WO2013175563A1 - Liquid spray method and spray device - Google Patents

Liquid spray method and spray device Download PDF

Info

Publication number
WO2013175563A1
WO2013175563A1 PCT/JP2012/062998 JP2012062998W WO2013175563A1 WO 2013175563 A1 WO2013175563 A1 WO 2013175563A1 JP 2012062998 W JP2012062998 W JP 2012062998W WO 2013175563 A1 WO2013175563 A1 WO 2013175563A1
Authority
WO
WIPO (PCT)
Prior art keywords
spraying
liquid
water
spray
change amount
Prior art date
Application number
PCT/JP2012/062998
Other languages
French (fr)
Japanese (ja)
Inventor
尚弘 楠見
小山 一仁
重雄 幡宮
高橋 文夫
孝朗 関合
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/062998 priority Critical patent/WO2013175563A1/en
Publication of WO2013175563A1 publication Critical patent/WO2013175563A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection

Definitions

  • the present invention relates to a liquid spraying method and a spraying device.
  • ⁇ ⁇ ⁇ Technology for spraying liquid is used in various fields.
  • the operation output (specifically, the power generation output) may decrease. Therefore, before being supplied to the gas turbine, water may be sprayed on the taken-in outside air. Thereby, the temperature of the supplied external air can be lowered and the lowered operation output can be recovered.
  • Patent Document 1 discloses a gas composed of a compressor that compresses air, a combustor that combusts air and fuel compressed by the compressor, and a turbine that is driven by the combustion gas generated by the combustor.
  • a solar-powered gas comprising a turbine and a heat collector that collects solar heat to generate high-pressure hot water, and is provided with a spray device that sprays the high-pressure hot water generated by the heat collector onto the air taken into the compressor
  • a turbine system is described.
  • the increase in the outside air temperature taken in varies depending on the state of the outside air (for example, seasonality, climate change, etc.).
  • the technique described in Patent Document 1 described above such fluctuations in the outside air temperature are not taken into consideration. Therefore, even if the outside air temperature fluctuates, water is sprayed based on predetermined spray conditions set in advance. That is, for example, a large amount of water may be sprayed despite a small decrease in operating output.
  • equipment such as a pump is usually used. Therefore, when excessive water is sprayed, the driving power of the pump or the like is excessively consumed.
  • the present invention has been made in view of such a problem, and an object thereof is related to a liquid spraying method and a spraying apparatus capable of reducing energy consumption as compared with the conventional art.
  • FIG. 4 shows the structure of the thermal power plant 1000 of 1st Embodiment.
  • 4 is a table recorded in the related information database 300 in the thermal power plant 1000.
  • 4 is a table recorded in an operation information database 600 in the thermal power plant 1000.
  • It is the flow which determines the spray condition of water in the thermal power plant 1000.
  • It is a figure explaining calculating an output change amount from outside temperature.
  • It is a figure explaining calculating the spray amount from the output variation
  • change_quantity It is a figure explaining calculating the particle size of spray water from the amount of spraying.
  • It is a figure explaining determining the temperature and pressure of the water sprayed from a particle size.
  • It is a mode of the initial screen displayed on a display apparatus when determining the spray condition of water.
  • water all water in the liquid state is referred to as “water” regardless of the temperature and pressure. That is, in the following description, for example, high-temperature water and low-temperature water are collectively referred to as “water”.
  • FIG. 1 is a diagram illustrating a configuration of a thermal power plant 1000 according to the first embodiment.
  • the liquid spraying method of the present embodiment can be implemented in, for example, a thermal power plant 1000 shown in FIG.
  • the thermal power plant 1000 includes a power generation device 100, a hot water generation device 700, a control device 200, an input device 900, a support device 910, and a display device 950. That is, the thermal power plant 1000 is a facility that is operated using a spray target (outside air) to which water (liquid) is sprayed.
  • the power generation device 100 is a power generation device using a gas turbine.
  • the power generation apparatus 100 includes a gas turbine 1, a compressor 2, a generator 3, a combustor 4, an intake air cooling chamber 5, and a nozzle 6.
  • the provided turbine blades are rotated by the combustion exhaust gas.
  • the compressor 2 compresses the taken outside air.
  • the generator 3 is connected to the turbine blades of the gas turbine 1 and generates power by the rotation of the turbine blades.
  • the combustor 4 burns fuel (not shown) using the outside air compressed by the compressor 2. Any of these can be applied.
  • the intake air cooling chamber 5 cools the taken-in outside air by spraying water.
  • the nozzle 6 is provided in the intake air cooling chamber 5 and sprays water on the outside air taken into the intake air cooling chamber 5.
  • the water sprayed from the nozzle 6 of the intake cooling chamber 5 (specifically, high-temperature and high-pressure water) will be described later.
  • the hot water generation device 700 generates water to be supplied to the power generation device 100.
  • the hot water generator 700 includes a heat exchanger 701, a water storage tank 702, a water supply pump 703, and a high pressure pump 704.
  • the heat exchanger 701 exchanges heat between the combustion exhaust gas discharged from the gas turbine 1 and the water supplied from the water storage tank 702. That is, the water from the water storage tank 702 is heated by the exhaust heat of the combustion exhaust gas. The combustion exhaust gas that has passed through the heat exchanger 701 is discharged to the outside. The water heated through the heat exchanger 701 is sprayed from the nozzle 6 in the intake air cooling chamber 5. The water storage tank 702 stores water sprayed in the intake air cooling chamber 5.
  • the water supply pump 703 and the high-pressure pump 704 are drive sources that supply water in the water storage tank 702 to the intake air cooling chamber 5 via the heat exchanger 701. The water heated in the heat exchanger 701 is raised to a predetermined pressure by the high-pressure pump 704 and then supplied to the intake air cooling chamber 5.
  • the control device 200 performs a calculation based on each information in the thermal power plant 100 and controls each of the above means.
  • Each information in the thermal power plant 100 includes, for example, outside air information such as outside air temperature, information about the power generation apparatus 100 (required operation output, actual operation output, residual fuel concentration in combustion exhaust gas, temperature of combustion exhaust gas, etc.) Information about water sprayed from the nozzle 6 (pressure, temperature, flow rate (amount of spray)) and the like.
  • the control device 200 includes a related information database 300, a spray condition determination unit 400, a control unit 500, and an operation information database 600.
  • the control device 200 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an I / F (interface), an HDD (Hard Disk Drive), and the like.
  • a predetermined program developed in the ROM is implemented by being executed by the CPU.
  • the related information database 300 records outside air information.
  • the recorded outside air information includes weather, temperature, wind direction, wind speed, humidity, amount of solar radiation, and the like. Such outside air information is recorded in association with time. The period of time is determined by a measurable time width.
  • the weather is recorded using 15 types sent to the general public by the Japan Meteorological Agency. Specifically, the numbers are sequentially assigned up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness.
  • the wind direction is 360 azimuths expressed by dividing 360 degrees in the clockwise direction with reference to true north.
  • the temperature, wind speed, humidity, and amount of solar radiation are measured by various sensors (not shown).
  • FIG. 2 is a table recorded in the related information database 300 in the thermal power plant 1000.
  • the related information database 300 of this embodiment is specifically shown in FIG. As shown in FIG. 2, for example, the outdoor air information at 10:00 am on June 10, 2010 includes: weather: clear, temperature: 22.1 ° C., wind direction: 20 degrees, wind speed: 1.6 m / s
  • the related information database 300 records that the humidity is 40.1% and the amount of solar radiation is 4.8 kW / m 2 .
  • the spray condition determination unit 400 determines the pressure and temperature of water sprayed from the nozzle 6 according to a flow described later with reference to FIG.
  • the spray condition determination unit 400 determines the pressure and temperature of the sprayed water according to the conditions input to the input device 900 (described later). Further, the pressure and temperature determined by the spray condition determination unit 400 are displayed on a display device 950 (described later). Control by the spray condition determination unit 400 will be described later.
  • the control unit 500 controls the pressure and temperature of water sprayed from the nozzle 6 so that the pressure and temperature determined by the spray condition determination unit 400 are obtained. That is, the control unit 500 controls the feed water pump 703 and the high pressure pump 704 based on the pressure and temperature determined by the spray condition determination unit 400. Thereby, the pressure and temperature of the water sprayed from the nozzle 6 are controlled to be the determined pressure and temperature. Further, the control unit 500 appropriately controls the water supply pump 703 and the high-pressure pump 704 even if there is no input to the input device 900 based on the operating state (emergency etc.) of the thermal power plant.
  • the operation information database 600 records the operation state of the power generation apparatus 100 and the supply water information of the hot water generation apparatus 700.
  • data is accumulated during the trial operation of the thermal power plant 1000.
  • the operation state of the power generation apparatus 100 is the operation output E by the power generation apparatus 100 and the residual fuel concentration D in the combustion exhaust gas.
  • the supplied water information for the hot water generator 700 is the flow rate F of water flowing through the heat exchanger 701, the pressure P and the temperature T of water discharged from the heat exchanger 701 and passed through the high pressure pump 704. These values are recorded in association with the time. These values are measured by respective sensors (not shown).
  • FIG. 3 is a table recorded in the operation information database 600 in the thermal power plant 1000.
  • the operation information database 600 of this embodiment is specifically shown in FIG. As shown in FIG. 3, for example, as the operation state and supply water information at 10:00 am on June 10, 2010, flow rate F: 300 Kg / s, temperature T: 580 ° C., pressure P: 18.5 MPa
  • the power generation output E: 450 MW and the concentration D: 100 ppm are recorded in the operation information database 600.
  • Each value recorded in the driving information data 600 is recorded with a PID number.
  • the flow rate F is recorded with a number “PID150”. This PID number is a number unique to each value assigned to each value.
  • the input device 900 includes a keyboard 901 and a mouse 902. Instructions (setting values, selections, etc.) input using these are transmitted to the support apparatus 910. When an instruction is input to the input device 900, the related information database 300 and the operation information database 600 can be accessed.
  • the support device 910 includes an external input interface 920, a data transmission / reception processing unit 930, and an external manual interface 940.
  • the support device 910 includes means similar to the control device 200 (none of which is shown), and is implemented by executing a predetermined program expanded in the ROM by the CPU. ing.
  • the instruction input to the input device 900 and the electric signal received from the control device 200 are input to the external input interface 920 of the support device 910.
  • An instruction and an electrical signal input to the external input interface 920 are transmitted to the control device 200 or displayed on the display device 950 via the external output interface 940.
  • the operation output decreases.
  • the combustion efficiency of the fuel in the combustor 4 decreases because the oxygen density in the outside air decreases as the outside air temperature rises.
  • the movement of gas molecules in the outside air becomes intense, so that it becomes difficult for the compressor 2 to compress the outside air and the amount of the outside air supplied to the combustor 4 decreases. Therefore, in the thermal power plant 1000, the outside air temperature taken in using water is controlled to be lowered. As a result, the reduced operation output can be recovered.
  • the mass flow rate of the gas supplied to the compressor 2 can be increased by spraying water, the power generation output by the generator 3 can be further improved.
  • thermal power plant 1000 relatively high temperature and high pressure water is sprayed on the outside air.
  • evaporation of the sprayed water is promoted.
  • production of drain water liquid pool water
  • generation of the rust etc. in the electric power generating apparatus 100 is prevented.
  • generation of drain water is suppressed, more water can be sprayed.
  • the amount of water sprayed is controlled. Specifically, the pressure and temperature of the sprayed water are controlled according to the operation output of the thermal power plant 1000. Specific control will be described later.
  • a pressure increasing means such as a high pressure pump is required.
  • the driving power of the boosting means can be reduced. Therefore, energy consumption in the thermal power plant 1000 can be reduced.
  • FIG. 4 is a flow for determining water spray conditions in the thermal power plant 1000.
  • the flow for determining the spray conditions mainly passes through four steps (step S10 to step S13). Then, the pressure and temperature of the water are increased and increased so that the pressure and temperature determined through these steps are reached (step S14).
  • the spray condition determination unit 400 outputs an output change amount based on a requested output (for example, a requested ratio of power output, such as “output 100%”, etc.) input by the input device 900 and an operating state (actual output). Is calculated (step S10). That is, the spray condition determination unit 400 (calculation unit) calculates the operation output change amount when the operation output (the power generation output of the thermal power plant) changes (operation output change amount calculation step). This point will be described in more detail with reference to FIG.
  • a requested output for example, a requested ratio of power output, such as “output 100%”, etc.
  • FIG. 5 is a diagram for explaining the calculation of the output change amount from the outside air temperature.
  • the power generation apparatus 100 of the thermal power plant 1000 is designed so that the operation output becomes W 0 when the temperature of the outside air taken in is T 0 . That is, when the required output is set to 100%, the operation output is designed to be W 0 .
  • the spray condition determination unit 400 calculates the output decrease (W 0 ⁇ W 1 ) as the output change amount W 2 . That is, based on the required output (here, the output corresponding to 100%) operation state (actual output), the output change amount W 2 is calculated (Step S10).
  • spray condition determination unit 400 calculates the amount sprayed S 2 of water into the intake cooling chamber 5 (step S11). This point will be described in more detail with reference to FIG.
  • FIG. 6 is a diagram for explaining the calculation of the spray amount from the output change amount.
  • the higher the temperature of the taken-in outside air the larger the output change amount, that is, the greater the decrease in the operation output. Therefore, in such a case, more water is sprayed in the intake air cooling chamber 5 and the outside air is cooled.
  • This is the graph shown in FIG. Specifically, as shown in FIG. 6, as the amount of change in output increases, the outside air temperature increases, so that more outside water is sprayed to cool the outside air.
  • the spray condition determination unit 400 calculates a spray amount S 2 corresponding to the output change amount W 2 based on the graph shown in FIG.
  • the graph shown in FIG. 6 is a graph determined mainly by the design conditions of the thermal power plant 1000 such as the compressor 2.
  • the spraying condition determination unit 400 based on the spray volume S 2, to calculate the particle size of the spray water (water to be sprayed in the intake-air cooling chamber 5) (step S12). That is, the spray condition determination unit 400 (calculation unit) calculates the particle size of water (liquid) at the time of spraying based on the operation output change amount calculated in the operation output change amount calculation step (particle size calculation step). ). Then, based on the calculated particle size, water (liquid) spraying conditions are determined. This point will be described in more detail with reference to FIG.
  • FIG. 7 is a diagram for explaining the calculation of the particle size of spray water from the spray amount. If as much water as possible is sprayed in the intake cooling chamber 5, a more reliable outside air cooling effect can be obtained. However, if the amount of water spray is simply increased, drain water may be generated inside the power generation apparatus 100. When such a large amount of water is generated, members such as compressor blades of the compressor 2 may rust. Therefore, in this embodiment, the amount of water to be sprayed is controlled.
  • the presence or absence of drain water generation usually depends on the state of spray water. That is, the smaller the particle size of the spray water, the more easily the spray water evaporates. Therefore, the possibility that drain water is generated is low. Therefore, more water can be sprayed. On the other hand, the larger the particle size of the spray water, the more difficult it is to evaporate. Therefore, the possibility that drain water is generated is relatively high. Therefore, when the amount of drain water generated is taken into consideration, the amount of water that can be sprayed decreases. Based on the graph of this relationship, the particle diameter R 2 is determined corresponding to the spray amount S 2.
  • the amount of sprayed water and the particle size are in conflict as shown in FIG. Specifically, since the possibility that drain water is generated increases as the spray amount of water increases, the particle size of the spray water is controlled to be small. On the other hand, when the amount of sprayed water is small, the possibility that drain water is generated is reduced.
  • the upper limit of the amount of water sprayed into the intake cooling chamber 5 is mainly determined by the specifications of the compressor 2. That is, when the outside air stays in the compressor 2 for a long time, the sprayed water is easily evaporated. Therefore, the upper limit of the spray amount increases. On the other hand, when the residence time of the outside air in the compressor 2 is short, the sprayed water is relatively less likely to evaporate. Therefore, the upper limit of the spray amount is reduced. In these cases, the upper limit of the spray amount is determined by flow analysis based on, for example, the total length of the compressor 2 and the number of blade stages in the compressor 2.
  • the spray condition determination unit 400 determines the spray condition (specifically, the pressure and temperature of the spray water) based on the particle size of the spray water calculated in Step S12 (Step S13). That is, the spray condition determination unit 400 (calculation unit) determines the spray condition of water (liquid) based on the operation output change amount calculated in the operation output change amount calculation step (spray condition determination step). Specifically, the spray conditions are determined based on FIG.
