WO2013175903A1 - アンテナ装置及びmimo無線装置 - Google Patents

アンテナ装置及びmimo無線装置 Download PDF

Info

Publication number
WO2013175903A1
WO2013175903A1 PCT/JP2013/061379 JP2013061379W WO2013175903A1 WO 2013175903 A1 WO2013175903 A1 WO 2013175903A1 JP 2013061379 W JP2013061379 W JP 2013061379W WO 2013175903 A1 WO2013175903 A1 WO 2013175903A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
terminal
radiating
series reactance
input port
Prior art date
Application number
PCT/JP2013/061379
Other languages
English (en)
French (fr)
Inventor
宏弥 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013175903A1 publication Critical patent/WO2013175903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present invention relates to an antenna apparatus having a plurality of radiating elements and a MIMO radio apparatus.
  • High-speed and large-capacity wireless communication can be performed by MIMO (Multi-Input Multi-Output) technology that performs spatial multiplexing by installing a plurality of radiating elements on both the transmitting side and the receiving side.
  • a MIMO antenna is required to have low coupling and low correlation between a plurality of radiating elements.
  • Patent Document 1 discloses a MIMO antenna that achieves low correlation by changing the directions of dipole axes of two radiating elements.
  • Patent Document 2 and Non-Patent Documents 1 to 3 disclose a technique for reducing coupling between antenna elements by connecting two antenna elements with a connection element.
  • the operating bandwidth of the antenna device becomes narrow. For example, it is difficult to ensure the bandwidth of the band 13 in which the LTE standard is used.
  • the radiation characteristics of the radiating element are affected by the components around the antenna and the shape of the mobile terminal. For this reason, if the components arranged around the antenna or the shape of the mobile terminal change, the radiation characteristics also change.
  • the radiating elements since the radiating elements are connected by a decoupling element, the radiating element itself must be tuned according to a change in the radiation characteristics.
  • a decoupling element that reduces mutual coupling between When the second terminal of the first series reactance element is used as a first input port and the fourth terminal of the second series reactance element is used as a second input port, the first radiation is supplied.
  • An antenna device is provided in which the resonance frequency of the element and the resonance frequency of the second radiating element are different from each other.
  • the characteristic of one of the radiating elements becomes relatively wide due to decoupling, and the characteristic of the other radiating element is relatively Narrow band.
  • the broadband radiating element covers both downlink and uplink frequency bands for MIMO communication.
  • the narrowband radiating element covers the downlink frequency band for MIMO communication.
  • the decoupling element can reduce the correlation coefficient between the two radiating elements. This makes it possible to increase downlink throughput.
  • a resonance frequency of the first radiating element is lower than a resonance frequency of the second radiating element, and the decoupling is performed.
  • the element may be configured by an inductor, and the bandwidth of the first radiating element may be wider than the bandwidth of the second radiating element.
  • the decoupling circuit may be configured with a capacitor, and the bandwidth of the first radiating element may be wider than the bandwidth of the second radiating element.
  • the electrical length of the first radiating element and the electrical length of the second radiating element may be different from each other.
  • the resonance frequencies of the two radiating elements can be made different.
  • a second transmission / reception circuit that performs transmission / reception in a frequency band different from that of the first transmission / reception circuit;
  • a signal inserted between the first radiating element and the first series reactance element and received by the first radiating element is transmitted to any of the first transmitting / receiving circuit and the second transmitting / receiving circuit.
  • communication can be performed in a frequency band different from the frequency band of MIMO communication.
  • a decoupling element that reduces mutual coupling between A portable terminal housing containing the first radiating element, the second radiating element, the first series reactance element, the second series reactance element, and the decoupling element;
  • a transmission / reception circuit for processing signals received by the first radiating element and the second radiating element and supplying a signal to be transmitted to the first radiating element;
  • the characteristic of one of the radiating elements becomes relatively wide due to decoupling, and the characteristic of the other radiating element is relatively Narrow band.
  • the broadband radiating element covers both downlink and uplink frequency bands for MIMO communication.
  • the narrowband radiating element covers the downlink frequency band for MIMO communication.
  • the decoupling element can reduce the correlation coefficient between the two radiating elements. This makes it possible to increase downlink throughput.
  • a resonance frequency of the first radiating element is lower than a resonance frequency of the second radiating element, and the decoupling is performed.
  • the ring element may be composed of an inductor, and the bandwidth of the first radiating element may be wider than the bandwidth of the second radiating element.
  • the decoupling circuit when power is supplied from the first input port and the second input port, a resonance frequency of the first radiating element is higher than a resonance frequency of the second radiating element,
  • the decoupling circuit may be configured by a capacitor, and the bandwidth of the first radiating element may be wider than the bandwidth of the second radiating element.
  • the electrical length of the first radiating element and the electrical length of the second radiating element may be different from each other.
  • the resonance frequencies of the two radiating elements can be made different.
  • the characteristic of one of the radiating elements becomes relatively wide due to decoupling, and the characteristic of the other radiating element is relatively Narrow band.
  • the broadband radiating element covers both downlink and uplink frequency bands for MIMO communication.
  • the narrowband radiating element covers the downlink frequency band for MIMO communication.
  • the decoupling element can reduce the correlation coefficient between the two radiating elements. This makes it possible to increase downlink throughput.
  • FIG. 1 is an equivalent circuit diagram of the antenna device according to the first embodiment.
  • FIG. 2 is a schematic perspective view of the antenna device according to the first embodiment.
  • FIG. 3 is a graph showing the frequency characteristics of the return loss of the two radiating elements in the state before the decoupling of the antenna device according to the first embodiment.
  • FIG. 4 is a graph showing frequency characteristics of return loss of two radiating elements in a state before decoupling of the antenna device according to Comparative Example 1.
  • FIG. 5 shows the frequency characteristics of the return loss S11 of the first radiating element in the state after decoupling of the antenna device according to Example 1 and Comparative Example 1, and the first characteristic of the antenna device according to Comparative Example 2 that is not decoupled.
  • FIG. 6 shows the mutual coupling S21 between the first radiating element and the second radiating element in the state after the decoupling of the antenna apparatus according to the first embodiment and the comparative example 1, and the antenna apparatus according to the comparative example 2 that is not decoupled. It is a graph which shows the frequency characteristic of mutual coupling S21 of the 1st radiation element of this, and a 2nd radiation element.
  • FIG. 7 shows the frequency characteristics of the return loss S22 of the second radiating element in the state after the decoupling of the antenna device according to Example 1 and Comparative Example 1, and the second characteristic of the antenna device according to Comparative Example 2 that is not decoupled.
  • FIG. 8A is a graph showing the frequency characteristics of the antenna efficiency in the state after decoupling of the antenna device according to Example 1, and the frequency characteristics of the antenna efficiency of the antenna device according to Comparative Example 2 that is not decoupled.
  • 5 is a graph showing frequency characteristics of antenna efficiency in a state after decoupling of the antenna devices according to Example 1 and Comparative Example 1.
  • FIG. 9 shows the frequency characteristic of the correlation coefficient between the first radiating element and the second radiating element in the state before the decoupling of the antenna device according to Example 1 and Comparative Example 1, and Comparative Example 2 in which the decoupling is not performed.
  • FIG. 5 is a graph showing the frequency characteristics of the correlation coefficient between the first radiating element and the second radiating element of the antenna device according to FIG.
  • FIG. 10 is a block diagram of a transmission / reception circuit mounted on the antenna device according to the first embodiment.
  • FIG. 11 is a plan view of an antenna device in which a simulation is performed on the relationship between the difference between the resonance frequencies of two radiating elements and the bandwidth.
  • FIG. 12 is a chart showing reactances of the first series reactance element and the second series reactance element of a plurality of samples to be simulated.
  • FIG. 2 to No. 6 is a graph showing the frequency characteristics of the return loss S11 of the first radiating element in a state after decoupling of the 6 samples.
  • FIG. 17 is an equivalent circuit diagram of the antenna device according to the second embodiment.
  • FIG. 18 is a graph showing the frequency characteristics of the return loss and antenna efficiency of the antenna device according to the second embodiment.
  • FIG. 1 shows an equivalent circuit diagram of the antenna device according to the first embodiment.
  • One end (first terminal) T 1 of the first series reactance element 22 is connected to the first radiating element 20, and the other end (second terminal) T 2 is transmitted / received via the first matching circuit 27.
  • the circuit 29 is connected.
  • One end (third terminal) T 3 of the second series reactance element 23 is connected to the second radiating element 21, and the other end (fourth terminal) T 4 is transmitted and received via the second matching circuit 28.
  • the circuit 29 is connected.
  • An inductor or a capacitor is used for the first series reactance element 22 and the second series reactance element 23.
  • the decoupling element 26 connects the second terminal T2 of the first series reactance element 22 and the fourth terminal T4 of the second series reactance element 23 to each other.
  • the resonance frequency of the first radiating element 20 and the second radiating element are used.
  • the resonance frequency of the element 21 is different.
  • This shift in the resonance frequency is realized by adjusting the electrical lengths of the first radiating element 20 and the second radiating element 21 and the reactances of the first series reactance element 22 and the second series reactance element 23.
  • the electrical lengths of the first radiating element 20 and the second radiating element 21 may be different from each other, and the reactances of the first series reactance element 22 and the second series reactance element 23 may be mutually different. It may be different.
  • both the electrical length and the reactance may be different from each other.
  • the decoupling element 26 reduces the mutual coupling between the first radiating element 20 and the second radiating element 21.
  • the decoupling element 26 for example, an inductor, a capacitor, or a transmission line is used. Specifically, the point P1 closer to the transmission / reception circuit 29 than the interconnection point between the first series reactance element 22 and the decoupling element 26 is used as the first input port, and the second series reactance element 23 and the decoupling element are connected.
  • the value of the S parameter element S12 (hereinafter referred to as mutual coupling S12) in the operating frequency band of the antenna device
