WO2013180152A1 - Display device evaluation method and display device - Google Patents

Display device evaluation method and display device Download PDF

Info

Publication number
WO2013180152A1
WO2013180152A1 PCT/JP2013/064843 JP2013064843W WO2013180152A1 WO 2013180152 A1 WO2013180152 A1 WO 2013180152A1 JP 2013064843 W JP2013064843 W JP 2013064843W WO 2013180152 A1 WO2013180152 A1 WO 2013180152A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
phosphor layer
light
polar angle
phosphor
Prior art date
Application number
PCT/JP2013/064843
Other languages
French (fr)
Japanese (ja)
Inventor
博敏 安永
壮史 石田
龍三 結城
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013180152A1 publication Critical patent/WO2013180152A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell

Definitions

  • the present invention relates to a display device evaluation method and a display device.
  • a back light source a first polarizing layer, a first transparent substrate, a first transparent electrode, a liquid crystal, a second transparent electrode, a second polarizing layer, a phosphor layer, and a second transparent
  • a liquid crystal display element capable of color display which has a structure in which conductive substrates are sequentially laminated, reduces light loss from a back light source, and improves luminance (for example, Japanese Patent Laid-Open No. 11-52371) See Patent Document 1)).
  • liquid crystal displays have become mainstream in the display field.
  • the luminance change depending on the viewing angle of the liquid crystal display depends on the angle characteristics of the liquid crystal, and the liquid crystal display has a drawback that the luminance changes depending on the viewing angle.
  • the transmittance of light incident on a liquid crystal panel is greatly different from that of light incident obliquely.
  • the transmittance decreases as the light incident angle increases during white display. Therefore, even if the brightness of the backlight is uniform in all polar directions, the brightness changes depending on the polar angle when light passes through the liquid crystal layer. There was a problem that the brightness decreased as the viewing was performed.
  • the present invention has been made in view of the above problems, and a main purpose thereof is to provide a display device evaluation method capable of evaluating whether the display device has a uniform luminance regardless of the observation angle.
  • a display device evaluation method is a display device evaluation method comprising: a light source that emits light; and a phosphor layer that includes a phosphor that absorbs light emitted from the light source and emits fluorescence.
  • the polar angle ⁇ and the luminous intensity l ⁇ of the emitted light from the phosphor layer at the polar angle ⁇ are in the range of ⁇ 85 ° ⁇ ⁇ ⁇ 85 °, and from the phosphor layer at the polar angle of 0 °. It is evaluated whether or not 0.93 ⁇ B ⁇ cos ⁇ ⁇ l ⁇ ⁇ 1.07 ⁇ B ⁇ cos ⁇ is satisfied for an arbitrary real number B in the range of 0.93 to 1.076 times the luminous intensity of the emitted light. .
  • the display device includes a light source that emits light, an optical shutter that selectively emits light incident from the light source, and a light that is incident from the optical shutter.
  • the display device evaluation method of the present invention by creating and clarifying the conditions for achieving uniform display luminance, the display device satisfying the conditions is evaluated to have uniform luminance regardless of the observation angle. can do.
  • FIG. 1 is a cross-sectional view illustrating a display device according to a first embodiment. It is a schematic diagram which shows the outline of a polar angle. It is a figure which shows the relationship between a polar angle and a luminous intensity in case brightness
  • FIG. 10 is a cross-sectional view illustrating a display device according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a first example of a partition wall according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a first example of a partition wall according to a fifth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a second example of a partition wall according to the fifth embodiment.
  • FIG. 10 is a cross-sectional view showing a third example of the partition wall according to the fifth embodiment.
  • FIG. 10 is a cross-sectional view showing a fourth example of the partition wall in the fifth embodiment. It is a graph which shows the actual value of luminous intensity distribution of the emitted light from the fluorescent substance layer arrange
  • FIG. 10 is a cross-sectional view illustrating a display device according to a sixth embodiment. It is sectional drawing which expands and shows the fluorescent substance layer of Embodiment 6.
  • FIG. 10 is a cross-sectional view illustrating a display device according to a seventh embodiment.
  • FIG. 1 is a cross-sectional view showing a display device 200 according to the first embodiment.
  • a display device 200 illustrated in FIG. 1 includes a backlight 20 as a light source, an optical shutter 150, and a color conversion substrate 100.
  • the backlight 20 emits substantially parallel blue light toward the optical shutter 150.
  • the backlight 20 may be a light source that generates near-ultraviolet light.
  • the optical shutter 150 selectively emits blue light incident from the backlight 20 and selectively causes the blue light to enter the color conversion substrate 100.
  • the light shutter 150 adjusts the gradation of the light generated by the backlight 20.
  • a liquid crystal panel, a liquid crystal panel using an in-cell polarizing plate, a device using MEMS, or the like can be used.
  • MEMS liquid crystal panel or MEMS
  • an organic EL panel or an inorganic EL panel it is also conceivable to use an organic EL panel or an inorganic EL panel.
  • the color conversion substrate 100 includes a phosphor layer 3 and a transparent substrate 4.
  • the phosphor layer 3 includes a main surface 1 and a main surface 2.
  • the transparent substrate 4 is disposed on the main surface 1 of the phosphor layer 3.
  • Incident light in a predetermined frequency region is incident on the main surface 2 of the phosphor layer 3 from the backlight 20, and light is emitted from the main surface 1 of the phosphor layer 3.
  • the main surface 2 is an incident surface on which light enters the phosphor layer 3, and the main surface 1 is an exit surface from which light is emitted from the phosphor layer 3.
  • the phosphor layer 3 includes a phosphor such as an organic phosphor, an inorganic phosphor, or a nanophosphor.
  • the phosphor absorbs light incident through the optical shutter 150 and emits fluorescence of each color isotropically.
  • the phosphor layer 3 is formed by arranging and molding a mixture of a phosphor and a binder resin.
  • the phosphor layer 3 is arranged such that light incident on the phosphor layer 3 from the optical shutter 150 is irradiated to the phosphor.
  • the type of phosphor to be used is preferably selected in consideration of the concentration of the phosphor added, the thickness of the phosphor layer 3 to be formed, the absorption rate, and the like.
  • the phosphor layer 3 may include a scattering material that scatters light incident through the optical shutter 150 together with the phosphor or instead of the phosphor.
  • the transparent substrate 4 for example, a glass substrate, a transparent film, or a transparent resin can be employed.
  • the transparent substrate 4 is disposed on the phosphor layer 3 and has an emission surface 9 on the side opposite to the side facing the phosphor layer 3.
  • the emission surface 9 is provided as a surface from which light is emitted from the display device 200 to the outside. Light extracted from the display device 200 to the outside is emitted from the emission surface 9.
  • a color filter layer can be provided on the emission surface 9 side with respect to the phosphor layer 3.
  • the display device 200 can be applied as an image display device that displays an image from the exit surface 9 or an illumination device that emits illumination light of an arbitrary hue from the exit surface 9.
  • FIG. 2 is a schematic diagram showing an outline of the polar angle ⁇ .
  • the polar angle ⁇ refers to an angle with respect to the planar exit surface 9 of the display device 200 and refers to an angle formed with respect to the normal line of the exit surface 9.
  • the polar angle ⁇ formed by the straight line extending in one direction with respect to the normal is 90 °.
  • the polar angle ⁇ formed by the straight line extending in the other direction in the direction opposite to the one direction is ⁇ 90 °.
  • FIG. 3 is a diagram showing the relationship between the polar angle and the luminous intensity when the luminance of the display device 200 is uniform regardless of the observation angle.
  • the horizontal axis in FIG. 3 indicates the polar angle. In the direction directly in front of the emission surface 9 of the display device 200, the polar angle ⁇ is 0 °.
  • the vertical axis in FIG. 3 indicates the luminous intensity, that is, the size of the light beam emitted from the display device 200 in the polar angle ⁇ direction.
  • the luminous intensity of the emitted light from the display device 200 in the direction where the polar angle ⁇ is 0 ° is assumed to be l0.
  • FIG. 3 shows the luminous intensity of the emitted light from the point when the position of the origin in FIG. 3 is considered as a certain point on the emission surface 9 of the display device 200.
  • the display device 200 has a uniform luminance regardless of the observation angle. Evaluate that there is. That is, in the display device 200 that can be evaluated as having uniform brightness regardless of the observation angle, the polar angle distribution of the luminous intensity of the emitted light from the phosphor layer 3 is in a certain range.
  • the polar angle ⁇ and the luminous intensity l ⁇ of the emitted light from the phosphor layer 3 at the polar angle ⁇ are in the range of ⁇ 85 ° ⁇ ⁇ ⁇ 85 °, 0.90 ⁇ A ⁇ cos ⁇ ⁇ l ⁇ . It is evaluated whether or not the relational expression of ⁇ 1.10 ⁇ A ⁇ cos ⁇ is satisfied.
  • A is an arbitrary real number in the range of 0.91 to 1.11 times the luminous intensity 10 of the emitted light from the phosphor layer 3 at the polar angle 0 °, and the luminous intensity 10 at the polar angle 0 °. Is within the range of ⁇ 10%.
  • the display device 200 When the display device 200 satisfies this relational expression, the display device 200 is realized in which the change in luminance is sufficiently small regardless of the angle at which the display device 200 is viewed, and the luminance is uniform at all viewing angles. Can be evaluated.
  • This conditional expression clarifies conditions for achieving uniform luminance of the display device 200.
  • FIG. 4 is a graph showing measured values of the luminous intensity distribution of the emitted light from the phosphor layer 3.
  • FIG. 5 is a graph in which the measured value of the luminous intensity distribution shown in FIG. 4 is applied to the conditional expression. 4 and 5, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
  • the outgoing light from the phosphor layer 3 the range outside the polar angle ⁇ 70% cannot be measured due to the measurement limit. Therefore, in FIG. 4, the outgoing light in the polar angle range of ⁇ 70 ° to 70 ° is used.
  • the light intensity distribution is shown.
  • the curve drawn with a solid line in FIG. 5 is the actual measurement value of the luminous intensity distribution of the emitted light from the phosphor layer 3, which is the same as in FIG. 4.
  • Two curves drawn with a broken line in FIG. 5 show 0.90 times and 1.10 times of the function f ( ⁇ ).
  • the polar angle ⁇ is in the range of not less than ⁇ 85 ° and not more than 85 °, and in the range of not less than 0.90 times and not more than 1.10 times A ⁇ cos ⁇ .
  • the luminous intensity l ⁇ of the emitted light from the phosphor layer 3 at the polar angle ⁇ satisfies the above-described conditional expression, so that the display device 200 can be evaluated as having uniform luminance regardless of the viewing angle. Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
  • the display device 200 includes the phosphor layer 3 including a plurality of pixels that can emit red light, green light, and blue light, respectively, and the display device 200 is white light by superimposing these colors. Can be displayed.
  • the error of the chromaticity xy needs to be within ⁇ 0.02 in order to suppress the color change depending on the observation angle to such an extent that it cannot be felt by human eyes.
  • a condition for evaluating that the change in chromaticity of the display device 200 is within ⁇ 0.02 and that the display device 200 has uniform chromaticity regardless of the observation angle will be described.
  • FIG. 6 shows that in the display device 200 configured by RGB pixels, when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity is ⁇ 0 when the RG deviates from the conditional expression. It is a graph which shows whether it changes more than 0.02.
  • the G coefficient on the horizontal axis of the graph of FIG. 6 indicates an error from the conditional expression of the luminous intensity of light emitted from the G pixel.
  • the R coefficient on the vertical axis indicates an error from the conditional expression of the luminous intensity of light emitted from the R pixel.
  • the G coefficient of 1.05 means that the error from the conditional expression of the luminous intensity of light emitted from the G pixel is + 5%.
  • the chromaticity change is ⁇ 0.02 on the line plotted in the graph shown in FIG. 6 (inner line when there is a double line). In the graph of FIG. 6, if it is within the area surrounded by the plot line, the chromaticity change is within ⁇ 0.02 from the state in accordance with the conditional expression for all RGB.
  • the chromaticity change of the display device 200 is 0.02. Fits within.
  • B is an arbitrary real number in the range of 0.93 times to 1.076 times the luminous intensity 10 of the emitted light from the phosphor layer 3 at the polar angle 0 °, and the luminous intensity 10 at the polar angle 0 °. Is within a range of ⁇ 7%.
  • the chromaticity xy falls within an error of ⁇ 0.02, and if the chromaticity xy is within ⁇ 0.02, it is unlikely that a human will feel a color change. Therefore, it can be evaluated that the display device 200 having uniform brightness and chromaticity at all viewing angles has been realized.
  • This conditional expression clarifies the conditions for achieving chromaticity uniformity of the display device 200, and it can be evaluated that a display apparatus that satisfies the conditional expression has a characteristic that the chromaticity does not change depending on the observation angle.
  • FIG. 7 is a graph showing the polar angle distribution of light emitted from the R phosphor.
  • FIG. 8 is a graph showing the luminous intensity polar angle distribution of the emitted light from the G phosphor.
  • FIG. 9 is a graph showing the luminous intensity polar angle distribution of the emitted light from the scattering material in the B pixel. 7, 8, and 9, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
  • the real number B is set to 1.06 times the luminous intensity 10 of the emitted light from the R phosphor at a polar angle of 0 °. That is, B in the conditional expression is set to 1.06 ⁇ 10.
  • Two curves drawn with a broken line in FIG. 7 show 0.93 times and 1.07 times of the function f ( ⁇ ).
  • the real number B is 1.006 times the luminous intensity 10 of the emitted light from the R phosphor at a polar angle of 0 °. That is, B in the conditional expression is set to 1.006 ⁇ 10.
  • Two curves drawn with a broken line in FIG. 8 show 0.93 times and 1.07 times of the function f ( ⁇ ).
  • Two curves drawn with a broken line in FIG. 9 show 0.93 times and 1.07 times of the function f ( ⁇ ).
  • the luminous intensity l ⁇ of the emitted light from each of the RGB phosphors is When the polar angle ⁇ is in the range of ⁇ 85 ° to 85 °, it is in the range of 0.93 times to 1.07 times B ⁇ cos ⁇ . Therefore, since the luminous intensity l ⁇ of the light emitted from the phosphor layer 3 at the polar angle ⁇ satisfies the above-described conditional expression, it can be evaluated that the display device 200 is uniform in chromaticity regardless of the viewing angle. Therefore, the display device 200 with uniform chromaticity can be realized regardless of the observation angle, and the display device 200 whose luminance and chromaticity do not change with the observation angle can be intentionally manufactured.
  • FIG. 10 is a cross-sectional view showing the display device 200 according to the third embodiment.
  • the phosphor layer 3 includes a red phosphor layer 5r and a green phosphor layer 5g.
  • the phosphor layer 3 also includes a diffusion layer 6.
  • the red phosphor layer 5r, the green phosphor layer 5g, and the diffusion layer 6 are partitioned by the partition wall 7, and are arranged in an array with a space therebetween.
  • the red phosphor layer 5r includes a red phosphor that absorbs incident light incident on the red phosphor layer 5r and emits red light.
  • the green phosphor layer 5g includes a green phosphor that absorbs incident light incident on the green phosphor layer 5g and emits green light.
  • the diffusion layer 6 diffuses the incident light incident on the diffusion layer 6 and emits it to the outside.
  • the diffusion layer 6 includes a transparent resin as a binder and a plurality of scattering particles as fillers scattered in the resin.
  • the filler may be any material that reflects and scatters light supplied to the phosphor layer 3 via the optical shutter 150.
  • the display device 200 can It is provided as a video display device capable of displaying full color video.
  • the optical shutter 150 a liquid crystal display panel is used.
  • the optical shutter 150 is a glass substrate 22 that is a TFT (Thin Film ⁇ Transistor) substrate disposed on the backlight 20 side and a counter substrate disposed on the color conversion substrate 100 side.
  • the glass substrate 24 and the liquid crystal layer 23 enclosed between the glass substrate 22 and the glass substrate 24 are included.
  • An annular seal member (not shown) for sealing the liquid crystal layer 23 is provided between the glass substrates 22 and 24 along the outer peripheral edge portions of the glass substrates 22 and 24.
  • a polarizing plate 21 is attached to the outer surface of the glass substrate 22, and a polarizing plate 25 is attached to the outer surface of the glass substrate 24.
  • a source wiring is formed on the surface of the glass substrate 22 on the liquid crystal layer 23 side, and an insulating layer is formed so as to cover the source wiring. Further, pixel electrodes are arranged on the surface of the insulating layer so as to correspond to the respective pixels.
  • the pixel electrode is formed of a transparent conductive film such as an ITO (indium tin oxide) film.
  • a counter electrode is formed on the surface of the glass substrate 24 on the liquid crystal layer 23 side.
  • the counter electrode is formed of a transparent conductive film such as an ITO film, for example.
  • the optical shutter 150 controls the light transmittance in the pixel by a combination of the change in the polarization state by the liquid crystal layer 23 and the polarizing plates 21 and 25.
  • the emitted light from the red phosphor layer 5r and the green phosphor layer 5g can be uniform in luminance without depending on the polar angle. To do. Since the light emission of the phosphor is isotropic, if the refractive index of the phosphor is small, the luminous intensity polar angle distribution of the light emitted from the phosphor deviates from the conditional expressions described in the first and second embodiments.
  • the refractive index of the phosphor is equal to that of air
  • the light emitted from the phosphor is emitted into the air without being refracted, so the luminous intensity of the light emitted from the surface-shaped phosphor is constant regardless of the polar angle.
  • the luminous intensity polar angle distribution of the light emitted from the phosphor approaches 10 ⁇ cos ⁇ shown in FIG.
  • the refractive index of the phosphor is extremely large with respect to the air, the light in the front is almost refracted in the phosphor and is emitted to each polar angle in the air.
  • the larger the polar angle region in the air the more light within a narrower range is extended in the phosphor.
  • the polar angle range in the phosphor is 0.05 to 0.15 ° (difference 0.10) within the polar angle range of 0.5 to 1.5 ° in the air. °) light is stretched and emitted.
  • the polar angle range of 79.5 to 80.5 ° in the air light in the polar angle range of 5.64 to 5.66 ° (difference 0.02 °) in the phosphor is stretched and emitted. Is done. Since the phosphor emits isotropically in the phosphor and the luminous intensity per unit solid angle is the same in all directions, the larger the polar angle in the air, the smaller the luminous intensity. As a result, in the state where the refractive index is maximum, the luminous intensity polar angle distribution in the air approaches as much as 10 ⁇ cos ⁇ .
  • the refractive index threshold for the luminous intensity polar angle distribution in air to be within ⁇ 10% of l0 ⁇ cos ⁇ is 1.74
  • the refractive index threshold to be within ⁇ 7% is 2.02.
  • FIG. 11 is a graph showing a luminous intensity polar angle distribution of emitted light when a phosphor having a refractive index of 1.74 is caused to emit light.
  • the horizontal axis in FIG. 11 indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
  • FIG. 12 is a graph showing the luminous intensity polar angle distribution of emitted light when a phosphor having a refractive index of 2.02 is caused to emit light.
  • the horizontal axis indicates the polar angle
  • the vertical axis indicates the relative luminous intensity.
  • the luminous intensity l ⁇ of the emitted light indicated by the solid line in FIG. 11 has a polar angle ⁇ of ⁇ 85 ° or more and 85 ° or less. In this range, A ⁇ cos ⁇ is in the range of 0.90 times or more and 1.10 times or less. Therefore, it can be evaluated that the display device 200 has uniform luminance regardless of the viewing angle.
  • the real number B the luminous intensity l ⁇ of the emitted light indicated by the solid line in FIG.
  • this display device 200 has a polar angle ⁇ of ⁇ 85 ° to 85 °. In the following range, it is in the range of 0.93 times to 1.07 times B ⁇ cos ⁇ . Therefore, this display device 200 can be evaluated as having uniform chromaticity regardless of the viewing angle. Therefore, it is possible to realize a display device 200 with uniform brightness regardless of the observation angle, and it is possible to realize a display device 200 with no change in chromaticity.
  • a scattering material capable of completely diffusing the blue light generated by the backlight 20 is provided. Since the scattering material completely diffuses the blue light generated in the backlight 20, the luminous intensity polar angle distribution of the light emitted from the scattering material satisfies the conditional expression shown in the first or second embodiment.
  • a light source that generates near-ultraviolet light as the backlight 20 and to use a blue phosphor for the blue pixel.
  • the luminance uniformity method of the blue pixel is the above-described red / green pixel. It will be the same.
  • the luminous intensity polar angle distribution of the emitted light from each phosphor and the scattering material satisfies the conditional expression, and the display device 200 that satisfies the conditional expression It can be evaluated that the luminance (and chromaticity) is uniform regardless of the observation angle.
  • the phosphor layer 3 includes a scattering material that scatters light.
  • the phosphor layer containing the scattering material has scattering characteristics.
  • the red phosphor layer 5r and the green phosphor layer 5g (including the blue phosphor when a blue phosphor is used for the blue pixel) have scattering characteristics, so that the fluorescence excited by the phosphor can be converted into the phosphor layer. 3 can diffuse.
  • the conditional expression shown in the first or second embodiment can be achieved, and the fluorescence emitted from the phosphor layer 3 can be uniform in luminance without depending on the polar angle. .
  • FIG. 13 is a graph showing the luminous intensity polar angle distribution of light emitted from a material in which a phosphor and a scattering material are mixed.
  • FIG. 13 shows measured values of the luminous intensity distribution of emitted light from a material in which a phosphor and a scattering material of TiO 2 particles are mixed at a ratio of 1: 1.
  • the horizontal axis in FIG. 13 indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
  • Two curves drawn with a broken line in FIG. 13 show 0.90 times and 1.10 times of the function f ( ⁇ ).
  • the luminous intensity l ⁇ of the emitted light indicated by the solid line in FIG. Is in the range of 0.90 times to 1.10 times of A ⁇ cos ⁇ in the range of ⁇ 85 ° to 85 °. Therefore, since the luminous intensity l ⁇ of the light emitted from the phosphor layer 3 at the polar angle ⁇ satisfies the conditional expression shown in the first embodiment, it can be evaluated that the display device 200 has uniform luminance regardless of the viewing angle. . Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
  • FIG. 14 is a cross-sectional view showing display device 200 according to the fifth embodiment.
  • the display device 200 according to the fifth embodiment has basically the same configuration as that of the display device according to the third embodiment shown in FIG. 10, and the partition walls 7 that partition the phosphor layers 3 and the diffusion layers of the respective colors are formed in a bank shape. It differs in the point provided in.
  • the phosphor layer 3 includes an incident surface on which light is incident on the phosphor layer 3, an exit surface from which light is emitted from the phosphor layer 3, and a side wall surface that is connected to the entrance surface and the exit surface and faces the partition wall portion 7.
  • the side wall surface of the phosphor layer 3 is inclined so that the phosphor layer 3 spreads from the light source side toward the display side.
  • the light source side indicates the side where the backlight 20 is disposed with respect to the phosphor layer 3, that is, the lower side in FIG.
  • the display side indicates the side opposite to the light source side where the emission surface 9 is disposed with respect to the phosphor layer 3, that is, the upper side in FIG.
  • FIG. 15 is a cross-sectional view showing a first example of the partition wall portion 7 of the fifth embodiment.
  • the partition wall 7 is made of a resin material.
  • the partition wall portion 7 has the maximum width at the end on the light source side, gradually decreases in width toward the exit surface 9 side, and has the minimum width at the end portion on the exit surface 9 side.
  • the partition wall portion 7 has a shape that tapers from the light source side toward the emission surface 9 side.
  • the cross-sectional shape of the partition wall portion 7 shown in FIG. 15 is a trapezoidal shape having a base with a large size on the light source side and a base with a small size on the exit surface side.
  • the facing surface 7a of the partition wall 7 facing the phosphor layer 3 forms a trapezoidal leg.
  • the fluorescence excited by the phosphor in the phosphor layer 3 emits isotropically. A part of the fluorescence is emitted in the direction of the facing surface 7 a of the partition wall 7. As indicated by the arrows in FIG. 15, among the fluorescence emitted isotropically in the phosphor layer 3, the fluorescence toward the side wall surface of the phosphor layer 3 is reflected by the facing surface 7 a of the partition wall portion 7, and the phosphor layer 3. Proceed toward the exit surface. The fluorescence emitted from the phosphor layer 3 proceeds to the emission surface 9 side via the transparent substrate 4 and is emitted from the display device 200 via the emission surface 9.
  • FIG. 16 is a cross-sectional view showing a second example of the partition wall portion 7 of the fifth embodiment.
  • the reflection film 8 is further coated on the surface of the partition wall portion 7.
  • the reflective film 8 may be formed of a metal material having a high reflectance represented by aluminum, for example.
  • the reflective film 8 covers the facing surface 7a.
  • the reflection film 8 makes it possible to more efficiently reflect the fluorescent light toward the side wall surface of the phosphor layer 3 to the emission surface 9 side, thereby improving the light utilization efficiency.
  • FIG. 17 is a cross-sectional view showing a third example of the partition wall portion 7 of the fifth embodiment.
  • the resin partition walls 7 are not provided, and the phosphor layers and the diffusion layers of the respective colors are partitioned by a reflective film 8 having a hollow inside.
  • FIG. 18 is a cross-sectional view showing a fourth example of the partition wall 7 according to the fifth embodiment.
  • the partition wall 7 is formed in a partial cylindrical shape.
  • the cross-sectional shape of the partition wall portion 7 is gradually reduced from the light source side toward the emission surface side.
  • the partition wall portion 7 has a shape that tapers from the emission surface 9 side toward the light source side.
  • a reflective film 8 is formed on a portion of the partition wall 7 that does not contact the phosphor layer 3. When the fluorescence emitted from the phosphor layer 3 is reflected by the reflective film 8, it proceeds toward the exit surface 9 side.
  • the emission angle of the fluorescence from the phosphor layer 3 can be optimized by adjusting the shape of the partition wall 7.
  • the luminous intensity polar angle distribution of the emitted light from the phosphor can satisfy the conditional expression shown in the first or second embodiment.
  • FIG. 19 is a graph showing measured values of the luminous intensity distribution of the emitted light from the phosphor layer 3 arranged between the partition walls 7 shown in FIG.
  • the horizontal axis indicates the polar angle
  • the vertical axis indicates the relative luminous intensity.
  • the luminous intensity l ⁇ of the emitted light indicated by the solid line in FIG. Is in the range of 0.90 times to 1.10 times of A ⁇ cos ⁇ in the range of ⁇ 85 ° to 85 °. Therefore, since the luminous intensity l ⁇ of the light emitted from the phosphor layer 3 at the polar angle ⁇ satisfies the conditional expression shown in the first embodiment, it can be evaluated that the display device 200 has uniform luminance regardless of the viewing angle. . Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
  • FIG. 20 is a cross-sectional view showing a display device 200 according to the sixth embodiment.
  • the display device 200 according to the sixth embodiment has basically the same configuration as that of the display device according to the fifth embodiment shown in FIG. Is different in that
  • the low refractive index material layer 11 is provided on the display side with respect to the phosphor layer 3.
  • the low refractive index material layer 11 has a refractive index smaller than that of the phosphor layer 3.
  • the material for forming the low refractive index material layer 11 is a material having a relatively low refractive index as compared with the material for forming the phosphor layer 3.
  • the low refractive index material layer 11 can be formed using a material having a refractive index of 1.26.
  • FIG. 21 is an enlarged sectional view showing the phosphor layer 3 of the sixth embodiment.
  • the light incident at a large incident angle on the interface between the phosphor layer 3 and the low refractive index material layer 11 out of the fluorescence emitted isotropically from the phosphor included in the phosphor layer 3 is , Total reflection at the interface.
  • the critical angle at the interface between the phosphor layer 3 and the low refractive index material layer 11 is determined according to Snell's law based on the difference in refractive index of the forming material between the phosphor layer 3 and the low refractive index material layer 11.
  • the light incident on the interface at a predetermined incident angle larger than the critical angle is totally reflected.
  • the totally reflected fluorescence propagates in the phosphor layer 3, reaches the facing surface 7 a of the partition wall 7, is reflected by the reflecting film 8 formed on the facing surface 7 a, and then is emitted to the emitting surface 9 side.
  • the low refractive index material layer 11 passes through the low refractive index material layer 11 by adjusting the refractive index of the forming material of the low refractive index material layer 11 and the shape of the partition wall portion 7.
  • the emission angle of the emitted fluorescence can be optimized.
  • the luminous intensity polar angle distribution of the emitted light from the phosphor can satisfy the conditional expression shown in the first or second embodiment. Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
  • the fluorescence totally reflected by the low refractive index material layer 11 is light that is confined in the transparent substrate 4 and is not emitted from the emission surface 9 when there is no low refractive index material layer 11. Since such fluorescence can be used, the light utilization efficiency of the display device 200 is improved, and the display device 200 can be turned on with less power consumption.
  • FIG. 22 is a cross-sectional view showing display device 200 according to the seventh embodiment.
  • the display device 200 according to the seventh embodiment has a configuration basically the same as that of the display device according to the fifth embodiment shown in FIG. Is different in that
  • the diffusion layer 12 is provided on the display side or the light source side with respect to the phosphor layer 3 and has a characteristic of diffusing light incident on the diffusion layer 12.
  • FIG. 22 shows an example in which a diffusion layer 12 is provided on the exit surface 9 side with respect to the low refractive index material layer 11 of the display device of Embodiment 6.
  • the material for forming the diffusion layer 12 may be, for example, a diffusion sheet, a diffusion plate, or a white ink material.
  • a material for the diffusion sheet or the diffusion plate for example, polypropylene can be considered.
  • the display device 200 having such a structure, when the diffusion layer 12 is provided on the emission surface 9 side with respect to the phosphor layer 3, the emission light from the phosphor layer 3 is completely diffused in the diffusion layer 12.
  • the luminous intensity polar angle distribution of the light emitted from the phosphor can satisfy the conditional expression shown in the first or second embodiment. In this method, even if blue light is not completely diffused in the diffusion layer 6 of the blue pixel, it is possible to assist the scattering of the blue light in the diffusion layer 12 and complete diffusion.
  • the luminous intensity polar angle distribution of the emitted light from the phosphor satisfies the conditional expression shown in the first or second embodiment, but the diffusion in the blue pixel is insufficient, the light source side with respect to the phosphor layer 3 is used.
  • the diffusion layer 12 By providing the diffusion layer 12 on the surface, it is possible to assist the diffusion of the blue pixels, and the luminous intensity polar angle distribution of the blue light can satisfy the conditional expression shown in the first or second embodiment.
  • the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

There is provided a method for evaluating a display device whereby it is possible to evaluate whether the display device provides uniform brightness irrespective of the angle of observation. In a method of evaluating a display device comprising a light source that emits light and a phosphor layer containing a phosphor that emits fluorescence on absorbing light emitted from the light source, an evaluation is made as to whether, in a range -85°≦θ≦85°, the polar angle (θ) and the intensity (Iθ) of the emitted light from the phosphor layer at the polar angle (θ) satisfy 0.90・A・cosθ≦lθ≦1.10・A・cosθ in respect of an arbitrary real number (A) which is in the range of at least 0.91 times but no more than 1.11 times the intensity of the emitted light from the phosphor layer at the polar angle 0°.

Description

表示装置の評価方法および表示装置Display device evaluation method and display device
 本発明は、表示装置の評価方法および表示装置に関する。 The present invention relates to a display device evaluation method and a display device.
 表示装置に関し、従来、背面光源、第1の偏光層、第1の透明性基板、第1の透明電極、液晶、第2の透明電極、第2の偏光層、蛍光体層および第2の透明性基板が順次積層された構造を備え、背面光源からの光の損失を低減し輝度を向上させた、カラー表示可能な液晶表示素子が提案されている(たとえば、特開平11-52371号公報(特許文献1)参照)。 Regarding a display device, conventionally, a back light source, a first polarizing layer, a first transparent substrate, a first transparent electrode, a liquid crystal, a second transparent electrode, a second polarizing layer, a phosphor layer, and a second transparent There has been proposed a liquid crystal display element capable of color display, which has a structure in which conductive substrates are sequentially laminated, reduces light loss from a back light source, and improves luminance (for example, Japanese Patent Laid-Open No. 11-52371) See Patent Document 1)).
特開平11-52371号公報Japanese Patent Laid-Open No. 11-52371
 近年、ディスプレイ分野においては、液晶ディスプレイが主流となっている。しかし、液晶ディスプレイの視野角による輝度変化は液晶の角度特性に依存し、液晶ディスプレイは観賞する角度によって輝度が変化するという欠点がある。 In recent years, liquid crystal displays have become mainstream in the display field. However, the luminance change depending on the viewing angle of the liquid crystal display depends on the angle characteristics of the liquid crystal, and the liquid crystal display has a drawback that the luminance changes depending on the viewing angle.
 液晶パネルは、垂直に入射する光の透過率と斜めに入射する光の透過率とが大きく異なる。たとえば、白表示時には光入射角が大きいほど透過率が低下する。よって、バックライトの輝度が全ての極角方向で均一であったとしても、液晶層を光が通過する際に輝度が極角によって変化し、その結果、より正面から離れた角度で液晶ディスプレイを観賞するほど輝度が低下する問題があった。 The transmittance of light incident on a liquid crystal panel is greatly different from that of light incident obliquely. For example, the transmittance decreases as the light incident angle increases during white display. Therefore, even if the brightness of the backlight is uniform in all polar directions, the brightness changes depending on the polar angle when light passes through the liquid crystal layer. There was a problem that the brightness decreased as the viewing was performed.
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、観察角度に依らず輝度均一な表示装置であるかどうかを評価できる、表示装置の評価方法を提供することである。 The present invention has been made in view of the above problems, and a main purpose thereof is to provide a display device evaluation method capable of evaluating whether the display device has a uniform luminance regardless of the observation angle.
 本発明に係る表示装置の評価方法は、光を出射する光源と、光源から出射された光を吸収して蛍光を発光する蛍光体を含む蛍光体層と、を備える表示装置の評価方法であって、極角θと、極角θにおける蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Aに対し、0.90・A・cosθ≦lθ≦1.10・A・cosθを満たすかどうかを評価する。 A display device evaluation method according to the present invention is a display device evaluation method comprising: a light source that emits light; and a phosphor layer that includes a phosphor that absorbs light emitted from the light source and emits fluorescence. Thus, when the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °, the luminous intensity of the emitted light from the phosphor layer at the polar angle of 0 ° It is evaluated whether 0.90 · A · cos θ ≦ lθ ≦ 1.10 · A · cos θ is satisfied with respect to an arbitrary real number A in the range of 0.91 times to 1.11 times.
 上記方法において好ましくは、極角θと、極角θにおける蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における蛍光体層からの出射光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Bに対し、0.93・B・cosθ≦lθ≦1.07・B・cosθを満たすかどうかを評価する。 Preferably, in the above method, the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °, and from the phosphor layer at the polar angle of 0 °. It is evaluated whether or not 0.93 · B · cos θ ≦ lθ ≦ 1.07 · B · cos θ is satisfied for an arbitrary real number B in the range of 0.93 to 1.076 times the luminous intensity of the emitted light. .
 本発明に係る表示装置は、光を出射する光源と、光源から入射した光を選択的に出射する光シャッタと、光シャッタからの光が入射するように配置され、光シャッタから入射した光を吸収して蛍光を発光する蛍光体を含む蛍光体層と、を備える表示装置であって、極角θと、極角θにおける蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Aに対し、0.90・A・cosθ≦lθ≦1.10・A・cosθを満たす。 The display device according to the present invention includes a light source that emits light, an optical shutter that selectively emits light incident from the light source, and a light that is incident from the optical shutter. A phosphor layer including a phosphor layer that absorbs and emits fluorescence, wherein the polar angle θ and the luminous intensity lθ of light emitted from the phosphor layer at the polar angle θ are −85 ° ≦ In the range of θ ≦ 85 °, for an arbitrary real number A in the range of 0.91 to 1.11 times the luminous intensity of the light emitted from the phosphor layer at a polar angle of 0 °, 0.90 · A · cos θ ≦ lθ ≦ 1.10 · A · cos θ is satisfied.
 本発明の表示装置の評価方法によると、表示装置の輝度均一化を達成するための条件を作成および明確化したことで、当該条件を満たす表示装置は観察角度に依らず輝度均一であると評価することができる。 According to the display device evaluation method of the present invention, by creating and clarifying the conditions for achieving uniform display luminance, the display device satisfying the conditions is evaluated to have uniform luminance regardless of the observation angle. can do.
実施の形態1に係る表示装置を示す断面図である。1 is a cross-sectional view illustrating a display device according to a first embodiment. 極角の概略を示す模式図である。It is a schematic diagram which shows the outline of a polar angle. 表示装置の観察角度に依らず輝度均一な場合の、極角と光度との関係を示す図である。It is a figure which shows the relationship between a polar angle and a luminous intensity in case brightness | luminance is uniform irrespective of the observation angle of a display apparatus. 蛍光体層からの出射光の光度分布の実測値を示すグラフである。It is a graph which shows the measured value of the luminous intensity distribution of the emitted light from a fluorescent substance layer. 図4に示す光度分布の実測値を条件式に当てはめたグラフである。It is the graph which applied the measured value of the luminous intensity distribution shown in FIG. 4 to the conditional expression. RGB画素によって構成される表示装置において、B画素からの出射光が条件式から誤差0%の際に、RGが条件式からどの程度ずれた場合に白表示色度が±0.02以上変化するかを示すグラフである。In a display device composed of RGB pixels, when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity changes by ± 0.02 or more when the RG deviates from the conditional expression. It is a graph which shows. R蛍光体からの出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light from R fluorescent substance. G蛍光体からの出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light from G fluorescent substance. B画素における散乱材からの出射光の光度極角分布を示すグラフである。It is a graph which shows luminous intensity polar angle distribution of the emitted light from the scattering material in B pixel. 実施の形態3に係る表示装置を示す断面図である。7 is a cross-sectional view illustrating a display device according to Embodiment 3. FIG. 屈折率1.74の蛍光体を発光させた場合の出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light at the time of making the fluorescent substance of refractive index 1.74 emit light. 屈折率2.02の蛍光体を発光させた場合の出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light at the time of making the fluorescent substance of refractive index 2.02 light-emit. 蛍光体と散乱材料を混合した材料からの出射光の光度極角分布を示すグラフである。It is a graph which shows luminous intensity polar angle distribution of the emitted light from the material which mixed fluorescent substance and a scattering material. 実施の形態5に係る表示装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating a display device according to a fifth embodiment. 実施の形態5の隔壁部の第一の例を示す断面図である。FIG. 10 is a cross-sectional view illustrating a first example of a partition wall according to a fifth embodiment. 実施の形態5の隔壁部の第二の例を示す断面図である。FIG. 10 is a cross-sectional view illustrating a second example of a partition wall according to the fifth embodiment. 実施の形態5の隔壁部の第三の例を示す断面図である。FIG. 10 is a cross-sectional view showing a third example of the partition wall according to the fifth embodiment. 実施の形態5の隔壁部の第四の例を示す断面図である。FIG. 10 is a cross-sectional view showing a fourth example of the partition wall in the fifth embodiment. 図18に示す隔壁部の間に配置された蛍光体層からの出射光の光度分布の実測値を示すグラフである。It is a graph which shows the actual value of luminous intensity distribution of the emitted light from the fluorescent substance layer arrange | positioned between the partition parts shown in FIG. 実施の形態6に係る表示装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating a display device according to a sixth embodiment. 実施の形態6の蛍光体層を拡大して示す断面図である。It is sectional drawing which expands and shows the fluorescent substance layer of Embodiment 6. 実施の形態7に係る表示装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating a display device according to a seventh embodiment.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1に係る表示装置200を示す断面図である。図1に示す表示装置200は、光源としてのバックライト20と、光シャッタ150と、色変換基板100とを備える。バックライト20は、略平行光の青色光を光シャッタ150に向けて出射する。バックライト20は、近紫外光を発生する光源であってもよい。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a display device 200 according to the first embodiment. A display device 200 illustrated in FIG. 1 includes a backlight 20 as a light source, an optical shutter 150, and a color conversion substrate 100. The backlight 20 emits substantially parallel blue light toward the optical shutter 150. The backlight 20 may be a light source that generates near-ultraviolet light.
 光シャッタ150は、バックライト20から入射した青色光を選択的に出射して、選択的に青色光を色変換基板100に入射させる。光シャッタ150によって、バックライト20で発生した光の階調が調整される。光シャッタ150としては、液晶パネル、インセル偏光板を用いた液晶パネル、またはMEMSを用いたものなどを適用することができる。光シャッタ150として液晶パネルまたはMEMSを用いる場合、バックライト20は高指向性であることが望ましい。光シャッタ150およびバックライト20の代替として、有機ELパネルまたは無機ELパネルを使用することも考えられる。 The optical shutter 150 selectively emits blue light incident from the backlight 20 and selectively causes the blue light to enter the color conversion substrate 100. The light shutter 150 adjusts the gradation of the light generated by the backlight 20. As the optical shutter 150, a liquid crystal panel, a liquid crystal panel using an in-cell polarizing plate, a device using MEMS, or the like can be used. When a liquid crystal panel or MEMS is used as the optical shutter 150, it is desirable that the backlight 20 has high directivity. As an alternative to the optical shutter 150 and the backlight 20, it is also conceivable to use an organic EL panel or an inorganic EL panel.
 色変換基板100は、蛍光体層3と、透明基板4とを備える。蛍光体層3は、主表面1および主表面2を含む。透明基板4は、蛍光体層3の主表面1上に配置されている。蛍光体層3の主表面2には、バックライト20から所定の周波数領域の入射光が入射され、蛍光体層3の主表面1から光が出射される。主表面2は蛍光体層3へ光が入射する入射面であり、主表面1は蛍光体層3から光が出射される出射面である。 The color conversion substrate 100 includes a phosphor layer 3 and a transparent substrate 4. The phosphor layer 3 includes a main surface 1 and a main surface 2. The transparent substrate 4 is disposed on the main surface 1 of the phosphor layer 3. Incident light in a predetermined frequency region is incident on the main surface 2 of the phosphor layer 3 from the backlight 20, and light is emitted from the main surface 1 of the phosphor layer 3. The main surface 2 is an incident surface on which light enters the phosphor layer 3, and the main surface 1 is an exit surface from which light is emitted from the phosphor layer 3.
 蛍光体層3は、たとえば有機蛍光体、無機蛍光体、ナノ蛍光体などの、蛍光体を含む。蛍光体は、光シャッタ150を介して入射した光を吸収して、各色の蛍光を等方に発光する。蛍光体層3は、蛍光体とバインダ樹脂とを混合したものを配置して成形することによって形成されている。蛍光体層3は、光シャッタ150から蛍光体層3へ入射する光が蛍光体に照射されるように、配置される。使用する蛍光体の種類は、蛍光体の添加濃度、形成すべき蛍光体層3の膜厚、吸収率などを考慮して選択することが望ましい。蛍光体層3は、蛍光体とともに、または蛍光体に替えて、光シャッタ150を介して入射した光を散乱させる散乱材料を含んでもよい。 The phosphor layer 3 includes a phosphor such as an organic phosphor, an inorganic phosphor, or a nanophosphor. The phosphor absorbs light incident through the optical shutter 150 and emits fluorescence of each color isotropically. The phosphor layer 3 is formed by arranging and molding a mixture of a phosphor and a binder resin. The phosphor layer 3 is arranged such that light incident on the phosphor layer 3 from the optical shutter 150 is irradiated to the phosphor. The type of phosphor to be used is preferably selected in consideration of the concentration of the phosphor added, the thickness of the phosphor layer 3 to be formed, the absorption rate, and the like. The phosphor layer 3 may include a scattering material that scatters light incident through the optical shutter 150 together with the phosphor or instead of the phosphor.
 透明基板4としては、たとえば、ガラス基板、透明フィルムまたは透明樹脂などを採用することができる。透明基板4は、蛍光体層3上に配置されており、蛍光体層3に対向する側と反対側に出射面9を有する。出射面9は、表示装置200から外部に対し光が出射される面として設けられる。表示装置200から外部へ取り出される光は、出射面9から出射される。 As the transparent substrate 4, for example, a glass substrate, a transparent film, or a transparent resin can be employed. The transparent substrate 4 is disposed on the phosphor layer 3 and has an emission surface 9 on the side opposite to the side facing the phosphor layer 3. The emission surface 9 is provided as a surface from which light is emitted from the display device 200 to the outside. Light extracted from the display device 200 to the outside is emitted from the emission surface 9.
 表示装置200において、映像の色特性向上手段として、蛍光体層3に対し出射面9側にカラーフィルタ層を設けることも可能である。表示装置200は、出射面9から映像を表示する映像表示装置、または、出射面9から任意の色相の照明光を出射する照明装置などとして、適用することができる。 In the display device 200, as a means for improving the color characteristics of an image, a color filter layer can be provided on the emission surface 9 side with respect to the phosphor layer 3. The display device 200 can be applied as an image display device that displays an image from the exit surface 9 or an illumination device that emits illumination light of an arbitrary hue from the exit surface 9.
 図2は、極角θの概略を示す模式図である。本明細書において、極角θとは、表示装置200の平面状の出射面9に対する角度のことを指し、出射面9の法線に対して形成する角度のことをいう。図2に示すように、出射面9上に延びる直線上の一点から出射面9に対する法線を想定した場合、その法線に対し一方向側に延びる当該直線が成す極角θは90°であり、上記一方向と反対方向の他方向側に延びる当該直線が成す極角θは-90°である。 FIG. 2 is a schematic diagram showing an outline of the polar angle θ. In the present specification, the polar angle θ refers to an angle with respect to the planar exit surface 9 of the display device 200 and refers to an angle formed with respect to the normal line of the exit surface 9. As shown in FIG. 2, when assuming a normal to the emission surface 9 from one point on a straight line extending on the emission surface 9, the polar angle θ formed by the straight line extending in one direction with respect to the normal is 90 °. The polar angle θ formed by the straight line extending in the other direction in the direction opposite to the one direction is −90 °.
 図3は、表示装置200の輝度が観察角度に依らず均一な場合の、極角と光度との関係を示す図である。図3の横軸は極角を示す。表示装置200の出射面9に対し真正面の方向において、極角θは0°である。図3の縦軸は光度、すなわち極角θの方向における表示装置200から放出された光束の大きさを示す。極角θが0°の方向における表示装置200からの出射光の光度をl0とする。 FIG. 3 is a diagram showing the relationship between the polar angle and the luminous intensity when the luminance of the display device 200 is uniform regardless of the observation angle. The horizontal axis in FIG. 3 indicates the polar angle. In the direction directly in front of the emission surface 9 of the display device 200, the polar angle θ is 0 °. The vertical axis in FIG. 3 indicates the luminous intensity, that is, the size of the light beam emitted from the display device 200 in the polar angle θ direction. The luminous intensity of the emitted light from the display device 200 in the direction where the polar angle θ is 0 ° is assumed to be l0.
 図3には、図3中の原点の位置を表示装置200の出射面9上のある一点と考えた場合の、当該点からの出射光の光度が示される。表示装置200の輝度が観察角度に依らず真に均一であれば、極角と光度との関係は、図3中に示すf(θ)=l0・cosθの式に従う。本実施の形態では、出射面9を介して表示装置200から出射される光が図3中に示すf(θ)に対し一定範囲にあれば、表示装置200は観察角度に依らず輝度均一であると評価する。つまり、観察角度に依らず輝度均一と評価され得る表示装置200では、蛍光体層3からの出射光の光度の極角分布が一定範囲にある。 FIG. 3 shows the luminous intensity of the emitted light from the point when the position of the origin in FIG. 3 is considered as a certain point on the emission surface 9 of the display device 200. If the luminance of the display device 200 is truly uniform regardless of the observation angle, the relationship between the polar angle and the luminous intensity follows the equation f (θ) = 10 · cos θ shown in FIG. In the present embodiment, if the light emitted from the display device 200 via the emission surface 9 is within a certain range with respect to f (θ) shown in FIG. 3, the display device 200 has a uniform luminance regardless of the observation angle. Evaluate that there is. That is, in the display device 200 that can be evaluated as having uniform brightness regardless of the observation angle, the polar angle distribution of the luminous intensity of the emitted light from the phosphor layer 3 is in a certain range.
 より具体的には、極角θと、極角θにおける蛍光体層3からの出射光の光度lθとが、-85°≦θ≦85°の範囲で、0.90・A・cosθ≦lθ≦1.10・A・cosθの関係式を満たすかどうかを評価する。ここでAは、極角0°における蛍光体層3からの出射光の光度l0の0.91倍以上1.11倍以下の範囲にある任意の実数であり、極角0°での光度l0に対して±10%に収まる範囲である。表示装置200がこの関係式を満たす場合には、表示装置200をどのような角度から観賞しても輝度の変化が十分に小さく、あらゆる観賞角度において輝度が均一である表示装置200が実現されたと評価できる。この条件式により、表示装置200の輝度均一化を達成するための条件が明確化される。 More specifically, the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer 3 at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °, 0.90 · A · cos θ ≦ lθ. It is evaluated whether or not the relational expression of ≦ 1.10 · A · cos θ is satisfied. Here, A is an arbitrary real number in the range of 0.91 to 1.11 times the luminous intensity 10 of the emitted light from the phosphor layer 3 at the polar angle 0 °, and the luminous intensity 10 at the polar angle 0 °. Is within the range of ± 10%. When the display device 200 satisfies this relational expression, the display device 200 is realized in which the change in luminance is sufficiently small regardless of the angle at which the display device 200 is viewed, and the luminance is uniform at all viewing angles. Can be evaluated. This conditional expression clarifies conditions for achieving uniform luminance of the display device 200.
 図4は、蛍光体層3からの出射光の光度分布の実測値を示すグラフである。図5は、図4に示す光度分布の実測値を条件式に当てはめたグラフである。図4および図5の横軸は極角を示し、縦軸は相対光度を示す。なお、蛍光体層3からの出射光に関し、極角±70%より外側の範囲は測定限界のために測定不可であるので、図4では極角-70°~70°の範囲における出射光の光度分布が図示されている。図5中に実線で描かれる曲線は、図4と同一の、蛍光体層3からの出射光の光度分布の実測値である。 FIG. 4 is a graph showing measured values of the luminous intensity distribution of the emitted light from the phosphor layer 3. FIG. 5 is a graph in which the measured value of the luminous intensity distribution shown in FIG. 4 is applied to the conditional expression. 4 and 5, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity. In addition, regarding the outgoing light from the phosphor layer 3, the range outside the polar angle ± 70% cannot be measured due to the measurement limit. Therefore, in FIG. 4, the outgoing light in the polar angle range of −70 ° to 70 ° is used. The light intensity distribution is shown. The curve drawn with a solid line in FIG. 5 is the actual measurement value of the luminous intensity distribution of the emitted light from the phosphor layer 3, which is the same as in FIG. 4.
 たとえば、蛍光体層3からの出射光が図4に示すような光度分布であったとする。この場合、実数Aを極角0°における蛍光体層3からの出射光の光度l0の0.96倍とする。すなわち、条件式中のA=0.96・l0とする。図5中に点線で描かれる曲線は、極角θの関数f(θ)=A・cosθ=0.96・l0・cosθを示す。図5中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.90倍および1.10倍を示す。 For example, assume that the emitted light from the phosphor layer 3 has a luminous intensity distribution as shown in FIG. In this case, the real number A is 0.96 times the luminous intensity 10 of the emitted light from the phosphor layer 3 at the polar angle of 0 °. That is, A = 0.96 · 10 in the conditional expression. A curve drawn by a dotted line in FIG. 5 indicates a function f (θ) = A · cos θ = 0.96 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 5 show 0.90 times and 1.10 times of the function f (θ).
 このように、極角0°における光度l0の0.91倍以上1.11倍以下の範囲にある実数Aを適切に選定することにより、図5中に実線で示される出射光の光度lθは、極角θが-85°以上85°以下の範囲で、A・cosθの0.90倍以上1.10倍以下の範囲にあることになる。そのため、極角θにおける蛍光体層3からの出射光の光度lθが上述した条件式を満たすことになるため、この表示装置200は観賞角度に依らず輝度均一であると評価できる。したがって、観察角度に依らず輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することが可能となる。 Thus, by appropriately selecting the real number A in the range of 0.91 to 1.11 times the luminous intensity 10 at the polar angle of 0 °, the luminous intensity lθ of the emitted light indicated by the solid line in FIG. The polar angle θ is in the range of not less than −85 ° and not more than 85 °, and in the range of not less than 0.90 times and not more than 1.10 times A · cos θ. For this reason, the luminous intensity lθ of the emitted light from the phosphor layer 3 at the polar angle θ satisfies the above-described conditional expression, so that the display device 200 can be evaluated as having uniform luminance regardless of the viewing angle. Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
 (実施の形態2)
 実施の形態2の表示装置200は、赤色光、緑色光および青色光をそれぞれ出射可能な複数の画素を含む蛍光体層3を備えており、これらの色の重ね合わせによって表示装置200は白色光を表示可能であるものとする。表示装置200が白色光を表示するとき、観察角度に依る色変化を人の目で感じられない程度に抑えるには、色度xyの誤差を±0.02以内にする必要がある。実施の形態2では、表示装置200の色度変化が±0.02以内であり、当該表示装置200は観察角度に依らず色度が均一である、と評価するための条件について説明する。
(Embodiment 2)
The display device 200 according to the second embodiment includes the phosphor layer 3 including a plurality of pixels that can emit red light, green light, and blue light, respectively, and the display device 200 is white light by superimposing these colors. Can be displayed. When the display device 200 displays white light, the error of the chromaticity xy needs to be within ± 0.02 in order to suppress the color change depending on the observation angle to such an extent that it cannot be felt by human eyes. In the second embodiment, a condition for evaluating that the change in chromaticity of the display device 200 is within ± 0.02 and that the display device 200 has uniform chromaticity regardless of the observation angle will be described.
 図6は、RGB画素によって構成される表示装置200において、B画素からの出射光が条件式から誤差0%の際に、RGが条件式からどの程度ずれた場合に白表示色度が±0.02以上変化するかを示すグラフである。図6のグラフの横軸のG係数とは、G画素からの出射光光度の条件式からの誤差を示す。縦軸のR係数とは、R画素からの出射光光度の条件式からの誤差を示す。たとえばG係数が1.05というのは、G画素からの出射光光度の条件式からの誤差が+5%ということである。 FIG. 6 shows that in the display device 200 configured by RGB pixels, when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity is ± 0 when the RG deviates from the conditional expression. It is a graph which shows whether it changes more than 0.02. The G coefficient on the horizontal axis of the graph of FIG. 6 indicates an error from the conditional expression of the luminous intensity of light emitted from the G pixel. The R coefficient on the vertical axis indicates an error from the conditional expression of the luminous intensity of light emitted from the R pixel. For example, the G coefficient of 1.05 means that the error from the conditional expression of the luminous intensity of light emitted from the G pixel is + 5%.
 図6に示すグラフにプロットされた線上(二重にある場合は内側の線)にて、色度変化が±0.02となる。図6のグラフにおいて、プロット線で囲まれた領域内であれば、RGB全て条件式通りの状態から色度変化±0.02以内となる。B画素の条件式からの誤差を変動させて、同様のグラフを作成していくと、RGB全ての光度が条件式から±7%以内であれば、表示装置200の色度変化は0.02以内に収まる。よって、光度分布の実測値が条件式に対し±7%の範囲に収まれば、色度が±0.02以内であって、観察角度に依らず色度が均一な表示装置が実現される、と評価することができる。 The chromaticity change is ± 0.02 on the line plotted in the graph shown in FIG. 6 (inner line when there is a double line). In the graph of FIG. 6, if it is within the area surrounded by the plot line, the chromaticity change is within ± 0.02 from the state in accordance with the conditional expression for all RGB. When a similar graph is created by varying the error from the conditional expression of the B pixel, if the luminance of all RGB is within ± 7% of the conditional expression, the chromaticity change of the display device 200 is 0.02. Fits within. Therefore, if the measured value of the luminous intensity distribution falls within a range of ± 7% with respect to the conditional expression, a display device in which the chromaticity is within ± 0.02 and the chromaticity is uniform regardless of the observation angle is realized. Can be evaluated.
 すなわち、極角θにおける蛍光体層3からの出射光の光度lθが、-85°≦θ≦85°の範囲で、0.93・B・cosθ≦lθ≦1.07・B・cosθの関係式を満たすかどうかを評価する。ここでBは、極角0°における蛍光体層3からの出射光の光度l0の0.93倍以上1.076倍以下の範囲にある任意の実数であり、極角0°での光度l0に対して±7%に収まる範囲である。表示装置200がこの関係式を満たす場合には、色度xyは±0.02以内の誤差に収まり、色度xyが±0.02以内であれば色変化を人の目で感じることは不可能となるため、あらゆる観賞角度において輝度および色度が均一である表示装置200が実現されたと評価できる。この条件式により、表示装置200の色度均一化を達成するための条件が明確化され、上記条件式を満たす表示装置は観察角度によって色度が変化しない特性を有すると評価することができる。 That is, the relationship of 0.93 · B · cos θ ≦ lθ ≦ 1.07 · B · cos θ in the range where the luminous intensity lθ of the emitted light from the phosphor layer 3 at the polar angle θ is −85 ° ≦ θ ≦ 85 °. Evaluate whether the expression is satisfied. Here, B is an arbitrary real number in the range of 0.93 times to 1.076 times the luminous intensity 10 of the emitted light from the phosphor layer 3 at the polar angle 0 °, and the luminous intensity 10 at the polar angle 0 °. Is within a range of ± 7%. When the display device 200 satisfies this relational expression, the chromaticity xy falls within an error of ± 0.02, and if the chromaticity xy is within ± 0.02, it is unlikely that a human will feel a color change. Therefore, it can be evaluated that the display device 200 having uniform brightness and chromaticity at all viewing angles has been realized. This conditional expression clarifies the conditions for achieving chromaticity uniformity of the display device 200, and it can be evaluated that a display apparatus that satisfies the conditional expression has a characteristic that the chromaticity does not change depending on the observation angle.
 図7は、R蛍光体からの出射光の光度極角分布を示すグラフである。図8は、G蛍光体からの出射光の光度極角分布を示すグラフである。図9は、B画素における散乱材からの出射光の光度極角分布を示すグラフである。図7、図8および図9の横軸は極角を示し、縦軸は相対光度を示す。 FIG. 7 is a graph showing the polar angle distribution of light emitted from the R phosphor. FIG. 8 is a graph showing the luminous intensity polar angle distribution of the emitted light from the G phosphor. FIG. 9 is a graph showing the luminous intensity polar angle distribution of the emitted light from the scattering material in the B pixel. 7, 8, and 9, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
 R蛍光体からの出射光が図7中の実線に示すような光度分布である場合、実数Bを極角0°におけるR蛍光体からの出射光の光度l0の1.06倍とする。すなわち、条件式中のB=1.06・l0とする。図7中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=1.06・l0・cosθを示す。図7中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 When the emitted light from the R phosphor has a luminous intensity distribution as shown by the solid line in FIG. 7, the real number B is set to 1.06 times the luminous intensity 10 of the emitted light from the R phosphor at a polar angle of 0 °. That is, B in the conditional expression is set to 1.06 · 10. The curve drawn with a dotted line in FIG. 7 shows the function f (θ) = B · cos θ = 1.06 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 7 show 0.93 times and 1.07 times of the function f (θ).
 G蛍光体からの出射光が図8中の実線に示すような光度分布である場合、実数Bを極角0°におけるR蛍光体からの出射光の光度l0の1.006倍とする。すなわち、条件式中のB=1.006・l0とする。図8中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=1.006・l0・cosθを示す。図8中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 When the emitted light from the G phosphor has a luminous intensity distribution as shown by the solid line in FIG. 8, the real number B is 1.006 times the luminous intensity 10 of the emitted light from the R phosphor at a polar angle of 0 °. That is, B in the conditional expression is set to 1.006 · 10. A curve drawn with a dotted line in FIG. 8 indicates a function f (θ) = B · cos θ = 1.006 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 8 show 0.93 times and 1.07 times of the function f (θ).
 B画素における散乱材からの出射光が図9中の実線に示すような光度分布である場合、実数Bを極角0°におけるR蛍光体からの出射光の光度l0の0.93倍とする。すなわち、条件式中のB=0.93・l0とする。図9中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=0.93・l0・cosθを示す。図9中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 When the emitted light from the scattering material in the B pixel has a luminous intensity distribution as shown by the solid line in FIG. 9, the real number B is 0.93 times the luminous intensity 10 of the emitted light from the R phosphor at the polar angle of 0 °. . That is, B = 0.93 · 10 in the conditional expression. A curve drawn by a dotted line in FIG. 9 indicates a function f (θ) = B · cos θ = 0.93 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 9 show 0.93 times and 1.07 times of the function f (θ).
 このように、極角0°における光度l0の0.93倍以上1.076倍以下の範囲にある実数Bを適切に選定することにより、RGBの各蛍光体からの出射光の光度lθは、極角θが-85°以上85°以下の範囲で、B・cosθの0.93倍以上1.07倍以下の範囲にあることになる。そのため、極角θにおける蛍光体層3からの出射光の光度lθが上述した条件式を満たすことになるため、この表示装置200は観賞角度に依らず色度均一であると評価できる。したがって、観察角度に依らず色度均一な表示装置200を実現でき、観察角度によって輝度および色度が変化しない表示装置200を意図的に作製することが可能となる。 Thus, by appropriately selecting the real number B in the range of 0.93 times to 1.076 times the luminous intensity 10 at the polar angle of 0 °, the luminous intensity lθ of the emitted light from each of the RGB phosphors is When the polar angle θ is in the range of −85 ° to 85 °, it is in the range of 0.93 times to 1.07 times B · cos θ. Therefore, since the luminous intensity lθ of the light emitted from the phosphor layer 3 at the polar angle θ satisfies the above-described conditional expression, it can be evaluated that the display device 200 is uniform in chromaticity regardless of the viewing angle. Therefore, the display device 200 with uniform chromaticity can be realized regardless of the observation angle, and the display device 200 whose luminance and chromaticity do not change with the observation angle can be intentionally manufactured.
 (実施の形態3)
 図10は、実施の形態3に係る表示装置200を示す断面図である。図10に示すように、実施の形態3の表示装置200において、蛍光体層3は、赤色蛍光体層5rと、緑色蛍光体層5gとを含む。蛍光体層3はまた、拡散層6を含む。赤色蛍光体層5rと、緑色蛍光体層5gと、拡散層6とは、隔壁部7により仕切られており、互いに間隔をあけてアレイ状に配置されている。
(Embodiment 3)
FIG. 10 is a cross-sectional view showing the display device 200 according to the third embodiment. As shown in FIG. 10, in the display device 200 of the third embodiment, the phosphor layer 3 includes a red phosphor layer 5r and a green phosphor layer 5g. The phosphor layer 3 also includes a diffusion layer 6. The red phosphor layer 5r, the green phosphor layer 5g, and the diffusion layer 6 are partitioned by the partition wall 7, and are arranged in an array with a space therebetween.
 赤色蛍光体層5rは、赤色蛍光体層5rに入射された入射光を吸収して赤色光を出射する赤色蛍光体を含む。緑色蛍光体層5gは、緑色蛍光体層5gに入射された入射光を吸収して緑色光を出射する緑色蛍光体を含む。拡散層6は、拡散層6に入射された入射光を拡散して外部に出射する。拡散層6は、バインダとしての透明樹脂と、樹脂内に散乱するフィラとしての複数の散乱粒子とを含む。フィラは、光シャッタ150を経由して蛍光体層3に供給される光を反射および散乱させる材料であればよい。 The red phosphor layer 5r includes a red phosphor that absorbs incident light incident on the red phosphor layer 5r and emits red light. The green phosphor layer 5g includes a green phosphor that absorbs incident light incident on the green phosphor layer 5g and emits green light. The diffusion layer 6 diffuses the incident light incident on the diffusion layer 6 and emits it to the outside. The diffusion layer 6 includes a transparent resin as a binder and a plurality of scattering particles as fillers scattered in the resin. The filler may be any material that reflects and scatters light supplied to the phosphor layer 3 via the optical shutter 150.
 蛍光体層3が赤色光を励起する赤色蛍光体層5rと、緑色光を励起する緑色蛍光体層5gと、青色光を完全散乱する拡散層6と、を含むことにより、表示装置200は、フルカラーでの映像表示が可能な映像表示装置として設けられている。 When the phosphor layer 3 includes a red phosphor layer 5r that excites red light, a green phosphor layer 5g that excites green light, and a diffusion layer 6 that completely scatters blue light, the display device 200 can It is provided as a video display device capable of displaying full color video.
 光シャッタ150としては、液晶表示パネルが用いられる。この場合、図10に示すように、光シャッタ150は、バックライト20側に配置されたTFT(Thin Film Transistor)基板であるガラス基板22と、色変換基板100側に配置された対向基板であるガラス基板24と、ガラス基板22とガラス基板24との間に封入された液晶層23とを含む。ガラス基板22,24の間には、液晶層23を封止するための図示しない環状のシール部材が、ガラス基板22,24の外周縁部に沿って設けられている。ガラス基板22の外側の面には偏光板21が貼られており、ガラス基板24の外側の面には偏光板25が貼られている。 As the optical shutter 150, a liquid crystal display panel is used. In this case, as shown in FIG. 10, the optical shutter 150 is a glass substrate 22 that is a TFT (Thin Film 基板 Transistor) substrate disposed on the backlight 20 side and a counter substrate disposed on the color conversion substrate 100 side. The glass substrate 24 and the liquid crystal layer 23 enclosed between the glass substrate 22 and the glass substrate 24 are included. An annular seal member (not shown) for sealing the liquid crystal layer 23 is provided between the glass substrates 22 and 24 along the outer peripheral edge portions of the glass substrates 22 and 24. A polarizing plate 21 is attached to the outer surface of the glass substrate 22, and a polarizing plate 25 is attached to the outer surface of the glass substrate 24.
 ガラス基板22の液晶層23側の表面には、ソース配線が形成され、このソース配線を覆うように絶縁層が形成される。さらに絶縁層の表面に、各画素に対応するように画素電極が配置されている。画素電極は、たとえば、ITO(酸化インジウムスズ)膜などの透明導電膜によって形成されている。ガラス基板24の液晶層23側の表面には、対向電極が形成されている。対向電極は、たとえば、ITO膜などの透明導電膜から形成されている。 A source wiring is formed on the surface of the glass substrate 22 on the liquid crystal layer 23 side, and an insulating layer is formed so as to cover the source wiring. Further, pixel electrodes are arranged on the surface of the insulating layer so as to correspond to the respective pixels. The pixel electrode is formed of a transparent conductive film such as an ITO (indium tin oxide) film. A counter electrode is formed on the surface of the glass substrate 24 on the liquid crystal layer 23 side. The counter electrode is formed of a transparent conductive film such as an ITO film, for example.
 ガラス基板22側の画素電極とガラス基板24側の対向電極との間に電圧が印加されることによって、当該画素における液晶層23の分子配向が変化する。光シャッタ150は、液晶層23による偏光状態の変化と偏光板21,25との組合せによって、当該画素における光の透過率を制御する。 When a voltage is applied between the pixel electrode on the glass substrate 22 side and the counter electrode on the glass substrate 24 side, the molecular orientation of the liquid crystal layer 23 in the pixel changes. The optical shutter 150 controls the light transmittance in the pixel by a combination of the change in the polarization state by the liquid crystal layer 23 and the polarizing plates 21 and 25.
 実施の形態3では、上記の構成を備える表示装置200において、蛍光体の屈折率を調整することで、赤色蛍光体層5rおよび緑色蛍光体層5gからの出射光を極角依存無く輝度均一とする。蛍光体の発光は等方発光であるため、蛍光体の屈折率が小さいと、蛍光体からの出射光の光度極角分布は実施の形態1および2で説明した条件式から乖離する。たとえば蛍光体の屈折率が空気と同等である場合、蛍光体の発光は屈折することなく空気中に出射するので、面形状の蛍光体から出射する光の光度は極角によらず一定になる。 In the third embodiment, in the display device 200 having the above-described configuration, by adjusting the refractive index of the phosphor, the emitted light from the red phosphor layer 5r and the green phosphor layer 5g can be uniform in luminance without depending on the polar angle. To do. Since the light emission of the phosphor is isotropic, if the refractive index of the phosphor is small, the luminous intensity polar angle distribution of the light emitted from the phosphor deviates from the conditional expressions described in the first and second embodiments. For example, when the refractive index of the phosphor is equal to that of air, the light emitted from the phosphor is emitted into the air without being refracted, so the luminous intensity of the light emitted from the surface-shaped phosphor is constant regardless of the polar angle. .
 蛍光体の屈折率が高くなるにつれて、蛍光体からの出射光の光度極角分布が、図3に示すl0・cosθに近づく。蛍光体の屈折率が空気に対して極めて大きい場合、蛍光体内においてほぼ正面の光が屈折して、空気中の各極角へと出射する。このとき、空気中においてより大きい極角の領域であるほど、蛍光体内においてより狭い範囲内の光が引き延ばされることになる。 As the refractive index of the phosphor increases, the luminous intensity polar angle distribution of the light emitted from the phosphor approaches 10 · cos θ shown in FIG. When the refractive index of the phosphor is extremely large with respect to the air, the light in the front is almost refracted in the phosphor and is emitted to each polar angle in the air. At this time, the larger the polar angle region in the air, the more light within a narrower range is extended in the phosphor.
 たとえば、蛍光体の屈折率が10である場合、空気中における極角0.5~1.5°の範囲内では、蛍光体内における極角範囲0.05~0.15°(差0.10°)の光が引き延ばされて放射される。一方、空気中における極角79.5~80.5°の範囲内では、蛍光体内における極角範囲5.64~5.66°(差0.02°)の光が引き延ばされて放射される。蛍光体内において蛍光体は等方発光し、単位立体角あたりの光度は全方向で等しいので、空気中において極角が大きいほど光度が小さくなる。結果、屈折率が極大の状態では、空気中の光度極角分布はl0・cosθに限りなく近づくことになる。 For example, when the refractive index of the phosphor is 10, the polar angle range in the phosphor is 0.05 to 0.15 ° (difference 0.10) within the polar angle range of 0.5 to 1.5 ° in the air. °) light is stretched and emitted. On the other hand, within the polar angle range of 79.5 to 80.5 ° in the air, light in the polar angle range of 5.64 to 5.66 ° (difference 0.02 °) in the phosphor is stretched and emitted. Is done. Since the phosphor emits isotropically in the phosphor and the luminous intensity per unit solid angle is the same in all directions, the larger the polar angle in the air, the smaller the luminous intensity. As a result, in the state where the refractive index is maximum, the luminous intensity polar angle distribution in the air approaches as much as 10 · cos θ.
 よって、蛍光体の屈折率について、空気中の光度極角分布がl0・cosθの±10%以内に収まるための閾値、さらに±7%以内に収まるための閾値が存在する。計算の結果、空気中の光度極角分布がl0・cosθの±10%以内に収まるための屈折率の閾値は1.74、±7%以内に収まるための屈折率の閾値は2.02となる。つまり、屈折率1.74以上の蛍光体を用いることで、蛍光体からの出射光は実施の形態1で説明した条件式を満たす。また、屈折率2.02以上の蛍光体を使用することで、蛍光体からの出射光は実施の形態2で説明した条件式を満たす。 Therefore, with respect to the refractive index of the phosphor, there is a threshold for the luminous intensity polar angle distribution in the air to be within ± 10% of l0 · cos θ, and a threshold for being within ± 7%. As a result of the calculation, the refractive index threshold for the luminous intensity polar angle distribution in air to be within ± 10% of l0 · cos θ is 1.74, and the refractive index threshold to be within ± 7% is 2.02. Become. That is, by using a phosphor having a refractive index of 1.74 or more, light emitted from the phosphor satisfies the conditional expression described in the first embodiment. In addition, by using a phosphor having a refractive index of 2.02 or more, light emitted from the phosphor satisfies the conditional expression described in the second embodiment.
 図11は、屈折率1.74の蛍光体を発光させた場合の出射光の光度極角分布を示すグラフである。図11の横軸は極角を示し、縦軸は相対光度を示す。屈折率1.74の蛍光体からの出射光が図11中の実線に示すような光度分布である場合、実数Aを極角0°における蛍光体からの出射光の光度l0の1.11倍とする。すなわち、実施の形態1で説明した条件式中のA=1.10・l0とする。図11中に点線で描かれる曲線は、極角θの関数f(θ)=A・cosθ=1.10・l0・cosθを示す。図11中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.90倍および1.10倍を示す。 FIG. 11 is a graph showing a luminous intensity polar angle distribution of emitted light when a phosphor having a refractive index of 1.74 is caused to emit light. The horizontal axis in FIG. 11 indicates the polar angle, and the vertical axis indicates the relative luminous intensity. When the emitted light from the phosphor having a refractive index of 1.74 has a luminous intensity distribution as shown by the solid line in FIG. 11, the real number A is 1.11 times the luminous intensity l0 of the emitted light from the phosphor at a polar angle of 0 °. And That is, A = 1.10 · 10 in the conditional expression described in the first embodiment. A curve drawn with a dotted line in FIG. 11 indicates a function f (θ) = A · cos θ = 1.10 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 11 show 0.90 times and 1.10 times of the function f (θ).
 図12は、屈折率2.02の蛍光体を発光させた場合の出射光の光度極角分布を示すグラフである。図12の横軸は極角を示し、縦軸は相対光度を示す。屈折率2.02の蛍光体からの出射光が図12中の実線に示すような光度分布である場合、実数Bを極角0°における蛍光体からの出射光の光度l0の1.075倍とする。すなわち、実施の形態2で説明した条件式中のB=1.075・l0とする。図12中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=1.075・l0・cosθを示す。図12中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 FIG. 12 is a graph showing the luminous intensity polar angle distribution of emitted light when a phosphor having a refractive index of 2.02 is caused to emit light. In FIG. 12, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity. When the emitted light from the phosphor having a refractive index of 2.02 has a luminous intensity distribution as shown by the solid line in FIG. 12, the real number B is 1.075 times the luminous intensity l0 of the emitted light from the phosphor at a polar angle of 0 °. And That is, B = 1.075 · 10 in the conditional expression described in the second embodiment. A curve drawn by a dotted line in FIG. 12 indicates a function f (θ) = B · cos θ = 1.075 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 12 show 0.93 times and 1.07 times of the above function f (θ).
 屈折率1.74の蛍光体を発光させた場合、実数Aを適切に選定することにより、図11中に実線で示される出射光の光度lθは、極角θが-85°以上85°以下の範囲で、A・cosθの0.90倍以上1.10倍以下の範囲にあることになる。そのため、この表示装置200は観賞角度に依らず輝度均一であると評価できる。また屈折率2.02の蛍光体を発光させた場合、実数Bを適切に選定することにより、図12中に実線で示される出射光の光度lθは、極角θが-85°以上85°以下の範囲で、B・cosθの0.93倍以上1.07倍以下の範囲にあることになる。そのため、この表示装置200は観賞角度に依らず色度均一であると評価できる。したがって、観察角度に依らず輝度均一な表示装置200を実現でき、また、さらに色度変化のない表示装置200を実現することができる。 When a phosphor having a refractive index of 1.74 is caused to emit light, by appropriately selecting the real number A, the luminous intensity lθ of the emitted light indicated by the solid line in FIG. 11 has a polar angle θ of −85 ° or more and 85 ° or less. In this range, A · cos θ is in the range of 0.90 times or more and 1.10 times or less. Therefore, it can be evaluated that the display device 200 has uniform luminance regardless of the viewing angle. When a phosphor having a refractive index of 2.02 is caused to emit light, by appropriately selecting the real number B, the luminous intensity lθ of the emitted light indicated by the solid line in FIG. 12 has a polar angle θ of −85 ° to 85 °. In the following range, it is in the range of 0.93 times to 1.07 times B · cos θ. Therefore, this display device 200 can be evaluated as having uniform chromaticity regardless of the viewing angle. Therefore, it is possible to realize a display device 200 with uniform brightness regardless of the observation angle, and it is possible to realize a display device 200 with no change in chromaticity.
 なお、青画素については、バックライト20で発生した青色光を完全拡散することが可能な散乱材料を設ける。散乱材料がバックライト20で発生した青色光を完全拡散することで、散乱材料からの出射光の光度極角分布は、実施の形態1または2に示す条件式を満たす。または、バックライト20として近紫外光を発生する光源を使用し、青画素に青色蛍光体を用いることも可能であり、この場合には、青画素の輝度均一手法は上述した赤・緑画素と同じとなる。 For the blue pixels, a scattering material capable of completely diffusing the blue light generated by the backlight 20 is provided. Since the scattering material completely diffuses the blue light generated in the backlight 20, the luminous intensity polar angle distribution of the light emitted from the scattering material satisfies the conditional expression shown in the first or second embodiment. Alternatively, it is possible to use a light source that generates near-ultraviolet light as the backlight 20 and to use a blue phosphor for the blue pixel. In this case, the luminance uniformity method of the blue pixel is the above-described red / green pixel. It will be the same.
 以上により、蛍光体の屈折率、および散乱材料の散乱特性の制御により、各蛍光体および散乱材料からの出射光の光度極角分布が条件式を満たすことになり、条件式を満たす表示装置200は、観察角度に依らず輝度(および色度)が均一であると評価することができる。 Thus, by controlling the refractive index of the phosphor and the scattering characteristics of the scattering material, the luminous intensity polar angle distribution of the emitted light from each phosphor and the scattering material satisfies the conditional expression, and the display device 200 that satisfies the conditional expression It can be evaluated that the luminance (and chromaticity) is uniform regardless of the observation angle.
 (実施の形態4)
 実施の形態4の表示装置の基本的な構成は、図10を参照して説明した実施の形態3の表示装置200と同様である。実施の形態4では、蛍光体層3は、光を散乱させる散乱材料を含む。散乱材料を含む蛍光体層は、散乱特性を保有する。蛍光体層3に散乱特性を保有させることで、蛍光体からの出射光の光度極角分布を実施の形態1または2に示す条件式を満たすようにすることが可能になる。つまり、赤色蛍光体層5rおよび緑色蛍光体層5g(青画素に青色蛍光体を用いる場合には青色蛍光体も含む)が散乱特性を保有することで、蛍光体が励起した蛍光を蛍光体層3内で拡散できる。蛍光体層3内において蛍光を拡散することにより、実施の形態1または2に示す条件式を達成可能とし、蛍光体層3からの出射される蛍光を極角依存無く輝度均一とすることができる。
(Embodiment 4)
The basic configuration of the display device according to the fourth embodiment is the same as that of the display device 200 according to the third embodiment described with reference to FIG. In the fourth embodiment, the phosphor layer 3 includes a scattering material that scatters light. The phosphor layer containing the scattering material has scattering characteristics. By causing the phosphor layer 3 to have scattering characteristics, it is possible to satisfy the conditional expression shown in the first or second embodiment for the luminous intensity polar angle distribution of the light emitted from the phosphor. That is, the red phosphor layer 5r and the green phosphor layer 5g (including the blue phosphor when a blue phosphor is used for the blue pixel) have scattering characteristics, so that the fluorescence excited by the phosphor can be converted into the phosphor layer. 3 can diffuse. By diffusing the fluorescence in the phosphor layer 3, the conditional expression shown in the first or second embodiment can be achieved, and the fluorescence emitted from the phosphor layer 3 can be uniform in luminance without depending on the polar angle. .
 図13は、蛍光体と散乱材料を混合した材料からの出射光の光度極角分布を示すグラフである。例として、蛍光体とTiO2粒子の散乱材料を1:1で混合した材料からの出射光の発光光度分布の実測値を図13に示す。図13の横軸は極角を示し、縦軸は相対光度を示す。蛍光体と散乱材料を混合した材料からの出射光が図13中の実線に示すような光度分布である場合、実数Aを極角0°における蛍光体からの出射光の光度l0の0.93倍とする。すなわち、実施の形態1で説明した条件式中のA=0.93・l0とする。図13中に点線で描かれる曲線は、極角θの関数f(θ)=A・cosθ=0.93・l0・cosθを示す。図13中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.90倍および1.10倍を示す。 FIG. 13 is a graph showing the luminous intensity polar angle distribution of light emitted from a material in which a phosphor and a scattering material are mixed. As an example, FIG. 13 shows measured values of the luminous intensity distribution of emitted light from a material in which a phosphor and a scattering material of TiO 2 particles are mixed at a ratio of 1: 1. The horizontal axis in FIG. 13 indicates the polar angle, and the vertical axis indicates the relative luminous intensity. When the emitted light from the material in which the phosphor and the scattering material are mixed has a luminous intensity distribution as shown by the solid line in FIG. 13, the real number A is 0.93 which is the luminous intensity 10 of the emitted light from the phosphor at a polar angle of 0 °. Double. That is, A = 0.93 · 10 in the conditional expression described in the first embodiment. A curve drawn by a dotted line in FIG. 13 indicates a function f (θ) = A · cos θ = 0.93 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 13 show 0.90 times and 1.10 times of the function f (θ).
 極角0°における光度l0の0.91倍以上1.11倍以下の範囲にある実数Aを適切に選定することにより、図13中に実線で示される出射光の光度lθは、極角θが-85°以上85°以下の範囲で、A・cosθの0.90倍以上1.10倍以下の範囲にあることになる。そのため、極角θにおける蛍光体層3からの出射光の光度lθが実施の形態1に示す条件式を満たすことになるため、この表示装置200は観賞角度に依らず輝度均一であると評価できる。したがって、観察角度に依らず輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することが可能となる。 By appropriately selecting a real number A in the range of 0.91 times to 1.11 times the luminous intensity 10 at a polar angle of 0 °, the luminous intensity lθ of the emitted light indicated by the solid line in FIG. Is in the range of 0.90 times to 1.10 times of A · cos θ in the range of −85 ° to 85 °. Therefore, since the luminous intensity lθ of the light emitted from the phosphor layer 3 at the polar angle θ satisfies the conditional expression shown in the first embodiment, it can be evaluated that the display device 200 has uniform luminance regardless of the viewing angle. . Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
 (実施の形態5)
 図14は、実施の形態5に係る表示装置200を示す断面図である。実施の形態5の表示装置200は、図10に示す実施の形態3の表示装置と基本的に同等の構成を備えており、各色の蛍光体層3および拡散層を仕切る隔壁部7をバンク形状に設けた点において異なっている。蛍光体層3は、蛍光体層3に光が入射する入射面と、蛍光体層3から光が出射する出射面と、入射面および出射面に接続し隔壁部7に対向する側壁面とを有する。隔壁部7をバンク形状に形成することにより、図14の断面図に示すように、蛍光体層3の側壁面は、光源側から表示側へ向かって蛍光体層3が広がるように、傾斜している。本明細書中で光源側とは、蛍光体層3に対してバックライト20が配置される側、すなわち図14中の下側を示す。また表示側とは、光源側と反対側の、蛍光体層3に対して出射面9が配置される側、すなわち図14中の上側を示す。
(Embodiment 5)
FIG. 14 is a cross-sectional view showing display device 200 according to the fifth embodiment. The display device 200 according to the fifth embodiment has basically the same configuration as that of the display device according to the third embodiment shown in FIG. 10, and the partition walls 7 that partition the phosphor layers 3 and the diffusion layers of the respective colors are formed in a bank shape. It differs in the point provided in. The phosphor layer 3 includes an incident surface on which light is incident on the phosphor layer 3, an exit surface from which light is emitted from the phosphor layer 3, and a side wall surface that is connected to the entrance surface and the exit surface and faces the partition wall portion 7. Have. By forming the partition wall portion 7 in a bank shape, as shown in the cross-sectional view of FIG. 14, the side wall surface of the phosphor layer 3 is inclined so that the phosphor layer 3 spreads from the light source side toward the display side. ing. In this specification, the light source side indicates the side where the backlight 20 is disposed with respect to the phosphor layer 3, that is, the lower side in FIG. The display side indicates the side opposite to the light source side where the emission surface 9 is disposed with respect to the phosphor layer 3, that is, the upper side in FIG.
 隔壁部7は、光反射特性を保有する。隔壁部7の具体例を以下に示す。図15は、実施の形態5の隔壁部7の第一の例を示す断面図である。隔壁部7は樹脂材料製である。隔壁部7は、光源側の端部において幅が最大であり、出射面9側へ向けて幅が漸次縮小し、出射面9側の端部において幅が最小となる。隔壁部7は、光源側から出射面9側へ向かって先細る形状を有する。図15に示す隔壁部7の断面形状は、光源側に寸法の大きい底辺を有し、出射面側に寸法の小さい底辺を有する、台形状になる。蛍光体層3に対向する隔壁部7の対向面7aは、台形の脚を形成する。 The partition wall portion 7 has light reflection characteristics. The specific example of the partition part 7 is shown below. FIG. 15 is a cross-sectional view showing a first example of the partition wall portion 7 of the fifth embodiment. The partition wall 7 is made of a resin material. The partition wall portion 7 has the maximum width at the end on the light source side, gradually decreases in width toward the exit surface 9 side, and has the minimum width at the end portion on the exit surface 9 side. The partition wall portion 7 has a shape that tapers from the light source side toward the emission surface 9 side. The cross-sectional shape of the partition wall portion 7 shown in FIG. 15 is a trapezoidal shape having a base with a large size on the light source side and a base with a small size on the exit surface side. The facing surface 7a of the partition wall 7 facing the phosphor layer 3 forms a trapezoidal leg.
 蛍光体層3で蛍光体が励起する蛍光は、等方発光する。蛍光の一部は、隔壁部7の対向面7aの方向に放射される。図15中の矢印に示すように、蛍光体層3において等方発光した蛍光のうち、蛍光体層3の側壁面へ向かう蛍光は、隔壁部7の対向面7aで反射され、蛍光体層3の出射面へ向かって進む。蛍光体層3から出射した蛍光は、透明基板4を経由して出射面9側へ進み、出射面9を経由して表示装置200から出射される。 The fluorescence excited by the phosphor in the phosphor layer 3 emits isotropically. A part of the fluorescence is emitted in the direction of the facing surface 7 a of the partition wall 7. As indicated by the arrows in FIG. 15, among the fluorescence emitted isotropically in the phosphor layer 3, the fluorescence toward the side wall surface of the phosphor layer 3 is reflected by the facing surface 7 a of the partition wall portion 7, and the phosphor layer 3. Proceed toward the exit surface. The fluorescence emitted from the phosphor layer 3 proceeds to the emission surface 9 side via the transparent substrate 4 and is emitted from the display device 200 via the emission surface 9.
 図16は、実施の形態5の隔壁部7の第二の例を示す断面図である。図16に示す例では、隔壁部7の表面に、反射膜8がさらにコーティングされて形成されている。反射膜8はたとえばアルミニウムに代表される反射率の大きい金属材料で形成されてもよい。反射膜8は対向面7aを覆う。反射膜8により、蛍光体層3の側壁面へ向かう蛍光をより効率よく出射面9側へ反射させることが可能になり、光の利用効率を向上できる。 FIG. 16 is a cross-sectional view showing a second example of the partition wall portion 7 of the fifth embodiment. In the example shown in FIG. 16, the reflection film 8 is further coated on the surface of the partition wall portion 7. The reflective film 8 may be formed of a metal material having a high reflectance represented by aluminum, for example. The reflective film 8 covers the facing surface 7a. The reflection film 8 makes it possible to more efficiently reflect the fluorescent light toward the side wall surface of the phosphor layer 3 to the emission surface 9 side, thereby improving the light utilization efficiency.
 図17は、実施の形態5の隔壁部7の第三の例を示す断面図である。図17に示す例では、樹脂製の隔壁部7が設けられておらず、内部が空洞の反射膜8によって各色の蛍光体層および拡散層が仕切られている。 FIG. 17 is a cross-sectional view showing a third example of the partition wall portion 7 of the fifth embodiment. In the example shown in FIG. 17, the resin partition walls 7 are not provided, and the phosphor layers and the diffusion layers of the respective colors are partitioned by a reflective film 8 having a hollow inside.
 図18は、実施の形態5の隔壁部7の第四の例を示す断面図である。図18に示す例では、隔壁部7が円筒の一部形状で形成されている。隔壁部7の断面形状は、光源側から出射面側へ向かって漸次縮小している。隔壁部7は、出射面9側から光源側へ向かって先細る形状を有する。隔壁部7の、蛍光体層3に接しない部分に、反射膜8が形成されている。蛍光体層3で発光した蛍光は、反射膜8によって反射されると、出射面9側へ向かって進む。 FIG. 18 is a cross-sectional view showing a fourth example of the partition wall 7 according to the fifth embodiment. In the example shown in FIG. 18, the partition wall 7 is formed in a partial cylindrical shape. The cross-sectional shape of the partition wall portion 7 is gradually reduced from the light source side toward the emission surface side. The partition wall portion 7 has a shape that tapers from the emission surface 9 side toward the light source side. A reflective film 8 is formed on a portion of the partition wall 7 that does not contact the phosphor layer 3. When the fluorescence emitted from the phosphor layer 3 is reflected by the reflective film 8, it proceeds toward the exit surface 9 side.
 このような構造の実施の形態5の表示装置200では、隔壁部7の形状を調整することにより、蛍光体層3からの蛍光の出射角度を最適化することができる。これにより、蛍光体からの出射光の光度極角分布を、実施の形態1または2に示す条件式を満たすようにすることが可能になる。 In the display device 200 according to the fifth embodiment having such a structure, the emission angle of the fluorescence from the phosphor layer 3 can be optimized by adjusting the shape of the partition wall 7. As a result, the luminous intensity polar angle distribution of the emitted light from the phosphor can satisfy the conditional expression shown in the first or second embodiment.
 図19は、図18に示す隔壁部7の間に配置された蛍光体層3からの出射光の光度分布の実測値を示すグラフである。図19の横軸は極角を示し、縦軸は相対光度を示す。図18に示す隔壁部7の間に配置された蛍光体層3からの出射光が図19中の実線に示すような光度分布である場合、実数Aを極角0°における蛍光体からの出射光の光度l0の0.958倍とする。すなわち、実施の形態1で説明した条件式中のA=0.958・l0とする。図19中に点線で描かれる曲線は、極角θの関数f(θ)=A・cosθ=0.958・l0・cosθを示す。図13中に破線で描かれる二つの曲線は、上記の関数f(θ)の0.90倍および1.10倍を示す。 FIG. 19 is a graph showing measured values of the luminous intensity distribution of the emitted light from the phosphor layer 3 arranged between the partition walls 7 shown in FIG. In FIG. 19, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity. When the emitted light from the phosphor layer 3 arranged between the partition walls 7 shown in FIG. 18 has a luminous intensity distribution as shown by the solid line in FIG. 19, the real number A is emitted from the phosphor at a polar angle of 0 °. The luminous intensity is set to 0.958 times the luminous intensity l0. That is, A = 0.958 · 10 in the conditional expression described in the first embodiment. A curve drawn by a dotted line in FIG. 19 indicates a function f (θ) = A · cos θ = 0.958 · l0 · cos θ of the polar angle θ. Two curves drawn with a broken line in FIG. 13 show 0.90 times and 1.10 times of the function f (θ).
 極角0°における光度l0の0.91倍以上1.11倍以下の範囲にある実数Aを適切に選定することにより、図19中に実線で示される出射光の光度lθは、極角θが-85°以上85°以下の範囲で、A・cosθの0.90倍以上1.10倍以下の範囲にあることになる。そのため、極角θにおける蛍光体層3からの出射光の光度lθが実施の形態1に示す条件式を満たすことになるため、この表示装置200は観賞角度に依らず輝度均一であると評価できる。したがって、観察角度に依らず輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することが可能となる。 By appropriately selecting a real number A in the range of 0.91 times to 1.11 times the luminous intensity 10 at a polar angle of 0 °, the luminous intensity lθ of the emitted light indicated by the solid line in FIG. Is in the range of 0.90 times to 1.10 times of A · cos θ in the range of −85 ° to 85 °. Therefore, since the luminous intensity lθ of the light emitted from the phosphor layer 3 at the polar angle θ satisfies the conditional expression shown in the first embodiment, it can be evaluated that the display device 200 has uniform luminance regardless of the viewing angle. . Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
 (実施の形態6)
 図20は、実施の形態6に係る表示装置200を示す断面図である。実施の形態6の表示装置200は、図14に示す実施の形態5の表示装置と基本的に同等の構成を備えており、蛍光体層3に対し出射面9側に低屈折率材料層11を備える点において異なっている。低屈折率材料層11は、蛍光体層3よりも表示側に設けられている。低屈折率材料層11は、蛍光体層3の屈折率より小さな屈折率を有する。低屈折率材料層11を形成する材料は、蛍光体層3の形成材料と比較して相対的に屈折率の低い材料である。たとえば、屈折率1.26の材料を使用して、低屈折率材料層11を形成することができる。
(Embodiment 6)
FIG. 20 is a cross-sectional view showing a display device 200 according to the sixth embodiment. The display device 200 according to the sixth embodiment has basically the same configuration as that of the display device according to the fifth embodiment shown in FIG. Is different in that The low refractive index material layer 11 is provided on the display side with respect to the phosphor layer 3. The low refractive index material layer 11 has a refractive index smaller than that of the phosphor layer 3. The material for forming the low refractive index material layer 11 is a material having a relatively low refractive index as compared with the material for forming the phosphor layer 3. For example, the low refractive index material layer 11 can be formed using a material having a refractive index of 1.26.
 図21は、実施の形態6の蛍光体層3を拡大して示す断面図である。図21中の矢印に示すように、蛍光体層3に含まれる蛍光体から等方発光した蛍光のうち蛍光体層3と低屈折率材料層11との界面に大きい入射角で入射した光は、当該界面において全反射する。具体的には、蛍光体層3と低屈折率材料層11との形成材料の屈折率の差に基づき、スネルの法則に従って蛍光体層3と低屈折率材料層11との界面における臨界角が定められ、その臨界角よりも大きい入射角で当該界面に入射した光が全反射されることになる。全反射した蛍光は蛍光体層3内を伝播し、隔壁部7の対向面7aに到達し、対向面7aに形成された反射膜8によって反射され、その後出射面9側へと出射される。 FIG. 21 is an enlarged sectional view showing the phosphor layer 3 of the sixth embodiment. As indicated by the arrows in FIG. 21, the light incident at a large incident angle on the interface between the phosphor layer 3 and the low refractive index material layer 11 out of the fluorescence emitted isotropically from the phosphor included in the phosphor layer 3 is , Total reflection at the interface. Specifically, the critical angle at the interface between the phosphor layer 3 and the low refractive index material layer 11 is determined according to Snell's law based on the difference in refractive index of the forming material between the phosphor layer 3 and the low refractive index material layer 11. The light incident on the interface at a predetermined incident angle larger than the critical angle is totally reflected. The totally reflected fluorescence propagates in the phosphor layer 3, reaches the facing surface 7 a of the partition wall 7, is reflected by the reflecting film 8 formed on the facing surface 7 a, and then is emitted to the emitting surface 9 side.
 このような構造の実施の形態6の表示装置200では、低屈折率材料層11の形成材料の屈折率と隔壁部7の形状とを調整することで、低屈折率材料層11を通過して出射する蛍光の出射角度を最適化することができる。これにより、蛍光体からの出射光の光度極角分布を、実施の形態1または2に示す条件式を満たすようにすることが可能になる。したがって、観察角度に依らず輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することが可能となる。 In the display device 200 of Embodiment 6 having such a structure, the low refractive index material layer 11 passes through the low refractive index material layer 11 by adjusting the refractive index of the forming material of the low refractive index material layer 11 and the shape of the partition wall portion 7. The emission angle of the emitted fluorescence can be optimized. As a result, the luminous intensity polar angle distribution of the emitted light from the phosphor can satisfy the conditional expression shown in the first or second embodiment. Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
 また、低屈折率材料層11で全反射される蛍光は、低屈折率材料層11がない場合には透明基板4内で閉じ込められて出射面9から出射されない光である。このような蛍光を利用できるので、表示装置200の光利用効率が向上し、より小さい消費電力で表示装置200を点灯させることが可能になる。 Further, the fluorescence totally reflected by the low refractive index material layer 11 is light that is confined in the transparent substrate 4 and is not emitted from the emission surface 9 when there is no low refractive index material layer 11. Since such fluorescence can be used, the light utilization efficiency of the display device 200 is improved, and the display device 200 can be turned on with less power consumption.
 (実施の形態7)
 図22は、実施の形態7に係る表示装置200を示す断面図である。実施の形態7の表示装置200は、図14に示す実施の形態5の表示装置と基本的に同等の構成を備えており、蛍光体層3に対し出射面9側または光源側に拡散層12を備える点において異なっている。拡散層12は、蛍光体層3よりも表示側または光源側に設けられており、拡散層12に入射した光を拡散させる特性を有する。図22には例として、実施の形態6の表示装置の低屈折率材料層11に対して出射面9側に拡散層12を設けた場合の一例が図示されている。
(Embodiment 7)
FIG. 22 is a cross-sectional view showing display device 200 according to the seventh embodiment. The display device 200 according to the seventh embodiment has a configuration basically the same as that of the display device according to the fifth embodiment shown in FIG. Is different in that The diffusion layer 12 is provided on the display side or the light source side with respect to the phosphor layer 3 and has a characteristic of diffusing light incident on the diffusion layer 12. FIG. 22 shows an example in which a diffusion layer 12 is provided on the exit surface 9 side with respect to the low refractive index material layer 11 of the display device of Embodiment 6.
 拡散層12を形成する材料は、たとえば拡散シート、拡散板、または白インク材料などが考えられる。拡散シートや拡散板の材料としては、たとえばポリプロピレンなどが考えられる。なお、蛍光体層3に対し出射面9側にカラーフィルタを設ける場合には、拡散層12はカラーフィルタに対し光源側に設けられる。 The material for forming the diffusion layer 12 may be, for example, a diffusion sheet, a diffusion plate, or a white ink material. As a material for the diffusion sheet or the diffusion plate, for example, polypropylene can be considered. When a color filter is provided on the emission surface 9 side with respect to the phosphor layer 3, the diffusion layer 12 is provided on the light source side with respect to the color filter.
 このような構造の実施の形態7の表示装置200では、蛍光体層3に対し出射面9側に拡散層12を設ける場合、拡散層12において蛍光体層3からの出射光を完全拡散することで、蛍光体からの出射光の光度極角分布を、実施の形態1または2に示す条件式を満たすようにすることが可能になる。この手法においては、青画素の拡散層6において青色光が完全拡散されなくても、拡散層12において青色光の散乱を補助し、完全拡散させることが可能である。 In the display device 200 according to the seventh embodiment having such a structure, when the diffusion layer 12 is provided on the emission surface 9 side with respect to the phosphor layer 3, the emission light from the phosphor layer 3 is completely diffused in the diffusion layer 12. Thus, the luminous intensity polar angle distribution of the light emitted from the phosphor can satisfy the conditional expression shown in the first or second embodiment. In this method, even if blue light is not completely diffused in the diffusion layer 6 of the blue pixel, it is possible to assist the scattering of the blue light in the diffusion layer 12 and complete diffusion.
 また、蛍光体からの出射光の光度極角分布が、実施の形態1または2に示す条件式を満たす一方、青画素における拡散が不十分である場合には、蛍光体層3に対し光源側に拡散層12を設けることで青画素の拡散を補助し、青色光の光度極角分布を実施の形態1または2に示す条件式を満たすようにすることが可能になる。 When the luminous intensity polar angle distribution of the emitted light from the phosphor satisfies the conditional expression shown in the first or second embodiment, but the diffusion in the blue pixel is insufficient, the light source side with respect to the phosphor layer 3 is used. By providing the diffusion layer 12 on the surface, it is possible to assist the diffusion of the blue pixels, and the luminous intensity polar angle distribution of the blue light can satisfy the conditional expression shown in the first or second embodiment.
 したがって、観察角度に依らず輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することが可能となる。 Therefore, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured.
 以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組み合わせてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described above, the configurations of the embodiments may be combined as appropriate. In addition, it should be considered that the embodiment disclosed this time is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,2 主表面、3 蛍光体層、4 透明基板、5g 緑色蛍光体層、5r 赤色蛍光体層、6,12 拡散層、7 隔壁部、7a 対向面、8 反射膜、9 出射面、11 低屈折率材料層、20 バックライト、21,25 偏光板、22,24 ガラス基板、23 液晶層、100 色変換基板、150 光シャッタ、200 表示装置。 1, 2 main surface, 3 phosphor layer, 4 transparent substrate, 5g green phosphor layer, 5r red phosphor layer, 6, 12 diffusion layer, 7 partition wall, 7a facing surface, 8 reflective film, 9 exit surface, 11 Low refractive index material layer, 20 backlight, 21, 25 polarizing plate, 22, 24 glass substrate, 23 liquid crystal layer, 100 color conversion substrate, 150 optical shutter, 200 display device.

Claims (17)

  1.  光を出射する光源と、前記光源から出射された光を吸収して蛍光を発光する蛍光体を含む蛍光体層と、を備える表示装置の評価方法であって、
    極角θと、極角θにおける前記蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における前記蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Aに対し、
     0.90・A・cosθ≦lθ≦1.10・A・cosθ
     を満たすかどうかを評価する、表示装置の評価方法。
    A method for evaluating a display device comprising: a light source that emits light; and a phosphor layer that includes a phosphor that absorbs light emitted from the light source and emits fluorescence.
    The luminous intensity of the emitted light from the phosphor layer at a polar angle of 0 ° when the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °. For any real number A in the range of 0.91 to 1.11 times
    0.90 · A · cosθ ≦ lθ ≦ 1.10 · A · cosθ
    A method for evaluating a display device, which evaluates whether or not the above condition is satisfied.
  2.  前記蛍光体層は、側壁面を有し、
     前記側壁面は、光源側から表示側へ向かって前記蛍光体層が広がるように傾斜する、請求項1に記載の表示装置の評価方法。
    The phosphor layer has a sidewall surface;
    The evaluation method for a display device according to claim 1, wherein the side wall surface is inclined so that the phosphor layer spreads from the light source side toward the display side.
  3.  前記表示装置は、前記蛍光体層よりも表示側に、前記蛍光体層の屈折率より小さな屈折率を有する低屈折率層を備える、請求項1または請求項2に記載の表示装置の評価方法。 The display device evaluation method according to claim 1, wherein the display device includes a low refractive index layer having a refractive index smaller than a refractive index of the phosphor layer on a display side of the phosphor layer. .
  4.  前記蛍光体層は、光を散乱させる散乱材料を含む、請求項1から請求項3のいずれかに記載の表示装置の評価方法。 4. The evaluation method for a display device according to claim 1, wherein the phosphor layer includes a scattering material that scatters light.
  5.  前記表示装置は、前記蛍光体層よりも表示側または光源側に、光を拡散させる拡散層を備える、請求項1から請求項4のいずれかに記載の表示装置の評価方法。 The method for evaluating a display device according to any one of claims 1 to 4, wherein the display device includes a diffusion layer that diffuses light closer to the display side or the light source side than the phosphor layer.
  6.  前記蛍光体層の屈折率は1.74以上である、請求項1から請求項5のいずれかに記載の表示装置の評価方法。 The evaluation method of a display device according to any one of claims 1 to 5, wherein a refractive index of the phosphor layer is 1.74 or more.
  7.  極角θと、極角θにおける前記蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における前記蛍光体層からの出射光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Bに対し、
     0.93・B・cosθ≦lθ≦1.07・B・cosθ
     を満たすかどうかを評価する、請求項1から請求項6のいずれかに記載の表示装置の評価方法。
    The luminous intensity of the emitted light from the phosphor layer at a polar angle of 0 ° when the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °. For any real number B in the range of 0.93 times to 1.076 times
    0.93 ・ B ・ cosθ ≦ lθ ≦ 1.07 ・ B ・ cosθ
    The method for evaluating a display device according to claim 1, wherein whether or not the condition is satisfied is evaluated.
  8.  前記蛍光体層の屈折率は2.02以上である、請求項7に記載の表示装置の評価方法。 The evaluation method of a display device according to claim 7, wherein a refractive index of the phosphor layer is 2.02 or more.
  9.  光を出射する光源と、
     前記光源から入射した光を選択的に出射する光シャッタと、
     前記光シャッタからの光が入射するように配置され、前記光シャッタから入射した光を吸収して蛍光を発光する蛍光体を含む蛍光体層と、
     を備える表示装置であって、
     極角θと、極角θにおける前記蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における前記蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Aに対し、
     0.90・A・cosθ≦lθ≦1.10・A・cosθ
     を満たす、表示装置。
    A light source that emits light;
    An optical shutter that selectively emits light incident from the light source;
    A phosphor layer that is arranged so that light from the optical shutter is incident thereon and includes a phosphor that absorbs light incident from the optical shutter and emits fluorescence; and
    A display device comprising:
    The luminous intensity of the emitted light from the phosphor layer at a polar angle of 0 ° when the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °. For any real number A in the range of 0.91 to 1.11 times
    0.90 · A · cosθ ≦ lθ ≦ 1.10 · A · cosθ
    A display device that meets the requirements.
  10.  前記蛍光体層は、側壁面を有し、
     前記側壁面は、光源側から表示側へ向かって前記蛍光体層が広がるように傾斜する、請求項9に記載の表示装置。
    The phosphor layer has a sidewall surface;
    The display device according to claim 9, wherein the side wall surface is inclined so that the phosphor layer spreads from a light source side toward a display side.
  11.  前記表示装置は、前記蛍光体層よりも表示側に、前記蛍光体層の屈折率より小さな屈折率を有する低屈折率層を備える、請求項9または請求項10に記載の表示装置。 The display device according to claim 9 or 10, wherein the display device includes a low refractive index layer having a refractive index smaller than a refractive index of the phosphor layer on a display side of the phosphor layer.
  12.  前記蛍光体層は、光を散乱させる散乱材料を含む、請求項9から請求項11のいずれかに記載の表示装置。 The display device according to claim 9, wherein the phosphor layer includes a scattering material that scatters light.
  13.  前記表示装置は、前記蛍光体層よりも表示側または光源側に、光を拡散させる拡散層を備える、請求項9から請求項12のいずれかに記載の表示装置。 The display device according to any one of claims 9 to 12, further comprising a diffusion layer that diffuses light closer to the display side or the light source side than the phosphor layer.
  14.  前記蛍光体層の屈折率は1.74以上である、請求項9から請求項13のいずれかに記載の表示装置。 The display device according to claim 9, wherein the phosphor layer has a refractive index of 1.74 or more.
  15.  極角θと、極角θにおける前記蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における前記蛍光体層からの出射光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Bに対し、
     0.93・B・cosθ≦lθ≦1.07・B・cosθ
     を満たす、請求項9から請求項14のいずれかに記載の表示装置。
    The luminous intensity of the emitted light from the phosphor layer at a polar angle of 0 ° when the polar angle θ and the luminous intensity lθ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °. For any real number B in the range of 0.93 times to 1.076 times
    0.93 ・ B ・ cosθ ≦ lθ ≦ 1.07 ・ B ・ cosθ
    The display device according to claim 9, wherein:
  16.  前記蛍光体層の屈折率は2.02以上である、請求項15に記載の表示装置。 The display device according to claim 15, wherein the phosphor layer has a refractive index of 2.02 or more.
  17.  前記表示装置は、映像を表示する映像表示装置、または、照明光を出射する照明装置である、請求項9から請求項16のいずれかに記載の表示装置。 The display device according to any one of claims 9 to 16, wherein the display device is a video display device that displays video or a lighting device that emits illumination light.
PCT/JP2013/064843 2012-06-01 2013-05-29 Display device evaluation method and display device WO2013180152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-125879 2012-06-01
JP2012125879A JP2015155929A (en) 2012-06-01 2012-06-01 Evaluation method of display device and display device

Publications (1)

Publication Number Publication Date
WO2013180152A1 true WO2013180152A1 (en) 2013-12-05

Family

ID=49673340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064843 WO2013180152A1 (en) 2012-06-01 2013-05-29 Display device evaluation method and display device

Country Status (2)

Country Link
JP (1) JP2015155929A (en)
WO (1) WO2013180152A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021295A (en) * 2015-07-14 2017-01-26 大日本印刷株式会社 Quantum dot sheet, backlight, and liquid crystal display
CN113272728A (en) * 2018-11-30 2021-08-17 康宁公司 Enhanced quantum dots on color filter LCD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207395A (en) * 1997-01-27 1998-08-07 Toray Ind Inc Luminous display
JP2001083501A (en) * 1999-09-14 2001-03-30 Toray Ind Inc Spontaneous light emitting display
JP2009244383A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Liquid crystal display device
JP2010078761A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Display device and electronic equipment
WO2011129135A1 (en) * 2010-04-14 2011-10-20 シャープ株式会社 Fluorescent substrate and method for producing the same, and display device
WO2011145247A1 (en) * 2010-05-18 2011-11-24 シャープ株式会社 Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207395A (en) * 1997-01-27 1998-08-07 Toray Ind Inc Luminous display
JP2001083501A (en) * 1999-09-14 2001-03-30 Toray Ind Inc Spontaneous light emitting display
JP2009244383A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Liquid crystal display device
JP2010078761A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Display device and electronic equipment
WO2011129135A1 (en) * 2010-04-14 2011-10-20 シャープ株式会社 Fluorescent substrate and method for producing the same, and display device
WO2011145247A1 (en) * 2010-05-18 2011-11-24 シャープ株式会社 Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021295A (en) * 2015-07-14 2017-01-26 大日本印刷株式会社 Quantum dot sheet, backlight, and liquid crystal display
CN113272728A (en) * 2018-11-30 2021-08-17 康宁公司 Enhanced quantum dots on color filter LCD

Also Published As

Publication number Publication date
JP2015155929A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6178027B2 (en) Partially driven light source device and image display device using the same
US8514352B2 (en) Phosphor-based display
US20130002986A1 (en) Display device
TWI447484B (en) Liquid crystal display device
US9459395B2 (en) Backlight assembly and liquid crystal display including the same
TW201435445A (en) High color gamut quantum dot display
JP2006012818A (en) Blacklight assembly and display device using the same
WO2006126549A1 (en) Optical element, liquid crystal panel, and liquid crystal display device
TWI344568B (en)
JP4643411B2 (en) Backlight and liquid crystal display device
JP5294667B2 (en) Liquid crystal display
US8659709B2 (en) Display device and television receiver
KR101132947B1 (en) Backlight unit and liquid crystal display device including the same
KR101108426B1 (en) Backlight unit of liquid crystal display device
WO2013180152A1 (en) Display device evaluation method and display device
KR101792102B1 (en) Liquid crystal display device
JP2010151880A (en) Color liquid crystal display assembly and optical conversion device
JP2010134303A (en) Color liquid crystal display assembly
JP2010134270A (en) Color liquid crystal display device assembly, optical conversion device, luminescent particle layered structure, and forming method of luminescent particle layered structure
WO2018193691A1 (en) Illumination device, display device, and television receiver device
JP5163571B2 (en) Liquid crystal display
WO2013183753A1 (en) Display device
TWI840460B (en) Enhanced quantum dot on color filter lcd
JP5365658B2 (en) Liquid crystal display
JP2009115925A (en) Color liquid crystal display device assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP