WO2013179819A1 - (METH)ACRYLIC ACID ESTER COMPOUND HAVING β-PROPIOLACTONE SKELETON, AND METHOD FOR PRODUCING SAME - Google Patents

(METH)ACRYLIC ACID ESTER COMPOUND HAVING β-PROPIOLACTONE SKELETON, AND METHOD FOR PRODUCING SAME Download PDF

Info

Publication number
WO2013179819A1
WO2013179819A1 PCT/JP2013/061885 JP2013061885W WO2013179819A1 WO 2013179819 A1 WO2013179819 A1 WO 2013179819A1 JP 2013061885 W JP2013061885 W JP 2013061885W WO 2013179819 A1 WO2013179819 A1 WO 2013179819A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
meth
acrylic acid
acid ester
Prior art date
Application number
PCT/JP2013/061885
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 江副
林 秀樹
大島 俊二
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2014518345A priority Critical patent/JP6260532B2/en
Publication of WO2013179819A1 publication Critical patent/WO2013179819A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/10Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having one or more double bonds between ring members or between ring members and non-ring members
    • C07D305/12Beta-lactones

Definitions

  • the present invention relates to a (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton and a method for producing the same.
  • (Meth) acrylic acid ester compounds are compounds that are copolymerized with other polymerizable monomers and used in various applications such as optical materials, resist materials, coating materials, and laminate materials.
  • (Meth) acrylic acid ester compounds that can be used by copolymerization and mixing, especially compounds with unprecedented properties, are being studied and widely studied in order to make the materials highly compatible with the properties required for each application. Has been done.
  • a resist material is used in a process of plating, ion implantation, etching, etc. on a part of the surface in the manufacture of a printed circuit board, a liquid crystal display panel, a semiconductor element, and the like, and a (meth) acrylic acid ester compound or This is one of the applications in which the copolymer is used.
  • the resist material is directly drawn on a desired portion of the object to be processed by screen printing or ink jet, and is cured by heat or light to form a resist pattern, or is applied to the surface of the object to be processed by photolithography and passed through a mask. After exposure and photopolymerization or photodecomposition, development is performed to form a resist pattern.
  • Resist materials used by direct patterning by screen printing or ink jet for example, polymer components obtained by copolymerizing a plurality of polymerizable monomers such as (meth) acrylate compounds, polymerizable monomer components, polyfunctional polymerization In combination with a monomer component, a heat or photopolymerization initiator, a solvent and the like.
  • the resist material used in this method has a viscosity and concentration range suitable for screen printing, ink jet printing, etc.
  • the patterned resist has sufficient adhesion to the workpiece, plating, ion implantation Further, characteristics such as resistance to processing such as etching, and solubility for removing the resist after processing are required as required. In order to realize these various required properties, there is a demand for novel polymerizable monomers used by copolymerization or mixing.
  • resist materials used by patterning by photolithography, depending on the behavior with respect to light, and are further classified by exposure light sources such as g-line, i-line, and KrF excimer laser.
  • Resist materials suitable for each application such as printed circuit boards, liquid crystal display panels, and semiconductor device manufacturing, are required, and all resist materials satisfy characteristics such as coating properties, adhesion, processing resistance, developability, and solubility.
  • characteristics related to exposure wavelength such as light transmittance, light sensitivity, and the like.
  • the polymer component has a high transmittance at the exposure wavelength, and after exposure, the exposed portion is soluble in an alkali developer by the acid generated from the photoacid generator, or conversely insolubilized, resist adhesion and resistance.
  • the exposed portion is soluble in an alkali developer by the acid generated from the photoacid generator, or conversely insolubilized, resist adhesion and resistance.
  • it is required to satisfy lithography characteristics such as reduced roughness and pattern width fluctuation of resist patterns and resistance to pattern collapse. Yes.
  • a lactone (meth) acrylic acid ester compound having excellent adhesion and a polymerizable monomer having an alicyclic skeleton such as an adamantane skeleton or a norbornane skeleton having a high exposure wavelength transmittance and good etching resistance A polymer component obtained by copolymerization is used.
  • Lactone monomers have a 6-membered lactone ( ⁇ -valerolactone) skeleton (Patent Document 1), a 5-membered lactone ( ⁇ -butyrolactone) skeleton (Patent Document 2), and norbornane and lactone are condensed.
  • Patent Document 3 Those having the above skeleton (Patent Document 3) have been studied and put into practical use. Furthermore, in order to realize a resist material with good sensitivity, adhesion and etching resistance to photoacid generators and high resolution, there is a need for a new copolymerizable polymerizable monomer, and a polymer having a cyclohexanelactone ring skeleton. Active investigations have been made on a reactive compound (Patent Document 4) and a polymerizable compound having a polycyclic alicyclic skeleton (Patent Document 5).
  • Lactone (meth) acrylic acid ester compounds are more hydrophilic than copolymerized adamantane compounds and norbornane compounds.
  • a part of the non-exposed area is dissolved in an alkali developer, and the resist It is considered that the shape and roughness of the pattern are adversely affected (Non-Patent Document 1). Therefore, a lactone monomer having an appropriate solubility in an alkaline solution is demanded.
  • a lactone having a 4-membered ring structure ( ⁇ -propiolactone) is known as one of lactone compounds.
  • a method for producing a ⁇ -propiolactone compound a method of reacting aliphatic aldehydes with ketenes (Patent Document 6) is known.
  • Patent Document 6 discloses examples used for the synthesis of low molecular weight lactones such as ⁇ -butyrolactone, ⁇ -propiolactone, and ⁇ -caprolactone, (meth) acrylic acid compounds having a ⁇ -propiolactone skeleton And its manufacture is not disclosed.
  • the present invention was made to provide a polymerizable monomer that can be used by copolymerization or mixing, which is required for various applications such as optical materials, resist materials, coating materials, and laminate materials. It is an object of the present invention to provide a novel polymerizable monomer and to provide a production method thereof.
  • the present inventor has intensively studied to solve the problem, designed the compound of the present invention represented by the formula (1) having a ⁇ -propiolactone skeleton, and completed the production method thereof. It was found that the solubility in an alkali developer is low as compared with the above.
  • the present invention includes the following configurations.
  • R 1 is hydrogen or methyl
  • R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
  • a method for producing an acrylic ester compound in the formula, R 1 is hydrogen or methyl, and R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
  • the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the present invention can be used as a polymerizable monomer used by copolymerization or mixing.
  • the polymer obtained by copolymerizing the compound of the present invention has controlled solubility in an alkaline developer, and improved the lithography properties of resist materials incorporating the copolymerized polymer. Is expected to do.
  • the ⁇ -propiolactone skeleton has light absorption characteristics suitable for short wavelength exposure, and can be used as a resist material used for short wavelength exposure.
  • the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the present invention is used as a polymerizable monomer used by mixing in various applications such as optical materials, resist materials, coating materials, laminate materials, It is expected to be used for adjustment of compatibility of solutions used for screen printing and inkjet, adjustment of viscosity, adjustment of adhesion after curing, adjustment of solubility, and the like.
  • the method for producing a (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the present invention makes it possible to industrially obtain the compound of the formula (1).
  • 2 is an NMR spectrum of ⁇ -methacryloyloxymethyl- ⁇ -methyl- ⁇ -propiolactone obtained in Example 1.
  • 2 is an NMR spectrum of ⁇ , ⁇ , ⁇ -trimethyl- ⁇ -methacryloyloxymethyl- ⁇ -propiolactone obtained in Example 2.
  • 3 is an NMR spectrum of ⁇ -methyl- ⁇ - (methacryloyloxyethyl-1-yl) - ⁇ -propiolactone obtained in Example 3.
  • 3 is an NMR spectrum of ⁇ -methacryloyloxymethyl- ⁇ -propiolactone obtained in Example 4.
  • 2 is an NMR spectrum of ⁇ , ⁇ -dimethyl- ⁇ -methacryloyloxy- ⁇ -butyrolactone obtained in Comparative Example 1.
  • the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the present invention is represented by the formula (1).
  • R 1 is hydrogen or methyl
  • R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or methyl. More preferably, among these, R 4 , R 5 and R 6 are hydrogen compounds, or R 4 is hydrogen, and R 5 and R 6 are methyl.
  • the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the formula (1) of the present invention reacts a compound having a carbonyl group represented by (2) with a ketene compound represented by the formula (3).
  • a compound having a carbonyl group represented by (2) with a ketene compound represented by the formula (3).
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as described above.
  • Solvents include ethers such as tetrahydrofuran, diethyl ether, di-n-butyl ether, 1,4-dioxane, ethylene glycol dimethyl ether, aliphatic hydrocarbons such as hexane, heptane, octane, cyclohexane, methylcyclohexane, and alicyclics.
  • Hydrocarbons aromatic hydrocarbons such as benzene, toluene and xylene ethylbenzene, esters such as methyl acetate, ethyl acetate and n-butyl acetate, halogenated hydrocarbons such as dichloromethane, nitriles such as acetonitrile and propionitrile A class etc. can be used individually or in mixture.
  • tetrahydrofuran is preferably used because it can suppress the isomerization reaction of a (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton formed by combining with another solvent and can increase the reaction selectivity. it can.
  • metal halides such as zinc, aluminum, titanium, iron, and organic complex compounds of boron halides can be used.
  • a diethyl ether complex of boron trifluoride has high reaction selectivity and can be suitably used.
  • the addition amount of the catalyst is preferably in the range of 0.1 to 50% by weight, more preferably in the range of 2 to 30% by weight with respect to the reaction substrate. A larger addition amount in this range is preferable because the reaction is accelerated and the yield is improved, and a smaller addition amount is preferable for the isomerization reaction of the (meth) acrylic ester compound having a ⁇ -propiolactone skeleton formed. It is preferable because the reaction selectivity is improved and the load in the purification process such as catalyst treatment can be reduced.
  • the condensation reaction of the compound having a carbonyl group represented by the formula (2) and the ketene compound represented by the formula (3) is an exothermic reaction, and it is preferable to carry out the reaction while removing heat.
  • a preferable reaction temperature is a temperature range of 20 ° C. or lower to ⁇ 20 ° C. or higher, more preferably a temperature range of 10 ° C. or lower, and further preferably a temperature range of 5 ° C. or lower.
  • the reaction temperature is 20 ° C. or lower, the isomerization of the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton can be prevented, and when the reaction temperature is ⁇ 20 ° C. or higher, the reaction rate is increased. This is preferable.
  • the reaction proceeds by stirring while removing heat, and the reaction crude liquid after completion of the reaction is washed with alkali and water, and after removing the solvent, purification treatment such as column treatment, recrystallization, distillation treatment, etc. is carried out to obtain the formula (1 ) Can be obtained.
  • the compound of the formula (2) can be easily obtained, for example, by reacting the compound of the formula (4) with the compound of the formula (5) or the formula (6).
  • the definitions of R 1 , R 2 , R 3 , and R 4 are the same as described above.
  • X is a halogen.
  • Examples of compounds of formula (4) include 1-hydroxy-2-propanone, 3-hydroxy-2-butanone, 1-hydroxy-2-butanone, 3-hydroxy-2-pentanone, 3-hydroxy-3-methyl Examples include, but are not limited to, -2-butanone and 2-hydroxyethanal.
  • dimethacrylic anhydride and diacrylic anhydride are preferably used.
  • (meth) acrylic acid halides particularly (meth) acrylic acid chloride, ( (Meth) acrylic acid bromide and (meth) acrylic acid iodide can be used.
  • the esterification reaction using the compound of formula (4) and the compound of formula (5) can be carried out according to a conventional method.
  • a compound of formula (4) and a compound of formula (5) are dissolved in a solvent, and a base such as triethylamine and N, N-dimethyl-4-aminopyridine are added to a solution obtained by adding a polymerization inhibitor and heating and stirring.
  • the compound of formula (2) is obtained through a purification operation such as washing, concentration, distillation, and the like.
  • the esterification reaction using the compound of formula (4) and the compound of formula (6) can also be carried out according to a conventional method.
  • the compound of the formula (4) and a base such as triethylamine are dissolved in a solvent, and the compound of the formula (6) is added and reacted while maintaining the temperature in a solution obtained by adding a polymerization inhibitor and cooling and stirring.
  • the compound of formula (2) is obtained through purification operations such as washing, concentration, and distillation.
  • the compound of the formula (2) may be synthesized by a transesterification reaction or a dehydration esterification reaction in addition to the above-described reaction between (meth) acrylic anhydride or (meth) acrylic acid halides and keto alcohols. . Moreover, you may make it react by using the metal salt of (meth) acrylic acid, or protecting with a protecting group as needed.
  • Ketene which is a compound of formula (3), is obtained by thermal decomposition of acetone or acetic acid.
  • Monomethylketene is obtained by thermal decomposition of diethyl ketone or propionic acid.
  • R 5 and R 6 substituted ketene allows metal zinc to act on acetyl bromide ⁇ -substituted with R 5 , R 6 and bromine, or allow tertiary amine to act on carboxylic acid chloride ⁇ -substituted with R 5 and R 6.
  • dimethyl ketene can be generated by adding a base such as triethylamine to isobutyric acid chloride.
  • the compound of the formula (1) is, for example, a combination of a polymer component obtained by copolymerizing a plurality of polymerizable monomers, a polymerizable monomer component, a polyfunctional polymerizable monomer component, a heat or photopolymerization initiator, and a solvent.
  • Photo provided by combining a polymer component obtained by copolymerizing a plurality of polymerizable monomers, a photoacid generator, a solvent, and the like as a polymerizable monomer component for a resist material used by direct patterning provided It can be used as a polymerizable monomer for a resist material.
  • the compound of the formula (1) is dissolved in an aqueous solution by hydrolyzing with an alkaline solution, for example, an aqueous solution of TMAH (tetramethylammonium hydroxide) to form a hydroxyl group.
  • an alkaline solution for example, an aqueous solution of TMAH (tetramethylammonium hydroxide)
  • TMAH tetramethylammonium hydroxide
  • its solubility is controlled low. Therefore, the polymer copolymerized with the compound of the formula (1) has a controlled solubility in an alkali developer as compared with a polymer copolymerized with a compound having a 5-membered lactone skeleton.
  • a positive resist material is used. In photolithography, it can be effectively used to improve the roughness of a resist pattern.
  • Examples of compounds that can be combined or copolymerized with the compound of formula (1) include (meth) acrylic acid, (meth) acrylic acid ester monomers, vinyl ether derivatives, styrene derivatives, maleic anhydride, and the like. Can be mentioned.
  • hydrogen of carboxylic acid of (meth) acrylic acid is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, cyclopentyl, cyclohexyl, Tricyclodecyl [5.2.1.0 2,6 ], adamantyl, norbornyl, isobornyl, hydroxyethyl, propoxyethyl, butoxyethyl, 2-methyl-2-adamantyl, 2-ethyl-2-adamantyl, 3-hydroxy It is a compound substituted with 1-adamantyl, tetrahydropyranyl, methoxytetrahydropyranyl, tetrahydrofuranyl and the like.
  • Vinyl ether derivatives include ethyl vinyl ether, cyclohexyl vinyl ether, hydroxyethyl vinyl ether, and the like.
  • examples of the styrene derivative include styrene, parahydroxystyrene, paramethoxystyrene, and para t-butoxystyrene. These copolymerizable compounds can be used alone or in combination of two or more.
  • the method for obtaining a polymer component by polymerizing or copolymerizing the compound of the formula (1) is not particularly limited, and can be carried out by a conventional method.
  • each compound is mixed in a solvent so as to have a desired molar ratio, a polymerization initiator is added, polymerization or copolymerization is performed by heating or light irradiation, the product is separated, and purification treatment is performed as necessary.
  • a polymer component is not particularly limited, and can be carried out by a conventional method.
  • each compound is mixed in a solvent so as to have a desired molar ratio
  • a polymerization initiator is added
  • polymerization or copolymerization is performed by heating or light irradiation
  • the product is separated, and purification treatment is performed as necessary.
  • purification treatment is performed as necessary.
  • 1-hydroxy-2-propanone manufactured by Wako Pure Chemical Industries, Ltd., purity 90.0% or more
  • ketene gas was passed through the solution through the gas inlet tube at a rate of 1.1 equivalent / h with respect to the substrate, and the reaction was carried out until 2-oxopropyl methacrylate disappeared by GC analysis. It was. The reaction was completed in 150 minutes, the blowing of ketene gas was stopped, and the remaining ketene was removed out of the system by passing nitrogen gas.
  • reaction mixture was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 20 mg of hydroquinone was added, and the solvent was distilled off with an evaporator.
  • the reaction solution after the solvent was distilled off was purified by column separation using silica gel as the packing material and a mixed solvent of ethyl acetate-heptane as the developing solution, and further recrystallized twice using toluene and heptane.
  • reaction solution was washed with 1N hydrochloric acid, 10% aqueous sodium carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and filtered to obtain a reaction crude solution.
  • the reaction crude liquid was evaporated using an evaporator and then distilled under reduced pressure to give 49.7 g of 2-oxopropyl methacrylate having a GC purity of 99.0% (yield 51.9 based on 1-hydroxy-2-propanone). %).
  • the reaction solution was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 50 mg of p-methoxyphenol was added, and the solvent was distilled off using an evaporator.
  • the reaction solution after the solvent was distilled off was recrystallized twice using toluene and heptane, and ⁇ , ⁇ , ⁇ -trimethyl- ⁇ - represented by formula (9) having a purity of 99.5% by HPLC analysis. 63.8 g (42.8% yield based on 2-oxopropyl methacrylate) of methacryloyloxymethyl- ⁇ -propiolactone were obtained.
  • An NMR measurement chart is shown in FIG.
  • 150 g of 3-hydroxy-2-butanone manufactured by Tokyo Chemical Industry Co., Ltd., purity 95.0% or more
  • a stirrer, thermometer, and Dimroth condenser are installed. Connected.
  • ketene gas was passed through the gas introduction tube at a rate of 0.9 equivalent / h with respect to the substrate, and the reaction was carried out until 3-oxobutan-2-yl methacrylate disappeared by GC analysis. It was. The reaction was completed in 5 hours, the blowing of ketene gas was stopped, and the remaining ketene was removed from the system by passing nitrogen gas.
  • reaction mixture was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 40 mg of p-methoxyphenol was added, and the solvent was distilled off with an evaporator.
  • the reaction solution after the solvent was distilled off was purified by column separation using silica gel as the packing material and a mixed solvent of ethyl acetate-heptane as the developing solvent, added with 50 mg of p-methoxyphenol, and distilled under reduced pressure to distill away impurities.
  • the reaction solution was washed with a 10% aqueous sodium carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 0.2 g of hydroquinone was added, and the solvent was distilled off with an evaporator.
  • the reaction solution after the solvent was distilled off was purified by column separation using silica gel as the filler and a mixed solvent of ethyl acetate-heptane as the developing solvent, and ⁇ -methacryloyloxymethyl- ⁇ - represented by the formula (11) Propiolactone was obtained.
  • An NMR measurement chart is shown in FIG.
  • Example 5 Confirmation of solubility of ⁇ -methyl- ⁇ - (methacryloyloxyethyl-1-yl) - ⁇ -propiolactone in aqueous alkali solution ⁇ -methyl- ⁇ - (methacryloyloxyethyl-1-yl obtained in Example 3 ) 0.54 g of ⁇ -propiolactone was weighed into a sample tube, and a rotor was added. Then, a 2.5% TMAH aqueous solution (10% aqueous solution manufactured by Tokyo Chemical Industry Co., Ltd.) was diluted 4 times with distilled water.
  • TMAH aqueous solution 10% aqueous solution manufactured by Tokyo Chemical Industry Co., Ltd.
  • ketene gas is passed through the gas introduction tube at a rate of 0.55 equivalent / h with respect to the substrate, and the reaction is carried out until 3-oxobutan-2-yl methacrylate disappears by GC analysis. It was. The reaction was completed in 4.5 hours, the blowing of ketene gas was stopped, and the remaining ketene was removed from the system by passing nitrogen gas.
  • the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the present invention can be incorporated into a resist material used in a manufacturing process of a printed circuit board, a liquid crystal display panel, a semiconductor element, etc.
  • the (meth) acrylic acid ester compound having a ⁇ -propiolactone skeleton of the present invention can be provided efficiently and stably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Compounds (AREA)

Abstract

Provided are a polymerizable monomer that can used for optical materials, resist materials, coating materials, laminate materials, and various other such purposes; and a method for producing the same. A (meth)acrylic acid ester compound having a β-propiolactone skeleton, shown by formula (1); and a production method which synthesizes the compound by reacting a precursor (meth)acrylic acid ester compound having a carbonyl group, and a ketene compound. In the formula, R1 is hydrogen or methyl, and R2, R3, R4, R5, and R6 are independently hydrogen or an alkyl having 1-5 carbon atoms.

Description

β-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物およびその製造方法(Meth) acrylic ester compound having β-propiolactone skeleton and process for producing the same
 本発明は、β-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物およびその製造方法に関する。 The present invention relates to a (meth) acrylic acid ester compound having a β-propiolactone skeleton and a method for producing the same.
 (メタ)アクリル酸エステル化合物は、他の重合性モノマーと共重合して、光学材料、レジスト材料、コーティング材料、ラミネート材料などの種々の用途に用いられる化合物である。用途毎に求められる特性に高度に適合した材料とするため、共重合や混合により用いることができる(メタ)アクリル酸エステル化合物、特に従来にない特性を有した化合物が求められていて、広く検討が行われている。 (Meth) acrylic acid ester compounds are compounds that are copolymerized with other polymerizable monomers and used in various applications such as optical materials, resist materials, coating materials, and laminate materials. (Meth) acrylic acid ester compounds that can be used by copolymerization and mixing, especially compounds with unprecedented properties, are being studied and widely studied in order to make the materials highly compatible with the properties required for each application. Has been done.
 例えば、レジスト材料はプリント基板、液晶ディスプレイパネル、半導体素子などの製造に於いて、表面の一部にメッキ、イオン注入、エッチングなどの処理を行う工程に用いられ、(メタ)アクリル酸エステル化合物またはその共重合体が用いられる用途の一つである。 For example, a resist material is used in a process of plating, ion implantation, etching, etc. on a part of the surface in the manufacture of a printed circuit board, a liquid crystal display panel, a semiconductor element, and the like, and a (meth) acrylic acid ester compound or This is one of the applications in which the copolymer is used.
 レジスト材料は、被処理物の所望部分にスクリーン印刷やインクジェットなどにより直接描画し、熱や光により硬化させレジストのパターンを形成したり、フォトリソグラフィにより、被処理物の表面に塗布し、マスクを通して露光し光重合や光分解させた後、現像してレジストのパターンを形成したりして用いられる。 The resist material is directly drawn on a desired portion of the object to be processed by screen printing or ink jet, and is cured by heat or light to form a resist pattern, or is applied to the surface of the object to be processed by photolithography and passed through a mask. After exposure and photopolymerization or photodecomposition, development is performed to form a resist pattern.
 スクリーン印刷やインクジェットなどにより直接パターニングして用いるレジスト材料は、例えば、(メタ)アクリル酸エステル化合物などの複数の重合性モノマーを共重合して得られたポリマー成分、重合性モノマー成分、多官能重合性モノマー成分、熱または光重合開始剤、溶剤などを組み合わせて提供される。この方式で用いられるレジスト材料には、スクリーン印刷やインクジェットなどに適した粘度、濃度範囲であること、パターン形成されたレジストは被処理物に対して充分な密着性を有すること、メッキ、イオン注入、エッチングなどの処理に対して耐性を有すこと、また、必要に応じて処理後にレジストを除去するための溶解性を持つことなどの特性が求められる。これら、種々の要求特性を実現するため、共重合したり混合したりして用いる新規な重合性モノマーが求められている。 Resist materials used by direct patterning by screen printing or ink jet, for example, polymer components obtained by copolymerizing a plurality of polymerizable monomers such as (meth) acrylate compounds, polymerizable monomer components, polyfunctional polymerization In combination with a monomer component, a heat or photopolymerization initiator, a solvent and the like. The resist material used in this method has a viscosity and concentration range suitable for screen printing, ink jet printing, etc., the patterned resist has sufficient adhesion to the workpiece, plating, ion implantation Further, characteristics such as resistance to processing such as etching, and solubility for removing the resist after processing are required as required. In order to realize these various required properties, there is a demand for novel polymerizable monomers used by copolymerization or mixing.
 フォトリソグラフィによりパターニングして用いるレジスト材料は、光に対する挙動によりネガ型、ポジ型の2種類があり、g線、i線、KrFエキシマレーザーなどの露光光源によりさらに分類される。プリント基板、液晶ディスプレイパネル、半導体素子製造などそれぞれの用途毎に対応したレジスト材料が必要であり、いずれのレジスト材料も塗布性、密着性、処理耐性、現像性、溶解性などの特性を満足し、さらに、光に対する特性、たとえば光透過率、光感度など露光波長に関連した特性をも満足することが必要となる。 There are two types of resist materials used by patterning by photolithography, depending on the behavior with respect to light, and are further classified by exposure light sources such as g-line, i-line, and KrF excimer laser. Resist materials suitable for each application, such as printed circuit boards, liquid crystal display panels, and semiconductor device manufacturing, are required, and all resist materials satisfy characteristics such as coating properties, adhesion, processing resistance, developability, and solubility. In addition, it is necessary to satisfy characteristics related to exposure wavelength such as light transmittance, light sensitivity, and the like.
 例えば、露光波長を短くするほど解像度を上げることが可能であることから、半導体素子製造用のフォトリソグラフィ工程では、短波長露光に対応した化学増幅型のレジスト材料が主に検討され、(メタ)アクリル酸エステル化合物などの複数の重合性モノマーを共重合して得られたポリマー成分、露光光源に感光してポリマー成分の溶解性を変化させる光酸発生剤、溶剤などを組み合わせた構成によるレジスト材料が提供されている。 For example, since it is possible to increase the resolution as the exposure wavelength is shortened, in the photolithography process for manufacturing a semiconductor element, a chemically amplified resist material corresponding to the short wavelength exposure is mainly studied. Resist materials with a combination of a polymer component obtained by copolymerizing a plurality of polymerizable monomers such as an acrylate compound, a photoacid generator that changes the solubility of the polymer component when exposed to an exposure light source, and a solvent Is provided.
 ポリマー成分は、露光波長における透過率が高いこと、露光後、露光部が光酸発生剤から発生した酸によりアルカリ現像液に可溶性したり、逆に不溶化したりすること、レジストの密着性や耐エッチング性が良好であることと共に、レジストパターンの微細化要求に伴い、得られたレジストパターンのラフネスやパターン幅の揺らぎの低減、パターン倒れに強いことなどのリソグラフィー特性を満足することが求められている。例えば、密着性に優れたラクトン系(メタ)アクリル酸エステル化合物を、露光波長の透過率が高く耐エッチング性が良好であるアダマンタン骨格やノルボルナン骨格などの脂環式骨格を有した重合性モノマーと共重合して得られたポリマー成分が用いられている。 The polymer component has a high transmittance at the exposure wavelength, and after exposure, the exposed portion is soluble in an alkali developer by the acid generated from the photoacid generator, or conversely insolubilized, resist adhesion and resistance. In addition to good etching properties, along with demands for miniaturization of resist patterns, it is required to satisfy lithography characteristics such as reduced roughness and pattern width fluctuation of resist patterns and resistance to pattern collapse. Yes. For example, a lactone (meth) acrylic acid ester compound having excellent adhesion and a polymerizable monomer having an alicyclic skeleton such as an adamantane skeleton or a norbornane skeleton having a high exposure wavelength transmittance and good etching resistance A polymer component obtained by copolymerization is used.
 ラクトン系モノマーとしては6員環ラクトン(δ-バレロラクトン)骨格を有するもの(特許文献1)、5員環ラクトン(γ-ブチロラクトン)骨格を有するもの(特許文献2)、ノルボルナンとラクトンが縮環した骨格を有するもの(特許文献3)が検討され実用されている。さらに光酸発生剤に対する感度、密着性、耐エッチング性が良く、解像度の高いレジスト材料を実現するため、新規な共重合可能な重合性モノマーが求められる状況であり、シクロヘキサンラクトン環骨格を有する重合性化合物(特許文献4)、多環脂環式骨格を有する重合性化合物(特許文献5)など、盛んに検討が行われている。 Lactone monomers have a 6-membered lactone (δ-valerolactone) skeleton (Patent Document 1), a 5-membered lactone (γ-butyrolactone) skeleton (Patent Document 2), and norbornane and lactone are condensed. Those having the above skeleton (Patent Document 3) have been studied and put into practical use. Furthermore, in order to realize a resist material with good sensitivity, adhesion and etching resistance to photoacid generators and high resolution, there is a need for a new copolymerizable polymerizable monomer, and a polymer having a cyclohexanelactone ring skeleton. Active investigations have been made on a reactive compound (Patent Document 4) and a polymerizable compound having a polycyclic alicyclic skeleton (Patent Document 5).
 ラクトン系(メタ)アクリル酸エステル化合物は、共重合されるアダマンタン化合物やノルボルナン化合物と比べて親水性が高く、例えばポジ型レジストの場合、非露光部の一部がアルカリ現像液に溶解し、レジストパターンの形状やラフネスに悪影響を及ぼすことが考えられる(非特許文献1)。そのため、アルカリ溶液に対して適度な溶解度を有するラクトン系モノマーが求められている。 Lactone (meth) acrylic acid ester compounds are more hydrophilic than copolymerized adamantane compounds and norbornane compounds. For example, in the case of a positive resist, a part of the non-exposed area is dissolved in an alkali developer, and the resist It is considered that the shape and roughness of the pattern are adversely affected (Non-Patent Document 1). Therefore, a lactone monomer having an appropriate solubility in an alkaline solution is demanded.
 ラクトン化合物の1つに、4員環構造を有するラクトン(β-プロピオラクトン)が知られている。β-プロピオラクトン化合物の製造方法としては、脂肪族アルデヒド類とケテン類を反応させる方法(特許文献6)が知られている。しかし、この方法はβ-ブチロラクトン、β-プロピオラクトン、β-カプロラクトンなどの低分子量ラクトンの合成に用いられた例が開示されるものの、β-プロピオラクトン骨格を有する(メタ)アクリル酸化合物およびその製造について開示されていない。 A lactone having a 4-membered ring structure (β-propiolactone) is known as one of lactone compounds. As a method for producing a β-propiolactone compound, a method of reacting aliphatic aldehydes with ketenes (Patent Document 6) is known. However, although this method discloses examples used for the synthesis of low molecular weight lactones such as β-butyrolactone, β-propiolactone, and β-caprolactone, (meth) acrylic acid compounds having a β-propiolactone skeleton And its manufacture is not disclosed.
特開平10-78658号公報Japanese Patent Laid-Open No. 10-78658 特開平10-274852号公報JP-A-10-274852 特開2000-26446号公報JP 2000-26446 A 特開2001-64273号公報JP 2001-64273 A 特開2002-265530号公報JP 2002-265530 A 特公昭47-25065号公報Japanese Patent Publication No.47-25065
 本発明は上述したように、光学材料、レジスト材料、コーティング材料、ラミネート材料などの種々の用途に求められる、共重合したり混合したりして使用可能な重合性モノマーを提供するためになされたものであり、新規な重合性モノマーを提供すること、およびその製造方法を提供することを課題とする。 As described above, the present invention was made to provide a polymerizable monomer that can be used by copolymerization or mixing, which is required for various applications such as optical materials, resist materials, coating materials, and laminate materials. It is an object of the present invention to provide a novel polymerizable monomer and to provide a production method thereof.
 本発明者は課題を解決するため鋭意検討を行い、β-プロピオラクトン骨格を持つ式(1)に示される本発明の化合物を設計し、その製造方法を完成させ、これらが5員環ラクトンと比較してアルカリ現像液に対し溶解性が低いことを見出した。本発明は以下の構成を含む。 The present inventor has intensively studied to solve the problem, designed the compound of the present invention represented by the formula (1) having a β-propiolactone skeleton, and completed the production method thereof. It was found that the solubility in an alkali developer is low as compared with the above. The present invention includes the following configurations.
 [1] 式(1)で示されるβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物。
Figure JPOXMLDOC01-appb-I000004

式中、Rは水素またはメチルであり、R、R、R、R、およびRは独立して、水素または炭素数1~5のアルキルである。
[1] A (meth) acrylic acid ester compound having a β-propiolactone skeleton represented by the formula (1).
Figure JPOXMLDOC01-appb-I000004

In the formula, R 1 is hydrogen or methyl, and R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
 [2] R、R、R、R、R、およびRが独立して、水素またはメチルである項[1]に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物。 [2] A (meth) acryl having a β-propiolactone skeleton according to item [1], wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently hydrogen or methyl. Acid ester compound.
 [3] 式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物を反応させることを特徴とする項[1]に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

式中、Rは水素またはメチルであり、R、R、R、R、およびRは独立して、水素または炭素数1~5のアルキルである。
[3] A compound having a β-propiolactone skeleton according to item [1], wherein a compound having a carbonyl group represented by formula (2) is reacted with a ketene compound represented by formula (3) (meta ) A method for producing an acrylic ester compound.
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

In the formula, R 1 is hydrogen or methyl, and R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
 [4] R、R、R、R、R、およびRが独立して水素またはメチルである項[3]に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。 [4] (Meth) acrylic acid having a β-propiolactone skeleton according to item [3], wherein R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or methyl. A method for producing an ester compound.
 [5] 式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物をテトラヒドロフランを含む溶媒中で反応させるとを特徴とする項[1]に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。 [5] β-propio according to item [1], wherein the compound having a carbonyl group represented by formula (2) and the ketene compound represented by formula (3) are reacted in a solvent containing tetrahydrofuran. A method for producing a (meth) acrylic acid ester compound having a lactone skeleton.
 [6] 式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物を反応液温度を5℃以下で反応させることを特徴とする項[1]に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。 [6] The β- of item [1], wherein the compound having the carbonyl group represented by formula (2) and the ketene compound represented by formula (3) are reacted at a reaction solution temperature of 5 ° C. or lower. A method for producing a (meth) acrylic acid ester compound having a propiolactone skeleton.
 本発明のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物は、共重合したり混合したりして用いる重合性モノマーとして使用できる。β-プロピオラクトン骨格を持つことにより、本発明の化合物を共重合して得られたポリマーはアルカリ現像液に対する溶解性が制御され、その共重合したポリマーを組み込んだレジスト材料のリソグラフィー特性を改良することが期待される。また、β-プロピオラクトン骨格は短波長露光に適した光吸収特性を持ち、短波長露光に用いるレジスト材料に用いることが可能である。 The (meth) acrylic acid ester compound having a β-propiolactone skeleton of the present invention can be used as a polymerizable monomer used by copolymerization or mixing. By having a β-propiolactone skeleton, the polymer obtained by copolymerizing the compound of the present invention has controlled solubility in an alkaline developer, and improved the lithography properties of resist materials incorporating the copolymerized polymer. Is expected to do. Further, the β-propiolactone skeleton has light absorption characteristics suitable for short wavelength exposure, and can be used as a resist material used for short wavelength exposure.
 さらに、本発明のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物は、光学材料、レジスト材料、コーティング材料、ラミネート材料などの種々の用途において混合して用いる重合性モノマーとして使用し、スクリーン印刷やインクジェットに用いる溶液の相溶性の調整、粘度の調整、硬化後の密着性の調整、溶解性の調整などに用いることが期待される。 Furthermore, the (meth) acrylic acid ester compound having a β-propiolactone skeleton of the present invention is used as a polymerizable monomer used by mixing in various applications such as optical materials, resist materials, coating materials, laminate materials, It is expected to be used for adjustment of compatibility of solutions used for screen printing and inkjet, adjustment of viscosity, adjustment of adhesion after curing, adjustment of solubility, and the like.
 また本発明のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法により、式(1)の化合物を工業的に得ることが可能となった。 In addition, the method for producing a (meth) acrylic acid ester compound having a β-propiolactone skeleton of the present invention makes it possible to industrially obtain the compound of the formula (1).
実施例1において得られたβ-メタクリロイルオキシメチル-β-メチル-β-プロピオラクトンのNMRスペクトルである。2 is an NMR spectrum of β-methacryloyloxymethyl-β-methyl-β-propiolactone obtained in Example 1. 実施例2において得られたα,α,β-トリメチル-β-メタクリロイルオキシメチル-β-プロピオラクトンのNMRスペクトルである。2 is an NMR spectrum of α, α, β-trimethyl-β-methacryloyloxymethyl-β-propiolactone obtained in Example 2. 実施例3において得られたβ―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンのNMRスペクトルである。3 is an NMR spectrum of β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone obtained in Example 3. 実施例4において得られたβ-メタクリロイルオキシメチル-β-プロピオラクトンのNMRスペクトルである。3 is an NMR spectrum of β-methacryloyloxymethyl-β-propiolactone obtained in Example 4. 比較例1において得られたβ,γ-ジメチル-β-メタクリロイルオキシ-γ-ブチロラクトンのNMRスペクトルである。2 is an NMR spectrum of β, γ-dimethyl-β-methacryloyloxy-γ-butyrolactone obtained in Comparative Example 1.
 以下、本発明についてさらに詳細に説明する。本発明のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物は、式(1)で示されるものである。
Figure JPOXMLDOC01-appb-I000007

 ここで、Rは水素またはメチルであり、R、R、R、R、およびRは独立して水素または炭素数1~5のアルキルである。
Hereinafter, the present invention will be described in more detail. The (meth) acrylic acid ester compound having a β-propiolactone skeleton of the present invention is represented by the formula (1).
Figure JPOXMLDOC01-appb-I000007

Here, R 1 is hydrogen or methyl, and R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
 好ましくは、式(1)の化合物において、R、R、R、R、R、およびRが独立して水素またはメチルである。より好ましくは、このうち、R、R、およびRが水素である化合物、またはRが水素であり、RおよびRがメチルである化合物である。 Preferably, in the compound of formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or methyl. More preferably, among these, R 4 , R 5 and R 6 are hydrogen compounds, or R 4 is hydrogen, and R 5 and R 6 are methyl.
 本発明の式(1)のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物は、(2)で示されるカルボニル基を有する化合物と、式(3)で示されるケテン化合物を反応させることにより製造する事ができる。
Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

 ここで、R、R、R、R、R、およびRの定義は、前記と同じである。
The (meth) acrylic acid ester compound having a β-propiolactone skeleton of the formula (1) of the present invention reacts a compound having a carbonyl group represented by (2) with a ketene compound represented by the formula (3). Can be manufactured.
Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Here, the definitions of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as described above.
 具体的には、式(2)の化合物を溶媒に溶解し、触媒を添加して冷却した溶液中に、撹拌し冷却しながら式(3)の化合物を加えることにより行われる。溶媒としては、テトラヒドロフラン、ジエチルエーテル、ジ-n-ブチルエーテル、1,4-ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサンなどの脂肪族炭化水素類、脂環族炭化水素類、ベンゼン、トルエン、キシレンエチルベンゼンなどの芳香族炭化水素類、酢酸メチル、酢酸エチル、酢酸n-ブチルなどのエステル類、ジクロロメタンなどのハロゲン化炭化水素類、アセトニトリル、プロピオニトリルなどのニトリル類などを、単独または混合して使用することができる。特にテトラヒドロフランは他の溶媒と組み合わせることにより生成したβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の異性化反応を抑制することができ、反応選択性を高くできるため好適に用いることができる。 Specifically, it is carried out by dissolving the compound of formula (2) in a solvent and adding the compound of formula (3) while stirring and cooling in a solution cooled by adding a catalyst. Solvents include ethers such as tetrahydrofuran, diethyl ether, di-n-butyl ether, 1,4-dioxane, ethylene glycol dimethyl ether, aliphatic hydrocarbons such as hexane, heptane, octane, cyclohexane, methylcyclohexane, and alicyclics. Hydrocarbons, aromatic hydrocarbons such as benzene, toluene and xylene ethylbenzene, esters such as methyl acetate, ethyl acetate and n-butyl acetate, halogenated hydrocarbons such as dichloromethane, nitriles such as acetonitrile and propionitrile A class etc. can be used individually or in mixture. In particular, tetrahydrofuran is preferably used because it can suppress the isomerization reaction of a (meth) acrylic acid ester compound having a β-propiolactone skeleton formed by combining with another solvent and can increase the reaction selectivity. it can.
 触媒としては、亜鉛、アルミニウム、チタン、鉄などの金属のハロゲン化物、ハロゲン化ホウ素の有機錯化合物などを用いることができる。特に三フッ化ホウ素のジエチルエーテル錯体は反応選択性が高く好適に用いることができる。触媒の添加量は反応基質に対して0.1~50重量%の範囲が好ましく、より好ましくは2~30重量%の範囲である。この範囲のうちより多めの添加量では反応が早くなり、収率が向上するから好ましく、より少なめの添加量では生成したβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の異性化反応を抑制することができるため反応選択率が向上し、触媒の処理など精製工程での負荷が軽減できるから好ましい。 As the catalyst, metal halides such as zinc, aluminum, titanium, iron, and organic complex compounds of boron halides can be used. In particular, a diethyl ether complex of boron trifluoride has high reaction selectivity and can be suitably used. The addition amount of the catalyst is preferably in the range of 0.1 to 50% by weight, more preferably in the range of 2 to 30% by weight with respect to the reaction substrate. A larger addition amount in this range is preferable because the reaction is accelerated and the yield is improved, and a smaller addition amount is preferable for the isomerization reaction of the (meth) acrylic ester compound having a β-propiolactone skeleton formed. It is preferable because the reaction selectivity is improved and the load in the purification process such as catalyst treatment can be reduced.
 式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物の縮合反応は発熱反応であり、除熱しながら反応を行うことが好ましい。好ましい反応温度は20℃以下-20℃以上の温度範囲であり、より好ましくは10℃以下の温度範囲、さらに好ましくは5℃以下の温度範囲である。反応温度を20℃以下にすると生成したβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の異性化を防ぐことができるので好ましく、反応温度を-20℃以上とすると反応速度を早くすることができるので好ましい。除熱しながら撹拌して反応を進め、反応終了後の反応粗液をアルカリ洗浄と水洗浄を行い、溶媒を除去した後、カラム処理、再結晶、蒸留処理などの精製処理を行って式(1)の化合物を得る事ができる。 The condensation reaction of the compound having a carbonyl group represented by the formula (2) and the ketene compound represented by the formula (3) is an exothermic reaction, and it is preferable to carry out the reaction while removing heat. A preferable reaction temperature is a temperature range of 20 ° C. or lower to −20 ° C. or higher, more preferably a temperature range of 10 ° C. or lower, and further preferably a temperature range of 5 ° C. or lower. When the reaction temperature is 20 ° C. or lower, the isomerization of the (meth) acrylic acid ester compound having a β-propiolactone skeleton can be prevented, and when the reaction temperature is −20 ° C. or higher, the reaction rate is increased. This is preferable. The reaction proceeds by stirring while removing heat, and the reaction crude liquid after completion of the reaction is washed with alkali and water, and after removing the solvent, purification treatment such as column treatment, recrystallization, distillation treatment, etc. is carried out to obtain the formula (1 ) Can be obtained.
 式(2)の化合物は、例えば式(4)の化合物と、式(5)または式(6)の化合物を反応させることにより容易に得られる。
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

 ここで、R、R、R、およびRの定義は、前記と同じである。Xはハロゲンである。
The compound of the formula (2) can be easily obtained, for example, by reacting the compound of the formula (4) with the compound of the formula (5) or the formula (6).
Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Here, the definitions of R 1 , R 2 , R 3 , and R 4 are the same as described above. X is a halogen.
 式(4)の化合物の例としては、1-ヒドロキシ-2-プロパノン、3-ヒドロキシ-2-ブタノン、1-ヒドロキシ-2-ブタノン、3-ヒドロキシ-2-ペンタノン、3-ヒドロキシ-3-メチル-2-ブタノン、2-ヒドロキシエタナールなどが挙げられるがこれらに限定されるものではない。 Examples of compounds of formula (4) include 1-hydroxy-2-propanone, 3-hydroxy-2-butanone, 1-hydroxy-2-butanone, 3-hydroxy-2-pentanone, 3-hydroxy-3-methyl Examples include, but are not limited to, -2-butanone and 2-hydroxyethanal.
 式(5)の化合物としては、ジメタクリル酸無水物およびジアクリル酸無水物が好適に用いられ、式(6)の化合物としては(メタ)アクリル酸ハライド類、特に(メタ)アクリル酸クロリド、(メタ)アクリル酸ブロミド、(メタ)アクリル酸ヨージドを用いることができる。 As the compound of the formula (5), dimethacrylic anhydride and diacrylic anhydride are preferably used. As the compound of the formula (6), (meth) acrylic acid halides, particularly (meth) acrylic acid chloride, ( (Meth) acrylic acid bromide and (meth) acrylic acid iodide can be used.
 式(4)の化合物と式(5)の化合物を用いたエステル化反応は、定法に従って実施する事ができる。例えば、式(4)の化合物と式(5)の化合物を溶媒に溶解し、重合防止剤を加え加熱し撹拌した溶液中に、トリエチルアミンなどの塩基およびN,N-ジメチル-4-アミノピリジンなどの触媒を添加し反応させ、洗浄、濃縮、蒸留などの精製操作を経て式(2)の化合物が得られる。 The esterification reaction using the compound of formula (4) and the compound of formula (5) can be carried out according to a conventional method. For example, a compound of formula (4) and a compound of formula (5) are dissolved in a solvent, and a base such as triethylamine and N, N-dimethyl-4-aminopyridine are added to a solution obtained by adding a polymerization inhibitor and heating and stirring. The compound of formula (2) is obtained through a purification operation such as washing, concentration, distillation, and the like.
 式(4)の化合物と式(6)の化合物を用いたエステル化反応も、定法に従って実施する事ができる。例えば、式(4)の化合物とトリエチルアミンなどの塩基を溶媒に溶解し、重合防止剤を加え冷却し撹拌した溶液中に、温度を維持しながら式(6)の化合物を添加して反応させ、洗浄、濃縮、蒸留などの精製操作を経て式(2)の化合物が得られる。 The esterification reaction using the compound of formula (4) and the compound of formula (6) can also be carried out according to a conventional method. For example, the compound of the formula (4) and a base such as triethylamine are dissolved in a solvent, and the compound of the formula (6) is added and reacted while maintaining the temperature in a solution obtained by adding a polymerization inhibitor and cooling and stirring. The compound of formula (2) is obtained through purification operations such as washing, concentration, and distillation.
 式(2)の化合物は、上述した(メタ)アクリル酸無水物や(メタ)アクリル酸ハライド類とケトアルコール類との反応の他に、エステル交換反応や脱水エステル化反応によって合成してもよい。また(メタ)アクリル酸の金属塩を用いたり、必要に応じて保護基で保護して反応させてもよい。 The compound of the formula (2) may be synthesized by a transesterification reaction or a dehydration esterification reaction in addition to the above-described reaction between (meth) acrylic anhydride or (meth) acrylic acid halides and keto alcohols. . Moreover, you may make it react by using the metal salt of (meth) acrylic acid, or protecting with a protecting group as needed.
 式(3)の化合物であるケテンは、アセトンあるいは酢酸の熱分解により得られる。モノメチルケテンはジエチルケトンあるいはプロピオン酸の熱分解により得られる。また、RおよびR置換ケテンはR、Rおよび臭素でα置換したアセチルブロミドに金属亜鉛を作用させるか、RおよびRでα置換したカルボン酸クロリドに三級アミンを作用させて生成する。例えば、ジメチルケテンはイソ酪酸クロリドにトリエチルアミンなどの塩基を添加して発生させることができる。 Ketene, which is a compound of formula (3), is obtained by thermal decomposition of acetone or acetic acid. Monomethylketene is obtained by thermal decomposition of diethyl ketone or propionic acid. In addition, R 5 and R 6 substituted ketene allows metal zinc to act on acetyl bromide α-substituted with R 5 , R 6 and bromine, or allow tertiary amine to act on carboxylic acid chloride α-substituted with R 5 and R 6. To generate. For example, dimethyl ketene can be generated by adding a base such as triethylamine to isobutyric acid chloride.
 式(1)の化合物は、例えば、複数の重合性モノマーを共重合して得たポリマー成分、重合性モノマー成分、多官能重合性モノマー成分、熱または光重合開始剤、および溶剤などを組み合わせて提供される直接パターニングして用いるレジスト材料用の重合性モノマー成分として、また、複数の重合性モノマーを共重合して得たポリマー成分、光酸発生剤、および溶剤などを組み合わせて提供されるフォトレジスト材料用の重合性モノマーとして用いることができる。 The compound of the formula (1) is, for example, a combination of a polymer component obtained by copolymerizing a plurality of polymerizable monomers, a polymerizable monomer component, a polyfunctional polymerizable monomer component, a heat or photopolymerization initiator, and a solvent. Photo provided by combining a polymer component obtained by copolymerizing a plurality of polymerizable monomers, a photoacid generator, a solvent, and the like as a polymerizable monomer component for a resist material used by direct patterning provided It can be used as a polymerizable monomer for a resist material.
 式(1)の化合物は、アルカリ溶液、例えば、TMAH(テトラメチルアンモニウムヒドロキシド)の水溶液により、加水分解して水酸基を生じることで水溶液に対し溶解するが、5員環ラクトン骨格を有する化合物と比較するとその溶解性は低く制御される。そのため、式(1)の化合物を共重合したポリマーは、5員環ラクトン骨格を有する化合物を共重合したポリマーと比較してアルカリ現像液に対する溶解性が制御され、例えば、ポジ型レジスト材料を用いるフォトリソグラフィにおいて、レジストパターンのラフネスを改善するのに有効に用いることができる。 The compound of the formula (1) is dissolved in an aqueous solution by hydrolyzing with an alkaline solution, for example, an aqueous solution of TMAH (tetramethylammonium hydroxide) to form a hydroxyl group. In comparison, its solubility is controlled low. Therefore, the polymer copolymerized with the compound of the formula (1) has a controlled solubility in an alkali developer as compared with a polymer copolymerized with a compound having a 5-membered lactone skeleton. For example, a positive resist material is used. In photolithography, it can be effectively used to improve the roughness of a resist pattern.
 式(1)の化合物と組み合わせたり、共重合したりすることが可能な化合物の例としては、(メタ)アクリル酸、(メタ)アクリル酸エステルモノマー、ビニルエーテル誘導体、スチレン誘導体、無水マレイン酸などが挙げられる。(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸のカルボン酸の水素を、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、トリシクロデシル[5.2.1.02,6]、アダマンチル、ノルボニル、イソボルニル、ヒドロキシエチル、プロポキシエチル、ブトキシエチル、2-メチル-2-アダマンチル、2-エチル-2-アダマンチル、3-ヒドロキシ-1-アダマンチル、テトラヒドロピラニル、メトキシテトラヒドロピラニル、テトラヒドロフラニルなどで置き換えた化合物である。ビニルエーテル誘導体は、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテルなどである。スチレン誘導体は、スチレン、パラヒドロキシスチレン、パラメトキシスチレン、パラt-ブトキシスチレンなどである。これらの共重合可能な化合物は単独または2種以上を用いることができる。 Examples of compounds that can be combined or copolymerized with the compound of formula (1) include (meth) acrylic acid, (meth) acrylic acid ester monomers, vinyl ether derivatives, styrene derivatives, maleic anhydride, and the like. Can be mentioned. As the (meth) acrylic acid ester monomer, hydrogen of carboxylic acid of (meth) acrylic acid is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, cyclopentyl, cyclohexyl, Tricyclodecyl [5.2.1.0 2,6 ], adamantyl, norbornyl, isobornyl, hydroxyethyl, propoxyethyl, butoxyethyl, 2-methyl-2-adamantyl, 2-ethyl-2-adamantyl, 3-hydroxy It is a compound substituted with 1-adamantyl, tetrahydropyranyl, methoxytetrahydropyranyl, tetrahydrofuranyl and the like. Vinyl ether derivatives include ethyl vinyl ether, cyclohexyl vinyl ether, hydroxyethyl vinyl ether, and the like. Examples of the styrene derivative include styrene, parahydroxystyrene, paramethoxystyrene, and para t-butoxystyrene. These copolymerizable compounds can be used alone or in combination of two or more.
 式(1)の化合物を、重合や共重合させてポリマー成分を得る方法は特に限定されず、定法により実施できる。例えば、溶媒中に所望のモル比となるようにそれぞれの化合物を混合し、重合開始剤を添加し加熱や光照射して重合や共重合させ、生成物を分離し、必要に応じて精製処理をしてポリマー成分を得ることができる。 The method for obtaining a polymer component by polymerizing or copolymerizing the compound of the formula (1) is not particularly limited, and can be carried out by a conventional method. For example, each compound is mixed in a solvent so as to have a desired molar ratio, a polymerization initiator is added, polymerization or copolymerization is performed by heating or light irradiation, the product is separated, and purification treatment is performed as necessary. To obtain a polymer component.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。尚、化合物の同定はプロトン核磁気共鳴スペクトル(以下NMRという)を用いて行い、化合物の純度はガスクロマトグラフィー(以下GCという)、または高速液体クロマトグラフィー(以下HPLCという)を用いて行った。また、HPLCは、アルカリ水溶液に対する溶解性を確認する検討において、原料残量を確認するためにも利用した。NMRは日本電子JNM-ECP400(400MHz)を用い、CDCl溶媒中、テトラメチルシランを内部標準として測定した。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples at all. The compound was identified using a proton nuclear magnetic resonance spectrum (hereinafter referred to as NMR), and the purity of the compound was determined using gas chromatography (hereinafter referred to as GC) or high performance liquid chromatography (hereinafter referred to as HPLC). In addition, HPLC was also used for confirming the remaining amount of raw material in a study for confirming solubility in an alkaline aqueous solution. NMR was measured using JEOL JNM-ECP400 (400 MHz) in CDCl 3 solvent with tetramethylsilane as an internal standard.
 (実施例1)
β-メタクリロイルオキシメチル-β-メチル-β-プロピオラクトン(R、R=メチル、R、R、R、R=水素の化合物)の合成
 窒素ガスで置換した2Lの四ツ口フラスコに、1-ヒドロキシ-2-プロパノン(和光純薬工業(株)社製、純度90.0%以上)50gを入れ、テトラヒドロフラン700gに溶解し、撹拌機、温度計、ジムロート冷却管を接続した。溶液を撹拌し約5℃に冷却した後、トリエチルアミン76.8gおよびヒドロキノン25mgを添加した。撹拌下、約5℃に冷却しながら塩化メタクリロイル(和光純薬工業(株)社製、純度97.0%以上)71.9gを徐々に滴下し、さらに3時間撹拌を継続してエステル化反応を行った。反応液は約5℃に保持しながら2N-塩酸を用いて酸洗浄後、酢酸エチル300mLを用いて2回抽出操作を行い、有機層を得た。有機層は10%炭酸水素ナトリウム水溶液、および飽和食塩水を用いて洗浄し、無水硫酸マグネシウムを用いて乾燥、濾別して反応粗液を得た。エバポレーターを用いて反応粗液から溶媒を留去し、85.5gの粗2-オキソプロピルメタクリレートを得た。NMRのプロトン比から求めた2-オキソプロピルメタクリレートの収量は67.1g(1-ヒドロキシ-2-プロパノンを基準として収率69.9%)であった。
Example 1
Synthesis of β-methacryloyloxymethyl-β-methyl-β-propiolactone (R 1 , R 2 = methyl, R 3 , R 4 , R 5 , R 6 = hydrogen compound) 2L of 4 substituted with nitrogen gas Put 50 g of 1-hydroxy-2-propanone (manufactured by Wako Pure Chemical Industries, Ltd., purity 90.0% or more) into a necked flask, dissolve in 700 g of tetrahydrofuran, and add a stirrer, thermometer, and Dimroth condenser. Connected. After the solution was stirred and cooled to about 5 ° C., 76.8 g of triethylamine and 25 mg of hydroquinone were added. While cooling to about 5 ° C. with stirring, 71.9 g of methacryloyl chloride (manufactured by Wako Pure Chemical Industries, Ltd., purity 97.0% or more) was gradually added dropwise, and stirring was further continued for 3 hours for esterification reaction. Went. The reaction solution was washed with 2N hydrochloric acid while being kept at about 5 ° C., and then extracted twice with 300 mL of ethyl acetate to obtain an organic layer. The organic layer was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and filtered to obtain a reaction crude liquid. The solvent was distilled off from the reaction crude liquid using an evaporator to obtain 85.5 g of crude 2-oxopropyl methacrylate. The yield of 2-oxopropyl methacrylate determined from the proton ratio of NMR was 67.1 g (yield 69.9% based on 1-hydroxy-2-propanone).
 粗2-オキソプロピルメタクリレートは精製せずに続く反応に供した。300mLの四ツ口フラスコに、2-オキソプロピルメタクリレート44.5gを含む粗2-オキソプロピルメタクリレートおよび酢酸エチル100gを加え、撹拌機、温度計、ジムロート冷却管、ガス導入管を接続した。溶液を撹拌し氷浴を用いて約5℃に冷却した後、三フッ化ホウ素のジエチルエーテル錯体(関東化学(株)社製、純度95.0%以上)を基質に対して5mol%添加した。撹拌下、液温を約5℃に保ちながらケテンガスを基質に対して1.1当量/hの速度でガス導入管より溶液に通じ、GC分析により2-オキソプロピルメタクリレートが消失するまで反応を行った。150分で反応は終結しケテンガスの吹き込みを止め、窒素ガスを通じることで残存するケテンを系外に除いた。 Crude 2-oxopropyl methacrylate was subjected to the subsequent reaction without purification. To a 300 mL four-necked flask, crude 2-oxopropyl methacrylate containing 44.5 g of 2-oxopropyl methacrylate and 100 g of ethyl acetate were added, and a stirrer, thermometer, Dimroth condenser, and gas inlet tube were connected. The solution was stirred and cooled to about 5 ° C. using an ice bath, and then 5 mol% of boron trifluoride diethyl ether complex (manufactured by Kanto Chemical Co., Inc., purity 95.0% or more) was added to the substrate. . While stirring, while maintaining the liquid temperature at about 5 ° C., ketene gas was passed through the solution through the gas inlet tube at a rate of 1.1 equivalent / h with respect to the substrate, and the reaction was carried out until 2-oxopropyl methacrylate disappeared by GC analysis. It was. The reaction was completed in 150 minutes, the blowing of ketene gas was stopped, and the remaining ketene was removed out of the system by passing nitrogen gas.
 反応液を、10%炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥、濾別後、ヒドロキノン20mgを添加し、エバポレーターで溶媒を留去した。溶媒留去後の反応液は、充填剤にシリカゲルを用い展開液に酢酸エチル-ヘプタンの混合溶媒を用いたカラム分離により精製し、さらにトルエンおよびヘプタンを用いて再結晶を2回繰り返して、HPLC分析による純度が99.6%の式(8)で示されるβ-メタクリロイルオキシメチル-β-メチル-β-プロピオラクトン28.2g(2-オキソプロピルメタクリレートを基準として収率48.9%)を得た。NMRの測定チャートを図1に示す。
Figure JPOXMLDOC01-appb-I000013
The reaction mixture was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 20 mg of hydroquinone was added, and the solvent was distilled off with an evaporator. The reaction solution after the solvent was distilled off was purified by column separation using silica gel as the packing material and a mixed solvent of ethyl acetate-heptane as the developing solution, and further recrystallized twice using toluene and heptane. 28.2 g of β-methacryloyloxymethyl-β-methyl-β-propiolactone represented by the formula (8) having an analytical purity of 99.6% (yield 48.9% based on 2-oxopropyl methacrylate) Got. An NMR measurement chart is shown in FIG.
Figure JPOXMLDOC01-appb-I000013
 (実施例2)
α,α,β-トリメチル-β-メタクリロイルオキシメチル-β-プロピオラクトン(R、R、R、R=メチル、R3、=水素の化合物)の合成
 1Lの四ツ口フラスコに、1-ヒドロキシ-2-プロパノン50gを入れトルエン485gに溶解し、ジメタクリル酸無水物(ALDRICH社製、純度94.0%)および4,4’-チオビス(6-t-ブチル-o-クレゾール)113gを0.5重量%添加し、撹拌機、温度計、ジムロート冷却管を接続した。撹拌し液温を45℃とした溶液にトリエチルアミン80gを滴下し、さらにN,N-ジメチル-4-アミノピリジン(和光純薬工業(株)社製、純度99.0%以上)0.75gをトルエン15gに溶解した溶液を滴下した。液温を50~70℃の範囲に保ちながら、滴下開始から90分撹拌を継続し、メチルアルコール70gを添加し反応を停止した。反応液は1N-塩酸、10%炭酸ナトリウム水溶液、および飽和食塩水を用いて洗浄を行い、無水硫酸マグネシウムを用いて乾燥、濾別して反応粗液を得た。反応粗液はエバポレーターを用いて溶媒を留去した後、減圧蒸留してGC純度99.0%の2-オキソプロピルメタクリレート49.7g(1-ヒドロキシ-2-プロパノンを基準として収率51.9%)を得た。
(Example 2)
Synthesis of α, α, β-trimethyl-β-methacryloyloxymethyl-β-propiolactone (R 1 , R 2 , R 5 , R 6 = methyl, R 3, R 4 = hydrogen compound) In a neck flask, 50 g of 1-hydroxy-2-propanone was added and dissolved in 485 g of toluene. Dimethacrylic anhydride (ALDRICH, purity 94.0%) and 4,4′-thiobis (6-t-butyl- o-cresol) (113 g) was added, and a stirrer, thermometer, and Dimroth condenser were connected. 80 g of triethylamine was added dropwise to the solution which was stirred and the liquid temperature was 45 ° C., and further 0.75 g of N, N-dimethyl-4-aminopyridine (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0% or more) was added. A solution dissolved in 15 g of toluene was added dropwise. While maintaining the liquid temperature in the range of 50 to 70 ° C., stirring was continued for 90 minutes from the start of dropping, and 70 g of methyl alcohol was added to stop the reaction. The reaction solution was washed with 1N hydrochloric acid, 10% aqueous sodium carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and filtered to obtain a reaction crude solution. The reaction crude liquid was evaporated using an evaporator and then distilled under reduced pressure to give 49.7 g of 2-oxopropyl methacrylate having a GC purity of 99.0% (yield 51.9 based on 1-hydroxy-2-propanone). %).
 1Lの四ツ口フラスコに、上記した方法により得た2-オキソプロピルメタクリレート100g、酢酸エチル800g、p-メトキシフェノール50mgを加え、撹拌機、温度計、ジムロート冷却管、ガス導入管を接続した。溶液を撹拌し氷浴を用いて約5℃に冷却した後、三フッ化ホウ素のジエチルエーテル錯体を基質に対して0.3当量添加した。撹拌下、液温を約5℃に保ちながら、イソ酪酸クロリド(ALDRICH社製、純度98%)とトリエチルアミンを混合した酢酸エチル溶液に窒素ガス吹き込みガスとして発生させたジメチルケテンガスを、基質に対して0.2当量/hの速度でガス導入管より溶液に通じ、GC分析により2-オキソプロピルメタクリレートが消失するまで反応を継続した。反応は10時間で終結しジメチルケテンガスの吹き込みを止め、窒素ガスを通じることで残存するジメチルケテンを系外に除いた。 To a 1 L four-necked flask, 100 g of 2-oxopropyl methacrylate obtained by the above method, 800 g of ethyl acetate, and 50 mg of p-methoxyphenol were added, and a stirrer, thermometer, Dimroth condenser, and gas inlet pipe were connected. After the solution was stirred and cooled to about 5 ° C. using an ice bath, 0.3 equivalent of diethyl ether complex of boron trifluoride was added to the substrate. While stirring, while maintaining the liquid temperature at about 5 ° C., dimethyl ketene gas generated as a nitrogen gas blowing gas into an ethyl acetate solution mixed with isobutyric chloride (ALDRICH, purity 98%) and triethylamine is supplied to the substrate. The reaction was continued through the gas inlet tube at a rate of 0.2 equivalent / h until the 2-oxopropyl methacrylate disappeared by GC analysis. The reaction was completed in 10 hours, the blowing of dimethyl ketene gas was stopped, and the remaining dimethyl ketene was removed from the system by passing nitrogen gas.
 反応液を、10%炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムにより乾燥、濾別後、p-メトキシフェノール50mgを添加しエバポレーターを用いて溶媒を留去した。溶媒留去後の反応液は、トルエンおよびヘプタンを用いて再結晶を2回繰り返して、HPLC分析による純度が99.5%の式(9)で示されるα,α,β-トリメチル-β-メタクリロイルオキシメチル-β-プロピオラクトン63.8g(2-オキソプロピルメタクリレートを基準として収率42.8%)を得た。NMRの測定チャートを図2に示す。
Figure JPOXMLDOC01-appb-I000014
The reaction solution was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 50 mg of p-methoxyphenol was added, and the solvent was distilled off using an evaporator. The reaction solution after the solvent was distilled off was recrystallized twice using toluene and heptane, and α, α, β-trimethyl-β- represented by formula (9) having a purity of 99.5% by HPLC analysis. 63.8 g (42.8% yield based on 2-oxopropyl methacrylate) of methacryloyloxymethyl-β-propiolactone were obtained. An NMR measurement chart is shown in FIG.
Figure JPOXMLDOC01-appb-I000014
 (実施例3)
β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトン(R、R、R=メチル、R、R=水素の化合物)の合成
 2Lの四ツ口フラスコに、3-ヒドロキシ-2-ブタノン(東京化成工業(株)社製、純度95.0%以上)150gを入れ塩化メチレン750gに溶解し、撹拌機、温度計、ジムロート冷却管を接続した。溶液を撹拌し約5℃に冷却した後、トリエチルアミン190gおよびp-メトキシフェノール80mgを添加した。撹拌下、液温を約5℃に冷却しながら塩化メタクリロイル178gを4時間かけてゆっくり滴下し、さらに滴下終了後30分撹拌して反応させた。反応液は室温にて、1N-塩酸、10%炭酸ナトリウム水溶液、および飽和食塩水を用いて洗浄し、無水硫酸マグネシウムを用いて乾燥、濾別して反応粗液を得た。反応粗液はエバポレーターにより溶媒留去し、p-メトキシフェノールを80mg添加して減圧蒸留して、GC純度96.5%の3-オキソブタン-2-イルメタクリレート141g(3-ヒドロキシ-2-ブタノンを基準として収率53.1%)を得た。
(Example 3)
Synthesis of β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone (compound of R 1 , R 2 , R 3 = methyl , R 4 , R 5 , R 6 = hydrogen) In a four-necked flask, 150 g of 3-hydroxy-2-butanone (manufactured by Tokyo Chemical Industry Co., Ltd., purity 95.0% or more) is added and dissolved in 750 g of methylene chloride. A stirrer, thermometer, and Dimroth condenser are installed. Connected. After the solution was stirred and cooled to about 5 ° C., 190 g of triethylamine and 80 mg of p-methoxyphenol were added. Under stirring, 178 g of methacryloyl chloride was slowly added dropwise over 4 hours while cooling the liquid temperature to about 5 ° C., and further stirred for 30 minutes after completion of the addition. The reaction solution was washed with 1N hydrochloric acid, 10% aqueous sodium carbonate solution and saturated brine at room temperature, dried over anhydrous magnesium sulfate, and filtered to obtain a crude reaction solution. The crude reaction liquid was evaporated using an evaporator, 80 mg of p-methoxyphenol was added and distilled under reduced pressure to give 141 g of 3-oxobutan-2-yl methacrylate with a GC purity of 96.5% (3-hydroxy-2-butanone was added). A yield of 53.1% was obtained as a reference.
 500mLの四ツ口フラスコに、3-オキソブタン-2-イルメタクリレート80gを入れ酢酸エチル184gとテトラヒドロフラン16gを加え、撹拌機、温度計、ジムロート冷却管、ガス導入管を接続した。溶液を撹拌し氷浴を用いて約5℃とした後、三フッ化ホウ素のジエチルエーテル錯体を基質に対して5mol%添加した。液温を約5℃に保ちながらケテンガスを基質に対して0.9当量/hの速度でガス導入管より溶液に通じ、GC分析により3-オキソブタン-2-イルメタクリレートが消失するまで反応を行った。5時間で反応は終結し、ケテンガスの吹き込みを止め、窒素ガスを通じることで残存するケテンを系外に除いた。 In a 500 mL four-necked flask, 80 g of 3-oxobutan-2-yl methacrylate was added, 184 g of ethyl acetate and 16 g of tetrahydrofuran were added, and a stirrer, thermometer, Dimroth condenser, and gas inlet tube were connected. The solution was stirred and brought to about 5 ° C. using an ice bath, and 5 mol% of boron trifluoride diethyl ether complex was added to the substrate. While maintaining the liquid temperature at about 5 ° C., ketene gas was passed through the gas introduction tube at a rate of 0.9 equivalent / h with respect to the substrate, and the reaction was carried out until 3-oxobutan-2-yl methacrylate disappeared by GC analysis. It was. The reaction was completed in 5 hours, the blowing of ketene gas was stopped, and the remaining ketene was removed from the system by passing nitrogen gas.
 反応液を、10%炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥、濾別後、p-メトキシフェノール40mgを添加し、エバポレーターで溶媒を留去した。溶媒留去後の反応液は、充填剤にシリカゲルを用い展開溶媒に酢酸エチル-ヘプタンの混合溶媒を用いたカラム分離により精製し、p-メトキシフェノール50mgを加えて減圧蒸留して不純物を留去した後、さらに展開溶媒にジクロロメタン-ヘプタンの混合溶媒を用いたカラム分離により精製して、HPLC分析による純度が99.2%の式(10)で示されるβ―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンを25.0g(3-ヒドロキシ-2-ブタノンを基準として収率24.6%)得た。NMRの測定チャートを図3に示す
Figure JPOXMLDOC01-appb-I000015
The reaction mixture was washed with 10% aqueous sodium hydrogen carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 40 mg of p-methoxyphenol was added, and the solvent was distilled off with an evaporator. The reaction solution after the solvent was distilled off was purified by column separation using silica gel as the packing material and a mixed solvent of ethyl acetate-heptane as the developing solvent, added with 50 mg of p-methoxyphenol, and distilled under reduced pressure to distill away impurities. Then, it was further purified by column separation using a mixed solvent of dichloromethane and heptane as a developing solvent, and β-methyl-β- (methacryloyloxyethyl) represented by the formula (10) having a purity of 99.2% by HPLC analysis. As a result, 25.0 g of 1-yl) -β-propiolactone (yield 24.6% based on 3-hydroxy-2-butanone) was obtained. An NMR measurement chart is shown in FIG.
Figure JPOXMLDOC01-appb-I000015
 (実施例4)
β-メタクリロイルオキシメチル-β-プロピオラクトン(R=メチル、R、R、R、R、R=水素の化合物)の合成
 2Lの四ツ口フラスコに、メタクリル酸カリウム(和光純薬工業(株)社製、純度98.0%)180gを入れN,N-ジメチルホルムアミド900gを加え、撹拌機、温度計、ジムロート冷却管を接続した。2-ブロモ-1,1-ジエトキシエタン(ALDRICH社製、純度97%)308g、p-メトキシフェノール0.9g、およびテトラメチルアンモニウムヨージド1.32gを添加して撹拌下150℃で2時間反応させた。反応液は室温まで冷却し沈殿を濾別後、N,N-ジメチルホルムアミドを留去し減圧蒸留して反応生成物174g(GC純度98.5%)を得た。得られた反応生成物のうち、19gを窒素ガスで置換した1Lの四ツ口フラスコに入れ、水430mLに撹拌して分散し、ハイドロキノン0.21g、1-フェニル-3-ピラゾリジノン(東京化成工業(株)社製、純度98.0%以上)0.41gおよび85%リン酸2.8gを加えて撹拌下70~80℃で3時間反応させた。反応液は室温に冷却し、10%炭酸水素ナトリウム水溶液で中和し、ジエチルエーテルを用いて抽出を繰り返し、有機層を硫酸マグネシウムにより乾燥、濾別後、減圧蒸留して2-オキソエチルメタクリレート5.6g(メタクリル酸カリウムを基準として収率27.6%)を得た。
(Example 4)
Synthesis of β-methacryloyloxymethyl-β-propiolactone (compound with R 1 = methyl, R 2 , R 3 , R 4 , R 5 , R 6 = hydrogen) Into a 2 L four-necked flask, potassium methacrylate ( 180 g of Wako Pure Chemical Industries, Ltd., purity 98.0%) was added, 900 g of N, N-dimethylformamide was added, and a stirrer, thermometer, and Dimroth condenser were connected. 308 g of 2-bromo-1,1-diethoxyethane (ALDRICH, purity 97%), 0.9 g of p-methoxyphenol and 1.32 g of tetramethylammonium iodide were added and stirred at 150 ° C. for 2 hours. Reacted. The reaction solution was cooled to room temperature, the precipitate was filtered off, N, N-dimethylformamide was distilled off and distilled under reduced pressure to obtain 174 g of reaction product (GC purity 98.5%). Of the obtained reaction product, 19 g was placed in a 1 L four-necked flask substituted with nitrogen gas and dispersed by stirring in 430 mL of water. Hydroquinone 0.21 g, 1-phenyl-3-pyrazolidinone (Tokyo Chemical Industry) 0.41 g and a 2.8 g of 85% phosphoric acid were added and reacted at 70-80 ° C. for 3 hours with stirring. The reaction solution is cooled to room temperature, neutralized with a 10% aqueous sodium hydrogen carbonate solution, extracted repeatedly with diethyl ether, the organic layer is dried over magnesium sulfate, filtered, and distilled under reduced pressure to give 2-oxoethyl methacrylate 5 0.6 g (yield 27.6% based on potassium methacrylate) was obtained.
 窒素ガスで置換した200mLの四ツ口フラスコに、2-オキソエチルメタクリレート5.0gおよびトルエン50gを加え、撹拌機、温度計、ジムロート冷却管、ガス導入管を接続した。溶液を撹拌し水浴を用いて約10℃とした後、三フッ化ホウ素のジエチルエーテル錯体を基質に対して4.5mol%添加した。撹拌下、液温を約10℃に保ちながらケテンガスを基質に対して2.1当量/hの速度でガス導入管より溶液に通じ、GC分析により2-オキソエチルメタクリレートのピークの減少が止まるまで反応を行った。90分後、ケテンガスの吹き込みを止め、窒素ガスを通じることで残存するケテンを系外に除いた。 To a 200 mL four-necked flask replaced with nitrogen gas, 5.0 g of 2-oxoethyl methacrylate and 50 g of toluene were added, and a stirrer, thermometer, Dimroth condenser, and gas inlet tube were connected. After the solution was stirred and brought to about 10 ° C. using a water bath, 4.5 mol% of boron trifluoride diethyl ether complex was added to the substrate. Under stirring, ketene gas was passed through the solution through the gas introduction tube at a rate of 2.1 equivalent / h with respect to the substrate while maintaining the liquid temperature at about 10 ° C. until the peak of 2-oxoethyl methacrylate stopped decreasing by GC analysis. Reaction was performed. After 90 minutes, the blowing of ketene gas was stopped, and the remaining ketene was removed from the system by passing nitrogen gas.
 反応液を、10%炭酸ナトリウム水溶液および飽和食塩水で洗浄し、硫酸マグネシウムで乾燥、濾別後、ハイドロキノン0.2gを添加しエバポレーターで溶媒を留去した。溶媒留去後の反応液は、充填剤にシリカゲルを用い展開溶媒に酢酸エチル-ヘプタンの混合溶媒を用いたカラム分離により精製して、式(11)で示されるβ-メタクリロイルオキシメチル-β-プロピオラクトンを得た。NMRの測定チャートを図4に示す。

Figure JPOXMLDOC01-appb-I000016
The reaction solution was washed with a 10% aqueous sodium carbonate solution and saturated brine, dried over magnesium sulfate, filtered, 0.2 g of hydroquinone was added, and the solvent was distilled off with an evaporator. The reaction solution after the solvent was distilled off was purified by column separation using silica gel as the filler and a mixed solvent of ethyl acetate-heptane as the developing solvent, and β-methacryloyloxymethyl-β- represented by the formula (11) Propiolactone was obtained. An NMR measurement chart is shown in FIG.

Figure JPOXMLDOC01-appb-I000016
 (実施例5)
β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンのアルカリ水溶液に対する溶解性の確認
実施例3で得られたβ―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトン0.54gをサンプル管に量り取り、回転子を加えた後、2.5%TMAH水溶液(東京化成工業(株)社製10%水溶液を蒸留水で4倍希釈したもの)10.1g(β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンに対しTMAHが1当量)を加え、スターラー上で激しく撹拌した。1時間後、撹拌を止めて液の様子を観察すると油滴が分散していることを確認した。これを2N塩酸でクエンチし、ジエチルエーテル及び酢酸エチルで抽出を繰り返し、有機層をエバポレータで溶媒留去した。得られた濃縮残分0.59gをHPLCで分析したところ、アルカリ水溶液と反応する前と比べ、β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンが7.1%残っていた。
(Example 5)
Confirmation of solubility of β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone in aqueous alkali solution β-methyl-β- (methacryloyloxyethyl-1-yl obtained in Example 3 ) 0.54 g of β-propiolactone was weighed into a sample tube, and a rotor was added. Then, a 2.5% TMAH aqueous solution (10% aqueous solution manufactured by Tokyo Chemical Industry Co., Ltd.) was diluted 4 times with distilled water. 1) g (1 equivalent of TMAH to β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone) was added and stirred vigorously on a stirrer. After 1 hour, when stirring was stopped and the state of the liquid was observed, it was confirmed that oil droplets were dispersed. This was quenched with 2N hydrochloric acid, extracted repeatedly with diethyl ether and ethyl acetate, and the organic layer was evaporated with an evaporator. As a result of HPLC analysis of 0.59 g of the obtained concentrated residue, β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone was 7.1 in comparison with that before the reaction with the alkaline aqueous solution. % Remained.
2.5%のTMAH水溶液の量を20.2g(β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンに対しTMAHが2当量)として上と同様の反応を行うと、1時間後の溶液は均一となり、HPLCの分析からβ―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンは0.3%残っていた。 The same reaction as above is carried out with the amount of 2.5% TMAH aqueous solution being 20.2 g (2 equivalents of TMAH to β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone). After 1 hour, the solution became homogeneous, and 0.3% β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone remained from HPLC analysis.
 (比較例1)
β,γ-ジメチル-β-メタクリロイルオキシ-γ-ブチロラクトンの合成
 1Lの四ツ口フラスコに、実施例3で合成した3-オキソブタン-2-イルメタクリレート200gを入れ酢酸エチル460gを加え撹拌して溶液とし、撹拌機、温度計、ジムロート冷却管、ガス導入管を接続した。溶液を撹拌し水浴を用いて約30℃とした後、三フッ化ホウ素のジエチルエーテル錯体を基質に対して5.6mol%添加した。液温を約30℃に保ちながらケテンガスを基質に対して0.55当量/hの速度でガス導入管より溶液に通じ、GC分析により3-オキソブタン-2-イルメタクリレートが消失するまで反応を行った。4.5時間で反応は終結し、ケテンガスの吹き込みを止め、窒素ガスを通じることで残存するケテンを系外に除いた。
(Comparative Example 1)
Synthesis of β, γ-dimethyl-β-methacryloyloxy-γ-butyrolactone Into a 1 L four-necked flask, 200 g of 3-oxobutan-2-yl methacrylate synthesized in Example 3 was added, and 460 g of ethyl acetate was added and stirred to obtain a solution. And a stirrer, a thermometer, a Dimroth cooling pipe, and a gas introduction pipe were connected. The solution was stirred and adjusted to about 30 ° C. using a water bath, and then 5.6 mol% of boron trifluoride diethyl ether complex was added to the substrate. While maintaining the liquid temperature at about 30 ° C., ketene gas is passed through the gas introduction tube at a rate of 0.55 equivalent / h with respect to the substrate, and the reaction is carried out until 3-oxobutan-2-yl methacrylate disappears by GC analysis. It was. The reaction was completed in 4.5 hours, the blowing of ketene gas was stopped, and the remaining ketene was removed from the system by passing nitrogen gas.
 反応液を飽和炭酸水素ナトリウム水溶液および10%食塩水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥し、硫酸マグネシウムを濾別後、エバポレーターで溶媒を留去した。溶媒留去後の反応液は、p-メトキシフェノールを加えて減圧蒸留することで、HPLC分析による純度が98.4%の式(12)に示す5員環ラクトン化合物β,γ-ジメチル-β-メタクリロイルオキシ-γ-ブチロラクトンを103.8g得た(3-オキソブタン-2-イルメタクリレートを基準として収率40.9%)。NMRの測定チャートを図5に示す。
Figure JPOXMLDOC01-appb-I000017
The reaction solution was washed with a saturated aqueous sodium hydrogen carbonate solution and 10% brine. The obtained organic layer was dried over magnesium sulfate, the magnesium sulfate was filtered off, and the solvent was distilled off with an evaporator. The reaction solution after distilling off the solvent was added with p-methoxyphenol and distilled under reduced pressure to give a 5-membered ring lactone compound β, γ-dimethyl-β represented by the formula (12) having a purity by HPLC analysis of 98.4%. -103.8 g of methacryloyloxy-γ-butyrolactone were obtained (40.9% yield based on 3-oxobutan-2-yl methacrylate). An NMR measurement chart is shown in FIG.
Figure JPOXMLDOC01-appb-I000017
β,γ-ジメチル-β-メタクリロイルオキシ-γ-ブチロラクトンのアルカリ水溶液に対する溶解性の確認
 β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンと同じ元素組成を有するβ,γ-ジメチル-β-メタクリロイルオキシ-γ-ブチロラクトン0.54gを用い、実施例5と同様のアルカリ水溶液に対する溶解性の確認試験を行った。10.1gの2.5%のTMAH水溶液を用いた場合でも1時間後の溶液は均一となり、β―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンの残量は反応前と比べて0.6%であった。また、2.5%のTMAH水溶液を20.2g用いた場合には、HPLCにてβ―メチル-β-(メタクリロイルオキシエチル-1-イル)-β-プロピオラクトンは観察されなかった。
Confirmation of solubility of β, γ-dimethyl-β-methacryloyloxy-γ-butyrolactone in aqueous alkali solution β having the same elemental composition as β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone , Γ-dimethyl-β-methacryloyloxy-γ-butyrolactone was used in the same manner as in Example 5 to confirm the solubility in an aqueous alkali solution. Even when 10.1 g of 2.5% TMAH aqueous solution was used, the solution after 1 hour became uniform, and the remaining amount of β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone was It was 0.6% compared with that before the reaction. In addition, when 20.2 g of 2.5% TMAH aqueous solution was used, β-methyl-β- (methacryloyloxyethyl-1-yl) -β-propiolactone was not observed by HPLC.
 本発明のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物は、プリント基板、液晶ディスプレイパネル、半導体素子などの製造工程に用いるレジスト材料に組み込むことができ、また本発明の製造方法は、本発明のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物を効率良く安定に提供することを可能にする。 The (meth) acrylic acid ester compound having a β-propiolactone skeleton of the present invention can be incorporated into a resist material used in a manufacturing process of a printed circuit board, a liquid crystal display panel, a semiconductor element, etc. Thus, the (meth) acrylic acid ester compound having a β-propiolactone skeleton of the present invention can be provided efficiently and stably.

Claims (6)

  1.  式(1)で示されるβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物。
    Figure JPOXMLDOC01-appb-I000001

    式中、Rは水素またはメチルであり、R、R、R、R、およびRは独立して、水素又は炭素数1~5のアルキルである。
    A (meth) acrylic acid ester compound having a β-propiolactone skeleton represented by the formula (1).
    Figure JPOXMLDOC01-appb-I000001

    In the formula, R 1 is hydrogen or methyl, and R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
  2.  R、R、R、R、R、およびRが独立して、水素またはメチルである請求項1に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物。 The (meth) acrylic acid ester compound having a β-propiolactone skeleton according to claim 1, wherein R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or methyl.
  3.  式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物を反応させることを特徴とする請求項1に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。
    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003

    式中、Rは水素またはメチルであり、R、R、R、R、およびRは独立して、水素または炭素数1~5のアルキルである。
    The (meth) acrylic acid ester having a β-propiolactone skeleton according to claim 1, wherein a compound having a carbonyl group represented by the formula (2) is reacted with a ketene compound represented by the formula (3) Compound production method.
    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003

    In the formula, R 1 is hydrogen or methyl, and R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or alkyl having 1 to 5 carbon atoms.
  4.  R、R、R、R、R、およびRが独立して、水素またはメチルである請求項3に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。 The (meth) acrylic acid ester compound having a β-propiolactone skeleton according to claim 3, wherein R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are independently hydrogen or methyl. Production method.
  5.  式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物をテトラヒドロフランを含む溶媒中で反応させることを特徴とする請求項1に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。 The β-propiolactone skeleton according to claim 1, wherein the compound having a carbonyl group represented by the formula (2) and the ketene compound represented by the formula (3) are reacted in a solvent containing tetrahydrofuran. A method for producing a (meth) acrylic acid ester compound.
  6.  式(2)で示されるカルボニル基を有する化合物と式(3)で示されるケテン化合物を反応液温度を5℃以下で反応させることを特徴とする請求項1に記載のβ-プロピオラクトン骨格を有する(メタ)アクリル酸エステル化合物の製造方法。 The β-propiolactone skeleton according to claim 1, wherein the compound having the carbonyl group represented by the formula (2) and the ketene compound represented by the formula (3) are reacted at a reaction solution temperature of 5 ° C or lower. The manufacturing method of the (meth) acrylic acid ester compound which has this.
PCT/JP2013/061885 2012-06-01 2013-04-23 (METH)ACRYLIC ACID ESTER COMPOUND HAVING β-PROPIOLACTONE SKELETON, AND METHOD FOR PRODUCING SAME WO2013179819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014518345A JP6260532B2 (en) 2012-06-01 2013-04-23 (Meth) acrylic acid ester compound having β-propiolactone skeleton and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012126033 2012-06-01
JP2012-126033 2012-06-01

Publications (1)

Publication Number Publication Date
WO2013179819A1 true WO2013179819A1 (en) 2013-12-05

Family

ID=49673026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061885 WO2013179819A1 (en) 2012-06-01 2013-04-23 (METH)ACRYLIC ACID ESTER COMPOUND HAVING β-PROPIOLACTONE SKELETON, AND METHOD FOR PRODUCING SAME

Country Status (3)

Country Link
JP (1) JP6260532B2 (en)
TW (1) TWI594978B (en)
WO (1) WO2013179819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139650A (en) * 2012-12-21 2014-07-31 Jsr Corp Photoresist composition, resist pattern formation method, polymer and compound

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170117214A1 (en) 2009-01-05 2017-04-27 Amkor Technology, Inc. Semiconductor device with through-mold via
TWI557183B (en) 2015-12-16 2016-11-11 財團法人工業技術研究院 Siloxane resin composition, and photoelectric device employing the same
US9704725B1 (en) 2012-03-06 2017-07-11 Amkor Technology, Inc. Semiconductor device with leadframe configured to facilitate reduced burr formation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284938A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Lithographic printing original plate
WO2007106329A2 (en) * 2006-03-10 2007-09-20 Cornell University Low pressure carbonylation of heterocycles
WO2012046770A1 (en) * 2010-10-07 2012-04-12 東京応化工業株式会社 Resist composition for negative development which is used for foermation of guide pattern, guide pattern formation method, and method for forming pattern on layer containing block copolymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488229B2 (en) * 2004-10-28 2010-06-23 信越化学工業株式会社 Fluorinated monomer having a cyclic structure, method for producing the same, polymer, photoresist composition, and pattern forming method
EP2409965A1 (en) * 2010-07-21 2012-01-25 Lonza Ltd. A process for the production of carnitine by cycloaddition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284938A (en) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd Lithographic printing original plate
WO2007106329A2 (en) * 2006-03-10 2007-09-20 Cornell University Low pressure carbonylation of heterocycles
WO2012046770A1 (en) * 2010-10-07 2012-04-12 東京応化工業株式会社 Resist composition for negative development which is used for foermation of guide pattern, guide pattern formation method, and method for forming pattern on layer containing block copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139650A (en) * 2012-12-21 2014-07-31 Jsr Corp Photoresist composition, resist pattern formation method, polymer and compound

Also Published As

Publication number Publication date
TW201350464A (en) 2013-12-16
JPWO2013179819A1 (en) 2016-01-18
TWI594978B (en) 2017-08-11
JP6260532B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
KR101782206B1 (en) Monomer, polymer, resist composition, and patterning process
JP6191601B2 (en) Process for producing β- (meth) acryloyloxy-γ-butyrolactone
EP1829850B1 (en) Method for the preparation of fluorinated monomers
US6517994B2 (en) Lactone ring-containing (meth)acrylate and polymer thereof for photoresist composition
JPWO2008081768A1 (en) Chloromethyl ethers containing alicyclic structure, polymerizable monomer for photoresist and method for producing the same
JP6260532B2 (en) (Meth) acrylic acid ester compound having β-propiolactone skeleton and method for producing the same
JP2018009023A (en) Alcohol compound, (meth) acrylate, polymer and method for producing the same, resist composition, and method for producing substrate with pattern formed thereon
US20040176630A1 (en) Alicyclic methacrylate having oxygen substituent group on alpha-methyl
EP1149826B1 (en) Ester compounds having alicyclic structure, and methods for preparing the same
US6403822B2 (en) Ester compounds having alicyclic structure and method for preparing same
WO2015122468A1 (en) (meth)acrylic acid ester compound and production method therefor
JP4919508B2 (en) Photoresist monomer, polymer compound and photoresist composition
TW524803B (en) Novel ester compounds having alicyclic and oxirane structures and method for preparing the same
JP2006070097A (en) Exo-polycyclic lactone (meth)acrylate and manufacturing method of the same
WO2023171670A1 (en) Resist composition, resist pattern formation method, compound, and polymer compound
JP5671603B2 (en) Acrylic ester derivatives and alcohol derivatives and methods for producing them
JP5470055B2 (en) Positive resist composition, resist pattern forming method, polymer compound
JP2001166463A (en) Polymerizable compound for photoresist and method for producing same
WO2010087339A1 (en) Alicyclic compound, method for manufacturing same, composition containing same and resist pattern formation method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796791

Country of ref document: EP

Kind code of ref document: A1