  • the second terminal T2 and the fourth terminal T4 are smaller than the mutual coupling S12 when the first input port and the second input port are used as the first input port and the second input port, respectively.
  • FIG. 2 is a perspective view of the antenna device according to the first embodiment.
  • a dielectric substrate 30 is stored in a housing 35 of the portable terminal.
  • a ground plate 31 is formed on the back surface of the dielectric substrate 30.
  • FR4 is used for the dielectric substrate 30.
  • the planar shape of the dielectric substrate 30 is, for example, a rectangle having long and short sides of 100 mm and 50 mm, respectively. This dimension is determined based on the dimension of the casing 35 of the portable terminal in which the dielectric substrate 30 is accommodated.
  • a rectangular antenna region 32 having a width of about 12 mm is defined on the surface of the dielectric substrate 30 from one short side to the inside.
  • the ground plate 31 is disposed in almost the entire area other than the antenna region 32.
  • the first radiation element 20 and the second radiation element 21 are formed on the surface of the carrier 33.
  • the carrier 33 is mounted on the antenna region 32 of the dielectric substrate 30.
  • ABS resin is used for the carrier 33.
  • Both the first radiating element 20 and the second radiating element 21 have a meander shape.
  • a first series reactance element 22, a second series reactance element 23, a decoupling element 26, a first matching circuit 27, a second matching circuit 28, and a transmission / reception circuit 29 are mounted on the surface of the dielectric substrate 30. ing.
  • the first radiating element 20 and the first series reactance element 22, the second radiating element 21 and the second series reactance element 23, and these elements are connected by a microstrip line. Alternatively, direct connection may be made without going through a transmission line.
  • one antenna region 32 is secured in the vicinity of one short side of the dielectric substrate 30, but the antenna region 32 may be secured at another position.
  • one antenna region may be secured in the vicinity of two short sides.
  • the first radiating element 20 is disposed in one antenna region
  • the second radiating element 21 is disposed in the other antenna region.
  • an antenna region may be secured in the vicinity of the long side of the dielectric substrate 30.
  • FIG. 3 shows S parameter elements S11 and S22 (hereinafter referred to as return losses S11 and S22) when the second terminal T2 and the fourth terminal T4 in FIG. 1 are the first input port and the second input port, respectively.
  • the results of the frequency characteristics obtained by simulation are obtained by simulation. That is, the return losses S11 and S22 shown in FIG. 3 correspond to the return loss in the state before decoupling.
  • the horizontal axis represents the frequency in the unit “GHz”, and the vertical axis represents the return losses S11 and S22 in the unit “dB”.
  • the resonance frequency of the first radiating element 20 is about 0.79 GHz
  • the resonance frequency of the second radiating element 21 is about 0.85 GHz.
  • the antenna devices according to Comparative Example 1 and Comparative Example 2 were also simulated.
  • the antenna device according to Comparative Example 1 when the second terminal T2 and the fourth terminal T4 in FIG. 1 are the first input port and the second input port, respectively, the first radiating element 20 and the second terminal T4 are used.
  • the resonance frequency with the radiating element 21 is substantially the same.
  • the antenna device according to the comparative example 2 has a configuration in which the decoupling element 26 (FIG. 1) is removed from the antenna device according to the first embodiment.
  • an inductor was used as the decoupling element 26.
  • FIG. 4 shows the result of the simulation of the frequency characteristics of the return losses S11 and S22 from the first radiating element 20 and the second radiating element 21 of the antenna device according to Comparative Example 1.
  • the second terminal T2 and the fourth terminal T4 in FIG. 1 are a first input port and a second input port, respectively. That is, the return losses S11 and S22 shown in FIG. 4 correspond to the return loss in the state before decoupling.
  • the horizontal axis represents frequency in the unit “GHz”, and the vertical axis represents return loss in the unit “dB”.
  • the resonance frequencies of the first radiating element 20 and the second radiating element 21 are both about 0.745 GHz.
  • FIGS. 5 to 7 show the simulation results of the S parameters of the antenna devices according to Example 1, Comparative Example 1, and Comparative Example 2.
  • FIG. 5 to 7 respectively show the interconnection point Q1 between the first matching circuit 27 and the transmission / reception circuit 29 and the interconnection point Q2 between the second matching circuit 28 and the transmission / reception circuit 29 shown in FIG.
  • a return loss S11, a mutual coupling S12, and a return loss S22 when the input port is 1 and the second input port are shown. That is, the return loss S11, the mutual coupling S12, and the return loss S22 of the antenna devices according to Example 1 and Comparative Example 1 shown in FIGS. 5 to 7 correspond to values in a state after decoupling.
  • the thick solid line indicates the S parameter of the antenna device according to the first embodiment.
  • a broken line and a thin solid line indicate S parameters of the antenna devices according to Comparative Example 1 and Comparative Example 2, respectively.
  • the downlink frequency band 746 MHz to 756 MHz of the band 13 is indicated by Bd
  • the uplink frequency band 777 MHz to 787 MHz is indicated by Bu.
  • the return loss S11 of the antenna device according to Comparative Example 1 (same resonance frequency) is smaller than the return loss S11 of the antenna device according to Example 1 and Comparative Example 2.
  • the return loss S11 of the antenna device according to the first comparative example is larger than the return loss S11 of the antenna device according to the first and second comparative examples.
  • the bandwidth of the first radiating element 20 of the antenna device according to the comparative example 1 is not sufficient.
  • the downlink frequency band Bd and the uplink frequency band Bu In both cases, the return loss of the first radiating element 20 is reduced to some extent.
  • the mutual coupling S21 between the radiating elements of the antenna device according to the comparative example 2 is the radiating element of the antenna device according to the first embodiment and the comparative example 1. It is larger than the mutual coupling S21. This is because no decoupling element is inserted.
  • the antenna device having a large mutual coupling S21 is not suitable for use as a MIMO antenna because the antenna gain (Gain) is reduced.
  • the return loss S22 of the antenna device according to Example 1 is larger than the return loss S22 of the antenna device according to Comparative Example 1 and Comparative Example 2.
  • the return loss S22 of the antenna device according to the first embodiment is also small enough to withstand practical use.
  • FIG. 8A shows frequency characteristics of antenna efficiency of the antenna devices according to Example 1 and Comparative Example 2.
  • the horizontal axis represents frequency in the unit “GHz”, and the vertical axis represents antenna efficiency in the unit “dB”.
  • the thick solid line and the thin solid line in FIG. 8A indicate the antenna efficiencies of the first radiating element 20 and the second radiating element 21 of the antenna device according to the first embodiment, respectively, and the thick broken line and the thin broken line are according to Comparative Example 2, respectively.
  • the antenna efficiencies of the first radiating element 20 and the second radiating element 21 of the antenna apparatus are shown.
  • the antenna efficiency of the first radiating element 20 of the antenna apparatus according to the first embodiment is highest in both the downlink frequency band Bd and the uplink frequency band Bu.
  • the antenna efficiency of the second radiating element 21 of the antenna device according to the first embodiment is lower than the antenna efficiency of the second radiating element 21 of the antenna device according to the comparative example 2.
  • the antenna efficiency of the second radiating element 21 of the antenna device according to Example 1 is the antenna efficiency of the first and second radiating elements 20 and 21 of the antenna device according to Comparative Example 2. It is about the same.
  • FIG. 8B shows frequency characteristics of antenna efficiency of the antenna devices according to Example 1 and Comparative Example 1.
  • the horizontal axis represents frequency in the unit “GHz”, and the vertical axis represents antenna efficiency in the unit “dB”.
  • the thick solid line and the thin solid line in FIG. 8B indicate the antenna efficiencies of the first radiating element 20 and the second radiating element 21 of the antenna device according to the first embodiment, respectively, and the thick broken line and the thin broken line are according to Comparative Example 1, respectively.
  • the antenna efficiencies of the first radiating element 20 and the second radiating element 21 of the antenna apparatus are shown.
  • the antenna efficiency of the first radiating element 20 of the antenna apparatus according to the first embodiment is highest in both the downlink frequency band Bd and the uplink frequency band Bu.
  • the antenna efficiency of the second radiating element 21 of the antenna apparatus according to the first embodiment is the same as that of the second radiating element 21 of the antenna apparatus according to the first comparative example in both the downlink frequency band Bd and the uplink frequency band Bu. Lower than efficiency.
  • the antenna efficiency of the second radiating element 21 of the antenna device according to the first embodiment is also large enough to withstand practical use.
  • FIG. 9 shows a simulation result of the frequency characteristics of the correlation coefficient (correlation) between the first radiating element 20 and the second radiating element 21 of the antenna device according to Example 1, Comparative Example 1, and Comparative Example 2.
  • the horizontal axis represents the frequency in the unit “GHz”, and the vertical axis represents the correlation coefficient.
  • the correlation coefficient is preferably 0.7 or less in terms of electric field value.
  • a sufficiently small correlation coefficient is obtained in the downlink frequency band Bd as compared with the antenna device according to the comparative example 2 in which the decoupling element 26 is not inserted.
  • the antenna device according to Example 1 shows a smaller correlation coefficient than that of Comparative Example 1 in which the decoupling element 26 is inserted.
  • the resonance frequency between the first radiating element 20 and the second radiating element 21 is obtained. This is an effect of setting the reactances of the first series reactance element 22 and the second series reactance element 23 so that are different from each other.
  • the first radiating element 20 (FIG. 1) of the antenna device according to the first embodiment is suitable for use in both the downlink and uplink frequency bands Bd and Bu.
  • the second radiating element 21 (FIG. 1) of the antenna device according to the first embodiment is not suitable for use in the uplink frequency band Bu, but is suitable for use in the downlink frequency band Bd. I understand. That is, in the downlink frequency band Bd, both the first radiating element 20 and the second radiating element 21 can be used. In the uplink frequency band Bu, the first radiating element 20 can be used.
  • the first embodiment as shown in FIG. 9, since the correlation coefficient is low in the downlink frequency band Bd, when the antenna device according to the first embodiment is applied to a MIMO antenna for a mobile terminal, a high throughput is achieved. It becomes possible to obtain.
  • the resonance of the first radiating element 20 is achieved.
  • the reactances of the first series reactance element 22 and the second series reactance element 23 are selected so that the frequency and the resonance frequency of the second radiating element 21 are equal.
  • This configuration is equivalent to a configuration in which two radiating elements having the same electrical length are arranged. In a state where the two radiating elements are connected to each other by the decoupling element 26, that is, in a decoupled state, the amplitudes of the current distribution on the two radiating elements are equal, and the phase difference is 180 °.
  • the resonance of the first radiating element 20 is achieved.
  • the reactances of the first series reactance element 22 and the second series reactance element 23 are selected so that the frequency and the resonance frequency of the second radiating element 21 are different. As a result, the balance of the current distribution on the two radiating elements is lost, and the electromagnetic field near the radiating elements changes.
  • Example 1 an inductor was used as the decoupling element 26.
  • the bandwidth of the first radiating element 20 having a low resonance frequency in the configuration before decoupling is wider than the bandwidth of the other second radiating element 21.
  • a relatively narrowband radiating element, ie, a second radiating element 21 covers the downlink frequency band Bd, and a relatively wideband first radiating element 20 includes both downlink and uplink frequencies.
  • the frequency band is set so as to cover the bands Bd and Bu.
  • the bandwidth of the second radiating element 21 having the higher resonance frequency in the configuration before decoupling becomes wide, and the band of the first radiating element 20 having the lower resonance frequency.
  • the width becomes narrower.
  • the second radiating element 21 covers both the downlink and uplink frequency bands Bd, Bu, and the first radiating element 20 covers the downlink frequency band Bd. That's fine.
  • One of the two radiating elements has a relatively wide bandwidth and the other has a relatively narrow bandwidth because the electromagnetic field distribution near the radiating element after the decoupling element 26 is inserted is This is because the first series reactance element 22 and the second series reactance element 23 are changed.
  • the first series reactance element 22 and the second series reactance element 23 have a role of changing the electromagnetic field distribution in the vicinity of the radiating element.
  • the resonance frequency of the first radiating element 20 and the second radiating element 21 is adjusted by adjusting the reactance of the first series reactance element 22 and the second series reactance element 23.
  • By adjusting the reactance of the series reactance element 23 desired antenna characteristics can be realized.
  • the first series reactance element 22 and the second series reactance element 23 have a role of making the resonance frequencies of the first radiating element 20 and the second radiating element 21 different, and a transmission line is arranged between the radiating elements. Without functioning, it also functions as part of a decoupling circuit that connects the first radiating element 20 and the second radiating element 21.
  • FIG. 10 shows a block diagram of the transmission / reception circuit 29.
  • the baseband integrated circuit 40 performs baseband signal processing.
  • the high frequency integrated circuit 41 performs signal processing in the radio frequency band.
  • a transmission signal is input from the high frequency integrated circuit 41 to the first radiating element 20 via the power amplifier 42, the surface wave filter 43, and the diplexer 44. No transmission signal is input to the second radiating element 21.
  • the high frequency signal received by the first radiating element 20 is input to the high frequency integrated circuit 41 through the diplexer 44 and the surface wave filter 45.
  • a high frequency signal received by the second radiating element 21 is input to the high frequency integrated circuit 41 via the surface wave filter 46 and the low noise amplifier 47.
  • the broadband first radiating element 20 is used for the uplink, and both the first radiating element 20 and the second radiating element 21 are used for the downlink.
  • FIG. 11 shows a plan view of the antenna device used for the simulation.
  • the planar shape of the dielectric substrate 30 is rectangular, and its thickness is 0.8 mm.
  • the short side length (width) W of the dielectric substrate 30 is 25 mm.
  • the surface of the dielectric substrate 30 is divided into a ground region having a length L1 (45 mm) and an antenna region having a length L2 (21.8 mm) in the length direction.
  • a ground plate 31 is disposed over the entire ground region of length L1.
  • the first radiating element 20 and the second radiating element 21 are arranged in the antenna region having the length L2.
  • Each of the first radiating element 20 and the second radiating element 21 extends in parallel to the long side of the dielectric substrate 30 from the position corresponding to the edge of the ground plate 31 toward the short side of the dielectric substrate 30. .
  • the width D1 of the first radiating element 20 and the second radiating element 21 is 1.44 mm.
  • the distance D2 between the first radiating element 20 and the second radiating element 21 is 7.06 mm.
  • the feeding ends of the first radiating element 20 and the second radiating element 21 are defined as a first input port FP1 and a second input port FP2, respectively.
  • the return loss S11 of the first radiating element 20 is equal to the return loss S22 of the second radiating element 21.
  • the reactance of the first series reactance element 22 (FIG. 1) and the second series reactance element 23 (FIG. 1) is the same at a frequency of 2.45 GHz, and the first radiating element 20 and the second radiating element 21 are the same.
  • the condition where and are not coupled to each other was calculated by simulation.
  • the resonance frequency of the first radiating element 20 and the resonance frequency of the second radiating element 21 are the same, and the points P1 and P2 in FIG.
  • both the first series reactance element 22 and the second series reactance element 23 should be 0.38 nH inductors, and the decoupling element 26 should be a 1.08 pF capacitor.
  • the inductance of the first series reactance element 22 that satisfies the decoupling condition having the same resonance frequency is referred to as a reference inductance jXr.
  • the inductance jX2 of the second series reactance element 23 was calculated for five samples in which the inductance jX1 of the first series reactance element 22 was changed from the reference inductance jXr. Note that all samples satisfy the condition that the first radiating element 20 and the second radiating element 21 are not coupled to each other.
  • Fig. 12 shows the No. satisfying the decoupling condition with the same resonance frequency.
  • No. 1 and No. 1 in which jX1 is changed from the reference inductance jXr (0.38 nH). 2 to No.
  • the ratio of the inductance jX1 to the inductances jX1, jX2 and the reference inductance jXr of the six samples is shown. It can be seen that as the inductance jX1 of the first series reactance element 22 increases from the reference inductance jXr, the inductance jX2 of the second series reactance element 23 decreases in order to decouple the radiation elements.
  • FIGS. 2 to No. The result of having calculated the frequency characteristic of S parameter of 6 samples by simulation is shown.
  • the S parameters shown in FIGS. 13 to 15 are calculated using the points Q1 and Q2 in FIG. 1 as the first input port and the second input port, respectively.
  • the horizontal axis in FIGS. 13 to 15 represents the frequency in the unit “GHz”, and the vertical axis in FIGS. 13 to 15 represents the return loss S11, the mutual coupling S12, and the return loss S22 in the unit “dB”, respectively.
  • the S parameter of 6 samples is shown.
  • the frequency characteristic of the S parameter of sample 1 is No. 1.
  • the frequency characteristics of the S parameter of sample 2 are almost the same.
  • the return losses S11 and S22 show the minimum values in the vicinity of the resonance frequency.
  • the frequency band where the return loss is ⁇ 10 dB or less is called the bandwidth of the radiating element.
  • the bandwidth of the radiating element As shown in FIG. 13, as the sample number increases, that is, as the ratio of the inductance jX1 to the reference inductance jXr increases, the bandwidth of the first radiating element 20 decreases. Conversely, as shown in FIG. 15, the bandwidth of the second radiating element 21 increases as the sample number increases, that is, as the ratio of the inductance jX1 to the reference inductance jXr increases.
  • the mutual coupling S12 between the radiating elements decreases as the sample number increases, that is, as the ratio of the inductance jX1 to the reference inductance jXr increases. Further, the bandwidth of the frequency at which the size of the mutual coupling S12 is ⁇ 10 dB or less also increases as the ratio of the inductance jX1 to the reference inductance jXr increases.
  • FIG. 16 shows the relationship between the bandwidth of the frequency characteristics of the return losses S11 and S22 and the mutual coupling S21 and the ratio of the inductance jX1 to the reference inductance jXr.
  • the horizontal axis represents the ratio of the inductance jX1 to the reference inductance jXr, and the vertical axis represents the ratio of the bandwidth to the center frequency in the unit “%”.
  • the triangle symbol, square symbol, and circle symbol in the figure indicate the bandwidths of the frequency characteristics of the return loss S11, the mutual coupling S21, and the return loss S22, respectively.
  • the bandwidth of the frequency characteristic of the return loss S11 becomes narrower and the bandwidth of the frequency characteristic of the return loss S22 becomes wider.
  • the relatively wideband second radiating element 21 is used in both the downlink and the uplink, and the relatively narrowband first radiating element 20 is used only in the downlink. Use it.
  • FIG. 17 shows an equivalent circuit diagram of the antenna device according to the second embodiment.
  • differences from the antenna device according to the first embodiment illustrated in FIG. 1 will be described, and description of the same configuration will be omitted.
  • Example 1 as shown in FIG. 1, the first radiating element 20 and the first series reactance element 22 were directly connected.
  • the first radiating element 20 and the first series reactance element 22 are connected via a switching element 50.
  • the transmission / reception circuit 52 for the band 5 and the band 2 is mounted.
  • the transmission / reception circuit 52 is connected to the switching element 50 via the matching circuit 51.
  • the switching element 50 for example, a single pole double throw (SPDT) switch is used.
  • the first radiating element 20 is connected to the input port of the SPDT switch, the first series reactance element 22 is connected to one output port, and the matching circuit 51 is connected to the other output port.
  • the switching element 50 switches between a first state in which the first radiating element 20 is connected to the first series reactance element 22 and a second state in which the first radiating element 20 is connected to the matching circuit 51.
  • the antenna device according to the second embodiment can transmit and receive the radio frequency band of the band 13 in the first state, and can transmit and receive the radio frequency bands of the band 5 and the band 2 in the second state.
  • An example of a characteristic is shown.
  • the horizontal axis represents the frequency in the unit “GHz”
  • the left vertical axis represents the return loss in the unit “dB”
  • the right vertical axis represents the antenna efficiency in the unit “dB”.
  • the thin solid line in the figure indicates the return loss
  • the thick solid line indicates the antenna efficiency in the band 5 band
  • the thick broken line indicates the antenna efficiency in the band 2 band. It can be seen that the antenna device according to the second embodiment can cope with the frequency bands of band 5 and band 2.
  • the antenna device according to the second embodiment can cope with the frequency band of the band 13 in the same manner as the antenna device according to the first embodiment.
  • an SPDT switch is used as the switching element 50, but a diplexer may also be used.
  • an SPnT switch having n output ports may be used as the switching element 50.
  • a switching element may be inserted between the second radiating element 21 and the second series reactance element 23, or between the first radiating element 20 and the first series reactance element 22, and the second A switching element may be connected to both the radiation element 21 and the second series reactance element 23.
  • the insertion position of the switching element 50 is not limited to between the first radiating element 20 and the first series reactance element 22, and the switching element 50 may be inserted after the first series reactance element 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)

Abstract

 第1の直列リアクタンス素子の一対の端子のうち一方の第1の端子が第1の放射素子に接続され、他方の第2の端子が第1の送受信回路に接続されている。第2の直列リアクタンス素子の一対の端子のうち一方の第3の端子が第2の放射素子に接続され、他方の第4の端子が第1の送受信回路に接続されている。デカップリング素子が、第1の直列リアクタンス素子の第2の端子と、第2の直列リアクタンス素子の第4の端子とを相互に接続し、第1の放射素子と第2の放射素子との間の相互結合を低減させる。第1の直列リアクタンス素子の第2の端子を第1の入力ポートとし、第2の直列リアクタンス素子の第4の端子を第2の入力ポートとして給電したとき、第1の放射素子の共振周波数と第2の放射素子の共振周波数とが相互に異なる。

Description

アンテナ装置及びMIMO無線装置
 本発明は、複数の放射素子を有するアンテナ装置、及びMIMO無線装置に関する。
 送信側及び受信側の双方に複数の放射素子を設置して空間多重化を行うMIMO(Multi-Input Multi-Output)技術により、高速かつ大容量の無線通信を行うことができる。MIMOアンテナには、複数の放射素子の間の低結合化及び低相関化が求められる。特許文献1に、2つの放射素子のダイポール軸(dipole axes)の方向を異ならせることにより、低相関化を図ったMIMOアンテナが開示されている。特許文献2、非特許文献1~3に、2つのアンテナ素子同士を接続素子で接続することにより、アンテナ素子間の結合を低減させる技術が開示されている。
国際公開第2011/064444号 特表2010-525680号公報
Min-Seok Han et al., "MIMO Antenna Using a Decoupling Network for Next Generation Mobile Application", ISCIT 2009. 9th International Symposium on Communications and Information Technology, 2009 佐藤浩、小柳芳雄 "近接配置2素子モノポールアンテナの2周波数での低結合化検討"、 信学技報 A、P2010-69、pp11-15 Shin-Chang Chen et al., "A Decoupling Technique for Increasing the Port Isolation Between Two Strongly Coupled Antennas", IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, (2008)
 複数の放射素子の間の低結合化及び低相関化を行う従来の構成では、アンテナ装置の動作帯域幅が狭くなってしまう。例えば、LTE規格が使用されるバンド13の帯域幅を確保することが困難である。また、放射素子の放射特性は、アンテナ周囲の部品の影響や、携帯端末の形状の影響を受ける。このため、アンテナの周囲に配置される部品や、携帯端末の形状が変わると、放射特性も変化する。従来のアンテナでは、放射素子同士がデカップリング素子で接続されるため、放射特性の変化に応じて、放射素子自体をチューニングしなければならない。
 本発明の一観点によると、
 第1の放射素子と、
 第2の放射素子と、
 一対の端子のうち一方の第1の端子が前記第1の放射素子に接続され、他方の第2の端子が第1の送受信回路に接続された第1の直列リアクタンス素子と、
 一対の端子のうち一方の第3の端子が前記第2の放射素子に接続され、他方の第4の端子が前記第1の送受信回路に接続された第2の直列リアクタンス素子と、
 前記第1の直列リアクタンス素子の前記第2の端子と、前記第2の直列リアクタンス素子の前記第4の端子とを相互に接続し、前記第1の放射素子と前記第2の放射素子との間の相互結合を低減させるデカップリング素子と
を有し、
 前記第1の直列リアクタンス素子の前記第2の端子を第1の入力ポートとし、前記第2の直列リアクタンス素子の前記第4の端子を第2の入力ポートとして給電したとき、前記第1の放射素子の共振周波数と前記第2の放射素子の共振周波数とが相互に異なるアンテナ装置が提供される。
 第1の放射素子と第2の放射素子との共振周波数を異ならせておくと、デカップリングにより、一方の放射素子の特性が相対的に広帯域になり、他方の放射素子の特性が相対的に狭帯域になる。広帯域の放射素子は、MIMO通信用のダウンリンクとアップリンクとの両方の周波数帯域をカバーする。狭帯域の放射素子は、MIMO通信用のダウンリンクの周波数帯域をカバーする。また、デカップリング素子により、2つの放射素子の相関係数を低減させることができる。これにより、ダウンリンクのスループットを高めることが可能になる。
 前記アンテナ装置において、前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも低く、前記デカップリング素子がインダクタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い構成としてもよい。
 また、前記アンテナ装置において、 前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも高く、前記デカップリング回路がキャパシタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い構成としてもよい、
 前記アンテナ装置において、前記第1の放射素子の電気長と、前記第2の放射素子の電気長とを、相互に異ならせてもよい。このように、両者の電気長を異ならせることにより、2つの放射素子の共振周波数を異ならせることができる。
 前記アンテナ装置において、さらに、
 前記第1の送受信回路とは異なる周波数帯で送受信を行う第2の送受信回路と、
 前記第1の放射素子と前記第1の直列リアクタンス素子との間に挿入され、前記第1の放射素子で受信された信号を、前記第1の送受信回路及び前記前記第2の送受信回路のいずれかに振り分ける切替素子と
を設けてもよい。
 前記第1の放射素子で受信された信号を、前記第1の送受信回路に振り分けることにより、MIMOアンテナとして動作させることができる。前記第1の放射素子で受信された信号を、前記第2の送受信回路に振り分けることにより、MIMO通信の周波数帯域とは異なる周波数帯域で通信を行うことができる。
 本発明の他の観点によると、
 第1の放射素子と、
 第2の放射素子と、
 一対の端子のうち一方の第1の端子が前記第1の放射素子に接続され、他方の第2の端子が第1の送受信回路に接続された第1の直列リアクタンス素子と、
 一対の端子のうち一方の第3の端子が前記第2の放射素子に接続され、他方の第4の端子が前記第1の送受信回路に接続された第2の直列リアクタンス素子と、
 前記第1の直列リアクタンス素子の前記第2の端子と、前記第2の直列リアクタンス素子の前記第4の端子とを相互に接続し、前記第1の放射素子と前記第2の放射素子との間の相互結合を低減させるデカップリング素子と
を有し、
 前記第1の放射素子、前記第2の放射素子、前記第1の直列リアクタンス素子、前記第2の直列リアクタンス素子、及び前記デカップリング素子を収容する携帯端末筐体と、
 前記第1の放射素子及び前記第2の放射素子で受信された信号を処理すると共に、送信すべき信号を前記第1の放射素子に供給する送受信回路と
を有し、
 前記第1の直列リアクタンス素子の前記第2の端子を給電点としたときの前記第1の放射素子の共振周波数と、前記第2の直列リアクタンス素子の前記第4の端子を給電点としたときの前記第2の放射素子の共振周波数とが異なるMIMO無線装置が提供される。
 第1の放射素子と第2の放射素子との共振周波数を異ならせておくと、デカップリングにより、一方の放射素子の特性が相対的に広帯域になり、他方の放射素子の特性が相対的に狭帯域になる。広帯域の放射素子は、MIMO通信用のダウンリンクとアップリンクとの両方の周波数帯域をカバーする。狭帯域の放射素子は、MIMO通信用のダウンリンクの周波数帯域をカバーする。また、デカップリング素子により、2つの放射素子の相関係数を低減させることができる。これにより、ダウンリンクのスループットを高めることが可能になる。
 前記MIMO無線装置において、前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも低く、前記デカップリング素子がインダクタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い構成としてもよい。
 前記MIMOアンテナ無線装置において、前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも高く、前記デカップリング回路がキャパシタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い構成としてもよい。
 前記MIMO無線装置において、前記第1の放射素子の電気長と、前記第2の放射素子の電気長とが、相互に異なる構成としてもよい。このように、両者の電気長を異ならせることにより、2つの放射素子の共振周波数を異ならせることができる。
 第1の放射素子と第2の放射素子との共振周波数を異ならせておくと、デカップリングにより、一方の放射素子の特性が相対的に広帯域になり、他方の放射素子の特性が相対的に狭帯域になる。広帯域の放射素子は、MIMO通信用のダウンリンクとアップリンクとの両方の周波数帯域をカバーする。狭帯域の放射素子は、MIMO通信用のダウンリンクの周波数帯域をカバーする。また、デカップリング素子により、2つの放射素子の相関係数を低減させることができる。これにより、ダウンリンクのスループットを高めることが可能になる。
図1は、実施例1によるアンテナ装置の等価回路図である。 図2は、実施例1によるアンテナ装置の概略斜視図である。 図3は、実施例1によるアンテナ装置のデカップリング前の状態における2つの放射素子のリターンロスの周波数特性を示すグラフである。 図4は、比較例1によるアンテナ装置のデカップリング前の状態における2つの放射素子のリターンロスの周波数特性を示すグラフである。 図5は、実施例1及び比較例1によるアンテナ装置のデカップリング後の状態における第1の放射素子のリターンロスS11の周波数特性、及びデカップリングされていない比較例2によるアンテナ装置の第1の放射素子のリターンロスS11の周波数特性を示すグラフである。 図6は、実施例1及び比較例1によるアンテナ装置のデカップリング後の状態における第1の放射素子と第2の放射素子との相互結合S21、及びデカップリングされていない比較例2によるアンテナ装置の第1の放射素子と第2の放射素子との相互結合S21の周波数特性を示すグラフである。 図7は、実施例1及び比較例1によるアンテナ装置のデカップリング後の状態における第2の放射素子のリターンロスS22の周波数特性、及びデカップリングされていない比較例2によるアンテナ装置の第2の放射素子のリターンロスS22の周波数特性を示すグラフである。 図8Aは、実施例1によるアンテナ装置のデカップリング後の状態におけるアンテナ効率の周波数特性、及びデカップリングされていない比較例2によるアンテナ装置のアンテナ効率の周波数特性を示すグラフであり、図8Bは、実施例1及び比較例1によるアンテナ装置のデカップリング後の状態におけるアンテナ効率の周波数特性を示すグラフである。 図9は、実施例1及び比較例1によるアンテナ装置のデカップリング前の状態における第1の放射素子と第2の放射素子との相関係数の周波数特性、及びデカップリングされていない比較例2によるアンテナ装置の第1の放射素子と第2の放射素子との相関係数の周波数特性を示すグラフである。 図10は、実施例1によるアンテナ装置に搭載される送受信回路のブロック図である。 図11は、2つの放射素子の共振周波数の差と、帯域幅との関係についてシミュレーションを行ったアンテナ装置の平面図である。 図12は、シミュレーションの対象とする複数のサンプルの第1の直列リアクタンス素子及び第2の直列リアクタンス素子のリアクタンスを示す図表である。 図13は、No.2~No.6のサンプルのデカップリング後の状態における第1の放射素子のリターンロスS11の周波数特性を示すグラフである。 図14は、No.2~No.6のサンプルのデカップリング後の状態における第1の放射素子と第2の放射素子との相互結合S21の周波数特性を示すグラフである。 図15は、No.2~No.6のサンプルのデカップリング後の状態における第2の放射素子のリターンロスS22の周波数特性を示すグラフである。 図16は、No.2~No.6のサンプルのデカップリング後の状態におけるS11、S21、S22の、帯域幅とjX1(第1の直列リアクタンス素子のリアクタンス)/jXr(基準リアクタンス)との関係を示すグラフである。 図17は、実施例2によるアンテナ装置の等価回路図である。 図18は、実施例2によるアンテナ装置のリターンロスとアンテナ効率の周波数特性を示すグラフである。
 [実施例1]
 図1に、実施例1によるアンテナ装置の等価回路図を示す。第1の直列リアクタンス素子22の一端(第1の端子)T1が第1の放射素子20に接続されており、他端(第2の端子)T2が、第1のマッチング回路27を介して送受信回路29に接続されている。第2の直列リアクタンス素子23の一端(第3の端子)T3が第2の放射素子21に接続されており、他端(第4の端子)T4が、第2のマッチング回路28を介して送受信回路29に接続されている。第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23には、インダクタまたはキャパシタが用いられる。デカップリング素子26が、第1の直列リアクタンス素子22の第2の端子T2と第2の直列リアクタンス素子23の第4の端子T4とを相互に接続する。
 第2の端子T2及び第4の端子T4を、それぞれ第1の放射素子20及び第2の放射素子21への入力ポートとしたとき、第1の放射素子20の共振周波数と、第2の放射素子21の共振周波数とが異なっている。この共振周波数のずれは、第1の放射素子20及び第2の放射素子21の電気長、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンスを調節することにより実現される。例えば、第1の放射素子20と第2の放射素子21との電気長を相互に異ならせてもよいし、第1の直列リアクタンス素子22と第2の直列リアクタンス素子23とのリアクタンスを相互に異ならせてもよい。または、電気長とリアクタンスとの両者を、相互に異ならせてもよい。
 デカップリング素子26は、第1の放射素子20と第2の放射素子21との間の相互結合を低減させる。デカップリング素子26には、例えば、インダクタ、キャパシタ、または伝送線路が用いられる。具体的には、第1の直列リアクタンス素子22とデカップリング素子26との相互接続点よりも送受信回路29側の点P1を第1の入力ポートとし、第2の直列リアクタンス素子23とデカップリング素子26との相互接続点よりも送受信回路29側の点P2を第2の入力ポートとしたとき、アンテナ装置の動作周波数帯域において、Sパラメータの要素S12(以下、相互結合S12という。)の値が、第2の端子T2及び第4の端子T4を、それぞれ第1の入力ポート及び第2の入力ポートとしたときの相互結合S12より小さくなる。
 図2に、実施例1によるアンテナ装置の斜視図を示す。携帯端末の筐体35内に誘電体基板30が格納されている。誘電体基板30の背面にグランド板31が形成されている。誘電体基板30には、例えばFR4が用いられる。誘電体基板30の平面形状は、例えば、長辺及び短辺の長さがそれぞれ100mm及び50mmの長方形である。この寸法は、誘電体基板30が収容される携帯端末の筐体35の寸法に基づいて決定される。誘電体基板30の表面に、その一方の短辺から内側に向かって幅約12mmの長方形のアンテナ領域32が画定されている。グランド板31は、アンテナ領域32以外のほぼ全域に配置されている。
 キャリア33の表面に、第1の放射素子20及び第2の放射素子21が形成されている。このキャリア33が、誘電体基板30のアンテナ領域32に搭載されている。キャリア33には、例えばABS樹脂が用いられる。第1の放射素子20及び第2の放射素子21は、共にミアンダ形状を有する。誘電体基板30の表面に、第1の直列リアクタンス素子22、第2の直列リアクタンス素子23、デカップリング素子26、第1のマッチング回路27、第2のマッチング回路28、及び送受信回路29が搭載されている。第1の放射素子20と第1の直列リアクタンス素子22との間、第2の放射素子21と第2の直列リアクタンス素子23との間、及びこれらの素子間は、マイクロストリップラインで接続してもよいし、伝送路を介することなく直接接続してもよい。
 図2では、誘電体基板30の1つの短辺の近傍に1つのアンテナ領域32を確保したが、アンテナ領域32は、他の位置に確保してもよい。例えば、2つの短辺の近傍に、それぞれ1つずつアンテナ領域を確保してもよい。この場合には、一方のアンテナ領域に第1の放射素子20が配置され、他方のアンテナ領域に第2の放射素子21が配置される。また、誘電体基板30の長辺の近傍にアンテナ領域を確保してもよい。
 図3に、図1の第2の端子T2及び第4の端子T4をそれぞれ第1の入力ポート及び第2の入力ポートとしたときのSパラメータの要素S11及びS22(以下、リターンロスS11、S22という。)の周波数特性をシミュレーションにより求めた結果を示す。すなわち、図3に示されたリターンロスS11、S22は、デカップリング前の状態におけるリターンロスに相当する。横軸は周波数を単位「GHz」で表し、縦軸はリターンロスS11、S22を単位「dB」で表す。
 第1の放射素子20の共振周波数は約0.79GHzであり、第2の放射素子21の共振周波数は約0.85GHzであることがわかる。このように、デカップリング素子26を挿入していない構成で、両者の共振周波数が相互に異なるように、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンス、第1の放射素子20及び第2の放射素子21の電気長が選択されている。
 次に、図4~図9を参照して、実施例1の構成を採用することの効果について説明する。比較のために、比較例1及び比較例2によるアンテナ装置についてもシミュレーションを行った。比較例1によるアンテナ装置では、図1の第2の端子T2及び第4の端子T4を、それぞれ第1の入力ポート及び第2の入力ポートとしたとき、第1の放射素子20と第2の放射素子21との共振周波数がほぼ一致する。比較例2によるアンテナ装置は、実施例1によるアンテナ装置からデカップリング素子26(図1)を取り除いた構成を有する。実施例1及び比較例1においては、デカップリング素子26としてインダクタを用いた。
 図4に、比較例1によるアンテナ装置の第1の放射素子20及び第2の放射素子21からのリターンロスS11、S22の周波数特性をシミュレーションによって求めた結果を示す。なお、図1の第2の端子T2及び第4の端子T4を、それぞれ第1の入力ポート及び第2の入力ポートとした。すなわち、図4に示されたリターンロスS11、S22は、デカップリング前の状態におけるリターンロスに相当する。横軸は周波数を単位「GHz」で表し、縦軸はリターンロスを単位「dB」で表す。第1の放射素子20及び第2の放射素子21の共振周波数は、共に約0.745GHzである。
 図5~図7に、実施例1、比較例1、及び比較例2によるアンテナ装置のSパラメータのシミュレーション結果を示す。図5~図7は、それぞれ図1に示した第1のマッチング回路27と送受信回路29との相互接続点Q1及び第2のマッチング回路28と送受信回路29との相互接続点Q2を、それぞれ第1の入力ポート及び第2の入力ポートとしたときのリターンロスS11、相互結合S12、及びリターンロスS22を示す。すなわち、図5~図7に示された実施例1及び比較例1によるアンテナ装置のリターンロスS11、相互結合S12、及びリターンロスS22は、デカップリング後の状態における値に相当する。
 図5~図7において、太い実線は、実施例1によるアンテナ装置のSパラメータを示す。破線及び細い実線は、それぞれ比較例1及び比較例2によるアンテナ装置のSパラメータを示す。また、図5~図7に、バンド13のダウンリンクの周波数帯域746MHz~756MHzをBdで示し、アップリンクの周波数帯域777MHz~787MHzをBuで示す。
 図5に示すように、ダウンリンクの周波数帯域Bdにおいて、比較例1(同一共振周波数)によるアンテナ装置のリターンロスS11が、実施例1及び比較例2によるアンテナ装置のリターンロスS11より小さい。ところが、アップリンクの周波数帯域Buにおいては、比較例1によるアンテナ装置のリターンロスS11が、実施例1及び比較例2によるアンテナ装置のリターンロスS11よりも大きい。バンド13の周波数帯域で使用するには、比較例1によるアンテナ装置の第1の放射素子20の帯域幅は十分であるとはいえない。これに対し、第1の放射素子20と第2の放射素子21との共振周波数を異ならせた実施例1及び比較例2のアンテナ装置では、ダウンリンクの周波数帯域Bdとアップリンクの周波数帯域Buとの両方で、第1の放射素子20のリターンロスがある程度小さくなっている。
 図6に示すように、ダウンリンクの周波数帯域Bdにおいて、比較例2(デカップリング素子なし)によるアンテナ装置の放射素子間の相互結合S21が、実施例1及び比較例1によるアンテナ装置の放射素子間の相互結合S21に比べて大きい。これは、デカップリング素子が挿入されていないためである。このように相互結合S21の大きなアンテナ装置は、アンテナ利得(Gain)が低下するため、MIMOアンテナとしての使用に好適であるとはいえない。
 図7に示すように、実施例1によるアンテナ装置のリターンロスS22は、比較例1及び比較例2によるアンテナ装置のリターンロスS22より大きい。ただし、ダウンリンクの周波数帯域Bdに着目すると、実施例1によるアンテナ装置のリターンロスS22も、実用に耐え得る程度まで小さくなっていることがわかる。
 図8Aに、実施例1及び比較例2によるアンテナ装置のアンテナ効率の周波数特性を示す。横軸は周波数を単位「GHz」で表し、縦軸はアンテナ効率を単位「dB」で表す。図8A中の太い実線及び細い実線は、それぞれ実施例1によるアンテナ装置の第1の放射素子20及び第2の放射素子21のアンテナ効率を示し、太い破線及び細い破線は、それぞれ比較例2によるアンテナ装置の第1の放射素子20及び第2の放射素子21のアンテナ効率を示す。
 ダウンリンクの周波数帯域Bd及びアップリンクの周波数帯域Buの両方において、実施例1によるアンテナ装置の第1の放射素子20のアンテナ効率が最も高い。アップリンクの周波数帯域Buにおいて、実施例1によるアンテナ装置の第2の放射素子21のアンテナ効率は、比較例2によるアンテナ装置の第2の放射素子21のアンテナ効率より低い。ただし、ダウンリンクの周波数帯域Bdにおいては、実施例1によるアンテナ装置の第2の放射素子21のアンテナ効率は、比較例2によるアンテナ装置の第1及び第2の放射素子20、21のアンテナ効率と同程度である。
 図8Bに、実施例1及び比較例1によるアンテナ装置のアンテナ効率の周波数特性を示す。横軸は周波数を単位「GHz」で表し、縦軸はアンテナ効率を単位「dB」で表す。図8B中の太い実線及び細い実線は、それぞれ実施例1によるアンテナ装置の第1の放射素子20及び第2の放射素子21のアンテナ効率を示し、太い破線及び細い破線は、それぞれ比較例1によるアンテナ装置の第1の放射素子20及び第2の放射素子21のアンテナ効率を示す。
 ダウンリンクの周波数帯域Bd及びアップリンクの周波数帯域Buの両方において、実施例1によるアンテナ装置の第1の放射素子20のアンテナ効率が最も高い。実施例1によるアンテナ装置の第2の放射素子21のアンテナ効率は、ダウンリンクの周波数帯域Bd及びアップリンクの周波数帯域Buの両方において、比較例1によるアンテナ装置の第2の放射素子21のアンテナ効率より低い。ただし、ダウンリンクの周波数帯域Bdにおいては、実施例1によるアンテナ装置の第2の放射素子21のアンテナ効率も、実用に耐え得る程度の大きさを有する。
 図9に、実施例1、比較例1、及び比較例2によるアンテナ装置の第1の放射素子20と第2の放射素子21との相関係数(correlation)の周波数特性のシミュレーション結果を示す。横軸は周波数を単位「GHz」で表し、縦軸は相関係数を表す。MIMOアンテナとして用いるためには、相関係数が電界値で0.7以下であることが好ましい。実施例1によるアンテナ装置では、デカップリング素子26を挿入していない比較例2によるアンテナ装置と比べて、ダウンリンクの周波数帯域Bdにおいて、十分小さな相関係数が得られている。さらに、デカップリング素子26を挿入した比較例1と比べても、実施例1によるアンテナ装置の方が小さな相関係数を示している。これは、図3に示したように、第2の端子T2及び第4の端子T4(図1)を入力ポートとしたとき、第1の放射素子20と第2の放射素子21との共振周波数が相互に異なるように、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンスを設定したことの効果である。
 上述のシミュレーション結果から、実施例1によるアンテナ装置の第1の放射素子20(図1)は、ダウンリンク及びアップリンクの両方の周波数帯域Bd、Buでの使用に適していることがわかる。また、実施例1によるアンテナ装置の第2の放射素子21(図1)は、アップリンクの周波数帯域Buでの使用には適さないが、ダウンリンクの周波数帯域Bdでの使用に適していることがわかる。すなわち、ダウンリンクの周波数帯域Bdでは、第1の放射素子20と第2の放射素子21との両方を使用することができる。アップリンクの周波数帯域Buでは、第1の放射素子20を使用することができる。実施例1では、図9に示したように、ダウンリンクの周波数帯域Bdで相関係数が低くなっているため、実施例1によるアンテナ装置を携帯端末用のMIMOアンテナに適用すると、高いスループットを得ることが可能になる。
 次に、図5~図9に示したシミュレーション結果を参考にして、実施例1及び比較例1によるアンテナ装置の動作メカニズムについて説明する。
 比較例1によるアンテナ装置では、図1に示した第2の端子T2及び第4の端子T4をそれぞれ第1の入力ポート及び第2の入力ポートとしたときに、第1の放射素子20の共振周波数と第2の放射素子21の共振周波数が等しくなるように、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンスが選択されている。この構成は、電気長の等しい2本の放射素子が配置された構成と等価である。この2本の放射素子をデカップリング素子26で相互に接続した状態、すなわちデカップリングさせた状態では、2本の放射素子上の電流分布の振幅が等しくなり、位相差が180°になる。携帯端末においては、その基板の寸法による制約から、2本の放射素子が近接して搭載される。このため、2本の放射素子に流れる電流が相互に打ち消し合い、アンテナ装置からの放射が小さくなる。また、グランド板に流れ込む電流が減少し、2本の放射素子内に閉じこもる電流分布となる。その結果、アンテナの放射能力が低下する。
 実施例1によるアンテナ装置では、図1に示した第2の端子T2及び第4の端子T4をそれぞれ第1の入力ポート及び第2の入力ポートとしたときに、第1の放射素子20の共振周波数と第2の放射素子21の共振周波数とが異なるように、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンスが選択されている。これにより、2本の放射素子上の電流分布のバランスが崩れ、放射素子近傍の電磁界が変化する。
 この2本の放射素子間をデカップリング素子26で接続することにより、電界または磁界が変化し、放射素子間の結合状態が変化する。その結果、相対的に広帯域特性を示す放射素子に着目すると、もう一方の放射素子の電流が減少し、グランド板に発生する電流の分布が、放射素子1本のときの電流分布に近づく。すなわち、アンテナの放射能力が増大し、広帯域かつ高効率の放射素子が得られる。
 相対的に狭帯域特性を示す放射素子に着目すると、もう一方の放射素子に電流が多く流れ込み、グランド板に生じる電流が減少する。このように、電流分布が、放射素子間に閉じ込もった分布となる。これにより、放射能力が低下し、放射素子は、狭帯域かつ低効率となる。
 実施例1では、デカップリング素子26としてインダクタを用いた。このとき、デカップリング前の構成において共振周波数が低い第1の放射素子20の帯域幅が、他方の第2の放射素子21の帯域幅より広帯域になる。相対的に狭帯域の放射素子、すなわち第2の放射素子21が、ダウンリンクの周波数帯域Bdをカバーし、相対的に広帯域の第1の放射素子20が、ダウンリンク及びアップリンクの両方の周波数帯域Bd、Buをカバーするように、周波数帯域が設定されている。
 デカップリング素子26としてキャパシタを用いると、デカップリング前の構成において共振周波数が高い方の第2の放射素子21の帯域幅が広帯域になり、共振周波数が低い方の第1の放射素子20の帯域幅が狭帯域になる。この場合には、第2の放射素子21が、ダウンリンク及びアップリンクの両方の周波数帯域Bd、Buをカバーし、第1の放射素子20が、ダウンリンクの周波数帯域Bdをカバーするようにすればよい。
 2つの放射素子の一方の帯域幅が相対的に広帯域になり、他方の帯域幅が相対的に狭帯域になるのは、デカップリング素子26を挿入した後の放射素子近傍の電磁界分布が、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23を接続したことによって変化したためである。このように、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23は、放射素子近傍の電磁界分布を変化させるという役割を担う。
 実施例1によるアンテナ装置においては、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンスを調整することにより、第1の放射素子20と第2の放射素子21との共振周波数を調整することができる。このため、アンテナ周囲の部品や携帯端末の形状が変化した場合にも、第1の放射素子20及び第2の放射素子21の形状を修正することなく、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23のリアクタンスを調整することにより、所望のアンテナ特性を実現することができる。
 第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23は、第1の放射素子20と第2の放射素子21との共振周波数を異ならせる役割を有するとともに、放射素子間に伝送線路を配置することなく、第1の放射素子20と第2の放射素子21とを接続するデカップリング回路の一部としても機能する。
 図10に、送受信回路29のブロック図を示す。ベースバンド集積回路40がベースバンドの信号処理を行う。高周波集積回路41が、無線周波数帯域の信号処理を行う。送信信号が、高周波集積回路41からパワーアンプ42、表面波フィルタ43、及びダイプレクサ44を介して、第1の放射素子20に入力される。第2の放射素子21には、送信信号が入力されない。
 第1の放射素子20で受信された高周波信号が、ダイプレクサ44、表面波ファフィルタ45を介して、高周波集積回路41に入力される。第2の放射素子21で受信された高周波信号が、表面波フィルタ46及びローノイズアンプ47を介して、高周波集積回路41に入力される。
 上述のように、アップリンク用として、広帯域の第1の放射素子20のみが用いられ、ダウンリンク用として、第1の放射素子20及び第2の放射素子21の両方が用いられる。
 2つの放射素子の共振周波数の差と、帯域幅との関係についてシミュレーションを行った。図11~図15を参照して、シミュレーション結果について説明する。
 図11に、シミュレーションに用いたアンテナ装置の平面図を示す。誘電体基板30の平面形状は長方形であり、その厚さは0.8mmである。誘電体基板30の短辺の長さ(幅)Wは25mmである。誘電体基板30の表面が、その長さ方向に関して、長さL1(45mm)のグランド領域と長さL2(21.8mm)のアンテナ領域とに区分されている。長さL1のグランド領域の全域にグランド板31が配置されている。長さL2のアンテナ領域に、第1の放射素子20及び第2の放射素子21が配置されている。第1の放射素子20及び第2の放射素子21の各々は、グランド板31の縁に対応する位置から、誘電体基板30の短辺に向かって、誘電体基板30の長辺と平行に伸びる。第1の放射素子20及び第2の放射素子21の幅D1は1.44mmである。第1の放射素子20と第2の放射素子21との間隔D2は7.06mmである。
 第1の放射素子20及び第2の放射素子21の給電端を、それぞれ第1の入力ポートFP1及び第2の入ロポートFP2とする。第1の放射素子20のリターンロスS11と、第2の放射素子21のリターンロスS22とは等しい。
 周波数2.45GHzで、第1の直列リアクタンス素子22(図1)及び第2の直列リアクタンス素子23(図1)のリアクタンスが同一であり、かつ第1の放射素子20と第2の放射素子21とが相互に結合しない条件をシミュレーションにより算出した。上述の条件は、第1の放射素子20の共振周波数と第2の放射素子21の共振周波数とが同一であり、かつ図1の点P1及びP2を、それぞれ第1の入力ポート及び第2の入力ポートとしたときの相互結合S12がマイナス無限大になる条件と言い換えることができる。この条件を、「共振周波数同一のデカップリング条件」ということとする。シミュレーションの結果、第1の直列リアクタンス素子22及び第2の直列リアクタンス素子23を、共に0.38nHのインダクタとし、デカップリング素子26を1.08pFのキャパシタとすればよいことがわかった。共振周波数同一のデカップリング条件を満足する第1の直列リアクタンス素子22のインダクタンスを、基準インダクタンスjXrということとする。
 第1の直列リアクタンス素子22のインダクタンスjX1を基準インダクタンスjXrから変化させた5個のサンプルについて、第2の直列リアクタンス素子23のインダクタンスjX2を算出した。なお、すべてのサンプルが、第1の放射素子20と第2の放射素子21とが相互に結合しないという条件を満たす。
 図12に、共振周波数同一のデカップリング条件を満たすNo.1のサンプル、及びjX1を基準インダクタンスjXr(0.38nH)から変化させたNo.2~No.6のサンプルのインダクタンスjX1、jX2、及び基準インダクタンスjXrに対するインダクタンスjX1の比を示す。第1の直列リアクタンス素子22のインダクタンスjX1が基準インダクタンスjXrから大きくなるに従って、放射素子間をデカップリングさせるために、第2の直列リアクタンス素子23のインダクタンスjX2が小さくなっていることがわかる。
 図13~図15に、No.2~No.6のサンプルのSパラメータの周波数特性をシミュレーションにより算出した結果を示す。図13~図15に示したSパラメータは、図1の点Q1及びQ2を、それぞれ第1の入力ポート及び第2の入力ポートとして算出されたものである。図13~図15の横軸は周波数を単位「GHz」で表し、図13~図15の縦軸は、それぞれリターンロスS11、相互結合S12、及びリターンロスS22を単位「dB」で表す。図13~図15の太い実線、太い破線、細い実線、細い破線、及び二点鎖線が、それぞれNo.2~No.6のサンプルのSパラメータを示す。なお、No.1のサンプルのSパラメータの周波数特性は、No.2のサンプルのSパラメータの周波数特性とほぼ一致する。
 図13及び図15に示すように、共振周波数の近傍でリターンロスS11、S22が極小値を示している。本シミュレーションにおいて、リターンロスが-10dB以下になる周波数帯域を、放射素子の帯域幅と呼ぶこととする。図13に示すように、サンプル番号が増加するに従って、すなわち基準インダクタンスjXrに対するインダクタンスjX1の比が大きくなるに従って、第1の放射素子20の帯域幅が狭くなる。逆に、図15に示すように、第2の放射素子21の帯域幅は、サンプル番号が増加するに従って、すなわち基準インダクタンスjXrに対するインダクタンスjX1の比が大きくなるに従って広くなる。
 図14に示すように、サンプル番号が増加するに従って、すなわち基準インダクタンスjXrに対するインダクタンスjX1の比が大きくなるに従って、放射素子間の相互結合S12が低下していることがわかる。また、相互結合S12の大きさが-10dB以下となる周波数の帯域幅も、基準インダクタンスjXrに対するインダクタンスjX1の比が大きくなるに従って、広くなっている。
 図16に、リターンロスS11、S22、及び相互結合S21の周波数特性の帯域幅と、基準インダクタンスjXrに対するインダクタンスjX1の比との関係を示す。横軸は基準インダクタンスjXrに対するインダクタンスjX1の比を表し、縦軸は、中心周波数に対する帯域幅の比を単位「%」で表す。図中の三角記号、四角記号、及び丸記号は、それぞれリターンロスS11、相互結合S21、及びリターンロスS22の周波数特性の帯域幅を示す。既に説明したように、基準インダクタンスjXrに対するインダクタンスjX1の比が大きくなるに従って、リターンロスS11の周波数特性の帯域幅が狭くなり、リターンロスS22の周波数特性の帯域幅が広くなっている。
 基準インダクタンスjXrに対するインダクタンスjX1の比が1.09以上の範囲で、第2の放射素子21の帯域幅を広げる十分な効果が得られていることがわかる。上述のNo.2~No.6のサンプルのアンテナ装置では、相対的に広帯域の第2の放射素子21を、ダウンリンク及びアップリンクの両方で使用し、相対的に狭帯域の第1の放射素子20を、ダウンリンクのみで使用すればよい。
 [実施例2]
 図17に、実施例2によるアンテナ装置の等価回路図を示す。以下、図1に示した実施例1によるアンテナ装置との相違点について説明し、同一の構成については説明を省略する。
 実施例1では、図1に示すように、第1の放射素子20と第1の直列リアクタンス素子22とが直結されていた。実施例2では、図17に示すように、第1の放射素子20と第1の直列リアクタンス素子22とが、切替素子50を介して接続されている。さらに、実施例2では、バンド13用の送受信回路29の他に、バンド5及びバンド2用の送受信回路52が搭載されている。送受信回路52は、マッチング回路51を介して切替素子50に接続されている。
 切替素子50として、例えば単極双投(SPDT)スイッチが用いられる。SPDTスイッチの入力ポートに第1の放射素子20が接続され、一方の出力ポートに第1の直列リアクタンス素子22が接続され、他方の出力ポートにマッチング回路51が接続されている。切替素子50は、第1の放射素子20を第1の直列リアクタンス素子22に接続する第1の状態と、第1の放射素子20をマッチング回路51に接続する第2の状態との切り替えを行う。実施例2によるアンテナ装置は、第1の状態のとき、バンド13の無線周波数帯域の送受信が可能となり、第2の状態のとき、バンド5及びバンド2の無線周波数帯域の送受信が可能となる。
 図18に、切替素子50が第2の状態のときに、マッチング回路51と送受信回路52との相互接続点Q3を入力ポートとしたときの第1の放射素子20のリターンロス及びアンテナ効率の周波数特性の一例を示す。横軸は周波数を単位「GHz」で表し、左縦軸はリターンロスを単位「dB」で表し、右縦軸はアンテナ効率を単位「dB」で表す。図中の細い実線がリターンロスを示し、太い実線がバンド5の帯域におけるアンテナ効率を示し、太い破線がバンド2の帯域におけるアンテナ効率を示す。実施例2によるアンテナ装置が、バンド5及びバンド2の周波数帯域に対応可能であることがわかる。
 切替素子50が第1の状態のときには、実施例2によるアンテナ装置は、実施例1によるアンテナ装置と同様に、バンド13の周波数帯域に対応可能である。
 実施例2では、切替素子50としてSPDTスイッチを用いたが、その他にダイプレクサを用いてもよい。より多くのバンドの周波数帯域で動作せるためには、切替素子50として、出力ポートがn個のSPnTスイッチを用いてもよい。第2の放射素子21と第2の直列リアクタンス素子23との間に切替素子を挿入してもよいし、第1の放射素子20と第1の直列リアクタンス素子22との間、及び第2の放射素子21と第2の直列リアクタンス素子23との間の両方に切替素子を接続してもよい。切替素子50の挿入位置は、第1の放射素子20と第1の直列リアクタンス素子22との間に限らず、第1の直列リアクタンス素子22の後段に切替素子50を挿入してもよい。
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
20 第1の放射素子
21 第2の放射素子
22 第1の直列リアクタンス素子
23 第2の直列リアクタンス素子
26 デカップリング素子
27 第1のマッチング回路
28 第2のマッチング回路
29 バンド13用送受信回路
30 誘電体基板
31 グランド板
32 アンテナ領域
33 キャリア
35 携帯端末の筐体
40 ベースバンド集積回路
41 高周波集積回路
42 パワーアンプ
43 表面波フィルタ
44 ダイプレクサ
45、46 表面波フィルタ
47 ローノイズアンプ
50 切替素子
51 マッチング回路
52 バンド5及びバンド2用送受信回路

Claims (9)

  1.  第1の放射素子と、
     第2の放射素子と、
     一対の端子のうち一方の第1の端子が前記第1の放射素子に接続され、他方の第2の端子が第1の送受信回路に接続された第1の直列リアクタンス素子と、
     一対の端子のうち一方の第3の端子が前記第2の放射素子に接続され、他方の第4の端子が前記第1の送受信回路に接続された第2の直列リアクタンス素子と、
     前記第1の直列リアクタンス素子の前記第2の端子と、前記第2の直列リアクタンス素子の前記第4の端子とを相互に接続し、前記第1の放射素子と前記第2の放射素子との間の相互結合を低減させるデカップリング素子と
    を有し、
     前記第1の直列リアクタンス素子の前記第2の端子を第1の入力ポートとし、前記第2の直列リアクタンス素子の前記第4の端子を第2の入力ポートとして給電したとき、前記第1の放射素子の共振周波数と前記第2の放射素子の共振周波数とが相互に異なるアンテナ装置。
  2.  前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも低く、前記デカップリング素子がインダクタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い請求項1に記載のアンテナ装置。
  3.  前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも高く、前記デカップリング回路がキャパシタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い請求項1に記載のアンテナ装置。
  4.  前記第1の放射素子の電気長と、前記第2の放射素子の電気長とが、相互に異なる請求項1乃至3のいずれか1項に記載のアンテナ素子。
  5.  さらに、
     前記第1の送受信回路とは異なる周波数帯で送受信を行う第2の送受信回路と、
     前記第1の放射素子と前記第1の直列リアクタンス素子との間に挿入され、前記第1の放射素子で受信された信号を、前記第1の送受信回路及び前記前記第2の送受信回路のいずれかに振り分ける切替素子と
    を有する請求項1乃至4のいずれか1項に記載のアンテナ素子。
  6.  第1の放射素子と、
     第2の放射素子と、
     一対の端子のうち一方の第1の端子が前記第1の放射素子に接続され、他方の第2の端子が第1の送受信回路に接続された第1の直列リアクタンス素子と、
     一対の端子のうち一方の第3の端子が前記第2の放射素子に接続され、他方の第4の端子が前記第1の送受信回路に接続された第2の直列リアクタンス素子と、
     前記第1の直列リアクタンス素子の前記第2の端子と、前記第2の直列リアクタンス素子の前記第4の端子とを相互に接続し、前記第1の放射素子と前記第2の放射素子との間の相互結合を低減させるデカップリング素子と
    を有し、
     前記第1の放射素子、前記第2の放射素子、前記第1の直列リアクタンス素子、前記第2の直列リアクタンス素子、及び前記デカップリング素子を収容する携帯端末筐体と、
     前記第1の放射素子及び前記第2の放射素子で受信された信号を処理すると共に、送信すべき信号を前記第1の放射素子に供給する送受信回路と
    を有し、
     前記第1の直列リアクタンス素子の前記第2の端子を第1の入力ポートとし、前記第2の直列リアクタンス素子の前記第4の端子を第2の入力ポートとして給電したたとき、前記第1の放射素子の共振周波数と、前記第2の放射素子の共振周波数とが異なるMIMO無線装置。
  7.  前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも低く、前記デカップリング素子がインダクタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い請求項6に記載のMIMO無線装置。
  8.  前記第1の入力ポート及び前記第2の入力ポートから給電したとき、前記第1の放射素子の共振周波数が、前記第2の放射素子の共振周波数よりも高く、前記デカップリング回路がキャパシタで構成され、前記第1の放射素子の帯域幅が前記第2の放射素子の帯域幅より広い請求項6に記載のMIMO無線装置。
  9.  前記第1の放射素子の電気長と、前記第2の放射素子の電気長とが、相互に異なる請求項6乃至8のいずれか1項に記載のMIMO無線装置。
PCT/JP2013/061379 2012-05-23 2013-04-17 アンテナ装置及びmimo無線装置 WO2013175903A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012117326 2012-05-23
JP2012-117326 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013175903A1 true WO2013175903A1 (ja) 2013-11-28

Family

ID=49623604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061379 WO2013175903A1 (ja) 2012-05-23 2013-04-17 アンテナ装置及びmimo無線装置

Country Status (1)

Country Link
WO (1) WO2013175903A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618139A (zh) * 2013-12-07 2014-03-05 威海北洋电气集团股份有限公司 射频天线去耦合方法及装置
WO2018048044A2 (en) 2016-09-07 2018-03-15 Lg Electronics Inc. Mobile terminal
US10734720B2 (en) 2015-12-29 2020-08-04 Huawei Technologies Co., Ltd. Antenna and communications device
CN112510368A (zh) * 2020-10-19 2021-03-16 西安朗普达通信科技有限公司 一种可调谐双频去耦芯片
CN113659295A (zh) * 2020-05-12 2021-11-16 西安电子科技大学 滤波器、天线装置和电子设备
WO2021227813A1 (zh) * 2020-05-12 2021-11-18 西安电子科技大学 天线装置和电子设备
CN113922050A (zh) * 2021-11-03 2022-01-11 华南理工大学 双覆层去耦合结构、双极化天线及天线阵列
WO2022126643A1 (zh) * 2020-12-18 2022-06-23 华为技术有限公司 天线模块及基站设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096303A (ja) * 2002-08-30 2004-03-25 Kyocera Corp アンテナ構造の利得調整方法およびアンテナ構造ならびに通信装置
JP2011071597A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 無線端末
WO2011102143A1 (ja) * 2010-02-19 2011-08-25 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096303A (ja) * 2002-08-30 2004-03-25 Kyocera Corp アンテナ構造の利得調整方法およびアンテナ構造ならびに通信装置
JP2011071597A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 無線端末
WO2011102143A1 (ja) * 2010-02-19 2011-08-25 パナソニック株式会社 アンテナ装置及びこれを搭載した携帯無線端末

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618139B (zh) * 2013-12-07 2016-08-17 威海北洋电气集团股份有限公司 射频天线去耦合方法及装置
CN103618139A (zh) * 2013-12-07 2014-03-05 威海北洋电气集团股份有限公司 射频天线去耦合方法及装置
US10734720B2 (en) 2015-12-29 2020-08-04 Huawei Technologies Co., Ltd. Antenna and communications device
US10840582B2 (en) 2016-09-07 2020-11-17 Lg Electronics Inc. Mobile terminal
EP3510667A4 (en) * 2016-09-07 2020-04-01 LG Electronics Inc. -1- MOBILE DEVICE
CN109690868A (zh) * 2016-09-07 2019-04-26 Lg 电子株式会社 移动终端
WO2018048044A2 (en) 2016-09-07 2018-03-15 Lg Electronics Inc. Mobile terminal
CN113659295A (zh) * 2020-05-12 2021-11-16 西安电子科技大学 滤波器、天线装置和电子设备
WO2021227813A1 (zh) * 2020-05-12 2021-11-18 西安电子科技大学 天线装置和电子设备
CN112510368A (zh) * 2020-10-19 2021-03-16 西安朗普达通信科技有限公司 一种可调谐双频去耦芯片
CN112510368B (zh) * 2020-10-19 2023-06-09 西安朗普达通信科技有限公司 一种可调谐双频去耦芯片
WO2022126643A1 (zh) * 2020-12-18 2022-06-23 华为技术有限公司 天线模块及基站设备
CN113922050A (zh) * 2021-11-03 2022-01-11 华南理工大学 双覆层去耦合结构、双极化天线及天线阵列

Similar Documents

Publication Publication Date Title
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
US8854273B2 (en) Antenna and communication device thereof
EP1506594B1 (en) Antenna arrangement and module including the arrangement
EP2660933B1 (en) Array antenna of mobile terminal and implementing method thereof
US7336239B2 (en) Small multi-mode antenna and RF module using the same
US6943746B2 (en) Radio device and antenna structure
US20120306718A1 (en) Antenna and wireless mobile terminal equipped with the same
CN109672019B (zh) 一种终端mimo天线装置及实现天线信号传输方法
US10622716B1 (en) Balanced antenna
US9748661B2 (en) Antenna for achieving effects of MIMO antenna
CN202759016U (zh) 可调谐耦合馈电天线***
EP2290746B1 (en) Planar antenna with isotropic radiation pattern
JP2013214953A (ja) マルチバンド・マルチアンテナシステムおよびその通信装置
JP2012513731A (ja) マルチポートアンテナ構造
CN106450752B (zh) 一种用于智能手机实现高隔离度的mimo天线
JPWO2013061502A1 (ja) アンテナ装置及び無線通信装置
TW201635647A (zh) 可重組的多頻多功能天線
US9306275B2 (en) Multi-antenna and electronic device
CN110323562A (zh) 基于互补开口谐振环的可调谐超宽带mimo天线
JPWO2013051188A1 (ja) アンテナ装置及び無線通信装置
JPWO2013051187A1 (ja) アンテナ装置及び無線通信装置
CN110911842B (zh) 一种具有共辐射体天线的终端
CN113517565A (zh) 一种应用于5g移动终端的三频mimo天线
JP5714507B2 (ja) Mimoアンテナ装置及び無線通信装置
JP5694953B2 (ja) アンテナ装置及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP