WO2013186846A1 - Program and electronic device - Google Patents

Program and electronic device Download PDF

Info

Publication number
WO2013186846A1
WO2013186846A1 PCT/JP2012/064949 JP2012064949W WO2013186846A1 WO 2013186846 A1 WO2013186846 A1 WO 2013186846A1 JP 2012064949 W JP2012064949 W JP 2012064949W WO 2013186846 A1 WO2013186846 A1 WO 2013186846A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
waveform data
lra
drive command
vibration pattern
Prior art date
Application number
PCT/JP2012/064949
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 康浩
谷中 聖志
裕一 鎌田
矢吹 彰彦
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/064949 priority Critical patent/WO2013186846A1/en
Priority to JP2014520832A priority patent/JP5962757B2/en
Publication of WO2013186846A1 publication Critical patent/WO2013186846A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present invention relates to a program for driving an actuator and an electronic device.
  • the vibration operation according to the conventional vibration pattern only plays an auxiliary role by using a predetermined function or operation together.
  • the first waveform data of the drive command that is vibrated m times, the second waveform data of the drive command that stops the excitation of the actuator at a position other than the center point of the amplitude, or the condition of the first waveform data and the second waveform data
  • each recognized code information is used as the vibration pattern.
  • the computer executes a process of converting and outputting a drive command to the actuator based on the converted waveform data of the vibration pattern.
  • FIG. 1 is a diagram for explaining a difference in tactile sensation due to a difference in vibration acceleration.
  • FIG. 1A is a diagram showing a waveform 11 of acceleration of vibration generated when the accelerometer 1 is attached to a human finger and the button 2 is pressed.
  • FIG. 1B is a diagram illustrating a waveform 12 of acceleration of vibration generated when the accelerometer 1 is attached to a human finger and a touch panel 3 to which an LRA (Linear Resonant Actuator) is attached is touched.
  • the button 2 is, for example, a metal dome type button.
  • the button 2 and the touch panel 3 are provided on the electronic device.
  • the vibration indicated by waveform 11 is rapidly damped in one to several cycles.
  • the vibration indicated by the waveform 12 continues until the free vibration due to the natural frequency of the LRA is attenuated even after the supply of the drive command is stopped.
  • a human finger cannot sense vibration when the vibration acceleration is 0.02 G or less at a vibration frequency of 200 Hz.
  • the vibration frequency is the number of vibrations per second.
  • the acceleration of vibration indicates the speed change amount of vibration per unit time.
  • FIG. 2 is a diagram showing the sensitivity of an organ that detects acceleration included in human tissue.
  • human mechanical stimulation receptors Merkel cells (displacement), Meissner bodies (velocity), and pachini bodies (acceleration).
  • Patini bodies are one of the four major mechanoreceptors found primarily in the skin.
  • the finger since the acceleration of the vibration is 0.02 G or less within 0.01 sec, the finger does not sense the vibration.
  • waveform 12 0.1 sec is required until the acceleration of vibration becomes 0.02 G or less, and the finger continues to sense vibration until 0.1 sec elapses. Therefore, the vibration indicated by the waveform 11 and the vibration indicated by the waveform 12 are completely different from one another perceived by humans, and the waveform 11 gives a sharper tactile feel.
  • the vibration pattern of the LRA by devising the vibration pattern of the LRA and reproducing the sharp tactile vibration such as a click feeling on the touch panel or the housing, information is allocated to this vibration and the information is transmitted to the user. .
  • FIG. 3 is a diagram illustrating a cross-sectional structure of the electronic apparatus according to the embodiment.
  • the electronic device of an Example should just be an apparatus which has as an input means the touchscreen which has a display function and an input function, for example.
  • the electronic device according to the embodiment may be a smartphone, a tablet computer, a portable terminal, or the like.
  • the electronic device 100 may be any device that uses the touch panel 120 as an input operation unit. Therefore, the electronic device 100 is not limited to a mobile terminal such as a smartphone, and is installed in a specific place such as ATM (Automatic Teller Machine). The electronic device used may be used.
  • a mobile terminal such as a smartphone
  • ATM Automatic Teller Machine
  • the electronic device 100 of the embodiment includes a housing 110, a touch panel 120, a double-sided tape 130, an LRA 140, and a substrate 150.
  • the double-sided tape 130 is merely an example, and any one can be used as long as the case 110 and the touch panel 120 are bonded to each other.
  • the touch panel 120 is fixed to the housing 110 by the double-sided tape 130.
  • the LRA 140 is attached to the surface of the touch panel 120 on the housing side.
  • the LRA 140 is a combination of a vibration system having a resonance frequency designed in advance and an actuator.
  • the LRA 140 is a vibration device that generates vibration by driving mainly at the resonance frequency. The amount of vibration changes depending on the amplitude of the drive waveform. .
  • LRA is also called a linear resonance actuator.
  • the LRA 140 is not limited to the LRA as long as it has a resonator and a vibration actuator.
  • the substrate 150 is disposed inside the housing 110.
  • the board 150 is mounted with a driver IC (Integrated Circuit) that outputs a drive command to the LRA 140 in order to control the drive of the LRA 140.
  • driver IC Integrated Circuit
  • the electronic device 100 When the user's finger touches the touch panel 120, the electronic device 100 according to the embodiment senses this contact and drives the LRA 140 by the driving device mounted on the substrate 150 to propagate the vibration of the LRA 140 to the touch panel 120.
  • the electronic device 100 converts character information into a vibration pattern by a character information providing application described later, drives the LRA 140 with the vibration pattern, and propagates the vibration of the LRA 140 to the touch panel 120 or the housing 110.
  • FIG. 4 is a diagram showing a cross-sectional structure of two types of LRA.
  • FIG. 4A is a diagram showing an example of LRA using a voice coil
  • FIG. 4B is a diagram showing an example of LRA using a piezoelectric element.
  • the 4A includes a spring 31, a magnet 32, and a coil 33.
  • An LRA 40 illustrated in FIG. 4B includes a weight 41, a beam 42, and a piezoelectric element 43.
  • the mass of the weight 41 is m
  • the Young's modulus of the beam 42 is E
  • the cross-sectional secondary moment of the beam 42 is I
  • the natural frequency f0 is expressed by the following formula 2.
  • L is the length of the beam 42 in the longitudinal direction.
  • the LRA 30 using a voice coil may be applied, or the LRA 40 using the piezoelectric element 43 may be applied.
  • FIG. 5 is a diagram illustrating the driving device of the embodiment.
  • waveform data that generates a sharp tactile sensation when touching (operating) the touch panel 120 and a driving device that drives the waveform data will be described.
  • the driving device 200 includes a CPU (Central Processing Unit) 210 and a memory 220.
  • the CPU 210 reads and executes the drive control program 230 stored in the memory 220, thereby performing drive processing of the LRA 140 described later.
  • the memory 220 is provided with a storage area for storing a drive control program 230 for controlling the driving of the LRA 140, a storage area for storing waveform data 240, and a storage area for storing an API (Application Programming Interface) 250. It has been.
  • a drive control program 230 for controlling the driving of the LRA 140
  • a storage area for storing waveform data 240 for storing waveform data 240
  • an API Application Programming Interface
  • the drive control program 230 causes the CPU 210 to execute drive control of the LRA 140.
  • the waveform data 240 is drive waveform data generated in advance in order to realize a click feeling by vibration generated by the LRA 140. Details of the waveform data 240 will be described later.
  • the API 250 is activated by the drive control program 230 and performs various processes for providing a tactile sensation.
  • the API 250 is stored in the memory 220 in FIG. 5, but may be stored in another memory mounted on the board 150.
  • FIG. 6 is a flowchart for explaining LRA driving by the driving apparatus of the embodiment.
  • the driving device 200 of the embodiment activates the API 250 (step S602) when detecting contact with the touch panel 120 (step S601). Specifically, the driving device 200 may activate the API 250 when, for example, there is a touch on a button displayed on the touch panel 120.
  • the API 250 reads the waveform data 240 stored in the memory 220 and outputs a drive command corresponding to the waveform data 240 to the driver IC 260 (step S603).
  • the driver IC 260 performs D / A (Digital-to-Analog) conversion on the waveform data 240 (step S604), and amplifies it with an amplifier or the like (step S605).
  • the driver IC 260 outputs the amplified signal to the LRA 140 (step S606).
  • the waveform data 240 of the embodiment will be described below.
  • a sharp tactile sensation such as a click feeling is realized by changing the LRA vibration pattern using three methods.
  • the first method is a method of suppressing free vibration due to the natural frequency of the LRA that continues even after the supply of the drive command is stopped.
  • free vibration due to the natural frequency of the LRA that continues even after the supply of the drive command is stopped is referred to as residual vibration.
  • the vibration of the LRA 140 stops in one to several cycles when a drive command that satisfies a specific condition described later is supplied to the LRA 140.
  • a drive command that satisfies a specific condition is applied to the LRA 140 to stop the residual vibration, thereby generating a vibration that rapidly attenuates in one to several cycles, thereby realizing a click feeling.
  • FIG. 7 is a diagram for explaining the operation principle of the LRA
  • FIG. 8 is a diagram illustrating an example of an input waveform applied to the LRA.
  • the LRA 140 When the sine wave F is applied to the LRA 140, the LRA 140 generates a vibration having a natural frequency (resonance frequency) f0 of the LRA 140. That is, the LRA 140 generates a combined wave in which the sine wave F having the frequency f1 and the sine wave having the natural frequency f0 of the LRA 140 are combined, and the LRA 140 is displaced according to the combined wave.
  • FIG. 9 is a diagram for explaining the displacement of the LRA.
  • FIG. 9A is a first diagram for explaining the displacement
  • FIG. 9B is a second diagram for explaining the displacement.
  • a waveform y1 indicated by a dotted line indicates a forced vibration component of vibration displacement generated when the sine wave F is applied to the LRA 140
  • a waveform y2 indicated by a solid line indicates a free vibration component.
  • the response displacement y3 when the drive waveform F is applied to the LRA 140 is a composite wave of the waveform y1 and the waveform y2.
  • FIG. 9B is a diagram illustrating an example of a composite wave y3 of the waveform y1 and the waveform y2. It can be seen that the synthesized wave y3 becomes 0 at the timing T when the input sine wave F becomes 0.
  • FIG. 10 is a diagram showing an example of the vibration speed and vibration acceleration of the LRA.
  • FIG. 10A is a diagram showing the waveform of the composite wave y3
  • FIG. 10B is a diagram showing a waveform y3 ′ of the velocity obtained by differentiating the displacement of the composite wave y3
  • FIG. It is a figure which shows the waveform y3 '' of the acceleration obtained by differentiating the displacement of the synthetic wave y3 twice.
  • the velocity waveform y3 ′ and the acceleration waveform y3 ′′ become 0 when the synthesized wave y3 becomes 0. That is, the vibration of the LRA 140 stops at the timing T.
  • the acceleration waveform y3 ′′ stops in two cycles within 0.01 sec. Therefore, in the example of FIG. 10, when the acceleration of vibration becomes 0.02 G or less within 0.01 sec and the button 2 is clicked. A feeling can be realized.
  • FIG. 11 is a diagram showing the acceleration of displacement of the LRA when a sine wave having the natural frequency of the LRA is used as a drive command.
  • FIG. 11B shows the acceleration of displacement when simulating the sine wave of FIG. 11A as a drive command.
  • the vibration acceleration of the touch panel 120 is measured by installing an accelerometer in the center of the touch panel 120.
  • FIG. 12 shows a conventional method in which a drive signal having a natural frequency is applied to the LRA 140 and a signal waveform having a phase opposite to that of the residual vibration is applied.
  • FIG. 12B shows a case where the sine wave of FIG. 12A is used as a drive signal and a voltage having a phase opposite to the vibration generated in the LRA 140 is applied after the supply of the drive signal is stopped in an actual machine equipped with the LRA 140. It is a measurement result of response acceleration in an actual electronic device.
  • the residual vibration is smaller than that of FIG. 11, but it takes 0.05 sec or more before the acceleration of vibration becomes 0.02 G or less of the human detection lower limit.
  • FIG. 13 is a diagram showing the acceleration of the displacement of the LRA when a signal that does not satisfy a specific condition is used as a drive signal.
  • FIG. 13 (A) shows a sine wave with a frequency of 300 Hz that does not satisfy a specific condition.
  • FIG. 13B shows the acceleration of vibration when a simulation is performed using the sine wave of FIG. 13A as a drive command.
  • FIG. 14 is a diagram showing the acceleration of vibration of the LRA when a signal satisfying a specific condition is used as a drive signal.
  • FIG. 14B shows the acceleration of vibration when a simulation is performed using the sine wave of FIG. 14A as a drive command.
  • the acceleration of the residual vibration is 0.02 G or less of the detection lower limit, and the vibration waveform is a short-time waveform.
  • the natural frequency f0 may be the natural frequency of the LRA 140 after the LRA 140 is incorporated into the electronic device 100.
  • the frequency f1 is preferably set so that the error is 1% or less with respect to m / n ⁇ f0. If the frequency f1 is set in this way, even if residual vibration occurs after the application of the drive command is stopped, the acceleration of the vibration is 0.02G or less, which is the lower limit of human detection, and is not detected by humans. There is no loss of such a sharp touch.
  • the touch panel 120 itself fixed to the housing 110 is also a vibrating body that vibrates at a high frequency.
  • the drive command for the LRA 140 is used as a signal for stopping the excitation of the LRA 140 when the amplitude reaches its peak, and the high frequency vibration of the touch panel 120 itself is excited to rapidly attenuate in one to several cycles. Generates vibration and realizes a sharp tactile sensation like a click.
  • FIG. 15 is a diagram for explaining excitation of vibration by the resonance frequency of the touch panel.
  • FIG. 15A shows a sine waveform of a drive command applied to the LRA 140
  • FIG. 15B shows a waveform of acceleration of vibration of the LRA 140.
  • the drive command is a voltage.
  • the resonance frequency of the LRA 140 is 225 Hz
  • the resonance frequency of the touch panel 120 is 1 kHz. That is, it can be said that the vibration of the LRA 140 is a low-frequency vibration, and the vibration of the touch panel 120 is a high-frequency vibration.
  • the resonance frequency of the touch panel 120 is a resonance frequency in a state where the four sides of the touch panel 120 are fixed to the housing 110.
  • the drive command is a signal for stopping the excitation to the LRA 140 at the point P ⁇ b> 1 where the amplitude reaches a peak.
  • the amplitude of the drive command shown in FIG. 15A becomes 0 immediately after the excitation to the LRA 140 is stopped.
  • the vibration of the LRA 140 is removed from the harmonic vibration by setting the amplitude of the drive command to 0 from the peak.
  • the drive time of the LRA 140 by the drive command is set to 7/4 period, and the point P1 at which the amplitude reaches the peak is the end of the drive command. Note that the end of the drive command is a point at which the vibration to the LRA 140 is stopped.
  • the drive command by the second method may be a drive command for stopping the excitation of the LRA 140 at a point other than the center point of the amplitude.
  • FIG. 16 is a diagram illustrating acceleration of vibration of the touch panel when the voltage of the resonance frequency of the LRA is used as a drive command.
  • the acceleration of vibration of the touch panel 120 when attempting to realize a sharp tactile sensation by shortening the drive time of the LRA 140 is shown.
  • the vibration of the touch panel 120 requires a rise time for amplifying the vibration amount and a time until the acceleration of the amplified vibration is attenuated to 0.02 G or less, even if the driving time of the LRA 140 is shortened.
  • the vibration continues for several cycles. In the example of FIG. 16, it can be seen that it takes about 25 msec from the rise to the decay, and the vibration continues for about 4 cycles. Therefore, it is difficult to provide a sharp touch such as a click feeling.
  • FIG. 17 is a diagram illustrating an example in which the location for exciting the high-frequency vibration is shifted.
  • FIG. 17A shows a sine waveform of a drive command applied to the LRA 140
  • FIG. 17B shows a waveform of vibration acceleration of the LRA 140.
  • the drive command ends at a point P2 slightly deviated from the amplitude peak.
  • the terminal P2 of the drive command is shifted from the amplitude peak, so the acceleration of the superimposed low frequency vibration is smaller than the maximum value, and the acceleration peak of the high frequency vibration is the value shown in FIG. Although smaller than the above, the same effect as the example of FIG. 15 can be obtained.
  • a signal that satisfies the specific condition described in the first method and ends at a point where the amplitude reaches a peak as described in the second method is used as a drive command.
  • the waveform data of the drive command by the third method is waveform data that satisfies the conditions of the waveform data by the first method and the conditions of the waveform data by the second method.
  • FIG. 18 is a diagram illustrating an example of an LRA drive command according to the third method of the embodiment.
  • 18A shows the waveform of the drive command G by the third method
  • FIG. 18B shows the acceleration of the vibration of the touch panel 120 when the drive command G by the third method is applied to the LRA 140.
  • FIG. FIG. 18A shows the waveform of the drive command G by the third method
  • FIG. 18B shows the acceleration of the vibration of the touch panel 120 when the drive command G by the third method is applied to the LRA 140.
  • the drive command G according to the third method terminates at a point P3 at which the amplitude becomes the maximum value.
  • the drive command G is a cosine wave with a ⁇ / 2 phase shifted from the sine wave waveform so that the drive command G is a signal having an m period and whose amplitude peak ends.
  • the drive command G according to the third method can be a signal that satisfies a specific condition and whose end has a peak amplitude.
  • the resonance frequency of the touch panel 120 is set to the resonance frequency in a state where the four sides of the touch panel 120 are fixed to the housing 110.
  • the resonance frequency of the touch panel 120 is the resonance frequency of the touch panel 120 in a state where the touch panel 120 is incorporated in the housing 110, for example, when the LRA 140 is disposed inside the housing 110.
  • the waveform data 240 of the driving device 200 of the embodiment is, for example, waveform data including waveform data of the drive command G.
  • the waveform data 240 includes the frequency f1, the amplitude, the phase, the period (value of m), and the like of the drive command G.
  • the waveform data 240 of the embodiment may include an expression representing the waveform of the drive command G.
  • the waveform data 240 of the embodiment may be drive command waveform data by the first method or the second method.
  • the driving device 200 can generate vibration that senses a sharp tactile sensation by using waveform data obtained by any one of the first to third methods.
  • step S603 of FIG. 6 the driving device 200 of the embodiment reads out, for example, waveform data 240 indicating the driving command G by the API 250, and outputs a driving command corresponding to the waveform data 240 to the driver IC 260.
  • the driver IC 260 D / A converts and amplifies the waveform data 240 and outputs it to the LRA 140.
  • FIG. 19 is a diagram showing an input waveform for the LRA of the example.
  • the waveform shown in FIG. 19 shows the force applied to the LRA 140 by applying the drive command G to the LRA 140.
  • the waveform shown in FIG. 19 is a cosine wave G1 in which the phase of the sine wave F is shifted by ⁇ / 2 when the frequency of the drive command G is f1.
  • the LRA 140 When the cosine wave G1 is applied to the LRA 140, the LRA 140 starts to vibrate at the natural frequency f0 (that is, the resonance frequency) of the LRA 140. That is, a combined wave of the cosine wave G1 having the frequency f1 and the cosine wave having the natural frequency f0 of the LRA 140 is applied to the LRA 140, and the LRA 140 is displaced according to the combined wave.
  • FIG. 20 is a diagram for explaining displacement when a synthetic wave is applied to the LRA of the embodiment.
  • FIG. 20A is a first diagram for explaining the displacement
  • FIG. 20B is a second diagram for explaining the displacement.
  • a waveform y11 indicated by a dotted line indicates a forced vibration component of vibration displacement generated when a cosine wave G1 is applied to the LRA 140
  • a waveform y12 indicated by a solid line indicates a free vibration component.
  • the response displacement y13 when the cosine wave G1 is applied to the LRA 140 is a composite wave of the waveform y11 and the waveform y12.
  • FIG. 20B is a diagram illustrating an example of a composite wave y13 of the waveform y11 and the waveform y12. It can be seen that the synthesized wave y13 becomes 0 at the timing T1 when the cosine wave G1 becomes 0.
  • FIG. 21 is a diagram illustrating an example of the vibration speed and vibration acceleration of the LRA according to the embodiment.
  • FIG. 21A shows the waveform of the composite wave y13
  • FIG. 21B shows the velocity waveform y13 ′ obtained by differentiating the displacement of the composite wave y13
  • FIG. It is a figure which shows the waveform y13 '' of the acceleration obtained by differentiating the displacement of the synthetic wave y13 twice.
  • the velocity waveform y13 ′ and the acceleration waveform y13 ′′ become 0 at the timing T1 when the synthesized wave y13 becomes 0. That is, the vibration of the LRA 140 stops at the timing T1.
  • the acceleration waveform y13 ′′ stops in three cycles within 0.01 sec. Therefore, in the embodiment, the acceleration of vibration becomes 0.02 G or less within 0.01 sec, and the metal dome type button 2 is pressed. A sharp tactile sensation such as a click feeling can be realized.
  • the excitation is stopped at the point where the amplitude of the cosine wave G1 reaches a peak.
  • the present invention is not limited to this.
  • the end of the drive command may be any point that can generate a sharp peak that realizes a sharp tactile sensation, for example, in a waveform indicating acceleration of vibration of the touch panel 120.
  • the end of the drive command may be other than 0, which is the center point of the amplitude, and the end of the drive command is better as the point is closer to the amplitude peak.
  • the LRA 140 is attached to the surface of the touch panel 120 on the casing side, but the present invention is not limited to this.
  • the LRA 140 may be disposed in the vicinity of the substrate 150 disposed in the housing 110.
  • FIG. 22 is a diagram illustrating another example of an electronic device in which an LRA is provided in a housing.
  • the LRA 140 is disposed in the vicinity of the substrate 150 provided in the housing 110.
  • the embodiment can also be applied to the electronic device 100A. Further, when the embodiment is applied to the electronic device 100A, it is possible to realize a sharp tactile sensation such as a click feeling when the metal dome type button 2 is pressed, similarly to the electronic device 100 of the embodiment.
  • FIG. 23 is a block diagram illustrating an example of the electronic apparatus 300 according to the embodiment.
  • 23 includes a display 301, a touch sensor 302, an input unit 303, a signal processing unit 304, a communication unit 305, a driving device 200, a driver IC 260, an LRA 140, a recording medium I / F section 308 is provided.
  • the display 301 is an LCD (Liquid Crystal Display), for example, and displays display data from the CPU 310.
  • the touch sensor 302 detects contact with the display surface, and notifies the CPU 310 of the detected coordinates on the display surface.
  • the display 301 and the touch sensor 302 are included in the touch panel 120.
  • the input unit 303 detects, for example, a button press and notifies the CPU 310 of information on which button is pressed.
  • the signal processing unit 304 performs predetermined signal processing on the data acquired from the communication unit 305.
  • the communication unit 305 performs data communication with an external device.
  • the external device is, for example, a mail server or a cloud server.
  • the recording medium I / F (interface) unit 308 is an interface between the electronic device 300 and a recording medium 309 (for example, a flash memory) connected via a data transmission path such as USB (Universal Serial Bus).
  • a recording medium 309 for example, a flash memory
  • USB Universal Serial Bus
  • a predetermined program is stored in the recording medium 309, and the program stored in the recording medium 309 is installed in the electronic device 300 via the recording medium I / F unit 308.
  • the installed predetermined program can be executed by the electronic device 300.
  • the driving device 200 includes a CPU 310 and a memory 320.
  • the CPU 310 functions as a character information providing application described later by executing a character information providing program 306 described later.
  • the memory 320 stores the drive control program 230, the waveform data 240, the API 250, the character information providing program 306, and the table 307.
  • the character information provision program 306 is a program that causes the CPU 310 to function a character information provision application in cooperation with the drive control program 230 and the API 250. Details of the character information providing program 306 will be described later.
  • the table 307 is a table in which information about characters and vibration patterns are associated with each other, and is also referred to as related information.
  • the information regarding characters is, for example, code information or text.
  • CPU 310 detects an event for providing character information
  • CPU 310 starts character information providing program 306 and executes a character information providing application.
  • the character information providing application is an application that provides character information by vibration.
  • FIG. 24 is a block diagram illustrating an example of a function for providing character information.
  • the electronic device 300 includes an event detection unit 410, a character information provision unit 420, and a drive unit 430.
  • the character information providing unit 420 includes a recognition unit 421 and a conversion unit 422.
  • the event detecting unit 410 When the event detecting unit 410 detects an event for providing character information, the event detecting unit 410 notifies the character information providing unit 420 to that effect.
  • the event for providing text information is, for example, selection of a vibrator mail indicating a function of providing a mail text by vibration, selection of a vibrator providing function indicating a function of providing contents by vibrate while character information is displayed, etc. It is.
  • the character information provision unit 420 Upon receipt of the notification from the event detection unit 410, the character information provision unit 420 causes the recognition unit 421 to analyze the character information.
  • the recognition unit 421 analyzes the character information to be recognized and recognizes the code information. For example, the recognition unit 421 analyzes character information character by character and recognizes corresponding code information.
  • the code information is, for example, alphabets, kana characters, numbers or the like.
  • the recognition unit 421 notifies the conversion unit 422 of the recognized code information.
  • the conversion unit 422 converts the code information acquired from the recognition unit 421 into a vibration pattern with reference to the table 307 (related information).
  • the related information is information in which a vibration pattern including vibration obtained from the waveform data of any of the first to third methods is associated with each code information.
  • the conversion unit 422 notifies the drive unit 430 of a drive command based on the converted vibration pattern.
  • the vibration obtained from the waveform data in any of the first to third methods is, for example, vibration within 20 msec (see, for example, FIG. 14C).
  • the drive unit 430 controls the drive of the LRA 140 according to the drive command notified from the conversion unit 422.
  • the recognition unit 421 can be executed as a function of the character information provision program 306, and the conversion unit 422 can be executed as a function of the API 250.
  • the drive unit 430 can be executed by the driver IC 260, for example.
  • FIG. 25 is a diagram illustrating an example of related information (part 1).
  • the example shown in FIG. 25 is an example in which each alphabet is assigned to the Morse code. Similar to the Morse code pattern, two types of waveforms are used: short vibrations of 100 ms or less corresponding to short points and long points, and long vibrations exceeding 200 ms. Further, in the embodiment, a vibration capable of obtaining a sharp tactile sensation of 20 msec or less can be generated. Therefore, two types of waveforms may be generated using this vibration.
  • Morse code patterns can be vibrated as they are.
  • a vibration pattern such as LRA, which is a conventional vibrator, it has been difficult to provide a sharp vibration in a short time (for example, 100 msec), but a vibration pattern corresponding to a short point can be realized by using the disclosed vibration waveform. For this reason, it is possible to realize vibration equivalent to the Morse code even with a vibrator such as LRA.
  • FIG. 26 is a diagram illustrating an example of related information (part 2).
  • the example shown in FIG. 26 is an example in which each alphabet is assigned to a unique vibration pattern.
  • two types of waveforms a short vibration of 100 msec or less and a long vibration exceeding 200 msec, are used.
  • three types of waveforms including a vibration pattern that applies vibration twice in 100 msec, or four or more types of waveforms. It is also possible to set vibration pattern assignment in advance and share the vibration pattern with each user.
  • FIG. 27 is a diagram illustrating an example of related information (part 3).
  • the example shown in FIG. 27 is an example in which 50 sounds are assigned to a unique vibration pattern.
  • two types of waveforms a short vibration of 100 msec or less and a long vibration exceeding 200 msec, are used as in FIG.
  • FIG. 28 is a diagram showing an example of related information (part 4).
  • the example shown in FIG. 28 is an example in which words and sentences are assigned to unique vibration patterns.
  • two types of waveforms a short vibration of 100 msec or less and a long vibration exceeding 200 msec, are used.
  • three types of waveforms including a vibration pattern that applies vibration twice in 100 msec, or four or more types of waveforms. It is also possible to set vibration pattern assignment in advance and share the vibration pattern with each user.
  • a signal waveform for driving the LRA 140 may be displayed, but an acceleration waveform on the touch panel can also be displayed.
  • FIG. 29 is a diagram showing a procedure for selecting a vibrator mail.
  • the electronic device 300 receives a mail from the mail server 500.
  • the mail text is, for example, “HELLO”.
  • the user has selected vibrator mail.
  • the color of the vibrator mail selection button changes as shown in FIG.
  • the event detecting unit 410 When the event detecting unit 410 detects that the user has selected the vibrator mail, the event detecting unit 410 notifies the character information providing unit 420 to that effect.
  • the character information providing unit 420 When notified by the event detection unit 410, the character information providing unit 420 provides the mail text by vibration.
  • FIG. 30 is a diagram illustrating an example of vibration.
  • FIG. 30A shows a case where the vibration pattern is assigned to the Morse signal.
  • the electronic device 300 vibrates in a vibration pattern representing “HELLO” by a Morse signal.
  • FIG. 30B shows a case where the vibration pattern is assigned to the alphabet. As shown in FIG. 30B, the electronic device 300 vibrates in a vibration pattern representing “HELLO” by the assigned alphabet.
  • FIG. 30C shows the case where the vibration pattern is assigned to 50 sounds. As shown in FIG. 30C, the electronic device 300 vibrates in a vibration pattern representing “HELLO” with the assigned 50 sounds.
  • FIG. 30D shows a case where the vibration pattern is assigned to a user-defined fixed phrase. As shown in FIG. 30 (D), the electronic device 100 is vibrated by the vibration pattern representing the "Hello (in Japanese Hello)" in the assigned fixed sentence.
  • FIG. 31 is a diagram illustrating an example in which a user assigns vibration patterns independently.
  • the user A associates the sentence illustrated in FIG. 28 with the vibration pattern.
  • the related information associated is stored on the server 600 via the network using one function of the character information providing application.
  • the related information stored in the server 600 can be shared among, for example, several groups.
  • the server 600 can download related information to a specific user by using a user authentication function.
  • Each user when the authentication with respect to the server 600 is successful, downloads related information stored in the server 600 via the network using one function of the character information providing application.
  • the server 600 is a cloud server, for example, and can provide uploading and downloading of related information as a cloud service.
  • the text information providing application first analyzes the character information and recognizes the code information. Next, the text information providing application refers to the related information that associates the vibration pattern generated from the waveform data of any one of the first to third methods with each code information, and recognizes the recognized code information. Convert to vibration pattern. Next, the text information providing application outputs a drive command to the LRA 140 based on the converted waveform data of the vibration pattern.
  • FIG. 32 is a flowchart illustrating an example of character information provision processing in the embodiment.
  • step S701 the character information providing unit 420 acquires character information.
  • the character information is, for example, a mail text or a character string displayed on the display 301.
  • step S702 the recognition unit 421 recognizes the code information by analyzing the character information and encoding the character information.
  • step S703 the conversion unit 422 converts the recognized code information into a vibration pattern with reference to the table 307 (related information).
  • step S704 the character information providing unit 420 issues a drive command to the drive unit 430 to drive the LRA 140 according to the converted vibration pattern. Thereby, the user can recognize character information by recognizing a vibration pattern.
  • information can be transmitted by the vibration pattern using the vibration that can provide a sharp tactile sensation.
  • character information can be provided in a shorter time than before by using a vibration that provides a sharp tactile sensation.
  • the computer can perform the character information providing process in the embodiment. For example, it is possible to record the program on a recording medium and cause the electronic device to read the recording medium on which the program is recorded, thereby realizing the character information providing process described above.
  • the recording medium is a recording medium that records information optically, electrically or magnetically, such as a CD-ROM, flexible disk, magneto-optical disk, etc., and information is electrically recorded such as ROM, flash memory, etc.
  • Various types of recording media such as a semiconductor memory can be used.
  • the recording medium does not include a transient medium such as a carrier wave.

Abstract

A program that causes a computer to analyse character information, recognize each piece of code information, and browse associated information associating each piece of code information and vibration patterns including vibrations obtained from one waveform data among first waveform data, second waveform data, and third waveform data. The program then causes the computer to convert each recognized piece of code information into vibration patterns and output drive commands on the basis of the waveform data for the converted vibration pattern. The first waveform data is for a drive command that excites m times using a frequency f1 = m/n × f0 (m and n being a natural number and m ≠ n), when the resonance frequency of an actuator is f0. The second waveform data is for a drive command that stops the excitation of the actuator at a point other than the center of the amplitude. The third waveform data fulfills the conditions for the first waveform data and the conditions for the second waveform data.

Description

プログラム及び電子機器Programs and electronic devices
 本発明は、アクチュエータを駆動させるプログラム及び電子機器に関する。 The present invention relates to a program for driving an actuator and an electronic device.
 従来、タッチパネルを入力手段とする電子機器がある。このタッチパネルは、タッチパネルに対する接触を入力操作として受け付けるものである。そのため従来のタッチパネルでは、操作に応じた触感などを実現するデバイスの搭載が望まれていた。 Conventionally, there are electronic devices that use a touch panel as an input means. This touch panel accepts a touch on the touch panel as an input operation. For this reason, it has been desired that a conventional touch panel be equipped with a device that realizes a tactile sensation according to an operation.
 そこで近年では、例えばLRA(Linear Resonant Actuator)による振動を利用して操作に応じた触感を提供することが考えられている。 Therefore, in recent years, for example, it has been considered to provide a tactile sensation according to the operation by using vibration by LRA (Linear Resonant Actuator), for example.
特表2008-521597号公報Special table 2008-521597 gazette
 しかしながらLRAを用いた振動では、駆動周波数が低く、また、振動加速度も小さいため、クリック感のような鋭い触感を発生させるのが困難であった。よって、従来の振動パターンによる振動動作は、所定の機能や動作との併用による補助的な役割を果たすに過ぎなかった。 However, in the vibration using LRA, since the driving frequency is low and the vibration acceleration is small, it is difficult to generate a sharp tactile sensation such as a click feeling. Therefore, the vibration operation according to the conventional vibration pattern only plays an auxiliary role by using a predetermined function or operation together.
 そこで開示の技術は、鋭い触感を得られる振動を用いる振動パターンにより情報を伝えることができるプログラム及び電子機器を提供することを目的とする。 Therefore, it is an object of the disclosed technique to provide a program and an electronic device that can transmit information using a vibration pattern that uses vibration that can provide a sharp tactile sensation.
 開示の一態様のプログラムは、文字情報を解析して各コード情報を認識し、アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m、nは自然数かつm≠n)でm回加振する駆動指令の第1波形データ、振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令の第2波形データ、又は前記第1波形データの条件かつ前記第2波形データの条件を満たす第3波形データの何れか一つの波形データから得られる振動を含む振動パターンと、各コード情報とを関連付けた関連情報を参照して、認識された各コード情報を前記振動パターンに変換し、変換された前記振動パターンの波形データに基づき前記アクチュエータに対する駆動指令を出力する処理をコンピュータに実行させる。 The program according to one aspect of the disclosure analyzes character information, recognizes each code information, and when the resonance frequency of the actuator is f0, the frequency f1 = m / n × f0 (m and n are natural numbers and m ≠ n) The first waveform data of the drive command that is vibrated m times, the second waveform data of the drive command that stops the excitation of the actuator at a position other than the center point of the amplitude, or the condition of the first waveform data and the second waveform data With reference to related information that associates each piece of code information with a vibration pattern including vibration obtained from any one of the third waveform data satisfying the condition, each recognized code information is used as the vibration pattern. The computer executes a process of converting and outputting a drive command to the actuator based on the converted waveform data of the vibration pattern.
 開示の技術によれば、鋭い触感を得られる振動を用いる振動パターンにより情報を伝えることができる。 According to the disclosed technology, it is possible to convey information by a vibration pattern using vibration capable of obtaining a sharp tactile sensation.
振動加速度の違いによる触感の違いを説明するための図である。It is a figure for demonstrating the difference in tactile sensation by the difference in vibration acceleration. 人体の組織に含まれる加速度を検出する器官の感度を示す図である。It is a figure which shows the sensitivity of the organ which detects the acceleration contained in the structure | tissue of a human body. 実施例の電子機器の断面構造を示す図である。It is a figure which shows the cross-section of the electronic device of an Example. 2種類のLRAの断面構造を示す図である。It is a figure which shows the cross-sectional structure of two types of LRA. 実施例の駆動装置を説明する図である。It is a figure explaining the drive device of an Example. 実施例の駆動装置によるLRAの駆動を説明するフローチャートである。It is a flowchart explaining the drive of LRA by the drive device of an Example. LRAの動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of LRA. LRAに印加される入力波形の例を示す図である。It is a figure which shows the example of the input waveform applied to LRA. LRAの変位を説明する図である。It is a figure explaining the displacement of LRA. LRAの振動の速度及び振動の加速度の例を示す図である。It is a figure which shows the example of the speed of vibration of LRA, and the acceleration of a vibration. LRAの固有振動数の正弦波を駆動指令としたときのLRAの加速度を示す図である。It is a figure which shows the acceleration of LRA when the sine wave of the natural frequency of LRA is made into a drive command. LRAの固有振動数の正弦波による駆動信号停止後にLRAに発生する振動の逆位相の電圧を振動抑制信号として印加したときのLRAの振動の加速度を示す図である。It is a figure which shows the acceleration of the vibration of LRA when the voltage of the reverse phase of the vibration which generate | occur | produces in LRA after applying the drive signal by the sine wave of the natural frequency of LRA as a vibration suppression signal is applied. 特定の条件を満たさない信号を駆動信号としたときのLRAの加速度を示す図である。It is a figure which shows the acceleration of LRA when the signal which does not satisfy | fill a specific condition is made into a drive signal. 特定の条件を満たす信号を駆動信号としたときのLRAの加速度を示す図である。It is a figure which shows the acceleration of LRA when the signal which satisfy | fills a specific condition is made into a drive signal. タッチパネルの共振周波数による振動の励起を説明する図である。It is a figure explaining excitation of the vibration by the resonant frequency of a touch panel. LRAの共振周波数の電圧を駆動指令としたときのタッチパネルの振動の加速度を示す図である。It is a figure which shows the acceleration of the vibration of a touch panel when the voltage of the resonance frequency of LRA is made into a drive command. 高周波振動を励起する箇所をずらした例を示す図である。It is a figure which shows the example which shifted the location which excites a high frequency vibration. 実施例のLRAの駆動指令の例を示す図である。It is a figure which shows the example of the drive instruction | command of LRA of an Example. 実施例のLRAに対する入力波形を示す図である。It is a figure which shows the input waveform with respect to LRA of an Example. 図19の入力駆動波形を与えることによって得られる振動波形の図であり、LRAの強制振動成分と自由振動成分、合成波示す図である。It is a figure of the vibration waveform obtained by giving the input drive waveform of FIG. 19, and is a figure which shows the forced vibration component of LRA, a free vibration component, and a synthetic wave. 実施例のLRAの振動の速度及び振動の加速度の例を示す図である。It is a figure which shows the example of the speed of vibration of the LRA of an Example, and the acceleration of a vibration. LRAが筐体に設けられた電子機器の他の例を示す図である。It is a figure which shows the other example of the electronic device by which LRA was provided in the housing | casing. 実施例の電子機器の一例を示すブロック図である。It is a block diagram which shows an example of the electronic device of an Example. 文字情報を提供するための機能の一例を示すブロック図である。It is a block diagram which shows an example of the function for providing character information. 関連情報(その1)の一例を示す図である。It is a figure which shows an example of related information (the 1). 関連情報(その2)の一例を示す図である。It is a figure which shows an example of related information (the 2). 関連情報(その3)の一例を示す図である。It is a figure which shows an example of related information (the 3). 関連情報(その4)の一例を示す図である。It is a figure which shows an example of related information (the 4). バイブメールの選択手順を示す図である。It is a figure which shows the selection procedure of a vibe mail. 振動の一例を示す図である。It is a figure which shows an example of a vibration. ユーザが独自に振動パターンを割り当てる例を説明する図である。It is a figure explaining the example which a user assigns a vibration pattern uniquely. 実施例における文字情報提供処理の一例を示すフローチャートである。It is a flowchart which shows an example of the character information provision process in an Example.
 以下、添付された図面を用いて実施例を説明する。 Hereinafter, embodiments will be described with reference to the attached drawings.
 [実施例]
 <操作時の振動>
 まず、操作時にクリック感のような鋭い触感を発生させる波形データや機器について説明する。図1は、振動加速度の違いによる触感の違いを説明するための図である。
[Example]
<Vibration during operation>
First, waveform data and devices that generate a sharp tactile sensation such as a click feeling during operation will be described. FIG. 1 is a diagram for explaining a difference in tactile sensation due to a difference in vibration acceleration.
 図1(A)は、人間の指に加速度計1を取り付けてボタン2を押下した際に生じる振動の加速度の波形11を示す図である。図1(B)は、人間の指に加速度計1を取り付けて、LRA(Linear Resonant Actuator)が取り付けられたタッチパネル3をタッチした際に生じる振動の加速度の波形12を示す図である。図1の例では、ボタン2は例えばメタルドーム式のボタンである。またボタン2とタッチパネル3は、電子機器に設けられたものである。 FIG. 1A is a diagram showing a waveform 11 of acceleration of vibration generated when the accelerometer 1 is attached to a human finger and the button 2 is pressed. FIG. 1B is a diagram illustrating a waveform 12 of acceleration of vibration generated when the accelerometer 1 is attached to a human finger and a touch panel 3 to which an LRA (Linear Resonant Actuator) is attached is touched. In the example of FIG. 1, the button 2 is, for example, a metal dome type button. The button 2 and the touch panel 3 are provided on the electronic device.
 波形11で示される振動は、1~数周期で急速に減衰する。これに対して波形12で示される振動は、駆動指令の供給を停止後もLRAの固有振動数による自由振動が減衰するまで続く。 The vibration indicated by waveform 11 is rapidly damped in one to several cycles. On the other hand, the vibration indicated by the waveform 12 continues until the free vibration due to the natural frequency of the LRA is attenuated even after the supply of the drive command is stopped.
 ところで、人間の指は、振動周波数200Hzにおいて振動の加速度が0.02G以下になると振動を感知できなくなる。振動周波数とは、1秒間の振動数である。振動の加速度とは、単位時間当たりの振動の速度変化量を示すものである。 By the way, a human finger cannot sense vibration when the vibration acceleration is 0.02 G or less at a vibration frequency of 200 Hz. The vibration frequency is the number of vibrations per second. The acceleration of vibration indicates the speed change amount of vibration per unit time.
 図2は、人体の組織に含まれる加速度を検出する器官の感度を示す図である。なお、人間の主な機械刺激の受容器には、メルケル細胞(変位)、マイスナー小体(速度)、パチニ小体(加速度)の3種類がある。 FIG. 2 is a diagram showing the sensitivity of an organ that detects acceleration included in human tissue. In addition, there are three types of human mechanical stimulation receptors: Merkel cells (displacement), Meissner bodies (velocity), and pachini bodies (acceleration).
 なお、人間の加速度を感知する器官は、パチニ小体である。パチニ小体は、主に皮膚に見られる主要な4種類の機械受容体のうちの1つである。 It should be noted that the organ that senses human acceleration is the Pachiny body. Patini bodies are one of the four major mechanoreceptors found primarily in the skin.
 すなわち波形11では、指は0.01sec以内に振動の加速度が0.02G以下とるため振動を感知しなくなる。これに対して波形12では、振動の加速度が0.02G以下になるまで0.1secが必要であり、指は0.1sec経過するまで振動を感知し続ける。したがって波形11で示される振動と、波形12で示される振動とでは、人間が感知する触感として全く異なるものとなり、波形11の方が鋭い触感を与える。 That is, in the waveform 11, since the acceleration of the vibration is 0.02 G or less within 0.01 sec, the finger does not sense the vibration. On the other hand, in waveform 12, 0.1 sec is required until the acceleration of vibration becomes 0.02 G or less, and the finger continues to sense vibration until 0.1 sec elapses. Therefore, the vibration indicated by the waveform 11 and the vibration indicated by the waveform 12 are completely different from one another perceived by humans, and the waveform 11 gives a sharper tactile feel.
 そこで、実施例では、LRAの振動のパターンを工夫することで、タッチパネルや筐体において、クリック感のような鋭い触感の振動を再現することで、この振動に情報を割り当ててユーザに情報を伝える。 Therefore, in the embodiment, by devising the vibration pattern of the LRA and reproducing the sharp tactile vibration such as a click feeling on the touch panel or the housing, information is allocated to this vibration and the information is transmitted to the user. .
 以下に図3を参照して実施例の電子機器の一例について説明する。図3は、実施例の電子機器の断面構造を示す図である。なお、実施例の電子機器は、例えば表示機能と入力機能とを有するタッチパネルを入力手段として有する機器であれば良い。例えば実施例の電子機器は、スマートフォン、タブレット型コンピュータ、携帯端末機等であっても良い。 Hereinafter, an example of the electronic apparatus of the embodiment will be described with reference to FIG. FIG. 3 is a diagram illustrating a cross-sectional structure of the electronic apparatus according to the embodiment. In addition, the electronic device of an Example should just be an apparatus which has as an input means the touchscreen which has a display function and an input function, for example. For example, the electronic device according to the embodiment may be a smartphone, a tablet computer, a portable terminal, or the like.
 また、電子機器100は、タッチパネル120を入力操作部とする機器であればよいため、スマートフォンのような携帯端末機に限られず、例えば、ATM(Automatic Teller Machine)のように特定の場所に設置されて利用される電子機器であってもよい。 The electronic device 100 may be any device that uses the touch panel 120 as an input operation unit. Therefore, the electronic device 100 is not limited to a mobile terminal such as a smartphone, and is installed in a specific place such as ATM (Automatic Teller Machine). The electronic device used may be used.
 実施例の電子機器100は、筐体110、タッチパネル120、両面テープ130、LRA140、基板150を有する。両面テープ130は、あくまでも一例であり、筐体110とタッチパネル120とを接着させるものであれば何れでもよい。 The electronic device 100 of the embodiment includes a housing 110, a touch panel 120, a double-sided tape 130, an LRA 140, and a substrate 150. The double-sided tape 130 is merely an example, and any one can be used as long as the case 110 and the touch panel 120 are bonded to each other.
 実施例の電子機器100では、両面テープ130により、タッチパネル120が筐体110に固定されている。LRA140は、タッチパネル120の筐体側の面に取り付けられている。LRA140は、予め設計された共振周波数を持つ振動系とアクチュエータとが組み合わされたもので、主に共振周波数で駆動して振動を発生させる振動デバイスであり、駆動波形の振幅により振動量が変化する。LRAは、リニア共振アクチュエータとも呼ぶ。なお、LRA140は、共振器と加振用のアクチュエータを備えた構造であればLRAに限らない。 In the electronic device 100 of the embodiment, the touch panel 120 is fixed to the housing 110 by the double-sided tape 130. The LRA 140 is attached to the surface of the touch panel 120 on the housing side. The LRA 140 is a combination of a vibration system having a resonance frequency designed in advance and an actuator. The LRA 140 is a vibration device that generates vibration by driving mainly at the resonance frequency. The amount of vibration changes depending on the amplitude of the drive waveform. . LRA is also called a linear resonance actuator. The LRA 140 is not limited to the LRA as long as it has a resonator and a vibration actuator.
 基板150は、筐体110内部に配置されている。基板150には、LRA140の駆動を制御するために駆動装置やLRA140に駆動指令を出力するドライバIC(Integrated Circuit)等が実装されている。 The substrate 150 is disposed inside the housing 110. The board 150 is mounted with a driver IC (Integrated Circuit) that outputs a drive command to the LRA 140 in order to control the drive of the LRA 140.
 実施例の電子機器100は、タッチパネル120にユーザの指が接触すると、この接触を感知して基板150に実装された駆動装置によりLRA140を駆動し、LRA140の振動をタッチパネル120に伝播させる。 When the user's finger touches the touch panel 120, the electronic device 100 according to the embodiment senses this contact and drives the LRA 140 by the driving device mounted on the substrate 150 to propagate the vibration of the LRA 140 to the touch panel 120.
 また、実施例の電子機器100は、後述する文字情報提供アプリケーションにより、文字情報を振動パターンに変換し、その振動パターンによりLRA140を駆動し、LRA140の振動をタッチパネル120又は筐体110に伝播させる。 Further, the electronic device 100 according to the embodiment converts character information into a vibration pattern by a character information providing application described later, drives the LRA 140 with the vibration pattern, and propagates the vibration of the LRA 140 to the touch panel 120 or the housing 110.
 以下に図4を参照してLRA140について説明する。図4は、2種類のLRAの断面構造を示す図である。図4(A)はボイスコイルを用いたLRAの例を示す図であり、図4(B)は圧電素子を用いたLRAの例を示す図である。 The LRA 140 will be described below with reference to FIG. FIG. 4 is a diagram showing a cross-sectional structure of two types of LRA. FIG. 4A is a diagram showing an example of LRA using a voice coil, and FIG. 4B is a diagram showing an example of LRA using a piezoelectric element.
 図4(A)に示すLRA30は、ばね31、磁石32、コイル33を有する。LRA30は、ばね31のばね定数をkとし、磁石32の質量をmとすると、固有振動数f0が以下の式1で示される。 4A includes a spring 31, a magnet 32, and a coil 33. The LRA 30 illustrated in FIG. In the LRA 30, when the spring constant of the spring 31 is k and the mass of the magnet 32 is m, the natural frequency f0 is expressed by the following formula 1.
Figure JPOXMLDOC01-appb-M000001
 図4(B)に示すLRA40は、重り41、梁42、圧電素子43を有する。LRA40は、重り41の質量をmとし、梁42のヤング率をEとし、梁42の断面2次モーメントをIとすると、固有振動数f0が以下の式2で示される。
Figure JPOXMLDOC01-appb-M000001
An LRA 40 illustrated in FIG. 4B includes a weight 41, a beam 42, and a piezoelectric element 43. In the LRA 40, when the mass of the weight 41 is m, the Young's modulus of the beam 42 is E, and the cross-sectional secondary moment of the beam 42 is I, the natural frequency f0 is expressed by the following formula 2.
Figure JPOXMLDOC01-appb-M000002
Lは、梁42の長手方向の長さとする。
Figure JPOXMLDOC01-appb-M000002
L is the length of the beam 42 in the longitudinal direction.
 実施例のLRA140は、ボイスコイルを用いたLRA30を適用しても良いし、圧電素子43を用いたLRA40を適用しても良い。 As the LRA 140 of the embodiment, the LRA 30 using a voice coil may be applied, or the LRA 40 using the piezoelectric element 43 may be applied.
 次に図5を参照して実施例の電子機器100の有する基板150に実装された駆動装置について説明する。図5は、実施例の駆動装置を説明する図である。図5では、開示の技術を理解しやすくするため、タッチパネル120への接触(操作)時に鋭い触感を発生させる波形データと、その波形データを駆動する駆動装置について説明する。 Next, the drive device mounted on the substrate 150 of the electronic apparatus 100 of the embodiment will be described with reference to FIG. FIG. 5 is a diagram illustrating the driving device of the embodiment. In FIG. 5, in order to facilitate understanding of the disclosed technique, waveform data that generates a sharp tactile sensation when touching (operating) the touch panel 120 and a driving device that drives the waveform data will be described.
 実施例の駆動装置200は、CPU(Central Processing Unit)210と、メモリ220とを有する。CPU210は、メモリ220に格納された駆動制御プログラム230を読み出して実行することで、後述するLRA140の駆動処理を行う。 The driving device 200 according to the embodiment includes a CPU (Central Processing Unit) 210 and a memory 220. The CPU 210 reads and executes the drive control program 230 stored in the memory 220, thereby performing drive processing of the LRA 140 described later.
 メモリ220には、LRA140の駆動を制御する駆動制御プログラム230が格納される記憶領域と、波形データ240が格納される記憶領域と、API(Application Programming Interface)250が格納される記憶領域とが設けられている。 The memory 220 is provided with a storage area for storing a drive control program 230 for controlling the driving of the LRA 140, a storage area for storing waveform data 240, and a storage area for storing an API (Application Programming Interface) 250. It has been.
 駆動制御プログラム230は、CPU210にLRA140の駆動制御を実行させる。波形データ240は、LRA140により生じる振動によりクリック感を実現するために予め生成された駆動波形のデータである。波形データ240の詳細は後述する。 The drive control program 230 causes the CPU 210 to execute drive control of the LRA 140. The waveform data 240 is drive waveform data generated in advance in order to realize a click feeling by vibration generated by the LRA 140. Details of the waveform data 240 will be described later.
 API250は、駆動制御プログラム230により起動され、触感を提供するための各種処理を行う。API250は、図5ではAPI250はメモリ220に格納されるものとしたが、基板150に実装された他のメモリに格納されていても良い。 The API 250 is activated by the drive control program 230 and performs various processes for providing a tactile sensation. In FIG. 5, the API 250 is stored in the memory 220 in FIG. 5, but may be stored in another memory mounted on the board 150.
 図6は、実施例の駆動装置によるLRAの駆動を説明するフローチャートである。 FIG. 6 is a flowchart for explaining LRA driving by the driving apparatus of the embodiment.
 実施例の駆動装置200は、タッチパネル120に対する接触を検出すると(ステップS601)、API250を起動させる(ステップS602)。具体的には駆動装置200は、例えばタッチパネル120上に表示されたボタンに対する接触があった場合等にAPI250を起動しても良い。 The driving device 200 of the embodiment activates the API 250 (step S602) when detecting contact with the touch panel 120 (step S601). Specifically, the driving device 200 may activate the API 250 when, for example, there is a touch on a button displayed on the touch panel 120.
 API250は、メモリ220に格納された波形データ240を読み出し、波形データ240に対応した駆動指令をドライバIC260へ出力する(ステップS603)。ドライバIC260は、駆動指令を受けて波形データ240をD/A(Digital to Analog)変換し(ステップS604)、アンプ等により増幅する(ステップS605)。ドライバIC260は、増幅した信号をLRA140に対して出力する(ステップS606)。 The API 250 reads the waveform data 240 stored in the memory 220 and outputs a drive command corresponding to the waveform data 240 to the driver IC 260 (step S603). In response to the drive command, the driver IC 260 performs D / A (Digital-to-Analog) conversion on the waveform data 240 (step S604), and amplifies it with an amplifier or the like (step S605). The driver IC 260 outputs the amplified signal to the LRA 140 (step S606).
 (波形データの例)
 以下に実施例の波形データ240について説明する。実施例では、3つの方法を用いてLRAの振動のパターンを変化させて、クリック感のような鋭い触感を実現する。
(Example of waveform data)
The waveform data 240 of the embodiment will be described below. In the embodiment, a sharp tactile sensation such as a click feeling is realized by changing the LRA vibration pattern using three methods.
 まず第1の方法について説明する。第1の方法は、駆動指令の供給停止後も続くLRAの固有振動数による自由振動を抑制する方法である。以下の実施例の説明では、駆動指令の供給停止後も続くLRAの固有振動数による自由振動を残留振動と呼ぶ。 First, the first method will be described. The first method is a method of suppressing free vibration due to the natural frequency of the LRA that continues even after the supply of the drive command is stopped. In the following description of the embodiment, free vibration due to the natural frequency of the LRA that continues even after the supply of the drive command is stopped is referred to as residual vibration.
 第1の方法では、後述する特定の条件を満たす駆動指令をLRA140に供給したときにLRA140の振動が1~数周期で停止することに着目した。第1の方法では、特定の条件を満たす駆動指令をLRA140に印加して留振動を停止させることで、1~数周期で急速に減衰する振動を発生させ、クリック感を実現する。 In the first method, attention is paid to the fact that the vibration of the LRA 140 stops in one to several cycles when a drive command that satisfies a specific condition described later is supplied to the LRA 140. In the first method, a drive command that satisfies a specific condition is applied to the LRA 140 to stop the residual vibration, thereby generating a vibration that rapidly attenuates in one to several cycles, thereby realizing a click feeling.
 特定の条件を満たす駆動指令は、LRA140の固有振動数をf0としたとき、f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でLRA140をm回加振する信号である。 A drive command satisfying a specific condition is obtained by adding LRA140 m times with a signal of frequency f1 where f1 = m / n × f0 (m and n are natural numbers and m ≠ n) where the natural frequency of LRA140 is f0. It is a signal to shake.
 図7は、LRAの動作原理を説明するための図であり、図8は、LRAに印加される入力波形の例を示す図である。 FIG. 7 is a diagram for explaining the operation principle of the LRA, and FIG. 8 is a diagram illustrating an example of an input waveform applied to the LRA.
 LRA140の固有振動数f0を175Hzとし、m=2,n=1としたとき、駆動指令の周波数f1=2/1×175=350Hzとなる。駆動指令の周波数をf1としたときの正弦波Fは、図8に示す波形である。図8の例では、正弦波F=0.01sin2πf1tとなる。 When the natural frequency f0 of the LRA 140 is 175 Hz, and m = 2 and n = 1, the drive command frequency f1 = 2/1 × 175 = 350 Hz. A sine wave F when the frequency of the drive command is f1 is a waveform shown in FIG. In the example of FIG. 8, the sine wave F = 0.01 sin2πf1t.
 正弦波FがLRA140に印加されると、LRA140にはLRA140の固有振動数(共振周波数)f0の振動が生じる。すなわち、LRA140には、周波数f1の正弦波Fと、LRA140の固有振動数f0の正弦波とが合成された合成波が生じ、LRA140はこの合成波に応じて変位する。 When the sine wave F is applied to the LRA 140, the LRA 140 generates a vibration having a natural frequency (resonance frequency) f0 of the LRA 140. That is, the LRA 140 generates a combined wave in which the sine wave F having the frequency f1 and the sine wave having the natural frequency f0 of the LRA 140 are combined, and the LRA 140 is displaced according to the combined wave.
 図9は、LRAの変位を説明する図である。図9(A)は、変位を説明する第一の図であり、図9(B)は変位を説明する第二の図である。 FIG. 9 is a diagram for explaining the displacement of the LRA. FIG. 9A is a first diagram for explaining the displacement, and FIG. 9B is a second diagram for explaining the displacement.
 図9(A)において、点線で示される波形y1はLRA140に正弦波Fが印加されたときに生じる振動変位の強制振動成分を示し、実線で示される波形y2は自由振動成分を示す。駆動波形FがLRA140に印加されたときの応答変位y3は、波形y1と波形y2との合成波となる。 9A, a waveform y1 indicated by a dotted line indicates a forced vibration component of vibration displacement generated when the sine wave F is applied to the LRA 140, and a waveform y2 indicated by a solid line indicates a free vibration component. The response displacement y3 when the drive waveform F is applied to the LRA 140 is a composite wave of the waveform y1 and the waveform y2.
 図9(B)は、波形y1と波形y2との合成波y3の例を示す図である。合成波y3は、入力正弦波Fが0となるタイミングTにおいて0となることがわかる。 FIG. 9B is a diagram illustrating an example of a composite wave y3 of the waveform y1 and the waveform y2. It can be seen that the synthesized wave y3 becomes 0 at the timing T when the input sine wave F becomes 0.
 合成波y3が0となるタイミングTにおいて、LRA140の変位の速度も0になるため、LRA140の振動は停止する。 At the timing T when the synthetic wave y3 becomes 0, the displacement speed of the LRA 140 also becomes 0, so the vibration of the LRA 140 stops.
 図10は、LRAの振動の速度及び振動の加速度の例を示す図である。図10(A)は合成波y3の波形を示す図であり、図10(B)は合成波y3の変位を微分して得る速度の波形y3′を示す図であり、図10(C)は合成波y3の変位を2回微分して得る加速度の波形y3″を示す図である。 FIG. 10 is a diagram showing an example of the vibration speed and vibration acceleration of the LRA. FIG. 10A is a diagram showing the waveform of the composite wave y3, FIG. 10B is a diagram showing a waveform y3 ′ of the velocity obtained by differentiating the displacement of the composite wave y3, and FIG. It is a figure which shows the waveform y3 '' of the acceleration obtained by differentiating the displacement of the synthetic wave y3 twice.
 図10からわかるように、速度の波形y3′と加速度の波形y3″とは、合成波y3が0となるタイミングで0となる。すなわちLRA140の振動がタイミングTで停止する。 As can be seen from FIG. 10, the velocity waveform y3 ′ and the acceleration waveform y3 ″ become 0 when the synthesized wave y3 becomes 0. That is, the vibration of the LRA 140 stops at the timing T.
 このとき加速度の波形y3″は、0.01sec以内に2周期で停止する。したがって図10の例では、振動の加速度が0.01sec以内に0.02G以下となり、ボタン2を押下した際のクリック感を実現することができる。 At this time, the acceleration waveform y3 ″ stops in two cycles within 0.01 sec. Therefore, in the example of FIG. 10, when the acceleration of vibration becomes 0.02 G or less within 0.01 sec and the button 2 is clicked. A feeling can be realized.
 以下に図11乃至図14を参照して、上述する第1の方法の効果を説明する。図11は、LRAの固有振動数の正弦波を駆動指令としたときのLRAの変位の加速度を示す図である。 Hereinafter, the effects of the above-described first method will be described with reference to FIGS. 11 to 14. FIG. 11 is a diagram showing the acceleration of displacement of the LRA when a sine wave having the natural frequency of the LRA is used as a drive command.
 図11(A)は、LRA140の固有振動数f0=175Hzの正弦波を示す。図11(B)は、図11(A)の正弦波を駆動指令としてシミュレーションした際の変位の加速度を示す。図11(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図11(A)の正弦波を駆動指令した際のタッチパネル120の振動の加速度を示す。タッチパネル120の振動の加速度は、タッチパネル120の中央に加速度計を設置して測定したものである。 FIG. 11 (A) shows a sine wave of the natural frequency f0 = 175 Hz of the LRA140. FIG. 11B shows the acceleration of displacement when simulating the sine wave of FIG. 11A as a drive command. FIG. 11C shows the acceleration of vibration of the touch panel 120 when the sine wave of FIG. 11A is commanded to drive in the actual machine equipped with the LRA 140 with the natural frequency f0 = 175 Hz. The vibration acceleration of the touch panel 120 is measured by installing an accelerometer in the center of the touch panel 120.
 図11(B),(C)からわかるように、固有振動数f0の正弦波を駆動指令とした場合、残留振動が0.1sec以上に亘り現れる。 As can be seen from FIGS. 11B and 11C, when a sine wave having a natural frequency f0 is used as a drive command, residual vibration appears for 0.1 sec or more.
 なお、図11(C)において駆動指令が印加されるLRA140は、固有振動数f0=175Hz、重りの重さを1.5g、重りを支持するばね定数を1813.5N/mのものとした。 In FIG. 11C, the LRA 140 to which the drive command is applied has a natural frequency f0 = 175 Hz, a weight of 1.5 g, and a spring constant for supporting the weight of 1813.5 N / m.
 図12は、LRA140に固有振動数の駆動信号を印加し、残留振動と逆位相の信号波形を印加する従来の方法を示す。図12(A)は固有振動数f0=175Hzの駆動信号を示す。図12(B)は、LRA140を搭載した実機において、図12(A)の正弦波を駆動信号とし、かつ、駆動信号の供給停止後にLRA140に発生する振動の逆位相の電圧を印加したときの実際の電子機器での応答加速度の測定結果である。 FIG. 12 shows a conventional method in which a drive signal having a natural frequency is applied to the LRA 140 and a signal waveform having a phase opposite to that of the residual vibration is applied. FIG. 12A shows a drive signal having a natural frequency f0 = 175 Hz. FIG. 12B shows a case where the sine wave of FIG. 12A is used as a drive signal and a voltage having a phase opposite to the vibration generated in the LRA 140 is applied after the supply of the drive signal is stopped in an actual machine equipped with the LRA 140. It is a measurement result of response acceleration in an actual electronic device.
 図12の例では、図11に比べて残留振動は小さくなるが、振動の加速度が人の感知下限の0.02G以下になるまでに0.05sec以上かかる。 In the example of FIG. 12, the residual vibration is smaller than that of FIG. 11, but it takes 0.05 sec or more before the acceleration of vibration becomes 0.02 G or less of the human detection lower limit.
 図13は、特定の条件を満たさない信号を駆動信号としたときのLRAの変位の加速度を示す図である。 FIG. 13 is a diagram showing the acceleration of the displacement of the LRA when a signal that does not satisfy a specific condition is used as a drive signal.
 図13(A)は、特定の条件を満たさない周波数300Hzの正弦波を示す。図13(B)は、図13(A)の正弦波を駆動指令としてシミュレーションした際の振動の加速度を示す。図13(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図13(A)の正弦波を駆動指令した際の振動の加速度を示す。 FIG. 13 (A) shows a sine wave with a frequency of 300 Hz that does not satisfy a specific condition. FIG. 13B shows the acceleration of vibration when a simulation is performed using the sine wave of FIG. 13A as a drive command. FIG. 13C shows the acceleration of vibration when a drive command is given for the sine wave of FIG. 13A in an actual machine equipped with the LRA 140 with the natural frequency f0 = 175 Hz.
 図13の例では、図13(B),(C)からわかるように、特定の条件を満たさない周波数の正弦波を駆動指令とした場合、残留振動が0.04sec以上に亘り現れる。 In the example of FIG. 13, as can be seen from FIGS. 13B and 13C, when a sine wave having a frequency that does not satisfy a specific condition is used as a drive command, residual vibration appears for 0.04 sec or more.
 図14は、特定の条件を満たす信号を駆動信号としたときのLRAの振動の加速度を示す図である。 FIG. 14 is a diagram showing the acceleration of vibration of the LRA when a signal satisfying a specific condition is used as a drive signal.
 図14(A)は、特定の条件を満たす(m=2、n=1の場合)周波数350Hzの正弦波を示す。図14(B)は、図14(A)の正弦波を駆動指令としてシミュレーションした際の振動の加速度を示す。図14(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図14(A)の正弦波を駆動指令した際の振動の加速度を示す。 FIG. 14A shows a sine wave having a frequency of 350 Hz that satisfies a specific condition (when m = 2 and n = 1). FIG. 14B shows the acceleration of vibration when a simulation is performed using the sine wave of FIG. 14A as a drive command. FIG. 14C shows the acceleration of vibration when a drive command is given for the sine wave of FIG. 14A in an actual machine equipped with the LRA 140 with the natural frequency f0 = 175 Hz.
 図14の例では、図14(B),(C)からわかるように、0.02sec以降は残留振動の加速度が感知下限の0.02G以下となり、振動の波形は短時間の波形となる。 In the example of FIG. 14, as can be seen from FIGS. 14B and 14C, after 0.02 sec, the acceleration of the residual vibration is 0.02 G or less of the detection lower limit, and the vibration waveform is a short-time waveform.
 以上から、LRA140による振動の波形は、LRA140の固有振動数をf0としたとき、f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でLRA140をm回加振する信号を駆動指令とすれば、振動の加速度の波形は1~数周期で急速に減衰する短時間の波形となり、残留振動をなくすことができる。 From the above, the waveform of the vibration by the LRA 140 is that the frequency of the LRA 140 is m times with a signal of the frequency f1 where f1 = m / n × f0 (m and n are natural numbers and m ≠ n) where the natural frequency of the LRA 140 is f0. If the signal to be excited is a drive command, the vibration acceleration waveform becomes a short-time waveform that rapidly attenuates in one to several cycles, and residual vibration can be eliminated.
 なお、固有振動数f0は、LRA140を電子機器100に組み込んだ後のLRA140の固有振動数としても良い。また周波数f1は、m/n×f0に対して誤差が1%以下となるように設定することが好ましい。このように周波数f1を設定すれば、駆動指令の印加を停止した後に残留振動が生じたとしても、振動の加速度は人の感知下限である0.02G以下となり人に感知されないため、クリック感のような鋭い触感を損ねることがない。 Note that the natural frequency f0 may be the natural frequency of the LRA 140 after the LRA 140 is incorporated into the electronic device 100. The frequency f1 is preferably set so that the error is 1% or less with respect to m / n × f0. If the frequency f1 is set in this way, even if residual vibration occurs after the application of the drive command is stopped, the acceleration of the vibration is 0.02G or less, which is the lower limit of human detection, and is not detected by humans. There is no loss of such a sharp touch.
 次に、LRAの振動のパターンを変化させてクリック感のような鋭い触感を実現する第2の方法について説明する。 Next, a second method for realizing a sharp tactile sensation such as a click feeling by changing the vibration pattern of the LRA will be described.
 第2の方法では、筐体110に固定されたタッチパネル120自体も高周波で振動する振動体であることに着目する。第2の方法では、LRA140の駆動指令を、振幅がピークの時点でLRA140に対する加振を停止させる信号とし、タッチパネル120自体の高周波の振動を励起することで、1~数周期で急速に減衰する振動を発生させてクリック感のような鋭い触感を実現する。 Note that in the second method, the touch panel 120 itself fixed to the housing 110 is also a vibrating body that vibrates at a high frequency. In the second method, the drive command for the LRA 140 is used as a signal for stopping the excitation of the LRA 140 when the amplitude reaches its peak, and the high frequency vibration of the touch panel 120 itself is excited to rapidly attenuate in one to several cycles. Generates vibration and realizes a sharp tactile sensation like a click.
 図15は、タッチパネルの共振周波数による振動の励起を説明する図である。図15(A)は、LRA140に印加される駆動指令の正弦波形を示し、図15(B)はLRA140の振動の加速度の波形を示す。図15の例では、駆動指令は電圧である。また図15の例では、LRA140の共振周波数を225Hzとし、タッチパネル120の共振周波数を1kHzとした。すなわちLRA140の振動は低周波振動であり、タッチパネル120の振動は高周波振動と言える。なお、タッチパネル120の共振周波数は、タッチパネル120の4辺が筐体110に固定された状態における共振周波数である。 FIG. 15 is a diagram for explaining excitation of vibration by the resonance frequency of the touch panel. FIG. 15A shows a sine waveform of a drive command applied to the LRA 140, and FIG. 15B shows a waveform of acceleration of vibration of the LRA 140. In the example of FIG. 15, the drive command is a voltage. In the example of FIG. 15, the resonance frequency of the LRA 140 is 225 Hz, and the resonance frequency of the touch panel 120 is 1 kHz. That is, it can be said that the vibration of the LRA 140 is a low-frequency vibration, and the vibration of the touch panel 120 is a high-frequency vibration. Note that the resonance frequency of the touch panel 120 is a resonance frequency in a state where the four sides of the touch panel 120 are fixed to the housing 110.
 図15に示す例において、LRA140を共振周波数225Hzで低周波振動させた場合、タッチパネル120の高周波振動は励起されない。この状態においてLRA140の振動を調和振動から外し、急激な力をタッチパネル120に印加することで、タッチパネル120の共振周波数である1kHzの振動を励起する。 In the example shown in FIG. 15, when the LRA 140 is vibrated at a low frequency with a resonance frequency of 225 Hz, the high frequency vibration of the touch panel 120 is not excited. In this state, the vibration of the LRA 140 is removed from the harmonic vibration, and a sudden force is applied to the touch panel 120 to excite the vibration of 1 kHz that is the resonance frequency of the touch panel 120.
 図15の例では、図15(A)に示すように、振幅がピークとなった点P1でLRA140に対する加振を停止させる信号を駆動指令とした。図15(A)に示す駆動指令の振幅は、LRA140に対する加振が停止した直後に0となる。図15の例では、駆動指令の振幅をピークから0にすることで、LRA140の振動を調和振動から外す。 In the example of FIG. 15, as shown in FIG. 15A, the drive command is a signal for stopping the excitation to the LRA 140 at the point P <b> 1 where the amplitude reaches a peak. The amplitude of the drive command shown in FIG. 15A becomes 0 immediately after the excitation to the LRA 140 is stopped. In the example of FIG. 15, the vibration of the LRA 140 is removed from the harmonic vibration by setting the amplitude of the drive command to 0 from the peak.
 また、図15の例では、駆動指令によるLRA140の駆動時間を7/4周期とし、振幅がピークとなる点P1が駆動指令の終端となるようにした。なお、駆動指令の終端とは、LRA140に対する加振を停止する点である。 Further, in the example of FIG. 15, the drive time of the LRA 140 by the drive command is set to 7/4 period, and the point P1 at which the amplitude reaches the peak is the end of the drive command. Note that the end of the drive command is a point at which the vibration to the LRA 140 is stopped.
 この結果、図15(B)に示すように、点P1において周波数が1kHzの高周波振動が励起され、1~数周期で急速に減衰する振動を発生させる。さらに図15の例では、点P1で高周波振動を励起することで、低周波振動の加速度の最大値と高周波振動の加速度の最大値とを重畳し、短時間でより急峻なピークを発生させることができる。このように第2の方法では、振動の加速度の短時間の急峻なピークを発生させることで、鋭い触感を提供することができ、クリック感を実現できる。
よって、第2の方法による駆動指令は、振幅の中心点以外においてLRA140の加振を停止させる駆動指令でもよい。
As a result, as shown in FIG. 15B, high-frequency vibration having a frequency of 1 kHz is excited at point P1, and vibration that rapidly attenuates in one to several cycles is generated. Further, in the example of FIG. 15, by exciting high-frequency vibration at the point P1, the maximum value of acceleration of low-frequency vibration and the maximum value of acceleration of high-frequency vibration are superimposed to generate a steeper peak in a short time. Can do. As described above, in the second method, a sharp tactile sensation can be provided by generating a short steep peak of vibration acceleration, and a click feeling can be realized.
Therefore, the drive command by the second method may be a drive command for stopping the excitation of the LRA 140 at a point other than the center point of the amplitude.
 以下に図16を参照して上述する第2の方法の効果を説明する。図16は、LRAの共振周波数の電圧を駆動指令としたときのタッチパネルの振動の加速度を示す図である。図16の例では、LRA140の駆動時間を短くして鋭い触感の実現を試みた際のタッチパネル120の振動の加速度を示している。 The effect of the second method described above will be described below with reference to FIG. FIG. 16 is a diagram illustrating acceleration of vibration of the touch panel when the voltage of the resonance frequency of the LRA is used as a drive command. In the example of FIG. 16, the acceleration of vibration of the touch panel 120 when attempting to realize a sharp tactile sensation by shortening the drive time of the LRA 140 is shown.
 しかしながらタッチパネル120の振動は、LRA140の駆動時間を短くしても、振動量を増幅させるための立ち上がりの時間と、増幅された振動の加速度が0.02G以下に減衰するまでの時間が必要となり、振動が数周期に亘って続く。図16の例では、立ち上がりから減衰までに25msec程度の時間がかかり、振動が約4周期に亘り続いていることがわかる。したがってクリック感のような鋭い触感を提供することが困難である。 However, the vibration of the touch panel 120 requires a rise time for amplifying the vibration amount and a time until the acceleration of the amplified vibration is attenuated to 0.02 G or less, even if the driving time of the LRA 140 is shortened. The vibration continues for several cycles. In the example of FIG. 16, it can be seen that it takes about 25 msec from the rise to the decay, and the vibration continues for about 4 cycles. Therefore, it is difficult to provide a sharp touch such as a click feeling.
 これに対して図15(B)では、周波数1kHzの振動の立ち上がり時間は2msec程度であり、振動も2周期程度で減衰していることがわかる。 On the other hand, in FIG. 15B, it can be seen that the rise time of the vibration at the frequency of 1 kHz is about 2 msec, and the vibration is attenuated in about two cycles.
 よって第2の方法では、振動の加速度の短時間の急峻なピークを発生させてクリック感のような鋭い触感を実現することができる。 Therefore, in the second method, it is possible to realize a sharp tactile sensation such as a click feeling by generating a short sharp peak of vibration acceleration.
 なお、図15の例では、駆動指令の終端である点P1で高周波振動が励起され、高周波振動の加速度がピークを迎える。よって高周波振動の加速度がピークを迎えるタイミングは、駆動指令が点P1となるタイミングから僅かにずれることになる。 In the example of FIG. 15, high-frequency vibration is excited at the point P1, which is the end of the drive command, and the acceleration of the high-frequency vibration reaches a peak. Therefore, the timing at which the acceleration of the high-frequency vibration reaches a peak slightly deviates from the timing at which the drive command becomes the point P1.
 第2の方法では、このタイミングのずれを無くすために、高周波振動を励起する箇所を点P1からずらしても良い。図17は、高周波振動を励起する箇所をずらした例を示す図である。図17(A)は、LRA140に印加される駆動指令の正弦波形を示し、図17(B)はLRA140の振動の加速度の波形を示す。 In the second method, in order to eliminate this timing shift, the location for exciting the high-frequency vibration may be shifted from the point P1. FIG. 17 is a diagram illustrating an example in which the location for exciting the high-frequency vibration is shifted. FIG. 17A shows a sine waveform of a drive command applied to the LRA 140, and FIG. 17B shows a waveform of vibration acceleration of the LRA 140. FIG.
 図17(A)において、駆動指令は、振幅のピークからわずかにずれた点P2を終端としている。図17(B)では、駆動指令の終端P2を振幅のピークからずらしたため、重畳される低周波振動の加速度が最大値より小さくなり、高周波振動の加速度のピークは図15(B)に示す値よりも小さくなるが、図15の例と同等の効果を得ることができる。 In FIG. 17A, the drive command ends at a point P2 slightly deviated from the amplitude peak. In FIG. 17B, the terminal P2 of the drive command is shifted from the amplitude peak, so the acceleration of the superimposed low frequency vibration is smaller than the maximum value, and the acceleration peak of the high frequency vibration is the value shown in FIG. Although smaller than the above, the same effect as the example of FIG. 15 can be obtained.
 次に、LRAの振動のパターンを変化させてクリック感のような鋭い触感を実現する第3の方法について説明する。 Next, a third method for realizing a sharp tactile sensation such as a click feeling by changing the LRA vibration pattern will be described.
 第3の方法では、第1の方法で説明した特定の条件を満たし、且つ第2の方法で説明したように振幅がピークとなる点を終端とする信号を駆動指令とした。例えば、第3の方法による駆動指令の波形データは、第1の方法による波形データの条件と、第2の方法による波形データの条件とを満たす波形データである。 In the third method, a signal that satisfies the specific condition described in the first method and ends at a point where the amplitude reaches a peak as described in the second method is used as a drive command. For example, the waveform data of the drive command by the third method is waveform data that satisfies the conditions of the waveform data by the first method and the conditions of the waveform data by the second method.
 図18は、実施例の第3の方法によるLRAの駆動指令の例を示す図である。図18(A)は、第3の方法による駆動指令Gの波形であり、図18(B)は、第3の方法による駆動指令GがLRA140に印加された際のタッチパネル120の振動の加速度を示す図である。 FIG. 18 is a diagram illustrating an example of an LRA drive command according to the third method of the embodiment. 18A shows the waveform of the drive command G by the third method, and FIG. 18B shows the acceleration of the vibration of the touch panel 120 when the drive command G by the third method is applied to the LRA 140. FIG. FIG.
 第3の方法による駆動指令Gは、周波数f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号で且つLRA140をm回加振する信号である。図18の例では、m=3,n=2とした。また、第3の方法による駆動指令Gは、さらに振幅が最大値となる点P3を終端とする。 The drive command G according to the third method is a signal having a frequency f1 with a frequency f1 = m / n × f0 (m and n are natural numbers and m ≠ n) and a signal for exciting the LRA 140 m times. In the example of FIG. 18, m = 3 and n = 2. Further, the drive command G according to the third method terminates at a point P3 at which the amplitude becomes the maximum value.
 実施例では、駆動指令Gをm周期の信号であり且つ振幅のピークが終端となる信号とするために、駆動指令Gを正弦波波形からπ/2位相をずらした余弦波とした。第3の方法による駆動指令Gを余弦波とすることで、駆動指令Gを特定の条件を満たし且つ終端が振幅のピークとなる信号とすることができる。 In this embodiment, the drive command G is a cosine wave with a π / 2 phase shifted from the sine wave waveform so that the drive command G is a signal having an m period and whose amplitude peak ends. By setting the drive command G according to the third method as a cosine wave, the drive command G can be a signal that satisfies a specific condition and whose end has a peak amplitude.
 なお、実施例の電子機器100では、タッチパネル120にLRA140が取り付けられているため、タッチパネル120の共振周波数をタッチパネル120の4辺が筐体110に固定された状態における共振周波数とした。タッチパネル120の共振周波数は、例えばLRA140が筐体110内部に配置される場合には、タッチパネル120が筐体110に組み込まれた状態におけるタッチパネル120の共振周波数となる。 In the electronic device 100 of the embodiment, since the LRA 140 is attached to the touch panel 120, the resonance frequency of the touch panel 120 is set to the resonance frequency in a state where the four sides of the touch panel 120 are fixed to the housing 110. The resonance frequency of the touch panel 120 is the resonance frequency of the touch panel 120 in a state where the touch panel 120 is incorporated in the housing 110, for example, when the LRA 140 is disposed inside the housing 110.
 実施例の駆動装置200の波形データ240は、例えば駆動指令Gの波形のデータを含む波形データである。具体的には例えば波形データ240は、駆動指令Gの周波数f1、振幅、位相、周期(mの値)等を含む。また実施例の波形データ240は、駆動指令Gの波形を表す式を含んでも良い。 The waveform data 240 of the driving device 200 of the embodiment is, for example, waveform data including waveform data of the drive command G. Specifically, for example, the waveform data 240 includes the frequency f1, the amplitude, the phase, the period (value of m), and the like of the drive command G. Further, the waveform data 240 of the embodiment may include an expression representing the waveform of the drive command G.
 また、実施例の波形データ240は、第1の方法又は第2の方法による駆動指令の波形データでもよい。駆動装置200は、第1~第3のいずれかの方法による波形データを用いることで、鋭い触感を感知させる振動を発生させることができる。 Also, the waveform data 240 of the embodiment may be drive command waveform data by the first method or the second method. The driving device 200 can generate vibration that senses a sharp tactile sensation by using waveform data obtained by any one of the first to third methods.
 実施例の駆動装置200は、図6のステップS603において、API250により、例えば駆動指令Gを示す波形データ240を読み出し、波形データ240に対応した駆動指令をドライバIC260へ出力する。ドライバIC260は、波形データ240をD/A変換して増幅し、LRA140に出力する。 In step S603 of FIG. 6, the driving device 200 of the embodiment reads out, for example, waveform data 240 indicating the driving command G by the API 250, and outputs a driving command corresponding to the waveform data 240 to the driver IC 260. The driver IC 260 D / A converts and amplifies the waveform data 240 and outputs it to the LRA 140.
 実施例の駆動装置200において、LRA140に駆動指令Gが印加された場合について説明する。 The case where the drive command G is applied to the LRA 140 in the drive device 200 of the embodiment will be described.
 図19は、実施例のLRAに対する入力波形を示す図である。図19に示す波形は、駆動指令GをLRA140に印加することにより、LRA140に加えられる力を示している。 FIG. 19 is a diagram showing an input waveform for the LRA of the example. The waveform shown in FIG. 19 shows the force applied to the LRA 140 by applying the drive command G to the LRA 140.
 実施例において、LRA140の固有振動数f0を225Hzとし、m=3,n=2としたとき、駆動指令Gの周波数f1は、f1=3/2×225=337.5Hzとなる。図19に示す波形は、駆動指令Gの周波数をf1としたときの正弦波Fの位相をπ/2ずらした余弦波G1である。正弦波Fは、F=0.01sin2πf1tで得られる。 In the embodiment, when the natural frequency f0 of the LRA 140 is 225 Hz and m = 3 and n = 2, the frequency f1 of the drive command G is f1 = 3/2 × 225 = 337.5 Hz. The waveform shown in FIG. 19 is a cosine wave G1 in which the phase of the sine wave F is shifted by π / 2 when the frequency of the drive command G is f1. The sine wave F is obtained by F = 0.01sin2πf1t.
 余弦波G1がLRA140に印加されると、LRA140はLRA140の固有振動数f0(すなわち共振周波数)で振動を開始する。すなわちLRA140には、周波数f1の余弦波G1とLRA140の固有振動数f0による余弦波との合成波が印加され、LRA140はこの合成波に応じて変位する。 When the cosine wave G1 is applied to the LRA 140, the LRA 140 starts to vibrate at the natural frequency f0 (that is, the resonance frequency) of the LRA 140. That is, a combined wave of the cosine wave G1 having the frequency f1 and the cosine wave having the natural frequency f0 of the LRA 140 is applied to the LRA 140, and the LRA 140 is displaced according to the combined wave.
 図20は、実施例のLRAに合成波が印加された際の変位を説明する図である。図20(A)は、変位を説明する第一の図であり、図20(B)は変位を説明する第二の図である。 FIG. 20 is a diagram for explaining displacement when a synthetic wave is applied to the LRA of the embodiment. FIG. 20A is a first diagram for explaining the displacement, and FIG. 20B is a second diagram for explaining the displacement.
 図20(A)において、点線で示される波形y11はLRA140に余弦波G1が印加されたときに生じる振動変位の強制振動成分を示し、実線で示される波形y12は自由振動成分を示す。余弦波G1がLRA140に印加されたときの応答変位y13は、波形y11と波形y12との合成波となる。 20A, a waveform y11 indicated by a dotted line indicates a forced vibration component of vibration displacement generated when a cosine wave G1 is applied to the LRA 140, and a waveform y12 indicated by a solid line indicates a free vibration component. The response displacement y13 when the cosine wave G1 is applied to the LRA 140 is a composite wave of the waveform y11 and the waveform y12.
 図20(B)は、波形y11と波形y12との合成波y13の例を示す図である。合成波y13は、余弦波G1が0となるタイミングT1において0となることがわかる。 FIG. 20B is a diagram illustrating an example of a composite wave y13 of the waveform y11 and the waveform y12. It can be seen that the synthesized wave y13 becomes 0 at the timing T1 when the cosine wave G1 becomes 0.
 合成波y13が0となるタイミングT1において、LRA140の振動の速度も0になるため、LRA140の振動は停止する。 At timing T1 when the composite wave y13 becomes 0, the vibration speed of the LRA 140 also becomes 0, so the vibration of the LRA 140 stops.
 図21は、実施例のLRAの振動の速度及び振動の加速度の例を示す図である。図21(A)は合成波y13の波形を示す図であり、図21(B)は合成波y13の変位を微分して得る速度の波形y13′を示す図であり、図21(C)は合成波y13の変位を2回微分して得る加速度の波形y13″を示す図である。 FIG. 21 is a diagram illustrating an example of the vibration speed and vibration acceleration of the LRA according to the embodiment. FIG. 21A shows the waveform of the composite wave y13, FIG. 21B shows the velocity waveform y13 ′ obtained by differentiating the displacement of the composite wave y13, and FIG. It is a figure which shows the waveform y13 '' of the acceleration obtained by differentiating the displacement of the synthetic wave y13 twice.
 図21からわかるように、速度の波形y13′と加速度の波形y13″とは、合成波y13が0となるタイミングT1で0となる。すなわちLRA140の振動がタイミングT1で停止する。 As can be seen from FIG. 21, the velocity waveform y13 ′ and the acceleration waveform y13 ″ become 0 at the timing T1 when the synthesized wave y13 becomes 0. That is, the vibration of the LRA 140 stops at the timing T1.
 このとき、加速度の波形y13″は、0.01sec以内に3周期で停止する。したがって、実施例では、0.01sec以内に振動の加速度が0.02G以下となり、メタルドーム式のボタン2を押下した際のクリック感のような鋭い触感を実現することができる。 At this time, the acceleration waveform y13 ″ stops in three cycles within 0.01 sec. Therefore, in the embodiment, the acceleration of vibration becomes 0.02 G or less within 0.01 sec, and the metal dome type button 2 is pressed. A sharp tactile sensation such as a click feeling can be realized.
 なお、実施例では、余弦波G1の振幅がピークとなる点で加振を停止させるものとしたが、これに限定されない。 In the embodiment, the excitation is stopped at the point where the amplitude of the cosine wave G1 reaches a peak. However, the present invention is not limited to this.
 実施例において駆動指令の終端は、例えばタッチパネル120の振動の加速度を示す波形に、鋭い触感を実現する急峻なピークを生成できる点であれば良い。実施例において駆動指令の終端は、振幅の中心点である0以外であれば良く、駆動指令の終端は振幅のピークに近い点であるほど良い。 In the embodiment, the end of the drive command may be any point that can generate a sharp peak that realizes a sharp tactile sensation, for example, in a waveform indicating acceleration of vibration of the touch panel 120. In the embodiment, the end of the drive command may be other than 0, which is the center point of the amplitude, and the end of the drive command is better as the point is closer to the amplitude peak.
 また実施例の電子機器100では、LRA140がタッチパネル120の筐体側の面に取り付けられるものとしたが、これに限定されない。LRA140は、例えば筐体110内部に配置された基板150の近傍に配置されても良い。 In the electronic device 100 of the embodiment, the LRA 140 is attached to the surface of the touch panel 120 on the casing side, but the present invention is not limited to this. For example, the LRA 140 may be disposed in the vicinity of the substrate 150 disposed in the housing 110.
 図22は、LRAが筐体に設けられた電子機器の他の例を示す図である。図22に示す電子機器100Aでは、LRA140が筐体110内部に設けられた基板150の近傍に配置されている。 FIG. 22 is a diagram illustrating another example of an electronic device in which an LRA is provided in a housing. In the electronic device 100 </ b> A illustrated in FIG. 22, the LRA 140 is disposed in the vicinity of the substrate 150 provided in the housing 110.
 実施例は、電子機器100Aに対しても適用することができる。また電子機器100Aに実施例を適用した場合、実施例の電子機器100と同様にメタルドーム式のボタン2を押下した際のクリック感のような鋭い触感を実現することができる。 The embodiment can also be applied to the electronic device 100A. Further, when the embodiment is applied to the electronic device 100A, it is possible to realize a sharp tactile sensation such as a click feeling when the metal dome type button 2 is pressed, similarly to the electronic device 100 of the embodiment.
 <文字情報提供時の振動>
 次に、上述した鋭い触感を実現できる振動を用いて、文字情報を提供する電子機器300について説明する。
<Vibration when providing text information>
Next, the electronic device 300 that provides character information using the vibration that can realize the sharp tactile sensation described above will be described.
 図23は、実施例の電子機器300の一例を示すブロック図である。図23に示す電子機器300は、ディスプレイ301と、タッチセンサ302と、入力部303と、信号処理部304と、通信部305と、駆動装置200と、ドライバIC260と、LRA140と、記録媒体I/F部308とを備える。 FIG. 23 is a block diagram illustrating an example of the electronic apparatus 300 according to the embodiment. 23 includes a display 301, a touch sensor 302, an input unit 303, a signal processing unit 304, a communication unit 305, a driving device 200, a driver IC 260, an LRA 140, a recording medium I / F section 308 is provided.
 ディスプレイ301は、例えばLCD(Liquid Crystal Display)などであり、CPU310からの表示データを表示する。タッチセンサ302は、ディスプレイ面への接触を検知し、検知されたディスプレイ面上での座標をCPU310に通知する。ディスプレイ301及びタッチセンサ302は、タッチパネル120に含まれる。 The display 301 is an LCD (Liquid Crystal Display), for example, and displays display data from the CPU 310. The touch sensor 302 detects contact with the display surface, and notifies the CPU 310 of the detected coordinates on the display surface. The display 301 and the touch sensor 302 are included in the touch panel 120.
 入力部303は、例えばボタンの押下を検知し、どのボタンが押下されたかの情報をCPU310に通知する。信号処理部304は、通信部305から取得したデータに対し、所定の信号処理を行う。通信部305は、外部の装置とデータ通信を行う。外部の装置は、例えばメールサーバやクラウドサーバなどである。 The input unit 303 detects, for example, a button press and notifies the CPU 310 of information on which button is pressed. The signal processing unit 304 performs predetermined signal processing on the data acquired from the communication unit 305. The communication unit 305 performs data communication with an external device. The external device is, for example, a mail server or a cloud server.
 記録媒体I/F(インターフェース)部308は、USB(Universal Serial Bus)などのデータ伝送路を介して接続された記録媒体309(例えば、フラッシュメモリなど)と電子機器300とのインターフェースである。 The recording medium I / F (interface) unit 308 is an interface between the electronic device 300 and a recording medium 309 (for example, a flash memory) connected via a data transmission path such as USB (Universal Serial Bus).
 また、記録媒体309に、所定のプログラムを格納し、この記録媒体309に格納されたプログラムは記録媒体I/F部308を介して電子機器300にインストールされる。インストールされた所定のプログラムは、電子機器300により実行可能となる。 Also, a predetermined program is stored in the recording medium 309, and the program stored in the recording medium 309 is installed in the electronic device 300 via the recording medium I / F unit 308. The installed predetermined program can be executed by the electronic device 300.
 駆動装置200は、CPU310と、メモリ320とを備える。CPU310は、上述したCPU210の制御以外にも、後述する文字情報提供プログラム306を実行することで、後述する文字情報提供アプリケーションとして機能する。 The driving device 200 includes a CPU 310 and a memory 320. In addition to the control of the CPU 210 described above, the CPU 310 functions as a character information providing application described later by executing a character information providing program 306 described later.
 メモリ320は、駆動制御プログラム230と、波形データ240と、API250と、文字情報提供プログラム306と、テーブル307とを格納する。 The memory 320 stores the drive control program 230, the waveform data 240, the API 250, the character information providing program 306, and the table 307.
 文字情報提供プログラム306は、駆動制御プログラム230やAPI250と協働して、CPU310に文字情報提供アプリケーションを機能させるプログラムである。文字情報提供プログラム306の詳細は後述する。 The character information provision program 306 is a program that causes the CPU 310 to function a character information provision application in cooperation with the drive control program 230 and the API 250. Details of the character information providing program 306 will be described later.
 テーブル307は、文字に関する情報と振動パターンとを対応付けたテーブルであり、関連情報とも呼ぶ。文字に関する情報は、例えばコード情報や文章などである。 The table 307 is a table in which information about characters and vibration patterns are associated with each other, and is also referred to as related information. The information regarding characters is, for example, code information or text.
 次に、文字情報提供時の振動について説明する。CPU310は、文字情報を提供するためのイベントを検知すると、文字情報提供プログラム306を起動し、文字情報提供アプリケーションを実行する。文字情報提供アプリケーションは、文字情報を振動で提供するアプリケーションである。 Next, the vibration when providing text information will be described. When CPU 310 detects an event for providing character information, CPU 310 starts character information providing program 306 and executes a character information providing application. The character information providing application is an application that provides character information by vibration.
 図24は、文字情報を提供するための機能の一例を示すブロック図である。図24に示す例では、電子機器300は、イベント検知部410と、文字情報提供部420と、駆動部430とを有する。文字情報提供部420は、認識部421と、変換部422とを有する。 FIG. 24 is a block diagram illustrating an example of a function for providing character information. In the example illustrated in FIG. 24, the electronic device 300 includes an event detection unit 410, a character information provision unit 420, and a drive unit 430. The character information providing unit 420 includes a recognition unit 421 and a conversion unit 422.
 イベント検知部410は、文字情報を提供するためのイベントを検知した場合、文字情報提供部420にその旨を通知する。文字情報を提供するためのイベントとは、例えば、メール本文を振動で提供する機能を示すバイブメールの選択や、文字情報の表示中にバイブで内容を提供する機能を示すバイブ提供機能の選択などである。 When the event detecting unit 410 detects an event for providing character information, the event detecting unit 410 notifies the character information providing unit 420 to that effect. The event for providing text information is, for example, selection of a vibrator mail indicating a function of providing a mail text by vibration, selection of a vibrator providing function indicating a function of providing contents by vibrate while character information is displayed, etc. It is.
 文字情報提供部420は、イベント検知部410から通知を受けると、認識部421に文字情報を解析させる。 Upon receipt of the notification from the event detection unit 410, the character information provision unit 420 causes the recognition unit 421 to analyze the character information.
 認識部421は、認識対象の文字情報を解析し、コード情報を認識する。例えば、認識部421は、文字情報を1文字ずつ解析し、対応するコード情報を認識していく。コード情報は、例えばアルファベットや、かな文字、数字などである。認識部421は、認識したコード情報を変換部422に通知する。 The recognition unit 421 analyzes the character information to be recognized and recognizes the code information. For example, the recognition unit 421 analyzes character information character by character and recognizes corresponding code information. The code information is, for example, alphabets, kana characters, numbers or the like. The recognition unit 421 notifies the conversion unit 422 of the recognized code information.
 変換部422は、認識部421から取得したコード情報を、テーブル307(関連情報)を参照して、振動パターンに変換する。 The conversion unit 422 converts the code information acquired from the recognition unit 421 into a vibration pattern with reference to the table 307 (related information).
 関連情報は、第1~第3の方法のいずれかの波形データから得られる振動を含む振動パターンと、各コード情報とが関連付けられた情報である。変換部422は、変換された振動パターンに基づく駆動指令を駆動部430に通知する。第1~第3の方法のいずれかの波形データから得られる振動は、例えば20msec以内の振動である(例えば図14(C)参照)。 The related information is information in which a vibration pattern including vibration obtained from the waveform data of any of the first to third methods is associated with each code information. The conversion unit 422 notifies the drive unit 430 of a drive command based on the converted vibration pattern. The vibration obtained from the waveform data in any of the first to third methods is, for example, vibration within 20 msec (see, for example, FIG. 14C).
 駆動部430は、変換部422から通知された駆動指令により、LRA140の駆動を制御する。 The drive unit 430 controls the drive of the LRA 140 according to the drive command notified from the conversion unit 422.
 例えば、認識部421は、文字情報提供プログラム306の一機能として実行され、変換部422は、API250の一機能として実行されうる。また、駆動部430は、例えばドライバIC260により実行されうる。 For example, the recognition unit 421 can be executed as a function of the character information provision program 306, and the conversion unit 422 can be executed as a function of the API 250. The drive unit 430 can be executed by the driver IC 260, for example.
 (関連情報)
 次に、関連情報について説明する。以下では、4つの関連情報を例に挙げる。図25は、関連情報(その1)の一例を示す図である。図25に示す例は、各アルファベットをモールス信号に割り当てた例である。モールス信号パターンと同様、短点と長点に相当する100ms以下の短い振動と200msを超える長い振動の2種類の波形が利用される。また、実施例では、20msec以下の鋭い触感を得られる振動を発生させることができるので、この振動を用いて2種類の波形を生成してもよい。
(Related information)
Next, related information will be described. Below, four related information is mentioned as an example. FIG. 25 is a diagram illustrating an example of related information (part 1). The example shown in FIG. 25 is an example in which each alphabet is assigned to the Morse code. Similar to the Morse code pattern, two types of waveforms are used: short vibrations of 100 ms or less corresponding to short points and long points, and long vibrations exceeding 200 ms. Further, in the embodiment, a vibration capable of obtaining a sharp tactile sensation of 20 msec or less can be generated. Therefore, two types of waveforms may be generated using this vibration.
 モールス信号の短点に短い振動を、長点に長い振動を割り当てることで、モールス信号パターンをそのまま振動できる。従来の振動子であるLRAなどの振動パターンでは、短時間(例えば100msec)では鋭い振動提供が困難であったが、開示の振動波形を用いることで短点に相当する振動パターンを実現できる。そのため、LRAなどの振動子でもモールス信号相当の振動を実現することが可能となる。 By assigning short vibrations to short points of Morse code and long vibrations to long points, Morse code patterns can be vibrated as they are. With a vibration pattern such as LRA, which is a conventional vibrator, it has been difficult to provide a sharp vibration in a short time (for example, 100 msec), but a vibration pattern corresponding to a short point can be realized by using the disclosed vibration waveform. For this reason, it is possible to realize vibration equivalent to the Morse code even with a vibrator such as LRA.
 図26は、関連情報(その2)の一例を示す図である。図26に示す例は、各アルファベットを独自の振動パターンに割り当てた例である。図26に示す例では、図25同様、100msec以下の短い振動と200msecを超える長い振動の2種類の波形を利用している。しかし、100msecに2回振動を与えるような振動パターンも含めた3種類の波形や、4種類以上の波形を用いることも可能である。予め振動パターンの割り当てを設定しておき、振動パターンを各ユーザで共有することもできる。 FIG. 26 is a diagram illustrating an example of related information (part 2). The example shown in FIG. 26 is an example in which each alphabet is assigned to a unique vibration pattern. In the example shown in FIG. 26, as in FIG. 25, two types of waveforms, a short vibration of 100 msec or less and a long vibration exceeding 200 msec, are used. However, it is also possible to use three types of waveforms including a vibration pattern that applies vibration twice in 100 msec, or four or more types of waveforms. It is also possible to set vibration pattern assignment in advance and share the vibration pattern with each user.
 図27は、関連情報(その3)の一例を示す図である。図27に示す例は、50音を独自の振動パターンに割り当てた例である。図27に示す例でも、図25同様、100msec以下の短い振動と200msecを超える長い振動の2種類の波形を利用している。しかし、100msecに2回振動を与えるような振動パターンも含めた3種類の波形や、4種類以上の波形を用いることも可能である。予め振動パターンの割り当てを設定しておき、振動パターンを各ユーザで共有することもできる。 FIG. 27 is a diagram illustrating an example of related information (part 3). The example shown in FIG. 27 is an example in which 50 sounds are assigned to a unique vibration pattern. In the example shown in FIG. 27 as well, two types of waveforms, a short vibration of 100 msec or less and a long vibration exceeding 200 msec, are used as in FIG. However, it is also possible to use three types of waveforms including a vibration pattern that applies vibration twice in 100 msec, or four or more types of waveforms. It is also possible to set vibration pattern assignment in advance and share the vibration pattern with each user.
 図28は、関連情報(その4)の一例を示す図である。図28に示す例は、単語や文章を独自の振動パターンに割り当てた例である。図28に示す例でも、図25同様、100msec以下の短い振動と200msecを超える長い振動の2種類の波形を利用している。しかし、100msecに2回振動を与えるような振動パターンも含めた3種類の波形や、4種類以上の波形を用いることも可能である。予め振動パターンの割り当てを設定しておき、振動パターンを各ユーザで共有することもできる。 FIG. 28 is a diagram showing an example of related information (part 4). The example shown in FIG. 28 is an example in which words and sentences are assigned to unique vibration patterns. In the example shown in FIG. 28, as in FIG. 25, two types of waveforms, a short vibration of 100 msec or less and a long vibration exceeding 200 msec, are used. However, it is also possible to use three types of waveforms including a vibration pattern that applies vibration twice in 100 msec, or four or more types of waveforms. It is also possible to set vibration pattern assignment in advance and share the vibration pattern with each user.
 ここで、ディスプレイ301に振動パターンを表示する際、LRA140を駆動する信号波形を表示しても良いが、タッチパネル上の加速度波形を表示することも可能である。 Here, when displaying the vibration pattern on the display 301, a signal waveform for driving the LRA 140 may be displayed, but an acceleration waveform on the touch panel can also be displayed.
 (適用例1)
 次に、受信メールを振動によって提供する例を説明する。図29は、バイブメールの選択手順を示す図である。図29に示す例では、電子機器300は、メールサーバ500からメールを受信する。メール本文は、例えば「HELLO」とする。このとき、ユーザは、バイブメールを選択したとする。バイブメールが選択されると、図29に示すように、バイブメールの選択ボタンの色が変わる。
(Application example 1)
Next, an example in which received mail is provided by vibration will be described. FIG. 29 is a diagram showing a procedure for selecting a vibrator mail. In the example illustrated in FIG. 29, the electronic device 300 receives a mail from the mail server 500. The mail text is, for example, “HELLO”. At this time, it is assumed that the user has selected vibrator mail. When the vibrator mail is selected, the color of the vibrator mail selection button changes as shown in FIG.
 イベント検知部410は、ユーザがバイブメールを選択したことを検知すると、その旨を文字情報提供部420に通知する。 When the event detecting unit 410 detects that the user has selected the vibrator mail, the event detecting unit 410 notifies the character information providing unit 420 to that effect.
 文字情報提供部420は、イベント検知部410により通知されると、メールの本文を振動により提供する。 When notified by the event detection unit 410, the character information providing unit 420 provides the mail text by vibration.
 図30は、振動の一例を示す図である。図30(A)は、振動パターンがモールス信号に割り当てられていた場合である。図30(A)に示すように、電子機器300は、モールス信号により「HELLO」を表す振動パターンで振動する。 FIG. 30 is a diagram illustrating an example of vibration. FIG. 30A shows a case where the vibration pattern is assigned to the Morse signal. As shown in FIG. 30A, the electronic device 300 vibrates in a vibration pattern representing “HELLO” by a Morse signal.
 図30(B)は、振動パターンがアルファベットに割り当てられていた場合である。図30(B)に示すように、電子機器300は、割り当てられたアルファベットにより「HELLO」を表す振動パターンで振動する。 FIG. 30B shows a case where the vibration pattern is assigned to the alphabet. As shown in FIG. 30B, the electronic device 300 vibrates in a vibration pattern representing “HELLO” by the assigned alphabet.
 図30(C)は、振動パターンが50音に割り当てられていた場合である。図30(C)に示すように、電子機器300は、割り当てられた50音により「ハロー(HELLO)」を表す振動パターンで振動する。 FIG. 30C shows the case where the vibration pattern is assigned to 50 sounds. As shown in FIG. 30C, the electronic device 300 vibrates in a vibration pattern representing “HELLO” with the assigned 50 sounds.
 図30(D)は、振動パターンがユーザ独自の定型文に割り当てられた場合である。図30(D)に示すように、電子機器100は、割り当てられた定型文で「こんにちは(Helloの日本語)」を表す振動パターンにより振動する。 FIG. 30D shows a case where the vibration pattern is assigned to a user-defined fixed phrase. As shown in FIG. 30 (D), the electronic device 100 is vibrated by the vibration pattern representing the "Hello (in Japanese Hello)" in the assigned fixed sentence.
 これにより、ユーザは、目が見えない場合であっても、メールや文章の内容を振動により提供されることで、その内容を理解することができるようになる。 This enables the user to understand the contents of the mail or text by providing the vibration by vibration even when the user cannot see.
 (適用例2)
 次に、ユーザが独自に振動パターンを割り当て、サーバにアップロードし、特定のユーザ間でその振動パターンを利用する例について説明する。
(Application example 2)
Next, an example in which a user uniquely assigns a vibration pattern, uploads it to a server, and uses the vibration pattern between specific users will be described.
 図31は、ユーザが独自に振動パターンを割り当てる例を説明する図である。図31に示す例では、例えばユーザAは、図28に示す文章と振動パターンとの関連付けを行う。関連付けられた関連情報は、文字情報提供アプリケーションの一機能を用いてネットワークを介してサーバ600上に保存される。 FIG. 31 is a diagram illustrating an example in which a user assigns vibration patterns independently. In the example illustrated in FIG. 31, for example, the user A associates the sentence illustrated in FIG. 28 with the vibration pattern. The related information associated is stored on the server 600 via the network using one function of the character information providing application.
 サーバ600に保存された関連情報は、例えば数名のあるグループ間で共有することが可能である。例えば、サーバ600は、ユーザ認証機能を用いて、特定のユーザに対して関連情報をダウンロード可能にする。 The related information stored in the server 600 can be shared among, for example, several groups. For example, the server 600 can download related information to a specific user by using a user authentication function.
 各ユーザは、サーバ600に対する認証が成功した場合、サーバ600に保存された関連情報を、文字情報提供アプリケーションの一機能を用いてネットワークを介してダウンロードする。 Each user, when the authentication with respect to the server 600 is successful, downloads related information stored in the server 600 via the network using one function of the character information providing application.
 これにより、関連情報は、各々の電子機器300に保存される。関連情報を共有したユーザ間では、登録した単語や定型文を利用することで、振動による情報交換が可能となる。サーバ600は、例えばクラウドサーバであり、関連情報のアップロードやダウンロードをクラウドのサービスとして提供することができる。 Thereby, the related information is stored in each electronic device 300. Users who share related information can exchange information by vibration by using registered words and fixed phrases. The server 600 is a cloud server, for example, and can provide uploading and downloading of related information as a cloud service.
 上述したように、文章情報提供アプリケーションは、まず、文字情報を解析してコード情報を認識する。次に、文章情報提供アプリケーションは、第1~第3の方法の何れかの波形データから生成される振動パターンと、各コード情報とを関連付けた関連情報を参照して、認識されたコード情報を振動パターンに変換する。次に、文章情報提供アプリケーションは、変換された振動パターンの波形データに基づきLRA140に対する駆動指令を出力する。 As described above, the text information providing application first analyzes the character information and recognizes the code information. Next, the text information providing application refers to the related information that associates the vibration pattern generated from the waveform data of any one of the first to third methods with each code information, and recognizes the recognized code information. Convert to vibration pattern. Next, the text information providing application outputs a drive command to the LRA 140 based on the converted waveform data of the vibration pattern.
 次に、実施例における文字情報提供処理について説明する。図32は、実施例における文字情報提供処理の一例を示すフローチャートである。 Next, character information provision processing in the embodiment will be described. FIG. 32 is a flowchart illustrating an example of character information provision processing in the embodiment.
 ステップS701で、文字情報提供部420は、文字情報を取得する。文字情報は、例えばメールの本文や、ディスプレイ301に表示されている文字列などである。 In step S701, the character information providing unit 420 acquires character information. The character information is, for example, a mail text or a character string displayed on the display 301.
 ステップS702で、認識部421は、文字情報を解析して文字情報をコード化することで、コード情報を認識する。 In step S702, the recognition unit 421 recognizes the code information by analyzing the character information and encoding the character information.
 ステップS703で、変換部422は、認識されたコード情報を、テーブル307(関連情報)を参照して、振動パターンに変換する。 In step S703, the conversion unit 422 converts the recognized code information into a vibration pattern with reference to the table 307 (related information).
 ステップS704で、文字情報提供部420は、変換された振動パターンに従って、LRA140を駆動させるよう、駆動部430に駆動指令を出す。これにより、ユーザは、振動パターンを認識することで、文字情報を認識することができる。 In step S704, the character information providing unit 420 issues a drive command to the drive unit 430 to drive the LRA 140 according to the converted vibration pattern. Thereby, the user can recognize character information by recognizing a vibration pattern.
 以上、実施例によれば、鋭い触感が得られる振動を用いる振動パターンにより情報を伝えることができる。また、鋭い触感が得られる振動を用いることで、従来よりも短時間で文字情報を提供することができるようになる。 As described above, according to the embodiment, information can be transmitted by the vibration pattern using the vibration that can provide a sharp tactile sensation. Moreover, character information can be provided in a shorter time than before by using a vibration that provides a sharp tactile sensation.
 なお、前述した実施例で説明した文字情報提供処理を実現するためのプログラムを記録媒体に記録することで、実施例での文字情報提供処理をコンピュータに実施させることができる。例えば、このプログラムを記録媒体に記録し、このプログラムが記録された記録媒体を電子機器に読み取らせて、前述した文字情報提供処理を実現させることも可能である。 Note that by recording a program for realizing the character information providing process described in the above-described embodiment on a recording medium, the computer can perform the character information providing process in the embodiment. For example, it is possible to record the program on a recording medium and cause the electronic device to read the recording medium on which the program is recorded, thereby realizing the character information providing process described above.
 なお、記録媒体は、CD-ROM、フレキシブルディスク、光磁気ディスク等の様に情報を光学的,電気的或いは磁気的に記録する記録媒体、ROM、フラッシュメモリ等の様に情報を電気的に記録する半導体メモリ等、様々なタイプの記録媒体を用いることができる。記録媒体は、搬送波などの一過性の媒体を含まない。 The recording medium is a recording medium that records information optically, electrically or magnetically, such as a CD-ROM, flexible disk, magneto-optical disk, etc., and information is electrically recorded such as ROM, flash memory, etc. Various types of recording media such as a semiconductor memory can be used. The recording medium does not include a transient medium such as a carrier wave.
 以上、実施例におけるプログラムや電子機器について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。 As mentioned above, although the program and electronic device in an Example were explained in full detail, it is not limited to a specific Example, A various deformation | transformation and change are possible within the range described in the claim.
 100、100A、300 電子機器
 110 筐体
 120 タッチパネル
 130 両面テープ
 140 LRA
 200 駆動装置
 210、310 CPU
 220 メモリ
 230 駆動制御プログラム
 240 波形データ
 250 API
 260 ドライバIC
 306 文字情報提供プログラム
 307 テーブル
 309 記録媒体
 420 文字情報提供部
 421 認識部
 422 変換部
 430 駆動部
100, 100A, 300 Electronic device 110 Housing 120 Touch panel 130 Double-sided tape 140 LRA
200 Drive device 210, 310 CPU
220 Memory 230 Drive control program 240 Waveform data 250 API
260 Driver IC
306 Character information provision program 307 Table 309 Recording medium 420 Character information provision unit 421 Recognition unit 422 Conversion unit 430 Drive unit

Claims (7)

  1.  文字情報を解析して各コード情報を認識し、
     アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m、nは自然数かつm≠n)でm回加振する駆動指令の第1波形データ、振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令の第2波形データ、又は前記第1波形データの条件かつ前記第2波形データの条件を満たす第3波形データの何れか一つの波形データから得られる振動を含む振動パターンと、各コード情報とを関連付けた関連情報を参照して、認識された各コード情報を前記振動パターンに変換し、
     変換された前記振動パターンの波形データに基づき前記アクチュエータに対する駆動指令を出力する処理をコンピュータに実行させるプログラム。
    Analyzing character information to recognize each code information,
    When the resonance frequency of the actuator is f0, the first waveform data of the drive command to vibrate m times at a frequency f1 = m / n × f0 (m, n is a natural number and m ≠ n), except for the amplitude center point Includes vibration obtained from any one of the second waveform data of the drive command for stopping the excitation of the actuator, or the third waveform data satisfying the condition of the first waveform data and the condition of the second waveform data. With reference to related information that associates the vibration pattern and each code information, each recognized code information is converted into the vibration pattern,
    A program for causing a computer to execute a process of outputting a drive command to the actuator based on the converted waveform data of the vibration pattern.
  2.  前記一つの波形データから得られる振動は、20msec以下である請求項1記載のプログラム。 The program according to claim 1, wherein the vibration obtained from the one waveform data is 20 msec or less.
  3.  前記振動パターンは、
     モールス信号パターン、予め設定された振動パターン、又はユーザにより設定された振動パターンの何れか一つである請求項1又は2記載のプログラム。
    The vibration pattern is
    The program according to claim 1 or 2, wherein the program is any one of a Morse code pattern, a vibration pattern set in advance, or a vibration pattern set by a user.
  4.  前記ユーザにより設定された振動パターンを、前記コンピュータと異なるサーバにアップロードする処理、又は前記サーバからダウンロードする処理を前記コンピュータにさらに実行させる請求項3記載のプログラム。 The program according to claim 3, further causing the computer to further execute a process of uploading a vibration pattern set by the user to a server different from the computer or a process of downloading from the server.
  5.  前記サーバにアップロードされた前記ユーザにより設定された振動パターンは、所定のユーザ間で共有される請求項4記載のプログラム。 The program according to claim 4, wherein the vibration pattern set by the user uploaded to the server is shared among predetermined users.
  6.  アクチュエータと、
     前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m、nは自然数かつm≠n)でm回加振する駆動指令の第1波形データ、振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令の第2波形データ、又は前記第1波形データの条件かつ前記第2波形データの条件を満たす第3波形データの何れか一つの波形データから得られる振動を含む振動パターンと、各コード情報とを関連付けた関連情報を格納する記憶部と、
     文字情報を解析して各コード情報を認識する認識部と、
     前記関連情報を参照して、前記認識部により認識された各コード情報を前記振動パターンに変換する変換部と、
     前記変換部により変換された振動パターンの波形データに基づく駆動指令により、前記アクチュエータの駆動を制御する駆動部と
     を備える電子機器。
    An actuator,
    When the resonance frequency of the actuator is f0, the first waveform data of the drive command to vibrate m times at a frequency f1 = m / n × f0 (m, n is a natural number and m ≠ n), except for the amplitude center point A vibration obtained from any one of the second waveform data of the drive command for stopping the excitation of the actuator or the third waveform data satisfying the condition of the first waveform data and the condition of the second waveform data. A storage unit that stores related information that associates the vibration pattern including each code information,
    A recognition unit that analyzes character information and recognizes each code information;
    A conversion unit that converts each piece of code information recognized by the recognition unit into the vibration pattern with reference to the related information;
    An electronic device comprising: a drive unit that controls driving of the actuator by a drive command based on waveform data of a vibration pattern converted by the conversion unit.
  7.  文字情報を解析して各コード情報を認識し、
     アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m、nは自然数かつm≠n)でm回加振する駆動指令の第1波形データ、振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令の第2波形データ、又は前記第1波形データの条件かつ前記第2波形データの条件を満たす第3波形データの何れか一つの波形データから得られる振動を含む振動パターンと、各コード情報とを関連付けた関連情報を参照して、認識された各コード情報を前記振動パターンに変換し、
     変換された前記振動パターンの波形データに基づく駆動指令を出力する処理をコンピュータが実行する情報処理方法。
    Recognize each code information by analyzing the character information,
    When the resonance frequency of the actuator is f0, the first waveform data of the drive command to vibrate m times at a frequency f1 = m / n × f0 (m, n is a natural number and m ≠ n), except for the amplitude center point Includes vibration obtained from any one of the second waveform data of the drive command for stopping the excitation of the actuator, or the third waveform data satisfying the condition of the first waveform data and the condition of the second waveform data. With reference to related information that associates the vibration pattern and each code information, each recognized code information is converted into the vibration pattern,
    An information processing method in which a computer executes a process of outputting a drive command based on the converted waveform data of the vibration pattern.
PCT/JP2012/064949 2012-06-11 2012-06-11 Program and electronic device WO2013186846A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/064949 WO2013186846A1 (en) 2012-06-11 2012-06-11 Program and electronic device
JP2014520832A JP5962757B2 (en) 2012-06-11 2012-06-11 Programs and electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064949 WO2013186846A1 (en) 2012-06-11 2012-06-11 Program and electronic device

Publications (1)

Publication Number Publication Date
WO2013186846A1 true WO2013186846A1 (en) 2013-12-19

Family

ID=49757710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064949 WO2013186846A1 (en) 2012-06-11 2012-06-11 Program and electronic device

Country Status (2)

Country Link
JP (1) JP5962757B2 (en)
WO (1) WO2013186846A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532648A (en) * 2014-09-02 2017-11-02 アップル インコーポレイテッド Tactile notification
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
JP2019220179A (en) * 2018-06-15 2019-12-26 イマージョン コーポレーションImmersion Corporation Systems, devices, and methods for providing limited-duration haptic effects
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
WO2021075143A1 (en) * 2019-10-18 2021-04-22 株式会社東海理化電機製作所 Control device, program, and system
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
CN115047971A (en) * 2022-06-16 2022-09-13 腾讯科技(深圳)有限公司 Vibration encoding processing method, device, computer equipment and storage medium
WO2023281762A1 (en) * 2021-07-09 2023-01-12 株式会社ワコム Active pen
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149312A (en) * 2000-08-08 2002-05-24 Ntt Docomo Inc Portable electronic equipment, electronic equipment, oscillation generator, reporting method by oscillation, and report control method
JP2006293622A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Command generating device
JP2010213401A (en) * 2009-03-09 2010-09-24 Shicoh Engineering Co Ltd Vibration motor and electronic equipment
JP2010287232A (en) * 2009-06-09 2010-12-24 Immersion Corp Method and apparatus for generating haptic effect using actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221818A (en) * 1985-03-28 1986-10-02 Canon Inc Electronic apparatus
US7919945B2 (en) * 2005-06-27 2011-04-05 Coactive Drive Corporation Synchronized vibration device for haptic feedback
JP2008035386A (en) * 2006-07-31 2008-02-14 Fujitsu Ltd Communication terminal device, incoming operation control method, and program therefor
WO2008136305A1 (en) * 2007-04-26 2008-11-13 Nec Tokin Corporation Piezoelectric actuator
US8325144B1 (en) * 2007-10-17 2012-12-04 Immersion Corporation Digital envelope modulator for haptic feedback devices
JP2010245795A (en) * 2009-04-06 2010-10-28 Shigeru Ota Communication terminal, communication server and communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149312A (en) * 2000-08-08 2002-05-24 Ntt Docomo Inc Portable electronic equipment, electronic equipment, oscillation generator, reporting method by oscillation, and report control method
JP2006293622A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Command generating device
JP2010213401A (en) * 2009-03-09 2010-09-24 Shicoh Engineering Co Ltd Vibration motor and electronic equipment
JP2010287232A (en) * 2009-06-09 2010-12-24 Immersion Corp Method and apparatus for generating haptic effect using actuator

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605273B2 (en) 2009-09-30 2023-03-14 Apple Inc. Self-adapting electronic device
US11043088B2 (en) 2009-09-30 2021-06-22 Apple Inc. Self adapting haptic device
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10490035B2 (en) 2014-09-02 2019-11-26 Apple Inc. Haptic notifications
JP2017532648A (en) * 2014-09-02 2017-11-02 アップル インコーポレイテッド Tactile notification
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US11402911B2 (en) 2015-04-17 2022-08-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10809805B2 (en) 2016-03-31 2020-10-20 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
JP2019220179A (en) * 2018-06-15 2019-12-26 イマージョン コーポレーションImmersion Corporation Systems, devices, and methods for providing limited-duration haptic effects
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US11763971B2 (en) 2019-09-24 2023-09-19 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
JP2021067998A (en) * 2019-10-18 2021-04-30 株式会社東海理化電機製作所 Control device, program, and system
CN114556269A (en) * 2019-10-18 2022-05-27 株式会社东海理化电机制作所 Control device, program, and system
WO2021075143A1 (en) * 2019-10-18 2021-04-22 株式会社東海理化電機製作所 Control device, program, and system
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
WO2023281762A1 (en) * 2021-07-09 2023-01-12 株式会社ワコム Active pen
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
CN115047971A (en) * 2022-06-16 2022-09-13 腾讯科技(深圳)有限公司 Vibration encoding processing method, device, computer equipment and storage medium

Also Published As

Publication number Publication date
JPWO2013186846A1 (en) 2016-02-01
JP5962757B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5962757B2 (en) Programs and electronic devices
JP5822023B2 (en) Electronic device, vibration generation program, and vibration pattern utilization system
JP5831635B2 (en) DRIVE DEVICE, ELECTRONIC DEVICE, AND DRIVE CONTROL PROGRAM
JP6032364B2 (en) DRIVE DEVICE, ELECTRONIC DEVICE, AND DRIVE CONTROL PROGRAM
JP6142928B2 (en) Drive device, electronic device, drive control program, and drive signal generation method
JP5822022B2 (en) Electronic device and drive control program
JP6032362B2 (en) DRIVE DEVICE, ELECTRONIC DEVICE, AND DRIVE CONTROL PROGRAM
JP5935885B2 (en) DRIVE DEVICE, ELECTRONIC DEVICE, AND DRIVE CONTROL PROGRAM
US20190103004A1 (en) Haptic pitch control
JP5910741B2 (en) Programs and electronic devices
JP5907260B2 (en) DRIVE DEVICE, ELECTRONIC DEVICE, AND DRIVE CONTROL PROGRAM
JP6528086B2 (en) Electronics
JP5994991B2 (en) Electronics
JP5962756B2 (en) Electronic device and vibration providing method
JP5907261B2 (en) DRIVE DEVICE, ELECTRONIC DEVICE, AND DRIVE CONTROL PROGRAM
WO2016194042A1 (en) Input device
JP2017199208A (en) Pen type input device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878670

Country of ref document: EP

Kind code of ref document: A1