013190832A1 WO 2013190832 A1 WO2013190832 A1 WO 2013190832A1 JP 2013003794 W JP2013003794 W JP 2013003794W WO 2013190832 A1 WO2013190832 A1 WO 2013190832A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
heat
flame
resistant
Prior art date
Application number
PCT/JP2013/003794
Other languages
French (fr)
Japanese (ja)
Inventor
真利子 斉藤
道朝 藤田
昌啓 箕輪
伸明 光地
岡下 稔
喜直 児玉
利明 森
Original Assignee
昭和電線ケーブルシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線ケーブルシステム株式会社 filed Critical 昭和電線ケーブルシステム株式会社
Priority to CN201380011266.XA priority Critical patent/CN104205248B/en
Publication of WO2013190832A1 publication Critical patent/WO2013190832A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • C08K5/03Halogenated hydrocarbons aromatic, e.g. C6H5-CH2-Cl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene

Definitions

  • the present invention relates to an insulated wire excellent in heat resistance, flame retardancy and workability.
  • insulated wires that have both heat resistance and flame resistance in applications such as gas appliances and motor wires for microwave ovens.
  • a heat resistance of 130 to 150 ° C. based on the technical standards of electrical appliances and flame retardancy that passes the UL vertical combustion test (VW-1).
  • a coating material which uses a composition in which a specific flame retardant is combined with an ethylene copolymer (see, for example, Patent Document 1).
  • a specific flame retardant is combined with an ethylene copolymer (see, for example, Patent Document 1).
  • Patent Document 1 a coating material which uses a composition in which a specific flame retardant is combined with an ethylene copolymer.
  • an electric wire using a fluoro rubber represented by a tetrafluoroethylene-propylene copolymer as an insulating material is known.
  • Fluororubber is excellent in heat resistance, oil resistance, chemical resistance, aging resistance, weather resistance, electrical insulation, and the like, and an electric wire using this has high heat resistance.
  • fluororubber has strong adhesiveness in an uncrosslinked state, and there is a possibility that the shape of the coating may change or the appearance may be damaged when the coatings come into contact with each other, such as when wound on a drum in an uncrosslinked state. It was. For this reason, it is necessary to carry out the (extrusion) molding step and the crosslinking step continuously, and there is a problem in workability.
  • fluororubber since fluororubber is very expensive, it has been used for coating special wires used in harsh high-temperature environments exceeding 200 ° C, such as wiring wires around engines such as automobiles. It was limited.
  • the object of the present invention is to provide an insulated wire having both heat resistance and flame retardancy, good workability, and low price.
  • the heat-resistant and flame-retardant insulated wire of one embodiment of the present invention is based on 100 parts by mass of a base polymer comprising (A) 50 to 90% by mass of a tetrafluoroethylene-propylene copolymer and (B) 10 to 50% by mass of a polyolefin. (C) 1 to 30 parts by mass of ethylenebis (pentabromophenyl), and (D) a coating made of an electrically insulating composition containing 10 to 50 parts by mass of antimony trioxide.
  • an insulated wire having both heat resistance and flame retardancy, good workability, and low price is provided.
  • an electrically insulating composition used for the heat-resistant and flame-retardant insulated wire of the present invention (hereinafter also simply referred to as an insulated wire) will be described.
  • This composition is based on (A) tetrafluoroethylene-propylene copolymer and (B) polyolefin, and contains (C) ethylene bis (pentabromophenyl) and (D) antimony trioxide.
  • the (A) tetrafluoroethylene-propylene copolymer is typically a polymer having a basic skeleton represented by the following formula, and can be obtained, for example, by low-temperature emulsion polymerization of tetrafluoroethylene and propylene.
  • n and m each represent an integer of 1 or more
  • This tetrafluoroethylene-propylene copolymer contains, as a third component, a copolymerizable monomer such as ethylene, isobutylene, acrylic acid and its alkyl ester, methacrylic acid and its alkyl ester, vinyl fluoride, vinylidene fluoride, An appropriate amount of one or more of hexafluoropropene, chloroethyl vinyl ether, chlorotrifluoroethylene, perfluoroalkyl vinyl ether and the like may be contained.
  • the tetrafluoroethylene-propylene copolymer may be used alone or in combination of two or more.
  • Examples of commercially available tetrafluoroethylene-propylene copolymers used as the component (A) include AFLAS ⁇ ⁇ ⁇ 150CS manufactured by Asahi Glass Co., Ltd. (specific gravity: 1.55, fluorine content: 57%, Mooney viscosity ML1 + 10 ( 100 ° C): 140, Mooney viscosity ML1 + 10 (121 ° C): 100), AFLASAF150C (specific gravity: 1.55, Mooney viscosity ML1 + 10 (100 ° C):> 160), AFLAS 150E (specific gravity: 1.55, Mooney) Viscosity ML1 + 10 (100 ° C.): 60, Mooney viscosity ML1 + 10 (121 ° C.): 45) (above, trade name) and the like.
  • polyolefin examples include polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), very low density polyethylene (VLDPE), and linear low density polyethylene (LLDPE).
  • Ethylene / unsaturated carboxylic acid ester copolymer copolymerized with saturated carboxylic acid ester ethylene, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl persate, vinyl laurate, vinyl stearate, vinyl benzoate, Examples thereof include ethylene / vinyl ester copolymers obtained by copolymerizing vinyl esters such as vinyl salicylate and vinyl cyclohexanecarboxylate; and isobutylene / isoprene copolymers.
  • polypropylene not only a homopolymer of propylene, but also a random copolymer or block copolymer with ethylene, a copolymer with a small amount of ⁇ -olefin, and the like can be used.
  • ⁇ -olefin examples include 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.
  • a non-conjugated polyene may be further copolymerized with the propylene / ⁇ -olefin copolymer.
  • non-conjugated polyene examples include dicyclopentadiene, 1,4-hexadiene, ethylidene norbornene, and vinyl norbornene. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • low-density polyethylene, linear low-density polyethylene, and ethylene / ethyl acrylate copolymer are preferable as the polyolefin, and ethylene / ethyl acrylate copolymer is more preferable from the viewpoint of excellent heat resistance.
  • Examples of commercially available ethylene / ethyl acrylate copolymers include Lexpearl EEA A1150 (density: 0.932 g / cm 3 , MFR: 0.8 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd.) Amount: 15% by mass, melting point (DSC method) 100 ° C., oxygen index 10.0;
  • the mixing ratio of the component (A) and the component (B) in the base polymer of the composition is (A) a tetrafluoroethylene-propylene copolymer of 50 to 90% by mass and (B) a polyolefin of 10 to 50% by mass.
  • proportion of the component (A) is less than 50% by mass, not only the heat resistance is lowered, but also the mechanical properties and weather resistance are lowered.
  • (A) component exceeds 90 mass%, workability will fall.
  • the adhesiveness in an uncrosslinked state increases, and cost reduction becomes difficult.
  • (A) tetrafluoroethylene-propylene copolymer is 55 to 85% by mass
  • (B) polyolefin is 15 to 45% by mass, and more preferably (A) tetrafluoroethylene-propylene copolymer is 65% by mass. 75% by mass, and (B) polyolefin is 25-35% by mass.
  • Ethylene bis (pentabromophenyl) is a compound represented by the following formula known as a brominated flame retardant.
  • Specific examples of commercially available products that are preferably used as the component (C) include SAYTEX 8010 (trade name, manufactured by ALBEMARLE).
  • the blending amount of this (C) ethylene bis (pentabromophenyl) is 1 to 30 parts by weight, preferably 2 parts per 100 parts by weight of the total amount of the aforementioned component (A) and component (B) of the base polymer. -15 parts by mass, more preferably 3-7 parts by mass. When the blending amount is less than 1 part by mass, sufficient flame retardancy cannot be obtained, and when it exceeds 30 parts by mass, the mechanical properties may be deteriorated.
  • At least one brominated flame retardant other than ethylenebis (pentabromophenyl) can be used in combination as long as the effects of the present invention are not impaired.
  • the brominated flame retardant used in combination include ethylene bistetrabromophthalimide, decabromodiphenyl oxide, and tetradecabromodiphenoxybenzene.
  • Antimony trioxide is a component that acts as a flame retardant aid.
  • 10-50 parts by mass of antimony trioxide is blended with respect to 100 parts by mass of the total amount of the base polymer component described above. The amount is preferably 15 to 35 parts by mass, and more preferably 15 to 25 parts by mass. When the blending amount is less than 10 parts by mass, sufficient flame retardancy cannot be obtained, and when it exceeds 50 parts by mass, the mechanical properties are deteriorated.
  • An inorganic filler can be blended with the electrically insulating composition for the purpose of improving mechanical properties such as tensile strength.
  • the inorganic filler include calcium carbonate, fused silica, crystalline silica, talc, clay, alumina, zirconia, mica, titanium white, bengara, silicon carbide, boron nitride, silicon nitride, and aluminum nitride.
  • calcium carbonate and talc are preferable from the viewpoint of heat resistance. They also have the advantage that light color formulation is possible.
  • the calcium carbonate both heavy calcium carbonate and light calcium carbonate can be used.
  • the blending amount is preferably 1 to 200 parts by weight, more preferably 10 to 100 parts by weight with respect to 100 parts by weight of the total amount of the base polymer components described above.
  • the electrical insulating composition includes additives such as processing aids, dispersants, colorants, anti-aging agents, and lubricants that are generally blended in this type of composition. As long as it does not inhibit, it can be blended as necessary.
  • polyethylene wax, sodium stearate and the like can be blended in an amount of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component.
  • an aliphatic hydrocarbon resin mixture or the like as a dispersant can be blended in an amount of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component.
  • flame retardants and flame retardant aids other than the brominated flame retardants and antimony trioxide described above can be blended within a range that does not impair the effects of the present invention.
  • flame retardants and flame retardant aids include metal hydrates such as magnesium hydroxide and aluminum hydroxide, nitrogen flame retardants such as guanidine and melamine, and phosphorus flame retardants such as ammonium phosphate and red phosphorus.
  • flame retardants, phosphorus-nitrogen flame retardants, and boric acid compounds such as zinc borate.
  • the electrical insulating composition used in the present invention is usually crosslinked after molding (coating).
  • the crosslinking method is not particularly limited, and any method such as chemical crosslinking using a crosslinking agent or crosslinking by radiation such as an electron beam can be used.
  • a crosslinking agent used for the chemical crosslinking an organic peroxide is preferable.
  • 1,3-bis- (t-butylperoxyisopropyl) benzene or the like is used.
  • a crosslinking aid such as triallyl isocyanurate together with such a crosslinking agent.
  • the organic peroxide is preferably blended in an amount of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component, and the crosslinking assistant is 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component. It is preferable to blend 10.0 parts by weight.
  • the electrically insulating composition comprises (A) a tetrafluoroethylene-propylene copolymer, (B) a polyolefin, (C) ethylenebis (pentabromophenyl) and (D) antimony trioxide, and if necessary.
  • Additives such as component (C), component (D) and component (E), processing aids, and dispersants are mixed in advance when kneading each component (A) and component (B). Also good.
  • the insulated wire of the present invention is produced by extrusion-coating the electrically insulating composition obtained as described above directly on the conductor or through another coating and crosslinking. Since the composition has low tackiness in an uncrosslinked state, even if the coating is wound around a drum while being in an uncrosslinked state, the coatings are not strongly adhered to each other. Therefore, the crosslinking step may be performed as a separate step from the extrusion coating step, or may be performed continuously in a single step.
  • the material of the conductor, the outer diameter, the presence / absence of twisting, and the like are not particularly limited and are appropriately selected depending on the application.
  • FIG. 1 is a cross-sectional view showing a heat-resistant and flame-retardant insulated wire according to an embodiment of the present invention.
  • reference numeral 11 denotes a conductor made of one or more tin-plated annealed copper wires or the like.
  • the insulator 12 is formed by extrusion-coating the above-described electrically insulating composition and crosslinking.
  • the insulated wire of this embodiment is comprised so that the following requirements may be satisfied.
  • the electric wire as a whole has flame retardancy that passes the VW-1 vertical combustion test (UL 1581).
  • the tensile strength after thermal aging (180 ° C., 336 hours) of the insulator 12 is 4.0 MPa or more, and the tensile elongation is 50% or more.
  • the tensile strength and the tensile elongation are values measured according to JIS C 3005.
  • the insulated wire of this embodiment can have both heat resistance of 130 to 150 ° C. based on the technical standards of electrical appliances and flame resistance that passes the UL vertical combustion test (VW-1).
  • VW-1 UL vertical combustion test
  • the cross-linking process is not limited as in the case of electric wires using conventional fluororubber, and an increase in price is also suppressed.
  • FEPM tetrafluoroethylene-propylene copolymer
  • Product name AFLAS 150CS manufactured by Asahi Glass Co., Ltd.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • Hi-Zex 5305E EEA ethylene / ethyl acrylate copolymer
  • Ethylene bis (pentabromophenyl) Product name SAYTEX 8010 manufactured by ALBEMARLE Heavy calcium carbonate: Shiraishi Calcium Co., Ltd.
  • Example 1 50 parts by mass of FEPM, 50 parts by mass of LDPE, 2.0 parts by mass of ethylene bis (pentabromophenyl), 30 parts by mass of antimony trioxide and 30 parts by mass of heavy calcium carbonate were sufficiently kneaded using an open roll to electrically insulate composition A product was prepared.
  • the above electrically insulating composition was extrusion coated to a thickness of 0.33 mm on a copper stranded wire conductor having a cross-sectional area of 0.3 mm 2 formed by collectively twisting 12 tin-plated annealed copper wires having a diameter of 0.18 mm, and accelerated An insulator was formed by irradiating an electron beam of 200 kGy with an electron beam irradiation apparatus having a voltage of 800 kV to produce an insulated wire having an outer diameter of 1.38 mm.
  • Examples 2 to 9 Comparative Examples 1 to 9 An electrical insulating composition was prepared in the same manner as in Example 1 except that the composition of the electrical insulating composition was changed as shown in Table 1. Further, in the same manner as in Example 1 using these compositions. Insulated wires were manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is a heat-resistant flame-retardant insulated wire which combines heat resistance and flame retardance and which exhibits good workability and is inexpensive. This heat-resistant flame-retardant insulated wire has a coating made from an electrically insulating composition which comprises 100 parts by mass of a base polymer that comprises (A) 50 to 90 mass% of a tetrafluoroethylene-propylene copolymer and (B) 10 to 50 mass% of a polyolefin, (C) 1 to 30 parts by mass of ethylene-bis(pentabromophenyl) and (D) 10 to 50 parts by mass of antimony trioxide.

Description

耐熱難燃絶縁電線Heat resistant flame retardant insulated wire
 本発明は、耐熱性、難燃性および作業性に優れる絶縁電線に関する。 The present invention relates to an insulated wire excellent in heat resistance, flame retardancy and workability.
 近時、ガス器具や電子レンジのモータ線などの用途に、耐熱性と難燃性を併せ持つ絶縁電線のニーズが増大している。具体的には、電気用品の技術基準に基づく耐熱温度130~150℃の耐熱性と、UL規格の垂直燃焼試験(VW-1)に合格する難燃性を有する絶縁電線である。 Recently, there is an increasing need for insulated wires that have both heat resistance and flame resistance in applications such as gas appliances and motor wires for microwave ovens. Specifically, it is an insulated wire having a heat resistance of 130 to 150 ° C. based on the technical standards of electrical appliances and flame retardancy that passes the UL vertical combustion test (VW-1).
 この種の絶縁電線としては、例えばエチレン系共重合体に特定の難燃剤を組み合わせて配合した組成物を被覆材料として用いたものが知られている(例えば、特許文献1参照。)。しかし、上記要求を十分に満足する特性を備えるものではなかった。 As this kind of insulated wire, for example, a coating material is known which uses a composition in which a specific flame retardant is combined with an ethylene copolymer (see, for example, Patent Document 1). However, it does not have characteristics that sufficiently satisfy the above requirements.
 一方、テトラフルオロエチレン-プロピレン共重合体に代表されるフッ素ゴムを絶縁材料として用いた電線が知られている。フッ素ゴムは、耐熱性、耐油性、耐薬品性、耐老化性、耐候性、電気絶縁性などに優れており、これを用いた電線は高い耐熱性を備えている。 On the other hand, an electric wire using a fluoro rubber represented by a tetrafluoroethylene-propylene copolymer as an insulating material is known. Fluororubber is excellent in heat resistance, oil resistance, chemical resistance, aging resistance, weather resistance, electrical insulation, and the like, and an electric wire using this has high heat resistance.
 しかし、フッ素ゴムは、未架橋状態では粘着性が強く、未架橋状態でドラムに巻き取る際など、被覆同士が接触した場合に、被覆の形状が変化したり外観が損なわれたりするおそれがあった。このため、(押出)成形工程と架橋工程を連続して行う必要があり、作業性に問題がある。また、フッ素ゴムは非常に高価であるため、これまで、自動車などのエンジン周りの配線用電線など、200℃を超えるような過酷な高温環境下で使用される特殊な電線の被覆にその用途が限られていた。 However, fluororubber has strong adhesiveness in an uncrosslinked state, and there is a possibility that the shape of the coating may change or the appearance may be damaged when the coatings come into contact with each other, such as when wound on a drum in an uncrosslinked state. It was. For this reason, it is necessary to carry out the (extrusion) molding step and the crosslinking step continuously, and there is a problem in workability. In addition, since fluororubber is very expensive, it has been used for coating special wires used in harsh high-temperature environments exceeding 200 ° C, such as wiring wires around engines such as automobiles. It was limited.
特開2007-119515号公報JP 2007-119515 A
 本発明は、耐熱性と難燃性を併せ持ち、しかも作業性が良好で価格も安価な絶縁電線を提供することを目的とする。 The object of the present invention is to provide an insulated wire having both heat resistance and flame retardancy, good workability, and low price.
 本発明の一実施形態の耐熱難燃絶縁電線は、(A)テトラフルオロエチレン-プロピレン共重合体50~90質量%、および(B)ポリオレフィン10~50質量%からなるベースポリマー100質量部に対し、(C)エチレンビス(ペンタブロモフェニル)1~30質量部、および(D)三酸化アンチモン10~50質量部を含有する電気絶縁性組成物からなる被覆を有する。 The heat-resistant and flame-retardant insulated wire of one embodiment of the present invention is based on 100 parts by mass of a base polymer comprising (A) 50 to 90% by mass of a tetrafluoroethylene-propylene copolymer and (B) 10 to 50% by mass of a polyolefin. (C) 1 to 30 parts by mass of ethylenebis (pentabromophenyl), and (D) a coating made of an electrically insulating composition containing 10 to 50 parts by mass of antimony trioxide.
 本発明の一実施形態によれば、耐熱性と難燃性を併せ持ち、しかも作業性が良好で価格も安価な絶縁電線が提供される。 According to one embodiment of the present invention, an insulated wire having both heat resistance and flame retardancy, good workability, and low price is provided.
一実施形態の耐熱難燃絶縁電線を示す横断面図である。It is a cross-sectional view which shows the heat-resistant flame-retardant insulated wire of one Embodiment.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 まず、本発明の耐熱難燃絶縁電線(以下、単に絶縁電線ともいう。)に使用される電気絶縁性組成物について説明する。本組成物は、(A)テトラフルオロエチレン-プロピレン共重合体、および(B)ポリオレフィンをベースポリマーとし、(C)エチレンビス(ペンタブロモフェニル)、および(D)三酸化アンチモンを含有する First, an electrically insulating composition used for the heat-resistant and flame-retardant insulated wire of the present invention (hereinafter also simply referred to as an insulated wire) will be described. This composition is based on (A) tetrafluoroethylene-propylene copolymer and (B) polyolefin, and contains (C) ethylene bis (pentabromophenyl) and (D) antimony trioxide.
 (A)テトラフルオロエチレン-プロピレン共重合体は、代表的には下記式で示す基本骨格を有するポリマーであり、例えば、テトラフルオロエチレンとプロピレンを低温乳化重合することにより得られる。
Figure JPOXMLDOC01-appb-C000001
 (式中、nおよびmは、それぞれ1以上の整数を表す)
The (A) tetrafluoroethylene-propylene copolymer is typically a polymer having a basic skeleton represented by the following formula, and can be obtained, for example, by low-temperature emulsion polymerization of tetrafluoroethylene and propylene.
Figure JPOXMLDOC01-appb-C000001
(In the formula, n and m each represent an integer of 1 or more)
 このテトラフルオロエチレン-プロピレン共重合体は、第3成分として、共重合可能なモノマー、例えば、エチレン、イソブチレン、アクリル酸およびそのアルキルエステル、メタクリル酸およびそのアルキルエステル、フッ化ビニル、フッ化ビニリデン、ヘキサフルオロプロペン、クロロエチルビニルエーテル、クロロトリフルオロエチレン、パーフルオロアルキルビニルエーテルなどの1種以上を適当量含んでいてもよい。(A)テトラフルオロエチレン-プロピレン共重合体は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 This tetrafluoroethylene-propylene copolymer contains, as a third component, a copolymerizable monomer such as ethylene, isobutylene, acrylic acid and its alkyl ester, methacrylic acid and its alkyl ester, vinyl fluoride, vinylidene fluoride, An appropriate amount of one or more of hexafluoropropene, chloroethyl vinyl ether, chlorotrifluoroethylene, perfluoroalkyl vinyl ether and the like may be contained. (A) The tetrafluoroethylene-propylene copolymer may be used alone or in combination of two or more.
 (A)成分として使用されるテトラフルオロエチレン-プロピレン共重合体の市販品を例示すると、例えば旭硝子(株)製のAFLAS 150CS(比重:1.55、フッ素含有量:57%、ムーニー粘度ML1+10(100℃):140、ムーニー粘度ML1+10(121℃):100)、同AFLAS 150C(比重:1.55、ムーニー粘度ML1+10(100℃):>160)、同AFLAS 150E(比重:1.55、ムーニー粘度ML1+10(100℃):60、ムーニー粘度ML1+10(121℃):45)(以上、商品名)などが挙げられる。 Examples of commercially available tetrafluoroethylene-propylene copolymers used as the component (A) include AFLAS 例 え ば 150CS manufactured by Asahi Glass Co., Ltd. (specific gravity: 1.55, fluorine content: 57%, Mooney viscosity ML1 + 10 ( 100 ° C): 140, Mooney viscosity ML1 + 10 (121 ° C): 100), AFLASAF150C (specific gravity: 1.55, Mooney viscosity ML1 + 10 (100 ° C):> 160), AFLAS 150E (specific gravity: 1.55, Mooney) Viscosity ML1 + 10 (100 ° C.): 60, Mooney viscosity ML1 + 10 (121 ° C.): 45) (above, trade name) and the like.
 (B)ポリオレフィンとしては、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、超低密度ポリエチレン(VLDPE)、直鎖状低密度ポリエチレン(LLDPE)などのポリエチレン;ポリプロピレン(PP);ポリイソブチレン;エチレンに、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-ノナデセン、1-エイコセン、4-メチル-1-ペンテンなどのα-オレフィンを共重合させたエチレン・α-オレフィン共重合体;エチレンに、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、アクリル酸‐2‐エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、アクリル酸イソブチル、マレイン酸ジメチル、マレイン酸ジエチルなどの不飽和カルボン酸エステルを共重合させたエチレン・不飽和カルボン酸エステル共重合体;エチレンに、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、パーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、サリチル酸ビニル、シクロヘキサンカルボン酸ビニルなどのビニルエステルを共重合させたエチレン・ビニルエステル共重合体;イソブチレン・イソプレン共重合体などが挙げられる。ポリプロピレンは、プロピレンのホモポリマーのみならず、エチレンとのランダムコポリマーやブロックコポリマー、少量のα-オレフィンとの共重合体なども使用することができる。α-オレフィンとしては、例えば1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンなどが挙げられる。プロピレン・αオレフィン共重合体には、非共役ポリエンがさらに共重合されていてもよい。非共役ポリエンとしては、例えばジシクロペンタジエン、1,4-ヘキサジエン、エチリデンノルボルネン、ビニルノルボルネンなどが挙げられる。これらは1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of (B) polyolefin include polyethylene such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), very low density polyethylene (VLDPE), and linear low density polyethylene (LLDPE). Polypropylene (PP); polyisobutylene; ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, Ethylene / α-olefin copolymerized with α-olefin such as 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicocene, 4-methyl-1-pentene Copolymer; ethylene, methyl acrylate, acrylic Ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isobutyl acrylate, dimethyl maleate, diethyl maleate, etc. Ethylene / unsaturated carboxylic acid ester copolymer copolymerized with saturated carboxylic acid ester; ethylene, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl persate, vinyl laurate, vinyl stearate, vinyl benzoate, Examples thereof include ethylene / vinyl ester copolymers obtained by copolymerizing vinyl esters such as vinyl salicylate and vinyl cyclohexanecarboxylate; and isobutylene / isoprene copolymers. As the polypropylene, not only a homopolymer of propylene, but also a random copolymer or block copolymer with ethylene, a copolymer with a small amount of α-olefin, and the like can be used. Examples of the α-olefin include 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like. A non-conjugated polyene may be further copolymerized with the propylene / α-olefin copolymer. Examples of the non-conjugated polyene include dicyclopentadiene, 1,4-hexadiene, ethylidene norbornene, and vinyl norbornene. These may be used individually by 1 type and may be used in combination of 2 or more type.
 ポリオレフィンとしては、なかでも、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン・アクリル酸エチル共重合体が好ましく、耐熱性に優れる点から、エチレン・アクリル酸エチル共重合体がより好ましい。エチレン・アクリル酸エチル共重合体の市販品を例示すると、例えば、日本ポリエチレン(株)製のレクスパールEEA A1150(密度:0.932g/cm、MFR:0.8g/10min、アクリル酸エチル含有量:15質量%、融点(DSC法)100℃、酸素指数10.0;商品名)などが挙げられる。 Among these, low-density polyethylene, linear low-density polyethylene, and ethylene / ethyl acrylate copolymer are preferable as the polyolefin, and ethylene / ethyl acrylate copolymer is more preferable from the viewpoint of excellent heat resistance. Examples of commercially available ethylene / ethyl acrylate copolymers include Lexpearl EEA A1150 (density: 0.932 g / cm 3 , MFR: 0.8 g / 10 min, manufactured by Nippon Polyethylene Co., Ltd.) Amount: 15% by mass, melting point (DSC method) 100 ° C., oxygen index 10.0;
 組成物のベースポリマーにおける(A)成分および(B)成分の混合割合は、(A)テトラフルオロエチレン-プロピレン共重合体が50~90質量%、(B)ポリオレフィンが10~50質量%である。(A)成分の割合が50質量%未満では、耐熱性が低下するだけでなく、機械的特性や耐候性なども低下する。また、(A)成分が90質量%を超えると、加工性が低下する。また、未架橋状態での粘着性が大きくなるとともに、低コスト化も困難になる。好ましくは(A)テトラフルオロエチレン-プロピレン共重合体が55~85質量%、(B)ポリオレフィンが15~45質量%であり、より好ましくは、(A)テトラフルオロエチレン-プロピレン共重合体が65~75質量%、(B)ポリオレフィンが25~35質量%である。 The mixing ratio of the component (A) and the component (B) in the base polymer of the composition is (A) a tetrafluoroethylene-propylene copolymer of 50 to 90% by mass and (B) a polyolefin of 10 to 50% by mass. . When the proportion of the component (A) is less than 50% by mass, not only the heat resistance is lowered, but also the mechanical properties and weather resistance are lowered. Moreover, when (A) component exceeds 90 mass%, workability will fall. In addition, the adhesiveness in an uncrosslinked state increases, and cost reduction becomes difficult. Preferably, (A) tetrafluoroethylene-propylene copolymer is 55 to 85% by mass, (B) polyolefin is 15 to 45% by mass, and more preferably (A) tetrafluoroethylene-propylene copolymer is 65% by mass. 75% by mass, and (B) polyolefin is 25-35% by mass.
 (C)エチレンビス(ペンタブロモフェニル)は、臭素系難燃材として知られている下記式で示される化合物である。(C)成分として好適に使用される市販品を具体的に例示すると、例えばSAYTEX8010(ALBEMARLE社製 商品名)などが挙げられる。
Figure JPOXMLDOC01-appb-C000002
(C) Ethylene bis (pentabromophenyl) is a compound represented by the following formula known as a brominated flame retardant. Specific examples of commercially available products that are preferably used as the component (C) include SAYTEX 8010 (trade name, manufactured by ALBEMARLE).
Figure JPOXMLDOC01-appb-C000002
 この(C)エチレンビス(ペンタブロモフェニル)の配合量は、前述したベースポリマーの(A)成分および(B)成分の合計量100質量部に対して1~30質量部であり、好ましくは2~15質量部であり、より好ましくは3~7質量部である。配合量が1質量部未満では十分な難燃性が得られず、30質量部を超えると、機械的特性が低下するおそれがある。 The blending amount of this (C) ethylene bis (pentabromophenyl) is 1 to 30 parts by weight, preferably 2 parts per 100 parts by weight of the total amount of the aforementioned component (A) and component (B) of the base polymer. -15 parts by mass, more preferably 3-7 parts by mass. When the blending amount is less than 1 part by mass, sufficient flame retardancy cannot be obtained, and when it exceeds 30 parts by mass, the mechanical properties may be deteriorated.
 組成物には、本発明の効果を阻害しない範囲で、エチレンビス(ペンタブロモフェニル)以外の臭素系難燃剤を少なくとも1種併用することができる。併用する臭素系難燃剤としては、例えばエチレンビステトラブロモフタルイミド、デカブロモジフェニルオキサイド、テトラデカブロモジフェノキシベンゼンなどが挙げられる。 In the composition, at least one brominated flame retardant other than ethylenebis (pentabromophenyl) can be used in combination as long as the effects of the present invention are not impaired. Examples of the brominated flame retardant used in combination include ethylene bistetrabromophthalimide, decabromodiphenyl oxide, and tetradecabromodiphenoxybenzene.
 (D)三酸化アンチモンは、難燃助剤として作用する成分である。(D)三酸化アンチモンは、前述したベースポリマー成分の合計量100質量部に対して10~50質量部配合される。好ましくは15~35質量部であり、より好ましくは15~25質量部である。配合量が10質量部未満では十分な難燃性が得られず、50質量部を超えると、機械的特性が低下する。 (D) Antimony trioxide is a component that acts as a flame retardant aid. (D) 10-50 parts by mass of antimony trioxide is blended with respect to 100 parts by mass of the total amount of the base polymer component described above. The amount is preferably 15 to 35 parts by mass, and more preferably 15 to 25 parts by mass. When the blending amount is less than 10 parts by mass, sufficient flame retardancy cannot be obtained, and when it exceeds 50 parts by mass, the mechanical properties are deteriorated.
 電気絶縁性組成物には、引張強さなどの機械的特性を向上させる目的で、(E)無機充填剤を配合することができる。無機充填剤としては、炭酸カルシウム、溶融シリカ、結晶シリカ、タルク、クレー、アルミナ、ジルコニア、マイカ、チタンホワイト、ベンガラ、炭化珪素、窒化硼素、窒化珪素、窒化アルミなどが挙げられる。なかでも、炭酸カルシウム、タルクが、耐熱性の点から好ましい。また、これらは、明色配合が可能であるという利点も有する。炭酸カルシウムは、重質炭酸カルシウムおよび軽質炭酸カルシウムのいずれも使用可能である。無機充填剤を配合する場合、その配合量は前述したベースポリマー成分の合計量100質量部に対して、好ましくは1~200質量部であり、より好ましくは10~100質量部である。 (E) An inorganic filler can be blended with the electrically insulating composition for the purpose of improving mechanical properties such as tensile strength. Examples of the inorganic filler include calcium carbonate, fused silica, crystalline silica, talc, clay, alumina, zirconia, mica, titanium white, bengara, silicon carbide, boron nitride, silicon nitride, and aluminum nitride. Of these, calcium carbonate and talc are preferable from the viewpoint of heat resistance. They also have the advantage that light color formulation is possible. As the calcium carbonate, both heavy calcium carbonate and light calcium carbonate can be used. When the inorganic filler is blended, the blending amount is preferably 1 to 200 parts by weight, more preferably 10 to 100 parts by weight with respect to 100 parts by weight of the total amount of the base polymer components described above.
 電気絶縁性組成物には、以上の各成分のほか、この種の組成物に一般に配合される加工助剤、分散剤、着色剤、老化防止剤、滑剤などの添加剤を、本発明の効果を阻害しない範囲で必要に応じて配合することができる。 In addition to the above-described components, the electrical insulating composition includes additives such as processing aids, dispersants, colorants, anti-aging agents, and lubricants that are generally blended in this type of composition. As long as it does not inhibit, it can be blended as necessary.
 例えば、加工助剤として、ポリエチレンワックス、ステアリン酸ナトリウムなどをポリマー成分100質量部に対して0.5~2.0質量部配合することができる。また、分散剤として脂肪族炭化水素樹脂混合物などをポリマー成分100質量部に対して0.5~2.0質量部配合することができる。このような加工助剤や分散剤を配合することにより、ポリマーのブレンドに伴う機械的強度や耐熱性などの特性の低下を抑制することができるとともに、押出成形時の加工性を向上させることができる。具体的には、加工助剤として、AC-617A(商品名、ハネウェル社製;ポリエチレンワックス)などが使用される。また、分散剤として、ULTRA-LUBE790(商品名、パフォーマンスアディティブス社製;脂肪酸エステル/特殊潤滑剤混合物)などが使用される。 For example, as a processing aid, polyethylene wax, sodium stearate and the like can be blended in an amount of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component. Further, an aliphatic hydrocarbon resin mixture or the like as a dispersant can be blended in an amount of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component. By blending such processing aids and dispersants, it is possible to suppress deterioration in properties such as mechanical strength and heat resistance accompanying polymer blending, and to improve workability during extrusion molding. it can. Specifically, AC-617A (trade name, manufactured by Honeywell; polyethylene wax) or the like is used as a processing aid. Further, ULTRA-LUBE 790 (trade name, manufactured by Performance Additives; fatty acid ester / special lubricant mixture) and the like are used as a dispersant.
 また、上述した臭素系難燃剤や三酸化アンチモン以外の他の難燃剤および難燃助剤も、本発明の効果を阻害しない範囲で配合することができる。そのような難燃剤および難燃助剤としては、水酸化マグネシウム、水酸化アルミニウムなどの金属水和物、グアニジン系、メラミン系などの窒素系難燃剤、リン酸アンモニウム、赤燐などのリン系難燃剤、リン-窒素系難燃剤、ホウ酸亜鉛などのホウ酸化合物などが例示される。 Also, other flame retardants and flame retardant aids other than the brominated flame retardants and antimony trioxide described above can be blended within a range that does not impair the effects of the present invention. Examples of such flame retardants and flame retardant aids include metal hydrates such as magnesium hydroxide and aluminum hydroxide, nitrogen flame retardants such as guanidine and melamine, and phosphorus flame retardants such as ammonium phosphate and red phosphorus. Examples include flame retardants, phosphorus-nitrogen flame retardants, and boric acid compounds such as zinc borate.
 本発明で使用される電気絶縁性組成物は、通常、成形(被覆)後、架橋される。架橋方法は特に限定されるものではなく、架橋剤を用いる化学架橋、電子線などの放射線による架橋など、任意の方法を用いることができる。化学架橋に用いる架橋剤としては、有機過酸化物が好ましく、例えば、1,3-ビス-(t-ブチルパーオキシイソプロピル)ベンゼンなどが使用される。また、このような架橋剤とともに、トリアリルイソシアヌレートなどの架橋助剤を併用することが好ましい。有機過酸化物は、ポリマー成分100質量部に対して、0.5~2.0質量部配合することが好ましく、また、架橋助剤は、ポリマー成分100質量部に対して、0.5~10.0質量部配合することが好ましい。 The electrical insulating composition used in the present invention is usually crosslinked after molding (coating). The crosslinking method is not particularly limited, and any method such as chemical crosslinking using a crosslinking agent or crosslinking by radiation such as an electron beam can be used. As the crosslinking agent used for the chemical crosslinking, an organic peroxide is preferable. For example, 1,3-bis- (t-butylperoxyisopropyl) benzene or the like is used. Further, it is preferable to use a crosslinking aid such as triallyl isocyanurate together with such a crosslinking agent. The organic peroxide is preferably blended in an amount of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component, and the crosslinking assistant is 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the polymer component. It is preferable to blend 10.0 parts by weight.
 電気絶縁性組成物は、(A)テトラフルオロエチレン-プロピレン共重合体、(B)ポリオレフィン、(C)エチレンビス(ペンタブロモフェニル)および(D)三酸化アンチモン、並びに、必要に応じて配合される各種成分を、オープンロール、バンバリーミキサ、加圧ニーダなどによって十分に混練することにより製造することができる。(C)成分、(D)成分および(E)成分や、加工助剤、分散剤などの添加剤は、(A)成分および(B)成分をそれぞれ素練りする際に予め混合しておいてもよい。 The electrically insulating composition comprises (A) a tetrafluoroethylene-propylene copolymer, (B) a polyolefin, (C) ethylenebis (pentabromophenyl) and (D) antimony trioxide, and if necessary. Can be produced by sufficiently kneading various components using an open roll, a Banbury mixer, a pressure kneader or the like. Additives such as component (C), component (D) and component (E), processing aids, and dispersants are mixed in advance when kneading each component (A) and component (B). Also good.
 本発明の絶縁電線は、上記のようにして得られた電気絶縁性組成物を、導体上に直接もしくは他の被覆を介して押出被覆し、架橋することにより製造される。組成物は未架橋状態での粘着性が小さいため、被覆が未架橋状態のままドラムに巻き取っても被覆同士が強く粘着することはない。したがって、架橋工程は押出被覆工程と別工程で行ってもよく、単一工程で連続して行ってもよい。導体の材質や外径、撚り合せの有無などは、特に限定されるものではなく、用途によって適宜選択される。 The insulated wire of the present invention is produced by extrusion-coating the electrically insulating composition obtained as described above directly on the conductor or through another coating and crosslinking. Since the composition has low tackiness in an uncrosslinked state, even if the coating is wound around a drum while being in an uncrosslinked state, the coatings are not strongly adhered to each other. Therefore, the crosslinking step may be performed as a separate step from the extrusion coating step, or may be performed continuously in a single step. The material of the conductor, the outer diameter, the presence / absence of twisting, and the like are not particularly limited and are appropriately selected depending on the application.
 図1は、本発明の一実施形態の耐熱難燃絶縁電線を示す横断面図である。 FIG. 1 is a cross-sectional view showing a heat-resistant and flame-retardant insulated wire according to an embodiment of the present invention.
 図1において、符号11は、1本乃至複数本のすずめっき軟銅線などからなる導体を示している。この導体11上には、上述した電気絶縁性組成物を押出被覆し、架橋することによって絶縁体12が形成されている。 In FIG. 1, reference numeral 11 denotes a conductor made of one or more tin-plated annealed copper wires or the like. On this conductor 11, the insulator 12 is formed by extrusion-coating the above-described electrically insulating composition and crosslinking.
 本実施形態の絶縁電線は、以下の要件を満足するように構成されていることが好ましい。
 (1)電線全体として、VW-1垂直燃焼試験(UL 1581)に合格する難燃性を有する。
 (2)絶縁体12の熱老化(180℃、336時間)後の引張強さが4.0MPa以上で、引張伸びが50%以上である。ここで、引張強さおよび引張伸びは、JIS C 3005に準拠して測定される値である。
It is preferable that the insulated wire of this embodiment is comprised so that the following requirements may be satisfied.
(1) The electric wire as a whole has flame retardancy that passes the VW-1 vertical combustion test (UL 1581).
(2) The tensile strength after thermal aging (180 ° C., 336 hours) of the insulator 12 is 4.0 MPa or more, and the tensile elongation is 50% or more. Here, the tensile strength and the tensile elongation are values measured according to JIS C 3005.
 本実施形態の絶縁電線においては、電気用品の技術基準に基づく耐熱温度130~150℃の耐熱性と、UL規格の垂直燃焼試験(VW-1)に合格する難燃性を併せ持つことができる。そのうえ、従来のフッ素ゴムを使用した電線のように、架橋工程が制限されることはなく、価格の上昇も抑制される。 The insulated wire of this embodiment can have both heat resistance of 130 to 150 ° C. based on the technical standards of electrical appliances and flame resistance that passes the UL vertical combustion test (VW-1). In addition, the cross-linking process is not limited as in the case of electric wires using conventional fluororubber, and an increase in price is also suppressed.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。実施例および比較例で用いた成分は以下の通りである。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The components used in Examples and Comparative Examples are as follows.
 FEPM(テトラフルオロエチレン-プロピレン共重合体)
    旭硝子(株)製 商品名 AFLAS 150CS
 LDPE(低密度ポリエチレン):
    日本ユニカー(株)製 商品名 NUC 9026
 HDPE(高密度ポリエチレン):
    プライムポリマー(株)製 商品名 ハイゼックス 5305E
 EEA(エチレン・アクリル酸エチル共重合体):
    日本ポリエチレン(株)製 商品名 レクスパール EEA A 1150
 エチレンビス(ペンタブロモフェニル):
    ALBEMARLE社製 商品名 SAYTEX 8010
 重質炭酸カルシウム:
    白石カルシウム(株)製 商品名 ホワイトンSSB
FEPM (tetrafluoroethylene-propylene copolymer)
Product name AFLAS 150CS manufactured by Asahi Glass Co., Ltd.
LDPE (low density polyethylene):
Product name NUC 9026 manufactured by Nippon Unicar Co., Ltd.
HDPE (high density polyethylene):
Brand name made by Prime Polymer Co., Ltd. Hi-Zex 5305E
EEA (ethylene / ethyl acrylate copolymer):
Product name Lexpearl EEA A 1150 manufactured by Nippon Polyethylene Co., Ltd.
Ethylene bis (pentabromophenyl):
Product name SAYTEX 8010 manufactured by ALBEMARLE
Heavy calcium carbonate:
Shiraishi Calcium Co., Ltd. Product name Whiteon SSB
実施例1
 FEPM50質量部、LDPE50質量部、エチレンビス(ペンタブロモフェニル)2.0質量部、三酸化アンチモン30質量部および重質炭酸カルシウム30質量部をオープンロールを用いて十分に混練して電気絶縁性組成物を調製した。
Example 1
50 parts by mass of FEPM, 50 parts by mass of LDPE, 2.0 parts by mass of ethylene bis (pentabromophenyl), 30 parts by mass of antimony trioxide and 30 parts by mass of heavy calcium carbonate were sufficiently kneaded using an open roll to electrically insulate composition A product was prepared.
 次いで、直径0.18mmのすずめっき軟銅線12本を集合撚りしてなる断面積0.3mmの銅撚線導体上に、上記電気絶縁性組成物を0.33mm厚に押出被覆し、加速電圧800kVの電子線照射装置で200kGyの電子線を照射して絶縁体を形成し、外径1.38mmの絶縁電線を製造した。 Subsequently, the above electrically insulating composition was extrusion coated to a thickness of 0.33 mm on a copper stranded wire conductor having a cross-sectional area of 0.3 mm 2 formed by collectively twisting 12 tin-plated annealed copper wires having a diameter of 0.18 mm, and accelerated An insulator was formed by irradiating an electron beam of 200 kGy with an electron beam irradiation apparatus having a voltage of 800 kV to produce an insulated wire having an outer diameter of 1.38 mm.
実施例2~9、比較例1~9
 電気絶縁性組成物の組成を表1に示すように変えた以外は、実施例1と同様にして電気絶縁性組成物を調製し、さらに、これらの組成物を用いて実施例1と同様にして絶縁電線を製造した。
Examples 2 to 9, Comparative Examples 1 to 9
An electrical insulating composition was prepared in the same manner as in Example 1 except that the composition of the electrical insulating composition was changed as shown in Table 1. Further, in the same manner as in Example 1 using these compositions. Insulated wires were manufactured.
 上記各実施例および各比較例で得られた絶縁電線について、初期の機械的特性(引張強さ、伸び)、耐熱性(耐熱老化性)および難燃性を評価した。また、絶縁電線とは別に、上記各実施例および各比較例で得られた電気絶縁性組成物を用いて、100mm×100mm×1mmの未架橋シートを作成し、この未架橋シートについて(未架橋時の)粘着性を評価した。評価方法は以下に示すとおりである。
[初期引張強さおよび初期引張伸び]
 JIS C 3005に準拠して、標線20mm、引張速度500mm/分の条件で測定した
[耐熱性]
 180℃で336時間熱老化させた後、JIS C 3005に準拠して、標線20mm、引張速度500mm/分の条件で、引張強さおよび伸びを測定した。
[難燃性]
 UL1581に規定する垂直燃焼試験(VW-1)を行い、評価した。
[未架橋時の粘着性]
 未架橋シートを2枚重ね、均一に500g載荷し、50℃の恒温槽に1時間放置した。放置後、恒温槽より取り出して室温にまで冷却し、2枚のシートを引き剥がした。引き剥がし後の各シートについて、100mm×100mm面の対角線の長さを測定して平均値を算出し、初期値からの変化率を求め、次の基準で評価した。
   A:対角線の長さ変化率7%以下、破れおよび裂けなし
   B:対角線の長さ変化率10%以下、破れおよび裂けなし、
   C:対角線の長さ変化率10%超、あるいは破れまたは裂けあり
With respect to the insulated wires obtained in the above Examples and Comparative Examples, initial mechanical properties (tensile strength, elongation), heat resistance (heat aging resistance) and flame retardancy were evaluated. Separately from the insulated wire, an uncrosslinked sheet of 100 mm × 100 mm × 1 mm was prepared using the electrically insulating compositions obtained in the above examples and comparative examples. The tackiness was evaluated. The evaluation method is as follows.
[Initial tensile strength and initial tensile elongation]
According to JIS C 3005, measured under conditions of a marked line of 20 mm and a tensile speed of 500 mm / min [heat resistance]
After heat aging at 180 ° C. for 336 hours, tensile strength and elongation were measured in accordance with JIS C 3005 under conditions of a standard line of 20 mm and a tensile speed of 500 mm / min.
[Flame retardance]
A vertical combustion test (VW-1) defined in UL1581 was conducted and evaluated.
[Adhesiveness when not cross-linked]
Two uncrosslinked sheets were stacked, 500 g was uniformly loaded, and left in a thermostatic bath at 50 ° C. for 1 hour. After leaving it, it was taken out from the thermostat and cooled to room temperature, and the two sheets were peeled off. About each sheet after peeling, the length of the diagonal of a 100 mm x 100 mm surface was measured, the average value was calculated, the rate of change from an initial value was calculated | required, and the following reference | standard evaluated.
A: Diagonal length change rate of 7% or less, no tearing and tearing B: Diagonal length change rate of 10% or less, no tearing and tearing,
C: Diagonal length change rate of more than 10%, or tearing or tearing
 これらの結果を表1に示す。 These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~9はいずれも初期引張強さ、初期引張伸び、耐熱性、垂直燃焼試験および未架橋時の粘着性において良好な結果が得られた。また、ベースポリマーにおけるテトラフルオロエチレン-プロピレン共重合体の含有量を55~85質量%、ポリオレフィンの含有量を15~45質量%とすることで、初期引張強さ、初期引張伸びにおいて、さらに良好な結果が得られた(実施例4~7)。さらに、ベースポリマー100質量部に対するエチレンビス(ペンタブロモフェニル)の含有量を2~15質量部、三酸化アンチモンの含有量を15~35質量部とすることで、耐熱性、未架橋時の粘着性において、さらに良好な結果が得られた(実施例5、6)。 As is clear from Table 1, in Examples 1 to 9, good results were obtained in terms of initial tensile strength, initial tensile elongation, heat resistance, vertical combustion test, and adhesiveness when not crosslinked. Further, by setting the content of tetrafluoroethylene-propylene copolymer in the base polymer to 55 to 85% by mass and the content of polyolefin to 15 to 45% by mass, the initial tensile strength and initial tensile elongation are even better. Results were obtained (Examples 4-7). Furthermore, by setting the content of ethylene bis (pentabromophenyl) to 2 to 15 parts by mass and the content of antimony trioxide to 15 to 35 parts by mass with respect to 100 parts by mass of the base polymer, heat resistance and adhesion during non-crosslinking are achieved. Even better results were obtained in Examples (Examples 5 and 6).
 11…導体、12…絶縁体。 11 ... conductor, 12 ... insulator.

Claims (9)

  1.  (A)テトラフルオロエチレン-プロピレン共重合体50~90質量%、および(B)ポリオレフィン10~50質量%からなるベースポリマー100質量部に対し、(C)エチレンビス(ペンタブロモフェニル)1~30質量部、および(D)三酸化アンチモン10~50質量部を含有する電気絶縁性組成物からなる被覆を有する耐熱難燃絶縁電線。 (C) ethylenebis (pentabromophenyl) 1-30 with respect to 100 parts by mass of the base polymer comprising (A) tetrafluoroethylene-propylene copolymer 50-90% by mass and (B) polyolefin 10-50% by mass. A heat-resistant and flame-retardant insulated wire having a coating made of an electrically insulating composition containing 10 parts by mass of (D) antimony trioxide (D).
  2.  前記ベースポリマーは、(A)テトラフルオロエチレン-プロピレン共重合体55~85質量%、および(B)ポリオレフィン15~45質量%からなる請求項1記載の耐熱難燃絶縁電線。 The heat-resistant flame-retardant insulated electric wire according to claim 1, wherein the base polymer comprises (A) 55 to 85% by mass of a tetrafluoroethylene-propylene copolymer and (B) 15 to 45% by mass of a polyolefin.
  3.  前記ベースポリマー100質量部に対し、(C)エチレンビス(ペンタブロモフェニル)2~15質量部、および(D)三酸化アンチモン15~35質量部を含有する請求項1または2記載の耐熱難燃絶縁電線。 The heat-resistant and flame-retardant composition according to claim 1 or 2, comprising (C) 2 to 15 parts by mass of ethylenebis (pentabromophenyl) and (D) 15 to 35 parts by mass of antimony trioxide with respect to 100 parts by mass of the base polymer. Insulated wire.
  4.  前記(B)成分は、エチレン・アクリル酸エチル共重合体を含む請求項1乃至3のいずれか1項記載の耐熱難燃絶縁電線。 The heat-resistant flame-retardant insulated electric wire according to any one of claims 1 to 3, wherein the component (B) includes an ethylene / ethyl acrylate copolymer.
  5.  前記ベースポリマー100質量部に対し、さらに(E)無機充填剤1~200質量部を含有する請求項1乃至4のいずれか1項記載の耐熱難燃絶縁電線。 The heat-resistant and flame-retardant insulated electric wire according to any one of claims 1 to 4, further comprising (E) 1 to 200 parts by mass of an inorganic filler with respect to 100 parts by mass of the base polymer.
  6.  前記(E)成分は、炭酸カルシウムを含む請求項5記載の耐熱難燃絶縁電線。 The heat-resistant flame-retardant insulated wire according to claim 5, wherein the component (E) contains calcium carbonate.
  7.  前記電気絶縁性組成物が架橋されている請求項1乃至5のいずれか1項記載の耐熱難燃絶縁電線。 The heat-resistant flame-retardant insulated wire according to any one of claims 1 to 5, wherein the electrically insulating composition is crosslinked.
  8.  電線全体として、VW-1垂直燃焼試験(UL 1581)に合格する難燃性を有する請求項1乃至7のいずれか1項記載の耐熱難燃絶縁電線。 The heat-resistant flame-retardant insulated wire according to any one of claims 1 to 7, wherein the wire as a whole has flame retardancy that passes the VW-1 vertical combustion test (UL 1581).
  9.  前記被覆の熱老化(180℃、336時間)後の引張強さが4.0MPa以上で、引張伸びが50%以上である請求項1乃至8のいずれか1項記載の耐熱難燃絶縁電線。 The heat-resistant flame-retardant insulated electric wire according to any one of claims 1 to 8, wherein the coating has a tensile strength after thermal aging (180 ° C, 336 hours) of 4.0 MPa or more and a tensile elongation of 50% or more.
PCT/JP2013/003794 2012-06-21 2013-06-18 Heat-resistant flame-retardant insulated wire WO2013190832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380011266.XA CN104205248B (en) 2012-06-21 2013-06-18 Heat-resistant flame-retardant insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-139775 2012-06-21
JP2012139775A JP5425973B2 (en) 2012-06-21 2012-06-21 Heat resistant flame retardant insulated wire

Publications (1)

Publication Number Publication Date
WO2013190832A1 true WO2013190832A1 (en) 2013-12-27

Family

ID=49768446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003794 WO2013190832A1 (en) 2012-06-21 2013-06-18 Heat-resistant flame-retardant insulated wire

Country Status (3)

Country Link
JP (1) JP5425973B2 (en)
CN (1) CN104205248B (en)
WO (1) WO2013190832A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199806A (en) * 2014-04-07 2015-11-12 日立金属株式会社 Fluorine-containing elastomer composition, and insulated wire and cable using the same
USD982304S1 (en) 2022-06-24 2023-04-04 Blakely Ventures, LLC Shoe last
USD1000773S1 (en) 2022-06-24 2023-10-10 Blakely Ventures, LLC Shoe
USD1000795S1 (en) 2022-06-24 2023-10-10 Blakely Ventures, LLC Shoe
USD1000774S1 (en) 2022-06-24 2023-10-10 Blakely Ventures, LLC Shoe

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132930A1 (en) * 2014-03-06 2015-09-11 日立金属株式会社 Fluorine-containing elastomer composition, and insulated wire and cable using same
CN105949569A (en) * 2016-05-27 2016-09-21 姹や寒 Environment-friendly and aging-resistant power cable insulating material and preparation method thereof
JP6810888B2 (en) * 2016-11-18 2021-01-13 日立金属株式会社 Manufacturing method of fluorine-containing elastomer coated insulated wire
CN110475816B (en) * 2017-03-31 2022-01-28 索尔维特殊聚合物意大利有限公司 Method for producing a cured part
CN109867890B (en) * 2017-12-05 2022-01-07 日立金属株式会社 Insulated wire
JP6575777B2 (en) * 2018-02-14 2019-09-18 日立金属株式会社 Electrical wire
JP6730359B2 (en) * 2018-04-03 2020-07-29 日立金属株式会社 Insulated wire
CN108586866A (en) * 2018-04-19 2018-09-28 苏州耐思特塑胶有限公司 A kind of preparation method and applications of flame retardant type CABLE MATERIALS
JP6583518B1 (en) * 2018-11-28 2019-10-02 横浜ゴム株式会社 Rubber composition for conveyor belt and conveyor belt
CN114752137B (en) * 2022-03-22 2023-08-29 金发科技股份有限公司 Flame-retardant polyolefin material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025460A1 (en) * 1995-02-16 1996-08-22 Chisso Corporation Crystalline polyolefin resin composition and electrical insulation parts made from said composition
JPH0992055A (en) * 1995-09-27 1997-04-04 Sumitomo Bakelite Co Ltd Manufacture of flame resisting foam bridging polyolefine insulating electric wire
JPH10324783A (en) * 1997-05-23 1998-12-08 Nippon Unicar Co Ltd Composition for flame resistant insulation cover
JP2009140683A (en) * 2007-12-05 2009-06-25 Hitachi Cable Ltd Fluorine-containing elastomer coated wire
JP2010186585A (en) * 2009-02-10 2010-08-26 Hitachi Cable Ltd Fluorine-contained elastomer covered cable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119515A (en) * 2005-10-25 2007-05-17 Swcc Showa Cable Systems Co Ltd Electrical insulating composition and insulated wire
CN101280084A (en) * 2008-05-28 2008-10-08 上海长园电子材料有限公司 Flame-retardant heat shrinkable sleeve
CN101928456B (en) * 2010-08-24 2011-12-14 湖北科普达实业有限公司 Thermoplastic polyurethane elastic special jacket material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025460A1 (en) * 1995-02-16 1996-08-22 Chisso Corporation Crystalline polyolefin resin composition and electrical insulation parts made from said composition
JPH0992055A (en) * 1995-09-27 1997-04-04 Sumitomo Bakelite Co Ltd Manufacture of flame resisting foam bridging polyolefine insulating electric wire
JPH10324783A (en) * 1997-05-23 1998-12-08 Nippon Unicar Co Ltd Composition for flame resistant insulation cover
JP2009140683A (en) * 2007-12-05 2009-06-25 Hitachi Cable Ltd Fluorine-containing elastomer coated wire
JP2010186585A (en) * 2009-02-10 2010-08-26 Hitachi Cable Ltd Fluorine-contained elastomer covered cable

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199806A (en) * 2014-04-07 2015-11-12 日立金属株式会社 Fluorine-containing elastomer composition, and insulated wire and cable using the same
USD982304S1 (en) 2022-06-24 2023-04-04 Blakely Ventures, LLC Shoe last
USD1000773S1 (en) 2022-06-24 2023-10-10 Blakely Ventures, LLC Shoe
USD1000795S1 (en) 2022-06-24 2023-10-10 Blakely Ventures, LLC Shoe
USD1000774S1 (en) 2022-06-24 2023-10-10 Blakely Ventures, LLC Shoe
USD1020202S1 (en) 2022-06-24 2024-04-02 Blakely Ventures, LLC Shoe
USD1020203S1 (en) 2022-06-24 2024-04-02 Blakely Ventures, LLC Shoe
USD1020201S1 (en) 2022-06-24 2024-04-02 Blakely Ventures, LLC Shoe
USD1020205S1 (en) 2022-06-24 2024-04-02 Blakely Ventures, LLC Shoe
USD1020204S1 (en) 2022-06-24 2024-04-02 Blakely Ventures, LLC Shoe
USD1020198S1 (en) 2022-06-24 2024-04-02 Blakely Ventures, LLC Shoe
USD1021360S1 (en) 2022-06-24 2024-04-09 Blakely Ventures, LLC Shoe
USD1022424S1 (en) 2022-06-24 2024-04-16 Blakely Ventures, LLC Shoe
USD1022423S1 (en) 2022-06-24 2024-04-16 Blakely Ventures, LLC Shoe
USD1024514S1 (en) 2022-06-24 2024-04-30 Blakely Ventures, LLC Shoe
USD1024515S1 (en) 2022-06-24 2024-04-30 Blakely Ventures, LLC Shoe
USD1024516S1 (en) 2022-06-24 2024-04-30 Blakely Ventures, LLC Shoe
USD1027409S1 (en) 2022-06-24 2024-05-21 Blakely Ventures, LLC Shoe

Also Published As

Publication number Publication date
JP2014006969A (en) 2014-01-16
CN104205248A (en) 2014-12-10
JP5425973B2 (en) 2014-02-26
CN104205248B (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5425973B2 (en) Heat resistant flame retardant insulated wire
JP6229942B2 (en) Insulated wires for railway vehicles and cables for railway vehicles
JP2009051918A (en) Flame-retardant insulated wire
JP2006310093A (en) Non-halogen-based insulated electric wire and wire harness
JP2015000913A (en) Non-halogen flame-retardant resin composition, and wires and cables prepared using the same
US20140141240A1 (en) Halogen-free resin composition, electric wire and cable
JP2007512394A (en) Non-halogen polymer composition and electric wire for automobile using the same
JP2011233459A (en) Insulated wire
WO2015182106A1 (en) Vehicle-mounted electrical wire and cable
WO2014010509A1 (en) Heat-resistant flame-retardant resin composition, insulated electric wire, and tube
JP5526164B2 (en) Flame retardant wire / cable
EP3139389A1 (en) Insulated electric wire and cable using halogen-free flame-retardant resin composition
JP2013161572A (en) Heat-resistant electric wire
JP2008097918A (en) Non-halogen flame-resistant wire excelling in terminal workability
CA3064772A1 (en) Fire retardant cables formed from halogen-free and heavy metal-free compositions
JP2016103414A (en) Electric wire coating material composition, insulated electric wire and wire harness
JP2015193689A (en) Flame-retardant composition and insulated wire using the same
JP2015199806A (en) Fluorine-containing elastomer composition, and insulated wire and cable using the same
JP2013004264A (en) Heat-resistant electric wire
JP2021187970A (en) Resin composition, resin coating material, wire harness for automobile, and method for manufacturing wire harness for automobile
JP2001166188A (en) Fire-retardant cable with fewer coated optical fibers
JP2010053198A (en) Flame-retardant composition for use in cover of electric wire and cable, and electric wire and cable
JP3445119B2 (en) Flame retardant composition and flame retardant electric wire / cable using the same
JP2013191426A (en) Incombustible heat-resistant insulated cable
JP2000265011A (en) Flame-retarded resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806146

Country of ref document: EP

Kind code of ref document: A1