WO2013174824A1 - Production of transparent conductive titanium dioxide layers, said layers themselves, and use of said layers - Google Patents

Production of transparent conductive titanium dioxide layers, said layers themselves, and use of said layers Download PDF

Info

Publication number
WO2013174824A1
WO2013174824A1 PCT/EP2013/060430 EP2013060430W WO2013174824A1 WO 2013174824 A1 WO2013174824 A1 WO 2013174824A1 EP 2013060430 W EP2013060430 W EP 2013060430W WO 2013174824 A1 WO2013174824 A1 WO 2013174824A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
transparent conductive
refractive index
layer
conductive
Prior art date
Application number
PCT/EP2013/060430
Other languages
German (de)
French (fr)
Inventor
Marcel Neubert
Mykola Vinnichenko
Andreas Kolitsch
Wolfgang Skorupa
Original Assignee
Helmholtz-Zentrum Dresden - Rossendorf E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz-Zentrum Dresden - Rossendorf E.V. filed Critical Helmholtz-Zentrum Dresden - Rossendorf E.V.
Publication of WO2013174824A1 publication Critical patent/WO2013174824A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating

Definitions

  • TCO transparent conductive oxides
  • Transparent conductive oxides are widely used, for example, as thin-film electrodes in optoelectronic devices.
  • the established and industrially applied TCOs include u. a. Indium tin oxide (ITO), fluorine doped tin oxide (FTO) and aluminum doped zinc oxide (AZO).
  • High vacuum conditions or in H 2 atmosphere mainly serves to crystallize the amorphous layers and takes several minutes to hours at temperatures above 400 ° C.
  • HITOSUGI, T., et al. Fabrication of highly conductive Ti (1 - x) Nb ( x ) 0 2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition. Appl. Phys. Lett. 2007, Vol. 90, p.212106. ]
  • vRTP very rapid thermal proccesing
  • FLA Flash-lamp-annealing
  • laser annealing the possibility of the heat input to near-surface areas (some ⁇ ) of the substrates to limit. Due to the short process time in the range of a few milliseconds, thin layers can be heated without generating a significant increase in temperature in the substrate.
  • Nanosecond pulsed (25 ns) laser is already known [VAN
  • OVERSCHELDE O., et al .. Crystallization of Ti0 2 thin films induced by excimer laser irradiation. Applied Surface Science. 2007, p.254971. ]. These lasers operate at wavelengths in the ultraviolet range, ie, the energy is greater than the Ti0 2 bandgap.
  • the physics of ns-crystallization differs from crystallization by means of the described ultra-short-term annealing. Typical surface throughput is in the range of less cm 2 per hour, which precludes use in industrial production of large areas, ie areas in m 2 .
  • ITO indium tin oxide
  • Aluminum doped zinc oxide is used as a conductive oxide layer, which acts as a charge carrier collection layer and as an antireflective layer.
  • the thickness of these layers is about 80 nm to obtain a minimum reflection of the light.
  • the object of the invention is to provide an alternative method for
  • Titanium dioxide exists in the rutile, anatase and brookite phases, but only the anatase phase is suitable for the use of TiO 2 as a transparent conductive oxide (TCO) to achieve the required resistivities.
  • TCO transparent conductive oxide
  • TTO / TNO transparent conductive oxide
  • the amorphous with niobium or tantalum offset Ti0 2 layers by sputtering.
  • the layers can be deposited on glass or on silicon substrates, among other things.
  • the furnace annealing under high vacuum applied after sputtering according to the prior art is replaced by an ultra-short-time annealing process, ie by flash lamp annealing (FLA) or laser annealing.
  • FLA flash lamp annealing
  • the ultra-Kurzzeittemper compiler ie the process takes a few milliseconds, thereby shortening the process duration of several minutes to hours to a few milliseconds compared to the known in the prior art method of RTP or ns-pulse laser.
  • flash lamp or laser annealing is that these methods can also be used for tempering thin layers on high-temperature-sensitive substrates.
  • TiO 2 offers over the conventional transparent conductive oxides several advantages or unique features.
  • titania-based transparent conductive oxides having a very high refractive index n " 2.4 at a wavelength of 550 nm
  • the refractive index is dependent on the wavelength of the radiation or the light, so that the refractive index always refers to the generally customary wavelength of 550 nm, unless stated otherwise.
  • the TiO 2 based TCO is more resistant to environmental influences, especially compared to aluminum doped zinc oxide (AZO).
  • the transparent conductive oxide according to the invention can be produced much more cheaply than indium tin oxide.
  • TTO / TNO layers can be reduced from a few minutes to hours to a few milliseconds, which allows the treatment of areas in the range of a few m 2 per minute.
  • no vacuum systems are necessary, because these also under
  • the previously non-conductive layer with high refractive index (n> 2) can be substituted by a conductive layer with high refractive index.
  • TNO / TTO transparent conductive oxides
  • AR layer antireflection layer
  • Fig. 1 shows a possible structure of an interfering system.
  • Fig. 2 shows the reflected portion of electromagnetic radiation for
  • uncoated silicon silicon with a conventionally coated TCO, and the layer system according to the invention.
  • Fig. 3 shows an example of the structure of the antireflection system according to the invention with a TNO / TTO layer according to the invention.
  • Fig. 4 compares the transmission of the system shown in Fig. 3 with a
  • the layer growth takes place in a two-stage process consisting of layer deposition, for example by means of magnetron sputtering and
  • the layer deposition can also be realized by an evaporation process or CVD process. Following one of the layer depositions, the layers become
  • the layer deposition takes place in a DC sputtering process of a tantalum doped, ceramic target.
  • the ratio of tantalum to titanium is less than 10 at%.
  • the ratio of tantalum to titanium is about 2 at% to 6 at%, more preferably 4 at% to about 6 at%.
  • the sputtering process takes place under an argon / oxygen atmosphere.
  • the doping with niobium is the ratio of niobium to titanium (in at%)
  • Sputterrrind also takes place under an argon / oxygen atmosphere.
  • the substrate In the sputtering process, the substrate is not actively heated.
  • Titanium dioxide layers reach thicknesses of a few nanometers to micrometers; hitherto, TCO layers according to the invention having a thickness of 5 nm to 2 ⁇ m were produced.
  • the thickness of the necessary TCO layer depends on the later use.
  • the sputter parameters are adapted to the application. They depend on the layer thickness to be produced, the atmosphere used and the doping concentration.
  • the layer deposition by means of an evaporation process takes place according to the methods known in the prior art.
  • the ratio of tantalum or niobium to titanium is less than 10 at%.
  • the layer with one or more times For the flash lamp annealing, the layer with one or more times
  • Flash lamp annealing can be done in air, vacuum, nitrogen or argon.
  • the necessary number of light pulses correlates, inter alia, with the thickness of the layers to be healed, the pulse duration and the energy density of the light pulse.
  • the pulse duration can be extended.
  • lasers with a power less than about 500 W are recommended.
  • the wavelength of the laser should be between 400 and 1300 nm, preferably between 400 and 1000 nm, more preferably at about 800 nm.
  • the duration of the heat treatment varies between 5 and approx. 100 ms.
  • Laser annealing can be carried out under air, vacuum, nitrogen or argon.
  • titanium dioxide-based transparent conductive oxides is as a heating layer on glass.
  • conductive TCOs of different refractive indices multifunctional layers can be produced that are both conductive and / or have a reflection-reducing effect and can therefore be used as an antireflection layer.
  • a possible layer structure of an antireflection layer comprising a
  • Transparent conductive oxide layer 1 according to the invention for example
  • TiO 2 Ta or TiO 2: Nb layer, a conventional TCO layer 2,
  • a non-conductive SiO 2 layer 3 on a glass layer 4 and is shown in Fig. 3.
  • Layer system can be selected, which consists only of TCOs (conventional and TNO / TTO).
  • Refractive index of the layer x Refractive index of the layer x.
  • the conductive partial layers have a sheet resistance of about 60 ⁇ .
  • FIG. 1 shows the structure according to the invention of an interference system by way of example on an interference system consisting of three layers on a silicon substrate (Si substrate is not shown) that can be used as a conductive antireflection layer system.
  • Fig. 1 shows, for example, a structure of the invention
  • the arrangement of the conductive layers of the interference system with conductive layers based on titanium dioxide is carried out with decreasing refractive index, starting with the medium with the highest refractive index directly on the substrate.
  • further layer sequences are also possible.
  • the arrangement can also be done alternately.
  • Fig. 2 describes the reflected portion of electromagnetic radiation in
  • the selected radiation range is particularly interesting for photovoltaic applications, since the intensity of solar radiation is highest here. It can be seen clearly the reflection reduction by the use of the alternative layer system in comparison to the prior art.
  • Layer thickness of conventional TCO layers is about 80nm and the conductive portion of the alternative layer system in this example is about 300 nm.

Abstract

The invention relates to the production of doped titanium dioxide layers as a transparent conductive oxide (n > 2) and possible areas of use of the transparent conductive oxide. The advantages of the method according to the invention are: the usage possibility for tempering thin layers on highly temperature-sensitive substrates, the possibility of producing the index of refraction of n ≈ 2.4, which is very high for transparent conductive oxides in comparison with the prior art, the resistance to environmental influences, and the much more economical production in comparison with, for example, indium tin oxide. The production of the TCO can be reduced from several minutes to hours to a few milliseconds by using flash-lamp curing. No vacuum systems are needed for the crystallization of the amorphous titanium dioxide layers, because the crystallization process can also be carried out under normal conditions in contact with air. The shorter process time and the lower system requirements significantly reduce the costs of the production process.

Description

Beschreibung  description
Herstellung transparenter leitfähiger Titandioxidschichten, diese selbst und ihre  Producing transparent conductive titanium dioxide layers, these themselves and theirs
Verwendung  use
Technisches Gebiet Technical area
[0001 ] Die Anmeldung beschreibt die Herstellung von transparenten leitfähigen Oxiden (TCO = transparent conductive oxides) auf der Basis von Titandioxidschichten.  The application describes the preparation of transparent conductive oxides (TCO = transparent conductive oxides) on the basis of titanium dioxide layers.
Stand der Technik State of the art
[0002] Transparente leitfähige Oxide finden eine breite Anwendung beispielsweise als Dünnschichtelektroden in opto-elektronischen Geräten. Zu den etablierten und industriell angewandten TCOs gehören u. a. Indiumzinnoxid (ITO), Fluor dotiertes Zinnoxid (FTO) und Aluminium dotiertes Zinkoxid (AZO).  Transparent conductive oxides are widely used, for example, as thin-film electrodes in optoelectronic devices. The established and industrially applied TCOs include u. a. Indium tin oxide (ITO), fluorine doped tin oxide (FTO) and aluminum doped zinc oxide (AZO).
[0003] Durch gezieltes Dotieren von Titandioxid in der Anatasphase mit Niob  By targeted doping of titanium dioxide in the anatase with niobium
(Ti02:Nb = TNO) oder Tantal (Ti02:Ta = TTO) erreicht man elektrische (Ti0 2 : Nb = TNO) or tantalum (Ti0 2 : Ta = TTO) to reach electrical
Eigenschaften (p<10"3 Qcm), die mit denen etablierter TCOs vergleichbar sind [ EP 1796107 A 13.06.2007 ]. Das Wachstum der TNO-Dünnschichten erfolgt dabei epitaktisch auf geheizten (größer 400 °C) kristallinen Substraten, um phasenreine Anatasschichten zu erhalten. Properties (p <10 "3 Qcm) that are comparable to those of established TCOs [EP 1796107 A 13.06.2007] The growth of TNO thin films takes place epitaxially on heated (greater than 400 ° C) crystalline substrates to provide phase-pure anatase layers receive.
[0004] Ein weiterer Ansatz zur Herstellung phasenreiner Anatasschichten ist die  Another approach for producing phase-pure anatase layers is the
Verwendung von Keimschichten auf Glassubstraten, ebenfalls bei  Use of seed layers on glass substrates, also at
Substrattemperaturen oberhalb 400°C [ JP 2010231972 A 14.10.2010 ].  Substrate temperatures above 400 ° C [JP 2010231972 A 14.10.2010].
[0005] Für die meisten Anwendungen ist jedoch das direkte Wachstum polykristalliner TNO/TTO-Schichten auf amorphen Substraten notwendig.  For most applications, however, the direct growth of polycrystalline TNO / TTO layers on amorphous substrates is necessary.
[0006] Für eine kosteneffiziente Anwendung Ti02-basierter TCOs ist besonders die direkte Abscheidung auf Glassubstraten von Bedeutung. Dies ist nach aktuellem Stand der Technik nur in einem zweistufigen Prozess, bestehend aus For a cost-efficient application of Ti0 2 -based TCOs, especially the direct deposition on glass substrates is of importance. This is according to the current state of the art only in a two-stage process consisting of
Abscheidung amorpher TNO/TTO-Schichten mittels Sputtern und anschließender Temperung im Ofen, möglich. Die Nachtemperung unter  Deposition of amorphous TNO / TTO layers by sputtering and subsequent annealing in the oven, possible. The Nachtemperung under
Hochvakuumbedingungen oder in H2-Atmosphäre dient hauptsächlich zur Kristallisation der amorphen Schichten und dauert bei Temperaturen oberhalb 400°C mehrere Minuten bis Stunden. [ HITOSUGI, T., et al.. Fabrication of highly conductive Ti(1-x)Nb(x)02 polycrystalline films on glass Substrates via crystallization of amorphous phase grown by pulsed laser deposition. Appl. phys. lett. 2007, Band90, S.212106. ] High vacuum conditions or in H 2 atmosphere mainly serves to crystallize the amorphous layers and takes several minutes to hours at temperatures above 400 ° C. [HITOSUGI, T., et al.] Fabrication of highly conductive Ti (1 - x) Nb ( x ) 0 2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition. Appl. Phys. Lett. 2007, Vol. 90, p.212106. ]
[0007] Alle bisher bekannten Verfahren vereint der Nachteil, dass für das  All previously known methods combines the disadvantage that for the
Schichtwachstum Temperaturen von mehr als 400 °C notwendig sind. Dieser Nachteil schränkt das Anwendungsspektrum von Ti02 als TCO stark ein, da auch die Substrate der Temperaturbelastung ausgesetzt sind. Die Nachtemperung der amorphen Ti02-Schichten im Ofen ist zudem aufgrund der langen Prozesszeit für industrielle Anwendungen inakzeptabel. Layer growth temperatures of more than 400 ° C are necessary. This The disadvantage is that the range of application of Ti0 2 as a TCO is severely limited, since the substrates are also exposed to the temperature load. The annealing of the amorphous Ti0 2 layers in the furnace is also unacceptable for industrial applications due to the long process time.
[0008] Alternativ bieten die beiden Ultra-Kurzzeittemperprozesse (vRTP = very rapid thermal proccesing), Blitzlampenausheilung (FLA = Flash-lamp-annealing) und die Lasertemperung, die Möglichkeit den Wärmeeintrag auf oberflächennahe Bereiche (einige μηη) der Substrate zu beschränken. Durch die kurze Prozesszeit im Bereich weniger Millisekunden, können dünne Schichten erhitzt werden ohne einen wesentlichen Temperaturanstieg im Substrat zu generieren. [ DE  Alternatively, the two ultra-Kurzzeittemperprozesse (vRTP = very rapid thermal proccesing), flash lamp annealing (FLA = Flash-lamp-annealing) and laser annealing, the possibility of the heat input to near-surface areas (some μηη) of the substrates to limit. Due to the short process time in the range of a few milliseconds, thin layers can be heated without generating a significant increase in temperature in the substrate. [EN
102005036669 A 08.02.2007 ]  102005036669 A 08.02.2007]
[0009] Die Kristallisation amorpher undotierter Ti02-Schichten mittels im The crystallization of amorphous undoped Ti0 2 layers by means in
Nanosekundenbereich gepulster (25 ns) Laser ist bereits bekannt [ VAN  Nanosecond pulsed (25 ns) laser is already known [VAN
OVERSCHELDE, O., et al.. Crystallisation of Ti02 thin films induced by excimer laser Irradiation. Applied Surface Science. 2007, S.254971. ]. Diese Laser arbeiten mit Wellenlängen im Ultraviolett-Bereich, d.h. die Energie ist größer als die Ti02-Bandlücke. Die Physik der ns-Kristallisation unterscheidet sich von einer Kristallisation mittels der beschriebenen Ultra-Kurzzeittemperung. Typischer Flächendurchsatz liegt im Bereich weniger cm2 pro Stunde, was den Einsatz bei industrieller Fertigung großer Flächen ,d.h. Flächen im m2, ausschließt. OVERSCHELDE, O., et al .. Crystallization of Ti0 2 thin films induced by excimer laser irradiation. Applied Surface Science. 2007, p.254971. ]. These lasers operate at wavelengths in the ultraviolet range, ie, the energy is greater than the Ti0 2 bandgap. The physics of ns-crystallization differs from crystallization by means of the described ultra-short-term annealing. Typical surface throughput is in the range of less cm 2 per hour, which precludes use in industrial production of large areas, ie areas in m 2 .
[0010] Bei sogenannten Hetero-junction-Solarzellen wird Indiumzinnoxid (ITO) oder In so-called hetero-junction solar cells indium tin oxide (ITO) or
Aluminium dotiertes Zinkoxid (AZO) als leitfähige Oxidschicht-Schicht verwendet, welche als Sammelschicht für Ladungsträger und als Antireflexschicht fungiert. Die Dicke dieser Schichten beträgt ca. 80 nm um eine minimale Reflexion des Lichtes zu erhalten. Aluminum doped zinc oxide (AZO) is used as a conductive oxide layer, which acts as a charge carrier collection layer and as an antireflective layer. The thickness of these layers is about 80 nm to obtain a minimum reflection of the light.
[001 1 ] Mit Hilfe von Antireflexschichten kann man die Reflexion von elektromagnetischer Strahlung beim Übergang von Luft zu einem Festkörper reduzieren. Durch Kombination von Materialien mit unterschiedlicher Brechzahl in Verbindung mit einem TCO können multifunktionale Schichten hergestellt werden, die leitfähig sind und die Reflexion reduzieren. Die bekannten Schichtsysteme (EP 2103978 A 23.09.2009 ) haben den Nachteil, dass die hochbrechenden (n>2) Schichten durch nichtleitfähige Schichten besetzt werden müssen.  [001 1] With the help of antireflection coatings one can reduce the reflection of electromagnetic radiation during the transition from air to a solid. By combining materials with different refractive indices in combination with a TCO, multifunctional layers can be produced that are conductive and reduce reflection. The known layer systems (EP 2103978 A 23.09.2009) have the disadvantage that the high-index (n> 2) layers must be occupied by non-conductive layers.
Darstellung der Erfindung Presentation of the invention
Technische Aufgabe  Technical task
[0012] Aufgabe der Erfindung ist die Angabe eines alternativen Verfahrens zur  The object of the invention is to provide an alternative method for
Herstellung leitfähiger transparenter Tantal oder Niob dotierter poly-kristalliner Ti02-Schichten, wobei der in dem Stand der Technik bekannte Nachteil, der vollständigen Erwärmung (für mehrere Minuten bis Stunden) des Substrats bei der Herstellung, vermieden wird. Preparation of conductive transparent tantalum or niobium doped polycrystalline Ti0 2 layers, while avoiding the disadvantage known in the prior art, the complete heating (for several minutes to hours) of the substrate in the production.
Technische Lösung  Technical solution
[0013] Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1 . Vorteilhafte  The object is solved by the features of claim 1. advantageous
Ausgestaltungen sind in den Unteransprüchen angegeben.  Embodiments are specified in the subclaims.
[0014] Titandioxid existiert in den Phasen Rutil, Anatas und Brookit, jedoch ist nur die Anatasphase für die Verwendung von Ti02 als transparentes leitfähiges Oxid (TCO) geeignet, um die erforderlichen spezifischen elektrischen Widerstände zu erreichen. Eine Herausforderung liegt somit in dem gezieltem Wachstum phasenreiner Anatasschichten. Titanium dioxide exists in the rutile, anatase and brookite phases, but only the anatase phase is suitable for the use of TiO 2 as a transparent conductive oxide (TCO) to achieve the required resistivities. One challenge therefore lies in the targeted growth of phase-pure anatase layers.
[0015] Die Herstellung des transparenten leitfähigen Oxids (TTO/TNO) erfolgt  The preparation of the transparent conductive oxide (TTO / TNO) takes place
beispielsweise durch Abscheidung der amorphen mit Niob oder Tantal versetzten Ti02-Schichten mittels Sputtern. Die Schichten können u. a. auf Glas- oder auf Siliziumsubstraten abgeschieden werden. Die im Anschluss an das Sputtern nach dem Stand der Technik angewandte Ofentemperung im Hochvakuum wird durch ein Ultra-Kurzzeittemperverfahren, d.h. durch eine Blitzlampenausheilung (FLA = flash lamp annealing) oder eine Laserausheilung ersetzt. Durch die Verwendung der Ultra-Kurzzeittemperverfahren, d. h. die Prozessdauer beträgt einige Millisekunden, verkürzt sich die Prozessdauer dadurch von mehreren Minuten bis Stunden auf wenige Millisekunden im Vergleich zu dem im Stand der Technik bekannten Verfahren des RTP oder des ns-Pulslasers. For example, by deposition of the amorphous with niobium or tantalum offset Ti0 2 layers by sputtering. The layers can be deposited on glass or on silicon substrates, among other things. The furnace annealing under high vacuum applied after sputtering according to the prior art is replaced by an ultra-short-time annealing process, ie by flash lamp annealing (FLA) or laser annealing. By using the ultra-Kurzzeittemperverfahren, ie the process takes a few milliseconds, thereby shortening the process duration of several minutes to hours to a few milliseconds compared to the known in the prior art method of RTP or ns-pulse laser.
Vorteilhafte Wirkungen  Advantageous effects
[0016] Der Vorteil der Blitzlampen- bzw. Laserausheilung ist, dass diese Verfahren auch zur Temperung dünner Schichten auf hoch-temperatursensiblen Substraten eingesetzt werden können.  The advantage of flash lamp or laser annealing is that these methods can also be used for tempering thin layers on high-temperature-sensitive substrates.
[0017] Ti02 bietet gegenüber den konventionellen transparenten leitfähigen Oxiden mehrere Vorteile bzw. Alleinstellungsmerkmale. Besonders hervorzuheben ist, dass auf Titandioxid basierende transparente leitfähige Oxide mit einem sehr hohen Brechungsindex (n « 2,4 bei einer Wellenlänge von 550 nm) hergestellt werden können. Der Brechungsindex ist abhängig von der Wellenlänge der Strahlung bzw. des Lichts, so dass der Brechungsindex sich im Weiteren immer auf die allgemein übliche Wellenlänge von 550 nm bezieht, falls nichts anderes angegeben ist. Bisherige TCOs haben einen Brechungsindex von ca. n = 1 ,7 bis etwa maximal n = 2,0. Weiterhin ist das auf Ti02 basierende TCO resistenter gegen Umwelteinflüsse, vor Allem im Vergleich zu Aluminium dotiertem Zinkoxid (AZO). Weiterhin lässt sich das erfindungsgemäße transparente leitfähige Oxide sehr viel preiswerter als Indiumzinnoxid herstellen. TiO 2 offers over the conventional transparent conductive oxides several advantages or unique features. Of particular note is that titania-based transparent conductive oxides having a very high refractive index (n " 2.4 at a wavelength of 550 nm) can be produced. The refractive index is dependent on the wavelength of the radiation or the light, so that the refractive index always refers to the generally customary wavelength of 550 nm, unless stated otherwise. Previous TCOs have a refractive index of about n = 1, 7 to about a maximum of n = 2.0. Furthermore, the TiO 2 based TCO is more resistant to environmental influences, especially compared to aluminum doped zinc oxide (AZO). Furthermore, the transparent conductive oxide according to the invention can be produced much more cheaply than indium tin oxide.
[0018] Durch die Verwendung der Blitzlampenausheilung oder des Lasers kann die By using the flash lamp annealing or the laser, the
Herstellung der TTO/TNO-Schichten von einigen Minuten bis Stunden auf wenige Millisekunden reduziert werden, was die Behandlung von Flächen im Bereich einiger m2 pro Minute erlaubt. Für die Kristallisation der amorphen Ti02- Schichten sind keine Vakuumanlagen notwendig, weil diese auch unter Production of TTO / TNO layers can be reduced from a few minutes to hours to a few milliseconds, which allows the treatment of areas in the range of a few m 2 per minute. For the crystallization of the amorphous Ti0 2 - layers no vacuum systems are necessary, because these also under
Normalbedingungen an Luft durchgeführt werden kann. Die kürzere Prozesszeit und der geringere Anlagenbedarf vermindern erheblich die Kosten des  Normal conditions can be carried out in air. The shorter process time and lower equipment requirements significantly reduce the cost of the
Herstellungsprozesses.  Manufacturing process.
[0019] Da die Schichten nur kurz und oberflächennah erhitzt werden, wird das  Since the layers are heated only briefly and near the surface, the
Einsatzspektrum der leitfähigen Titandioxidschichten erweitert. Es ist damit der Einsatz auf temperaturempfindlichen Substraten erst möglich.  Range of application of the conductive titanium dioxide layers extended. It is the first possible use on temperature-sensitive substrates.
[0020] Bei der Verwendung von leitfähigem Titandioxids als Teilschicht eines leitfähigen Antireflexschichtsystems kann die bisher nichtleitfähige Schicht mit hoher Brechzahl (n > 2) durch eine leitfähige Schicht mit hoher Brechzahl substituiert werden.  When using conductive titanium dioxide as a sub-layer of a conductive antireflection coating system, the previously non-conductive layer with high refractive index (n> 2) can be substituted by a conductive layer with high refractive index.
[0021 ] Besonders interessant ist die Verwendung der erfindungsgemäß hergestellten transparenten leitfähigen Oxide (TNO/TTO) als Antireflex-Schicht (AR-Schicht) im Bereich der Photovoltaik.  Particularly interesting is the use of the inventively prepared transparent conductive oxides (TNO / TTO) as an antireflection layer (AR layer) in the field of photovoltaics.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
[0022] Die Erfindung und die Verbesserungen gegenüber dem bisherigen Stand der The invention and the improvements over the prior art of
Technik werden mit Hilfe von Abbildungen beschrieben. Technique is described by means of illustrations.
[0023] Fig. 1 zeigt einen möglichen Aufbau eines Interferrenzsystems. Fig. 1 shows a possible structure of an interfering system.
[0024] Fig. 2 zeigt den reflektierten Anteil elektromagnetischer Strahlung für Fig. 2 shows the reflected portion of electromagnetic radiation for
unbeschichtetes Silizium, Silizium mit einem konventionell beschichteten TCO, und dem erfindungsgemäßen Schichtsystem.  uncoated silicon, silicon with a conventionally coated TCO, and the layer system according to the invention.
[0025] Fig. 3 zeigt exemplarisch den Aufbau des erfindungsgemäßen Antireflexsystems mit einer erfindungsgemäßen TNO/TTO-Schicht. Fig. 3 shows an example of the structure of the antireflection system according to the invention with a TNO / TTO layer according to the invention.
[0026] Fig. 4 vergleicht die Transmission des in Fig. 3 dargestellten Systems mit einer Fig. 4 compares the transmission of the system shown in Fig. 3 with a
Glasschicht. Weg(e) zur Ausführung der Erfindung Glass layer. Way (s) for carrying out the invention
[0027] Im Folgenden wird das Herstellungsverfahren der auf Ti02 basierenden In the following, the manufacturing method based on Ti0 2
transparenten leitfähigen Oxide an Beispielen beschrieben. [0028] Das Schichtwachstum erfolgt in einem zweistufigen Prozess bestehend aus Schichtabscheidung beispielsweise mittels Magnetron Sputtern und transparent conductive oxides described by way of examples. The layer growth takes place in a two-stage process consisting of layer deposition, for example by means of magnetron sputtering and
anschließender Ultra-Kurzzeittemperung. Alternativ kann die Schichtabscheidung auch durch einen Verdampfungsprozess oder CVD-Prozess realisiert werden. Im Anschluss an eine der Schichtabscheidungen werden die Schichten zur  subsequent ultra-short-time annealing. Alternatively, the layer deposition can also be realized by an evaporation process or CVD process. Following one of the layer depositions, the layers become
Ausheilung kurzzeitgetempert, beispielsweise mittels Blitzlampen oder Laser. Healing temporarily annealed, for example by means of flash lamps or laser.
Schichtabscheidung durch Magnetron-Sputtern Layer deposition by magnetron sputtering
[0029] Die Schichtabscheidung erfolgt in einem Gleichstrom-Sputterprozess von einem Tantal dotierten, keramischen Target. In der mit Tantal dotierten Titandioxid- Schicht ist das Verhältnis von Tantal zu Titan kleiner als 10 at%.  The layer deposition takes place in a DC sputtering process of a tantalum doped, ceramic target. In the tantalum-doped titanium dioxide layer, the ratio of tantalum to titanium is less than 10 at%.
Vorteilhafterweise beträgt das Verhältnis von Tantal zu Titan etwa 2 at% bis 6 at%, besonders vorteilhaft 4 at% bis ca. 6 at%. Der Sputterprozess erfolgt unter einer Argon/Sauerstoff-Atmosphäre.  Advantageously, the ratio of tantalum to titanium is about 2 at% to 6 at%, more preferably 4 at% to about 6 at%. The sputtering process takes place under an argon / oxygen atmosphere.
[0030] Erfolgt die Dotierung mit Niob ist das Verhältnis von Niob zu Titan (in at%)  If the doping with niobium is the ratio of niobium to titanium (in at%)
entsprechend der Schichtabscheidung von Tantal zu wählen. Der  to choose according to the layer deposition of tantalum. Of the
Sputterrprozess erfolgt ebenfalls unter einer Argon/Sauerstoff-Atmosphäre.  Sputterrprozess also takes place under an argon / oxygen atmosphere.
[0031 ] Bei dem Sputterprozess wird das Substrat nicht aktiv beheizt. Die dotierten  In the sputtering process, the substrate is not actively heated. The doped ones
Titandioxidschichten erreichen Dicken von einigen Nanometern bis Mikrometern, bisher wurden erfindungsgemäße TCO-Schichten mit einer Dicke von 5 nm bis 2 μηη hergestellt. Die Dicke der notwendigen TCO-Schicht ist von der späteren Verwendung abhängig. Die Sputterparameter werden anwendungsbezogen angepasst. Sie sind abhängig von der zu produzierenden Schichtdicke, der verwendeten Atmosphäre und der Dotierungskonzentration.  Titanium dioxide layers reach thicknesses of a few nanometers to micrometers; hitherto, TCO layers according to the invention having a thickness of 5 nm to 2 μm were produced. The thickness of the necessary TCO layer depends on the later use. The sputter parameters are adapted to the application. They depend on the layer thickness to be produced, the atmosphere used and the doping concentration.
Schichtabscheidung mittels Verdampfungsprozess  Layer deposition by means of evaporation process
[0032] Die Schichtabscheidung mittels eines Verdampfungsprozesses erfolgt nach den im Stand der Technik bekannten Verfahren. In der Tantal bzw. der Niob dotierten Titandioxid-Schicht ist das Verhältnis von Tantal bzw. Niob zu Titan kleiner als 10 at%.  The layer deposition by means of an evaporation process takes place according to the methods known in the prior art. In the tantalum or niobium doped titanium dioxide layer, the ratio of tantalum or niobium to titanium is less than 10 at%.
Ausheilung der Schicht(en) mit Blitzlampentemperung  Healing of the layer (s) with flash lamp annealing
[0033] Für die Blitzlampenausheilung wird die Schicht einmal oder mehrmals mit  For the flash lamp annealing, the layer with one or more times
Lichtpulsen mit einer Energiedichte von etwa
Figure imgf000007_0001
Jcm"2 bis 50 Jcm"2, bei einer Pulsdauer von 1 bis 20 ms beaufschlagt. Größere Pulszeiten erhöhen die Eindringtiefe bis hin zur vollständigen Substraterwärmung. Die
Light pulses with an energy density of about
Figure imgf000007_0001
Jcm "2 to 50 Jcm " 2 , applied with a pulse duration of 1 to 20 ms. Larger pulse times increase the penetration depth up to complete substrate heating. The
Blitzlampenausheilung kann unter Luft, Vakuum, Stickstoff oder Argon erfolgen. [0034] Die notwendige Anzahl der Lichtpulse korreliert u. a. mit der Dicke der auszuheilenden Schichten, der Pulsdauer und der Energiedichte des Lichtpulses. Flash lamp annealing can be done in air, vacuum, nitrogen or argon. The necessary number of light pulses correlates, inter alia, with the thickness of the layers to be healed, the pulse duration and the energy density of the light pulse.
[0035] Ist das Substrat hochtemperaturunempfindlich, kann die Pulsdauer verlängert werden.  If the substrate is insensitive to high temperatures, the pulse duration can be extended.
Ausheilung der Schicht(en) mit Lasertemperung  Healing of the layer (s) with laser annealing
[0036] Für die Lasertemperung werden Laser mit einer Leistung kleiner als etwa 500 W empfohlen. Die Wellenlänge des Lasers sollte zwischen 400 und 1300 nm liegen, vorzugsweise zwischen 400 und 1000 nm, besonders bevorzugt bei etwa 800nm. Die Dauer der Temperung variiert zwischen 5 und ca. 100 ms. Die  For the laser annealing, lasers with a power less than about 500 W are recommended. The wavelength of the laser should be between 400 and 1300 nm, preferably between 400 and 1000 nm, more preferably at about 800 nm. The duration of the heat treatment varies between 5 and approx. 100 ms. The
Lasertemperung kann unter Luft, Vakuum, Stickstoff oder Argon erfolgen.  Laser annealing can be carried out under air, vacuum, nitrogen or argon.
Verwendungsmöglichkeiten uses
[0037] Eine mögliche Verwendung der erfindungsgemäßen transparenten leitfähigen Oxide auf Titandioxidbasis ist als Heizschicht auf Glas. Durch die Kombination leitfähiger TCOs verschiedener Brechzahl können multifunktionale Schichten hergestellt werden, die sowohl leitfähig sind und/oder reflexionsmindernde Wirkung haben und damit als Antireflexschicht verwendet werden können.  One possible use of the titanium dioxide-based transparent conductive oxides according to the invention is as a heating layer on glass. By combining conductive TCOs of different refractive indices, multifunctional layers can be produced that are both conductive and / or have a reflection-reducing effect and can therefore be used as an antireflection layer.
[0038] Ein möglicher Schichtaufbau einer Antireflexschicht, umfassend eine  A possible layer structure of an antireflection layer comprising a
erfindungsgemäße transparente leitfähigen Oxidschicht 1 , beispielsweise  Transparent conductive oxide layer 1 according to the invention, for example
Ti02:Ta- oder Ti02:Nb-Schicht, eine konventionelle TCO-Schicht 2,  TiO 2: Ta or TiO 2: Nb layer, a conventional TCO layer 2,
beispielsweise eine AZO-Schicht, und eine nichtleitfähigen Si02-Schicht 3, auf einer Glasschicht 4 und ist in Fig. 3 dargestellt. Alternativ könnte auch ein For example, an AZO layer, and a non-conductive SiO 2 layer 3, on a glass layer 4 and is shown in Fig. 3. Alternatively, one could also
Schichtsystem gewählt werden, welches nur aus TCOs (konventionell und TNO/TTO) besteht. Layer system can be selected, which consists only of TCOs (conventional and TNO / TTO).
[0039] Es sind auch andere alternierend variierende Anordnungen möglich, wobei die Brechzahl der Schichten x-1 und x+1 jeweils größer oder kleiner als die  There are also other alternately varying arrangements possible, wherein the refractive index of the layers x-1 and x + 1 respectively greater or smaller than that
Brechzahl der Schicht x ist.  Refractive index of the layer x.
[0040] In Fig. 4 ist die Transmission des in Fig. 3 dargestellten Schichtsystems im  In Fig. 4, the transmission of the layer system shown in Fig. 3 in
Wellenlängenbereich von 300nm bis 950nm und zum Vergleich eines  Wavelength range from 300nm to 950nm and for comparison one
unbeschichteten Glassubstrats dargestellt. Die leitfähigen Teilschichten weisen einen Schichtwiderstand von etwa 60 Ω auf.  uncoated glass substrate shown. The conductive partial layers have a sheet resistance of about 60 Ω.
[0041 ] Eine weitere mögliche Verwendung ist die Herstellung von Mehrschichtsystemen, umfassend konventionellen TCOs (ITO, AZO) in Verbindung mit dotierten, leitfähigem Ti02 als Ersatz einer konventionellen TCO-Schicht in hetero-junction Solarzellen. [0042] Ein möglicher Aufbau ist in Fig. 1 dargestellt. Fig. 1 zeigt den erfindungsgemäßen Aufbau eines Interferenzsystems exemplarisch an einem Interferenzsystem bestehend aus drei Schichten auf einem Siliziumsubstrat (Si-Substrat ist nicht dargestellt), dass als leitfähiges Antireflexschichtsystem verwendet werden kann. Fig. 1 zeigt beispielsweise einen Aufbau eines des erfindungsgemäßen Another possible use is the production of multi-layer systems, comprising conventional TCOs (ITO, AZO) in combination with doped, conductive Ti0 2 as a replacement of a conventional TCO layer in hetero-junction solar cells. A possible structure is shown in Fig. 1. 1 shows the structure according to the invention of an interference system by way of example on an interference system consisting of three layers on a silicon substrate (Si substrate is not shown) that can be used as a conductive antireflection layer system. Fig. 1 shows, for example, a structure of the invention
(alternativen) Schichtsystems mit Ti02:Ta als TCO-Schicht mit hoher Brennzahl (n > 2) 1 , ZnO:AI als TCO-Schicht mit mittlerer Brennzahl (n < 2) 2 und Si02 als transparente Schicht mit kleiner Brechzahl (n < 1 ,5) 3. (alternative) layer system with Ti0 2 : Ta as a TCO layer with high burning number (n> 2) 1, ZnO: AI as a TCO layer with average burning number (n <2) 2 and Si0 2 as a transparent layer with a small refractive index (n <1, 5) 3.
[0043] Die Anordnung der leitfähigen Schichten des Interferenzsystems mit leitfähigen auf Titandioxid basierender Schichten erfolgt mit abnehmender Brechzahl, beginnend mit dem Medium mit der höchsten Brechzahl direkt auf dem Substrat. Es sind allerdings auch weitere Schichtfolgen möglich.  The arrangement of the conductive layers of the interference system with conductive layers based on titanium dioxide is carried out with decreasing refractive index, starting with the medium with the highest refractive index directly on the substrate. However, further layer sequences are also possible.
[0044] Alternativ kann die Anordnung auch alternierend erfolgen.  Alternatively, the arrangement can also be done alternately.
[0045] Fig. 2 beschreibt den reflektierten Anteil elektromagnetischer Strahlung im  Fig. 2 describes the reflected portion of electromagnetic radiation in
Bereich von 300nm bis 950nm für unbeschichtetes Silizium, für mit einem konventionellen TCO beschichtetes Silizium und für ein erfindungsgemäßes Schichtsystem. Der gewählte Strahlungsbereich ist für Photovoltaikanwendungen besonders interessant, da hier die Intensität der Sonnenstrahlung am höchsten ist. Man erkennt deutlich die Reflexionsminderung durch die Verwendung des alternativen Schichtsystems im Vergleich zum Stand der Technik. Die  Range from 300nm to 950nm for uncoated silicon, for coated with a conventional TCO silicon and for a layer system according to the invention. The selected radiation range is particularly interesting for photovoltaic applications, since the intensity of solar radiation is highest here. It can be seen clearly the reflection reduction by the use of the alternative layer system in comparison to the prior art. The
Schichtdicke konventioneller TCO-Schichten beträgt etwa 80nm und der leitfähige Anteil des alternativen Schichtsystems beträgt in diesem Beispiel etwa 300 nm. Durch die Erhöhung der Dicke der leitfähigen Schicht wird der  Layer thickness of conventional TCO layers is about 80nm and the conductive portion of the alternative layer system in this example is about 300 nm. By increasing the thickness of the conductive layer of the
Schichtwiderstand erheblich reduziert.  Sheet resistance significantly reduced.

Claims

Ansprüche claims
1 . Verfahren zur Herstellung transparenter leitfähiger Ti02-Schichten mit einem 1 . Process for producing transparent conductive TiO 2 layers with a
Brechungsindex n kleiner und größer als 2,0, umfassend die Abscheidung amorpher Ti02-Schichten mittels Sputtern oder thermischem Verdampfen auf einem Substrat und anschließender Kristallisation der Schichten durch Ultra-Kurzzeittemperung, d.h. mittels Blitzlampenausheilung oder Lasertemperung, wobei die Ti02-Schichten mit weniger als 10 at.% mit Tantal oder Niob dotiert sind. Refractive index n smaller and larger than 2.0, comprising the deposition of amorphous Ti0 2 layers by sputtering or thermal evaporation on a substrate and subsequent crystallization of the layers by ultra-Kurzzeittemperung, ie by flash lamp annealing or laser annealing, the Ti0 2 layers with less than 10 at.% are doped with tantalum or niobium.
2. Verfahren nach Anspruch 1_, dadurch gekennzeichnet, dass die Abscheidung mittels Magnetron-Sputtern unter einer Argon/Sauerstoff-Atmosphäre erfolgt.  2. The method according to claim 1, characterized in that the deposition takes place by means of magnetron sputtering under an argon / oxygen atmosphere.
3. Verfahren nach Anspruch 1_, dadurch gekennzeichnet, dass die Kurzzeittemperung mit Blitzlampenausheilung mit einem oder mehreren Lichtpulsen mit einer  3. The method according to claim 1_, characterized in that the Kurzzeittemperung with flash lamp annealing with one or more light pulses with a
Energiedichte von etwa
Figure imgf000010_0001
Jcm"2 bis 50 Jcm"2, bei einer Pulsdauer von 1 bis 20 ms erfolgt.
Energy density of about
Figure imgf000010_0001
Jcm "2 to 50 Jcm " 2 , with a pulse duration of 1 to 20 ms.
4. Verfahren nach Anspruch 1_, dadurch gekennzeichnet, dass die Kurzzeittemperung mit Laserausheilung unter Verwendung eines Laser mit einer Leistung kleiner als etwa 500 W erfolgt, wobei die Wellenlänge des Lasers zwischen 400 und 1300 nm liegt, vorzugsweise zwischen 400 und 1000 nm, besonders bevorzugt bei etwa 800nm, und wobei die Dauer der Ausheilung zwischen 5 und ca. 100 ms variiiert. 4. The method according to claim 1, characterized in that the short-term annealing with laser annealing using a laser with a power less than about 500 W, wherein the wavelength of the laser is between 400 and 1300 nm, preferably between 400 and 1000 nm, particularly preferably at about 800nm, and the duration of annealing varies between 5 and about 100 ms.
5. Transparente leitfähige Ti02-Schichten hergestellt nach einen der vorhergehenden Ansprüche, wobei mindestens eine Schicht einen Brechungsindex n größer als 2,0 besitzt. 5. Transparent conductive TiO 2 layers prepared according to one of the preceding claims, wherein at least one layer has a refractive index n greater than 2.0.
6. Transparente leitfähige Ti02-Schichten gemäß Anspruch 5, umfassend ein a-Si- oder c-Si-Substrat mit einem darauf abgeschiedenen Interferenzsystem, wobei das Interferenzsystem mehrere transparente leitfähige Schichten mit unterschiedlichem Brechungsindex umfasst, und der Brechungsindex der einzelnen Schichten vom Substrat her abnimmt! und mindestens eine der aufgebrachten Oxidschichten einen Brechungsindex n > 2,0 und mindestens eine einen Brechungsindex n < 2,0 besitzt.6. Transparent conductive TiO 2 layers according to claim 5, comprising an a-Si or c-Si substrate with an interference system deposited thereon, wherein the interference system comprises a plurality of transparent conductive layers with different refractive indices, and the refractive index of the individual layers from the substrate decreases ! and at least one of the deposited oxide layers has a refractive index n> 2.0 and at least one has a refractive index n <2.0.
7. Transparente leitfähige Ti02-Schichten gemäß Anspruch 5, umfassend ein a-Si- oder c-Si-Substrat mit einem darauf abgeschiedenen Interferenzsystem, wobei das Interferenzsystem mehrere transparente leitfähige Schichten mit unterschiedlichem Brechungsindex umfasst, und der Brechungsindex der einzelnen Schichten vom Substrat her alternierend variiert und mindestens eine der aufgebrachten 7. Transparent Ti0 2 conductive layers according to claim 5, comprising an a-Si or c-Si substrate with an interference system deposited thereon, wherein the interference system comprises a plurality of transparent conductive layers having different refractive indices, and the refractive index of the individual layers from the substrate varies alternately and at least one of the applied
Oxidschichten einen Brechungsindex n > 2,0 und mindestens eine einen  Oxide layers have a refractive index n> 2.0 and at least one one
Brechungsindex n < 2,0 besitzt.  Refractive index n <2.0 has.
8. Transparente leitfähige Ti02-Schichten nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass zum Abschluss eine transparente Schicht, vorzugsweise nicht leitend und/oder vorzugsweise mit einem Brechungsindex kleiner als 1 ,6, aufgebracht ist. 8. Transparent conductive Ti0 2 layers according to any one of claims 6 or 7, characterized in that at the end of a transparent layer, preferably not conductive and / or preferably with a refractive index less than 1, 6, is applied.
9. Transparente leitfähige Ti02-Schichten nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die transparente leitfähige Schicht mit dem Brechungsindex n < 2,0 aus einem der Materialien Indiumzinnoxid, Fluor dotiertes Zinnoxid, Aluminium dotiertes Zinkoxid besteht. 9. Transparent conductive Ti0 2 layers according to one of claims 5 to 8, characterized in that the transparent conductive layer with the refractive index n <2.0 consists of one of the materials indium tin oxide, fluorine doped tin oxide, aluminum doped zinc oxide.
10. Verwendung der transparenten leitfähigen Ti02-Schichten gemäß einem der 10. Use of the transparent conductive Ti0 2 layers according to one of
Ansprüche 5 bis 9 in Halbleiterbauelementen, bevorzugt in opto-elektrischen  Claims 5 to 9 in semiconductor devices, preferably in opto-electrical
Elementen.  Elements.
1 1 . Verwendung der transparenten leitfähigen Ti02-Schichten einem der Ansprüche 5 bis 9 als Heizschicht auf Glas oder glasähnlichen Oberflächen. 1 1. Use of the transparent conductive TiO 2 layers of any of claims 5 to 9 as a heating layer on glass or glass-like surfaces.
12. Verwendung der transparenten leitfähigen Ti02-Schichten einem der Ansprüche 5 bis 9 als leitfähige transparente Antireflexschicht. 12. Use of the transparent conductive Ti0 2 layers of any one of claims 5 to 9 as a conductive transparent antireflection layer.
13. Verwendung der transparenten leitfähigen Ti02-Schichten einem der Ansprüche 5 bis 9 als Teil einer Solarzelle. 13. Use of the transparent conductive Ti0 2 layers according to one of claims 5 to 9 as part of a solar cell.
PCT/EP2013/060430 2012-05-21 2013-05-21 Production of transparent conductive titanium dioxide layers, said layers themselves, and use of said layers WO2013174824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012104374.4 2012-05-21
DE102012104374A DE102012104374A1 (en) 2012-05-21 2012-05-21 Production of transparent conductive titanium dioxide layers, these themselves and their use

Publications (1)

Publication Number Publication Date
WO2013174824A1 true WO2013174824A1 (en) 2013-11-28

Family

ID=48468330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/060430 WO2013174824A1 (en) 2012-05-21 2013-05-21 Production of transparent conductive titanium dioxide layers, said layers themselves, and use of said layers

Country Status (2)

Country Link
DE (1) DE102012104374A1 (en)
WO (1) WO2013174824A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220275513A1 (en) * 2019-07-17 2022-09-01 Oerlikon Surface Solutions Ag, Pfäffikon Method for producing coatings with adapted coating properties

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124533A (en) * 1983-12-08 1985-07-03 Toyota Motor Corp Projection type meter display device in automobile
US20020028361A1 (en) * 1995-09-15 2002-03-07 Saint-Gobain Glass France Substrate with a photocatalytic coating
DE102005036669A1 (en) 2005-08-04 2007-02-08 Forschungszentrum Rossendorf E.V. Process for the treatment of semiconductor substrate surfaces, which are briefly melted by means of intense light pulses
EP1796107A1 (en) 2004-08-13 2007-06-13 Kanagawa Academy of Science and Technology Transparent conductor, transparent electrode, solar cell, luminescent device and display panel
US20080308833A1 (en) * 2007-05-25 2008-12-18 Toyoda Gosei Co., Ltd. Group III nitride-based compound semiconductor light-emitting device
EP2103978A1 (en) 2008-03-19 2009-09-23 Rodenstock GmbH Layer system for heating optical surfaces and simultaneous reflex reduction
JP2010231972A (en) 2009-03-26 2010-10-14 Kanagawa Acad Of Sci & Technol Conductor substrate, manufacturing method for the same, device, and electronic apparatus
US20110084198A1 (en) * 2002-09-20 2011-04-14 Donnelly Corporation Interior rearview mirror information display system for a vehicle
WO2011108552A1 (en) * 2010-03-02 2011-09-09 住友金属鉱山株式会社 Laminate, method for producing same, and functional element using same
FR2963343A1 (en) * 2010-07-28 2012-02-03 Saint Gobain GLAZING WITH COATING AGAINST CONDENSATION

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033417C5 (en) * 2009-04-09 2022-10-06 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Process and plant for the production of a coated object by means of annealing
EP2469603A1 (en) * 2010-12-27 2012-06-27 Centre National de la Recherche Scientifique Improved method for manufacturing a photovoltaic device comprising a TCO layer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124533A (en) * 1983-12-08 1985-07-03 Toyota Motor Corp Projection type meter display device in automobile
US20020028361A1 (en) * 1995-09-15 2002-03-07 Saint-Gobain Glass France Substrate with a photocatalytic coating
US20110084198A1 (en) * 2002-09-20 2011-04-14 Donnelly Corporation Interior rearview mirror information display system for a vehicle
EP1796107A1 (en) 2004-08-13 2007-06-13 Kanagawa Academy of Science and Technology Transparent conductor, transparent electrode, solar cell, luminescent device and display panel
US20070287025A1 (en) * 2004-08-13 2007-12-13 Kanagawa Academy Of Science And Technology Transparent Conductor, Transparent Electrode, Solar Cell, Light Emitting Device And Display Panel
DE102005036669A1 (en) 2005-08-04 2007-02-08 Forschungszentrum Rossendorf E.V. Process for the treatment of semiconductor substrate surfaces, which are briefly melted by means of intense light pulses
US20080308833A1 (en) * 2007-05-25 2008-12-18 Toyoda Gosei Co., Ltd. Group III nitride-based compound semiconductor light-emitting device
EP2103978A1 (en) 2008-03-19 2009-09-23 Rodenstock GmbH Layer system for heating optical surfaces and simultaneous reflex reduction
JP2010231972A (en) 2009-03-26 2010-10-14 Kanagawa Acad Of Sci & Technol Conductor substrate, manufacturing method for the same, device, and electronic apparatus
WO2011108552A1 (en) * 2010-03-02 2011-09-09 住友金属鉱山株式会社 Laminate, method for producing same, and functional element using same
EP2543507A1 (en) * 2010-03-02 2013-01-09 Sumitomo Metal Mining Co., Ltd. Laminate, method for producing same, and functional element using same
FR2963343A1 (en) * 2010-07-28 2012-02-03 Saint Gobain GLAZING WITH COATING AGAINST CONDENSATION

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DABNEY ET AL: "Pulsed laser deposited Nb doped TiO2 as a transparent conducting oxide", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 516, no. 12, 26 October 2007 (2007-10-26), pages 4133 - 4138, XP022533907, ISSN: 0040-6090 *
HITOSUGI, T. ET AL.: "Fabrication of highly conductive Ti(1-x)Nb(x)O2 polycrystalline films on glass substrates via crystallization of amorphous phase grown by pulsed laser deposition", APPL. PHYS. LETT., vol. 90, 2007, pages 212106, XP012094945, DOI: doi:10.1063/1.2742310
VAN OVERSCHELDE ET AL: "Crystallisation of TiO2 thin films induced by excimer laser irradiation", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 254, no. 4, 23 November 2007 (2007-11-23), pages 971 - 974, XP022360028, ISSN: 0169-4332, DOI: 10.1016/J.APSUSC.2007.08.018 *
VAN OVERSCHELDE, O. ET AL.: "Crystallisation of Ti02 thin films induced by excimer laser irradiation", APPLIED SURFACE SCIENCE, 2007, pages 254971

Also Published As

Publication number Publication date
DE102012104374A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
DE60121007T3 (en) SUBSTRATE WITH A PHOTOCATALYTIC COATING
EP2300389B1 (en) Glass product
RU2531752C2 (en) Thin-film silicon solar cell having improved undercoat
DE202010018224U1 (en) Plant for application and heat treatment of thin layers
DE202008018514U1 (en) material
DE202012013088U1 (en) Plant for coating and heat treatment
DE102004003760B4 (en) A process for producing a conductive and transparent zinc oxide layer and use thereof in a thin film solar cell
WO2011098434A1 (en) Method for producing a structured tco protective coating
Zhang et al. Characterization studies of the structure and properties of Zr-doped SnO2 thin films by spin-coating technique
WO2008040502A1 (en) Method for depositing an oxide layer on absorbers of solar cells, solar cell and use of the method
DE112009003493T5 (en) Primer layers conferring improved overcoat functionality
DE102011056639A1 (en) Method for producing a transparent conductive oxide layer and a photovoltaic device
WO2006034739A2 (en) Method for vacuum-coating with a photo-semiconducting layer and use of said method
KR101049850B1 (en) Method for manufacturing metal oxide transparent conductive thin film
EP2970698B1 (en) Coating, process for the production thereof and the use thereof
EP2314732B2 (en) Method for coating a substrate with a TCO coating and thin film solar cell
DE102012100259A1 (en) Method for producing a semiconducting film and photovoltaic device
EP2162563B1 (en) Temperature-resistant tco layer and production method therefor
WO2013174824A1 (en) Production of transparent conductive titanium dioxide layers, said layers themselves, and use of said layers
DE102012112780B3 (en) Optically effective layer system, useful as solar absorber layer system, comprises substrate, functional layer assembly, and assembly comprising cover layer made of titanium, oxygen, silicon and oxygen-containing material
DE102009026197B4 (en) Optically transparent glass pane and its use
DE112010003603T5 (en) Method for controlling the composition of a photovoltaic thin film
DE102011005760B4 (en) Process for the preparation and treatment of an optically scattering TCO layer on a substrate
DE102008009337A1 (en) Coating a substrate with a conductive and transparent metallic oxide layer by sputtering in a continuous process, comprises moving and coating the substrate in a coating chamber at a coating source with a tubular target of metallic oxide
KR101073878B1 (en) Substrate having an Antistatic Function and Method for manufacturing the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13723809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13723809

Country of ref document: EP

Kind code of ref document: A1