WO2013176314A1 - 간이 광 심선 대조기 - Google Patents

간이 광 심선 대조기 Download PDF

Info

Publication number
WO2013176314A1
WO2013176314A1 PCT/KR2012/004121 KR2012004121W WO2013176314A1 WO 2013176314 A1 WO2013176314 A1 WO 2013176314A1 KR 2012004121 W KR2012004121 W KR 2012004121W WO 2013176314 A1 WO2013176314 A1 WO 2013176314A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
optical cable
present
contraster
Prior art date
Application number
PCT/KR2012/004121
Other languages
English (en)
French (fr)
Inventor
최영복
강창호
한승완
윤종명
권순환
Original Assignee
(주)파이버피아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파이버피아 filed Critical (주)파이버피아
Priority to CN201280000986.1A priority Critical patent/CN103597384A/zh
Priority to PCT/KR2012/004121 priority patent/WO2013176314A1/ko
Publication of WO2013176314A1 publication Critical patent/WO2013176314A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements

Definitions

  • the present invention relates to a simple optical core contraster, and more particularly, to a simple optical core contraster that can secure the reliability of optical communication by simply measuring the optical signal transmitted and received through the optical cable.
  • FTTH Fiber to the home
  • FTTO fiber to the office
  • FTTH is a technology that makes all the services including super-high speed by connecting all the wires to the optical network by building the optical cable to the last terminal device, also called home optical cable or home optical cable.
  • FTTH is more than 100 times faster than ADSL by connecting optical cables to homes. There is a feature that can provide a stable quality service.
  • the optical cable used in the configuration of the FTTH network has good reception to ensure the reliability of the network, it is essential to measure the reception to ensure the reliability of the optical cable when installing and maintaining the FTTH network.
  • the optical fiber collimator for measuring the reception of the optical cable has a disadvantage that most of the equipment developed and produced by overseas AFL Telecommunication (NOYES), Fujikura, etc. and expensive.
  • the conventional optical core collimator has a disadvantage in that the thickness of the optical cable that can be measured is limited, and thus the optical signal measurement of the thick optical cable is limited.
  • an optical core contraster that provides an adapter capable of measuring a thick optical cable, but in this case, it was inconvenient because an additional adapter was taken.
  • the conventional optical fiber collimator has a disadvantage in that the optical connector cannot be measured.
  • An object of the present invention is to provide a simple optical core contraster that can measure the signal for a variety of thickness and low-cost optical cable in order to compensate for the above-mentioned disadvantages.
  • An insertion unit to insert an optical cable or an optical connector;
  • a receiver which receives an optical signal wavelength of an optical cable and an optical connector inserted into the insertion unit;
  • a converting unit converting the optical signal wavelength received by the receiving unit into an electrical signal;
  • a controller which processes the electric signal converted by the converter;
  • An output unit for outputting a result processed by the control unit;
  • a power supply for supplying power; characterized in that it comprises a.
  • the insertion portion is characterized in that it comprises grooves for inserting the optical cable having various thicknesses in the range of 0.3mm ⁇ 3.0mm.
  • the receiver is characterized in that for receiving an optical signal wavelength of 1250nm ⁇ 1650nm.
  • the simple optical core collimator of the present invention measures the optical signal and wavelength flowing through the optical cable, and there is an effect that it is possible to measure the optical signal of optical cables and optical connectors of various thicknesses.
  • FIG. 1 is a hardware block diagram of a simplified optical fiber contraster according to the present invention.
  • FIG. 2 is a perspective view of a simplified optical fiber contraster according to the present invention.
  • Figure 3 is a perspective view of the insertion portion of the simple optical fiber collimator according to the present invention.
  • FIG. 4 is a flowchart for measuring an optical signal wavelength of an optical cable using the simplified optical fiber contraster of the present invention.
  • FIG. 1 is a block diagram illustrating the hardware configuration of a simplified optical fiber contraster according to the present invention.
  • the hardware of the simple optical fiber collimator of the present invention includes a receiver 10, a converter 20, a controller 40, a power supply unit 30, and an output unit 50.
  • the receiver 10 is an optional filter for receiving an optical signal wavelength flowing through the optical cable to be measured, and the receiver 10 receives an optical signal wavelength in the range of 1250 nm to 1650 nm flowing through the optical cable.
  • the conversion unit 20 is an optical / electric conversion unit that receives an optical signal wavelength received by the reception unit 10 and converts the optical signal wavelength into an electrical signal.
  • the control unit 40 processes an electrical signal converted into an electrical signal by the conversion unit 20, and performs and manages a power management and a process according to an input (Micro Controller Unit; MCU). to be.
  • MCU Micro Controller Unit
  • the power supply unit 30 supplies power to the conversion unit 20 and the control unit 40.
  • two batteries of 1.5V are used. It is obvious that the circuit configuration may be changed by supplying power using other power sources.
  • the output unit 50 outputs the information processed by the control unit 40 to the LCD substrate.
  • FIG. 2 is a perspective view of a simplified optical fiber collimator according to the present invention
  • FIG. 3 is an insertion portion of the simplified optical fiber collimator according to the present invention.
  • the simplified optical fiber collimator of the present invention includes an insertion unit 60, an output unit 50, and an input unit 70.
  • the insertion unit 60 is configured in various grooves to measure the optical cable and optical connector of various thicknesses as shown in FIG. At this time, the thickness (diameter) of the optical cable that can be inserted and measured in the insertion unit 60 ranges from 0.3 mm to 3.0 mm, and a rectangular optical connector and a circular optical connector may be inserted, but are not limited thereto.
  • the optical cable is measured by inserting the optical cable diagonally into the first grooves 60a and 60a ', the second grooves 60b and 60b', and the third grooves 60c and 60c '.
  • the rectangular optical connector and the circular optical connector are inserted into the fourth groove 60d to measure the optical signal wavelength.
  • the output unit 50 outputs a result of the optical signal wavelength received from the optical cable inserted into the insertion unit 60 is converted into an electrical signal in the conversion unit 20 is processed by the control unit 40.
  • the LCD is configured as an output unit, but is not limited thereto.
  • the output unit 50 displays transmission power, traffic, and the like of an optical signal flowing through the received optical cable.
  • the input unit 70 is configured to include one or more buttons that can be selected and manipulated by the user, the input is processed by the control unit 40 by pressing the button to perform a corresponding operation corresponding to the input The result of the execution is output to the output unit 50.
  • buttons are not limited and additionally necessary buttons and operations may be additionally configured.
  • FIG. 4 is a flowchart for measuring an optical signal wavelength of an optical cable using the simplified optical fiber contraster of the present invention.
  • the simple optical fiber collimator of the present invention controls the flow of the optical signal wavelength until it is received by the receiver 10 and output to the output unit 50.
  • the process flow chart includes the start (S1), the step of receiving / measuring a signal wavelength (S2), the step of converting it into an electrical signal (S3), the step of checking whether an electric current is input (S4), and the calculating of a measured value (S5). , Comparing with a reference value (S6), and outputting to an output unit (S7).
  • the process starts by inserting the measurement target optical cable or optical connector into the insertion unit 60 of the simplified optical fiber contraster of the present invention (S1).
  • the receiver 10 receives the optical signal wavelength flowing through the measurement target optical cable or the optical connector inserted into the inserter 60, and the value received by the receiver 10. The process of handing over to the conversion unit 20 is performed.
  • step S3 of converting to an electrical signal a process of converting an optical signal wavelength received by the receiver 10 and transmitted to the converter 20 into an electrical signal is performed.
  • step S4 of checking whether or not the current is input it is checked whether or not the current is input.
  • the process moves to the step S6 of comparing with the reference value, and when the power is turned off, the process goes to the step S7 of outputting to the output unit 50.
  • step S5 of calculating a measured value is first performed, and then step S6 of comparing with the reference value is performed. Done.
  • step S5 of calculating a measured value is first performed, and then step S6 of comparing with the reference value is performed. Done.
  • step S5 of calculating a measured value is first performed, and then step S6 of comparing with the reference value is performed. Done.
  • step S5 of calculating a measured value is a step of calculating the value of the signal received by the receiver 10 and converted into an electrical signal.
  • the measured electrical signal is mathematically calculated and calculated.
  • the value calculated in the step S5 of calculating the measured value is compared with the reference value stored in the controller 40 to determine whether an appropriate optical signal wavelength is flowing. Check it.
  • step S7 of outputting to the output unit the value determined in step S6 of comparing with the reference value is output.
  • the flow of the software is completed by outputting nothing to the output unit 50.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

본 발명의 광 신호를 측정하는 간이 광 심선 대조기는, 광 케이블 또는 광 커넥터를 삽입하는 삽입부와; 상기 삽입부에 삽입된 광 케이블과 광 커넥터의 광 신호 파장을 수신하는 수신부와; 상기 수신부에서 수신된 광 신호 파장을 전기 신호로 변환하는 변환부와; 상기 변환부에서 변환된 전기신호를 처리하는 제어부와; 상기 제어부에서 처리된 결과를 출력하는 출력부; 및 전원을 공급하는 전원부;를 포함하는 것을 특징으로 한다.

Description

간이 광 심선 대조기
본 발명은 간이 광 심선 대조기에 관한 것으로, 더욱 상세하게는 광케이블을 통해 송수신되는 광신호를 간단히 측정하여 광통신의 신뢰성을 확보할 수 있는 간이 광 심선 대조기에 관한 것이다.
광통신 기술이 발전함에 따라 FTTO(fiber to the office)보다 발전한 FTTH(Fiber to the home)가 상용화 되고 있다. FTTH는 마지막 단말장치까지 광케이블을 구축함으로써 전구간을 광통신망으로 연결해 방송통신을 포함한 모든 서비스를 초고속화하는 기술로써, 가정 내 광케이블 또는 댁내 광케이블로도 불린다. 다른 광통신 방식의 초고속 인터넷에서는 외부의 어느 지점까지만 광섬유로 연결하고 집안의 경우는 랜 선이나 동축 케이블 등 다른 방식으로 연결되는 것에 비해, FTTH는 광케이블을 가정까지 연결함으로써 기존 ADSL에 비해 100배 이상 빠르고 안정된 품질의 서비스를 제공할 수 있다는 특징이 있다.
이러한 FTTH 네트워크의 구성에 사용되는 광케이블은 수신도가 좋아야 네트워크의 신뢰성이 확보되므로, FTTH네트워크 설치 및 유지보수 시 광케이블의 신뢰성 확보를 위한 수신도 측정이 필수적이다.
이 때, 광케이블의 수신도를 측정하는 광 심선 대조기는 해외의 AFL Telecommunication(NOYES), Fujikura 등에서 개발 및 생산하는 장비가 대부분이고 가격이 비싸다는 단점이 있었다.
또한, 기존의 광 심선 대조기는 측정 가능한 광 케이블의 굵기가 한정 되어 있어, 굵은 광 케이블의 광 신호 측정에 제한이 있다는 단점이 있었다. 상기 단점을 개선하기 위해 추가적으로 굵은 광 케이블의 측정이 가능한 어댑터를 제공하는 광 심선 대조기가 있었으나, 이 경우는 따로 어댑터를 추가적으로 챙겨야 하므로 불편하다는 단점이 있었다.
또한, 기존의 광 심선 대조기는 광 커넥터는 측정 불가능하다는 단점이 있었다.
광 케이블이 국내에 도입된 이후, 국내에서도 광 측정 장비의 핵심기술인 레이저(LD) 및 수광수자(PD) 기술, 광전 변환 기술 등이 일반화 되었지만, 이러한 기술들이 광 심선 대조기의 개발로 추진되지 못하고 있는 실정이다.
본 발명은 상기 기술한 단점을 보완하기 위하여 가격이 저렴하고 여러 굵기의 광 케이블을 대상으로 신호 측정이 가능한 간이 광 심선 대조기를 제공하는 것을 목적으로 한다.
상기한 종래 문제점을 해결하고 상기 목적을 달성하기 위한 본 발명의 간이 광 심선 대조기는,
광 케이블 또는 광 커넥터를 삽입하는 삽입부와; 상기 삽입부에 삽입된 광 케이블과 광 커넥터의 광 신호 파장을 수신하는 수신부와; 상기 수신부에서 수신된 광 신호 파장을 전기 신호로 변환하는 변환부와; 상기 변환부에서 변환된 전기신호를 처리하는 제어부와; 상기 제어부에서 처리된 결과를 출력하는 출력부; 및 전원을 공급하는 전원부;를 포함하는 것을 특징으로 한다.
여기서, 상기 삽입부는 0.3mm~3.0mm 범위내의 여러 굵기를 갖는 광 케이블을 삽입하는 홈들을 포함하는 것을 특징으로 한다.
또한, 상기 수신부는 1250nm~1650nm의 광 신호 파장을 수신하는 것을 특징으로 한다.
이러한 본 발명의 특징에 따르면, 본 발명의 간이 광 심선 대조기는 광 케이블을 흐르는 광 신호 및 파장을 측정하고, 여러 굵기의 광 케이블 및 광 커넥터의 광 신호 측정이 가능하다는 효과가 있다.
도 1은 본 발명에 따른 간이 광심선 대조기의 하드웨어 블럭도이다.
도 2는 본 발명에 따른 간이 광심선 대조기의 사시도이다.
도 3은 본 발명에 따른 간이 광심선 대조기의 삽입부에 대한 사시도이다.
도 4는 본 발명의 간이 광심선 대조기를 이용하여 광 케이블의 광 신호 파장을 측정하는 흐름도이다.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참고로 하여 상세하게 설명한다.
도 1은 본 발명에 따른 간이 광심선 대조기의 하드웨어 구성 블럭도이다.
도 1 에 도시한 바와 같이, 본 발명의 간이 광심선 대조기의 하드웨어는 수신부(10), 변환부(20), 제어부(40), 전원부(30), 및 출력부(50)로 구성된다.
상기 수신부(10)는 측정 대상 광 케이블에 흐르는 광 신호 파장을 수신하는 선택형 필터이며, 수신부(10)는 광 케이블에 흐르는 1250nm~1650nm 범위의 광 신호 파장을 수신한다.
상기 변환부(20)는 상기 수신부(10) 에서 수신된 광 신호 파장을 받아 전기적 신호로 변환해 주는 광/전 변환부이다.
상기 제어부(40)는 상기 변환부(20)에서 전기신호로 변환된 전기적 신호를 처리하고, 전원 관리 및 입력에 따른 처리 등을 수행 및 관리하는 역할을 하는 전용 프로세서 유닛(Micro Controller Unit; MCU)이다.
상기 전원부(30)는 상기 변환부(20) 및 제어부(40)에 전원을 공급하며 본 발명에서는 1.5V의 건전지 두 개를 사용한다. 이외 다른 전원을 이용해 전원을 공급하여 회로의 구성 등이 변경될 수 있음은 자명하다.
상기 출력부(50)는 상기 제어부(40)에서 처리된 정보를 LCD 기판에 출력한다.
도 2는 본 발명에 따른 간이 광심선 대조기의 사시도이고, 도 3은 본 발명에 따른 간이 광심선 대조기의 삽입부이다.
도 2에 도시한 바와 같이, 본 발명의 간이 광심선 대조기는 삽입부(60), 출력부(50), 및 입력부(70)를 포함하여 구성된다.
상기 삽입부(60)는 도 3과 같이 여러 굵기의 광 케이블과 광 커넥터를 측정 가능하도록 홈들을 다양하게 구성한다. 이 때, 상기 삽입부(60)에 삽입하여 측정 가능한 광 케이블의 굵기(직경)는 0.3mm~3.0mm범위이고, 사각형 광 커넥터와 원형 광 커넥터를 삽입도 가능하나 이를 한정하지는 아니한다.
도 3에 도시한 바와 같이, 광 케이블을 굵기에 따라 대각선으로 제1홈(60a, 60a'), 제2홈(60b, 60b'), 제3홈(60c, 60c')에 삽입하여 측정하고, 사각형 광 커넥터와 원형 광 커넥터는 제4홈(60d)에 삽입하여 광 신호 파장을 측정한다.
여기서, 상기 출력부(50)는 상기 삽입부(60)에 삽입된 광 케이블에서 수신된 광 신호 파장이 변환부(20)에서 전기신호로 변환되어 제어부(40)에서 처리된 결과를 출력한다. 본 발명의 바람직한 실시 예에서는 LCD 출력부로 구성하나, 이를 한정하지는 아니하며 이 때, 출력부(50)에는 수신된 광 케이블을 흐르는 광 신호의 전송 파워, 트래픽 등이 표시된다.
또한, 상기 입력부(70)는 사용자가 원하는 동작을 선택하여 조작할 수 있는 하나 이상의 버튼을 포함하여 구성되되, 상기 버튼을 누름으로써 입력이 제어부(40)에서 처리되어 입력에 상응하는 해당 동작을 수행하거나 수행 결과가 출력부(50)에 출력된다.
본 발명에서는 전원 버튼, 출력부 백라이트 버튼 등을 예로 들었지만, 버튼을 한정하지 않으며 이외 더 필요한 버튼 및 동작을 추가 구성할 수 있다.
도 4는 본 발명의 간이 광심선 대조기를 이용하여 광 케이블의 광 신호 파장을 측정하는 흐름도이다.
도 4에 도시한 바와 같이, 본 발명의 간이 광심선 대조기는 광 신호 파장이 수신부(10)에 수신되어 출력부(50)에 출력되기까지의 흐름을 제어한다. 처리 흐름도는 시작(S1), 신호 파장 수신/측정하는 단계(S2), 전기신호로 변환하는 단계(S3), 전류의 입력 여부를 확인하는 단계(S4), 측정값을 산출하는 단계(S5), 기준 값과 비교하는 단계(S6), 출력부에 출력하는 단계(S7)으로 이루어진다.
먼저, 본 발명의 간이 광심선 대조기의 삽입부(60)에 측정 대상 광 케이블 또는 광 커넥터를 삽입함으로써 처리 과정이 시작(S1)된다.
이어서, 신호 파장 수신/측정하는 단계(S2)에서는 삽입부(60)에 삽입된 측정 대상 광 케이블 또는 광 커넥터를 흐르는 광 신호 파장을 수신부(10)에서 수신하며, 수신부(10)에서 수신된 값을 변환부(20)로 넘겨주는 과정을 수행한다.
이어서, 전기신호로 변환하는 단계(S3)에서는 상기 수신부(10)에서 수신되어 변환부(20)로 전달된 광 신호 파장을 전기적 신호로 변환하는 과정을 수행한다.
다음으로, 전류의 입력 여부를 확인하는 단계(S4)에서 전류의 입력 여부를 체크한다. 이때 전원이 켜진 상태라면 기준 값과 비교하는 단계(S6)로, 전원이 꺼진 상태라면 출력부(50)에 출력하는 단계(S7)로 이동한다.
전원이 켜진 상태에서 전류의 입력이 확인되어 기준 값과 비교하는 단계(S5)로 이동하는 경우, 먼저 측정값을 산출하는 단계(S5)를 수행한 후 기준 값과 비교하는 단계(S6)를 수행하게 된다. 이 때, 측정값을 산출하는 단계(S5)에서는 수신부(10)에서 수신되어 전기신호로 변환된 신호의 값을 산출하는 단계이다. 이 단계에서는 측정된 전기신호의 값을 수학적으로 계산하여 산출한다.
다음으로, 기준 값과 비교하는 단계(S6)에서는 상기 측정값을 산출하는 단계(S5)에서 산출된 값과 제어부(40)에 저장되어 있던 기준 값을 비교하여 적절한 광 신호 파장이 흐르고 있는지에 대해 확인한다.
마지막으로, 출력부에 출력하는 단계(S7)에서는 상기 기준값과 비교하는 단계(S6)에서 결정된 값을 출력한다. 또한, 전류의 입력 여부를 확인하는 단계(S4)에서 전원이 꺼져있음이 확인되었을 때 출력부(50)에 아무것도 출력하지 않음으로써 소프트웨어의 흐름이 마무리된다.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.

Claims (3)

  1. 광 신호를 측정하는 간이 광 심선 대조기에 있어서,
    광 케이블 또는 광 커넥터를 삽입하는 삽입부와;
    상기 삽입부에 삽입된 광 케이블과 광 커넥터의 광 신호 파장을 수신하는 수신부와;
    상기 수신부에서 수신된 광 신호 파장을 전기 신호로 변환하는 변환부와;
    상기 변환부에서 변환된 전기신호를 처리하는 제어부와;
    상기 제어부에서 처리된 결과를 출력하는 출력부; 및
    전원을 공급하는 전원부;를 포함하는 것을 특징으로 하는 간이 광 심선 대조기.
  2. 제 1항에 있어서,
    상기 삽입부는 0.3mm~3.0mm 범위내의 여러 굵기를 갖는 광 케이블을 삽입하는 홈들을 포함하는 것을 특징으로 하는 간이 광 심선 대조기.
  3. 제 1항에 있어서,
    상기 수신부는 1250nm~1650nm의 광 신호 파장을 수신하는 것을 특징으로 하는 간이 광 심선 대조기.
PCT/KR2012/004121 2012-05-24 2012-05-24 간이 광 심선 대조기 WO2013176314A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000986.1A CN103597384A (zh) 2012-05-24 2012-05-24 手持光纤识别仪
PCT/KR2012/004121 WO2013176314A1 (ko) 2012-05-24 2012-05-24 간이 광 심선 대조기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/004121 WO2013176314A1 (ko) 2012-05-24 2012-05-24 간이 광 심선 대조기

Publications (1)

Publication Number Publication Date
WO2013176314A1 true WO2013176314A1 (ko) 2013-11-28

Family

ID=49623982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004121 WO2013176314A1 (ko) 2012-05-24 2012-05-24 간이 광 심선 대조기

Country Status (2)

Country Link
CN (1) CN103597384A (ko)
WO (1) WO2013176314A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264565A (ja) * 2003-02-28 2004-09-24 Nippon Telegraph & Telephone East Corp 対照光入射アダプタおよび該アダプタを使用した対照光入射方法
US7210858B2 (en) * 2002-01-15 2007-05-01 Tokyo Communications Equipment Co., Ltd. Optical connector with memory function
JP2009014546A (ja) * 2007-07-05 2009-01-22 Fujikura Ltd 光ファイバ心線対照装置及び光ファイバ内の伝送光強度測定方法
JP2011059075A (ja) * 2009-09-14 2011-03-24 Sumitomo Electric Ind Ltd 光心線判別装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2545620Y (zh) * 2002-05-29 2003-04-16 3M中国有限公司 一种具有可见光故障定位功能的光纤识别仪
CN2643333Y (zh) * 2003-09-05 2004-09-22 上海闪宁通信设备有限公司 光纤识别仪
CN101458120A (zh) * 2007-12-12 2009-06-17 上海嘉慧光电子技术有限公司 手持式光功率计

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210858B2 (en) * 2002-01-15 2007-05-01 Tokyo Communications Equipment Co., Ltd. Optical connector with memory function
JP2004264565A (ja) * 2003-02-28 2004-09-24 Nippon Telegraph & Telephone East Corp 対照光入射アダプタおよび該アダプタを使用した対照光入射方法
JP2009014546A (ja) * 2007-07-05 2009-01-22 Fujikura Ltd 光ファイバ心線対照装置及び光ファイバ内の伝送光強度測定方法
JP2011059075A (ja) * 2009-09-14 2011-03-24 Sumitomo Electric Ind Ltd 光心線判別装置

Also Published As

Publication number Publication date
CN103597384A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN1833384B (zh) 用于测试光网络的方法和装置
US10509185B2 (en) Optical connector with photodetector, adaptor for optical connector, and system
EP2336895B1 (en) Electronic device and method thereof for identifying electronic accessory
AU2011212790B2 (en) Ruggedized fiber optic/electrical connection system
US20130022318A1 (en) Field terminated fiber optic and electrical connection device
CN104467959B (zh) 使用光损耗测试仪器的免提光纤测试的方法及装置
CN101542268B (zh) 检测光纤和带状光缆的方法
US8964406B2 (en) Battery backup cover system
TW201230704A (en) Apparatuses, systems, and methods for facilitating optical communication between electronic devices
TW201236394A (en) Integrated circuit for facilitating optical communication between electronic devices
KR101257809B1 (ko) 광 심선 대조기
WO2013176314A1 (ko) 간이 광 심선 대조기
JP3966287B2 (ja) 光パワー測定機能付き光心線判別装置
WO2007095131A3 (en) Optical fiber loopback test system and method
US20100221946A1 (en) Core connector and method for splicing a twin core into at least one existing end-subscriber twin core
KR101320610B1 (ko) 간이 광 심선 대조기
WO2013025001A2 (ko) 광케이블심선 대조기
CN110838873B (zh) 一种基于mtp预端接光缆的测试方法
CN211981873U (zh) 一种在线光纤跳线测量装置
WO2019013455A1 (ko) Sfp형 광섬유 고장점 탐지장치
US20230228649A1 (en) Duplex optical power loss measurement using an adaptor device
CN220732774U (zh) 光纤通断检测器
CN116027497A (zh) 一种光纤类型的识别方法及相关设备
KR20050005977A (ko) 광점퍼코드
CN201497823U (zh) 一种混合光纤光缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877433

Country of ref document: EP

Kind code of ref document: A1