  • FIG. 8 is a diagram for explaining the determination of the temperature and pressure of water sprayed from the particle diameter.
  • the graph shown in FIG. 8 is a saturated vapor pressure curve.
  • the temperature of the combustion exhaust gas discharged from the gas turbine 1 is estimated in advance. Therefore, it is possible to estimate the temperature range of the water discharged from the heat exchanger 1 and sprayed in the intake cooling chamber 5. As shown in FIG. 8, the upper limit of this temperature range is T high and the lower limit is T low .
  • T 10 and T 11 are set.
  • the pressure range of the spray water that can be controlled by the high-pressure pump 704 is determined by the specifications of the high-pressure pump 704 and the nozzle 6. As shown in FIG. 8, the upper limit of the pressure range is P high and the lower limit is P low . These pressure ranges divided into three as shown in FIG. 8, P 10 and P 11 are set. As a result, FIG. 8 is partitioned into a lattice.
  • the particle size of water sprayed from the nozzle 6 cannot normally be measured. Therefore, in the nozzle diameter of the nozzle 6 provided, the pressure and temperature of the sprayed water and the particle diameter are stored in a database. This relationship is determined by a preliminary experiment or the like. This relationship is the graph shown in FIG.
  • the particle size R 1 is the smallest, and then increases in the order of R 2 , R 3 , R 4 and R 5 .
  • the particle diameter is given only to the lattice above the saturation vapor pressure curve. That is, the pressure of the spray water is set to a pressure higher than the saturated vapor pressure curve (that is, the pressure at which liquid water exists). In the present embodiment, the pressure is reduced by spraying high-pressure water, whereby the water is boiled under reduced pressure. Therefore, the pressure at which such a phenomenon occurs is set.
  • Spray condition determination unit 400 the region R 2 of the pressure and temperature are included in (in FIG. 8 the two regions), the particle diameter pressure fluctuations from the pressure and temperature conditions at the time of spraying with R 1 is small and the temperature (i.e. Determine spraying conditions).
  • the determined spray conditions are displayed on the display device 950 by the data transmission / reception processing unit 930 (display step).
  • the spray condition determination unit 400 determines whether or not the sprayed water boils under reduced pressure when water is sprayed according to the determined spray conditions (this step is not illustrated). Then, when it is determined that the sprayed water is boiled under reduced pressure, the spray condition determination unit 400 transmits a control signal to the control unit 500 so that the determined spray condition is satisfied.
  • the spray condition determination unit 400 (calculation unit) sprays water (liquid) according to the spray condition determined in the spray condition determination step, whether or not the sprayed water (liquid) boils under reduced pressure.
  • the vacuum boiling is as described above.
  • control part 500 controls the water supply pump 703 and the high pressure pump 704 based on the control signal from the spray condition determination part 400. Thereby, the water of the determined pressure and temperature is sprayed from the nozzle 6 (step S14). That is, the control unit 500, the water supply pump 703, the high-pressure pump 704, and the nozzle 6 (spraying means) spray the liquid having the spraying condition determined in the spraying condition determining step (spraying step). Thereby, the temperature of the taken-in outside air is reduced and the operation output is recovered.
  • outside air is taken into the intake cooling chamber 5 from an intake port (not shown). At this time, water is not sprayed from the nozzle 6.
  • the taken outside air is compressed by the compressor 2 and then supplied to the combustor 4. And a fuel is combusted in the combustor 4, and combustion exhaust gas produces
  • the state of the power generation device 100 is not stable when the thermal power plant 1000 is started. Therefore, it may be difficult to obtain water having a temperature estimated in advance by the combustion exhaust gas from the gas turbine 1 of the power generation apparatus 100. Therefore, for a while after the activation, spraying of water from the nozzle 6 is not performed.
  • water is sprayed from the nozzle 6. More specifically, the combustion exhaust gas from the gas turbine 1 is used, and water having a pressure and temperature determined by the above-described control is sprayed from the nozzle 6.
  • the outside air taken into the intake cooling chamber 5 is cooled by the water sprayed from the nozzle 6.
  • the cooled outside air is compressed by the compressor 2 and then supplied to the combustor 4.
  • fuel (not shown) is burned together with the supplied outside air. Thereby, combustion exhaust gas is generated.
  • the temperature of water sprayed from the nozzle 6 is increased using the combustion exhaust gas.
  • spraying is continued if the temperature of the combustion exhaust gas is within a temperature range that can maintain a region where it can be boiled under reduced pressure.
  • the hot water spraying is interrupted. These determinations are automatically made by the spray state determination unit 400.
  • spraying of water cold water
  • an amount of water that does not exceed a preset sprayable amount is sprayed.
  • the sprayable amount is an amount that does not generate drain water in the compressor 2 or the like even when sprayed with cold water, or an amount that is allowable even if generated.
  • the thermal power plant 1000 When the thermal power plant 1000 is started, when it is in steady operation, and when it is stopped, it is defined by an integer value mode based on each measurement value of the power generation device 100. Specifically, the start mode is defined as “0” during start-up, the operation mode as “1” during steady operation, and the stop mode as “2” during operation stop. By defining in this way, the operation state of the plant can be determined using an integer value.
  • a screen displayed on the display device 950 by the data transmission / reception processing unit 930 during the operation of the thermal power plant 1000 will be described.
  • Each parameter or the like is input to a blank field of the screen displayed on the display device 950 using the keyboard 901 and the mouse 902.
  • FIG. 9 shows a state of an initial screen displayed on the display device when the water spray condition is determined.
  • a necessary button of the operation state display button 951 or the trend display button 952 is moved and selected by the cursor 953. Thereby, a desired screen is displayed.
  • the cursor 952 can be operated with the mouse 902.
  • FIG. 10 shows a state of the operation state display screen displayed on the display device when the water spray condition is determined.
  • the operation state display button 951 in FIG. 9 is selected, the screen shown in FIG. 10 is displayed.
  • the system information display column 961 of the operation state display screen shown in FIG. 10 is a column in which each information of the power generator 100 and the hot water generator 700 is displayed.
  • information corresponding to the time input in the time input field 962 is displayed.
  • each time information is displayed in the system information display field 961 by pressing the display button 963 after the time is input in the time input field 962.
  • the displayed information includes state quantities such as temperature and pressure at the location currently being measured, states of means such as a regulating valve and a pump.
  • FIG. 10 only the pressure and temperature of water sprayed into the intake cooling chamber 5 are shown for simplification of illustration.
  • the operation state display column 964 is a column that displays the selected operation mode. In FIG. 10, the operation mode (steady operation mode) is displayed.
  • the spray water setting display field 965 displays the temperature, pressure, and particle size of the spray water calculated and determined by the spray condition determining unit 400.
  • the related information display column 966 is used to select an item to be displayed among weather, temperature, wind direction, wind speed, humidity, and amount of solar radiation. By selecting an item to be displayed among these items and pressing a display button 967, corresponding information among the information recorded in the viewpoint information database 300 is displayed on a separate screen (not shown). .
  • FIG. 11 shows a state of the setting screen displayed on the display device when the water spray condition is determined.
  • the trend display button 952 in FIG. 9 is selected, the screen shown in FIG. 11 is displayed.
  • the measurement signal display column 981 information desired to be displayed on the display device 950 is input. Specifically, information (measurement signal, operation signal, etc.) to be displayed on the display device 950 is input to the measurement vibration display field 981. In addition, the time range to be displayed in the information is input to the time input field 982.
  • FIG. 12 shows a state of the trend graph screen displayed on the display device when determining the water spray condition.
  • the trend graph screen shown in FIG. 12 is displayed by pressing the display button 983 after the above information is input.
  • the return button 991 in FIG. 12 is pressed, the setting screen shown in FIG. 11 is displayed on the display device 950 again.
  • the related information display column 984 is the same as the related information display column 966 described with reference to FIG.
  • the display button 986 is pressed, the item selected in the related information display field 984 is displayed as a trend graph as shown in FIG. .
  • a time to be displayed for the spray condition determined by the spray condition determination unit 400 is input.
  • the graph described with reference to FIG. 8 is displayed on the display device 950.
  • the energy consumption can be further reduced as compared with the conventional method.
  • the power for driving the water supply pump 703, the high-pressure pump 704, and the like can be reduced.
  • the temperature of spray water is raised using the combustion exhaust gas from the gas turbine 1, much electric power is not consumed for temperature rise. That is, since the heat of exhausted exhaust gas is used, energy can be used without waste.
  • FIG. 13 is a diagram illustrating a configuration of a thermal power plant 2000 according to the second embodiment.
  • the combustion exhaust gas from the gas turbine 1 is supplied to the heat exchanger 701.
  • the combustion exhaust gas from the gas turbine 1 is exhaust gas boiler (Heat Recovery Seam Generator). HRSG) 705.
  • the steam turbine 706 is driven by the combustion exhaust gas supplied to the exhaust gas boiler 705, and power is generated by a generator (not shown).
  • the thermal power plant 2000 has a combined cycle. A part of the water supplied to the exhaust gas boiler 705 and heated by the combustion exhaust gas is supplied to the intake air cooling chamber 5.
  • the water spraying condition is determined based on the operation output of the generator connected to the steam turbine 706 (that is, the generator constituting the combined cycle). Therefore, for example, when the operation output (that is, the power generation amount) of the generator is decreased, it is determined that the amount of steam supplied to the steam turbine 706 has decreased. Therefore, in order to increase the amount of steam generated, more combustion exhaust gas is generated. And in order to burn a fuel with more external air, the spray amount of water is increased and the temperature of external air is reduced. In this way, the water spray condition is determined based on the operation output of the generator connected to the steam turbine 706.
  • thermal power plant 2000 By configuring the thermal power plant 2000 in this way, more electric power can be extracted to the outside.
  • the combustion exhaust gas discharged from the gas turbine 1 is used for heating water and driving the steam turbine 706. Therefore, the energy generated from the thermal power plant 2000 can be used without waste.
  • FIG. 14 is a diagram illustrating a configuration of a thermal power plant 3000 according to the third embodiment.
  • combustion exhaust gas is used to heat water sprayed in the intake cooling chamber 5, but in the thermal power plant 3000, sunlight is used to heat water. ing. That is, in the thermal power plant 3000, a heat collector 707 is provided instead of the heat exchanger 701.
  • the heat collector 707 collects sunlight and heats water flowing through the heat collector 707.
  • the amount of sunlight irradiated varies greatly depending on the weather and time. Therefore, although not shown, a hot water tank is separately provided, and the water heated in the heat collector 707 is temporarily stored in the hot water tank. This makes it possible to spray hot water having a desired temperature regardless of the weather and time. Note that the water from the heat collector 707 may be directly supplied to the intake cooling chamber 5 according to the temperature of the water discharged from the heat collector 707.
  • thermal power plant 3000 By configuring the thermal power plant 3000 in this way, water is heated using sunlight, so that heated water can be sprayed from when the thermal power plant 3000 is activated. As a result, the operation considering the operation output can be performed from the start-up, and more accurate control can be performed.
  • the liquid spraying method of the present embodiment is applied to a thermal power plant.
  • the droplet spraying method of the present embodiment is applicable to any application other than the thermal power plant.
  • application to other uses will be described with two specific examples.
  • the droplet spraying method of the present embodiment can be applied to a geothermal power plant. Specifically, it is particularly suitable for a geothermal power plant in which high-temperature water is taken out from the ground and power is generated using the taken-out high-temperature water.
  • the hot water taken out from the ground is heated up to a predetermined pressure and temperature and sprayed in the same manner as in FIG. Thereby, the boiling point of the high-temperature high-pressure water sprayed from the nozzle is lowered due to a rapid pressure drop. Therefore, the sprayed high temperature water vaporizes and changes into steam.
  • power generation can be performed by driving a steam turbine with the generated steam.
  • the spraying conditions for spraying high-temperature water are determined based on the operation output (power generation output) of the steam turbine. Specifically, when the operation output of the steam turbine is lowered, more steam is supplied. That is, in such a case, the amount of steam generated can be increased by increasing the pressure of water, for example.
  • the droplet spraying method of the present embodiment can be applied to a thin film forming apparatus.
  • a material for example, an organic material
  • a material for example, an organic material
  • the organic material whose pressure has been increased to a predetermined pressure and temperature is sprayed in the same manner as in FIG.
  • the boiling point of the high-temperature and high-pressure organic material sprayed from the nozzle is lowered by a rapid pressure drop.
  • the sprayed high-temperature / high-pressure organic material is vaporized and changed into vapor.
  • a thin film made of the organic material can be formed on the surface of the substrate.
  • Spray conditions for spraying the organic material are determined based on the operation output of the thin film forming apparatus. That is, for example, when the thin film forming apparatus is operated with a higher operation output such as increasing the thickness of the thin film or forming the thin film in a wide area, more organic material is sprayed. Specifically, the amount of generated organic material vapor can be increased by increasing the pressure of the sprayed organic material, for example.
  • the water spray condition is determined based on the output change amount, but the water spray condition may be determined based on the temperature change of the outside air. That is, after measuring the temperature change of the outside air taken in and calculating the output change amount based on the temperature change amount of the outside air, the spray condition of water may be determined based on the calculated output change amount.
  • the temperature change amount calculating step for calculating the temperature change amount of the outside air (spray object) by the spray condition determining unit 400 (calculation unit), and the temperature change amount calculated in the temperature change amount calculating step.
  • An operation output change amount estimation step for estimating the operation output change amount by the spray condition determination unit 400 (calculation unit), and the estimation in the operation output change amount estimation step in the operation output change amount calculation step. The changed operation output may be used.
  • the data is accumulated at the time of the trial operation as described above, but the state of the spray water can be controlled without such accumulation.
  • the state of the spray water can be controlled in real time regardless of the operation information database 600.
  • the wind direction is indicated by 60 azimuths, but may be indicated by 16 azimuths.
  • the wind direction is indicated by 60 azimuths, but may be indicated by 16 azimuths.
  • the times shown in FIGS. 2 and 3 are examples, and can be recorded at arbitrary intervals according to the specifications of the thermal power plant or the like.
  • the liquid sprayed in the thermal power plant is not limited to water, and any liquid can be sprayed.
  • control can be performed using graphs of various shapes. Further, the control may be performed using a value calculated using a mathematical formula without using a graph. Furthermore, you may control by arbitrary flows, without using a graph or numerical formula.
  • the pressure and temperature corresponding to each particle size determined with reference to FIG. 8 may be any pressure and temperature as long as they are included in the region.
  • the median value of pressure and temperature in the region may be set as the control target value.
  • the maximum value of pressure and temperature in the region may be set as the control target value.
  • the minimum value of pressure and temperature in the region may be set as the control target value.
  • the size of the grid in FIG. 8 is arbitrary and may be set as appropriate according to the specifications of each means.
  • the liquid spraying method has been mainly described.
  • a liquid spraying apparatus to which the liquid spraying method of the present embodiment is applied can be implemented. That is, the liquid spraying apparatus of the present embodiment is provided in equipment (thermal power plant or the like) that is operated using a spray target (outside air or the like) to which a liquid (water or the like) is sprayed.
  • Spraying means for spraying liquid (control unit 500, water supply pump 703, high-pressure pump 704, nozzle 6, etc.) and spraying from the spraying means based on the amount of change in operating output when the operating output of the equipment changes
  • a control unit for controlling the spraying of the liquid so as to satisfy the spraying condition determined by the calculation unit in addition to the control unit 500, a water supply pump 703, a high-pressure pump 704, etc.) Including).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A liquid spray method is characterized by comprising: an operation output change amount calculation step in which the operation output change amount produced when, in a facility operated using an object to be sprayed on which liquid is sprayed, the operation output of the facility has been changed is calculated by a calculation unit; a spray condition determination step in which on the basis of the operation output change amount calculated in the operation output change amount calculation step, a liquid spray condition is determined by the calculation unit; and a spray step in which the liquid that meets the condition determined in the spray condition determination step is sprayed by a spray execution unit.

Description

液体の噴霧方法及び噴霧装置Method and apparatus for spraying liquid
 本発明は、液体の噴霧方法及び噴霧装置に関する。 The present invention relates to a liquid spraying method and a spraying device.
 液体を噴霧する技術が様々な分野で利用されている。例えば、ガスタービンを備える火力発電プラントにおいて、ガスタービンに供給される外気の温度が上昇すると、運転出力(具体的には発電出力)が低下することがある。そこで、ガスタービンに供給される前に、取り込まれた外気に対して水が噴霧されることがある。これにより、供給される外気の温度を低下させることができ、低下した運転出力を回復させることができる。 ・ ・ ・ Technology for spraying liquid is used in various fields. For example, in a thermal power plant equipped with a gas turbine, when the temperature of the outside air supplied to the gas turbine rises, the operation output (specifically, the power generation output) may decrease. Therefore, before being supplied to the gas turbine, water may be sprayed on the taken-in outside air. Thereby, the temperature of the supplied external air can be lowered and the lowered operation output can be recovered.
 このような技術に関して、例えば特許文献1に記載の技術が知られている。特許文献1には、空気を圧縮する圧縮機と、該圧縮機で圧縮された空気と燃料とを燃焼させる燃焼器と、該燃焼器で発生した燃焼ガスによって駆動されるタービンにより構成されるガスタービンと、太陽熱を集熱して高圧温水を生成する集熱装置とを備え、前記圧縮機に取り込まれる空気に、前記集熱装置で生成された高圧温水を噴霧する噴霧装置を設けた太陽熱利用ガスタービンシステムが記載されている。 Regarding such a technique, for example, a technique described in Patent Document 1 is known. Patent Document 1 discloses a gas composed of a compressor that compresses air, a combustor that combusts air and fuel compressed by the compressor, and a turbine that is driven by the combustion gas generated by the combustor. A solar-powered gas comprising a turbine and a heat collector that collects solar heat to generate high-pressure hot water, and is provided with a spray device that sprays the high-pressure hot water generated by the heat collector onto the air taken into the compressor A turbine system is described.
国際公開第2012/025967号パンフレットInternational Publication No. 2012/025967 Pamphlet
 例えば火力発電プラントにおいて、取り込まれる外気温度の上昇幅は、外気(例えば季節、気候の変動等)の状態によって変動する。しかしながら、前記した特許文献1に記載の技術においては、このような外気温度の変動が考慮されていない。そのため、外気温度が変動しても、予め設定された所定の噴霧条件に基づいて、水の噴霧が行われる。即ち、例えば運転出力の低下量が小さいにも関らず大量の水が噴霧されることがある。水を噴霧させる際、通常、ポンプ等の設備が用いられる。従って、過剰の水が噴霧されている場合、ポンプ等の駆動電力が過剰に消費されていることになる。 For example, in a thermal power plant, the increase in the outside air temperature taken in varies depending on the state of the outside air (for example, seasonality, climate change, etc.). However, in the technique described in Patent Document 1 described above, such fluctuations in the outside air temperature are not taken into consideration. Therefore, even if the outside air temperature fluctuates, water is sprayed based on predetermined spray conditions set in advance. That is, for example, a large amount of water may be sprayed despite a small decrease in operating output. When spraying water, equipment such as a pump is usually used. Therefore, when excessive water is sprayed, the driving power of the pump or the like is excessively consumed.
 本発明はこのような課題に鑑みて為されたものであり、その目的は、消費エネルギを従来よりも削減可能な液体の噴霧方法及び噴霧装置に関する。 The present invention has been made in view of such a problem, and an object thereof is related to a liquid spraying method and a spraying apparatus capable of reducing energy consumption as compared with the conventional art.
 本発明者らは前記課題を解決するべく鋭意検討した結果、運転出力に基づいて液体の噴霧条件を変更することにより前記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by changing the liquid spraying conditions based on the operation output, and have completed the present invention.
 本発明によれば、消費エネルギを従来よりも削減可能な液体の噴霧方法及び噴霧装置を提供することができる。 According to the present invention, it is possible to provide a liquid spraying method and a spraying device capable of reducing energy consumption as compared with the conventional art.
第1実施形態の火力発電プラント1000の構成を示す図である。It is a figure which shows the structure of the thermal power plant 1000 of 1st Embodiment. 火力発電プラント1000における関連情報データベース300に記録される表である。4 is a table recorded in the related information database 300 in the thermal power plant 1000. 火力発電プラント1000における運転情報データベース600に記録される表である。4 is a table recorded in an operation information database 600 in the thermal power plant 1000. 火力発電プラント1000における、水の噴霧条件を決定するフローである。It is the flow which determines the spray condition of water in the thermal power plant 1000. 外気温度から出力変化量を算出することを説明する図である。It is a figure explaining calculating an output change amount from outside temperature. 出力変化量から噴霧量を算出することを説明する図である。It is a figure explaining calculating the spray amount from the output variation | change_quantity. 噴霧量から噴霧水の粒径を算出することを説明する図である。It is a figure explaining calculating the particle size of spray water from the amount of spraying. 粒径から噴霧する水の温度及び圧力を決定することを説明する図である。It is a figure explaining determining the temperature and pressure of the water sprayed from a particle size. 水の噴霧条件を決定する際に表示装置に表示される初期画面の様子である。It is a mode of the initial screen displayed on a display apparatus when determining the spray condition of water. 水の噴霧条件を決定する際に表示装置に表示される運転状態表示画面の様子である。It is a mode of the driving | running state display screen displayed on a display apparatus when determining the spray condition of water. 水の噴霧条件を決定する際に表示装置に表示される設定画面の様子である。It is the mode of the setting screen displayed on a display apparatus when determining the spray condition of water. 水の噴霧条件を決定する際に表示装置に表示されるトレンドグラフ画面の様子である。It is the state of the trend graph screen displayed on a display apparatus when determining the spray condition of water. 第2実施形態の火力発電プラント2000の構成を示す図である。It is a figure which shows the structure of the thermal power plant 2000 of 2nd Embodiment. 第3実施形態の火力発電プラント3000の構成を示す図である。It is a figure which shows the structure of the thermal power plant 3000 of 3rd Embodiment.
 以下、図面を参照しながら、本発明を実施するための形態(本実施形態)を説明する。ただし、以下に示す実施形態は一例であり、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施可能である。 Hereinafter, embodiments for carrying out the present invention (this embodiment) will be described with reference to the drawings. However, the embodiment shown below is an example, and the present invention can be arbitrarily modified and implemented without departing from the scope of the invention.
 また、以下の記載においては、温度及び圧力の高低に関わらず、液体状態の水を全て「水」と呼称するものとする。即ち、以下の記載においては、例えば高温水及び低温水を総称して「水」とする。 In the following description, all water in the liquid state is referred to as “water” regardless of the temperature and pressure. That is, in the following description, for example, high-temperature water and low-temperature water are collectively referred to as “water”.
[1.第1実施形態]
〔火力発電プラント1000の構成〕
 図1は、第1実施形態の火力発電プラント1000の構成を示す図である。本実施形態の液体の噴霧方法は、例えば図1に示す火力発電プラント1000において実施可能である。火力発電プラント1000は、発電装置100と、温水生成装置700と、制御装置200と、入力装置900と、支援装置910と、表示装置950と、を備えている。即ち、火力発電プラント1000は、水(液体)が噴霧される噴霧対象物(外気)を用いて運転される設備である。
[1. First Embodiment]
[Configuration of thermal power plant 1000]
FIG. 1 is a diagram illustrating a configuration of a thermal power plant 1000 according to the first embodiment. The liquid spraying method of the present embodiment can be implemented in, for example, a thermal power plant 1000 shown in FIG. The thermal power plant 1000 includes a power generation device 100, a hot water generation device 700, a control device 200, an input device 900, a support device 910, and a display device 950. That is, the thermal power plant 1000 is a facility that is operated using a spray target (outside air) to which water (liquid) is sprayed.
 発電装置100は、ガスタービンを用いた発電装置である。発電装置100は、ガスタービン1と、圧縮機2と、発電機3と、燃焼機4と、吸気冷却室5と、ノズル6と、を備えている。 The power generation device 100 is a power generation device using a gas turbine. The power generation apparatus 100 includes a gas turbine 1, a compressor 2, a generator 3, a combustor 4, an intake air cooling chamber 5, and a nozzle 6.
 ガスタービン1においては、備えられるタービン翼が燃焼排ガスにより回転されるものである。圧縮機2は、取り込まれた外気を圧縮するものである。発電機3は、ガスタービン1のタービン翼に接続され、タービン翼の回転により発電するものである。燃焼機4は、圧縮機2により圧縮された外気を用い、燃料(図示しない)を燃焼するものである。これらは何れも任意のものが適用可能である。 In the gas turbine 1, the provided turbine blades are rotated by the combustion exhaust gas. The compressor 2 compresses the taken outside air. The generator 3 is connected to the turbine blades of the gas turbine 1 and generates power by the rotation of the turbine blades. The combustor 4 burns fuel (not shown) using the outside air compressed by the compressor 2. Any of these can be applied.
 吸気冷却室5は、取り込まれた外気に対して水を噴霧して冷却するものである。ノズル6は、吸気冷却室5内に設けられ、吸気冷却室5に取り込まれた外気に水を噴霧するものである。吸気冷却室5のノズル6から噴霧される水(具体的には高温高圧水)については後記する。 The intake air cooling chamber 5 cools the taken-in outside air by spraying water. The nozzle 6 is provided in the intake air cooling chamber 5 and sprays water on the outside air taken into the intake air cooling chamber 5. The water sprayed from the nozzle 6 of the intake cooling chamber 5 (specifically, high-temperature and high-pressure water) will be described later.
 温水生成装置700は、発電装置100に供給する水を生成するものである。温水生成装置700は、熱交換器701と、貯水タンク702と、給水ポンプ703と、高圧ポンプ704と、を備えている。 The hot water generation device 700 generates water to be supplied to the power generation device 100. The hot water generator 700 includes a heat exchanger 701, a water storage tank 702, a water supply pump 703, and a high pressure pump 704.
 熱交換器701は、ガスタービン1から排出された燃焼排ガスと貯水タンク702から供給される水とを熱交換するものである。即ち、燃焼排ガスの排熱により、貯水タンク702からの水が加熱されるようになっている。熱交換器701を経た燃焼排ガスは外部へ排出されるようになっている。また、熱交換器701を経て加熱された水は、吸気冷却室5内のノズル6から噴霧されるようになっている。貯水タンク702は、吸気冷却室5内で噴霧される水を貯留するものである。給水ポンプ703及び高圧ポンプ704は、貯水タンク702内の水を、熱交換器701を経て吸気冷却室5に供給する駆動源である。なお、熱交換器701において加熱された水は、高圧ポンプ704により所定の圧力まで昇圧された後、吸気冷却室5に供給されるようになっている。 The heat exchanger 701 exchanges heat between the combustion exhaust gas discharged from the gas turbine 1 and the water supplied from the water storage tank 702. That is, the water from the water storage tank 702 is heated by the exhaust heat of the combustion exhaust gas. The combustion exhaust gas that has passed through the heat exchanger 701 is discharged to the outside. The water heated through the heat exchanger 701 is sprayed from the nozzle 6 in the intake air cooling chamber 5. The water storage tank 702 stores water sprayed in the intake air cooling chamber 5. The water supply pump 703 and the high-pressure pump 704 are drive sources that supply water in the water storage tank 702 to the intake air cooling chamber 5 via the heat exchanger 701. The water heated in the heat exchanger 701 is raised to a predetermined pressure by the high-pressure pump 704 and then supplied to the intake air cooling chamber 5.
 制御装置200は、火力発電プラント100における各情報に基づいて演算を行い、前記の各手段を制御するものである。火力発電プラント100における各情報は、例えば、外気の温度等の外気情報、発電装置100に関する情報(要求された運転出力、実際の運転出力、燃焼排ガス中の残留燃料濃度、燃焼排ガスの温度等)ノズル6から噴霧される水についての情報(圧力、温度、流量(噴霧量))等である。 The control device 200 performs a calculation based on each information in the thermal power plant 100 and controls each of the above means. Each information in the thermal power plant 100 includes, for example, outside air information such as outside air temperature, information about the power generation apparatus 100 (required operation output, actual operation output, residual fuel concentration in combustion exhaust gas, temperature of combustion exhaust gas, etc.) Information about water sprayed from the nozzle 6 (pressure, temperature, flow rate (amount of spray)) and the like.
 制御装置200は、関連情報データベース300と、噴霧条件判定部400と、制御部500と、運転情報データベース600とを備えている。なお、制御装置200は、何れも図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、I/F(インターフェイス)、HDD(Hard Disk Drive)等を備え、ROMに展開されている所定のプログラムがCPUによって実行されることにより具現化されるようになっている。 The control device 200 includes a related information database 300, a spray condition determination unit 400, a control unit 500, and an operation information database 600. Although not shown, the control device 200 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an I / F (interface), an HDD (Hard Disk Drive), and the like. A predetermined program developed in the ROM is implemented by being executed by the CPU.
 関連情報データベース300は、外気情報が記録されるものである。記録される外気情報は、天気、気温、風向、風速、湿度、日射量等である。これらの外気情報は、時刻に紐付けられて記録されている。時間の周期は、計測可能な時間幅により決定されている。天気は、日本国気象庁が一般向けに発信している15種類を用いて記録されている。具体的には、快晴を0、晴れを1、薄曇を2というように、順次14まで番号を割り振って記録されている。風向は、真北を基準とし、時計回りの方向に360度に分割して表現する360方位が用いられている。なお、気温、風速、湿度及び日射量は、図示しない各種センサによって測定されるようになっている。 The related information database 300 records outside air information. The recorded outside air information includes weather, temperature, wind direction, wind speed, humidity, amount of solar radiation, and the like. Such outside air information is recorded in association with time. The period of time is determined by a measurable time width. The weather is recorded using 15 types sent to the general public by the Japan Meteorological Agency. Specifically, the numbers are sequentially assigned up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness. The wind direction is 360 azimuths expressed by dividing 360 degrees in the clockwise direction with reference to true north. The temperature, wind speed, humidity, and amount of solar radiation are measured by various sensors (not shown).
 図2は、火力発電プラント1000における関連情報データベース300に記録される表である。本実施形態の関連情報データベース300は、具体的には図2に示されるものである。図2に示すように、例えば2010年6月10日の午前10時00分00秒の外気情報として、天気:快晴、気温:22.1℃、風向:20度、風速:1.6m/s、湿度:40.1%、日射量:4.8kW/mであることが、関連情報データベース300に記録されるようになっている。 FIG. 2 is a table recorded in the related information database 300 in the thermal power plant 1000. The related information database 300 of this embodiment is specifically shown in FIG. As shown in FIG. 2, for example, the outdoor air information at 10:00 am on June 10, 2010 includes: weather: clear, temperature: 22.1 ° C., wind direction: 20 degrees, wind speed: 1.6 m / s The related information database 300 records that the humidity is 40.1% and the amount of solar radiation is 4.8 kW / m 2 .
 噴霧条件判定部400は、図4を参照しながら後記するフローに従って、ノズル6から噴霧される水の圧力及び温度を決定するものである。噴霧条件判定部400は、入力装置900(後記する)に入力された条件により、噴霧される水の圧力及び温度を決定するようになっている。また、噴霧条件判定部400により決定された圧力及び温度は、表示装置950(後記する)に表示されるようにもなっている。噴霧条件判定部400による制御は後記する。 The spray condition determination unit 400 determines the pressure and temperature of water sprayed from the nozzle 6 according to a flow described later with reference to FIG. The spray condition determination unit 400 determines the pressure and temperature of the sprayed water according to the conditions input to the input device 900 (described later). Further, the pressure and temperature determined by the spray condition determination unit 400 are displayed on a display device 950 (described later). Control by the spray condition determination unit 400 will be described later.
 制御部500は、噴霧条件判定部400により決定された圧力及び温度になるように、ノズル6から噴霧される水の圧力及び温度を制御するものである。即ち、制御部500は、噴霧条件判定部400により決定された圧力及び温度に基づき、給水ポンプ703及び高圧ポンプ704を制御するようになっている。これにより、ノズル6から噴霧される水の圧力及び温度が、決定された圧力及び温度になるように制御される。また、制御部500は、火力発電プラントの運転状態(緊急時等)に基づき、入力装置900への入力が無くとも、給水ポンプ703及び高圧ポンプ704を適宜制御するようにもなっている。 The control unit 500 controls the pressure and temperature of water sprayed from the nozzle 6 so that the pressure and temperature determined by the spray condition determination unit 400 are obtained. That is, the control unit 500 controls the feed water pump 703 and the high pressure pump 704 based on the pressure and temperature determined by the spray condition determination unit 400. Thereby, the pressure and temperature of the water sprayed from the nozzle 6 are controlled to be the determined pressure and temperature. Further, the control unit 500 appropriately controls the water supply pump 703 and the high-pressure pump 704 even if there is no input to the input device 900 based on the operating state (emergency etc.) of the thermal power plant.
 運転情報データベース600は、発電装置100についての運転状態と、温水生成装置700についての供給水情報とを記録するものである。運転情報データベース600においては、火力発電プラント1000の試運転時にデータの蓄積が行われる。発電装置100についての運転状態とは、発電装置100による運転出力E、燃焼排ガス中の残留燃料濃度Dである。また、温水生成装置700についての供給水情報とは、熱交換器701を通流する水の流量F、熱交換器701から排出され、高圧ポンプ704を経た水の圧力P及び温度Tである。これらの値は、時刻に紐付けられて記録されるようになっている。また、これらの値は、図示しない各センサによって測定されるようになっている。 The operation information database 600 records the operation state of the power generation apparatus 100 and the supply water information of the hot water generation apparatus 700. In the operation information database 600, data is accumulated during the trial operation of the thermal power plant 1000. The operation state of the power generation apparatus 100 is the operation output E by the power generation apparatus 100 and the residual fuel concentration D in the combustion exhaust gas. The supplied water information for the hot water generator 700 is the flow rate F of water flowing through the heat exchanger 701, the pressure P and the temperature T of water discharged from the heat exchanger 701 and passed through the high pressure pump 704. These values are recorded in association with the time. These values are measured by respective sensors (not shown).
 図3は、火力発電プラント1000における運転情報データベース600に記録される表である。本実施形態の運転情報データベース600は、具体的には図3に示されるものである。図3に示すように、例えば2010年6月10日の午前10時00分00秒の運転状態及び供給水情報として、流量F:300Kg/s、温度T:580℃、圧力P:18.5MPa、発電出力E:450MW、濃度D:100ppmであることが、運転情報データベース600に記録されるようになっている。また、運転情報データ600に記録されている各値は、それぞれPID番号を付して記録されている。例えば、図3に示すように、流量Fには、「PID150」との番号が付されて記録されている。このPID番号は、各値に割り付けられた、各値に固有の番号である。 FIG. 3 is a table recorded in the operation information database 600 in the thermal power plant 1000. The operation information database 600 of this embodiment is specifically shown in FIG. As shown in FIG. 3, for example, as the operation state and supply water information at 10:00 am on June 10, 2010, flow rate F: 300 Kg / s, temperature T: 580 ° C., pressure P: 18.5 MPa The power generation output E: 450 MW and the concentration D: 100 ppm are recorded in the operation information database 600. Each value recorded in the driving information data 600 is recorded with a PID number. For example, as shown in FIG. 3, the flow rate F is recorded with a number “PID150”. This PID number is a number unique to each value assigned to each value.
 入力装置900は、キーボード901と、マウス902とを備えている。これらを用いて入力された指示(設定値、選択等)は、支援装置910に送信されるようになっている。入力装置900に指示が入力されることにより、関連情報データベース300及び運転情報データベース600がアクセス可能になっている。 The input device 900 includes a keyboard 901 and a mouse 902. Instructions (setting values, selections, etc.) input using these are transmitted to the support apparatus 910. When an instruction is input to the input device 900, the related information database 300 and the operation information database 600 can be accessed.
 支援装置910は、外部入力インターフェイス920と、データ送受信処理部930と、外部手主力インターフェイス940とを備えている。支援装置910は、これらのほかにも制御装置200と同様の手段(いずれも図示しない)を備え、ROMに展開されている所定のプログラムがCPUによって実行されることにより具現化されるようになっている。 The support device 910 includes an external input interface 920, a data transmission / reception processing unit 930, and an external manual interface 940. In addition to these, the support device 910 includes means similar to the control device 200 (none of which is shown), and is implemented by executing a predetermined program expanded in the ROM by the CPU. ing.
 入力装置900に入力された指示と制御装置200から受信した電気信号とは、支援装置910の外部入力インターフェイス920に入力されるようになっている。そして、外部入力インターフェイス920に入力された指示及び電気信号は、外部出力インターフェイス940を介し、制御装置200に送信されたり、表示装置950に表示されたりするようになっている。 The instruction input to the input device 900 and the electric signal received from the control device 200 are input to the external input interface 920 of the support device 910. An instruction and an electrical signal input to the external input interface 920 are transmitted to the control device 200 or displayed on the display device 950 via the external output interface 940.
〔外気温度上昇に伴う運転出力低下に対する出力回復〕
 火力発電プラント1000において、運転出力が低下したときの出力回復について説明する。
[Restoration of output against lowering of operation output due to outside temperature rise]
In the thermal power plant 1000, the output recovery when the operation output decreases will be described.
 外気温度が上昇する等して圧縮機2に供給される外気(空気)の温度が上昇すると、運転出力が低下する。これは、外気温度が上昇することにより外気中の酸素密度が低下するため、燃焼機4において燃料の燃焼効率が低下するからである。また、外気の温度が上昇すると、外気中の気体分子の運動が激しくなるため、圧縮機2が外気を圧縮しにくくなり、燃焼機4に供給される外気の量が低下するためでもある。そこで、火力発電プラント1000においては、水を用いて取り込まれる外気温度の低下制御を行っている。これにより、低下した運転出力を回復させることができるようになっている。また、水を噴霧することにより、圧縮機2に供給される気体の質量流量を増加させることができるため、発電機3による発電出力をよりいっそう向上させることができる。 When the temperature of the outside air (air) supplied to the compressor 2 rises due to an increase in the outside air temperature or the like, the operation output decreases. This is because the combustion efficiency of the fuel in the combustor 4 decreases because the oxygen density in the outside air decreases as the outside air temperature rises. Further, when the temperature of the outside air rises, the movement of gas molecules in the outside air becomes intense, so that it becomes difficult for the compressor 2 to compress the outside air and the amount of the outside air supplied to the combustor 4 decreases. Therefore, in the thermal power plant 1000, the outside air temperature taken in using water is controlled to be lowered. As a result, the reduced operation output can be recovered. Moreover, since the mass flow rate of the gas supplied to the compressor 2 can be increased by spraying water, the power generation output by the generator 3 can be further improved.
 また、火力発電プラント1000においては、比較的高温高圧の水を外気に対して噴霧している。特に、高温の水を噴霧することにより、噴霧された水の蒸発が促される。これにより、圧縮機2内でドレン水(液体の溜まり水)の生成を抑制することができる。これにより、発電装置100における錆等の発生が防止される。さらに、ドレン水の生成が抑制されるため、より多くの水を噴霧することができる。 Also, in the thermal power plant 1000, relatively high temperature and high pressure water is sprayed on the outside air. In particular, by spraying hot water, evaporation of the sprayed water is promoted. Thereby, generation | occurrence | production of drain water (liquid pool water) can be suppressed in the compressor 2. FIG. Thereby, generation | occurrence | production of the rust etc. in the electric power generating apparatus 100 is prevented. Furthermore, since the production | generation of drain water is suppressed, more water can be sprayed.
 また、水が蒸発する際、周囲から熱(気化熱)を奪う。そのため、周囲の温度を低下させる効果がある。これにより、外気の温度を低下させることができる。さらに、高温の水を噴霧することにより、水は、噴霧直後に水滴内部からはじけるように噴霧される。そのため、噴霧直後の水滴は一層微粒子化されたものとなる。噴霧後の水は微粒子化されたものであり、ドレン水生成の可能性が低い。そのため、より多くの水を噴霧することができる。これにより、外気の冷却効果をよりいっそう促すことができる。 Also, when water evaporates, it takes heat (vaporization heat) from the surroundings. Therefore, there is an effect of lowering the ambient temperature. Thereby, the temperature of outside air can be reduced. Further, by spraying high-temperature water, water is sprayed so as to be repelled from the inside of the water droplet immediately after spraying. Therefore, the water droplets immediately after spraying are further finely divided. The water after spraying is finely divided, and the possibility of generating drain water is low. Therefore, more water can be sprayed. Thereby, the cooling effect of outside air can be further promoted.
 また、高圧の水を噴霧することにより、ノズル6から噴霧された直後には膨張して圧力が低下する。これにより、沸点が低下し、ノズル6から噴霧された液体の水は気体の水に変化する。この現象は、所謂減圧沸騰と呼称される現象である。ノズル6から噴霧された液体の水は、周囲から熱を奪って気体の水(水蒸気)に変化する。即ち、ノズル6から噴霧された水が気体の水に変化するとき、水は、周囲から気化熱を奪う。そのため、水が減圧沸騰することにより、外気は気化熱を奪われて冷却される。 In addition, by spraying high-pressure water, immediately after spraying from the nozzle 6, it expands and the pressure drops. Thereby, a boiling point falls and the liquid water sprayed from the nozzle 6 changes to gaseous water. This phenomenon is a so-called vacuum boiling. The liquid water sprayed from the nozzle 6 takes heat from the surroundings and changes to gaseous water (water vapor). That is, when the water sprayed from the nozzle 6 changes to gaseous water, the water takes heat of vaporization from the surroundings. Therefore, when the water boils under reduced pressure, the outside air is deprived of the heat of vaporization and cooled.
 このように、外気を冷却するために低温低圧の水ではなく高温高圧の水を噴霧させている。これにより、外気の冷却効果をよりいっそう引き出すことができる。 Thus, high temperature and high pressure water is sprayed instead of low temperature and low pressure water to cool the outside air. Thereby, the cooling effect of outside air can be drawn out further.
 さらに、火力発電プラント1000においては、噴霧される水の量が制御されている。具体的には、火力発電プラント1000の運転出力に応じて、噴霧される水の圧力及び温度が制御されている。具体的な制御は後記する。水の圧力を上昇させるためには、通常、高圧ポンプ等の昇圧手段が必要になる。そこで、噴霧される水の量を制御することにより、必ずしも必要ではない昇圧制御を避けることができる。これにより、昇圧手段の駆動電力を削減することができる。従って、火力発電プラント1000における消費エネルギを削減することができる。 Furthermore, in the thermal power plant 1000, the amount of water sprayed is controlled. Specifically, the pressure and temperature of the sprayed water are controlled according to the operation output of the thermal power plant 1000. Specific control will be described later. In order to increase the pressure of water, usually a pressure increasing means such as a high pressure pump is required. Thus, by controlling the amount of water sprayed, it is possible to avoid pressure increase control that is not necessarily required. Thereby, the driving power of the boosting means can be reduced. Therefore, energy consumption in the thermal power plant 1000 can be reduced.
〔噴霧される水の圧力及び温度の決定〕
 図4を参照しながら、吸気冷却室5内で噴霧される水の圧力及び温度(即ち、噴霧条件)の決定方法を説明する。なお、図4に示すフローは、制御装置200の噴霧条件判定部400により実行される。
[Determination of pressure and temperature of sprayed water]
A method for determining the pressure and temperature of water sprayed in the intake air cooling chamber 5 (that is, spraying conditions) will be described with reference to FIG. Note that the flow shown in FIG. 4 is executed by the spray condition determination unit 400 of the control device 200.
 図4は、火力発電プラント1000における、水の噴霧条件を決定するフローである。噴霧条件の決定フローは、主に4つのステップ(ステップS10~ステップS13)を経る。そして、これらのステップを経て決定された圧力及び温度となるように、水の圧力及び温度が昇圧及び昇温されて噴霧される(ステップS14)。 FIG. 4 is a flow for determining water spray conditions in the thermal power plant 1000. The flow for determining the spray conditions mainly passes through four steps (step S10 to step S13). Then, the pressure and temperature of the water are increased and increased so that the pressure and temperature determined through these steps are reached (step S14).
 はじめに、噴霧条件判定部400は、入力装置900にて入力された要求出力(例えば電力出力の要求割合。例えば「出力100%」等)と運転状態(実際の出力)とに基づき、出力変化量を算出する(ステップS10)。即ち、噴霧条件判定部400(演算部)は、運転出力(火力発電プラントの発電出力)が変化した時の運転出力変化量を算出する(運転出力変化量算出ステップ)。この点を、図5を参照しながらより詳細に説明する。 First, the spray condition determination unit 400 outputs an output change amount based on a requested output (for example, a requested ratio of power output, such as “output 100%”, etc.) input by the input device 900 and an operating state (actual output). Is calculated (step S10). That is, the spray condition determination unit 400 (calculation unit) calculates the operation output change amount when the operation output (the power generation output of the thermal power plant) changes (operation output change amount calculation step). This point will be described in more detail with reference to FIG.
 図5は、外気温度から出力変化量を算出することを説明する図である。火力発電プラント1000の発電装置100は、図5に示すように、取り込まれる外気の温度がTのとき、運転出力がWになるように設計されている。即ち、要求出力が100%に設定されたとき、運転出力がWになるように設計されている。 FIG. 5 is a diagram for explaining the calculation of the output change amount from the outside air temperature. As shown in FIG. 5, the power generation apparatus 100 of the thermal power plant 1000 is designed so that the operation output becomes W 0 when the temperature of the outside air taken in is T 0 . That is, when the required output is set to 100%, the operation output is designed to be W 0 .
 このように設計された火力発電プラント1000において、外気温度がTからTに上昇したとき、運転出力はWからWに低下する。即ち、要求出力が100%に設定された場合、出力はWに減少する。このような時、噴霧条件判定部400は、出力の減少分(W-W)を出力変化量Wとして算出する。つまり、要求出力(ここでは100%に対応する出力)と運転状態(実際の出力)に基づき、出力変化量Wが算出される(ステップS10)。 In the thermal power plant 1000 designed in this way, when the outside air temperature increases from T 0 to T 1 , the operation output decreases from W 0 to W 1 . That is, when the required output is set to 100%, the output is reduced to W 1. In such a case, the spray condition determination unit 400 calculates the output decrease (W 0 −W 1 ) as the output change amount W 2 . That is, based on the required output (here, the output corresponding to 100%) operation state (actual output), the output change amount W 2 is calculated (Step S10).
 次に、噴霧条件判定部400は、ステップS10において算出した出力変化量W2に基づき、吸気冷却室5内への水の噴霧量Sを算出する(ステップS11)。この点を、図6を参照しながらより詳細に説明する。 Next, spray condition determination unit 400, based on the output change amount W2 calculated in step S10, calculates the amount sprayed S 2 of water into the intake cooling chamber 5 (step S11). This point will be described in more detail with reference to FIG.
 図6は、出力変化量から噴霧量を算出することを説明する図である。前記したように、取り込まれた外気の温度がより高いほど、出力変化量が大きくなる、即ち運転出力の減少量が大きくなる。そこで、このような場合には、より多くの水が吸気冷却室5内で噴霧され、外気が冷却される。このことが、図6に示すグラフである。具体的には、図6に示すように、出力変化量が多くなればなるほど外気温度が高くなっているため、より多くの水を噴霧して外気が冷却される。 FIG. 6 is a diagram for explaining the calculation of the spray amount from the output change amount. As described above, the higher the temperature of the taken-in outside air, the larger the output change amount, that is, the greater the decrease in the operation output. Therefore, in such a case, more water is sprayed in the intake air cooling chamber 5 and the outside air is cooled. This is the graph shown in FIG. Specifically, as shown in FIG. 6, as the amount of change in output increases, the outside air temperature increases, so that more outside water is sprayed to cool the outside air.
 噴霧条件判定部400は、図6に示すグラフに基づいて、出力変化量Wに対応する噴霧量Sを算出する。なお、図6に示すグラフは、主には圧縮機2等の火力発電プラント1000の設計条件により決定されるグラフである。 The spray condition determination unit 400 calculates a spray amount S 2 corresponding to the output change amount W 2 based on the graph shown in FIG. The graph shown in FIG. 6 is a graph determined mainly by the design conditions of the thermal power plant 1000 such as the compressor 2.
 そして、噴霧条件判定部400は、噴霧量Sに基づき、噴霧水(吸気冷却室5内で噴霧される水)の粒径を算出する(ステップS12)。即ち、噴霧条件判定部400(演算部)は、前記運転出力変化量算出ステップにおいて算出された運転出力変化量に基づいて、噴霧時の水(液体)の粒径を算出する(粒径算出ステップ)。そして、算出された粒径に基づいて、水(液体)の噴霧条件が決定される。この点を、図7を参照しながらより詳細に説明する。 The spraying condition determination unit 400, based on the spray volume S 2, to calculate the particle size of the spray water (water to be sprayed in the intake-air cooling chamber 5) (step S12). That is, the spray condition determination unit 400 (calculation unit) calculates the particle size of water (liquid) at the time of spraying based on the operation output change amount calculated in the operation output change amount calculation step (particle size calculation step). ). Then, based on the calculated particle size, water (liquid) spraying conditions are determined. This point will be described in more detail with reference to FIG.
 図7は、噴霧量から噴霧水の粒径を算出することを説明する図である。吸気冷却室5において、できるだけ多くの水を噴霧すれば、より確実な外気の冷却効果を得ることができる。しかしながら、単に水の噴霧量を多くすれば、発電装置100の内部にドレン水が生成することがある。このような水が多く発生すると、圧縮機2の圧縮機翼等の部材が錆びることがある。そのため、本実施形態においては、噴霧する水の量が制御されている。 FIG. 7 is a diagram for explaining the calculation of the particle size of spray water from the spray amount. If as much water as possible is sprayed in the intake cooling chamber 5, a more reliable outside air cooling effect can be obtained. However, if the amount of water spray is simply increased, drain water may be generated inside the power generation apparatus 100. When such a large amount of water is generated, members such as compressor blades of the compressor 2 may rust. Therefore, in this embodiment, the amount of water to be sprayed is controlled.
 ドレン水生成の有無は、通常、噴霧水の状態に依存する。即ち、噴霧水の粒径が小さいほど、噴霧水は蒸発し易い。そのため、ドレン水が生成する可能性は低い。従って、より多くの水を噴霧することができる。一方で、噴霧水の粒径が大きいほど、噴霧水は蒸発しにくい。そのため、ドレン水が生成する可能性が比較的高い。従って、ドレン水の生成量を考慮した場合、噴霧できる水の量は減少する。このような関係のグラフに基づいて、噴霧量Sに対応する粒径Rが決定される。 The presence or absence of drain water generation usually depends on the state of spray water. That is, the smaller the particle size of the spray water, the more easily the spray water evaporates. Therefore, the possibility that drain water is generated is low. Therefore, more water can be sprayed. On the other hand, the larger the particle size of the spray water, the more difficult it is to evaporate. Therefore, the possibility that drain water is generated is relatively high. Therefore, when the amount of drain water generated is taken into consideration, the amount of water that can be sprayed decreases. Based on the graph of this relationship, the particle diameter R 2 is determined corresponding to the spray amount S 2.
 そこで、ドレン水の生成を考慮すると、水の噴霧量と粒径とは、図7に示すように、相反することになる。具体的には、水の噴霧量が多くなればなるほどドレン水が生成する可能性が高まるため、噴霧水の粒径は小さく制御される。一方で、水の噴霧量が少ない場合にはドレン水が生成する可能性は低くなるため、噴霧水の粒径は大きくても許容される。 Therefore, in consideration of the generation of drain water, the amount of sprayed water and the particle size are in conflict as shown in FIG. Specifically, since the possibility that drain water is generated increases as the spray amount of water increases, the particle size of the spray water is controlled to be small. On the other hand, when the amount of sprayed water is small, the possibility that drain water is generated is reduced.
 吸気冷却室5内に噴霧される水の量の上限は、主には圧縮機2の仕様により決定される。即ち、外気が、圧縮機2に長時間滞在する場合、噴霧された水は蒸発しやすくなる。そのため、噴霧量の上限も多くなる。一方で、外気の圧縮機2での滞在時間が短い場合、噴霧された水は相対的に蒸発しにくくなる。そのため、噴霧量の上限は少なくなる。これらの場合において、噴霧量の上限は、例えば圧縮機2の全長と圧縮機2内の翼段数とに基づいて、流れ解析により決定される。 The upper limit of the amount of water sprayed into the intake cooling chamber 5 is mainly determined by the specifications of the compressor 2. That is, when the outside air stays in the compressor 2 for a long time, the sprayed water is easily evaporated. Therefore, the upper limit of the spray amount increases. On the other hand, when the residence time of the outside air in the compressor 2 is short, the sprayed water is relatively less likely to evaporate. Therefore, the upper limit of the spray amount is reduced. In these cases, the upper limit of the spray amount is determined by flow analysis based on, for example, the total length of the compressor 2 and the number of blade stages in the compressor 2.
 なお、前記のように、噴霧水の粒径が小さいほど、ドレン水が生成しにくい。そのため、図7において、噴霧量に対応する粒径以下であれば、必ずしも当該粒径になるように噴霧水の状態を制御する必要は無い。具体的には、例えば、外気温度の変化により噴霧量SがSに変化した場合、対応する粒径はRからR(R<R)に変化する。しかし、このような場合には、噴霧水の粒径をRに変化させず、Rのまま運転してもよい。このようにすることにより、噴霧条件判定部400の演算負荷を減らすことができる。 As described above, the smaller the particle size of the spray water, the more difficult it is to generate drain water. Therefore, in FIG. 7, it is not always necessary to control the state of the spray water so that the particle diameter is equal to or less than the particle diameter corresponding to the spray amount. Specifically, for example, when the spray amount S 2 changes to S 3 due to a change in the outside air temperature, the corresponding particle size changes from R 2 to R 3 (R 2 <R 3 ). However, in such a case, the particle size of the spray water without changing the R 3, may be operated while the R 2. By doing in this way, the calculation load of the spray condition determination part 400 can be reduced.
 次に、噴霧条件判定部400は、ステップS12において算出した噴霧水の粒径に基づき、噴霧条件(具体的には、噴霧水の圧力及び温度)を決定する(ステップS13)。即ち、噴霧条件判定部400(演算部)は、前記運転出力変化量算出ステップにおいて算出された運転出力変化量に基づいて、水(液体)の噴霧条件を決定する(噴霧条件決定ステップ)。具体的には、噴霧条件は、図8に基づいて決定される。 Next, the spray condition determination unit 400 determines the spray condition (specifically, the pressure and temperature of the spray water) based on the particle size of the spray water calculated in Step S12 (Step S13). That is, the spray condition determination unit 400 (calculation unit) determines the spray condition of water (liquid) based on the operation output change amount calculated in the operation output change amount calculation step (spray condition determination step). Specifically, the spray conditions are determined based on FIG.
 図8は、粒径から噴霧する水の温度及び圧力を決定することを説明する図である。図8に示すグラフは、飽和蒸気圧曲線である。ガスタービン1から排出される燃焼排ガスの温度は予め推定される。そのため、熱交換器1から排出され、吸気冷却室5内で噴霧される水の温度範囲を推定可能である。図8に示すように、この温度範囲の上限はThighとし、下限はTlowとする。これらの温度範囲を図8に示すように3分割し、T10及びT11が設定される。 FIG. 8 is a diagram for explaining the determination of the temperature and pressure of water sprayed from the particle diameter. The graph shown in FIG. 8 is a saturated vapor pressure curve. The temperature of the combustion exhaust gas discharged from the gas turbine 1 is estimated in advance. Therefore, it is possible to estimate the temperature range of the water discharged from the heat exchanger 1 and sprayed in the intake cooling chamber 5. As shown in FIG. 8, the upper limit of this temperature range is T high and the lower limit is T low . These temperature ranges were divided into three as shown in FIG. 8, T 10 and T 11 are set.
 同様に、高圧ポンプ704により制御可能な噴霧水の圧力範囲は、高圧ポンプ704及びノズル6の仕様により決定される。そして、図8に示すように、この圧力範囲の上限はPhighとし、下限はPlowとする。これらの圧力範囲を図8に示すように3分割し、P10及びP11が設定される。これらにより、図8は、格子状に区切られたものとなる。 Similarly, the pressure range of the spray water that can be controlled by the high-pressure pump 704 is determined by the specifications of the high-pressure pump 704 and the nozzle 6. As shown in FIG. 8, the upper limit of the pressure range is P high and the lower limit is P low . These pressure ranges divided into three as shown in FIG. 8, P 10 and P 11 are set. As a result, FIG. 8 is partitioned into a lattice.
 火力発電プラント1000の運転時、通常は、ノズル6から噴霧される水の粒径を実測することができない。そのため、設けられるノズル6のノズル径において、噴霧される水の圧力及び温度と粒径とがデータベース化されている。この関係は、予備実験等により決定される。この関係が、図8に示すグラフである。粒径Rが最も小さく、次いでR、R、R及びRの順で大きくなる。 During operation of the thermal power plant 1000, the particle size of water sprayed from the nozzle 6 cannot normally be measured. Therefore, in the nozzle diameter of the nozzle 6 provided, the pressure and temperature of the sprayed water and the particle diameter are stored in a database. This relationship is determined by a preliminary experiment or the like. This relationship is the graph shown in FIG. The particle size R 1 is the smallest, and then increases in the order of R 2 , R 3 , R 4 and R 5 .
 なお、図8において、粒径は、飽和蒸気圧曲線よりも上側の格子のみに付している。即ち、噴霧水の圧力は、飽和蒸気圧曲線よりも高い圧力(つまり、液体の水が存在する圧力)とする。本実施形態においては、高圧の水を噴霧させて減圧し、これにより水が減圧沸騰されている。そのため、このような現象が生じる圧力に設定している。 In FIG. 8, the particle diameter is given only to the lattice above the saturation vapor pressure curve. That is, the pressure of the spray water is set to a pressure higher than the saturated vapor pressure curve (that is, the pressure at which liquid water exists). In the present embodiment, the pressure is reduced by spraying high-pressure water, whereby the water is boiled under reduced pressure. Therefore, the pressure at which such a phenomenon occurs is set.
 例えば、現在粒径Rの水を噴霧している場合、外気温度の上昇量が小さくなって、粒径Rで足りることになった場合を考える。噴霧条件判定部400は、領域R(図8では2つの領域)に含まれる圧力及び温度のうち、粒径Rでの噴霧時の圧力条件及び温度条件から変動が小さい圧力及び温度(即ち噴霧条件)を決定する。決定された噴霧条件は、データ送受信処理部930によって表示装置950に表示される(表示ステップ)。 For example, if you are spraying water current particle diameter R 1, consider the case where the increase amount of the outside air temperature becomes small, had to suffice particle diameter R 2. Spray condition determination unit 400, the region R 2 of the pressure and temperature are included in (in FIG. 8 the two regions), the particle diameter pressure fluctuations from the pressure and temperature conditions at the time of spraying with R 1 is small and the temperature (i.e. Determine spraying conditions). The determined spray conditions are displayed on the display device 950 by the data transmission / reception processing unit 930 (display step).
 そして、噴霧条件が決定された後、噴霧条件判定部400は、決定された噴霧条件によって水を噴霧した場合に、噴霧された水が減圧沸騰するか否かを判断する(このステップは図示しない)。そして、噴霧された水が減圧沸騰すると判断された場合に、噴霧条件判定部400は、決定された噴霧条件になるように、制御部500に制御信号を送信する。 After the spray conditions are determined, the spray condition determination unit 400 determines whether or not the sprayed water boils under reduced pressure when water is sprayed according to the determined spray conditions (this step is not illustrated). ). Then, when it is determined that the sprayed water is boiled under reduced pressure, the spray condition determination unit 400 transmits a control signal to the control unit 500 so that the determined spray condition is satisfied.
 即ち、噴霧条件判定部400(演算部)が、前記噴霧条件決定ステップにおいて決定された噴霧条件によって水(液体)を噴霧した場合に、噴霧された水(液体)が減圧沸騰するか否かを判断する減圧沸騰判断ステップを有し、前記減圧沸騰判断ステップにおいて、噴霧された水(液体)が減圧沸騰すると判断された場合に、前記噴霧ステップにおいて噴霧されるようにしてもよい。減圧沸騰については、前記した通りである。 That is, when the spray condition determination unit 400 (calculation unit) sprays water (liquid) according to the spray condition determined in the spray condition determination step, whether or not the sprayed water (liquid) boils under reduced pressure. There may be a reduced-pressure boiling determination step for determining, and when the sprayed water (liquid) is determined to be reduced-pressure boiling in the reduced-pressure boiling determination step, it may be sprayed in the spraying step. The vacuum boiling is as described above.
 そして、制御部500は、噴霧条件判定部400からの制御信号に基づき、給水ポンプ703及び高圧ポンプ704を制御する。これにより、決定された圧力及び温度の水がノズル6から噴霧される(ステップS14)。即ち、制御部500、給水ポンプ703、高圧ポンプ704及びノズル6(噴霧手段)は、前記噴霧条件決定ステップにおいて決定された噴霧条件の液体を噴霧する(噴霧ステップ)。これにより、取り込まれた外気の温度を低下させ、運転出力の回復が行われる。 And the control part 500 controls the water supply pump 703 and the high pressure pump 704 based on the control signal from the spray condition determination part 400. Thereby, the water of the determined pressure and temperature is sprayed from the nozzle 6 (step S14). That is, the control unit 500, the water supply pump 703, the high-pressure pump 704, and the nozzle 6 (spraying means) spray the liquid having the spraying condition determined in the spraying condition determining step (spraying step). Thereby, the temperature of the taken-in outside air is reduced and the operation output is recovered.
 次に、図1に示す火力発電プラント1000運転時の全体のフローを説明する。 Next, the overall flow when the thermal power plant 1000 shown in FIG. 1 is operated will be described.
 はじめに、外気が、図示しない吸気口から吸気冷却室5に取り込まれる。この時点では、ノズル6から水は噴霧されていない。そして、取り込まれた外気は圧縮機2により圧縮された後、燃焼機4に供給される。そして、燃焼機4において燃料が燃焼され、燃焼排ガスが生成する。ただし、火力発電プラント1000の起動時は、発電装置100の状態が安定していない。そのため、発電装置100のガスタービン1からの燃焼排ガスによって、予め推測した温度の水を得ることが困難なことがある。従って、起動後しばらくは、ノズル6からの水の噴霧は行われない。 First, outside air is taken into the intake cooling chamber 5 from an intake port (not shown). At this time, water is not sprayed from the nozzle 6. The taken outside air is compressed by the compressor 2 and then supplied to the combustor 4. And a fuel is combusted in the combustor 4, and combustion exhaust gas produces | generates. However, the state of the power generation device 100 is not stable when the thermal power plant 1000 is started. Therefore, it may be difficult to obtain water having a temperature estimated in advance by the combustion exhaust gas from the gas turbine 1 of the power generation apparatus 100. Therefore, for a while after the activation, spraying of water from the nozzle 6 is not performed.
 次に、発電装置100での出力が安定し、火力発電プラント1000が定常運転になった時、ノズル6から水が噴霧される。より具体的には、ガスタービン1からの燃焼排ガスを利用し、前記した制御によって決定された圧力及び温度の水が、ノズル6から噴霧される。吸気冷却室5に取り込まれた外気は、ノズル6から噴霧される水によって、降温される。降温した外気は、圧縮機2により圧縮された後、燃焼機4に供給される。燃焼機4において、燃料(図示しない)は、供給された外気とともに燃焼される。これにより燃焼排ガスが生成する。そして、定常運転時には、この燃焼排ガスを利用し、ノズル6から噴霧される水を昇温する。 Next, when the output of the power generation apparatus 100 is stabilized and the thermal power plant 1000 is in a steady operation, water is sprayed from the nozzle 6. More specifically, the combustion exhaust gas from the gas turbine 1 is used, and water having a pressure and temperature determined by the above-described control is sprayed from the nozzle 6. The outside air taken into the intake cooling chamber 5 is cooled by the water sprayed from the nozzle 6. The cooled outside air is compressed by the compressor 2 and then supplied to the combustor 4. In the combustor 4, fuel (not shown) is burned together with the supplied outside air. Thereby, combustion exhaust gas is generated. During steady operation, the temperature of water sprayed from the nozzle 6 is increased using the combustion exhaust gas.
 定常運転時、燃焼排ガスの温度が減圧沸騰可能な領域を維持できる温度帯であれば、噴霧が継続される。一方で、発電設備100及び温水生成装置200に備えられている各手段の故障等により減圧沸騰が可能な領域を維持できない場合は、温水噴霧は中断される。これらの判断は、噴霧状態判定部400によって自動で行われる。ただし、熱交換器701による所定温度までの水の加熱が不可能な場合でも、水(冷水)の噴霧が行われる。この時、予め設定された噴霧可能な量を超えない量の水が噴霧される。なお、この噴霧可能な量とは、冷水を噴霧しても圧縮機2等にドレン水が生成しない量或いは生成しても許容される量である。 定 常 During steady operation, spraying is continued if the temperature of the combustion exhaust gas is within a temperature range that can maintain a region where it can be boiled under reduced pressure. On the other hand, in the case where the region capable of boiling under reduced pressure cannot be maintained due to failure of each means provided in the power generation facility 100 and the hot water generator 200, the hot water spraying is interrupted. These determinations are automatically made by the spray state determination unit 400. However, even when heating of water up to a predetermined temperature by the heat exchanger 701 is impossible, spraying of water (cold water) is performed. At this time, an amount of water that does not exceed a preset sprayable amount is sprayed. The sprayable amount is an amount that does not generate drain water in the compressor 2 or the like even when sprayed with cold water, or an amount that is allowable even if generated.
 そして、火力発電プラント1000の運転停止時には、ノズル6からの水の噴霧も停止される。 And, when the operation of the thermal power plant 1000 is stopped, the spraying of water from the nozzle 6 is also stopped.
 火力発電プラント1000の起動時、定常運転時、運転停止時とは、発電装置100での各測定値に基づき、整数値のモードにより定義される。具体的には、起動時は起動モードとして「0」、定常運転中は運転モードとして「1」、運転停止時は停止モードとして「2」と定義されている。このように定義することにより、プラントの運転状態を整数値を用いて判別することができる。 When the thermal power plant 1000 is started, when it is in steady operation, and when it is stopped, it is defined by an integer value mode based on each measurement value of the power generation device 100. Specifically, the start mode is defined as “0” during start-up, the operation mode as “1” during steady operation, and the stop mode as “2” during operation stop. By defining in this way, the operation state of the plant can be determined using an integer value.
 火力発電プラント1000の運転中に、データ送受信処理部930により表示装置950に表示される画面について説明する。表示装置950に表示された画面の空欄に対し、キーボード901及びマウス902が用いられて各パラメータ等が入力される。 A screen displayed on the display device 950 by the data transmission / reception processing unit 930 during the operation of the thermal power plant 1000 will be described. Each parameter or the like is input to a blank field of the screen displayed on the display device 950 using the keyboard 901 and the mouse 902.
 図9は、水の噴霧条件を決定する際に表示装置に表示される初期画面の様子である。運転状態表示ボタン951又はトレンド表示ボタン952のうち必要なボタンが、カーソル953により移動及び選択される。これにより、所望の画面が表示される。カーソル952は、マウス902により操作可能である。 FIG. 9 shows a state of an initial screen displayed on the display device when the water spray condition is determined. A necessary button of the operation state display button 951 or the trend display button 952 is moved and selected by the cursor 953. Thereby, a desired screen is displayed. The cursor 952 can be operated with the mouse 902.
 図10は、水の噴霧条件を決定する際に表示装置に表示される運転状態表示画面の様子である。図9の運転状態表示ボタン951が選択されることにより、図10に示される画面が表示される。 FIG. 10 shows a state of the operation state display screen displayed on the display device when the water spray condition is determined. When the operation state display button 951 in FIG. 9 is selected, the screen shown in FIG. 10 is displayed.
 図10に示す運転状態表示画面の系統情報表示欄961は、発電装置100及び温水生成装置700の各情報が表示される欄である。系統情報表示欄961においては、時刻入力欄962に入力された時刻に対応した各情報が表示されるようになっている。具体的には、時刻入力欄962に時刻が入力された後、表示ボタン963が押下されることにより、系統情報表示欄961に各情報が表示されるようになっている。なお、表示される情報としては、現在、計測している箇所の温度、圧力等の状態量、調整弁、ポンプ等の手段の状態等である。ただし、図10では、図示の簡略化のために、吸気冷却室5に噴霧される水の圧力及び温度のみが示されている。 The system information display column 961 of the operation state display screen shown in FIG. 10 is a column in which each information of the power generator 100 and the hot water generator 700 is displayed. In the system information display field 961, information corresponding to the time input in the time input field 962 is displayed. Specifically, each time information is displayed in the system information display field 961 by pressing the display button 963 after the time is input in the time input field 962. Note that the displayed information includes state quantities such as temperature and pressure at the location currently being measured, states of means such as a regulating valve and a pump. However, in FIG. 10, only the pressure and temperature of water sprayed into the intake cooling chamber 5 are shown for simplification of illustration.
 運転状態表示欄964は、選択されている運転モードを表示する欄である。図10では、運転モード(定常運転モード)が表示されている。また、噴霧水設定表示欄965は、噴霧条件判定部400において算出及び決定された噴霧水の温度、圧力及び粒径を表示するものである。さらに、関連情報表示欄966は、天気、気温、風向、風速、湿度及び日射量うち表示したい項目を選択するものである。これらの項目のうちの表示したい項目を選択後、表示ボタン967を押下することにより、観点情報データベース300に記録された情報のうち対応する情報が図示しない別画面に表示されるようになっている。 The operation state display column 964 is a column that displays the selected operation mode. In FIG. 10, the operation mode (steady operation mode) is displayed. The spray water setting display field 965 displays the temperature, pressure, and particle size of the spray water calculated and determined by the spray condition determining unit 400. Further, the related information display column 966 is used to select an item to be displayed among weather, temperature, wind direction, wind speed, humidity, and amount of solar radiation. By selecting an item to be displayed among these items and pressing a display button 967, corresponding information among the information recorded in the viewpoint information database 300 is displayed on a separate screen (not shown). .
 なお、戻るボタン968が押下されると、図9に示す初期画面が再び表示装置950に表示されるようになっている。 Note that when the return button 968 is pressed, the initial screen shown in FIG. 9 is displayed on the display device 950 again.
 図11は、水の噴霧条件を決定する際に表示装置に表示される設定画面の様子である。図9のトレンド表示ボタン952が選択されることにより、図11に示される画面が表示される。 FIG. 11 shows a state of the setting screen displayed on the display device when the water spray condition is determined. When the trend display button 952 in FIG. 9 is selected, the screen shown in FIG. 11 is displayed.
 計測信号表示欄981は、表示装置950に表示させたい情報が入力されるものである。具体的には、計測振動表示欄981には、表示装置950に表示させたい情報(計測信号、操作信号等)が入力されるようになっている。また、当該情報のうちの表示させたい時刻の範囲が、時刻入力欄982に入力されるようになっている。 In the measurement signal display column 981, information desired to be displayed on the display device 950 is input. Specifically, information (measurement signal, operation signal, etc.) to be displayed on the display device 950 is input to the measurement vibration display field 981. In addition, the time range to be displayed in the information is input to the time input field 982.
 図12は、水の噴霧条件を決定する際に表示装置に表示されるトレンドグラフ画面の様子である。図11において、前記の情報が入力された後、表示ボタン983が押下されることにより、図12に示すトレンドグラフ画面が表示されるようになっている。なお、図12の戻るボタン991が押下されると、図11に示す設定画面が再び表示装置950に表示されるようになっている。 FIG. 12 shows a state of the trend graph screen displayed on the display device when determining the water spray condition. In FIG. 11, the trend graph screen shown in FIG. 12 is displayed by pressing the display button 983 after the above information is input. When the return button 991 in FIG. 12 is pressed, the setting screen shown in FIG. 11 is displayed on the display device 950 again.
 関連情報表示欄984は、図10を参照しながら説明した関連情報表示欄966と同じものである。時刻入力欄985に時刻の範囲が入力され、表示ボタン986が押下されると、関連情報表示欄984にて選択した項目が、トレンドグラフとして図12に示すように表示されるようになっている。 The related information display column 984 is the same as the related information display column 966 described with reference to FIG. When a time range is input in the time input field 985 and the display button 986 is pressed, the item selected in the related information display field 984 is displayed as a trend graph as shown in FIG. .
 噴霧条件設定表示欄987は、噴霧条件判定部400により決定された噴霧条件について、表示したい時刻が入力されるものである。噴霧条件設定部987に時刻が入力され、表示ボタン988が押下されることにより、図8を参照しながら説明したグラフが表示装置950に表示されるようになっている。 In the spray condition setting display field 987, a time to be displayed for the spray condition determined by the spray condition determination unit 400 is input. When the time is input to the spray condition setting unit 987 and the display button 988 is pressed, the graph described with reference to FIG. 8 is displayed on the display device 950.
 なお、戻るボタン989が押下されると、図9に示す初期画面が再び表示装置950に表示されるようになっている。 Note that when the return button 989 is pressed, the initial screen shown in FIG. 9 is displayed on the display device 950 again.
〔効果〕
 本実施形態の水滴の噴霧方法によれば、従来よりも、消費エネルギの削減をいっそう図ることができる。特に、発電装置100における発電出力の変化に基づいて水の噴霧量を変化させるため、給水ポンプ703及び高圧ポンプ704等を駆動させる電力を削減することができる。また、ガスタービン1からの燃焼排ガスを用いて噴霧水の温度を上昇させるため、温度上昇のために多くの電力を消費することが無い。即ち、排出される燃焼排ガスの有している熱が利用されるため、エネルギを無駄なく利用することができる。
〔effect〕
According to the water droplet spraying method of the present embodiment, the energy consumption can be further reduced as compared with the conventional method. In particular, since the amount of water spray is changed based on the change in the power generation output in the power generation apparatus 100, the power for driving the water supply pump 703, the high-pressure pump 704, and the like can be reduced. Moreover, since the temperature of spray water is raised using the combustion exhaust gas from the gas turbine 1, much electric power is not consumed for temperature rise. That is, since the heat of exhausted exhaust gas is used, energy can be used without waste.
[2.第2実施形態]
 次に、図13を参照しながら、第2実施形態の火力発電プラント2000について説明する。なお、図1に示す火力発電プラント1000と同じものについては同じ符号を付すものとし、その詳細な説明は省略する。
[2. Second Embodiment]
Next, a thermal power plant 2000 according to the second embodiment will be described with reference to FIG. In addition, the same code | symbol shall be attached | subjected about the same thing as the thermal power plant 1000 shown in FIG. 1, and the detailed description is abbreviate | omitted.
 図13は、第2実施形態の火力発電プラント2000の構成を示す図である。前記の火力発電プラント1000においては、ガスタービン1からの燃焼排ガスは熱交換器701に供給されていたが、火力発電プラント2000においては、ガスタービン1からの燃焼排ガスは排ガスボイラ(Heat Recovery Seam Generator;HRSG)705に供給されるようになっている。排ガスボイラ705に供給された燃焼排ガスにより蒸気タービン706が駆動され、図示しない発電機により発電が行われるようになっている。即ち、火力発電プラント2000はコンバインドサイクルを備えている。排ガスボイラ705に供給され、燃焼排ガスにより加熱された水の一部は、吸気冷却室5に供給されるようになっている。 FIG. 13 is a diagram illustrating a configuration of a thermal power plant 2000 according to the second embodiment. In the thermal power plant 1000, the combustion exhaust gas from the gas turbine 1 is supplied to the heat exchanger 701. However, in the thermal power plant 2000, the combustion exhaust gas from the gas turbine 1 is exhaust gas boiler (Heat Recovery Seam Generator). HRSG) 705. The steam turbine 706 is driven by the combustion exhaust gas supplied to the exhaust gas boiler 705, and power is generated by a generator (not shown). In other words, the thermal power plant 2000 has a combined cycle. A part of the water supplied to the exhaust gas boiler 705 and heated by the combustion exhaust gas is supplied to the intake air cooling chamber 5.
 火力発電プラント2000においては、水の噴霧条件は、蒸気タービン706に接続された発電機(即ち、コンバインドサイクルを構成する発電機)の運転出力に基づいて決定される。従って、例えば当該発電機の運転出力(即ち発電量)が低下した場合には、蒸気タービン706に供給される蒸気量が低下したと判断される。そこで、蒸気の生成量を増加させるため、より多くの燃焼排ガスが生成される。そして、より多くの外気によって燃料を燃焼させるために、水の噴霧量を増加させて外気の温度を低下させる。このようにして、蒸気タービン706に接続された発電機の運転出力に基づいて、水の噴霧条件が決定される。 In the thermal power plant 2000, the water spraying condition is determined based on the operation output of the generator connected to the steam turbine 706 (that is, the generator constituting the combined cycle). Therefore, for example, when the operation output (that is, the power generation amount) of the generator is decreased, it is determined that the amount of steam supplied to the steam turbine 706 has decreased. Therefore, in order to increase the amount of steam generated, more combustion exhaust gas is generated. And in order to burn a fuel with more external air, the spray amount of water is increased and the temperature of external air is reduced. In this way, the water spray condition is determined based on the operation output of the generator connected to the steam turbine 706.
 火力発電プラント2000をこのように構成することにより、外部へ取り出される電力をより多くすることができる。また、ガスタービン1から排出される燃焼排ガスが、水の加熱及び蒸気タービン706の駆動に用いられている。そのため、火力発電プラント2000から発生するエネルギを無駄なく利用することができる。 By configuring the thermal power plant 2000 in this way, more electric power can be extracted to the outside. The combustion exhaust gas discharged from the gas turbine 1 is used for heating water and driving the steam turbine 706. Therefore, the energy generated from the thermal power plant 2000 can be used without waste.
[3.第3実施形態]
 次に、図14を参照しながら、第3実施形態の火力発電プラント3000について説明する。なお、図1に示す火力発電プラント1000と同じものについては同じ符号を付すものとし、その詳細な説明は省略する。
[3. Third Embodiment]
Next, a thermal power plant 3000 according to the third embodiment will be described with reference to FIG. In addition, the same code | symbol shall be attached | subjected about the same thing as the thermal power plant 1000 shown in FIG. 1, and the detailed description is abbreviate | omitted.
 図14は、第3実施形態の火力発電プラント3000の構成を示す図である。前記の火力発電プラント1000においては、吸気冷却室5で噴霧される水を加熱するために燃焼排ガスが用いられていたが、火力発電プラント3000においては、水を加熱するために太陽光が用いられている。即ち、火力発電プラント3000においては、熱交換器701に代えて、集熱器707が設けられている。 FIG. 14 is a diagram illustrating a configuration of a thermal power plant 3000 according to the third embodiment. In the thermal power plant 1000, combustion exhaust gas is used to heat water sprayed in the intake cooling chamber 5, but in the thermal power plant 3000, sunlight is used to heat water. ing. That is, in the thermal power plant 3000, a heat collector 707 is provided instead of the heat exchanger 701.
 集熱器707は、太陽光を集光し、集熱器707を通流する水を加熱するものである。太陽光の照射量は、天候及び時間によって大きく変動する。そこで、図示はしないが温水タンクが別途設けられ、集熱器707において加熱された水はいったん温水タンクに貯蔵されるようになっている。これにより、天候及び時間に関係なく、所望の温度の温水を噴霧可能になっている。なお、集熱器707から排出された水の温度に応じて、集熱器707からの水を直接吸気冷却室5に供給してもよい。 The heat collector 707 collects sunlight and heats water flowing through the heat collector 707. The amount of sunlight irradiated varies greatly depending on the weather and time. Therefore, although not shown, a hot water tank is separately provided, and the water heated in the heat collector 707 is temporarily stored in the hot water tank. This makes it possible to spray hot water having a desired temperature regardless of the weather and time. Note that the water from the heat collector 707 may be directly supplied to the intake cooling chamber 5 according to the temperature of the water discharged from the heat collector 707.
 火力発電プラント3000をこのように構成することにより、太陽光を利用して水の加熱を行うため、火力発電プラント3000の起動時から加熱された水を噴霧できるようになる。これにより、起動時から運転出力を考慮した運転が可能になり、より正確な制御が可能になる。 By configuring the thermal power plant 3000 in this way, water is heated using sunlight, so that heated water can be sprayed from when the thermal power plant 3000 is activated. As a result, the operation considering the operation output can be performed from the start-up, and more accurate control can be performed.
[4.第4実施形態]
 前記した第1実施形態から第3実施形態においては、本実施形態の液体の噴霧方法は火力発電プラントに対して適用されている。しかしながら、本実施形態の液滴の噴霧方法は、火力発電プラント以外の任意の用途に適用可能である。以下、具体的に2つの例を挙げて、その他の用途への適用を説明する。
[4. Fourth Embodiment]
In the first to third embodiments described above, the liquid spraying method of the present embodiment is applied to a thermal power plant. However, the droplet spraying method of the present embodiment is applicable to any application other than the thermal power plant. Hereinafter, application to other uses will be described with two specific examples.
〔地熱発電プラント〕
 本実施形態の液滴の噴霧方法は、地熱発電プラントへの適用が可能である。具体的には、地中から高温の水が取り出され、取り出された高温の水を用いて発電を行う地熱発電プラントに特に好適である。地中から取り出された高温水は、所定の圧力及び温度まで昇圧昇温され、図1等と同様に噴霧される。これにより、ノズルから噴霧された高温高圧水は、急激な圧力の低下により沸点が低下する。そのため、噴霧された高温水は気化し、蒸気に変化する。そして、生成した蒸気により蒸気タービンを駆動させることにより、発電を行うことができる。
[Geothermal power plant]
The droplet spraying method of the present embodiment can be applied to a geothermal power plant. Specifically, it is particularly suitable for a geothermal power plant in which high-temperature water is taken out from the ground and power is generated using the taken-out high-temperature water. The hot water taken out from the ground is heated up to a predetermined pressure and temperature and sprayed in the same manner as in FIG. Thereby, the boiling point of the high-temperature high-pressure water sprayed from the nozzle is lowered due to a rapid pressure drop. Therefore, the sprayed high temperature water vaporizes and changes into steam. And power generation can be performed by driving a steam turbine with the generated steam.
 高温水を噴霧する際の噴霧条件は、蒸気タービンの運転出力(発電出力)に基づいて決定される。具体的には、蒸気タービンの運転出力が低下している場合には、より多くの蒸気が供給されるようにする。即ち、このような場合には、例えば水の圧力を上昇させることにより、蒸気の発生量を増加させることができる。 The spraying conditions for spraying high-temperature water are determined based on the operation output (power generation output) of the steam turbine. Specifically, when the operation output of the steam turbine is lowered, more steam is supplied. That is, in such a case, the amount of steam generated can be increased by increasing the pressure of water, for example.
〔薄膜形成装置〕
 本実施形態の液滴の噴霧方法は、薄膜形成装置への適用が可能である。具体的には、例えば形成する薄膜を構成する材料(例えば有機材料)が基板に対して噴霧されることにより、薄膜が形成された基板が作製される。より具体的には、所定の圧力及び温度まで昇圧された有機材料が、図1等と同様に噴霧される。ノズルから噴霧された高温高圧の有機材料は、急激な圧力の低下により沸点が低下する。これにより、噴霧された高温高圧の有機材料は気化し、蒸気に変化する。そして、有機材料の蒸気中に基板を曝露することにより、基板表面に有機材料からなる薄膜を形成することができる。
[Thin film forming equipment]
The droplet spraying method of the present embodiment can be applied to a thin film forming apparatus. Specifically, for example, a material (for example, an organic material) constituting the thin film to be formed is sprayed on the substrate, whereby the substrate on which the thin film is formed is manufactured. More specifically, the organic material whose pressure has been increased to a predetermined pressure and temperature is sprayed in the same manner as in FIG. The boiling point of the high-temperature and high-pressure organic material sprayed from the nozzle is lowered by a rapid pressure drop. Thereby, the sprayed high-temperature / high-pressure organic material is vaporized and changed into vapor. Then, by exposing the substrate to the vapor of the organic material, a thin film made of the organic material can be formed on the surface of the substrate.
 有機材料を噴霧する際の噴霧条件は、薄膜形成装置の運転出力に基づいて決定される。即ち、例えば、薄膜の厚みを厚くしたり、広範な領域に薄膜を形成したりする等、より高い運転出力にて薄膜形成装置を動作させる場合、より多くの有機材料が噴霧される。具体的には、噴霧される有機材料の例えば圧力をより高いものにすることにより、有機材料蒸気の発生量を増加させることができる。 噴霧 Spray conditions for spraying the organic material are determined based on the operation output of the thin film forming apparatus. That is, for example, when the thin film forming apparatus is operated with a higher operation output such as increasing the thickness of the thin film or forming the thin film in a wide area, more organic material is sprayed. Specifically, the amount of generated organic material vapor can be increased by increasing the pressure of the sprayed organic material, for example.
[5.変更例]
 以上、具体例を挙げて本実施形態を挙げたが、本実施形態は前記の内容に何ら限定されず、本発明の要旨を逸脱しない範囲内で任意に変更して実施可能である。
[5. Example of change]
As mentioned above, although this embodiment was mentioned as a specific example, this embodiment is not limited to the above-mentioned content at all, and can be arbitrarily changed and implemented without departing from the gist of the present invention.
 例えば、図4に示すフローでは出力変化量によって水の噴霧条件を決定したが、外気の温度変化によって水の噴霧条件を決定してもよい。即ち、取り込まれる外気の温度変化を測定し、外気の温度変化量に基づいて出力変化量を算出した後、算出された出力変化量によって水の噴霧条件を決定してもよい。 For example, in the flow shown in FIG. 4, the water spray condition is determined based on the output change amount, but the water spray condition may be determined based on the temperature change of the outside air. That is, after measuring the temperature change of the outside air taken in and calculating the output change amount based on the temperature change amount of the outside air, the spray condition of water may be determined based on the calculated output change amount.
 より具体的には、外気(噴霧対象物)の温度変化量を噴霧条件判定部400(演算部)によって算出する温度変化量算出ステップと、前記温度変化量算出ステップにおいて算出された温度変化量に基づいて、噴霧条件判定部400(演算部)によって運転出力変化量を推定する運転出力変化量推定ステップと、を有し、前記運転出力変化量算出ステップにおいて、前記運転出力変化量推定ステップにおいて推定された運転出力変化量が用いられるようにしてもよい。 More specifically, the temperature change amount calculating step for calculating the temperature change amount of the outside air (spray object) by the spray condition determining unit 400 (calculation unit), and the temperature change amount calculated in the temperature change amount calculating step. An operation output change amount estimation step for estimating the operation output change amount by the spray condition determination unit 400 (calculation unit), and the estimation in the operation output change amount estimation step in the operation output change amount calculation step. The changed operation output may be used.
 例えば、運転情報データベース600においては、前記のように試運転時にデータを蓄積するようにしたが、このような蓄積が行われなくても、噴霧水の状態の制御が可能である。即ち、噴霧水の状態の制御は、運転情報データベース600によらず、リアルタイムにて行うことができる。 For example, in the operation information database 600, the data is accumulated at the time of the trial operation as described above, but the state of the spray water can be controlled without such accumulation. In other words, the state of the spray water can be controlled in real time regardless of the operation information database 600.
 例えば、図2においては、風向きを60方位で示しているが、16方位で示してもよい。この場合、16方位の各方位において22.5度の割合を与えることにより、「度」によって数値化可能である。 For example, in FIG. 2, the wind direction is indicated by 60 azimuths, but may be indicated by 16 azimuths. In this case, by giving a ratio of 22.5 degrees in each of the 16 azimuth directions, it can be quantified by “degree”.
 例えば、図2及び図3において示している時刻は一例であり、火力発電プラント等の仕様によって任意の間隔にて記録可能である。 For example, the times shown in FIGS. 2 and 3 are examples, and can be recorded at arbitrary intervals according to the specifications of the thermal power plant or the like.
 例えば、火力発電プラントにおいて噴霧される液体は水に限られず、任意の液体を噴霧することができる。 For example, the liquid sprayed in the thermal power plant is not limited to water, and any liquid can be sprayed.
 例えば、前記したグラフの形状は一例であり、様々な形状のグラフによって制御を行うことができる。また、制御は、グラフを用いずに数式を用いて算出された値を用いて行われてもよい。さらに、グラフ又は数式を用いず、任意のフローにより制御してもよい。 For example, the shape of the graph described above is an example, and control can be performed using graphs of various shapes. Further, the control may be performed using a value calculated using a mathematical formula without using a graph. Furthermore, you may control by arbitrary flows, without using a graph or numerical formula.
 例えば、図8を参照して決定される各粒径に対応する圧力及び温度は、当該領域に含まれる圧力及び温度であればどのような圧力及び温度であってもよい。例えば、当該領域における圧力及び温度の中央値を制御対象値としてもよい。また、より確実に制御する観点から、当該領域における圧力及び温度の最大値を制御対象値としてもよい。さらに、特に効率的に制御する観点から、当該領域における圧力及び温度の最小値を制御対象値としてもよい For example, the pressure and temperature corresponding to each particle size determined with reference to FIG. 8 may be any pressure and temperature as long as they are included in the region. For example, the median value of pressure and temperature in the region may be set as the control target value. Further, from the viewpoint of more reliable control, the maximum value of pressure and temperature in the region may be set as the control target value. Further, from the viewpoint of particularly efficient control, the minimum value of pressure and temperature in the region may be set as the control target value.
 例えば、図8における格子の大きさは任意であり、各手段の仕様等によって適宜設定すればよい。 For example, the size of the grid in FIG. 8 is arbitrary and may be set as appropriate according to the specifications of each means.
 また、前記においては液体の噴霧方法を中心に説明したが、本実施形態の液体の噴霧方法を適用した液体の噴霧装置も実施可能である。即ち、本実施形態の液体の噴霧装置は、液体(水等)が噴霧される噴霧対象物(外気等)を用いて運転される設備(火力発電プラント等)に備えられ、前記噴霧対象物に対して液体を噴霧する噴霧手段(制御部500、給水ポンプ703、高圧ポンプ704、ノズル6等)と、前記設備の運転出力が変化した時の運転出力変化量に基づいて、前記噴霧手段から噴霧される液体の噴霧条件を決定する演算部と、前記演算部によって決定された噴霧条件になるように、液体の噴霧を制御する制御部(制御部500のほか、給水ポンプ703、高圧ポンプ704等を含む)と、を備えているものである。 In the above description, the liquid spraying method has been mainly described. However, a liquid spraying apparatus to which the liquid spraying method of the present embodiment is applied can be implemented. That is, the liquid spraying apparatus of the present embodiment is provided in equipment (thermal power plant or the like) that is operated using a spray target (outside air or the like) to which a liquid (water or the like) is sprayed. Spraying means for spraying liquid (control unit 500, water supply pump 703, high-pressure pump 704, nozzle 6, etc.) and spraying from the spraying means based on the amount of change in operating output when the operating output of the equipment changes And a control unit for controlling the spraying of the liquid so as to satisfy the spraying condition determined by the calculation unit (in addition to the control unit 500, a water supply pump 703, a high-pressure pump 704, etc.) Including).
1ガスタービン
2圧縮機
3発電機
4燃焼器
5吸気冷却室
6ノズル
100 発電装置
200 制御装置
300 関連情報データベース
400 噴霧条件判定部
500 制御部
600 運転情報データベース
700 温水生成装置
1 Gas Turbine 2 Compressor 3 Generator 4 Combustor 5 Intake Cooling Chamber 6 Nozzle 100 Power Generation Device 200 Control Device 300 Related Information Database 400 Spray Condition Determination Unit 500 Control Unit 600 Operation Information Database 700 Hot Water Generation Device

Claims (10)

  1.  液体が噴霧される噴霧対象物を用いて運転される設備において、前記設備の運転出力が変化した時の運転出力変化量を演算部によって算出する運転出力変化量算出ステップと、
     前記運転出力変化量算出ステップにおいて算出された運転出力変化量に基づいて、前記演算部によって液体の噴霧条件を決定する噴霧条件決定ステップと、
     前記噴霧条件決定ステップにおいて決定された噴霧条件の液体を噴霧手段によって噴霧する噴霧ステップと、を有する
    ことを特徴とする、液体の噴霧方法。
    In the facility operated using the spray object to be sprayed with the liquid, the operation output change amount calculating step for calculating the operation output change amount when the operation output of the facility is changed by the arithmetic unit,
    A spraying condition determining step for determining a spraying condition of the liquid by the calculation unit based on the driving output change amount calculated in the driving output change amount calculating step;
    A spraying step of spraying a liquid having a spraying condition determined in the spraying condition determining step by a spraying means.
  2.  前記運転出力変化量算出ステップにおいて算出された運転出力変化量に基づいて、前記演算部によって噴霧時の液体の粒径を算出する粒径算出ステップを有し、
     前記噴霧条件決定ステップにおいて、前記粒径算出ステップにおいて算出された粒径に基づいて、前記演算部によって液体の噴霧条件を決定する
    ことを特徴とする、請求の範囲第1項に記載の液体の噴霧方法。
    Based on the operation output change amount calculated in the operation output change amount calculation step, the operation unit has a particle size calculation step of calculating the particle size of the liquid at the time of spraying,
    2. The liquid spray condition according to claim 1, wherein in the spraying condition determining step, the liquid spraying condition is determined by the arithmetic unit based on the particle size calculated in the particle size calculating step. Spraying method.
  3.  前記噴霧対象物の温度変化量を前記演算部によって算出する温度変化量算出ステップと、
     前記温度変化量算出ステップにおいて算出された温度変化量に基づいて、前記演算部によって運転出力変化量を推定する運転出力変化量推定ステップと、を有し、
     前記運転出力変化量算出ステップにおいて、前記運転出力変化量推定ステップにおいて推定された運転出力変化量が用いられる
    ことを特徴とする、請求の範囲第1項又は第2項に記載の液体の噴霧方法。
    A temperature change amount calculating step of calculating a temperature change amount of the spray object by the calculation unit;
    An operation output change amount estimating step for estimating an operation output change amount by the calculation unit based on the temperature change amount calculated in the temperature change amount calculating step;
    The method for spraying a liquid according to claim 1 or 2, wherein the operation output change amount estimated in the operation output change amount estimation step is used in the operation output change amount calculation step. .
  4.  前記噴霧条件決定ステップにおいて決定される噴霧条件が、噴霧される液体の圧力及び温度である
    ことを特徴とする、請求の範囲第1項又は第2項に記載の液体の噴霧方法。
    3. The liquid spraying method according to claim 1, wherein the spraying conditions determined in the spraying condition determining step are pressure and temperature of the liquid to be sprayed.
  5.  前記噴霧条件決定ステップにおいて決定された噴霧条件によって液体を噴霧した場合に、噴霧された液体が減圧沸騰するか否かを前記演算部によって判断する減圧沸騰判断ステップを有し、
     前記減圧沸騰判断ステップにおいて、噴霧された液体が減圧沸騰すると判断された場合に、前記噴霧ステップにおいて噴霧される
    ことを特徴とする、請求の範囲第1項又は第2項に記載の液体の噴霧方法。
    When the liquid is sprayed according to the spraying condition determined in the spraying condition determining step, the reduced pressure boiling determining step of determining whether or not the sprayed liquid boils under reduced pressure by the calculation unit,
    The spraying of the liquid according to claim 1 or 2, wherein the spraying is performed in the spraying step when it is determined in the vacuum boiling determination step that the sprayed liquid is vacuum boiling. Method.
  6.  前記噴霧対象物が外気であり、
     前記設備が火力発電プラントであり、
     前記設備の運転出力が前記火力発電プラントの発電出力である
    ことを特徴とする、請求の範囲第1項又は第2項に記載の液体の噴霧方法。
    The spray object is outside air;
    The facility is a thermal power plant,
    The liquid spraying method according to claim 1 or 2, wherein the operation output of the facility is a power generation output of the thermal power plant.
  7.  前記火力発電プラントはコンバインドサイクルを備え、
     前記設備の運転出力が、前記コンバインドサイクルを構成する発電機の運転出力である
    ことを特徴とする、請求の範囲第6項に記載の液体の噴霧方法。
    The thermal power plant has a combined cycle,
    The liquid spraying method according to claim 6, wherein the operation output of the facility is an operation output of a generator constituting the combined cycle.
  8.  前記火力発電プラントは集熱器を備える
    ことを特徴とする、請求の範囲第6項に記載の液体の噴霧方法。
    The method for spraying liquid according to claim 6, wherein the thermal power plant includes a heat collector.
  9.  噴霧条件決定ステップにおいて決定された噴霧条件を処理部によって表示部に表示する表示ステップを有する
    ことを特徴とする、請求の範囲第1項又は第2項に記載の液体の噴霧方法。
    The liquid spraying method according to claim 1 or 2, further comprising a display step of displaying the spraying conditions determined in the spraying condition determining step on the display unit by the processing unit.
  10.  液体が噴霧される噴霧対象物を用いて運転される設備に備えられ、
     前記噴霧対象物に対して液体を噴霧する噴霧手段と、
     前記設備の運転出力が変化した時の運転出力変化量に基づいて、前記噴霧手段から噴霧される液体の噴霧条件を決定する演算部と、
     前記演算部によって決定された噴霧条件になるように、液体の噴霧を制御する制御部と、を備えている
    ことを特徴とする、液体の噴霧装置。
    Provided in facilities operated with spray objects to which liquid is sprayed,
    Spraying means for spraying liquid onto the spray object;
    Based on the amount of change in the operation output when the operation output of the equipment has changed, a calculation unit for determining the spray condition of the liquid sprayed from the spray means,
    A liquid spraying apparatus comprising: a control unit that controls spraying of the liquid so that the spraying condition determined by the calculation unit is satisfied.
PCT/JP2012/062998 2012-05-22 2012-05-22 Liquid spray method and spray device WO2013175563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062998 WO2013175563A1 (en) 2012-05-22 2012-05-22 Liquid spray method and spray device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/062998 WO2013175563A1 (en) 2012-05-22 2012-05-22 Liquid spray method and spray device

Publications (1)

Publication Number Publication Date
WO2013175563A1 true WO2013175563A1 (en) 2013-11-28

Family

ID=49623296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062998 WO2013175563A1 (en) 2012-05-22 2012-05-22 Liquid spray method and spray device

Country Status (1)

Country Link
WO (1) WO2013175563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117869069A (en) * 2024-03-13 2024-04-12 济南中科先行燃气轮机科技有限公司 Flash air atomization system for waste heat utilization of gas turbine and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267256A (en) * 1997-03-27 1998-10-09 Oogawara Kakoki Kk Method and apparatus for cooling exhaust gas of incinerating furnace
JP2008295899A (en) * 2007-06-01 2008-12-11 Toto Ltd Bathroom mist sauna apparatus
JP2009162408A (en) * 2007-12-28 2009-07-23 Daiwa Steel Corp Exhaust gas treatment method and exhaust gas treatment equipment for electric furnace
JP2010024993A (en) * 2008-07-18 2010-02-04 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267256A (en) * 1997-03-27 1998-10-09 Oogawara Kakoki Kk Method and apparatus for cooling exhaust gas of incinerating furnace
JP2008295899A (en) * 2007-06-01 2008-12-11 Toto Ltd Bathroom mist sauna apparatus
JP2009162408A (en) * 2007-12-28 2009-07-23 Daiwa Steel Corp Exhaust gas treatment method and exhaust gas treatment equipment for electric furnace
JP2010024993A (en) * 2008-07-18 2010-02-04 Toyota Motor Corp Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117869069A (en) * 2024-03-13 2024-04-12 济南中科先行燃气轮机科技有限公司 Flash air atomization system for waste heat utilization of gas turbine and control method
CN117869069B (en) * 2024-03-13 2024-07-12 济南中科先行燃气轮机科技有限公司 Flash air atomization system for waste heat utilization of gas turbine and control method

Similar Documents

Publication Publication Date Title
Han et al. Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine
CN101059101B (en) Gas turbine inlet conditioning system and method
Shi et al. Performance enhancement of conventional combined cycle power plant by inlet air cooling, inter-cooling and LNG cold energy utilization
Baghernejad et al. Exergoeconomic comparison of three novel trigeneration systems using SOFC, biomass and solar energies
CN103154444B (en) For the method and apparatus controlling thermal cycling process
Ceccarelli et al. Flexibility of low-CO2 gas power plants: Integration of the CO2 capture unit with CCGT operation
WO2012042655A1 (en) Gas turbine system, control device for gas turbine system, and control method for gas turbine system
US8075245B2 (en) Removal of moisture from process gas
US9964314B2 (en) Trigeneration energy supply system
WO2013124899A1 (en) Solar heat assisted gas turbine system
Gadhamshetty et al. Improving air-cooled condenser performance in combined cycle power plants
Pattanayak et al. Liquefied natural gas re-gasification cold energy hybrid system integration in gas-steam combined cycle power plant model: Enhancement in power generation and performance
Erhart et al. Influence of condenser conditions on organic Rankine cycle load characteristics
Grauberger et al. Off-design performance of an organic Rankine-vapor compression cooling cycle using R1234ze (E)
US20110262267A1 (en) Energy Efficient Air Conditioning System
WO2013175563A1 (en) Liquid spray method and spray device
Eze et al. Advancements in Energy Efficiency Technologies for Thermal Systems: A Comprehensive Review
Abutayeh et al. Experimental simulation of solar flash desalination
Xu et al. Steady-state off-design thermodynamic performance analysis of a SCCP system
JP5766295B2 (en) Gas turbine power generator and operation method thereof
CN103806963B (en) Modified model condensing steam turbine generator and electricity-generating method thereof
Ivanova et al. Cost—benefit analysis of CHP plants taking into account air cooling technologies
Araki et al. Design study of a humidification tower for the advanced humid air turbine system
De Paepe et al. Control Strategy Development for Optimized Operational Flexibility From Humidified Microgas Turbine: Saturation Tower Performance Assessment
AU2017203030B2 (en) A combined water extractor and electricity generator.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP