WO2013168692A1 - Objective lens and optical pickup device - Google Patents

Objective lens and optical pickup device Download PDF

Info

Publication number
WO2013168692A1
WO2013168692A1 PCT/JP2013/062815 JP2013062815W WO2013168692A1 WO 2013168692 A1 WO2013168692 A1 WO 2013168692A1 JP 2013062815 W JP2013062815 W JP 2013062815W WO 2013168692 A1 WO2013168692 A1 WO 2013168692A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
basic structure
light
optical
path difference
Prior art date
Application number
PCT/JP2013/062815
Other languages
French (fr)
Japanese (ja)
Inventor
立山清乃
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201380024707.XA priority Critical patent/CN104335277A/en
Publication of WO2013168692A1 publication Critical patent/WO2013168692A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths

Definitions

  • the present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
  • a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened.
  • a wavelength 390 such as a blue-violet semiconductor laser is used.
  • a laser light source of ⁇ 420 nm has been put into practical use.
  • these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used.
  • NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
  • BD Blu-ray Disc
  • the BD is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
  • an information system for BD and an optical system for DVD and CD are used.
  • a method of selectively switching according to the recording density of the optical disk for recording / reproducing the image is conceivable, a plurality of optical systems are required, which is disadvantageous for miniaturization and increases the cost.
  • the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common.
  • an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
  • the objective lens used in common for the three types of optical disks of BD, DVD, and CD needs to be able to cope with the difference in the required numerical aperture of BD, DVD, and CD.
  • a light beam that has passed through almost the entire area of the effective optical surface of the objective lens is condensed on the information recording surface of the BD.
  • the light beam that has passed through the region near the center of the lens is condensed on the information recording surface of the CD, but the light beam that has passed through the outer region of the lens needs to be blown off as a flare so as not to be collected on the information recording surface of the CD. Therefore, as shown in FIG.
  • the objective lens used in common for the three types of optical disks of BD, DVD, and CD collects light beams for concentric three regions (BD, DVD, and CD) as shown in FIG. Center region CN, BD and intermediate region MD for condensing the luminous flux for DVD, and peripheral region OT for condensing the luminous flux for BD), and each region needs to exhibit different optical performance behavior Comes out. Further, in order to show the behavior of different optical performance, a lens having a different structure that generates different diffraction orders for each region has been considered.
  • Patent Document 1 by defining a relational expression of the optical path difference function in the central region and the peripheral region, spherical aberration when using three types of optical discs is corrected well, and at the same time, spot performance deterioration due to unnecessary diffraction order light is reduced.
  • three types of compatible objective lenses for optical discs that can be avoided and have a sufficient working distance, and an optical information recording / reproducing apparatus equipped with the objective lenses.
  • the objective lens described in Patent Document 1 is not easy to manufacture because the number of ring zones in the peripheral region is very large and the pitch (ring zone width in the direction perpendicular to the optical axis) is also small. This problem is particularly noticeable when the objective lens is downsized. It has also been found that there is a problem that the spot diameter increases when BD is used. As a result of intensive research on the increase in the BD spot diameter, the present inventor has found that there are the following three causes.
  • the first cause is that the expected angle of the light source side optical surface is large in the vicinity of the effective diameter of the objective lens when a BD light beam is used.
  • the power balance between the light source side optical surface and the disk side optical surface is uniquely determined, and therefore the light source side optical surface expected angle increases near the effective diameter of the light flux with wavelength ⁇ 1. Therefore, it becomes difficult for the cutting tool for cutting the die to cut the optical path difference providing structure as designed, and the processing accuracy is lowered.
  • the second cause is an increase in reflectivity associated with an increase in the incident angle of light on the optical surface because the expected angle of the objective lens is large.
  • the rim intensity is reduced and the amount of transmitted light to the focused spot is reduced. Therefore, a phenomenon that can be referred to as a reverse apodization effect occurs. And an increase in spot diameter when using BD may occur.
  • FIG. 2 is a diagram illustrating a part of a cross-sectional view of an objective lens provided with a blazed optical path difference providing structure as an example.
  • a serrated annular zone R is formed concentrically along the mother aspherical surface.
  • the light beam LB1 incident on the root side of the sawtooth passes through the annular zone R, exhibits a behavior based on the design, and travels in the objective lens.
  • the light beam LB2 (indicated by hatching) incident on the leading end side of the saw blade is reflected by the inner side surface (step surface) SP after entering the annular zone R, so-called “shadow effect”. Is generated. Due to the effect of the shadow, the light beam LB2 is not condensed on the information recording surface of the optical disc, and the use efficiency of light is reduced accordingly. The effect of the shadow is particularly significant in the high NA region where the light refraction angle is large. In addition, due to mold processing accuracy and transferability problems, a fine shape such as the tip of the serrated ring zone or the vicinity of the root tends to cause a molding error with respect to the design shape, thereby increasing scattered light. Therefore, the use efficiency of light is reduced. That is, when the number of ring zones of the optical path difference providing structure is increased, the light region that does not contribute to light collection increases, and accordingly, the light use efficiency decreases accordingly.
  • the number of annular zones in the peripheral region is very large, and the number of annular zones tends to increase from the optical axis side toward the periphery in the peripheral region.
  • the influence of the shadow effect becomes very large, and the rim strength is reduced.
  • a phenomenon that can be called a reverse apodization effect occurs, and an increase in the spot diameter when BD is used has occurred.
  • the present invention has been made in view of the above-described problems, and has improved the moldability of the objective lens, can cope with downsizing, and is stable by forming an appropriate spot diameter even when using a BD. It is an object of the present invention to provide a compatible single objective lens for three types of optical discs of BD / DVD / CD capable of recording / reproducing information, and an optical pickup device equipped with this objective lens.
  • the objective lens according to claim 1 emits a first light source that emits a first light flux having a first wavelength ⁇ 1 (390 nm ⁇ ⁇ 1 ⁇ 415 nm) and a second light flux that has a second wavelength ⁇ 2 (630 nm ⁇ ⁇ 2 ⁇ 670 nm). And a third light source that emits a third light beam having a third wavelength ⁇ 3 (760 nm ⁇ ⁇ 3 ⁇ 820 nm), and a protective substrate having a thickness t1 using the first light beam.
  • An objective lens used in an optical pickup device for recording and / or reproducing information of a CD having a protective substrate having a thickness of t3 (t2 ⁇ t3) The objective lens is a single lens, The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region, The central region has a first optical path difference providing structure, The intermediate region has a second optical path difference providing structure, The peripheral region has a third optical path difference providing structure; The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region.
  • the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the intermediate area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the intermediate region is recorded and / or recorded on the information recording surface of the CD.
  • the objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the peripheral area is recorded on the information recording surface of the CD.
  • the first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
  • the first basic structure is a blaze-type structure, and the first-order diffracted light quantity of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light quantity, and passes through the first basic structure.
  • the first-order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the first-order diffracted light quantity of the third light flux that has passed through the first basic structure is changed to any other order diffracted light quantity.
  • the second basic structure is a blazed structure, and the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is made larger than any other order of diffracted light quantity, and passes through the second basic structure.
  • the first order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the first diffracted light quantity of the third light flux that has passed through the second basic structure is changed to any other order diffracted light quantity.
  • the second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped,
  • the third basic structure is a blazed structure, and the first-order diffracted light quantity of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light quantity, and passes through the third basic structure.
  • the first-order diffracted light amount of the second light flux is made larger than any other order diffracted light amount
  • the fourth foundation structure is a blazed structure, and the fifth or seventh-order diffracted light quantity of the first light flux that has passed through the fourth basic structure is made larger than any other order of diffracted light quantity, Making the third or fourth order diffracted light quantity of the second light flux that has passed through the structure larger than any other order diffracted light quantity;
  • the third optical path difference providing structure has at least a fifth basic structure,
  • the fifth basic structure is a blazed structure, and the second-order or fourth-order diffracted light quantity of the first light beam that has passed through the fifth basic structure is made larger than any other order diffracted light quantity. It is said.
  • the three types of optical disks of BD / DVD / CD can be used interchangeably with a common objective lens.
  • the first and second optical path difference providing structures are formed by superimposing two types of blazed basic structures, the degree of design freedom is 2 compared to the case where the optical path difference providing structure is formed with a single structure.
  • the magnification can be freely determined for the three disks while achieving compatibility.
  • the first basic structure existing in the central region has a (1/1/1) structure (the most first-order diffracted light is generated in any of the first light flux, the second light flux, and the third light flux).
  • the basic structure is a (2/1/1) structure (the second-order diffracted light is generated most in the first light beam, and the first-order diffracted light is generated most in the second light beam and the third light beam).
  • the amount of step of the diffractive structure in the central region does not become too large, it is possible to suppress light loss due to manufacturing errors, to suppress the shadow effect, to ensure high light utilization efficiency, and to maintain the wavelength and temperature. Variations in diffraction efficiency during the change can also be reduced.
  • the third basic structure existing in the intermediate region is a (1/1) structure (most first-order diffracted light is generated in the first and second light beams), and the fourth basic structure is a (5/3) structure ( The 5th-order diffracted light is generated most in the first light beam, the 3rd-order diffracted light is generated most in the second light beam, or the fourth basic structure is the (7/4) structure (the 7th-order diffracted light is most generated in the first light beam).
  • the second light flux most of the fourth-order diffracted light is generated), so that it is possible to appropriately control the variation of spherical aberration at the time of temperature change when using BD or DVD. Also, high diffraction efficiency can be obtained when using BD and DVD.
  • the pitch is set as compared with the first-order case. Since the number of ring zones can be reduced, manufacturing can be facilitated and errors can be reduced in both mold processing and resin molding. In the peripheral area, the number of annular zones tends to increase from the optical axis side toward the periphery, and the angle of view of the objective lens increases near the outer diameter in the peripheral area. Decrease, increase in reflectance, etc., especially when the pitch is small, this problem becomes significant and the rim strength decreases, but the pitch of the fifth foundation structure in the peripheral region can be increased.
  • the objective lens according to claim 2 is the invention according to claim 1, wherein the ratio of pupil transmittance in the vicinity of the peripheral area of the intermediate area to the vicinity of the optical axis center of the objective lens in the second light flux.
  • r2 is r2 ⁇ 0.9 (1)
  • the effective diameter of the objective lens in the second light flux is h2
  • the imaging magnification in the second light flux is m2
  • the focal length in the first light flux is f1, 0.66 ⁇ h2 / (2 ⁇ f1 ⁇ (1-m2)) ⁇ 0.75 (2) It is characterized by satisfying.
  • the objective lens of the present invention overlaps two basic structures in the intermediate region, and further, in a certain region, the number of annular zones tends to increase toward the periphery from the optical axis. In the vicinity of the region, the light utilization efficiency is deteriorated.
  • the ratio r2 of the pupil transmittance in the vicinity of the peripheral region of the intermediate region with respect to the vicinity of the optical axis center of the objective lens in the second light flux is within the range of the expression (1), and a phenomenon that can be called a reverse apodization effect occurs.
  • the spot diameter may increase.
  • the term “near” in the vicinity of the optical axis center refers to a range of 10% of the effective radius when using a DVD from the optical axis to the direction perpendicular to the optical axis.
  • the vicinity of the peripheral area of the intermediate area refers to a range of 10% of the effective radius when using the DVD with respect to the intermediate area direction from the boundary between the intermediate area and the peripheral area.
  • the objective lens of the present invention is a BD / DVD / CD compatible objective lens.
  • the sine condition cannot be satisfied for all optical disks, and BD, DVD, Since the sine condition is set so that the balance is improved to some extent in all the CDs, there is a possibility that the spot diameter is further increased when the BD is used.
  • the effective diameter of the second light flux when the objective lens is used in DVD is increased, that is, the NA is increased. Since the spot diameter when the DVD is used is narrowed down, the reverse apodization effect when using the DVD can be suppressed.
  • an intermediate region having a relatively small amount of transmitted light as compared with the vicinity of the optical axis is widened, so that an apodization effect is produced and the spot diameter of the BD can be reduced. This can be preferably used particularly for a compatible lens for reproduction of three types of optical disks of BD / DVD / CD.
  • the spot diameter when using the DVD is not reduced more than necessary. Also, on the DVD side, the error sensitivity of wavefront aberration can be kept small, and stable recording / reproducing characteristics can be obtained.
  • the objective lens described in claim 3 is the invention described in claim 1 or 2 and is characterized by satisfying the following expression. 1.0 ⁇ f1 ⁇ 2.2 (3)
  • the focal length f1 when using the BD is within the range of the expression (3), the objective lens becomes relatively small, and therefore the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention is large.
  • such a large problem can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity.
  • the focal length f1 is within the range of the expression (3), the number of ring zones in the central region is increased in order to secure a working distance when using the CD, that is, in order to increase the paraxial power of diffraction.
  • the working distance refers to the distance in the optical axis direction from the surface of the optical disk to the position closest to the optical disk of the objective lens.
  • the focal length is within the range of the expression (3), the distance from the objective lens to the disk can be reduced, and it can be suitably mounted on a slim type optical pickup device.
  • the objective lens according to claim 4 is the invention according to any one of claims 1 to 3, wherein when an effective diameter of the objective lens in the first light flux is h1, the following expression is obtained: It is characterized by satisfying. 1.9 ⁇ h1 ⁇ 3.0 (4)
  • the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention becomes large.
  • This can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity.
  • the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter increases when using DVD or BD. In this case, satisfying the equation (2) solves the problem. it can.
  • the fourth-order and sixth-order optical path difference function coefficients are secondary in the optical path difference function (i is a natural number) of the i-th substructure.
  • the fourth-order and sixth-order optical path difference function coefficients Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam, and ⁇ (unit: mm) is the use of the incident light beam.
  • ⁇ B i (unit: mm) represents a manufacturing wavelength in the i-th basic structure, respectively)
  • the focal length of the first basic structure is expressed as fD 1
  • fD 1 ⁇ B 1 / (2 ⁇ C 12 ⁇ M1 ⁇ ⁇ )
  • M1 the value of M1 is 1.
  • the effective diameter (diameter) of the second light beam is defined as h2 (unit: mm)
  • the effective diameter (diameter) of the third light beam is defined as h3 (unit: mm)
  • the following conditional expression (6) ⁇ 0.025 ⁇ ( ⁇ 5 (h3 / 2) ⁇ 5 (h2 / 2)) / (M5 ⁇ f1) ⁇ 0.025 (6)
  • M5 ⁇ f1 the value of M5 is 2 or 4.
  • the chromatic aberration at the time of using the BD does not become too large while ensuring the working distance at the time of using the CD. If the lower limit of Expression (5) is exceeded, the pitch is widened, so that the workability is improved, and the amount of chromatic aberration generated when the first optical disk is used can be suppressed to a level that allows recording and reproduction. Moreover, it is preferable to fall below the upper limit of the formula (5) because a working distance when using a CD can be sufficiently secured.
  • the effective diameter (diameter) of the second light beam is defined as h2 (unit: mm) and the effective diameter (diameter) of the third light beam is defined as h3 (unit: mm)
  • the following condition (6) ⁇ 0.025 ⁇ ( ⁇ 5 (h3 / 2) ⁇ 5 (h2 / 2)) / (M5 ⁇ f1) ⁇ 0.025 (6) (However, the value of M5 is 2 or 4.)
  • An objective lens according to a sixth aspect is the invention according to any one of the first to fifth aspects, wherein the objective lens satisfies the following expression. 0.68 ⁇ h2 / (2 ⁇ f1 ⁇ (1-m2)) ⁇ 0.74 (2) ′
  • the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter will increase when using the DVD, but it is preferable because it can be solved by satisfying the equation (2) ′.
  • An objective lens according to a seventh aspect is the invention according to any one of the first to sixth aspects, wherein when the thickness of the objective lens on the optical axis is d (mm), It is characterized by satisfying the formula. 1.0 ⁇ d / f1 ⁇ 1.5 (7)
  • the objective lens When dealing with a short-wavelength, high-NA optical disk such as BD, the objective lens is likely to generate astigmatism and decent coma, but the above configuration causes astigmatism and It is possible to suppress the occurrence of decentration coma.
  • An objective lens according to an eighth aspect of the present invention is the invention according to any one of the first to seventh aspects, wherein the first basic structure provided at least in the vicinity of the optical axis of the central region has a light level difference. Facing the opposite direction of the axis, The second basic structure provided at least near the optical axis of the central region is characterized in that the step is directed in the direction of the optical axis.
  • the step amount in the optical axis direction can be further reduced, thereby suppressing the shadow effect and the diffraction efficiency at the time of wavelength variation. It is possible to further suppress the decrease in the above.
  • the objective lens according to claim 9 is the invention according to any one of claims 1 to 8, wherein the following expression is satisfied when the total number of annular zones in the peripheral region is N3: It is a feature. 5 (mm) ⁇ N3 ⁇ f1 ⁇ 100 (mm) (8)
  • An optical pickup device has the objective lens according to any one of the first to ninth aspects.
  • An optical pickup device is the optical pickup device according to the tenth aspect, in which at least the coupling lens through which the first light flux and the second light flux pass, and the coupling lens in the optical axis direction.
  • the position of the coupling lens in the optical axis direction is fixed.
  • the coupling lens is displaced in the optical axis direction so as to correspond to recording / reproduction on each information recording layer.
  • the function of displacing the coupling lens in the optical axis direction is indispensable.
  • the coupling lens may be fixed without being displaced in the optical axis direction. is there. The reason is that flare does not occur when using BD, but flare occurs when using DVD. By changing the coupling lens, the flare aberration changes, and as a result, the flare is recorded / reproduced.
  • the objective lens of the present invention is used to suppress aberrations caused by changes in temperature and wavelength when using a DVD.
  • a coupling lens is used when the second light beam passes when using a DVD. Can be recorded / reproduced with respect to the information recording surface of the DVD even when the position in the optical axis direction is fixed (that is, when spherical aberration correction is not performed by the coupling lens).
  • the optical pickup device has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light beam on the information recording surface of the BD, condenses the second light beam on the information recording surface of the DVD, and focuses the third light beam on the information recording surface of the CD.
  • the optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from an information recording surface of a BD, DVD, or CD.
  • the BD has a protective substrate having a thickness t1 and an information recording surface.
  • the DVD has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the CD has a protective substrate having a thickness of t3 (t2 ⁇ t3) and an information recording surface.
  • the BD, DVD, or CD may be a multi-layer optical disc having a plurality of information recording surfaces.
  • BD is information recording / reproduction by a light beam having a wavelength of 390 to 415 nm, an objective lens having a designed NA of 0.80 to 0.90, and the thickness of the protective substrate is 0.02
  • a DVD means a light beam having a wavelength of 630 to 670 nm, and information is recorded / reproduced by an objective lens having a designed NA of 0.550 to 0.70.
  • DVD series optical discs of about 0.6 mm, including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like.
  • the CD is a light beam having a wavelength of 760 to 820 nm
  • information is recorded / reproduced by an objective lens having a designed NA of 0.40 to 0.55
  • the thickness of the protective substrate is A general term for CD series optical discs of about 1.2 mm, including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like.
  • the recording density the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface. 0.050 mm ⁇ t1 ⁇ 0.125 mm (9) 0.5mm ⁇ t2 ⁇ 0.7mm (10) 1.0 mm ⁇ t3 ⁇ 1.3 mm (11)
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (12) and (13). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (12) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (13)
  • the first wavelength ⁇ 1 of the first light source is 390 nm or more and 415 nm or less
  • the second wavelength ⁇ 2 of the second light source is 630 nm or more and 670 nm or less
  • the third wavelength ⁇ 3 of the third light source is 760 nm or more and 820 nm or less.
  • first light source the second light source
  • third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • first light source, the second light source, and the third light source may all be fixedly housed in one package.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photo detectors are provided on both sides of a photo detector that receives main light used for recording and / or reproducing information, and sub light for tracking adjustment is provided by the two sub photo detectors.
  • a light receiving element that receives light may be used.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has an objective lens.
  • the condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens.
  • the coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light.
  • the objective lens refers to a single lens that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source on the information recording / reproducing surface of the optical disk. .
  • the single objective lens of the present invention is preferably a plastic lens.
  • a convex lens is preferable.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the resin material has a refractive index in the range of 1.50 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C.
  • the coupling lens is also a plastic lens.
  • a first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (I) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ⁇ 20 alkoxy groups or halogen groups.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV).
  • Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an ⁇ -olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
  • n is 0 or 1
  • m is 0 or an integer of 1 or more
  • q is 0 or 1
  • R 1 to R 18 , Ra and Rb each independently represent a hydrogen atom or a halogen atom.
  • R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group.
  • R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group.
  • the following additives may be added.
  • Stabilizer It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
  • phenol-based stabilizer conventionally known ones can be used.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate
  • 2 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like
  • JP-A Nos. 63-179953 and 1-168643 JP-A Nos. 63-179953 and 1-168643.
  • Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-but
  • the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry.
  • triphenyl phosphite diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl).
  • Phenyl) phosphite tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as.
  • monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
  • Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
  • each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
  • a surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule.
  • the surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
  • hydrophilic group of the surfactant examples include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned.
  • the amino group may be primary, secondary, or tertiary.
  • the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms.
  • the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent.
  • Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like.
  • the aromatic ring include a phenyl group.
  • the surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
  • examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene
  • examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like.
  • amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
  • the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • the addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
  • Plasticizer The plasticizer is added as necessary to adjust the melt index of the copolymer.
  • Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisode
  • cycloolefin resins are preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS and JSR manufactured by ARTON are preferable. Take as an example.
  • the Abbe number of the material constituting the objective lens is preferably 35 or more and 80 or less, more preferably 50 or more and 80 or less.
  • the objective lens is described below.
  • the objective lens of the present invention is a single lens, and at least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region.
  • the central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good.
  • the central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface.
  • a first optical path difference providing structure is provided in the central area of the objective lens
  • a second optical path difference providing structure is provided in the intermediate area
  • a third optical path difference providing structure is provided in the peripheral area.
  • the central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
  • the central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproducing BD, DVD and CD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
  • the intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface.
  • the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD.
  • the third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG.
  • the spot center having a high light amount density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light amount density is higher than that of the spot intermediate portion and lower than that of the spot central portion.
  • the center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare.
  • the spot peripheral part may be called a flare.
  • the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
  • the peripheral region of the objective lens is used for BD recording / reproduction, and can be said to be a BD-dedicated region that is not used for DVD / CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD.
  • the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light flux that passes through the peripheral area does not converge. Do not collect light so that information can be recorded / reproduced on top.
  • the second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surface of DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
  • the first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region.
  • the second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region.
  • the third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
  • optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam.
  • the optical path difference providing structure also includes a phase difference providing structure for providing a phase difference.
  • the phase difference providing structure includes a diffractive structure.
  • the optical path difference providing structure of the present invention is preferably a diffractive structure.
  • the optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux.
  • the optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam.
  • the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the optical path difference providing structure is a single aspherical lens
  • the incident angle of the light flux to the objective lens differs depending on the height from the optical axis.
  • Each will be slightly different.
  • the step amount increases as the distance from the optical axis increases even with the optical path difference providing structure that provides the same optical path difference.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single lens aspherical convex lens, even if the diffractive structure generates diffracted light of the same diffraction order, the step amount increases as the distance from the optical axis increases.
  • the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center.
  • the basic structure of the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shape including the optical axis is roughly divided into a blazed structure and a staircase structure. Is done.
  • the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape.
  • the expression is a sawtooth shape, a shape in which the apex portion of the sawtooth is rounded is also included in the sawtooth shape.
  • the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a flat surface as an aspherical surface.
  • the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P.
  • the length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 4 (a))
  • the staircase structure has a small staircase shape in cross section including the optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ).
  • V level means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the optical axis vertical direction in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones.
  • a three-level or higher staircase structure has a small step and a large step.
  • the optical path difference providing structure illustrated in FIG. 4C is referred to as a five-level step structure
  • a two-level staircase structure will be described.
  • a plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis,
  • the light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed.
  • the surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis.
  • the length of one step unit in the direction perpendicular to the optical axis is referred to as a pitch P (see FIGS. 4C and 4D).
  • the length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2.
  • a large step amount B1 and a small step amount B2 exist (see FIG. 4C).
  • the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated.
  • the unit shape is periodically repeated here naturally includes shapes in which the same shape is repeated in the same cycle.
  • the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”.
  • the sawtooth shape as a unit shape is repeated. As shown in FIG. 4 (a), the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used.
  • the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center).
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure may be provided on different optical surfaces of the objective lens, but are preferably provided on the same optical surface. Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the optical disk side surface of the objective lens.
  • the first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens.
  • the minimum annular zone width of the basic structure can be designed wider, and there is an advantage that light amount loss due to a step portion of the annular zone can be suppressed.
  • the annular structure does not wear when the objective lens is rubbed with a lens cleaner. It is also conceivable to provide the first basic structure and the second basic structure on different optical surfaces without overlapping. Similarly, the third basic structure and the fourth basic structure may be provided on different optical surfaces without overlapping.
  • the first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped.
  • the first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped. Since the optical path difference providing structure is made by superimposing two types of blazed basic structures, the design flexibility is doubled and compatibility is achieved compared to the case where the optical path difference providing structure is formed with a single structure. However, the magnification can be freely determined for the three disks.
  • the first basic structure is a blaze type structure.
  • the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (1/1/1) structure.
  • the diffraction order that maximizes the amount of diffracted light of the first light beam is an odd first order
  • different paraxial powers can be applied to BD and CD, and correction of relative spherical aberration that occurs between BD and CD is good. Can be done.
  • the first-order diffracted light which is a lower order, is generated when the first light beam is used, the step amount of the first basic structure does not become too large, making the manufacture easy, and suppressing the light amount loss caused by the manufacturing error. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
  • the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis.
  • the step is directed in the direction opposite to the optical axis means a state as shown in FIG.
  • the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (1/1/1) structure.
  • at least 50% or more are directed in the direction opposite to the optical axis, more preferably 70% or more, and even more preferably 90% or more. Is in the opposite direction to the optical axis.
  • the step of the first basic structure provided near the middle region of the center region may face the direction of the optical axis. That is, as shown in FIG. 6 (b), when the first foundation structure is in the vicinity of the optical axis, the step is opposite to the optical axis. It is good also as a shape which faces the direction. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
  • the direction of the step of the first basic structure in which the diffraction order of the first light beam is the first order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a working distance can be further ensured when the CD is used.
  • the first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam.
  • “having paraxial power” means that C 2 h 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
  • the focal length of the first basic structure is defined as fD 1 (unit: mm)
  • fD 1 unit: mm
  • fD 1 ⁇ B 1 / (2 ⁇ C 12 ⁇ M1 ⁇ ⁇ )
  • M1 the diffraction order of the first basic structure
  • the “manufacturing wavelength” is the wavelength of the luminous flux that gives the highest Mi-order diffraction efficiency when passing through the i-th basic structure.
  • chromatic aberration when using a BD does not become too large while ensuring a working distance when using a CD. If the lower limit of the formula (5) is exceeded, the amount of chromatic aberration generated when the first optical disk is used is sufficiently suppressed, and if it is less than the upper limit of the formula (5), a working distance when using the CD can be secured sufficiently.
  • the second basic structure is also a blazed structure. Further, the second basic structure makes the second-order diffracted light quantity of the first light beam that has passed through the second basic structure larger than any other order of diffracted light quantity, and the first-order of the second light beam that has passed through the second basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the second basic structure is made larger than any other order of diffracted light quantity. This is called a (2/1/1) structure. Since the diffraction order that maximizes the amount of diffracted light of the first light beam is an even second order, high diffraction efficiency can be obtained for all of the first to third light beams.
  • the step amount of the second basic structure does not become too large, making the manufacture easy, and suppressing the light quantity loss caused by the manufacturing error. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
  • the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis.
  • the step is directed in the direction of the optical axis means a state as shown in FIG.
  • the second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (2/1/1) structure. It is preferable that at least 50% or more of all the steps of the second basic structure existing in the central region face the direction of the optical axis, more preferably 70% or more, more preferably 90% or more. It is facing the direction of.
  • the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 6A, the step is directed toward the optical axis when the second foundation structure is near the optical axis, but the step of the second foundation structure is opposite to the optical axis near the intermediate region. It is good also as a shape which faces a direction.
  • the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
  • the first optical path difference providing structure is a (1/1/1) structure and the second basic structure (2/1/1) are overlapped, the height of the step is Very low. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
  • the step is directed toward the optical axis.
  • the height of the step after superposition is higher than when superimposing the steps so that the steps of the first and second foundation structures are the same. Accordingly, it is possible to further suppress the shadow effect, to further suppress the light amount loss due to the manufacturing error, and to further suppress the fluctuation of the diffraction efficiency at the time of the wavelength fluctuation.
  • the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD.
  • an objective lens that has a diffraction efficiency of 80% or more for the wavelength ⁇ 1, a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • a diffraction efficiency of 80% or more for the wavelength ⁇ 1 a diffraction efficiency of 70% or more for the wavelength ⁇ 2, and a diffraction efficiency of 60% or more for the wavelength ⁇ 3.
  • the first optical path difference providing structure in which the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure are overlapped is expressed as follows. be able to.
  • the first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis.
  • the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (14) and (15). More preferably, the following conditional expressions (14) and (15) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase.
  • n the refractive index of the objective lens at the first wavelength ⁇ 1.
  • the first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis.
  • An optical path difference providing structure having both of the steps facing the direction of.
  • the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
  • conditional expression can be expressed as follows.
  • the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched.
  • conditional expressions (14) ′, ( 15) ′ are the following conditional expressions (14) ′, ( 15) ′ is preferably satisfied. More preferably, the following conditional expressions (14) ′ and (15) ′ are satisfied in all regions of the central region. 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (14) ' 0.6 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (15) '
  • conditional expressions (14) ′′ and (15) ′′ are preferably satisfied. More preferably, the following conditional expressions (14) ′′ and (15) ′′ are satisfied in all the regions of the central region. 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d11 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (14) '' 0.9 ⁇ ( ⁇ 1 / (n-1)) ⁇ d12 ⁇ 1.5 ⁇ ( ⁇ 1 / (n-1)) (15) '''
  • the spherical aberration when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under).
  • the refractive index of the objective lens when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature.
  • the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. Thereby, a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens.
  • ring zones of the first foundation structure are included in one ring zone closest to the optical axis of the second foundation structure.
  • the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape.
  • 1 to 5 ring zones of the first foundation structure are included in one ring zone of the second foundation structure.
  • the ratio of the total number of ring zones of the first foundation structure to the second foundation structure in the central region is preferably 1.0 or more and 5.0 or less, more preferably 2.0 or more and 3.0 or less. is there.
  • a part when the first basic structure and the second basic structure are directly overlapped, a part may protrude as shown by a dotted line, but the width of the protruding part is 5 ⁇ m or less. If it is narrow, the protruding portion is shifted in parallel along the optical axis, and eliminating the protruding portion has no significant effect, so that one annular zone of the second foundation structure can have a plurality of first foundation structures.
  • the zonal zone is exactly as shown (see solid line). Therefore, in the example of FIG.7 (d), it handles as the ring zone of three 1st foundation structures on one ring zone of a 2nd foundation structure.
  • a dent may be eliminated in the same manner even when a dent having a width of 5 ⁇ m or less is generated.
  • ⁇ 1 (nm) is the change amount of the first wavelength
  • ⁇ WD ( ⁇ m) is the chromatic aberration of the objective lens caused by the change ⁇ of the first wavelength
  • one annular zone closest to the optical axis of the second basic structure includes two to two annular zones of the first basic structure. It is preferable to include 5 (particularly preferably 2 to 3).
  • the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD.
  • the number of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is 1 to 5 overlaps for one annular zone of the second foundation structure. It is preferable that Furthermore, the ratio of the total number of ring zones of the first foundation structure to the second foundation structure in the central region is preferably 1.0 or more and 5.0 or less, more preferably 2.0 or more and 3.0 or less. That is.
  • the first basic structure preferably has a negative paraxial diffraction power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD.
  • the second basic structure preferably has a positive paraxial diffraction power. As described above, since both the first basic structure and the second basic structure have paraxial diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface that is not a target for recording / reproducing is used. This is preferable because it can be further away from the necessary light.
  • the minimum pitch of the first optical path difference providing structure is preferably 15 ⁇ m or less.
  • the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength ⁇ 1 is preferably 0.004 or less. More preferably, it is 10 ⁇ m or less.
  • the average pitch of the first optical path difference providing structure is 30 ⁇ m or less. More preferably, it is 20 ⁇ m or less.
  • the best focus position of the necessary light used for recording / reproducing information can be separated from the best focus position of unnecessary light not used for recording / reproducing information on the third optical disc, and erroneous detection can be reduced.
  • the average pitch is a value obtained by adding all pitches of the first optical path difference providing structure in the central region and dividing the sum by the number of steps of the first optical path difference providing structure in the central region.
  • the objective lens of the present invention preferably has an axial chromatic aberration of 0.9 ⁇ m / nm or less. More preferably, the longitudinal chromatic aberration is 0.8 ⁇ m / nm or less. If the pitch of the first basic structure is made too small, the longitudinal chromatic aberration may be deteriorated. Therefore, design is made with care so that the pitch is not larger than 0.9 ⁇ m / nm. It is preferable. From this viewpoint, it is preferable that the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength ⁇ 1 is 0.002 or more. On the other hand, in order to ensure a sufficient working distance in CD, it is preferable that the longitudinal chromatic aberration is 0.4 ⁇ m / nm or more.
  • the first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (19).
  • the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range.
  • the first best focus position is the best focus position of the necessary light used for CD recording / reproduction
  • the second best focus position is the best of the luminous flux having the largest light quantity among the unnecessary light that is not used for CD recording / reproduction.
  • the focus position 0.35 ⁇ L / f1 ⁇ 0.7 (19)
  • L [mm] indicates the distance between the first best focus and the second best focus.
  • FIGS. 7A, 7B, and 7C Several preferable examples of the first optical path difference providing structure described above are shown in FIGS. 7A, 7B, and 7C.
  • the first optical path difference providing structure ODS1 is shown as being provided in a flat plate shape, but it is usually provided on a single aspherical convex lens.
  • the first basic structure BS1 which is a (1/1/1) diffraction structure is overlapped with the second basic structure BS2 which is a (2/1/1) diffraction structure.
  • the step of the second foundation structure BS2 faces the direction of the optical axis OA
  • the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • step difference of 2nd foundation structure BS2 has faced the direction of optical axis OA
  • step difference of 1st foundation structure BS1 has also faced the direction of optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • step difference of 1st foundation structure BS1 has faced the direction opposite to optical axis OA
  • step difference of 2nd foundation structure BS2 has also faced the direction opposite to optical axis OA.
  • the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
  • the total number of ring zones in the central region is N1
  • the following expression is satisfied.
  • the number of steps substantially parallel to the optical axis in the central region may be regarded as the total number of annular zones in the central region.
  • the second optical path difference providing structure is preferably a structure in which at least two basic structures of a third basic structure and a fourth basic structure are overlapped. More preferably, it is a structure in which only the third basic structure and the fourth basic structure are overlapped. Since the optical path difference providing structure is formed by superimposing two types of blazed basic structures, it is possible to secure a greater degree of design freedom than when the optical path difference providing structure is formed with a single structure. This is advantageous in an objective lens having a small diameter.
  • the third basic structure is a blaze type structure. Further, the first-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values. It is made larger than the diffracted light quantity of any order.
  • the fourth basic structure is also a blazed structure. The fifth-order or seventh-order diffracted light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order diffracted light quantity, and the third-order or fourth-order diffraction of the second light beam that has passed through the fourth basic structure. Make the light intensity larger than any other order of diffracted light.
  • the diffraction order of the first light flux that has passed through the third basic structure is the first order that is an odd number, the diffraction power that is different between BD and DVD can be imparted, and relative spherical aberration that occurs with DVD Can be corrected satisfactorily.
  • the step amount of the third basic structure does not become too large, the manufacturing becomes easy, the light quantity loss caused by the manufacturing error can be suppressed, and the wavelength change It is preferable because fluctuations in diffraction efficiency can be reduced.
  • the BD accompanying the temperature change or the like without affecting the spherical aberration correction of the third basic structure.
  • ⁇ i (h) (C i2 ⁇ h 2 + C i4 ⁇ h 4 + C i6 ⁇ h 6 + C i8 ⁇ h 8 + C i10 ⁇ h 10 ) Mi ⁇ / ⁇ B i (Where h (unit: mm) is the height from the optical axis, C i2 , C i4 , C i6 ...
  • the fourth-order and sixth-order optical path difference function coefficients are secondary in the optical path difference function (i is a natural number) of the i-th substructure.
  • the fourth-order and sixth-order optical path difference function coefficients Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam
  • ⁇ (unit: mm) is the use of the incident light beam.
  • ⁇ B i (unit: mm) represents the manufacturing wavelength of the i-th basic structure, respectively.
  • the effective diameter (diameter) of the second light flux is h2 (mm)
  • the effective diameter (diameter) of the first light flux When h1 (mm), the following formula may be satisfied.
  • the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam is, for example, the first order when the basic structure is (1/1/1), (2/1/1). 1) indicates the second order, (7/4) indicates the seventh order, and (5/3) indicates the fifth order.
  • the third and fourth orders of the third light flux that have passed through the intermediate region are within the above formula. It is possible to suppress the unnecessary diffraction order light having the next high diffraction efficiency from being collected in the vicinity of the spot when the CD is used, and the spherical aberration with respect to the temperature change when using the DVD is also well corrected.
  • the focal length of the fourth basic structure is set to fD 4 (mm)
  • the same effect as the above formula can be obtained even if the following two formulas are satisfied at the same time. it can.
  • the magnification of the objective lens is 0 in any of BD, DVD, and CD.
  • high diffraction efficiency can be obtained at all three wavelengths while setting the value to almost zero.
  • the pitch is already sufficiently fine in the second optical path difference providing structure composed of the third basic structure and the fourth basic structure, and the annular zone Since the number is sufficiently large, if another foundation structure is stacked in addition to the third foundation structure and the fourth foundation structure, the pitch will become finer and the number of zones will increase, resulting in manufacturing errors. Problems such as lowering of the diffraction efficiency due to, and lowering of the diffraction efficiency due to the effect of the shadow of the annular zone will increase.
  • the second optical path difference providing structure a structure in which only the third basic structure and the fourth basic structure are overlapped is preferable because the light use efficiency can be increased.
  • the second optical path difference providing structure in the intermediate region has a step in which the third basic structure faces in the direction opposite to the optical axis, and the fourth basic structure has a step in which the optical axis direction faces. It is preferable. Therefore, it is preferable that the second optical path difference providing structure has a step that faces in a direction opposite to the optical axis and a step that faces in the direction of the optical axis.
  • all the steps of the first foundation structure are directed in the direction opposite to the optical axis
  • all the steps of the second foundation structure are directed to the direction of the optical axis
  • all the steps of the third foundation structure are If the direction is opposite to the optical axis, and all the steps of the fourth basic structure are oriented in the direction of the optical axis, the working distance when using the CD becomes longer, and the axial chromatic aberration of the BD is further increased. It becomes easy to take.
  • the spherical aberration changes in the undercorrection (under) direction, and the (7/4) structure (the first) 7th order diffracted light is generated most in one light beam, and 4th order diffracted light is generated most in the second light beam, or (5/3) structure (5th order diffracted light is generated most in the first light beam, and the second light beam is generated.
  • the spherical aberration is undercorrected (under) or overcorrected (over) when the wavelength of the incident light beam is changed to be longer. It is preferable to change in the direction.
  • the overcorrection (over) direction and the undercorrection (under) direction referred to here represent spherical aberration in the intermediate region, and the state in which the condensing position shifts to the over side as NA increases in the intermediate region is overcorrected (
  • the over-correction (under) direction is defined as the converging position shifts to the under side as NA increases. It is not the direction of the condensing position with respect to the paraxial condensing position.
  • the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
  • the second optical path difference providing structure is composed of the third basic structure and the fourth basic structure, in addition to compatibility with BD and DVD, the remaining degree of freedom can be used for CD flare out. Therefore, since the aperture limitation at the time of using the CD can be performed by the second optical path difference providing structure having a simple shape, it is possible to suppress a decrease in light use efficiency due to the shadow effect as compared with the case of adding another basic structure. Further, it is possible to suppress a decrease in light utilization efficiency due to a manufacturing error, and as a result, it is possible to improve the light utilization efficiency. In addition, when the DVD is used, both the temperature characteristic and wavelength characteristic of the DVD can be improved.
  • the ring zones of the third basic structure are 3 to 11 in one ring zone closest to the central region of the fourth basic structure. It is preferable that they are included.
  • the objective lens of the present invention has two basic structures superimposed in the intermediate region, and further, in a certain region, the number of annular zones tends to increase as it goes from the optical axis toward the periphery. In the vicinity of the peripheral area, the light utilization efficiency is deteriorated.
  • the ratio r2 of the pupil transmittance in the vicinity of the peripheral region of the intermediate region with respect to the vicinity of the optical axis center of the objective lens in the second light flux is expressed by the following equation: r2 ⁇ 0.9 (1) Therefore, a phenomenon that can be called a reverse apodization effect occurs, and the spot diameter may increase when the DVD is used.
  • the term “near” in the vicinity of the center of the optical axis refers to a range of 10% of the effective diameter when using a DVD from the optical axis to the direction perpendicular to the optical axis.
  • the vicinity of the peripheral area of the intermediate area refers to a range of 10% of the effective diameter when using the DVD with respect to the intermediate area direction from the boundary between the intermediate area and the peripheral area. The range of 10% of the effective diameter when using a DVD from the outer diameter to the intermediate area direction.
  • the objective lens of the present invention is a BD / DVD / CD compatible objective lens.
  • the sine condition cannot be satisfied for all optical discs, and the most required specification is required. Is set so that the sine condition is satisfied with a severe BD, there is a possibility that the spot diameter will be further increased when the DVD is used.
  • the outer diameter of the intermediate region is h2
  • the focal length of the first light beam of the objective lens is f1
  • the imaging magnification of the second light beam of the objective lens is m2.
  • r2 is 0.3 or more and 0.9 or less because the degree of the enlargement of the spot diameter due to the decrease in the rim strength does not become too large, and the effect of the expression (2) becomes more remarkable. More preferably, r2 is 0.4 or more and 0.8 or less, and further preferably r2 is 0.5 or more and 0.75 or less.
  • the following expression (2) ′ is satisfied. 0.68 ⁇ h2 / (2 ⁇ f1 ⁇ (1-m2)) ⁇ 0.74 (2) ′
  • the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter will increase when using the DVD.
  • the objective lens of this invention satisfy
  • the focal length f1 when using the BD is within the range of the expression (3), the objective lens becomes relatively small, and therefore the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention is large.
  • such a large problem can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity.
  • the focal length f1 is within the range of the expression (3), the number of ring zones in the central region is increased in order to secure a working distance when using the CD, that is, in order to increase the paraxial power of diffraction.
  • the working distance is a distance in the optical axis direction from the surface of the optical disk to the position closest to the optical disk of the objective lens.
  • the focal length is within the range of the expression (3), the distance from the objective lens to the disk can be reduced, and it can be suitably mounted on a slim type optical pickup device. Further, when f1 satisfies the following expression (3) ′, the effect of the present invention becomes more remarkable. 1.0 ⁇ f1 ⁇ 2.0 (3) ′
  • the objective lens may be designed to satisfy the following formula (11) when the focal length of the second light flux of the objective lens is f2. 0.61 ⁇ h2 / (2 ⁇ f2 ⁇ (1-m2)) ⁇ 0.65 (21)
  • formula (11) the effective diameter when using a DVD can be increased, which is preferable.
  • the third optical path difference providing structure has at least a fifth basic structure. Although another foundation structure may be superimposed, it is preferably only the fifth foundation structure.
  • the fifth basic structure is a blaze type structure.
  • the second-order or fourth-order diffracted light amount of the first light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount.
  • the pitch can be made larger than in the first case, that is, the number of ring zones is reduced, so that the manufacturing can be facilitated and the error can be reduced both in the mold processing and the resin molding.
  • the number of annular zones tends to increase from the optical axis side toward the periphery, and the angle of view of the objective lens increases near the outer diameter in the peripheral area.
  • the fourth-order and sixth-order optical path difference function coefficients are secondary in the optical path difference function (i is a natural number) of the i-th substructure.
  • the fourth-order and sixth-order optical path difference function coefficients Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam
  • unit: mm
  • the wavelength ⁇ B i indicates the production wavelength in the i-th basic structure.
  • the second and second unwanted light of the third and third beams transmitted through the peripheral region are transmitted through the central region while satisfactorily correcting the spherical aberration generated when the environment is changed when using the BD. Since it is possible to avoid convergence of the third light flux in the vicinity of the imaging position, it is preferable because deterioration of spot performance can be suppressed. Further, it is preferable that the number of steps is not excessively increased by setting the value within the range of the formula (6), which makes it possible to obtain a good spot that is easy to manufacture and suppresses a decrease in light utilization efficiency. By falling below the upper limit, the spherical aberration at the time of temperature change does not become too large.
  • the fifth basic structure may face the direction of the optical axis, or may face the direction opposite to the optical axis. In particular, it is preferable that the fifth basic structure is directed toward the optical axis because spherical aberration at the time of temperature change is corrected well.
  • FIG. 8 shows a schematic diagram of a preferable objective lens. It is the figure which showed the upper half from the optical axis among the cross sections of the objective lens containing optical axis OA. Note that FIG. 8 is a schematic diagram to the last, and is not a drawing showing an accurate length ratio or the like based on the embodiment.
  • the 8 has a central region CN, an intermediate region MD, and a peripheral region OT.
  • the central region is provided with the first optical path difference providing structure ODS1
  • the intermediate region is provided with the second optical path difference providing structure ODS2
  • the peripheral region is provided with the third optical path difference providing structure ODS3. .
  • the first optical path difference providing structure ODS1 in FIG. 8 is a (2/1/1) blazed structure in which a step is directed toward the optical axis and a (1/1/1) second basic structure BS2.
  • the blazed structure is a structure in which a first basic structure BS1 whose level difference is opposite to the optical axis is superimposed.
  • the second foundation structure BS2 has three annular zones, and two annular zones of the first foundation structure BS1 are included on the annular zone (circular shape) closest to the optical axis in the second foundation structure BS2. ing.
  • three annular zones of the first foundation structure BS1 are included in one annular zone closest to the intermediate region in the second foundation structure BS2.
  • the second optical path difference providing structure ODS2 in FIG. 8 is a (7/4) or (5/3) blazed structure, and a fourth basic structure BS4 in which the step is directed toward the optical axis (1/1). ) And a third base structure BS3 in which the level difference faces the direction opposite to the optical axis.
  • 4th foundation structure BS4 is a 3 ring zone
  • 3 ring zones of 3rd foundation structure BS3 are contained on the ring zone nearest to the center area
  • four ring zones of the third foundation structure BS3 are included in one ring zone closest to the peripheral region in the fourth foundation structure BS4. That is, since the annular density of the annular zone closest to the peripheral region of the intermediate region is high, the shadow effect and the influence of the shaping error are large, and the pupil transmittance is small compared to the vicinity of the optical axis.
  • the third optical path difference providing structure ODS3 in FIG. 8 is a blazed structure in which the second-order or fourth-order diffracted light quantity is maximized when the first light beam passes, and the sixth base has a step toward the optical axis. It consists only of the structure BS5. Compared to the primary case, the pitch can be widened, so that the moldability of the objective lens can be improved, the size can be reduced, and the rim strength is increased. The diameter can be formed.
  • NA1 is preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the boundary between the central region and the intermediate region of the objective lens is 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more, 1.15 ⁇ NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 ⁇ NA 2 or more and 1.2 ⁇ NA 2 or less (more preferably 0.95 ⁇ NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
  • the spherical aberration has at least one discontinuous portion.
  • the discontinuous portion has a range of 0.9 ⁇ NA 3 or more and 1.2 ⁇ NA 3 or less (more preferably 0.95 ⁇ NA 3 or more and 1.15 ⁇ NA 3 or less) when the third light flux is used. It is preferable that it exists in.
  • h1 (mm) is 1.9 or more and 4.0 or less about the effective diameter with respect to the 1st light beam of an objective lens, More preferably, it is satisfy
  • the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention becomes large.
  • This can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity.
  • the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter increases when using DVD or BD. In this case, satisfying the equation (2) solves the problem. it can.
  • the pitch of the optical path difference providing structure is reduced, and the number of annular zones is reduced.
  • the reverse phenomenon of apodization may occur even more strongly when using a DVD.
  • the spot diameter when using the DVD can be reduced by satisfying a value equal to or higher than the lower limit of the above-described formula (2).
  • the total number N all of the annular zones formed on the objective lens is preferably 100 or more and 250 or less.
  • the total number of ring zones in the peripheral region is N3, it is preferable to satisfy the following expression. 5 (mm) ⁇ N3 ⁇ f1 ⁇ 100 (mm) (8)
  • the value is set to be equal to or higher than the lower limit of the formula (8), the spherical aberration generated with respect to the temperature change when using the BD is not excessively increased.
  • the value of equation (8) below the upper limit, it is possible to prevent the pitch from becoming too small, so that the effect of shadows can be suppressed, and the shape error can be reduced by preventing deterioration of workability. Decrease in diffraction efficiency can be prevented.
  • the range in (8) chromatic aberration can also be reduced. Note that the number of steps substantially parallel to the optical axis in the peripheral region may be regarded as the total number of ring zones in the peripheral region.
  • the objective lens preferably satisfies the following conditional expression (7).
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux.
  • the objective lens tends to be a thick objective lens with a thick on-axis thickness, and the working distance at the time of CD recording / reproduction tends to be shortened. Therefore, the upper limit value of conditional expression (7) may not be exceeded. preferable.
  • the working distance (WD3) of the objective optical element when using the third optical disk is preferably 0.15 mm or more and 1.5 mm or less. Preferably, they are 0.25 mm or more and 0.5 mm or less.
  • the working distance (WD2) of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less.
  • the working distance (WD1) of the objective optical element when using the first optical disc is 0.25 mm or more and 1.0 mm or less.
  • the first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light.
  • all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable.
  • the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens satisfy the following formula (22). -0.01 ⁇ m1 ⁇ 0.01 (22)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (23). Is preferred. -0.01 ⁇ m2 ⁇ 0.01 (23)
  • the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (23) ′. . ⁇ 0.025 ⁇ m2 ⁇ ⁇ 0.01 (23) ′
  • the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following expression (24). Is preferred. -0.01 ⁇ m3 ⁇ 0.01 (24)
  • the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens preferably satisfies the following expression (24) ′. . ⁇ 0.025 ⁇ m3 ⁇ ⁇ 0.01 (24) ′
  • the coma generated during tracking falls within a recordable / reproducible range.
  • the optical pickup device may include a coupling lens through which at least the first light beam and the second light beam pass, and may include an actuator that moves the coupling lens in the optical axis direction.
  • the BD has a plurality of information recording surfaces such as two layers or three layers or more
  • the difference in the thickness of the transparent substrate is required. Therefore, spherical aberration generated due to the difference in thickness must be corrected.
  • spherical aberration that occurs when the temperature or wavelength changes can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
  • the position of the coupling lens in the optical axis direction is fixed when using DVD. It is preferable.
  • the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens In order to fix the position of the coupling lens in the optical axis direction when using a DVD, the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens.
  • the spherical aberration changes in the direction of undercorrection when it changes to become longer, while the spherical aberration changes in the overcorrection direction when the wavelength of the incident light beam becomes longer in the other direction.
  • the spherical aberration accompanying the temperature change and wavelength change when using the DVD can be recorded and reproduced.
  • the coupling lens is moved in the optical axis direction when the second light beam passes. Even when the position is fixed, information can be recorded / reproduced on the information recording surface of the DVD.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an objective lens suitable for such an optical pickup device and an optical pickup device equipped with this objective lens can be provided.
  • FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region.
  • FIG. 1 It is a conceptual diagram of a 1st optical path difference providing structure, (a), (b), (c) shows the example of a preferable 1st optical path difference providing structure, (d) is a 1st foundation structure and a 2nd foundation structure, An example in which is superimposed is shown.
  • Example 3 It is a figure showing the spherical aberration and sine condition in Example 3 and 4, (a) is BD, (b) is DVD, (c) is the case of CD. It is a figure showing the spherical aberration and sine condition in Example 5 and 6, (a) is BD, (b) is DVD, (c) is the case of CD. It is a figure showing the spherical aberration and sine condition in Example 7 and 8, (a) is BD, (b) is DVD, (c) is the case of CD.
  • FIG. 9 is a diagram schematically showing a configuration of the optical pickup apparatus PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks.
  • the optical pickup device PU1 is a slim type and can be mounted on a thin optical information recording / reproducing device.
  • the first optical disc is a BD
  • the second optical disc is a DVD
  • the third optical disc is a CD. Note that the present invention is not limited to this embodiment.
  • a central region CN including the optical axis on the aspherical optical surface on the light source side, an intermediate region MD arranged around the center region CN, and A peripheral region OT disposed around the periphery is formed concentrically with the optical axis as the center.
  • the first optical path difference providing structure already described in detail is formed in the center region CN
  • the second optical path difference providing structure already described in detail is formed in the intermediate region MD.
  • a third optical path difference providing structure is formed in the peripheral region OT.
  • the third optical path difference providing structure is a blazed diffractive structure.
  • the objective lens of this embodiment is a plastic lens.
  • the first optical path difference providing structure formed in the center region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlapped, and the first basic structure has passed through the first basic structure.
  • the first order diffracted light amount of the first light beam is made larger than any other order diffracted light amount
  • the first order diffracted light amount of the second light beam that has passed through the first basic structure is made larger than any other order diffracted light amount.
  • the first-order diffracted light quantity of the third light beam that has passed through the first basic structure is made larger than any other order of diffracted light quantity
  • the second basic structure has a second-order diffracted light quantity that has passed through the second basic structure.
  • the second optical path difference providing structure formed in the intermediate region MD of the objective lens OL is a structure in which the third basic structure and the fourth basic structure are overlapped, and the third basic structure has passed through the third basic structure.
  • the first order diffracted light amount of the first light beam is made larger than any other order diffracted light amount
  • the first order diffracted light amount of the second light beam that has passed through the third basic structure is made larger than any other order diffracted light amount.
  • the first-order diffracted light amount of the third light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount
  • the fourth basic structure is the fifth-order or first-order light beam that has passed through the fourth basic structure.
  • the seventh-order diffracted light amount is made larger than any other order diffracted light amount
  • the third-order or fourth-order diffracted light amount of the second light flux that has passed through the fourth basic structure is made larger than any other order diffracted light amount.
  • the third optical path difference providing structure formed in the peripheral region OT of the objective lens OL has a fifth basic structure, and the fifth basic structure is the second or fourth order of the first light flux that has passed through the fifth basic structure. Make the amount of diffracted light greater than the amount of diffracted light of any other order.
  • the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm. .
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and by the collimating lens COL.
  • a converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1.
  • the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification.
  • the collimating lens COL as a means is changed in the optical axis direction by the uniaxial actuator AC2, and can be corrected by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL.
  • the ⁇ / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL.
  • the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL2 having a thickness of 0.6 mm.
  • the spot is formed on the information recording surface RL2 of the DVD and forms the center of the spot.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL.
  • the light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN.
  • the information recorded on DVD can be read using the output signal of light receiving element PD.
  • the control system of the optical pickup device is simplified.
  • the linearly polarized light is converted into circularly polarized light by the ⁇ / 4 wavelength plate QWP, and is incident on the objective lens OL.
  • the light beam condensed by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared to form a spot peripheral portion) is passed through the protective substrate PL3 having a thickness of 1.2 mm.
  • the spot is formed on the information recording surface RL3 of the CD.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective lens OL again, is converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is converged by the collimating lens COL, The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
  • X (h) is an axis in the optical axis direction (with the light traveling direction being positive), ⁇ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
  • the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  • ⁇ (h) ⁇ (C 2i h 2i ⁇ ⁇ ⁇ m / ⁇ B)
  • wavelength used
  • m diffraction order
  • ⁇ B manufacturing wavelength
  • h distance in the direction perpendicular to the optical axis from the optical axis.
  • the “manufacturing wavelength” is the wavelength of the luminous flux that gives the highest Mi-order diffraction efficiency when passing through the i-th basic structure.
  • the pitch P (h) ⁇ B / ( ⁇ (2i ⁇ C 2i ⁇ h 2i-1 )).
  • Example 1 shows lens data of Example 1.
  • the objective lens of Example 1 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 1 has (1/1/1) of the second basic structure which is a blazed diffraction structure of (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
  • FIG. 10 shows a diagram of the spherical aberration SA and the sine condition SC in Example 1.
  • (a) is a graph when BD is used
  • (b) is when DVD is used
  • (c) is a graph when CD is used
  • the vertical axis of (a) is the effective luminous flux when BD is used.
  • the vertical axis of (b) is the half value (h2 / 2) of the effective diameter (diameter) of the luminous flux when using the DVD.
  • the vertical axis of (c) in the case of 1.0 is the distance from the optical axis when the half value (h3 / 2) of the effective diameter (diameter) of the light beam when using the CD is 1.0. Represents.
  • Example 2 shows lens data of Example 2.
  • the objective lens of Example 2 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 2 has (1/1/1) of the second basic structure which is a blazed diffraction structure of (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
  • Example 2 is different from Example 1 only in the fifth basic structure.
  • FIG. 10A of Example 1 the flare light of DVD and CD that has passed through the peripheral region is omitted.
  • the spherical aberration SA and sine condition SC in the second embodiment are the same as those in FIG. 10 in the first embodiment.
  • Example 3 shows lens data of Example 3.
  • the objective lens of Example 3 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 3 has (1/1/1) of the (2/1/1) blazed diffraction structure of the second basic structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
  • FIG. 11 shows a diagram of spherical aberration SA and sine condition SC in Example 3.
  • (a) is a graph when BD is used
  • (b) is a graph when DVD is used
  • (c) is a graph when CD is used
  • the vertical axis of (a) is the effective luminous flux when BD is used.
  • the vertical axis of (b) is when the half value (h2 / 2) of the effective diameter of the luminous flux when using the DVD is 1.0
  • the vertical axis of (c) represents the distance from the optical axis when the half value (h3 / 2) of the effective diameter of the light beam when using the CD is 1.0.
  • Example 4 shows lens data of Example 4.
  • the objective lens of Example 4 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 4 has (1/1/1) of the second basic structure which is a (2/1/1) blazed diffraction structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
  • Example 4 is different from Example 3 only in the fifth basic structure.
  • FIG. 11A of Example 3 omits the flare light of the DVD and CD that have passed through the peripheral region.
  • the diagram of the spherical aberration SA and the sine condition SC in the fourth embodiment is the same as FIG. 11 in the third embodiment.
  • Example 5 shows lens data of Example 5.
  • the objective lens of Example 5 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 5 has (1/1/1) of the second basic structure which is a blazed diffraction structure of (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
  • FIG. 12 shows a diagram of spherical aberration SA and sine condition SC in Example 5.
  • (a) is a graph when BD is used
  • (b) is when DVD is used
  • (c) is a graph when CD is used
  • the vertical axis of (a) is the effective luminous flux when BD is used.
  • the vertical axis of (b) is when the half value (h2 / 2) of the effective diameter of the luminous flux when using the DVD is 1.0
  • the vertical axis of (c) represents the distance from the optical axis when the half value (h3 / 2) of the effective diameter of the light beam when using the CD is 1.0.
  • Example 6 shows lens data of Example 6.
  • the objective lens of Example 6 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 6 has (1/1/1) of the second basic structure which is a (2/1/1) blazed diffraction structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
  • Example 6 is different from Example 5 only in the fifth basic structure.
  • the flare light of the DVD and CD that has passed through the peripheral region is omitted.
  • the spherical aberration SA and the sine condition SC in Example 6 are the same as those in Example 5 shown in FIG.
  • Example 7 shows lens data of Example 7.
  • the objective lens of Example 7 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 7 has (1/1/1) of the (2/1/1) blazed diffractive structure (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
  • FIG. 13 shows a diagram of spherical aberration SA and sine condition SC in Example 3.
  • (a) is a graph when BD is used
  • (b) is when DVD is used
  • (c) is a graph when CD is used
  • the vertical axis of (a) is the effective luminous flux when BD is used.
  • the vertical axis of (b) is when the half value (h2 / 2) of the effective diameter of the luminous flux when using the DVD is 1.0
  • the vertical axis of (c) represents the distance from the optical axis when the half value (h3 / 2) of the effective diameter of the light beam when using the CD is 1.0.
  • Example 8 shows lens data of Example 8.
  • the objective lens of Example 8 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure.
  • the level difference of the structure faces the direction of the optical axis.
  • the first optical path difference providing structure of Example 8 has (1/1/1) of the second basic structure which is a (2/1/1) blazed diffraction structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped.
  • the second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
  • the third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
  • Example 8 is different from Example 7 only in the fifth basic structure.
  • the flare light of the DVD and CD that has passed through the peripheral region is omitted.
  • the spherical aberration SA and sine condition SC in Example 8 are the same as those in FIG. 13 in Example 7.
  • AC1 Biaxial actuator B Step amount BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit MD Intermediate region OA Optical axis ODS Optical path difference providing structure OL Objective lens OT Peripheral region P Pitch PD Light receiving element PL1 Protective substrate PL2 Protective substrate PL3 Protective substrate PU1 Optical pickup device QWP ⁇ / 4 wavelength plate RL1 Information recording surface RL2 Information recording surface RL3 Information recording surface SEN Sensor lens

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)

Abstract

Provided are a single-element objective lens compatible with optical disks of the three formats BD/DVD/CD, the objective lens being adaptable to compact size while having good moldability, and being capable of stable recording and playback of information due formation of an appropriate spot diameter, even during use with a BD, making the lens suitable for a compact optical pickup device; and an optical pickup device equipped with this objective lens. A first optical path difference-imparting structure in the center region of the objective lens is structured to have a (2/1/1) first fundamental structure and a (1/1/1) second fundamental structure. A second optical path difference-imparting structure in an intermediate region is structured to have a (1/1/1) fourth fundamental structure and a (7/4) or (5/3) third fundamental structure. A third optical path difference-imparting structure in a peripheral region is structured to have a fifth fundamental structure whereby the quantity of second-order or fourth order refracted light of a first light beam is greater than the quantity of refracted light of any other order.

Description

対物レンズ及び光ピックアップ装置Objective lens and optical pickup device
 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再生(記録/再生)を行える光ピックアップ装置、対物レンズ及び光情報記録再生装置に関する。 The present invention relates to an optical pickup device, an objective lens, and an optical information recording / reproducing apparatus capable of recording and / or reproducing (recording / reproducing) information interchangeably with different types of optical discs.
 近年、光ピックアップ装置において、光ディスクに記録された情報の再生や、光ディスクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進み、例えば、青紫色半導体レーザ等、波長390~420nmのレーザ光源が実用化されている。これら青紫色レーザ光源を使用すると、DVD(デジタルバーサタイルディスク)と同じ開口数(NA)の対物レンズを使用する場合で、直径12cmの光ディスクに対して、15~20GBの情報の記録が可能となり、対物光学素子のNAを0.85にまで高めた場合には、直径12cmの光ディスクに対して、23~25GBの情報の記録が可能となる。 In recent years, in an optical pickup device, a laser light source used as a light source for reproducing information recorded on an optical disc and recording information on the optical disc has been shortened. For example, a wavelength 390 such as a blue-violet semiconductor laser is used. A laser light source of ˜420 nm has been put into practical use. When these blue-violet laser light sources are used, it is possible to record 15 to 20 GB of information on an optical disk having a diameter of 12 cm when an objective lens having the same numerical aperture (NA) as that of a DVD (digital versatile disk) is used. When the NA of the objective optical element is increased to 0.85, 23 to 25 GB of information can be recorded on an optical disk having a diameter of 12 cm.
 上述のようなNA0.85の対物レンズを使用する光ディスクの例として、BD(ブルーレイディスク)が挙げられる。光ディスクの傾き(スキュー)に起因して発生するコマ収差が増大するため、BDでは、DVD における場合よりも保護基板を薄く設計し(DVDの0.6mmに対して、0.1mm)、スキューによるコマ収差量を低減している。 BD (Blu-ray Disc) is an example of an optical disc that uses an NA 0.85 objective lens as described above. Since the coma generated due to the tilt (skew) of the optical disk increases, the BD has a thinner protective substrate (0.1 mm with respect to 0.6 mm of DVD) than the case of the DVD cage, and is caused by skew. The amount of coma is reduced.
 ところで、BDに対して適切に情報の記録/再生ができると言うだけでは、光ディスクプレーヤ/レコーダ(光情報記録再生装置)の製品としての価値は十分なものとはいえない。現在において、多種多様な情報を記録したDVDやCD(コンパクトディスク)が販売されている現実をふまえると、BDに対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有しているDVDやCDに対しても同様に適切に情報の記録/再生ができるようにすることが、BD用の光ディスクプレーヤ/レコーダとしての商品価値を高めることに通じるのである。このような背景から、BD用の光ディスクプレーヤ/レコーダに搭載される光ピックアップ装置は、BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できる性能を有することが望まれる。 By the way, simply saying that information can be recorded / reproduced appropriately with respect to a BD cannot be said to be sufficient as a product of an optical disc player / recorder (optical information recording / reproducing apparatus). In light of the reality that DVDs and CDs (compact discs) on which a wide variety of information is recorded are currently being sold, it is not possible to record / reproduce information with respect to BDs. For example, DVDs owned by users, Similarly, it is possible to appropriately record / reproduce information on a CD, which leads to an increase in the commercial value of an optical disc player / recorder for BD. From such a background, the optical pickup device mounted on the BD optical disc player / recorder can record / reproduce information appropriately while maintaining compatibility with any of BD, DVD, and CD. It is desirable to have
 BDとDVD、更にはCDの何れに対しても互換性を維持しながら適切に情報を記録/再生できるようにする方法として、BD用の光学系とDVDやCD用の光学系とを、情報を記録/再生する光ディスクの記録密度に応じて選択的に切り替える方法が考えられるが、複数の光学系が必要となるので、小型化に不利であり、またコストが増大する。 As a method for appropriately recording / reproducing information while maintaining compatibility with both BD and DVD, and further with CD, an information system for BD and an optical system for DVD and CD are used. Although a method of selectively switching according to the recording density of the optical disk for recording / reproducing the image is conceivable, a plurality of optical systems are required, which is disadvantageous for miniaturization and increases the cost.
 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性を有する光ピックアップ装置においても、BD用の光学系とDVDやCD用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減らすのが好ましい。そして、光ディスクに対向して配置される対物レンズを共通化することが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録/再生波長が互いに異なる複数種類の光ディスクに対して共通な対物レンズを得るためには、球面収差の波長依存性を有する回折構造等の光路差付与構造を対物レンズに形成する必要がある。 Therefore, in order to simplify the configuration of the optical pickup device and reduce the cost, even in an optical pickup device having compatibility, the optical system for BD and the optical system for DVD or CD can be shared. It is preferable to reduce the number of optical components constituting the pickup device as much as possible. And, it is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost to make the objective lens arranged facing the optical disc in common. In order to obtain a common objective lens for a plurality of types of optical disks having different recording / reproducing wavelengths, it is necessary to form an optical path difference providing structure such as a diffraction structure having a wavelength dependency of spherical aberration in the objective lens. is there.
 また、BD、DVD、CDの3種類の光ディスクに共通して用いられる対物レンズは、BD、DVD、CDの必要開口数の違いに対応できるようにする必要がある。例えば、必要開口数の大きなBDにおいては、対物レンズの有効光学面のほぼ全領域を通過した光束をBDの情報記録面上に集光させ、一方で、必要開口数の小さなCDにおいては、対物レンズの中央付近の領域を通過した光束をCDの情報記録面に集光させるが、その外側の領域を通過した光束はCDの情報記録面に集光させないようにフレアとして飛ばす必要がある。従って、BD、DVD、CDの3種類の光ディスクに共通して用いられる対物レンズは図1に示すように、その光学面を同心円状の3つの領域(BD、DVD、CD用の光束を集光する中央領域CN、BDとDVD用の光束を集光する中間領域MD、BD用の光束を集光する周辺領域OT)に分割され、それぞれの領域において異なる光学性能の挙動を示すようにする必要が出てくる。また、異なる光学性能の挙動を示させるために、領域ごとに、異なる回折次数を発生させる異なる構造を持たせたレンズなどが考えられていた。 Also, the objective lens used in common for the three types of optical disks of BD, DVD, and CD needs to be able to cope with the difference in the required numerical aperture of BD, DVD, and CD. For example, in a BD having a large required numerical aperture, a light beam that has passed through almost the entire area of the effective optical surface of the objective lens is condensed on the information recording surface of the BD. The light beam that has passed through the region near the center of the lens is condensed on the information recording surface of the CD, but the light beam that has passed through the outer region of the lens needs to be blown off as a flare so as not to be collected on the information recording surface of the CD. Therefore, as shown in FIG. 1, the objective lens used in common for the three types of optical disks of BD, DVD, and CD collects light beams for concentric three regions (BD, DVD, and CD) as shown in FIG. Center region CN, BD and intermediate region MD for condensing the luminous flux for DVD, and peripheral region OT for condensing the luminous flux for BD), and each region needs to exhibit different optical performance behavior Comes out. Further, in order to show the behavior of different optical performance, a lens having a different structure that generates different diffraction orders for each region has been considered.
 特許文献1には、中央領域と周辺領域における光路差関数の関係式を規定することにより、3種類の光ディスク使用時の球面収差を良好に補正すると同時に、不要回折次数光によるスポット性能の劣化を避けることができ、且つワーキングディスタンスを十分確保することが可能な3種類の光ディスクの互換対物レンズ、及びこの対物レンズを搭載した光情報記録再生装置が記載されている。 In Patent Document 1, by defining a relational expression of the optical path difference function in the central region and the peripheral region, spherical aberration when using three types of optical discs is corrected well, and at the same time, spot performance deterioration due to unnecessary diffraction order light is reduced. There are described three types of compatible objective lenses for optical discs that can be avoided and have a sufficient working distance, and an optical information recording / reproducing apparatus equipped with the objective lenses.
特開2011-129239JP2011-129239A
 しかしながら、特許文献1に記載の対物レンズでは、周辺領域の輪帯数が非常に多く、ピッチ(光軸直交方向の輪帯幅)も小さくなってしまうため、製造が容易ではない。特に対物レンズを小型化する際にこの問題が顕著となる。また、BD使用時のスポット径の増大が起きてしまうという問題が起きてしまうことも判明した。本発明者がBDスポット径の増大について鋭意研究したところ、その原因は以下の3つであることを突き止めた。 However, the objective lens described in Patent Document 1 is not easy to manufacture because the number of ring zones in the peripheral region is very large and the pitch (ring zone width in the direction perpendicular to the optical axis) is also small. This problem is particularly noticeable when the objective lens is downsized. It has also been found that there is a problem that the spot diameter increases when BD is used. As a result of intensive research on the increase in the BD spot diameter, the present inventor has found that there are the following three causes.
 一つ目の原因は、BD用の光束を使用した際の、対物レンズにおける有効径付近では光源側光学面の見込み角が大きいことである。正弦条件を満足するように設計した場合、光源側光学面とディスク側光学面のパワーバランスが一意的に決まるため、波長λ1の光束における有効径付近では光源側光学面見込み角が大きくなってしまい、金型を削るバイトが光路差付与構造を設計通りに切削することが困難となり、加工精度が低下してしまう。
二つ目の原因は、対物レンズの見込み角が大きいため光学面への光の入射角が大きくなることに伴う反射率の上昇である。これらにより、波長λ1使用時の有効径近傍、即ち周辺領域内の外径近傍においてはリム強度が低下し、集光スポットへの透過光量の低下が起きるため、逆アポダイゼーション効果とでもいうべき現象が発生し、BD使用時のスポット径の増大が発生し得る。
The first cause is that the expected angle of the light source side optical surface is large in the vicinity of the effective diameter of the objective lens when a BD light beam is used. When designed to satisfy the sine condition, the power balance between the light source side optical surface and the disk side optical surface is uniquely determined, and therefore the light source side optical surface expected angle increases near the effective diameter of the light flux with wavelength λ1. Therefore, it becomes difficult for the cutting tool for cutting the die to cut the optical path difference providing structure as designed, and the processing accuracy is lowered.
The second cause is an increase in reflectivity associated with an increase in the incident angle of light on the optical surface because the expected angle of the objective lens is large. As a result, in the vicinity of the effective diameter when the wavelength λ1 is used, that is, in the vicinity of the outer diameter in the peripheral area, the rim intensity is reduced and the amount of transmitted light to the focused spot is reduced. Therefore, a phenomenon that can be referred to as a reverse apodization effect occurs. And an increase in spot diameter when using BD may occur.
 三つ目の原因は、影の効果の影響である。ここで、影の効果について本発明者の研究により判明したことを以下に詳述する。図2は、一例としてブレーズ形状の光路差付与構造を設けた対物レンズの断面図の一部を示す図である。図2において、対物レンズの光学面S上には、母非球面に沿って鋸歯状の輪帯Rが同心円状に形成されている。ここで、一つの輪帯Rに入射する光束を考えたとき、鋸歯の根本側に入射する光束LB1は、輪帯Rを通過することで、設計に基づく挙動を示し、対物レンズ内を進行するが、鋸歯の先端側に入射する光束LB2(ハッチングで示す)は、輪帯Rに入射した後、その内側側面(段差面)SPで外方に反射させられてしまうという、いわゆる「影の効果」が生じる。かかる影の効果により、光束LB2は、光ディスクの情報記録面に集光されず、その分、光の利用効率の低下を招くこととなる。影の効果は、光線の屈折角が大きくなる高NA領域で、特に影響が顕著になる。加えて、金型の加工精度や転写性の問題から、鋸歯状の輪帯の先端や根元の近傍のような微細形状は、設計形状に対し成形誤差が生じやすく、これにより散乱光を増加させてしまうため、光の利用効率の低下を招く。つまり、光路差付与構造の輪帯数を増大させると、集光に寄与しない光の領域が増加するため、それに応じて光の利用効率が低下することとなる。 The third cause is the effect of the shadow effect. Here, what is found by the inventor's research on the effect of shadow will be described in detail below. FIG. 2 is a diagram illustrating a part of a cross-sectional view of an objective lens provided with a blazed optical path difference providing structure as an example. In FIG. 2, on the optical surface S of the objective lens, a serrated annular zone R is formed concentrically along the mother aspherical surface. Here, when a light beam incident on one annular zone R is considered, the light beam LB1 incident on the root side of the sawtooth passes through the annular zone R, exhibits a behavior based on the design, and travels in the objective lens. However, the light beam LB2 (indicated by hatching) incident on the leading end side of the saw blade is reflected by the inner side surface (step surface) SP after entering the annular zone R, so-called “shadow effect”. Is generated. Due to the effect of the shadow, the light beam LB2 is not condensed on the information recording surface of the optical disc, and the use efficiency of light is reduced accordingly. The effect of the shadow is particularly significant in the high NA region where the light refraction angle is large. In addition, due to mold processing accuracy and transferability problems, a fine shape such as the tip of the serrated ring zone or the vicinity of the root tends to cause a molding error with respect to the design shape, thereby increasing scattered light. Therefore, the use efficiency of light is reduced. That is, when the number of ring zones of the optical path difference providing structure is increased, the light region that does not contribute to light collection increases, and accordingly, the light use efficiency decreases accordingly.
 特許文献1に記載の対物レンズでは、周辺領域の輪帯数が非常に多く、且つ、周辺領域内においては光軸側から周辺に向かえば向かうほど輪帯数が増加する傾向があるため、BD使用時の光束の有効径付近において影の効果の影響が非常に大きくなってしまい、リム強度の低下が起こっていた。その結果、逆アポダイゼーション効果とでもいうべき現象が発生しBD使用時のスポット径の増大が起きてしまっていた。 In the objective lens described in Patent Document 1, the number of annular zones in the peripheral region is very large, and the number of annular zones tends to increase from the optical axis side toward the periphery in the peripheral region. In the vicinity of the effective diameter of the luminous flux at the time of use, the influence of the shadow effect becomes very large, and the rim strength is reduced. As a result, a phenomenon that can be called a reverse apodization effect occurs, and an increase in the spot diameter when BD is used has occurred.
 本発明は、上述の課題に鑑みてなされたものであり、対物レンズの成形性を上げ、小型化にも対応可能にするとともに、BD使用時にも適切なスポット径を形成することによる、安定した情報の記録/再生が可能なBD/DVD/CDの3種類の光ディスクの互換単玉対物レンズ、及びこの対物レンズを搭載した光ピックアップ装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and has improved the moldability of the objective lens, can cope with downsizing, and is stable by forming an appropriate spot diameter even when using a BD. It is an object of the present invention to provide a compatible single objective lens for three types of optical discs of BD / DVD / CD capable of recording / reproducing information, and an optical pickup device equipped with this objective lens.
 請求項1に記載の対物レンズは、第1波長λ1(390nm≦λ1≦415nm)の第1光束を射出する第1光源と、第2波長λ2(630nm≦λ2≦670nm)の第2光束を射出する第2光源と、第3波長λ3(760nm≦λ3≦820nm)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有するBDの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有するDVDの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有するCDの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
 前記対物レンズは単玉レンズであり、
 前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
 前記中央領域は第1光路差付与構造を有し、
 前記中間領域は第2光路差付与構造を有し、
 前記周辺領域は第3光路差付与構造を有し、
 前記対物レンズは、前記中央領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光し、
 前記対物レンズは、前記中間領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
 前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
 前記第1基礎構造はブレーズ型構造であり、前記第1基礎構造を通過した前記第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した前記第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した前記第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2基礎構造はブレーズ型構造であり、前記第2基礎構造を通過した前記第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した前記第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した前記第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた構造であり、
 前記第3基礎構造はブレーズ型構造であり、前記第3基礎構造を通過した前記第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した前記第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第4基礎構造はブレーズ型構造であり、前記第4基礎構造を通過した前記第1光束の5次または7次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した前記第2光束の3次または4次の回折光量を他のいかなる次数の回折光量よりも大きくし、
 前記第3光路差付与構造は、少なくとも第5基礎構造を有し、
 前記第5基礎構造はブレーズ型構造であり、前記第5基礎構造を通過した前記第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくしていることを特徴としている。
The objective lens according to claim 1 emits a first light source that emits a first light flux having a first wavelength λ1 (390 nm ≦ λ1 ≦ 415 nm) and a second light flux that has a second wavelength λ2 (630 nm ≦ λ2 ≦ 670 nm). And a third light source that emits a third light beam having a third wavelength λ3 (760 nm ≦ λ3 ≦ 820 nm), and a protective substrate having a thickness t1 using the first light beam. Recording and / or reproducing information, recording and / or reproducing information of a DVD having a protective substrate with a thickness of t2 (t1 <t2) using the second light beam, and using the third light beam An objective lens used in an optical pickup device for recording and / or reproducing information of a CD having a protective substrate having a thickness of t3 (t2 <t3),
The objective lens is a single lens,
The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
The central region has a first optical path difference providing structure,
The intermediate region has a second optical path difference providing structure,
The peripheral region has a third optical path difference providing structure;
The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region. Are recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the central region is recorded and / or recorded on the information recording surface of the CD. Or collect it so that it can be regenerated,
The objective lens condenses the first light flux passing through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the intermediate area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the intermediate region is recorded and / or recorded on the information recording surface of the CD. Or do not concentrate so that it can be regenerated,
The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the peripheral area is recorded on the information recording surface of the CD. And / or do not collect light for playback
The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
The first basic structure is a blaze-type structure, and the first-order diffracted light quantity of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light quantity, and passes through the first basic structure. The first-order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the first-order diffracted light quantity of the third light flux that has passed through the first basic structure is changed to any other order diffracted light quantity. Bigger than
The second basic structure is a blazed structure, and the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is made larger than any other order of diffracted light quantity, and passes through the second basic structure. The first order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the first diffracted light quantity of the third light flux that has passed through the second basic structure is changed to any other order diffracted light quantity. Bigger than
The second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped,
The third basic structure is a blazed structure, and the first-order diffracted light quantity of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light quantity, and passes through the third basic structure. The first-order diffracted light amount of the second light flux is made larger than any other order diffracted light amount,
The fourth foundation structure is a blazed structure, and the fifth or seventh-order diffracted light quantity of the first light flux that has passed through the fourth basic structure is made larger than any other order of diffracted light quantity, Making the third or fourth order diffracted light quantity of the second light flux that has passed through the structure larger than any other order diffracted light quantity;
The third optical path difference providing structure has at least a fifth basic structure,
The fifth basic structure is a blazed structure, and the second-order or fourth-order diffracted light quantity of the first light beam that has passed through the fifth basic structure is made larger than any other order diffracted light quantity. It is said.
 請求項1に記載の対物レンズによれば、BD/DVD/CDの3種類の光ディスクの互換使用を共通の対物レンズで行うことができる。また、第1及び第2光路差付与構造がブレーズ型の基礎構造を2種類重畳してなるため、単一の構造で光路差付与構造を形成する場合に比して、設計の自由度が2倍になり、互換を達成しつつ、3つのディスクに対して自由に倍率を決めることが可能となる。さらに、中央領域に存在する第1基礎構造が(1/1/1)構造(第1光束、第2光束、及び第3光束のいずれにおいても、1次回折光を最も多く発生)を、第2基礎構造が(2/1/1)構造(第1光束において2次回折光を最も多く発生し、第2光束及び第3光束においては、1次回折光を最も多く発生)としているため、BD、DVD、CDのいずれにおいても対物レンズの倍率を0またはほぼ0としつつ3波長全てにおいて高い回折効率を得ることができる。加えて、中央領域における回折構造の段差量が大きくなり過ぎないため、製造誤差に起因する光量ロスを抑えることができるとともに、影の効果を抑制し高い光利用効率を確保でき、且つ波長や温度変化時の回折効率変動も低減することができる。 According to the objective lens of the first aspect, the three types of optical disks of BD / DVD / CD can be used interchangeably with a common objective lens. In addition, since the first and second optical path difference providing structures are formed by superimposing two types of blazed basic structures, the degree of design freedom is 2 compared to the case where the optical path difference providing structure is formed with a single structure. The magnification can be freely determined for the three disks while achieving compatibility. Further, the first basic structure existing in the central region has a (1/1/1) structure (the most first-order diffracted light is generated in any of the first light flux, the second light flux, and the third light flux). Since the basic structure is a (2/1/1) structure (the second-order diffracted light is generated most in the first light beam, and the first-order diffracted light is generated most in the second light beam and the third light beam). In any of the CDs, high diffraction efficiency can be obtained at all three wavelengths while setting the magnification of the objective lens to 0 or almost 0. In addition, since the amount of step of the diffractive structure in the central region does not become too large, it is possible to suppress light loss due to manufacturing errors, to suppress the shadow effect, to ensure high light utilization efficiency, and to maintain the wavelength and temperature. Variations in diffraction efficiency during the change can also be reduced.
 また、中間領域に存在する第3基礎構造が(1/1)構造(第1光束及び第2光束において1次回折光を最も多く発生)であり、第4基礎構造が(5/3)構造(第1光束において5次回折光を最も多く発生し、第2光束においては、3次回折光を最も多く発生)、または第4基礎構造が(7/4)構造(第1光束において7次回折光を最も多く発生し、第2光束においては、4次回折光を最も多く発生)であるため、BD又はDVD使用時における温度変化時の球面収差の変動を適切にコントロールできる。また、BD、DVD使用時に高い回折効率を得ることができる。 In addition, the third basic structure existing in the intermediate region is a (1/1) structure (most first-order diffracted light is generated in the first and second light beams), and the fourth basic structure is a (5/3) structure ( The 5th-order diffracted light is generated most in the first light beam, the 3rd-order diffracted light is generated most in the second light beam, or the fourth basic structure is the (7/4) structure (the 7th-order diffracted light is most generated in the first light beam). In the second light flux, most of the fourth-order diffracted light is generated), so that it is possible to appropriately control the variation of spherical aberration at the time of temperature change when using BD or DVD. Also, high diffraction efficiency can be obtained when using BD and DVD.
 さらに、周辺領域に存在する第5基礎構造が第1光束通過時において2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくするため、1次の場合と比してピッチを大きくとることができ、即ち輪帯数も少なくなるため、金型加工においても樹脂成型においても製造が容易となり誤差も減少させることができる。また、周辺領域内においては光軸側から周辺に向かえば向かうほど輪帯数が増加する傾向があり、且つ周辺領域内の外径近傍では対物レンズの見込み角が大きくなってしまうため、加工精度の低下や、反射率の上昇などが発生し、特に、ピッチが小さい時にはこの問題が顕著となり、リム強度の低下が起こってしまうが、周辺領域の第5基礎構造のピッチを大きくとることができるため、加工精度の低下を低減し、引いてはリム強度の低下を防止することが可能となる。さらに、輪帯数が減少するため有効径付近の影の効果の影響を低減でき、リム強度の低下によるスポット径の増大を抑えることができる。加えて、第1光束通過時に1次の回折光量が最大となる場合には、対物レンズを小型化しようとすると、必然的にピッチが狭くなってしまい加工精度の問題から製造することができなくなってしまうが、ピッチを大きくとることができるため、対物レンズの小型化にも対応可能となっている。 Furthermore, since the fifth basic structure existing in the peripheral region makes the second-order or fourth-order diffracted light quantity larger than any other order diffracted light quantity when passing the first light flux, the pitch is set as compared with the first-order case. Since the number of ring zones can be reduced, manufacturing can be facilitated and errors can be reduced in both mold processing and resin molding. In the peripheral area, the number of annular zones tends to increase from the optical axis side toward the periphery, and the angle of view of the objective lens increases near the outer diameter in the peripheral area. Decrease, increase in reflectance, etc., especially when the pitch is small, this problem becomes significant and the rim strength decreases, but the pitch of the fifth foundation structure in the peripheral region can be increased. Therefore, it is possible to reduce a decrease in machining accuracy and to prevent a decrease in rim strength. Furthermore, since the number of ring zones decreases, the influence of the shadow effect around the effective diameter can be reduced, and an increase in spot diameter due to a decrease in rim strength can be suppressed. In addition, when the first-order diffracted light quantity is maximized when the first light beam passes, if the objective lens is to be miniaturized, the pitch is inevitably narrowed and cannot be manufactured due to processing accuracy. However, since the pitch can be increased, the objective lens can be reduced in size.
 請求項2に記載の対物レンズは、請求項1に記載の発明であって、前記第2光束における、前記対物レンズの光軸中心近傍に対する前記中間領域の前記周辺領域近傍における瞳透過率の比率r2が、
 r2≦0.9   (1)
であり、
 前記対物レンズの前記第2光束における有効径をh2、前記第2光束における結像倍率をm2、前記第1光束における焦点距離をf1、とした場合に、
 0.66≦h2/(2・f1・(1-m2))≦0.75   (2)
を満たすことを特徴としている。
The objective lens according to claim 2 is the invention according to claim 1, wherein the ratio of pupil transmittance in the vicinity of the peripheral area of the intermediate area to the vicinity of the optical axis center of the objective lens in the second light flux. r2 is
r2 ≦ 0.9 (1)
And
When the effective diameter of the objective lens in the second light flux is h2, the imaging magnification in the second light flux is m2, and the focal length in the first light flux is f1,
0.66 ≦ h2 / (2 · f1 · (1-m2)) ≦ 0.75 (2)
It is characterized by satisfying.
 本発明の対物レンズは中間領域において二つの基礎構造を重畳しており、さらに、ある領域内においては光軸から周辺に向かえば向かうほど輪帯数が増加する傾向があるため、中間領域の周辺領域近傍においては特に光利用効率が悪くなってしまう。その結果、第2光束における、対物レンズの光軸中心近傍に対する中間領域の周辺領域近傍における瞳透過率の比率r2が式(1)の範囲内となり、逆アポダイゼーション効果とでもいうべき現象が発生し、DVD使用時においてスポット径の増大が起きてしまう可能性がある。なお、光軸中心近傍における「近傍」とは、光軸から光軸垂直方向に対して、DVD使用時の有効半径の10%の範囲を言う。また、中間領域の周辺領域近傍とは中間領域と周辺領域の境界から、中間領域方向に対して、DVD使用時の有効半径の10%の範囲を言い、周辺領域の外径近傍とは、周辺領域の外径から中間領域方向に対して、DVD使用時の有効半径の10%の範囲を言う。 The objective lens of the present invention overlaps two basic structures in the intermediate region, and further, in a certain region, the number of annular zones tends to increase toward the periphery from the optical axis. In the vicinity of the region, the light utilization efficiency is deteriorated. As a result, the ratio r2 of the pupil transmittance in the vicinity of the peripheral region of the intermediate region with respect to the vicinity of the optical axis center of the objective lens in the second light flux is within the range of the expression (1), and a phenomenon that can be called a reverse apodization effect occurs. When using a DVD, the spot diameter may increase. The term “near” in the vicinity of the optical axis center refers to a range of 10% of the effective radius when using a DVD from the optical axis to the direction perpendicular to the optical axis. The vicinity of the peripheral area of the intermediate area refers to a range of 10% of the effective radius when using the DVD with respect to the intermediate area direction from the boundary between the intermediate area and the peripheral area. A range of 10% of the effective radius when using a DVD from the outer diameter of the area to the intermediate area direction.
 また、本発明の対物レンズはBD/DVD/CDの互換対物レンズである一方で、光学面が2面しかないために、全ての光ディスクにおいて正弦条件を満足させることができず、BD、DVD、CDの全てである程度バランスが良くなるように正弦条件を設定するため、BD使用時にはより一層のスポット径の増大が起きる可能性がある。 The objective lens of the present invention is a BD / DVD / CD compatible objective lens. However, since there are only two optical surfaces, the sine condition cannot be satisfied for all optical disks, and BD, DVD, Since the sine condition is set so that the balance is improved to some extent in all the CDs, there is a possibility that the spot diameter is further increased when the BD is used.
 しかし、請求項2に記載の発明によれば、式(2)の下限以上の値を満たすことにより、対物レンズのDVD使用時における第2光束の有効径が大きくなる、即ちNAが大きくなり、DVD使用時のスポット径が小さく絞られるため、DVD使用時における逆アポダイゼーション効果を抑制することが可能となる。また、BD使用時には光軸近傍と比して相対的に透過光量が少ない中間領域が広がるため、アポダイゼーション効果を生じ、BDのスポット径を小さく絞ることが可能となる。これは特にBD/DVD/CDの3種類の光ディスクの再生専用の互換レンズに好ましく用いることができる。さらに、式(2)の上限以下の値を満たすことによりDVD使用時のスポット径が必要以上に小さく絞られ過ぎることがない。また、DVD側では波面収差の誤差感度が小さく抑えられ、安定した記録・再生特性を得ることができる。 However, according to the invention described in claim 2, by satisfying a value equal to or higher than the lower limit of the expression (2), the effective diameter of the second light flux when the objective lens is used in DVD is increased, that is, the NA is increased. Since the spot diameter when the DVD is used is narrowed down, the reverse apodization effect when using the DVD can be suppressed. In addition, when the BD is used, an intermediate region having a relatively small amount of transmitted light as compared with the vicinity of the optical axis is widened, so that an apodization effect is produced and the spot diameter of the BD can be reduced. This can be preferably used particularly for a compatible lens for reproduction of three types of optical disks of BD / DVD / CD. Furthermore, by satisfying a value equal to or lower than the upper limit of the formula (2), the spot diameter when using the DVD is not reduced more than necessary. Also, on the DVD side, the error sensitivity of wavefront aberration can be kept small, and stable recording / reproducing characteristics can be obtained.
 請求項3に記載の対物レンズは、請求項1または2に記載の発明であって、以下の式を満たすことを特徴としている。
 1.0≦f1≦2.2   (3)
The objective lens described in claim 3 is the invention described in claim 1 or 2 and is characterized by satisfying the following expression.
1.0 ≦ f1 ≦ 2.2 (3)
 BD使用時の焦点距離f1が式(3)の範囲内であると、対物レンズが比較的小型となるため、より一層周辺領域内の外径近傍におけるピッチが細かくなり、本発明の課題が大きくなるが、そのような大きな課題も、第5基礎構造を通過した第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくすることで解決できる。また、焦点距離f1が式(3)の範囲内であると、CD使用時のワーキングディスタンスを確保するために、即ち回折の近軸パワーを強くするために、中央領域の輪帯数を増加させ、それに対応させて中間領域の輪帯数も増加させる必要がある。その結果、中間領域の周辺領域近傍においては、より一層の光利用効率の低下が発生し、DVDやBD使用時のスポット径の増大が起きる可能性が生じるが、その場合には式(2)を満たすことで解決できる。尚、ワーキングディスタンスとは、光ディスクの表面から対物レンズの最も光ディスク側の位置までの光軸方向の距離をいう。 When the focal length f1 when using the BD is within the range of the expression (3), the objective lens becomes relatively small, and therefore the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention is large. However, such a large problem can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity. Further, if the focal length f1 is within the range of the expression (3), the number of ring zones in the central region is increased in order to secure a working distance when using the CD, that is, in order to increase the paraxial power of diffraction. Correspondingly, it is necessary to increase the number of ring zones in the intermediate region. As a result, in the vicinity of the peripheral region of the intermediate region, there is a possibility that the light utilization efficiency will be further reduced and the spot diameter may be increased when using DVD or BD. In this case, formula (2) It can be solved by satisfying. The working distance refers to the distance in the optical axis direction from the surface of the optical disk to the position closest to the optical disk of the objective lens.
 さらに焦点距離が式(3)の範囲内であるため、対物レンズからディスクまでの距離を小さくでき、スリムタイプの光ピックアップ装置にも好適に搭載できる。 Furthermore, since the focal length is within the range of the expression (3), the distance from the objective lens to the disk can be reduced, and it can be suitably mounted on a slim type optical pickup device.
 請求項4に記載の対物レンズは、請求項1~3のいずれか一項に記載の発明であって、前記対物レンズの前記第1光束における有効径をh1とした場合に、以下の式を満たすことを特徴としている。
 1.9≦h1≦3.0   (4)
The objective lens according to claim 4 is the invention according to any one of claims 1 to 3, wherein when an effective diameter of the objective lens in the first light flux is h1, the following expression is obtained: It is characterized by satisfying.
1.9 ≦ h1 ≦ 3.0 (4)
 対物レンズが式(4)を満たすような小型の対物レンズである場合、より一層周辺領域内の外径近傍におけるピッチが細かくなり、本発明の課題が大きくなるが、そのような大きな課題も、第5基礎構造を通過した第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくすることで解決できる。また、中間領域、特に中間領域の周辺領域近傍のピッチも小さくなるため、DVDやBD使用時のスポット径の増大が起きる可能性が生じるが、その場合には式(2)を満たすことで解決できる。 When the objective lens is a small objective lens satisfying the formula (4), the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention becomes large. This can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity. In addition, since the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter increases when using DVD or BD. In this case, satisfying the equation (2) solves the problem. it can.
 請求項5に記載の対物レンズは、請求項1~4のいずれか一項に記載の発明であって、 前記対物レンズの第i基礎構造は、次の数式
φi(h)=(Ci2×h2+Ci4×h4+Ci6×h6+Ci8×h8+Ci10×h10)Miλ/λBi
(但し、h(単位:mm)は、光軸からの高さを、Ci2、Ci4、Ci6・・・はそれぞれ、第i基礎構造の光路差関数(iは自然数)における二次、四次、六次、の光路差関数係数を、Miは、入射光束の回折次数が最大となる第i基礎構造の光路差関数における回折次数を、λ(単位:mm)は前記入射光束の使用波長を、λBi(単位:mm)は第i基礎構造における製造波長を、それぞれ示す。)の形に光路差関数を展開できる構造を有し、 前記第1基礎構造が有する焦点距離をfD1(単位:mm)と定義した場合に、以下の式を満たし、
 -0.40<f1/fD1<-0.10・・・(5)
(但し、fD1=―λB1/(2×C12×M1×λ)であり、M1の値は1である。)、
且つ、前記第2光束の有効径(直径)をh2(単位:mm)と定義し、前記第3光束の有効径(直径)をh3(単位:mm)と定義した場合に、次の条件式(6)
 -0.025<(φ5(h3/2)-φ5(h2/2))/(M5×f1)<0.025・・・(6)
(但し、M5の値は2又は4である。)
を満たすことを特徴としている。
The objective lens according to claim 5 is the invention according to any one of claims 1 to 4, wherein the i-th basic structure of the objective lens has the following formula φ i (h) = (C i2 × h 2 + C i4 × h 4 + C i6 × h 6 + C i8 × h 8 + C i10 × h 10 ) Miλ / λB i
(Where h (unit: mm) is the height from the optical axis, C i2 , C i4 , C i6 ... Are secondary in the optical path difference function (i is a natural number) of the i-th substructure, The fourth-order and sixth-order optical path difference function coefficients, Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam, and λ (unit: mm) is the use of the incident light beam. ΛB i (unit: mm) represents a manufacturing wavelength in the i-th basic structure, respectively)), and the focal length of the first basic structure is expressed as fD 1 When defined as (unit: mm), the following equation is satisfied,
−0.40 <f1 / fD 1 <−0.10 (5)
(However, fD 1 = −λB 1 / (2 × C 12 × M1 × λ), and the value of M1 is 1.)
When the effective diameter (diameter) of the second light beam is defined as h2 (unit: mm) and the effective diameter (diameter) of the third light beam is defined as h3 (unit: mm), the following conditional expression (6)
−0.025 <(φ 5 (h3 / 2) −φ 5 (h2 / 2)) / (M5 × f1) <0.025 (6)
(However, the value of M5 is 2 or 4.)
It is characterized by satisfying.
 式(5)を満たすことにより、CD使用時のワーキングディスタンスを確保しつつBD使用時の色収差が大きくなり過ぎないため好ましい。式(5)の下限を上回ればピッチが広がるため加工性が向上し、また、第一の光ディスク使用時に発生する色収差量が記録・再生可能な程度に抑えられる。また、式(5)の上限を下回ればCD使用時のワーキングディスタンスを十分確保できるため好ましい。 It is preferable to satisfy the formula (5) because the chromatic aberration at the time of using the BD does not become too large while ensuring the working distance at the time of using the CD. If the lower limit of Expression (5) is exceeded, the pitch is widened, so that the workability is improved, and the amount of chromatic aberration generated when the first optical disk is used can be suppressed to a level that allows recording and reproduction. Moreover, it is preferable to fall below the upper limit of the formula (5) because a working distance when using a CD can be sufficiently secured.
 第2光束の有効径(直径)をh2(単位:mm)と定義し、第3光束の有効径(直径)をh3(単位:mm)と定義した場合に、次の条件(6)
-0.025<(φ5(h3/2)-φ5(h2/2))/(M5×f1)<0.025・・・(6)
(但し、M5の値は2又は4である。)
を満たすことにより、BD使用時の環境変化時に生じる球面収差を良好に補正しつつ、周辺領域を透過した第二、第三光束の不要回折次数光が中央領域を透過した第二、第三光束の結像位置近傍に収束するのを避けられるため、スポット性能の劣化を抑えることができ好ましい。また、式(6)の範囲内にすることで、段差数が多くなり過ぎないため、製造が容易、且つ、光利用効率の低下が抑えられるため、良好なスポットを得ることができ、上限を下回ることで温度変化時の球面収差が大きくなりすぎない。
When the effective diameter (diameter) of the second light beam is defined as h2 (unit: mm) and the effective diameter (diameter) of the third light beam is defined as h3 (unit: mm), the following condition (6)
−0.025 <(φ 5 (h3 / 2) −φ 5 (h2 / 2)) / (M5 × f1) <0.025 (6)
(However, the value of M5 is 2 or 4.)
By satisfying the above, the second and third light beams in which unnecessary diffraction orders of the second and third light beams transmitted through the peripheral region are transmitted through the central region while satisfactorily correcting the spherical aberration generated when the environment is changed when the BD is used. Since it is possible to avoid convergence in the vicinity of the image forming position, it is preferable because deterioration of spot performance can be suppressed. Moreover, since the number of steps does not increase too much by making it within the range of the formula (6), manufacturing is easy, and a decrease in light utilization efficiency is suppressed, so that a good spot can be obtained, and the upper limit is set. By lowering, the spherical aberration at the time of temperature change does not become too large.
 請求項6に記載の対物レンズは、請求項1~5のいずれか一項に記載の発明であって、以下の式を満たすことを特徴としている。
 0.68≦h2/(2・f1・(1-m2))≦0.74   (2)’
An objective lens according to a sixth aspect is the invention according to any one of the first to fifth aspects, wherein the objective lens satisfies the following expression.
0.68 ≦ h2 / (2 · f1 · (1-m2)) ≦ 0.74 (2) ′
 対物レンズが小型化すればするほど、基礎構造のピッチが小さくなってしまい、BD使用時のリム強度の低下が顕著なものとなってしまう、即ちBD使用時のスポット径の増大が起きてしまうが、式(2)´を満たすことにより、BD使用時のアポダイゼーション効果が強くなるため、そのような対物レンズにおいてもBDの記録再生に適切なスポット径を得ることができるため好ましい。また、中間領域、特に中間領域の周辺領域近傍のピッチも小さくなるため、DVD使用時のスポット径の増大が起きる可能性が生じるが、式(2)´を満たすことにより解決できるため好ましい。 The smaller the objective lens, the smaller the pitch of the basic structure, and the lowering of the rim strength when using the BD becomes more significant, that is, the spot diameter increases when using the BD. However, it is preferable to satisfy the formula (2) ′ because the apodization effect at the time of using the BD becomes strong, and even with such an objective lens, it is possible to obtain an appropriate spot diameter for BD recording / reproduction. In addition, since the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter will increase when using the DVD, but it is preferable because it can be solved by satisfying the equation (2) ′.
 請求項7に記載の対物レンズは、請求項1~6のいずれか一項に記載の発明であって、前記対物レンズの光軸上の厚さをd(mm)とした場合に、以下の式を満たすことを特徴としている。
 1.0≦d/f1≦1.5   (7)
An objective lens according to a seventh aspect is the invention according to any one of the first to sixth aspects, wherein when the thickness of the objective lens on the optical axis is d (mm), It is characterized by satisfying the formula.
1.0 ≦ d / f1 ≦ 1.5 (7)
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、上記構成により非点収差や偏心コマ収差の発生を抑制することが可能となる。 When dealing with a short-wavelength, high-NA optical disk such as BD, the objective lens is likely to generate astigmatism and decent coma, but the above configuration causes astigmatism and It is possible to suppress the occurrence of decentration coma.
 また、対物レンズの軸上厚が厚めの厚肉対物レンズになると、CDの記録/再生時におけるワーキングディスタンスが短くなりがちになるため、式(7)の上限の値を超えないことが好ましい。さらに、式(7)の下限を超えないことにより、非点収差や偏心コマ収差の発生を抑制することが可能となる。 In addition, when the objective lens is thick, the working distance during CD recording / playback tends to be short, and therefore it is preferable not to exceed the upper limit of equation (7). Furthermore, by not exceeding the lower limit of Expression (7), it is possible to suppress the occurrence of astigmatism and decentration coma.
 請求項8に記載の対物レンズは、請求項1~7のいずれか一項に記載の発明であって、 少なくとも前記中央領域の光軸付近に設けられる前記第1基礎構造は、その段差が光軸とは逆の方向を向いており、
 少なくとも前記中央領域の光軸付近に設けられる前記第2基礎構造は、その段差が光軸の方向を向いていることを特徴としている。
An objective lens according to an eighth aspect of the present invention is the invention according to any one of the first to seventh aspects, wherein the first basic structure provided at least in the vicinity of the optical axis of the central region has a light level difference. Facing the opposite direction of the axis,
The second basic structure provided at least near the optical axis of the central region is characterized in that the step is directed in the direction of the optical axis.
 これによって、第1基礎構造と第2基礎構造とを重ね合わせた第1光路差付与構造において、光軸方向の段差量をさらに低減でき、それにより影の効果の抑制や波長変動時の回折効率の低下のさらなる抑制が可能となる。 Thereby, in the first optical path difference providing structure in which the first basic structure and the second basic structure are overlapped, the step amount in the optical axis direction can be further reduced, thereby suppressing the shadow effect and the diffraction efficiency at the time of wavelength variation. It is possible to further suppress the decrease in the above.
 請求項9に記載の対物レンズは、請求項1~8のいずれか一項に記載の発明であって、前記周辺領域の総輪帯数をN3とした場合に、以下の式を満たすことを特徴としている。
 5(mm)≦N3・f1≦100(mm)   (8)
The objective lens according to claim 9 is the invention according to any one of claims 1 to 8, wherein the following expression is satisfied when the total number of annular zones in the peripheral region is N3: It is a feature.
5 (mm) ≤ N3 · f1 ≤ 100 (mm) (8)
 式(8)の値を上限以下とすることで、ピッチが小さくなりすぎることを防止できるため、影の効果の抑制ができ、また加工性の低下を防ぎ形状誤差を低減でき、結果として回折効率の低下を防止できる。また、(8)の範囲にすることで、色収差も低減することができる。 By setting the value of equation (8) below the upper limit, it is possible to prevent the pitch from becoming too small, so that it is possible to suppress the effect of shadows, to prevent deterioration of workability, and to reduce the shape error, resulting in diffraction efficiency. Can be prevented. In addition, by setting the range in (8), chromatic aberration can also be reduced.
 請求項10に記載の光ピックアップ装置は、請求項1~9のいずれか一項に記載の対物レンズを有することを特徴としている。 An optical pickup device according to a tenth aspect has the objective lens according to any one of the first to ninth aspects.
 請求項11に記載の光ピックアップ装置は、請求項10に記載の光ピックアップ装置であって、少なくとも前記第1光束と前記第2光束が通過するカップリングレンズと、前記カップリングレンズを光軸方向に移動させるアクチュエータ―を有し、
 前記第1光束が通過するときは、前記アクチュエータ―によって前記カップリングレンズが光軸方向に変位可能とされており、
 前記第2光束が通過するときには、前記カップリングレンズは、光軸方向の位置を固定されていることを特徴としている。
An optical pickup device according to an eleventh aspect is the optical pickup device according to the tenth aspect, in which at least the coupling lens through which the first light flux and the second light flux pass, and the coupling lens in the optical axis direction. Has an actuator to move to
When the first light beam passes, the coupling lens can be displaced in the optical axis direction by the actuator;
When the second light beam passes, the position of the coupling lens in the optical axis direction is fixed.
 例えば、複数の情報記録層を有するBDに対応するために、BDの使用時には、カップリングレンズを光軸方向に変位して、各情報記録層への記録/再生に対応させることが考えられる。そのような場合、既にカップリングレンズを光軸方向に変位させる機能は必須であるが、DVD使用時においては、カップリングレンズを光軸方向に変位させず、固定させておきたい、という場合がある。その理由としては、BD使用時には、フレアが発生しないが、DVD使用時には、フレアが発生するため、カップリングレンズを変異させることにより、そのフレアの収差が変化し、結果としてそのフレアが記録/再生に悪影響を与える可能性が生じるという理由や、ドライブによるカップリングレンズ変位の制御を単純化したいという理由などが挙げられる。そのような課題に対して、本発明の対物レンズを用いてDVD使用時の温度、波長変化により生じる収差を抑えることで、結果として、DVD使用時に、第2光束が通過するときにカップリングレンズを光軸方向の位置を固定した状態(つまりカップリングレンズによる球面収差補正を行わない場合)でも、DVDの情報記録面に対して情報の記録/再生を行うことができるようになり、上述の課題を解決することができた。 For example, in order to cope with a BD having a plurality of information recording layers, it is conceivable that when the BD is used, the coupling lens is displaced in the optical axis direction so as to correspond to recording / reproduction on each information recording layer. In such a case, the function of displacing the coupling lens in the optical axis direction is indispensable. However, when using a DVD, the coupling lens may be fixed without being displaced in the optical axis direction. is there. The reason is that flare does not occur when using BD, but flare occurs when using DVD. By changing the coupling lens, the flare aberration changes, and as a result, the flare is recorded / reproduced. The reason is that there is a possibility of adversely affecting the driving force, and the reason why it is desired to simplify the control of the coupling lens displacement by the drive. For such a problem, the objective lens of the present invention is used to suppress aberrations caused by changes in temperature and wavelength when using a DVD. As a result, a coupling lens is used when the second light beam passes when using a DVD. Can be recorded / reproduced with respect to the information recording surface of the DVD even when the position in the optical axis direction is fixed (that is, when spherical aberration correction is not performed by the coupling lens). We were able to solve the problem.
 本発明に係る光ピックアップ装置は、第1光源、第2光源、第3光源の少なくとも3つの光源を有する。さらに、本発明の光ピックアップ装置は、第1光束をBDの情報記録面上に集光させ、第2光束をDVDの情報記録面上に集光させ、第3光束をCDの情報記録面上に集光させるための集光光学系を有する。また、本発明の光ピックアップ装置は、BD、DVD又はCDの情報記録面からの反射光束を受光する受光素子を有する。 The optical pickup device according to the present invention has at least three light sources: a first light source, a second light source, and a third light source. Furthermore, the optical pickup device of the present invention condenses the first light beam on the information recording surface of the BD, condenses the second light beam on the information recording surface of the DVD, and focuses the third light beam on the information recording surface of the CD. A condensing optical system for condensing the light. The optical pickup device of the present invention includes a light receiving element that receives a reflected light beam from an information recording surface of a BD, DVD, or CD.
 BDは、厚さがt1の保護基板と情報記録面とを有する。DVDは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。CDは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。なお、BD、DVD又はCDは、複数の情報記録面を有する複数層の光ディスクでもよい。 BD has a protective substrate having a thickness t1 and an information recording surface. The DVD has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The CD has a protective substrate having a thickness of t3 (t2 <t3) and an information recording surface. The BD, DVD, or CD may be a multi-layer optical disc having a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nmの光束、設計上のNAが0.80~0.90の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.02~0.125mmであるBD系列光ディスクの総称であり、単一の情報記録層のみ有するBDや、2層又はそれ以上の情報記録層を有するBD等を含むものである。更に、本明細書においては、DVDとは、波長630~670nmの光束、設計上のNAが0.550~0.70の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、波長760~820nmの光束、設計上のNAが0.40~0.55の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD is information recording / reproduction by a light beam having a wavelength of 390 to 415 nm, an objective lens having a designed NA of 0.80 to 0.90, and the thickness of the protective substrate is 0.02 It is a generic term for BD series optical discs of up to 0.125 mm, and includes BD having only a single information recording layer, BD having two or more information recording layers, and the like. Further, in this specification, a DVD means a light beam having a wavelength of 630 to 670 nm, and information is recorded / reproduced by an objective lens having a designed NA of 0.550 to 0.70. A generic term for DVD series optical discs of about 0.6 mm, including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. Further, in this specification, the CD is a light beam having a wavelength of 760 to 820 nm, information is recorded / reproduced by an objective lens having a designed NA of 0.40 to 0.55, and the thickness of the protective substrate is A general term for CD series optical discs of about 1.2 mm, including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(9)、(10)、(11)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
  0.050mm ≦ t1 ≦ 0.125mm   (9)
  0.5mm ≦ t2 ≦ 0.7mm         (10)
  1.0mm ≦ t3 ≦ 1.3mm         (11)
In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (9), (10), and (11), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
0.050 mm ≤ t1 ≤ 0.125 mm (9)
0.5mm ≤ t2 ≤ 0.7mm (10)
1.0 mm ≤ t3 ≤ 1.3 mm (11)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。
レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(12)、(13) を満たすことが好ましい。
  1.5・λ1 < λ2 < 1.7・λ1    (12)
  1.8・λ1 < λ3 < 2.0・λ1    (13)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources.
As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (12) and (13).
1.5 · λ1 <λ2 <1.7 · λ1 (12)
1.8 · λ1 <λ3 <2.0 · λ1 (13)
 第1光源の第1波長λ1は390nm以上415nm以下であって、第2光源の第2波長λ2は630nm以上670nm以下であって、第3光源の第3波長λ3は760nm以上820nm以下である。 The first wavelength λ1 of the first light source is 390 nm or more and 415 nm or less, the second wavelength λ2 of the second light source is 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。もちろん、第1光源、第2光源及び第3光源を全て1パッケージに固定収納するようにしてもよい。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. Of course, the first light source, the second light source, and the third light source may all be fixedly housed in one package. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録及び/または再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photo detectors are provided on both sides of a photo detector that receives main light used for recording and / or reproducing information, and sub light for tracking adjustment is provided by the two sub photo detectors. A light receiving element that receives light may be used. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、対物レンズを有する。集光光学系は、対物レンズの他にコリメータ等のカップリングレンズを有していることが好ましい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。コリメータは、カップリングレンズの一種で、コリメータに入射した光を平行光にして出射するレンズである。本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録/再生面上に集光する機能を有する単玉レンズを指す。また、本発明の単玉対物レンズは、プラスチックレンズであることが好ましい。好ましくは、凸レンズである。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 The condensing optical system has an objective lens. The condensing optical system preferably has a coupling lens such as a collimator in addition to the objective lens. The coupling lens is a single lens or a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam. The collimator is a type of coupling lens, and is a lens that emits light incident on the collimator as parallel light. In this specification, the objective lens refers to a single lens that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source on the information recording / reproducing surface of the optical disk. . In addition, the single objective lens of the present invention is preferably a plastic lens. A convex lens is preferable. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズを構成するプラスチック材料として、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用することが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.50~1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃-1) が-20×10-5~-5×10-5(より好ましくは、-10×10-5~-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズがプラスチックレンズである場合、カップリングレンズもプラスチックレンズとすることが好ましい。 Moreover, it is preferable to use an alicyclic hydrocarbon-based polymer material such as a cyclic olefin-based resin material as the plastic material constituting the objective lens. In addition, the resin material has a refractive index in the range of 1.50 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) is -20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, it is preferable that the coupling lens is also a plastic lens.
 脂環式炭化水素系重合体の好ましい例を幾つか、以下に示す。 Some preferred examples of the alicyclic hydrocarbon polymer are shown below.
 第1の好ましい例は、下記式(I)で表される繰り返し単位〔1〕を含有する重合体ブロック〔A〕と、下記式(I)で表される繰り返し単位〔1〕並びに下記式(II)で表される繰り返し単位〔2〕及び/または下記式(III)で表される繰り返し単位〔3〕を含有する重合体ブロック〔B〕とを有し、前記ブロック〔A〕中の繰り返し単位〔1〕のモル分率a(モル%)と、前記ブロック〔B〕中の繰り返し単位〔1〕のモル分率b(モル%)との関係がa>bであるブロック共重合体からなる樹脂組成物である。 A first preferred example includes a polymer block [A] containing a repeating unit [1] represented by the following formula (I), a repeating unit [1] represented by the following formula (I) and the following formula ( II) and / or polymer block [B] containing a repeating unit [3] represented by the following formula (III), and repeating in the block [A] From the block copolymer in which the relationship between the molar fraction a (mol%) of the unit [1] and the molar fraction b (mol%) of the repeating unit [1] in the block [B] is a> b. It is the resin composition which becomes.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (式中、R1 は水素原子、または炭素数1~20のアルキル基を表し、R2-R12はそれぞれ独立に、水素原子、炭素数1~20のアルキル基、ヒドロキシル基、炭素数1~20のアルコキシ基、またはハロゲン基である。) (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and R 2 to R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a hydroxyl group, a carbon number of 1 ˜20 alkoxy groups or halogen groups.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、R13は、水素原子、または炭素数1~20のアルキル基を表す。) (In the formula, R 13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、R14およびR15はそれぞれ独立に、水素原子、または炭素数1~20のアルキル基を表す。) (Wherein R 14 and R 15 each independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
 次に、第2の好ましい例は、少なくとも炭素原子数2~20のα-オレフィンと下記一般式(IV)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(A)と、炭素原子数2~20のα-オレフィンと下記一般式(V)で表される環状オレフィンからなる単量体組成物とを付加重合させることにより得られる重合体(B)とを含む樹脂組成物である。 Next, a second preferred example is obtained by addition polymerization of a monomer composition comprising at least an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (IV). Polymer (B) obtained by addition polymerization of polymer (A) and a monomer composition comprising an α-olefin having 2 to 20 carbon atoms and a cyclic olefin represented by the following general formula (V) ).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〔式中、nは0または1であり、mは0または1以上の整数であり、qは0または1であり、R1~R18、Ra及びRbは、それぞれ独立に水素原子、ハロゲン原子または炭化水素基であり、R15~R18は互いに結合して単環または多環を形成していてもよく、括弧内の単環または多環が二重結合を有していてもよく、またR15とR16と、またはR17とR18とでアルキリデン基を形成していてもよい。〕 [In the formula, n is 0 or 1, m is 0 or an integer of 1 or more, q is 0 or 1, and R 1 to R 18 , Ra and Rb each independently represent a hydrogen atom or a halogen atom. Or a hydrocarbon group, R 15 to R 18 may be bonded to each other to form a monocycle or polycycle, and the monocycle or polycycle in parentheses may have a double bond, R 15 and R 16 , or R 17 and R 18 may form an alkylidene group. ]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔式中、R19~R26はそれぞれ独立に水素原子、ハロゲン原子または炭化水素基である。〕 [Wherein, R 19 to R 26 each independently represents a hydrogen atom, a halogen atom or a hydrocarbon group. ]
 樹脂材料に更なる性能を付加するために、以下のような添加剤を添加してもよい。 In order to add further performance to the resin material, the following additives may be added.
 (安定剤)
 フェノール系安定剤、ヒンダードアミン系安定剤、リン系安定剤及びイオウ系安定剤から選ばれた少なくとも1種の安定剤を添加することが好ましい。これらの安定剤を適宜選択し添加することで、例えば、405nmといった短波長の光を継続的に照射した場合の白濁や、屈折率の変動等の光学特性変動をより高度に抑制することができる。
(Stabilizer)
It is preferable to add at least one stabilizer selected from a phenol stabilizer, a hindered amine stabilizer, a phosphorus stabilizer, and a sulfur stabilizer. By suitably selecting and adding these stabilizers, for example, it is possible to more highly suppress the white turbidity and the optical characteristic fluctuations such as the refractive index fluctuations when continuously irradiated with light having a short wavelength of 405 nm. .
 好ましいフェノール系安定剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されるアクリレート系化合物;オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2′-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニルプロピオネート))メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート))]、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物;などが挙げられる。 As the preferred phenol-based stabilizer, conventionally known ones can be used. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2 , 4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate and the like, and JP-A Nos. 63-179953 and 1-168643. Acrylate compounds described in Japanese Patent Publication No. 1; octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol) ), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( , 5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenylpropionate)) methane [ie pentaerythris Limethyl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenylpropionate))], triethylene glycol bis (3- (3-tert-butyl-4-hydroxy-5-methylphenyl) ) Propionate) and other alkyl-substituted phenolic compounds; 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 4-bisoctylthio -1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5- Triazine group-containing phenol compounds such as triazine; and the like.
 また、好ましいヒンダードアミン系安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(N-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-ベンジルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-シクロヘキシルオキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクロイル-2,2,6,6-テトラメチル-4-ピペリジル)2,2-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1-[2-(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル]-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート等が挙げられる。 Preferred hindered amine stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (N-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-benzyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-cyclohexyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) -Pentamethyl-4-piperidyl) 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2, , 6-Tetramethyl-4-piperidyl) 2,2-bis (3,5-di-t-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1,2,2,6,6- Pentamethyl-4-piperidyl) decandioate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl] -2,2,6,6-tetramethylpiperidine, 2-methyl-2- ( 2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl -4-pi Lysyl) 1,2,3,4-butane tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate, and the like.
 また、好ましいリン系安定剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドなどのモノホスファイト系化合物;4,4′-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、4,4′イソプロピリデン-ビス(フェニル-ジ-アルキル(C12~C15)ホスファイト)などのジホスファイト系化合物などが挙げられる。これらの中でも、モノホスファイト系化合物が好ましく、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが特に好ましい。 Further, the preferable phosphorus stabilizer is not particularly limited as long as it is a substance usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonyl). Phenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9 Monophosphite compounds such as 1,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) Phosphite), 4,4 'isopropylidene-bis (phenyl-di-alkyl (C12-C15)) Fight) and the like diphosphite compounds such as. Among these, monophosphite compounds are preferable, and tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite and the like are particularly preferable.
 また、好ましいイオウ系安定剤としては、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3′-チオジプロピピオネート、ジステアリル 3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ)-プロピオネート、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどが挙げられる。 Preferred sulfur stabilizers include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3- Thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thio) -propionate, 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane Etc.
 これらの各安定剤の配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、脂環式炭化水素系共重合体100質量部に対して通常0.01~2質量部、好ましくは0.01~1質量部であることが好ましい。 The amount of each of these stabilizers is appropriately selected within a range not to impair the purpose of the present invention, but is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based copolymer, The amount is preferably 0.01 to 1 part by mass.
(界面活性剤)
 界面活性剤は、同一分子中に親水基と疎水基とを有する化合物である。界面活性剤は樹脂表面への水分の付着や上記表面からの水分の蒸発の速度を調節することで、樹脂組成物の白濁を防止することが可能となる。
(Surfactant)
A surfactant is a compound having a hydrophilic group and a hydrophobic group in the same molecule. The surfactant can prevent white turbidity of the resin composition by adjusting the rate of moisture adhesion to the resin surface and the rate of moisture evaporation from the surface.
 界面活性剤の親水基としては、具体的には、ヒドロキシ基、炭素数1以上のヒドロキシアルキル基、ヒドロキシル基、カルボニル基、エステル基、アミノ基、アミド基、アンモニウム塩、チオール、スルホン酸塩、リン酸塩、ポリアルキレングリコール基などが挙げられる。ここで、アミノ基は1級、2級、3級のいずれであってもよい。界面活性剤の疎水基としては、具体的に炭素数6以上のアルキル基、炭素数6以上のアルキル基を有するシリル基、炭素数6以上のフルオロアルキル基などが挙げられる。ここで、炭素数6以上のアルキル基は置換基として芳香環を有していてもよい。アルキル基としては、具体的にヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデセニル、ドデシル、トリデシル、テトラデシル、ミリスチル、ステアリル、ラウリル、パルミチル、シクロヘキシルなどが挙げられる。芳香環としてはフェニル基などが挙げられる。この界面活性剤は、上記のような親水基と疎水基とをそれぞれ同一分子中に少なくとも1個ずつ有していればよく、各基を2個以上有していてもよい。 Specific examples of the hydrophilic group of the surfactant include a hydroxy group, a hydroxyalkyl group having 1 or more carbon atoms, a hydroxyl group, a carbonyl group, an ester group, an amino group, an amide group, an ammonium salt, a thiol, a sulfonate, A phosphate, a polyalkylene glycol group, etc. are mentioned. Here, the amino group may be primary, secondary, or tertiary. Specific examples of the hydrophobic group of the surfactant include an alkyl group having 6 or more carbon atoms, a silyl group having an alkyl group having 6 or more carbon atoms, and a fluoroalkyl group having 6 or more carbon atoms. Here, the alkyl group having 6 or more carbon atoms may have an aromatic ring as a substituent. Specific examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecenyl, dodecyl, tridecyl, tetradecyl, myristyl, stearyl, lauryl, palmityl, cyclohexyl and the like. Examples of the aromatic ring include a phenyl group. The surfactant only needs to have at least one hydrophilic group and hydrophobic group as described above in the same molecule, and may have two or more groups.
 このような界面活性剤としては、より具体的には、例えば、ミリスチルジエタノールアミン、2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、2-ヒドロキシエチル-2-ヒドロキシトリデシルアミン、2-ヒドロキシエチル-2-ヒドロキシテトラデシルアミン、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ジ-2-ヒドロキシエチル-2-ヒドロキシドデシルアミン、アルキル(炭素数8~18)ベンジルジメチルアンモニウムクロライド、エチレンビスアルキル(炭素数8~18)アミド、ステアリルジエタノールアミド、ラウリルジエタノールアミド、ミリスチルジエタノールアミド、パルミチルジエタノールアミド、などが挙げられる。これらのうちでも、ヒドロキシアルキル基を有するアミン化合物またはアミド化合物が好ましく用いられる。本発明では、これら化合物を2種以上組合わせて用いてもよい。 More specifically, examples of such a surfactant include myristyl diethanolamine, 2-hydroxyethyl-2-hydroxydodecylamine, 2-hydroxyethyl-2-hydroxytridecylamine, 2-hydroxyethyl-2- Hydroxytetradecylamine, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, di-2-hydroxyethyl-2-hydroxydodecylamine, alkyl (8-18 carbon atoms) benzyldimethylammonium chloride, ethylene Examples thereof include bisalkyl (carbon number 8 to 18) amide, stearyl diethanolamide, lauryl diethanolamide, myristyl diethanolamide, palmityl diethanolamide, and the like. Among these, amine compounds or amide compounds having a hydroxyalkyl group are preferably used. In the present invention, two or more of these compounds may be used in combination.
 界面活性剤は、温度、湿度の変動に伴なう成形物の白濁を効果的に抑え、成形物の光透過率を高く維持するという観点から、脂環式炭化水素系重合体100質量部に対して0.01~10質量部添加されることが好ましい。界面活性剤の添加量は脂環式炭化水素系重合体100質量部に対して0.05~5質量部とすることがより好ましく、0.3~3質量部とすることが更に好ましい。 From the viewpoint of effectively suppressing the white turbidity of the molded product accompanying fluctuations in temperature and humidity and maintaining the light transmittance of the molded product high, the surfactant is added to 100 parts by mass of the alicyclic hydrocarbon-based polymer. On the other hand, it is preferable to add 0.01 to 10 parts by mass. The addition amount of the surfactant is more preferably 0.05 to 5 parts by mass, still more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the alicyclic hydrocarbon-based polymer.
(可塑剤)
 可塑剤は共重合体のメルトインデックスを調節するため、必要に応じて添加される。
(Plasticizer)
The plasticizer is added as necessary to adjust the melt index of the copolymer.
 可塑剤としては、アジピン酸ビス(2-エチルヘキシル)、アジピン酸ビス(2-ブトキシエチル)、アゼライン酸ビス(2-エチルヘキシル)、ジプロピレングリコールジベンゾエート、クエン酸トリ-n-ブチル、クエン酸トリ-n-ブチルアセチル、エポキシ化大豆油、2-エチルヘキシルエポキシ化トール油、塩素化パラフィン、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、リン酸-t-ブチルフェニル、リン酸トリ-2-エチルヘキシルジフェニル、フタル酸ジブチル、フタル酸ジイソヘキシル、フタル酸ジヘプチル、フタル酸ジノニル、フタル酸ジウンデシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジトリデシル、フタル酸ブチルベンジル、フタル酸ジシクロヘキシル、セバシン酸ジ-2-エチルヘキシル、トリメリット酸トリ-2-エチルヘキシル、Santicizer 278、Paraplex G40、Drapex 334F、Plastolein 9720、Mesamoll、DNODP-610、HB-40等の公知のものが適用可能である。可塑剤の選定及び添加量の決定は、共重合体の透過性や環境変化に対する耐性を損なわないことを条件に適宜行なわれる。 Plasticizers include bis (2-ethylhexyl) adipate, bis (2-butoxyethyl) adipate, bis (2-ethylhexyl) azelate, dipropylene glycol dibenzoate, tri-n-butyl citrate, tricitrate citrate -N-butylacetyl, epoxidized soybean oil, 2-ethylhexyl epoxidized tall oil, chlorinated paraffin, tri-2-ethylhexyl phosphate, tricresyl phosphate, t-butylphenyl phosphate, tri-2-ethylhexyl phosphate Diphenyl, dibutyl phthalate, diisohexyl phthalate, diheptyl phthalate, dinonyl phthalate, diundecyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, dicyclyl phthalate Known materials such as hexyl, di-2-ethylhexyl sebacate, tri-2-ethylhexyl trimellitic acid, Santizer 278, Paraplex G40, Drapex 334F, Plastolein 9720, Mesamol, DNODP-610, HB-40, etc. are applicable. . The selection of the plasticizer and the addition amount are appropriately performed under the condition that the permeability of the copolymer and the resistance to environmental changes are not impaired.
 これらの樹脂としては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As these resins, cycloolefin resins are preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, and JSR manufactured by ARTON are preferable. Take as an example.
 また、対物レンズを構成する材料のアッベ数は、35以上80以下であることが好ましく、より好ましくは50以上80以下である。 The Abbe number of the material constituting the objective lens is preferably 35 or more and 80 or less, more preferably 50 or more and 80 or less.
 対物レンズについて、以下に記載する。本発明の対物レンズは単玉レンズであり、対物レンズの少なくとも一つの光学面が、中央領域と、中央領域の周りの中間領域と、中間領域の周りの周辺領域とを少なくとも有する。中央領域は、対物レンズの光軸を含む領域であることが好ましいが、光軸を含む微小な領域を未使用領域や特殊な用途の領域とし、その周りを中心領域(中央領域ともいう)としてもよい。中央領域、中間領域、及び周辺領域は同一の光学面上に設けられていることが好ましい。図1に示されるように、中央領域CN、中間領域MD、周辺領域OTは、同一の光学面上に、光軸を中心とする同心円状に設けられていることが好ましい。また、対物レンズの中央領域には第一光路差付与構造が設けられ、中間領域には第二光路差付与構造が設けられ、周辺領域には第三光路差付与構造が設けられている。中央領域、中間領域、周辺領域はそれぞれ隣接していることが好ましいが、間に僅かに隙間があっても良い。 The objective lens is described below. The objective lens of the present invention is a single lens, and at least one optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region. The central region is preferably a region including the optical axis of the objective lens, but a minute region including the optical axis is used as an unused region or a special purpose region, and the surroundings are defined as a central region (also referred to as a central region). Also good. The central region, the intermediate region, and the peripheral region are preferably provided on the same optical surface. As shown in FIG. 1, the central region CN, the intermediate region MD, and the peripheral region OT are preferably provided concentrically around the optical axis on the same optical surface. In addition, a first optical path difference providing structure is provided in the central area of the objective lens, a second optical path difference providing structure is provided in the intermediate area, and a third optical path difference providing structure is provided in the peripheral area. The central region, the intermediate region, and the peripheral region are preferably adjacent to each other, but there may be a slight gap between them.
 対物レンズの中央領域は、BD、DVD及びCDの記録/再生に用いられるBD/DVD/CD共用領域と言える。即ち、対物レンズは、中央領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中央領域を通過する第2光束を、DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、中央領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光する。また、中央領域に設けられた第1光路差付与構造は、第1光路差付与構造を通過する第1光束及び第2光束に対して、BDの保護基板の厚さt1とDVDの保護基板の厚さt2の違いにより発生する球面収差/第1光束と第2光束の波長の違いにより発生する球面収差を補正することが好ましい。さらに、第1光路差付与構造は、第1光路差付与構造を通過した第1光束及び第3光束に対して、BDの保護基板の厚さt1とCDの保護基板の厚さt3との違いにより発生する球面収差/第1光束と第3光束の波長の違いにより発生する球面収差を補正することが好ましい。 The central area of the objective lens can be said to be a BD / DVD / CD shared area used for recording / reproducing BD, DVD and CD. That is, the objective lens condenses the first light flux passing through the central area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the central area is recorded as information recording on the DVD. The light is condensed so that information can be recorded and / or reproduced on the surface, and the third light flux passing through the central region is condensed so that information can be recorded / reproduced on the information recording surface of the CD. In addition, the first optical path difference providing structure provided in the central region has the BD protective substrate thickness t1 and the DVD protective substrate thickness with respect to the first and second light fluxes passing through the first optical path difference providing structure. It is preferable to correct spherical aberration generated due to the difference in thickness t2 / spherical aberration generated due to the difference in wavelength between the first light beam and the second light beam. Further, the first optical path difference providing structure is different from the thickness t1 of the BD protective substrate and the thickness t3 of the CD protective substrate with respect to the first and third light fluxes that have passed through the first optical path difference providing structure. It is preferable to correct the spherical aberration caused by the difference in the wavelength of the first light beam and the third light beam.
 対物レンズの中間領域は、BD、DVDの記録/再生に用いられ、CDの記録/再生に用いられないBD/DVD共用領域と言える。即ち、対物レンズは、中間領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光し、中間領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、中間領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの中間領域を通過する第3光束は、CDの情報記録面上でフレアを形成することが好ましい。図3に示すように、対物レンズを通過した第3光束がCDの情報記録面上で形成するスポットにおいて、光軸側(又はスポット中心部)から外側へ向かう順番で、光量密度が高いスポット中心部SCN、光量密度がスポット中心部より低いスポット中間部SMD、光量密度がスポット中間部よりも高くスポット中心部よりも低いスポット周辺部SOTを有することが好ましい。スポット中心部が、光ディスクの情報の記録/再生に用いられ、スポット中間部及びスポット周辺部は、光ディスクの情報の記録/再生には用いられない。上記において、このスポット周辺部をフレアと言っている。但し、スポット中心部の周りにスポット中間部が存在せずスポット周辺部があるタイプ、即ち、集光スポットの周りに薄く光が大きなスポットを形成する場合も、そのスポット周辺部をフレアと呼んでもよい。つまり、対物レンズの中間領域を通過した第3光束は、CDの情報記録面上でスポット周辺部を形成することが好ましいとも言える。 The intermediate area of the objective lens is used for BD / DVD recording / reproduction and can be said to be a BD / DVD shared area not used for CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the intermediate area so that information can be recorded / reproduced on the information recording surface of the BD, and the second light flux passing through the intermediate area is recorded as information recording on the DVD. Light is collected so that information can be recorded / reproduced on the surface. On the other hand, the third light flux passing through the intermediate region is not condensed so that information can be recorded / reproduced on the information recording surface of the CD. The third light flux passing through the intermediate region of the objective lens preferably forms a flare on the information recording surface of the CD. As shown in FIG. 3, in the spot formed on the information recording surface of the CD by the third light beam that has passed through the objective lens, the spot center having a high light amount density in the order from the optical axis side (or the spot center) to the outside. It is preferable to have a portion SCN, a spot intermediate portion SMD whose light density is lower than that of the spot central portion, and a spot peripheral portion SOT whose light amount density is higher than that of the spot intermediate portion and lower than that of the spot central portion. The center portion of the spot is used for recording / reproducing information on the optical disc, and the middle portion of the spot and the peripheral portion of the spot are not used for recording / reproducing information on the optical disc. In the above, this spot peripheral part is called flare. However, there is no spot middle part around the center part of the spot and there is a spot peripheral part, that is, even when a light spot is formed thinly around the condensing spot, the spot peripheral part may be called a flare. Good. In other words, it can be said that the third light flux that has passed through the intermediate region of the objective lens preferably forms a spot peripheral portion on the information recording surface of the CD.
 対物レンズの周辺領域は、BDの記録/再生に用いられ、DVD及びCDの記録/再生に用いられないBD専用領域と言える。即ち、対物レンズは、周辺領域を通過する第1光束を、BDの情報記録面上に情報の記録/再生ができるように集光する。その一方で、周辺領域を通過する第2光束を、DVDの情報記録面上に情報の記録/再生ができるように集光せず、周辺領域を通過する第3光束を、CDの情報記録面上に情報の記録/再生ができるように集光しない。対物レンズの周辺領域を通過する第2光束及び第3光束は、DVD及びCDの情報記録面上でフレアを形成することが好ましい。つまり、対物レンズの周辺領域を通過した第2光束及び第3光束は、DVD及びCDの情報記録面上でスポット周辺部を形成することが好ましい。 The peripheral region of the objective lens is used for BD recording / reproduction, and can be said to be a BD-dedicated region that is not used for DVD / CD recording / reproduction. That is, the objective lens condenses the first light flux passing through the peripheral region so that information can be recorded / reproduced on the information recording surface of the BD. On the other hand, the second light flux that passes through the peripheral area is not condensed so that information can be recorded / reproduced on the information recording surface of the DVD, and the third light flux that passes through the peripheral area does not converge. Do not collect light so that information can be recorded / reproduced on top. The second light flux and the third light flux that pass through the peripheral area of the objective lens preferably form a flare on the information recording surface of DVD and CD. That is, it is preferable that the second light flux and the third light flux that have passed through the peripheral area of the objective lens form a spot peripheral portion on the information recording surface of DVD and CD.
 第1光路差付与構造は、対物レンズの中央領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第1光路差付与構造が、中央領域の全面に設けられていることである。第2光路差付与構造は、対物レンズの中間領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第2光路差付与構造が、中間領域の全面に設けられていることである。第3光路差付与構造は、対物レンズの周辺領域の面積の70%以上の領域に設けられていることが好ましく、90%以上がより好ましい。より好ましくは、第3光路差付与構造が、周辺領域の全面に設けられていることである。 The first optical path difference providing structure is preferably provided in a region of 70% or more of the area of the central region of the objective lens, and more preferably 90% or more. More preferably, the first optical path difference providing structure is provided on the entire surface of the central region. The second optical path difference providing structure is preferably provided in a region of 70% or more of the area of the intermediate region of the objective lens, and more preferably 90% or more. More preferably, the second optical path difference providing structure is provided on the entire surface of the intermediate region. The third optical path difference providing structure is preferably provided in a region of 70% or more of the area of the peripheral region of the objective lens, and more preferably 90% or more. More preferably, the third optical path difference providing structure is provided on the entire surface of the peripheral region.
 なお、本明細書でいう光路差付与構造とは、入射光束に対して光路差を付加する構造の総称である。光路差付与構造には、位相差を付与する位相差付与構造も含まれる。また、位相差付与構造には回折構造が含まれる。本発明の光路差付与構造は回折構造であることが好ましい。光路差付与構造は、段差を有し、好ましくは段差を複数有する。この段差により入射光束に光路差及び/又は位相差が付加される。光路差付与構造により付加される光路差は、入射光束の波長の整数倍であっても良いし、入射光束の波長の非整数倍であっても良い。段差は、光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、光路差付与構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、光路差付与構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ光路差を付与させる光路差付与構造であっても、光軸から離れる程、段差量が大きくなる。 In addition, the optical path difference providing structure referred to in this specification is a general term for structures that add an optical path difference to an incident light beam. The optical path difference providing structure also includes a phase difference providing structure for providing a phase difference. The phase difference providing structure includes a diffractive structure. The optical path difference providing structure of the present invention is preferably a diffractive structure. The optical path difference providing structure has a step, preferably a plurality of steps. This step adds an optical path difference and / or phase difference to the incident light flux. The optical path difference added by the optical path difference providing structure may be an integer multiple of the wavelength of the incident light beam or a non-integer multiple of the wavelength of the incident light beam. The steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. When the objective lens provided with the optical path difference providing structure is a single aspherical lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis. Each will be slightly different. For example, when the objective lens is a single aspherical convex lens, the step amount increases as the distance from the optical axis increases even with the optical path difference providing structure that provides the same optical path difference.
 また、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、光軸から離れる程、段差量が大きくなる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single lens aspherical convex lens, even if the diffractive structure generates diffracted light of the same diffraction order, the step amount increases as the distance from the optical axis increases.
 ところで、光路差付与構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、光路差付与構造の基礎構造は、一般に、様々な断面形状(光軸を含む面での断面形状) をとり得、光軸を含む断面形状がブレーズ型構造と階段型構造とに大別される。 Incidentally, it is preferable that the optical path difference providing structure has a plurality of concentric annular zones with the optical axis as the center. In addition, the basic structure of the optical path difference providing structure can generally have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shape including the optical axis is roughly divided into a blazed structure and a staircase structure. Is done.
 ブレーズ型構造とは、図4(a)、(b)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、鋸歯状の形状ということである。鋸歯状という表現ではあるが、鋸歯の頂点部分が丸みを帯びているような形状も鋸歯状に含める。なお、図4の例においては、上方が光源側、下方が光ディスク側であって、非球面としての平面に光路差付与構造が形成されているものとする。ブレーズ型構造において、1つのブレーズ単位の光軸垂直方向の長さをピッチPという。(図4(a)、(b)参照)また、ブレーズの光軸に平行方向の段差の長さを段差量Bという。(図4(a)参照) As shown in FIGS. 4A and 4B, the blaze-type structure means that the cross-sectional shape including the optical axis of the optical element having the optical path difference providing structure is a sawtooth shape. Although the expression is a sawtooth shape, a shape in which the apex portion of the sawtooth is rounded is also included in the sawtooth shape. In the example of FIG. 4, it is assumed that the upper side is the light source side and the lower side is the optical disc side, and the optical path difference providing structure is formed on a flat surface as an aspherical surface. In the blazed structure, the length in the direction perpendicular to the optical axis of one blaze unit is called a pitch P. (See FIGS. 4A and 4B.) The length of the step in the direction parallel to the optical axis of the blaze is referred to as a step amount B. (See Fig. 4 (a))
 また、階段型構造とは、図4(c)、(d)に示されるように、光路差付与構造を有する光学素子の光軸を含む断面形状が、小階段状のもの(階段単位と称する)を複数有するということである。なお、本明細書中、「Vレベル」とは、階段型構造の1つの階段単位において光軸垂直方向に対応する(向いた)輪帯状の面(以下、テラス面と称することもある)が、段差によって区分けされV個の輪帯面毎に分割されていることをいい、特に3レベル以上の階段型構造は、小さい段差と大きい段差を有することになる。例えば、図4(c)に示す光路差付与構造を、5レベルの階段型構造といい、図4(d)に示す光路差付与構造を、2レベルの階段型構造(バイナリ構造ともいう)という。2レベルの階段型構造について説明する。光軸を中心とした同心円状の複数の輪帯を含み、対物レンズの光軸を含む複数の輪帯の断面の形状は、光軸に平行に延在する複数の段差面Pa、Pbと、隣接する段差面Pa、Pbの光源側端同士を連結する光源側テラス面Pcと、隣接する段差面Pa、Pbの光ディスク側端同士を連結する光ディスク側テラス面Pdとから形成され、光源側テラス面Pcと光ディスク側テラス面Pdとは、光軸に交差する方向に沿って交互に配置される。また、階段型構造において、1つの階段単位の光軸垂直方向の長さをピッチPという(図4(c)、(d)参照)。また、階段の光軸に平行方向の段差の長さを段差量B1,B2という。3レベル以上の階段型構造の場合、大段差量B1と小段差量B2とが存在することになる(図4(c)参照)。 In addition, as shown in FIGS. 4C and 4D, the staircase structure has a small staircase shape in cross section including the optical axis of an optical element having an optical path difference providing structure (referred to as a staircase unit). ). In the present specification, “V level” means a ring-shaped surface (hereinafter also referred to as a terrace surface) corresponding to (or facing) the optical axis vertical direction in one step unit of the step structure. In other words, it is divided by V steps and divided into V ring zones. Particularly, a three-level or higher staircase structure has a small step and a large step. For example, the optical path difference providing structure illustrated in FIG. 4C is referred to as a five-level step structure, and the optical path difference providing structure illustrated in FIG. 4D is referred to as a two-level step structure (also referred to as a binary structure). . A two-level staircase structure will be described. A plurality of annular zones including a plurality of concentric annular zones around the optical axis, and a plurality of annular zones including the optical axis of the objective lens have a plurality of stepped surfaces Pa and Pb extending in parallel to the optical axis, The light source side terrace surface Pc for connecting the light source side ends of the adjacent step surfaces Pa and Pb and the optical disk side terrace surface Pd for connecting the optical disk side ends of the adjacent step surfaces Pa and Pb are formed. The surface Pc and the optical disc side terrace surface Pd are alternately arranged along the direction intersecting the optical axis. In the staircase structure, the length of one step unit in the direction perpendicular to the optical axis is referred to as a pitch P (see FIGS. 4C and 4D). The length of the step in the direction parallel to the optical axis of the staircase is referred to as step amounts B1 and B2. In the case of a three-level or higher staircase structure, a large step amount B1 and a small step amount B2 exist (see FIG. 4C).
 なお、光路差付与構造は、ある単位形状が周期的に繰り返されている構造であることが好ましい。 ここでいう「単位形状が周期的に繰り返されている」とは、同一の形状が同一の周期で繰り返されている形状は当然含む。さらに、周期の1単位となる単位形状が、規則性を持って、周期が徐々に長くなったり、徐々に短くなったりする形状も、「単位形状が周期的に繰り返されている」ものに含まれているとする。 Note that the optical path difference providing structure is preferably a structure in which a certain unit shape is periodically repeated. 「“ The unit shape is periodically repeated ”here naturally includes shapes in which the same shape is repeated in the same cycle. In addition, the unit shape that is one unit of the cycle has regularity, and the shape in which the cycle gradually increases or decreases gradually is also included in the “unit shape is periodically repeated”. Suppose that
 光路差付与構造が、ブレーズ型構造を有する場合、単位形状である鋸歯状の形状が繰り返された形状となる。図4(a)に示されるように、同一の鋸歯状形状が繰り返されてもよいし、図4(b)に示されるように、光軸から離れる方向に進むに従って、徐々に鋸歯状形状のピッチが長くなっていく形状、又は、ピッチが短くなっていく形状であってもよい。加えて、ある領域においては、ブレーズ型構造の段差が光軸(中心)側とは逆を向いている形状とし、他の領域においては、ブレーズ型構造の段差が光軸(中心)側を向いている形状とし、その間に、ブレーズ型構造の段差の向きを切り替えるために必要な遷移領域が設けられている形状としてもよい。なお、このようにブレーズ型構造の段差の向きを途中で切り替える構造にする場合、輪帯ピッチを広げることが可能となり、光路差付与構造の製造誤差による透過率低下を抑制できる。 When the optical path difference providing structure has a blazed structure, the sawtooth shape as a unit shape is repeated. As shown in FIG. 4 (a), the same sawtooth shape may be repeated, and as shown in FIG. 4 (b), the shape of the sawtooth shape gradually increases as it moves away from the optical axis. A shape in which the pitch becomes longer or a shape in which the pitch becomes shorter may be used. In addition, in some areas, the blazed structure has a step opposite to the optical axis (center) side, and in other areas, the blazed structure has a step toward the optical axis (center). It is good also as a shape in which the transition area | region required in order to switch the direction of the level | step difference of a blaze | braze type | mold structure is provided in the meantime. In addition, when it is set as the structure which switches the direction of the level | step difference of a blaze | braze type | mold in this way, it becomes possible to widen an annular zone pitch and it can suppress the transmittance | permeability fall by the manufacturing error of an optical path difference providing structure.
 また、第1光路差付与構造及び第2光路差付与構造及び第3光路差付与構造は、それぞれ対物レンズの異なる光学面に設けてもよいが、同一の光学面に設けることが好ましい。
同一の光学面に設けることにより、製造時の偏芯誤差を少なくすることが可能となるため好ましい。第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの光ディスク側の面よりも、対物レンズの光源側の面に設けられることが好ましい。
また、第1光路差付与構造、第2光路差付与構造及び第3光路差付与構造は、対物レンズの曲率半径の絶対値が小さい方の光学面に設けることが好ましい。光路差付与構造を有効径の大きい面に設けた場合、例えば基礎構造の最小輪帯幅をより広く設計することができ、輪帯の段差部分による光量損失を抑えることができるメリットがある。また、対物レンズがレンズクリーナーを用いて擦られた場合に輪帯構造が摩耗しない、などのメリットがある。尚、第1基礎構造と第2基礎構造を重畳せずに、それぞれ異なる光学面に設けることも考えられる。第3基礎構造と第4基礎構造も、同様に重畳せずにそれぞれ異なる光学面に設けることも考えられる。
The first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure may be provided on different optical surfaces of the objective lens, but are preferably provided on the same optical surface.
Providing them on the same optical surface is preferable because it makes it possible to reduce eccentricity errors during manufacturing. The first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the light source side surface of the objective lens rather than the optical disk side surface of the objective lens.
The first optical path difference providing structure, the second optical path difference providing structure, and the third optical path difference providing structure are preferably provided on the optical surface having the smaller absolute value of the radius of curvature of the objective lens. When the optical path difference providing structure is provided on a surface having a large effective diameter, for example, the minimum annular zone width of the basic structure can be designed wider, and there is an advantage that light amount loss due to a step portion of the annular zone can be suppressed. In addition, there is a merit that the annular structure does not wear when the objective lens is rubbed with a lens cleaner. It is also conceivable to provide the first basic structure and the second basic structure on different optical surfaces without overlapping. Similarly, the third basic structure and the fourth basic structure may be provided on different optical surfaces without overlapping.
 次に、中央領域に設けられる第1光路差付与構造について説明する。第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造を重ね合わせた構造である。第1光路差付与構造は、第1基礎構造と第2基礎構造のみを重ね合わせた構造であることが好ましい。
光路差付与構造がブレーズ型の基礎構造を2種類重畳してなるため、単一の構造で光路差付与構造を形成する場合に比して、設計の自由度が2倍になり、互換を達成しつつ、3つのディスクに対して自由に倍率を決めることが可能となる。
Next, the 1st optical path difference providing structure provided in a center area | region is demonstrated. The first optical path difference providing structure is a structure in which at least the first basic structure and the second basic structure are overlapped. The first optical path difference providing structure is preferably a structure in which only the first basic structure and the second basic structure are overlapped.
Since the optical path difference providing structure is made by superimposing two types of blazed basic structures, the design flexibility is doubled and compatibility is achieved compared to the case where the optical path difference providing structure is formed with a single structure. However, the magnification can be freely determined for the three disks.
 第1基礎構造は、ブレーズ型構造である。また、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。これを(1/1/1)構造と呼ぶ。第1光束の回折光量が最大となる回折次数を奇数である1次としているため、BDとCDとで異なる近軸パワーを付与でき、BDとCDとで生じる相対的な球面収差の補正が良好に行える。また、第1光束使用時に低次である1次回折光が発生するようにしているため、第1基礎構造の段差量が大きくなり過ぎず、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The first basic structure is a blaze type structure. In addition, the first basic structure makes the first-order diffracted light quantity of the first light beam that has passed through the first basic structure larger than any other order of diffracted light quantity, and the first-order diffracted light quantity that has passed through the first basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the first basic structure is made larger than any other order of diffracted light quantity. This is called a (1/1/1) structure. Since the diffraction order that maximizes the amount of diffracted light of the first light beam is an odd first order, different paraxial powers can be applied to BD and CD, and correction of relative spherical aberration that occurs between BD and CD is good. Can be done. In addition, since the first-order diffracted light, which is a lower order, is generated when the first light beam is used, the step amount of the first basic structure does not become too large, making the manufacture easy, and suppressing the light amount loss caused by the manufacturing error. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
 また、少なくとも中央領域の光軸付近に設けられる第1基礎構造は、その段差が光軸とは逆の方向を向いていることが好ましい。「段差が光軸とは逆の方向を向いている」とは、図5(b)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第1基礎構造とは、(1/1/1)構造の段差のうち、少なくとも最も光軸に近い段差を言う。中央領域に存在する第1基礎構造の全段差のうち、少なくとも5割以上が光軸とは逆の方向を向いていることが好ましく、より好ましくは7割以上、さらに好ましくは9割以上の段差が光軸とは逆の方向を向いていることである。 Further, it is preferable that the first basic structure provided at least in the vicinity of the optical axis in the central region has a step in a direction opposite to the optical axis. “The step is directed in the direction opposite to the optical axis” means a state as shown in FIG. In addition, the first basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (1/1/1) structure. Of all the steps of the first basic structure existing in the central region, it is preferable that at least 50% or more are directed in the direction opposite to the optical axis, more preferably 70% or more, and even more preferably 90% or more. Is in the opposite direction to the optical axis.
 例えば、中央領域の中間領域付近に設けられる第1基礎構造の段差が光軸の方向を向いていてもよい。即ち、図6(b)に示すように、第1基礎構造が光軸付近では段差が光軸とは逆の方向を向いているが、中間領域付近では第1基礎構造の段差が光軸の方を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第1基礎構造の全ての段差が光軸とは逆の方向を向いていることである。 For example, the step of the first basic structure provided near the middle region of the center region may face the direction of the optical axis. That is, as shown in FIG. 6 (b), when the first foundation structure is in the vicinity of the optical axis, the step is opposite to the optical axis. It is good also as a shape which faces the direction. However, it is preferable that all the steps of the first basic structure provided in the central region are directed in a direction opposite to the optical axis.
 このように、第1光束における回折次数が1次となる第1基礎構造の段差の向きを光軸と逆方向に向けることにより、BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスをより一層確保することが可能となる。 In this way, the direction of the step of the first basic structure in which the diffraction order of the first light beam is the first order is directed in the direction opposite to the optical axis, so that the three types of optical disks of BD / DVD / CD can be used interchangeably. Even with a thick objective lens having a large axial thickness, a working distance can be further ensured when the CD is used.
 BD/DVD/CDの3種類の光ディスクの互換で用いるような軸上厚が厚い厚肉の対物レンズにおいても、CD使用時にワーキングディスタンスを十分確保するという観点からは、第1基礎構造が第1光束に対して近軸パワーを持つことが好ましい。ここで、「近軸パワーを持つ」とは、第1基礎構造の光路差関数を後述する数2式で表した場合、C22が0でないことを意味する。 The first basic structure is the first basic structure from the viewpoint of securing a sufficient working distance when using a CD even in a thick objective lens having a thick on-axis thickness, which is used for compatibility with three types of optical disks of BD / DVD / CD. It is preferable to have paraxial power with respect to the light beam. Here, “having paraxial power” means that C 2 h 2 is not 0 when the optical path difference function of the first basic structure is expressed by the following equation ( 2 ).
 また、第1基礎構造が有する焦点距離をfD1(単位:mm)と定義した場合に、以下の式を満たす構成としても良い。
 -0.40<f1/fD1<-0.10・・・(5)
(但し、fD1=―λB1/(2×C12×M1×λ)、M1の値は1である)
(λB1は第1基礎構造の製造波長、C12は第1基礎構造の2次の光路差関数係数、M1は第1基礎構造の回折次数)
尚、「製造波長」とは、第i基礎構造を通過した際にMi次の回折効率が最も高くなる光束の波長である。
Further, when the focal length of the first basic structure is defined as fD 1 (unit: mm), a configuration that satisfies the following formula may be adopted.
−0.40 <f1 / fD 1 <−0.10 (5)
(However, fD 1 = −λB 1 / (2 × C 12 × M1 × λ), the value of M1 is 1)
(ΛB 1 is the manufacturing wavelength of the first basic structure, C 12 is the second-order optical path difference function coefficient of the first basic structure, and M 1 is the diffraction order of the first basic structure)
The “manufacturing wavelength” is the wavelength of the luminous flux that gives the highest Mi-order diffraction efficiency when passing through the i-th basic structure.
 式(5)を満たすことにより、CD使用時のワーキングディスタンスを確保しつつBD使用時の色収差が大きくなりすぎないため好ましい。式(5)の下限を上回れば、第一の光ディスク使用時に発生する色収差量が十分抑えられ、また、式(5)の上限を下回れば、CD使用時のワーキングディスタンスを十分確保できるため好ましい。 It is preferable to satisfy the formula (5) because chromatic aberration when using a BD does not become too large while ensuring a working distance when using a CD. If the lower limit of the formula (5) is exceeded, the amount of chromatic aberration generated when the first optical disk is used is sufficiently suppressed, and if it is less than the upper limit of the formula (5), a working distance when using the CD can be secured sufficiently.
 第2基礎構造も、ブレーズ型構造である。また、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。これを(2/1/1)構造と呼ぶ。第1光束の回折光量が最大となる回折次数を偶数である2次としているため、第1~第3光束の全てにおいて高い回折効率を得ることができる。また、第1光束使用時に低次である2次回折光が発生するようにしているため、第2基礎構造の段差量が大きくなり過ぎず、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。 The second basic structure is also a blazed structure. Further, the second basic structure makes the second-order diffracted light quantity of the first light beam that has passed through the second basic structure larger than any other order of diffracted light quantity, and the first-order of the second light beam that has passed through the second basic structure. Is made larger than any other order of the diffracted light quantity, and the first order diffracted light quantity of the third light flux that has passed through the second basic structure is made larger than any other order of diffracted light quantity. This is called a (2/1/1) structure. Since the diffraction order that maximizes the amount of diffracted light of the first light beam is an even second order, high diffraction efficiency can be obtained for all of the first to third light beams. In addition, since the second-order diffracted light, which is a lower order, is generated when the first light beam is used, the step amount of the second basic structure does not become too large, making the manufacture easy, and suppressing the light quantity loss caused by the manufacturing error. This is preferable because it can reduce the diffraction efficiency fluctuation at the time of wavelength fluctuation.
 また、少なくとも中央領域の光軸付近に設けられる第2基礎構造は、その段差が光軸の方向を向いていることが好ましい。「段差が光軸の方向を向いている」とは、図5(a)のような状態を言う。また、「少なくとも中央領域の光軸付近」に設けられる第2基礎構造とは、(2/1/1)構造の段差のうち、少なくとも最も光軸に近い段差を言う。中央領域に存在する第2基礎構造の全段差のうち、少なくとも5割以上が光軸の方向を向いていることが好ましく、より好ましくは7割以上、さらに好ましくは9割以上の段差が光軸の方向を向いていることである。 Further, it is preferable that the step of the second basic structure provided at least in the vicinity of the optical axis in the central region is directed in the direction of the optical axis. “The step is directed in the direction of the optical axis” means a state as shown in FIG. The second basic structure provided “at least in the vicinity of the optical axis of the central region” refers to a step at least closest to the optical axis among steps of the (2/1/1) structure. It is preferable that at least 50% or more of all the steps of the second basic structure existing in the central region face the direction of the optical axis, more preferably 70% or more, more preferably 90% or more. It is facing the direction of.
 例えば、中央領域の中間領域付近に設けられる第2基礎構造は、段差が光軸とは逆の方向を向いていてもよい。即ち、図6(a)に示すように、第2基礎構造が光軸付近では段差が光軸の方向を向いているが、中間領域付近では第2基礎構造の段差が光軸とは逆の方向を向くような形状としてもよい。但し、好ましくは、中央領域に設けられる第2基礎構造は、全ての段差が光軸の方向を向いていることである。 For example, in the second basic structure provided near the middle region of the central region, the step may be directed in a direction opposite to the optical axis. That is, as shown in FIG. 6A, the step is directed toward the optical axis when the second foundation structure is near the optical axis, but the step of the second foundation structure is opposite to the optical axis near the intermediate region. It is good also as a shape which faces a direction. However, preferably, the second basic structure provided in the central region is that all the steps are directed in the direction of the optical axis.
 第1光路差付与構造が(1/1/1)構造である第1基礎構造と、(2/1/1)構造である第2基礎構造とを重ね合わせているため、段差の高さは非常に低くなる。従って、より製造誤差を低減させることが可能となり、光量ロスを更に抑えることが可能となると共に、波長変動時の回折効率の変動をより抑えることが可能となる。 Since the first optical path difference providing structure is a (1/1/1) structure and the second basic structure (2/1/1) are overlapped, the height of the step is Very low. Therefore, it is possible to further reduce manufacturing errors, further reduce the light amount loss, and further suppress the change in diffraction efficiency when the wavelength changes.
 さらに、少なくとも中央領域の光軸付近においては段差が光軸とは逆の方向を向いている第1基礎構造と、少なくとも中央領域の光軸付近においては段差が光軸の方向を向いている第2基礎構造を重ね合わせることにより、第1基礎構造と第2基礎構造の段差の向きが同じになるように重ね合わせた場合に比べて、重ね合わせた後の段差の高さが高くなることをより一層抑制でき、それに伴い、影の効果の抑制や、製造誤差などに因る光量ロスをより抑えることが可能となると共に、波長変動時の回折効率の変動もより抑えることが可能となる。 Furthermore, at least near the optical axis of the central region, the first foundation structure in which the step is opposite to the optical axis, and at least near the optical axis of the central region, the step is directed toward the optical axis. By superimposing two foundation structures, the height of the step after superposition is higher than when superimposing the steps so that the steps of the first and second foundation structures are the same. Accordingly, it is possible to further suppress the shadow effect, to further suppress the light amount loss due to the manufacturing error, and to further suppress the fluctuation of the diffraction efficiency at the time of the wavelength fluctuation.
 また、BD/DVD/CDの3種類の光ディスクの互換を可能とするだけでなく、BD/DVD/CDの3種類の何れの光ディスクに対しても、高い光利用効率を維持できる光利用効率のバランスが取れた対物レンズを提供することが好ましい。例えば、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を60%以上、波長λ3に対する回折効率を50%以上とする対物レンズを提供することが好ましい。更には、波長λ1に対する回折効率を80%以上、波長λ2に対する回折効率を70%以上、波長λ3に対する回折効率を60%以上とする対物レンズも提供することがより好ましい。加えて、第1基礎構造の段差の向きを光軸と逆方向に向けることにより、波長が長波長側に変動した際に収差をアンダー(補正不足)の方向に変化させることがより容易に行える。 Further, not only can the three types of optical discs of BD / DVD / CD be compatible, but also the light usage efficiency that can maintain high light usage efficiency for any of the three types of optical discs of BD / DVD / CD. It is preferable to provide a balanced objective lens. For example, it is preferable to provide an objective lens that has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 60% or more for the wavelength λ2, and a diffraction efficiency of 50% or more for the wavelength λ3. Furthermore, it is more preferable to provide an objective lens that has a diffraction efficiency of 80% or more for the wavelength λ1, a diffraction efficiency of 70% or more for the wavelength λ2, and a diffraction efficiency of 60% or more for the wavelength λ3. In addition, by orienting the step of the first basic structure in the direction opposite to the optical axis, it is easier to change the aberration in the direction of under (undercorrection) when the wavelength changes to the long wavelength side. .
 段差が光軸とは逆を向いている第1基礎構造と段差が光軸の方を向いている第2基礎構造とを重ね合わせた後の第1光路差付与構造の形状と段差量という観点から、(1/1/1)構造である第1基礎構造と、(2/1/1)構造である第2基礎構造とを重ね合わせた第1光路差付与構造を以下のように表現することができる。少なくとも中央領域の光軸付近に設けられている第1光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを共に有し、光軸とは逆の方向を向いている段差の段差量d11と、光軸の方向を向いている段差の段差量d12とが、以下の条件式(14)、(15)を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(14)、(15)を満たすことである。尚、光路差付与構造を設けた対物レンズが単玉非球面の凸レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、同じ光路差を付与させる光路差付与構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。下記条件式において上限に1.5を乗じているのは、当該段差量の増加を加味した故である。但し、ここでのnは、第1の波長λ1における対物レンズの屈折率を表す。
 0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (14)
 0.6・(λ1/(n-1))<d12<1.5・(2λ1/(n-1))  (15)
Viewpoint of the shape and step amount of the first optical path difference providing structure after the first basic structure in which the step is opposite to the optical axis and the second basic structure in which the step is directed toward the optical axis are overlapped Therefore, the first optical path difference providing structure in which the first basic structure having the (1/1/1) structure and the second basic structure having the (2/1/1) structure are overlapped is expressed as follows. be able to. The first optical path difference providing structure provided at least in the vicinity of the optical axis of the central region has both a step facing in the opposite direction to the optical axis and a step facing in the direction of the optical axis. It is preferable that the step amount d11 of the step facing the direction opposite to the axis and the step amount d12 of the step facing the direction of the optical axis satisfy the following conditional expressions (14) and (15). More preferably, the following conditional expressions (14) and (15) are satisfied in all the regions of the central region. If the objective lens provided with the optical path difference providing structure is a single aspherical convex lens, the incident angle of the light flux to the objective lens differs depending on the height from the optical axis, so that the optical path difference providing structure that gives the same optical path difference Even so, in general, as the distance from the optical axis increases, the step amount tends to increase. In the following conditional expression, the upper limit is multiplied by 1.5 because the increase in the level difference is taken into account. Here, n represents the refractive index of the objective lens at the first wavelength λ1.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (14)
0.6 · (λ1 / (n-1)) <d12 <1.5 · (2λ1 / (n-1)) (15)
 尚、「少なくとも中央領域の光軸付近」に設けられる第1光路差付与構造とは、少なくとも光軸に最も近い光軸とは逆の方向を向いている段差と、光軸に最も近い光軸の方向を向いている段差とを共に有する光路差付与構造をいう。好ましくは、少なくとも、光軸から中央領域と中間領域の境界までの光軸直交方向の半分の位置と、光軸との間に存在する段差を有する光路差付与構造である。 The first optical path difference providing structure provided “at least in the vicinity of the optical axis of the central region” includes at least a step facing in a direction opposite to the optical axis closest to the optical axis and an optical axis closest to the optical axis. An optical path difference providing structure having both of the steps facing the direction of. Preferably, the optical path difference providing structure has a step existing between at least a half position in the direction orthogonal to the optical axis from the optical axis to the boundary between the central region and the intermediate region.
 また、λ1は390~415nm(0.390~0.415μm)であるので、nが1.50~1.60である場合には、上記条件式は以下のように表すことが可能となる。 Further, since λ1 is 390 to 415 nm (0.390 to 0.415 μm), when n is 1.50 to 1.60, the conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm         (16)
 0.39μm<d12<2.31μm         (17)
0.39 μm <d11 <1.15 μm (16)
0.39 μm <d12 <2.31 μm (17)
 更に、第1基礎構造と第2基礎構造の重ね合わせ方としては、第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせるように基礎構造の形状を微調整するか、第1基礎構造の全ての段差の位置と、第2基礎構造の段差の位置を合わせるように基礎構造の形状を微調整することが好ましい。 Further, as a method of overlapping the first foundation structure and the second foundation structure, the shape of the foundation structure is finely adjusted so that the positions of all the steps of the second foundation structure and the positions of the steps of the first foundation structure are matched. Alternatively, it is preferable to finely adjust the shape of the foundation structure so that the positions of all the steps of the first foundation structure and the positions of the steps of the second foundation structure are matched.
 上述のように第2基礎構造の全ての段差の位置と、第1基礎構造の段差の位置を合わせた場合、第1光路差付与構造のd11、d12は以下の条件式(14)´、(15)´を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(14)’、(15)’を満たすことである。
 0.6・(λ1/(n-1))<d11<1.5・(λ1/(n-1))   (14)’
 0.6・(λ1/(n-1))<d12<1.5・(λ1/(n-1))   (15)’
As described above, when the positions of all the steps of the second foundation structure are matched with the positions of the steps of the first foundation structure, d11 and d12 of the first optical path difference providing structure are the following conditional expressions (14) ′, ( 15) ′ is preferably satisfied. More preferably, the following conditional expressions (14) ′ and (15) ′ are satisfied in all regions of the central region.
0.6 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (14) '
0.6 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (15) '
 また、λ1は390~415nm(0.390~0.415μm)であるので、nが1.50~1.60である場合、上記条件式は以下のように表すことが可能となる。 Also, since λ1 is 390 to 415 nm (0.390 to 0.415 μm), when n is 1.50 to 1.60, the above conditional expression can be expressed as follows.
 0.39μm<d11<1.15μm         (16)’
 0.39μm<d12<1.15μm         (17)’
0.39 μm <d11 <1.15 μm (16) ′
0.39 μm <d12 <1.15 μm (17) ′
 更に好ましくは、以下の条件式(14)’’、(15)’’を満たすことが好ましい。より好ましくは、中央領域の全ての領域において、以下の条件式(14)’’、(15)’’を満たすことである。
 0.9・(λ1/(n-1))<d11<1.5・(λ1/(n-1))  (14)’’
 0.9・(λ1/(n-1))<d12<1.5・(λ1/(n-1))  (15)’’
More preferably, the following conditional expressions (14) ″ and (15) ″ are preferably satisfied. More preferably, the following conditional expressions (14) ″ and (15) ″ are satisfied in all the regions of the central region.
0.9 · (λ1 / (n-1)) <d11 <1.5 · (λ1 / (n-1)) (14) ''
0.9 · (λ1 / (n-1)) <d12 <1.5 · (λ1 / (n-1)) (15) ''
 また、λ1は390~415nm(0.390~0.415μm)であるので、nが1.50~1.60である場合、上記条件式は以下のように表すことが可能となる。 Also, since λ1 is 390 to 415 nm (0.390 to 0.415 μm), when n is 1.50 to 1.60, the above conditional expression can be expressed as follows.
 0.59μm<d11<1.15μm         (16)’’
 0.59μm<d12<1.15μm         (17)’’
0.59 μm <d11 <1.15 μm (16) ″
0.59 μm <d12 <1.15 μm (17) ″
 また、(1/1/1)構造である第1基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化し、(2/1/1)構造である第2基礎構造において、入射する光束の波長がより長くなるよう変化した場合には、球面収差が補正不足方向(アンダー)に変化すると好ましい。このような構成により、光ピックアップ装置の温度の上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の変化を補正して、適切な集光スポットを各光ディスクの情報記録面に形成できる。これにより、対物レンズがプラスチック製であっても、温度変化時においても安定した性能を維持できる対物レンズを提供することができる。 Further, in the first basic structure having the (1/1/1) structure, when the wavelength of the incident light beam is changed to be longer, the spherical aberration is changed in the undercorrection direction (under), and (2 / In the second basic structure having the 1/1) structure, when the wavelength of the incident light beam is changed to be longer, it is preferable that the spherical aberration is changed in the undercorrection direction (under). With such a configuration, when the refractive index of the objective lens changes due to an increase in the temperature of the optical pickup device, the refractive index of the objective lens is also utilized by utilizing the fact that the wavelength of the light source increases due to the increase in the environmental temperature. It is possible to correct a change in spherical aberration due to a change in the rate and form an appropriate focused spot on the information recording surface of each optical disc. Thereby, even if the objective lens is made of plastic, it is possible to provide an objective lens that can maintain stable performance even when the temperature changes.
 第2基礎構造に比べて、第1基礎構造の近軸パワーが大きいことが好ましい。つまりは、第1基礎構造の平均ピッチが、第2基礎構造の平均ピッチに比べて小さいことが好ましい。これにより、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保できる。更に、色収差を小さくし、光源が高周波重畳を起こしていても、良好な光スポットを形成させ、しかも、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させるためには、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~5個(特に好ましくは2~3個)含まれていることが好ましい。尚、この場合、第2基礎構造の光軸に最も近い「輪帯」と記載しているが、実際は、光軸を含む「円」であることが通常である。従って、ここで言う「光軸に最も近い輪帯」には、円状の形状も含まれる。また、中間領域に最も近い第2基礎構造の1つの輪帯において、第2基礎構造の輪帯1つ分に、第1基礎構造の輪帯が1~5個(特に好ましくは2~3個)含まれていることも好ましい。中央領域の第2基礎構造に対する第1基礎構造の総輪帯数の割合は1.0以上~5.0以下であることが好ましく、より好ましくは2.0以上3.0以下であることである。 It is preferable that the paraxial power of the first foundation structure is larger than that of the second foundation structure. That is, it is preferable that the average pitch of the first foundation structure is smaller than the average pitch of the second foundation structure. Thereby, a working distance in the CD can be secured even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. Further, in order to reduce chromatic aberration, to form a good light spot even when the light source causes high frequency superposition, and to reduce the problem of stray light when the optical disc has a plurality of information recording surfaces, In one optical path difference providing structure, 2 to 5 (particularly preferably 2 to 3) ring zones of the first foundation structure are included in one ring zone closest to the optical axis of the second foundation structure. Is preferred. In this case, the “ring zone” closest to the optical axis of the second foundation structure is described, but in practice, it is usually a “circle” including the optical axis. Accordingly, the “annular zone closest to the optical axis” mentioned here includes a circular shape. Further, in one ring zone of the second foundation structure closest to the intermediate region, 1 to 5 ring zones of the first foundation structure (particularly preferably 2 to 3 rings) are included in one ring zone of the second foundation structure. ) Is also preferably included. The ratio of the total number of ring zones of the first foundation structure to the second foundation structure in the central region is preferably 1.0 or more and 5.0 or less, more preferably 2.0 or more and 3.0 or less. is there.
 尚、図7(d)に示すように、第1基礎構造と第2基礎構造とをそのまま重畳すると、点線で示すように一部が突出する場合があるが、突出部分の幅が5μm以下と狭ければ、突出した部分を光軸に沿って平行にシフトして、突出部分をなくしても大きな影響がなく、これにより第2基礎構造の1つの輪帯に、第1基礎構造の複数の輪帯が丁度のるようになる(実線参照)。よって、図7(d)の例では、第2基礎構造の1つの輪帯上に、3つの第1基礎構造の輪帯がのっているものとして扱う。第1基礎構造と第2基礎構造をそのまま重畳した場合に、幅が5μm以下と狭い凹みが発生する場合も同様にして凹みをなくしてもよい。 As shown in FIG. 7D, when the first basic structure and the second basic structure are directly overlapped, a part may protrude as shown by a dotted line, but the width of the protruding part is 5 μm or less. If it is narrow, the protruding portion is shifted in parallel along the optical axis, and eliminating the protruding portion has no significant effect, so that one annular zone of the second foundation structure can have a plurality of first foundation structures. The zonal zone is exactly as shown (see solid line). Therefore, in the example of FIG.7 (d), it handles as the ring zone of three 1st foundation structures on one ring zone of a 2nd foundation structure. When the first foundation structure and the second foundation structure are superimposed as they are, a dent may be eliminated in the same manner even when a dent having a width of 5 μm or less is generated.
 ここで、Δλ1(nm)は第1波長の変化量、ΔWD(μm)は第1波長の変化Δλに起因して発生する対物レンズの色収差とすると、以下の式を満たすと好ましい。
 0.3(μm/nm)≦ΔWD/Δλ1≦0.6(μm/nm)   (18)
 尚、ここでいう「色収差」とは、光束の波長が変化した際に生じるフォーカス位置のずれである。即ち、光束の波長が変化した際に生じる「波面収差が最良となる位置」のずれである。
Here, if Δλ1 (nm) is the change amount of the first wavelength and ΔWD (μm) is the chromatic aberration of the objective lens caused by the change Δλ of the first wavelength, it is preferable that the following expression is satisfied.
0.3 (μm / nm) ≦ ΔWD / Δλ1 ≦ 0.6 (μm / nm) (18)
The “chromatic aberration” here is a shift in the focus position that occurs when the wavelength of the light beam changes. That is, it is a shift of “position where wavefront aberration is best” that occurs when the wavelength of the light beam changes.
 このような構成とするためには、上述したように、第1光路差付与構造において、第2基礎構造の光軸に最も近い輪帯1つ分に、第1基礎構造の輪帯が2~5個(特に好ましくは2~3個)含まれるようにすることが好ましい。色収差を上述の範囲にすることによって、BD/DVD/CD互換用対物レンズという軸上厚が厚い対物レンズにおいてもCDにおけるワーキングディスタンスを確保しながら、光ディスクが複数の情報記録面を有する場合の、迷光の問題を低減させることができ、さらにDVD使用時の温度特性及び波長特性を良好にできるため好ましい。また、第2基礎構造における中間領域に最も近い1つの輪帯上に重畳された第1基礎構造の輪帯の数は、第2基礎構造の輪帯一つ分にたいして、と1~5個重畳されていることが好ましい。さらには、中央領域の第2基礎構造に対する第1基礎構造の総輪帯数の割合は1.0以上~5.0以下であることが好ましく、より好ましくは2.0以上3.0以下であることである。 In order to obtain such a configuration, as described above, in the first optical path difference providing structure, one annular zone closest to the optical axis of the second basic structure includes two to two annular zones of the first basic structure. It is preferable to include 5 (particularly preferably 2 to 3). By setting the chromatic aberration to the above-described range, the optical disc has a plurality of information recording surfaces while ensuring a working distance in the CD even in an objective lens having a large axial thickness, which is a BD / DVD / CD compatible objective lens. This is preferable because the problem of stray light can be reduced and the temperature and wavelength characteristics can be improved when using a DVD. In addition, the number of the first foundation structure annular zones superimposed on one annular zone closest to the intermediate region in the second foundation structure is 1 to 5 overlaps for one annular zone of the second foundation structure. It is preferable that Furthermore, the ratio of the total number of ring zones of the first foundation structure to the second foundation structure in the central region is preferably 1.0 or more and 5.0 or less, more preferably 2.0 or more and 3.0 or less. That is.
 第1基礎構造は負の近軸回折パワーを持つことが好ましく、それによりBD/DVD/CD用の対物レンズといった軸上厚が厚い対物レンズにおいてもCD使用時のワーキングディスタンスを確保できる。また、第2基礎構造は正の近軸回折パワーを持つことが好ましい。このように第1基礎構造と第2基礎構造が共に近軸回折パワーを持つことにより、複数の情報記録面を有する光ディスクを使用した際に、記録再生対象でない情報記録面で反射した不要光を必要光からより遠ざけることが可能となるため好ましい。 The first basic structure preferably has a negative paraxial diffraction power, so that a working distance when using a CD can be secured even for an objective lens having a large axial thickness such as an objective lens for BD / DVD / CD. The second basic structure preferably has a positive paraxial diffraction power. As described above, since both the first basic structure and the second basic structure have paraxial diffraction power, when using an optical disk having a plurality of information recording surfaces, unnecessary light reflected by the information recording surface that is not a target for recording / reproducing is used. This is preferable because it can be further away from the necessary light.
 また、第1光路差付与構造の最小ピッチは15μm以下であることが好ましい。当該観点からは、第1光路差付与構造の最小ピッチpと第1波長λ1における焦点距離f1の比p/f1が0.004以下であることが好ましい。より好ましくは10μm以下である。
また、第1光路差付与構造の平均ピッチが30μm以下となることが好ましい。より好ましくは20μm以下とすることである。この様な構成にすることにより、上記のように丁度よいレベルのアンダーの波長特性を得ることが可能となると共に、第1光路差付与構造を通過した第3光束において発生する、第3光ディスクの情報の記録/再生に用いられる必要光のベストフォーカス位置と、第3光ディスクの情報の記録/再生に用いられない不要光のベストフォーカス位置を離すことができ、誤検出を低減することも可能となる。尚、平均ピッチとは、中央領域の第1光路差付与構造の全てのピッチを合計し、中央領域の第1光路差付与構造の段差数で割った値である。
The minimum pitch of the first optical path difference providing structure is preferably 15 μm or less. From this point of view, the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength λ1 is preferably 0.004 or less. More preferably, it is 10 μm or less.
Moreover, it is preferable that the average pitch of the first optical path difference providing structure is 30 μm or less. More preferably, it is 20 μm or less. By adopting such a configuration, it is possible to obtain an under-wavelength characteristic with a just good level as described above, and the third optical disc generated in the third light flux that has passed through the first optical path difference providing structure. The best focus position of the necessary light used for recording / reproducing information can be separated from the best focus position of unnecessary light not used for recording / reproducing information on the third optical disc, and erroneous detection can be reduced. Become. The average pitch is a value obtained by adding all pitches of the first optical path difference providing structure in the central region and dividing the sum by the number of steps of the first optical path difference providing structure in the central region.
 ここで、本発明の対物レンズは、軸上色収差が0.9μm/nm以下であることが好ましい。更に、好ましくは、軸上色収差を0.8μm/nm以下とすることである。第1基礎構造のピッチを小さくしすぎると、軸上色収差が悪化してしまう可能性があるため、軸上色収差が0.9μm/nmより大きくなるようなピッチにならないように留意して設計することが好ましい。当該観点からは、第1光路差付与構造の最小ピッチpと第1波長λ1における焦点距離f1の比p/f1が0.002以上であることが好ましい。一方で、CDにおけるワーキングディスタンスを十分に確保するためには、軸上色収差が0.4μm/nm以上であることが好ましい。 Here, the objective lens of the present invention preferably has an axial chromatic aberration of 0.9 μm / nm or less. More preferably, the longitudinal chromatic aberration is 0.8 μm / nm or less. If the pitch of the first basic structure is made too small, the longitudinal chromatic aberration may be deteriorated. Therefore, design is made with care so that the pitch is not larger than 0.9 μm / nm. It is preferable. From this viewpoint, it is preferable that the ratio p / f1 between the minimum pitch p of the first optical path difference providing structure and the focal length f1 at the first wavelength λ1 is 0.002 or more. On the other hand, in order to ensure a sufficient working distance in CD, it is preferable that the longitudinal chromatic aberration is 0.4 μm / nm or more.
 第1光路差付与構造を通過した第3光束によって、第3光束が形成するスポットの光強度が最も強い第1ベストフォーカス位置と、第3光束が形成するスポットの光強度が次に強い第2ベストフォーカス位置とが、以下の条件式(19)を満たすことが好ましい。なお、ここでいうベストフォーカス位置とは、ビームウェストが、或るデフォーカスの範囲でビームウェストが極小となる位置を指すものである。第1ベストフォーカス位置がCDの記録/再生に用いられる必要光のベストフォーカス位置であり、第2ベストフォーカス位置がCDの記録/再生に用いられない不要光のうち、最も光量が多い光束のベストフォーカス位置である。
 0.35≦L/f1≦0.7         (19)
 但し、L[mm]は、第1ベストフォーカスと第2ベストフォーカスの間の距離を指す。
The first best focus position where the light intensity of the spot formed by the third light flux is the strongest by the third light flux passing through the first optical path difference providing structure, and the second strongest light intensity of the spot formed by the third light flux. It is preferable that the best focus position satisfies the following conditional expression (19). Here, the best focus position refers to a position where the beam waist becomes a minimum within a certain defocus range. The first best focus position is the best focus position of the necessary light used for CD recording / reproduction, and the second best focus position is the best of the luminous flux having the largest light quantity among the unnecessary light that is not used for CD recording / reproduction. The focus position.
0.35 ≦ L / f1 ≦ 0.7 (19)
However, L [mm] indicates the distance between the first best focus and the second best focus.
 以上述べた第1光路差付与構造の好ましい例をいくつか図7(a)、(b)、(c)として示す。尚、図7は、便宜上、第1光路差付与構造ODS1が平板状に設けられたものとして示されているが、通常は単玉非球面の凸レンズ上に設けられているものである。(2/1/1)回折構造である第2基礎構造BS2に、(1/1/1)回折構造である第1基礎構造BS1が重ねあわされている。図7(a)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差は光軸OAとは逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図7(b)においては、第2基礎構造BS2の段差は光軸OAの方向を向いており、第1基礎構造BS1の段差も光軸OAの方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。次に、図7(c)においては、第1基礎構造BS1の段差は光軸OAと逆の方向を向いており、第2基礎構造BS2の段差も光軸OAと逆の方向を向いている。更に、第2基礎構造BS2の全ての段差の位置と、第1基礎構造BS1の段差の位置が合っていることがわかる。 Several preferable examples of the first optical path difference providing structure described above are shown in FIGS. 7A, 7B, and 7C. In FIG. 7, for convenience, the first optical path difference providing structure ODS1 is shown as being provided in a flat plate shape, but it is usually provided on a single aspherical convex lens. The first basic structure BS1 which is a (1/1/1) diffraction structure is overlapped with the second basic structure BS2 which is a (2/1/1) diffraction structure. In FIG. 7A, the step of the second foundation structure BS2 faces the direction of the optical axis OA, and the step of the first foundation structure BS1 faces the direction opposite to the optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG.7 (b), the level | step difference of 2nd foundation structure BS2 has faced the direction of optical axis OA, and the level | step difference of 1st foundation structure BS1 has also faced the direction of optical axis OA. Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1. Next, in FIG.7 (c), the level | step difference of 1st foundation structure BS1 has faced the direction opposite to optical axis OA, and the level | step difference of 2nd foundation structure BS2 has also faced the direction opposite to optical axis OA. . Furthermore, it can be seen that the positions of all the steps of the second foundation structure BS2 are aligned with the positions of the steps of the first foundation structure BS1.
 更に、中央領域の総輪帯数をN1としたときに、以下の式を満たすと好ましい。これによりCDのワーキングディスタンスが短くなりすぎることを抑制すると共に、輪帯のピッチが小さくなりすぎて加工性が低下することを抑制できる。尚、中央領域における光軸に略平行な段差数を、中央領域の総輪帯数とみなしてよい。
 160(mm)≦N1・f1≦210(mm)   (20)
Furthermore, when the total number of ring zones in the central region is N1, it is preferable that the following expression is satisfied. As a result, it is possible to prevent the working distance of the CD from becoming too short and to suppress the workability from being lowered due to the ring zone pitch becoming too small. Note that the number of steps substantially parallel to the optical axis in the central region may be regarded as the total number of annular zones in the central region.
160 (mm) ≤ N1 · f1 ≤ 210 (mm) (20)
 次に、中間領域に設けられる第2光路差付与構造について説明する。第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造の2つの基礎構造を重ね合わせた構造であることが好ましい。より好ましくは、第3基礎構造と第4基礎構造のみを重ね合わせた構造であることである。光路差付与構造がブレーズ型の基礎構造を2種類重畳してなるため、単一の構造で光路差付与構造を形成する場合に比して、設計の自由度を大きく確保できるため、特に、有効径が小さい対物レンズにおいて有利となる。 Next, the second optical path difference providing structure provided in the intermediate region will be described. The second optical path difference providing structure is preferably a structure in which at least two basic structures of a third basic structure and a fourth basic structure are overlapped. More preferably, it is a structure in which only the third basic structure and the fourth basic structure are overlapped. Since the optical path difference providing structure is formed by superimposing two types of blazed basic structures, it is possible to secure a greater degree of design freedom than when the optical path difference providing structure is formed with a single structure. This is advantageous in an objective lens having a small diameter.
 第3基礎構造は、ブレーズ型構造である。また、第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。また、第4基礎構造もブレーズ型構造である。第4基礎構造を通過した第1光束の5次または7次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の3次または4次の回折光量を他のいかなる次数の回折光量よりも大きくする。第3基礎構造を通過した第1光束の回折光量が最大となる回折次数が奇数である1次であるため、BDとDVDとで異なる回折パワーを付与でき、DVDとで生じる相対的な球面収差の補正が良好に行える。また、低次である1次回折光が発生するので、第3基礎構造の段差量が大きくなり過ぎず、製造が容易となり、製造誤差に起因する光量ロスを抑えることが出来ると共に、波長変動時の回折効率変動も低減することができるため好ましい。第4基礎構造を通過した第1光束の回折光量が最大となる回折次数が5次または7次であるため、第3基礎構造の球面収差補正に影響を与えることなく、温度変化等に伴うBD又はDVD使用時の球面収差の変動を適切にコントロールしつつ、CDのフレア出しを行うことが可能となる。また、BD、DVD使用時に高い回折効率を得ることができる。 The third basic structure is a blaze type structure. Further, the first-order diffracted light amount of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the first-order diffracted light amount of the second light beam that has passed through the third basic structure is changed to other values. It is made larger than the diffracted light quantity of any order. The fourth basic structure is also a blazed structure. The fifth-order or seventh-order diffracted light quantity of the first light beam that has passed through the fourth basic structure is made larger than any other order diffracted light quantity, and the third-order or fourth-order diffraction of the second light beam that has passed through the fourth basic structure. Make the light intensity larger than any other order of diffracted light. Since the diffraction order of the first light flux that has passed through the third basic structure is the first order that is an odd number, the diffraction power that is different between BD and DVD can be imparted, and relative spherical aberration that occurs with DVD Can be corrected satisfactorily. In addition, since the first-order diffracted light that is a low order is generated, the step amount of the third basic structure does not become too large, the manufacturing becomes easy, the light quantity loss caused by the manufacturing error can be suppressed, and the wavelength change It is preferable because fluctuations in diffraction efficiency can be reduced. Since the diffraction order at which the diffracted light quantity of the first light beam that has passed through the fourth basic structure is the maximum is the fifth or seventh order, the BD accompanying the temperature change or the like without affecting the spherical aberration correction of the third basic structure. Alternatively, it is possible to flare out the CD while appropriately controlling the fluctuation of the spherical aberration when using the DVD. Also, high diffraction efficiency can be obtained when using BD and DVD.
 第4基礎構造は、以下のようにφi(h)を定義し、
φi(h)=(Ci2×h2+Ci4×h4+Ci6×h6+Ci8×h8+Ci10×h10)Miλ/λBi
(但し、h(単位:mm)は、光軸からの高さを、Ci2、Ci4、Ci6・・・はそれぞれ、第i基礎構造の光路差関数(iは自然数)における二次、四次、六次、の光路差関数係数を、Miは、入射光束の回折次数が最大となる第i基礎構造の光路差関数における回折次数を、λ(単位:mm)は前記入射光束の使用波長を、λBi(単位:mm)は第i基礎構造における製造波長を、それぞれ示す。)さらに、第2光束の有効径(直径)をh2(mm)、第1光束の有効径(直径)をh1(mm)とした場合に以下の式を満たしていてもよい。
 -0.05<(φ4(h2/2)-φ4(h1/2))/f1<0.03
 尚、入射光束の回折次数が最大となる第i基礎構造の光路差関数における回折次数とは、例えば、基礎構造が(1/1/1)である場合には1次、(2/1/1)である場合には2次、(7/4)である場合には7次、(5/3)である場合には5次のことを指す。
The fourth basic structure defines φ i (h) as follows:
φ i (h) = (C i2 × h 2 + C i4 × h 4 + C i6 × h 6 + C i8 × h 8 + C i10 × h 10 ) Miλ / λB i
(Where h (unit: mm) is the height from the optical axis, C i2 , C i4 , C i6 ... Are secondary in the optical path difference function (i is a natural number) of the i-th substructure, The fourth-order and sixth-order optical path difference function coefficients, Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam, and λ (unit: mm) is the use of the incident light beam. ΛB i (unit: mm) represents the manufacturing wavelength of the i-th basic structure, respectively.) Further, the effective diameter (diameter) of the second light flux is h2 (mm), and the effective diameter (diameter) of the first light flux When h1 (mm), the following formula may be satisfied.
−0.05 <(φ 4 (h2 / 2) −φ 4 (h1 / 2)) / f1 <0.03
The diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam is, for example, the first order when the basic structure is (1/1/1), (2/1/1). 1) indicates the second order, (7/4) indicates the seventh order, and (5/3) indicates the fifth order.
 第4基礎構造で、第1光束の回折光量が最大となる回折次数が7次である場合を想定すると、上記式の範囲内であれば、中間領域を通過した第3光束の3次及び4次の回折効率の高い不要回折次数光がCD使用時のスポット近傍に集光することを抑制でき、DVD使用時の温度変化に対する球面収差も良好に補正される。また、上記式の代替として、第4基礎構造が有する焦点距離をfD4(mm)とした場合に、以下の二つの式を同時に満たす構成であっても上記式と同様の効果を得ることができる。
 -0.03<(φ4(h2/2)-φ4(h1/2))/f1<0
 0<f1/fD4<0.08
(但し、fD4=―λB4/(2×C42×M4×λ)、M4の値は7又は5である。)
Assuming that the diffraction order in which the amount of diffracted light of the first light flux is the maximum is 7th in the fourth basic structure, the third and fourth orders of the third light flux that have passed through the intermediate region are within the above formula. It is possible to suppress the unnecessary diffraction order light having the next high diffraction efficiency from being collected in the vicinity of the spot when the CD is used, and the spherical aberration with respect to the temperature change when using the DVD is also well corrected. As an alternative to the above formula, when the focal length of the fourth basic structure is set to fD 4 (mm), the same effect as the above formula can be obtained even if the following two formulas are satisfied at the same time. it can.
−0.03 <(φ 4 (h2 / 2) −φ 4 (h1 / 2)) / f1 <0
0 <f1 / fD 4 <0.08
(However, fD 4 = −λB 4 / (2 × C 42 × M4 × λ), and the value of M4 is 7 or 5.)
 また、第1光路差付与構造及び第2光路差付与構造は、互換を行う基礎構造として、複数の回折構造を重畳しているため、BD、DVD、CDのいずれにおいても対物レンズの倍率を0またはほぼ0としつつ3波長全てにおいて高い回折効率を得ることができる。 In addition, since the first optical path difference providing structure and the second optical path difference providing structure have a plurality of diffractive structures superimposed as a compatible basic structure, the magnification of the objective lens is 0 in any of BD, DVD, and CD. Alternatively, high diffraction efficiency can be obtained at all three wavelengths while setting the value to almost zero.
 また、第1光束の有効径が1.9mmから3.0mmと小径である場合には、第3基礎構造と第4基礎構造からなる第2光路差付与構造において既にピッチが十分細かく、輪帯数の数も十分多いため、第3基礎構造と第4基礎構造に加えて更に別の基礎構造を重ねてしまうと、さらにピッチが細かくなり、輪帯数もより多くなってしまうため、製造誤差による回折効率の低下や、輪帯の影の効果による回折効率の低下といった問題が大きくなってしまう。特に、0/0/±1のバイナリ構造のような段差量が大きい構造を重ね合わせてしまうと、影の効果等による回折効率の低下という問題はより大きなものとなってしまう。そのため、第2光路差付与構造において、第3基礎構造と第4基礎構造のみを重ね合わせた構造とすると、光の利用効率を高めることができるので好ましい。 Further, when the effective diameter of the first light flux is as small as 1.9 to 3.0 mm, the pitch is already sufficiently fine in the second optical path difference providing structure composed of the third basic structure and the fourth basic structure, and the annular zone Since the number is sufficiently large, if another foundation structure is stacked in addition to the third foundation structure and the fourth foundation structure, the pitch will become finer and the number of zones will increase, resulting in manufacturing errors. Problems such as lowering of the diffraction efficiency due to, and lowering of the diffraction efficiency due to the effect of the shadow of the annular zone will increase. In particular, if a structure with a large step amount such as a binary structure of 0/0 / ± 1 is overlapped, the problem of a decrease in diffraction efficiency due to a shadow effect or the like becomes more serious. Therefore, in the second optical path difference providing structure, a structure in which only the third basic structure and the fourth basic structure are overlapped is preferable because the light use efficiency can be increased.
 また、中間領域の第2光路差付与構造は、第3基礎構造が光軸とは逆の方向を向いている段差を有し、第4基礎構造が光軸の方向を向いている段差を有することが好ましい。したがって、第2光路差付与構造は、光軸とは逆の方向を向いている段差と、光軸の方向を向いている段差とを有することが好ましい。 Further, the second optical path difference providing structure in the intermediate region has a step in which the third basic structure faces in the direction opposite to the optical axis, and the fourth basic structure has a step in which the optical axis direction faces. It is preferable. Therefore, it is preferable that the second optical path difference providing structure has a step that faces in a direction opposite to the optical axis and a step that faces in the direction of the optical axis.
 さらに、第1基礎構造の全ての段差が光軸とは逆の方向を向いており、第2基礎構造の全ての段差が光軸の方向を向いており、第3基礎構造の全ての段差が光軸とは逆の方向を向いており、第4基礎構造の全ての段差が光軸の方向を向いていると、CD使用時のワーキングディスタンスが長くなり、またBDの軸上色収差がより一層とりやすくなる。 Furthermore, all the steps of the first foundation structure are directed in the direction opposite to the optical axis, all the steps of the second foundation structure are directed to the direction of the optical axis, and all the steps of the third foundation structure are If the direction is opposite to the optical axis, and all the steps of the fourth basic structure are oriented in the direction of the optical axis, the working distance when using the CD becomes longer, and the axial chromatic aberration of the BD is further increased. It becomes easy to take.
 (1/1)構造である第3基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向に変化し、(7/4)構造(第1光束において7次回折光を最も多く発生し、第2光束においては、4次回折光を最も多く発生)または(5/3)構造(第1光束において5次回折光を最も多く発生し、第2光束においては、3次回折光を最も多く発生)である第4基礎構造において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足(アンダー)方向、又は補正過剰(オーバー)方向に変化すると好ましい。
 尚、ここでいう、補正過剰(オーバー)方向、補正不足(アンダー)方向とは、中間領域の球面収差を表し、中間領域においてNAが高くなるほどオーバー側に集光位置がずれる状態を補正過剰(オーバー)方向、NAが高くなるほどアンダー側に集光位置がずれる状態を補正不足(アンダー)方向と定義する。近軸集光位置に対する集光位置の方向ではない。
In the third basic structure having the (1/1) structure, when the wavelength of the incident light beam is changed so as to become longer, the spherical aberration changes in the undercorrection (under) direction, and the (7/4) structure (the first) 7th order diffracted light is generated most in one light beam, and 4th order diffracted light is generated most in the second light beam, or (5/3) structure (5th order diffracted light is generated most in the first light beam, and the second light beam is generated. In the fourth basic structure in which the third-order diffracted light is generated most), the spherical aberration is undercorrected (under) or overcorrected (over) when the wavelength of the incident light beam is changed to be longer. It is preferable to change in the direction.
The overcorrection (over) direction and the undercorrection (under) direction referred to here represent spherical aberration in the intermediate region, and the state in which the condensing position shifts to the over side as NA increases in the intermediate region is overcorrected ( The over-correction (under) direction is defined as the converging position shifts to the under side as NA increases. It is not the direction of the condensing position with respect to the paraxial condensing position.
 このような構成とすると、第2光路差付与構造においても、光ピックアップ装置の温度上昇により対物レンズの屈折率が変化したような場合には、同じく環境温度の上昇により光源の波長が上昇することを利用して、対物レンズの屈折率の変化による球面収差の劣化を補正するため、環境温度の変化時に、より適切な集光スポットを各光ディスクの情報記録面に形成できる。 With such a configuration, even in the second optical path difference providing structure, when the refractive index of the objective lens changes due to the temperature increase of the optical pickup device, the wavelength of the light source also increases due to the increase in the environmental temperature. Is used to correct the deterioration of the spherical aberration due to the change in the refractive index of the objective lens, so that a more appropriate condensing spot can be formed on the information recording surface of each optical disc when the environmental temperature changes.
 第2光路差付与構造が第3基礎構造と第4基礎構造から成るため、BDとDVDとの互換の他、残る自由度をCDのフレア出しに使うことができる。従って、CD使用時の開口制限を、単純な形状の第2光路差付与構造で行えるため、別の基礎構造を追加する場合に比して影の効果による光利用効率の低下を抑制し、更に、製造誤差による光利用効率の低下も抑制し、結果として光利用効率を向上させることが可能となる。加えて、DVD使用時においては、DVDの温度特性及び波長特性を共に良好にすることができる。 Since the second optical path difference providing structure is composed of the third basic structure and the fourth basic structure, in addition to compatibility with BD and DVD, the remaining degree of freedom can be used for CD flare out. Therefore, since the aperture limitation at the time of using the CD can be performed by the second optical path difference providing structure having a simple shape, it is possible to suppress a decrease in light use efficiency due to the shadow effect as compared with the case of adding another basic structure. Further, it is possible to suppress a decrease in light utilization efficiency due to a manufacturing error, and as a result, it is possible to improve the light utilization efficiency. In addition, when the DVD is used, both the temperature characteristic and wavelength characteristic of the DVD can be improved.
 更にDVD使用時の波長特性を良好にするために、第2光路差付与構造において、第4基礎構造の中央領域に最も近い輪帯1つ分に、第3基礎構造の輪帯が3~11個含まれていることが好ましい。 Further, in order to improve the wavelength characteristics when using a DVD, in the second optical path difference providing structure, the ring zones of the third basic structure are 3 to 11 in one ring zone closest to the central region of the fourth basic structure. It is preferable that they are included.
 また、本発明の対物レンズは中間領域において二つの基礎構造を重畳しており、さらに、ある領域内においては光軸から周辺に向かえば向かうほど輪帯数が増加する傾向があるため、中間領域の周辺領域近傍においては特に光利用効率が悪くなってしまう。その結果、第2光束における、対物レンズの光軸中心近傍に対する中間領域の周辺領域近傍における瞳透過率の比率r2が下記式
 r2≦0.9   (1)
の範囲内となり、逆アポダイゼーション効果とでもいうべき現象が発生し、DVD使用時においてスポット径の増大が起きてしまう可能性がある。なお、光軸中心近傍における「近傍」とは、光軸から光軸垂直方向に対して、DVD使用時の有効径の10%の範囲を言う。また、中間領域の周辺領域近傍とは中間領域と周辺領域の境界から、中間領域方向に対してDVD使用時の有効径の10%の範囲を言い、周辺領域の外径近傍とは、周辺領域の外径から中間領域方向に対して、DVD使用時の有効径の10%の範囲を言う。
Further, the objective lens of the present invention has two basic structures superimposed in the intermediate region, and further, in a certain region, the number of annular zones tends to increase as it goes from the optical axis toward the periphery. In the vicinity of the peripheral area, the light utilization efficiency is deteriorated. As a result, the ratio r2 of the pupil transmittance in the vicinity of the peripheral region of the intermediate region with respect to the vicinity of the optical axis center of the objective lens in the second light flux is expressed by the following equation: r2 ≦ 0.9 (1)
Therefore, a phenomenon that can be called a reverse apodization effect occurs, and the spot diameter may increase when the DVD is used. The term “near” in the vicinity of the center of the optical axis refers to a range of 10% of the effective diameter when using a DVD from the optical axis to the direction perpendicular to the optical axis. The vicinity of the peripheral area of the intermediate area refers to a range of 10% of the effective diameter when using the DVD with respect to the intermediate area direction from the boundary between the intermediate area and the peripheral area. The range of 10% of the effective diameter when using a DVD from the outer diameter to the intermediate area direction.
 また、本発明の対物レンズはBD/DVD/CDの互換対物レンズである一方で、光学面が2面しかないために、全ての光ディスクにおいて正弦条件を満足させることができず、最も仕様の要求が厳しいBDで正弦条件を満たすように設定するため、DVD使用時にはより一層のスポット径の増大が起きる可能性がある。 The objective lens of the present invention is a BD / DVD / CD compatible objective lens. However, since there are only two optical surfaces, the sine condition cannot be satisfied for all optical discs, and the most required specification is required. Is set so that the sine condition is satisfied with a severe BD, there is a possibility that the spot diameter will be further increased when the DVD is used.
 上述の問題に対しては、中間領域の外径をh2、対物レンズの第1光束における焦点距離をf1、対物レンズの第2光束における結像倍率をm2とした場合に、下記式を満たすことが好ましい。
 0.66≦h2/(2・f1・(1-m2))≦0.75   (2)
式(2)の下限以上の値を満たすことにより、対物レンズのDVD使用時における第2光束の有効径が大きくなる、即ちNAが大きくなり、DVD使用時のスポット径が小さく絞られるため、DVD使用時における逆アポダイゼーション効果を抑制することが可能となる。また、BD使用時には光軸近傍と比して相対的に透過光量が少ない中間領域が広がるため、アポダイゼーション効果を生じ、BDに対してもスポット径を小さく絞ることが可能となる。これは特にBD/DVD/CDの3種類の光ディスクの再生専用の互換レンズに好ましく用いることができる。さらに、式(2)の上限以下の値を満たすことによりDVD使用時のスポット径が必要以上に小さく絞られ過ぎることがない。なお、r2が0.3以上0.9以下であるとリム強度低下によるスポット径の拡大の程度が大きくなり過ぎないため式(2)の効果がより顕著となり好ましい。より好ましくはr2が0.4以上0.8以下となることであり、さらに好ましくはr2が0.5以上0.75以下となることである。
For the above problem, the following equation is satisfied when the outer diameter of the intermediate region is h2, the focal length of the first light beam of the objective lens is f1, and the imaging magnification of the second light beam of the objective lens is m2. Is preferred.
0.66 ≦ h2 / (2 · f1 · (1-m2)) ≦ 0.75 (2)
By satisfying a value equal to or greater than the lower limit of the expression (2), the effective diameter of the second light flux when the objective lens is used in DVD is increased, that is, NA is increased, and the spot diameter is reduced when DVD is used. It becomes possible to suppress the reverse apodization effect at the time of use. In addition, when the BD is used, an intermediate region having a relatively small amount of transmitted light as compared with the vicinity of the optical axis is widened, so that an apodization effect is generated, and the spot diameter can be narrowed even for the BD. This can be preferably used particularly for a compatible lens for reproduction of three types of optical disks of BD / DVD / CD. Furthermore, by satisfying a value equal to or lower than the upper limit of the formula (2), the spot diameter when using the DVD is not reduced more than necessary. In addition, it is preferable that r2 is 0.3 or more and 0.9 or less because the degree of the enlargement of the spot diameter due to the decrease in the rim strength does not become too large, and the effect of the expression (2) becomes more remarkable. More preferably, r2 is 0.4 or more and 0.8 or less, and further preferably r2 is 0.5 or more and 0.75 or less.
 さらに好ましくは、以下の式(2)´を満たすことである。
 0.68≦h2/(2・f1・(1-m2))≦0.74   (2)’
対物レンズが小型化すればするほど、基礎構造のピッチが小さくなってしまい、BD使用時のリム強度の低下が顕著なものとなってしまう、即ちBD使用時のスポット径の増大が起きてしまうが、式(2)’を満たすことにより、BD使用時のアポダイゼーション効果が強くなるため、そのような対物レンズにおいてもBDの記録再生に適切なスポット径を得ることができるため好ましい。また、中間領域、特に中間領域の周辺領域近傍のピッチも小さくなるため、DVD使用時のスポット径の増大が起きる可能性が生じるが、式(2)´を満たすことにより解決できるため好ましい。
More preferably, the following expression (2) ′ is satisfied.
0.68 ≦ h2 / (2 · f1 · (1-m2)) ≦ 0.74 (2) ′
The smaller the objective lens, the smaller the pitch of the basic structure, and the lowering of the rim strength when using the BD becomes more significant, that is, the spot diameter increases when using the BD. However, it is preferable to satisfy the formula (2) ′ because the apodization effect when using the BD becomes strong, and even with such an objective lens, a spot diameter suitable for recording / reproducing of the BD can be obtained. In addition, since the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter will increase when using the DVD.
 また、本発明の対物レンズは、対物レンズの第1光束における焦点距離をf1とした場合に式(3)を満たすことが好ましい。
 1.0≦f1≦2.2   (3)
BD使用時の焦点距離f1が式(3)の範囲内であると、対物レンズが比較的小型となるため、より一層周辺領域内の外径近傍におけるピッチが細かくなり、本発明の課題が大きくなるが、そのような大きな課題も、第5基礎構造を通過した第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくすることで解決できる。また、焦点距離f1が式(3)の範囲内であると、CD使用時のワーキングディスタンスを確保するために、即ち回折の近軸パワーを強くするために、中央領域の輪帯数を増加させ、それに対応させて中間領域の輪帯数も増加させる必要がある。その結果、中間領域の周辺領域近傍においては、より一層の光利用効率の低下が発生し、DVDやBD使用時のスポット径の増大が起きる可能性が生じるが、その場合には式(2)を満たすことで解決できる。
尚、ワーキングディスタンスとは、光ディスクの表面から対物レンズの最も光ディスク側の位置までの光軸方向の距離をいう。さらに焦点距離が式(3)の範囲内であるため、対物レンズからディスクまでの距離を小さくでき、スリムタイプの光ピックアップ装置にも好適に搭載できる。また、f1が以下の式(3)’を満たすと本願発明の効果がより顕著なものとなる。
 1.0≦f1≦2.0   (3)’
Moreover, it is preferable that the objective lens of this invention satisfy | fills Formula (3), when the focal distance in the 1st light beam of an objective lens is set to f1.
1.0 ≦ f1 ≦ 2.2 (3)
When the focal length f1 when using the BD is within the range of the expression (3), the objective lens becomes relatively small, and therefore the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention is large. However, such a large problem can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity. Further, if the focal length f1 is within the range of the expression (3), the number of ring zones in the central region is increased in order to secure a working distance when using the CD, that is, in order to increase the paraxial power of diffraction. Correspondingly, it is necessary to increase the number of ring zones in the intermediate region. As a result, in the vicinity of the peripheral region of the intermediate region, there is a possibility that the light utilization efficiency will be further reduced and the spot diameter may be increased when using DVD or BD. In this case, formula (2) It can be solved by satisfying.
The working distance is a distance in the optical axis direction from the surface of the optical disk to the position closest to the optical disk of the objective lens. Furthermore, since the focal length is within the range of the expression (3), the distance from the objective lens to the disk can be reduced, and it can be suitably mounted on a slim type optical pickup device. Further, when f1 satisfies the following expression (3) ′, the effect of the present invention becomes more remarkable.
1.0 ≦ f1 ≦ 2.0 (3) ′
 対物レンズが、対物レンズの第2光束における焦点距離をf2とした場合に、下記式(11)を満たすように設計されてもよい。
 0.61≦h2/(2・f2・(1-m2))≦0.65   (21)
式(11)を満たすことにより、DVD使用時の有効径を広げることができ、好ましい。
The objective lens may be designed to satisfy the following formula (11) when the focal length of the second light flux of the objective lens is f2.
0.61 ≦ h2 / (2 · f2 · (1-m2)) ≦ 0.65 (21)
By satisfying formula (11), the effective diameter when using a DVD can be increased, which is preferable.
 次に、周辺領域に設けられる第3光路差付与構造について説明する。第3光路差付与構造は、少なくとも第5基礎構造を有する。さらに別の基礎構造を重畳させても良いが、好ましくは、第5基礎構造のみであることである。 Next, the third optical path difference providing structure provided in the peripheral area will be described. The third optical path difference providing structure has at least a fifth basic structure. Although another foundation structure may be superimposed, it is preferably only the fifth foundation structure.
 第5基礎構造は、ブレーズ型構造である。また、第5基礎構造を通過した第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくする。そのため、1次の場合と比してピッチを大きくとることができ、即ち輪帯数も少なくなるため、金型加工においても樹脂成型においても製造が容易となり誤差も減少させることができる。また、周辺領域内においては光軸側から周辺に向かえば向かうほど輪帯数が増加する傾向があり、且つ周辺領域内の外径近傍では対物レンズの見込み角が大きくなってしまうため、加工精度の低下や、反射率の上昇などが発生し、特に、ピッチが小さい時にはこの問題が顕著となり、リム強度の低下が起こってしまうが、周辺領域の第5基礎構造のピッチを大きくとることができるため、加工精度の低下を低減し、引いてはリム強度の低下を防止することが可能となる。さらに、輪帯数が減少するため有効径付近の影の効果の影響を低減でき、リム強度の低下によるスポット径の増大を抑えることができる。加えて、第1光束通過時に1次の回折光量が最大となる場合には、対物レンズを小型化しようとすると、必然的にピッチが狭くなってしまい加工精度の問題から製造することができなくなってしまうが、ピッチを大きくとることができるため、対物レンズの小型化にも対応可能となっている。尚、2次の回折光量を他のいかなる次数の回折光量よりもおおきくすることで、波長変動時の回折効率の変動を一層抑制することが出来る、 The fifth basic structure is a blaze type structure. In addition, the second-order or fourth-order diffracted light amount of the first light flux that has passed through the fifth basic structure is made larger than any other order diffracted light amount. For this reason, the pitch can be made larger than in the first case, that is, the number of ring zones is reduced, so that the manufacturing can be facilitated and the error can be reduced both in the mold processing and the resin molding. In the peripheral area, the number of annular zones tends to increase from the optical axis side toward the periphery, and the angle of view of the objective lens increases near the outer diameter in the peripheral area. Decrease, increase in reflectance, etc., especially when the pitch is small, this problem becomes significant and the rim strength decreases, but the pitch of the fifth foundation structure in the peripheral region can be increased. Therefore, it is possible to reduce a decrease in machining accuracy and to prevent a decrease in rim strength. Furthermore, since the number of ring zones decreases, the influence of the shadow effect around the effective diameter can be reduced, and an increase in spot diameter due to a decrease in rim strength can be suppressed. In addition, when the first-order diffracted light quantity is maximized when the first light beam passes, if the objective lens is to be miniaturized, the pitch is inevitably narrowed and cannot be manufactured due to processing accuracy. However, since the pitch can be increased, the objective lens can be reduced in size. By making the second-order diffracted light quantity larger than any other order diffracted light quantity, it is possible to further suppress fluctuations in diffraction efficiency during wavelength fluctuations.
 また、本発明の対物レンズの第i基礎構造は、以下の形の光路差関数に展開可能であることが好ましく、
φi(h)=(Ci2×h2+Ci4×h4+Ci6×h6+Ci8×h8+Ci10×h10)Miλ/λBi
(但し、h(単位:mm)は、光軸からの高さを、Ci2、Ci4、Ci6・・・はそれぞれ、第i基礎構造の光路差関数(iは自然数)における二次、四次、六次、の光路差関数係数を、Miは、入射光束の回折次数が最大となる第i基礎構造の光路差関数における回折次数を、λ(単位:mm)は前記入射光束の使用波長を、λBi(単位:mm)は第i基礎構造における製造波長を、それぞれ示す。)その場合に、次の条件式(6)を満たすことも好ましい。
 -0.025<(φ5(h3/2)-φ5(h2/2))/(M5×f1)<0.025・・・(6)
(但し、M5の値は2又は4であり、h2は第2光束の有効径(直径)(mm)、h3は第3光束の有効径(直径)(mm)である。)
を満たすことを特徴としている。
Moreover, it is preferable that the i-th basic structure of the objective lens of the present invention can be developed into an optical path difference function of the following form,
φ i (h) = (C i2 × h 2 + C i4 × h 4 + C i6 × h 6 + C i8 × h 8 + C i10 × h 10 ) Miλ / λB i
(Where h (unit: mm) is the height from the optical axis, C i2 , C i4 , C i6 ... Are secondary in the optical path difference function (i is a natural number) of the i-th substructure, The fourth-order and sixth-order optical path difference function coefficients, Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam, and λ (unit: mm) is the use of the incident light beam. The wavelength λB i (unit: mm) indicates the production wavelength in the i-th basic structure.) In that case, it is also preferable that the following conditional expression (6) is satisfied.
−0.025 <(φ 5 (h3 / 2) −φ 5 (h2 / 2)) / (M5 × f1) <0.025 (6)
(However, the value of M5 is 2 or 4, h2 is the effective diameter (diameter) (mm) of the second light beam, and h3 is the effective diameter (diameter) (mm) of the third light beam.)
It is characterized by satisfying.
 式(6)を満たすことによりBD使用時の環境変化時に生じる球面収差を良好に補正しつつ、周辺領域を透過した第二、第三光束の不要回折次数光が中央領域を透過した第二、第三光束の結像位置近傍に収束するのを避けられるため、スポット性能の劣化を抑えることができ好ましい。また、式(6)の範囲内にすることで、段差数が多くなり過ぎないため、製造が容易、且つ、光利用効率の低下が抑えられる、良好なスポットを得ることができ好ましい。上限を下回ることで温度変化時の球面収差が大きくなりすぎない。 By satisfying the equation (6), the second and second unwanted light of the third and third beams transmitted through the peripheral region are transmitted through the central region while satisfactorily correcting the spherical aberration generated when the environment is changed when using the BD. Since it is possible to avoid convergence of the third light flux in the vicinity of the imaging position, it is preferable because deterioration of spot performance can be suppressed. Further, it is preferable that the number of steps is not excessively increased by setting the value within the range of the formula (6), which makes it possible to obtain a good spot that is easy to manufacture and suppresses a decrease in light utilization efficiency. By falling below the upper limit, the spherical aberration at the time of temperature change does not become too large.
 また、第1~5基礎構造の全ての段差が、それぞれ独立して同じ方向を向いていると、BD、DVD、CDのいずれの使用時においても、高い光利用効率を得ることができ、不要光が分散し、スポット性能が劣化してしまうことを防止でき好ましい。なお、第5基礎構造は光軸の方向を向いている場合も、光軸と逆の方向を向いている場合もある。特に、第5基礎構造が光軸の方を向いている場合は、温度変化時の球面収差が良好に補正されるため、好ましい。  In addition, if all the steps of the first to fifth foundation structures are independently directed in the same direction, high light utilization efficiency can be obtained when using any of BD, DVD, and CD, which is unnecessary. This is preferable because it can prevent the light from being dispersed and the spot performance from being deteriorated. Note that the fifth basic structure may face the direction of the optical axis, or may face the direction opposite to the optical axis. In particular, it is preferable that the fifth basic structure is directed toward the optical axis because spherical aberration at the time of temperature change is corrected well.
 ここで、図8に好ましい対物レンズの模式図を示す。光軸OAを含む対物レンズの断面のうち、光軸よりも上半分を示した図である。尚、図8は、あくまでも模式図であり、実施例に基づいた正確な長さの比率などを表した図面ではない。 Here, FIG. 8 shows a schematic diagram of a preferable objective lens. It is the figure which showed the upper half from the optical axis among the cross sections of the objective lens containing optical axis OA. Note that FIG. 8 is a schematic diagram to the last, and is not a drawing showing an accurate length ratio or the like based on the embodiment.
 図8の対物レンズは、中央領域CN、中間領域MD、周辺領域OTを有している。中央領域には第1光路差付与構造ODS1が設けられており、中間領域には第2光路差付与構造ODS2が設けられており、周辺領域には第3光路差付与構造ODS3が設けられている。 8 has a central region CN, an intermediate region MD, and a peripheral region OT. The central region is provided with the first optical path difference providing structure ODS1, the intermediate region is provided with the second optical path difference providing structure ODS2, and the peripheral region is provided with the third optical path difference providing structure ODS3. .
 図8の第1光路差付与構造ODS1は、(2/1/1)のブレーズ構造であって段差が光軸の方を向いている第2基礎構造BS2と、(1/1/1)のブレーズ構造であって段差が光軸と逆の方を向いている第1基礎構造BS1とが重畳した構造となっている。図8においては、第2基礎構造BS2は3輪帯であり、第2基礎構造BS2における光軸に最も近い輪帯(円状)上に、第1基礎構造BS1の輪帯が2個含まれている。また、第2基礎構造BS2における中間領域に最も近い1つの輪帯に、第1基礎構造BS1の輪帯が3個含まれている。 The first optical path difference providing structure ODS1 in FIG. 8 is a (2/1/1) blazed structure in which a step is directed toward the optical axis and a (1/1/1) second basic structure BS2. The blazed structure is a structure in which a first basic structure BS1 whose level difference is opposite to the optical axis is superimposed. In FIG. 8, the second foundation structure BS2 has three annular zones, and two annular zones of the first foundation structure BS1 are included on the annular zone (circular shape) closest to the optical axis in the second foundation structure BS2. ing. In addition, three annular zones of the first foundation structure BS1 are included in one annular zone closest to the intermediate region in the second foundation structure BS2.
 図8の第2光路差付与構造ODS2は、(7/4)または(5/3)のブレーズ構造であって段差が光軸の方を向いている第4基礎構造BS4と、(1/1)のブレーズ構造であって段差が光軸と逆の方を向いている第3基礎構造BS3とが重畳した構造となっている。図8においては、第4基礎構造BS4は3輪帯であり、第4基礎構造BS4における中央領域に最も近い輪帯上に、第3基礎構造BS3の輪帯が3個含まれている。また、第4基礎構造BS4における周辺領域に最も近い1つの輪帯に、第3基礎構造BS3の輪帯が4個含まれている。つまり、中間領域の周辺領域に最も近い輪帯の輪帯密度が高くなっているため、影の効果や成形誤差の影響が大きく、瞳透過率が光軸近傍と比べて小さくなってしまう。 The second optical path difference providing structure ODS2 in FIG. 8 is a (7/4) or (5/3) blazed structure, and a fourth basic structure BS4 in which the step is directed toward the optical axis (1/1). ) And a third base structure BS3 in which the level difference faces the direction opposite to the optical axis. In FIG. 8, 4th foundation structure BS4 is a 3 ring zone, and 3 ring zones of 3rd foundation structure BS3 are contained on the ring zone nearest to the center area | region in 4th foundation structure BS4. Further, four ring zones of the third foundation structure BS3 are included in one ring zone closest to the peripheral region in the fourth foundation structure BS4. That is, since the annular density of the annular zone closest to the peripheral region of the intermediate region is high, the shadow effect and the influence of the shaping error are large, and the pupil transmittance is small compared to the vicinity of the optical axis.
 図8の第3光路差付与構造ODS3は、第1光束が通過した際に2次または4次の回折光量が最大となるブレーズ構造であって段差が光軸の方を向いている第6基礎構造BS5のみからなっている。1次の場合と比して、ピッチを広くとることができるため、対物レンズの成形性を上げ、小型化にも対応可能になり、且つリム強度が高くなるため、BD使用時にも適切なスポット径を形成することが可能となる。 The third optical path difference providing structure ODS3 in FIG. 8 is a blazed structure in which the second-order or fourth-order diffracted light quantity is maximized when the first light beam passes, and the sixth base has a step toward the optical axis. It consists only of the structure BS5. Compared to the primary case, the pitch can be widened, so that the moldability of the objective lens can be improved, the size can be reduced, and the rim strength is increased. The diameter can be formed.
 BDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、DVDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、CDに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.8以上、0.9以下であることが好ましい。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The NA on the image side of the objective lens necessary for reproducing / recording information on the BD is NA1, and the NA on the image side of the objective lens necessary for reproducing / recording information on the DVD is NA2 (NA1 > NA2), and the image side numerical aperture of the objective lens necessary for reproducing / recording information on the CD is NA3 (NA2> NA3). NA1 is preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 対物レンズの中央領域と中間領域の境界は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中央領域と中間領域の境界が、NA3に相当する部分に形成されていることである。また、対物レンズの中間領域と周辺領域の境界は、第2光束の使用時において、0.9・NA2以上、1.2・NA2以下(より好ましくは、0.95・NA2以上、1.15・NA2以下)の範囲に相当する部分に形成されていることが好ましい。より好ましくは、対物レンズの中間領域と周辺領域の境界が、NA2に相当する部分に形成されていることである。 The boundary between the central region and the intermediate region of the objective lens is 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more, 1.15 · NA 3) when the third light beam is used. It is preferably formed in a portion corresponding to the following range. More preferably, the boundary between the central region and the intermediate region of the objective lens is formed in a portion corresponding to NA3. Further, the boundary between the intermediate region and the peripheral region of the objective lens is 0.9 · NA 2 or more and 1.2 · NA 2 or less (more preferably 0.95 · NA 2 or more, 1.15) when the second light flux is used. -It is preferably formed in a portion corresponding to the range of NA2 or less. More preferably, the boundary between the intermediate region and the peripheral region of the objective lens is formed in a portion corresponding to NA2.
 対物レンズを通過した第3光束をCDの情報記録面上に集光する場合に、球面収差が少なくとも1箇所の不連続部を有することが好ましい。その場合、不連続部は、第3光束の使用時において、0.9・NA3以上、1.2・NA3以下(より好ましくは、0.95・NA3以上、1.15・NA3以下)の範囲に存在することが好ましい。 When the third light flux that has passed through the objective lens is condensed on the information recording surface of the CD, it is preferable that the spherical aberration has at least one discontinuous portion. In that case, the discontinuous portion has a range of 0.9 · NA 3 or more and 1.2 · NA 3 or less (more preferably 0.95 · NA 3 or more and 1.15 · NA 3 or less) when the third light flux is used. It is preferable that it exists in.
 尚、対物レンズの第1光束に対する有効径をh1(mm)は1.9以上4.0以下であることが好ましく、より好ましくは以下の式(4)を満たすことである。
 1.9≦h1≦3.0   (4)
 対物レンズが式(4)を満たすような小型の対物レンズである場合、より一層周辺領域内の外径近傍におけるピッチが細かくなり、本発明の課題が大きくなるが、そのような大きな課題も、第5基礎構造を通過した第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくすることで解決できる。また、中間領域、特に中間領域の周辺領域近傍のピッチも小さくなるため、DVDやBD使用時のスポット径の増大が起きる可能性が生じるが、その場合には式(2)を満たすことで解決できる。
In addition, it is preferable that h1 (mm) is 1.9 or more and 4.0 or less about the effective diameter with respect to the 1st light beam of an objective lens, More preferably, it is satisfy | filling the following formula | equation (4).
1.9 ≦ h1 ≦ 3.0 (4)
When the objective lens is a small objective lens satisfying the formula (4), the pitch in the vicinity of the outer diameter in the peripheral region becomes even finer, and the problem of the present invention becomes large. This can be solved by making the second-order or fourth-order diffracted light quantity of the first light flux that has passed through the fifth basic structure larger than any other order diffracted light quantity. In addition, since the pitch in the vicinity of the intermediate region, particularly the peripheral region of the intermediate region is also small, there is a possibility that the spot diameter increases when using DVD or BD. In this case, satisfying the equation (2) solves the problem. it can.
 また、式(4)を満たすような小径のレンズであって、CD使用時のワーキングディスタンスを0.25mm以上必要とするような場合には、光路差付与構造のピッチを小さくし、輪帯数を増大させることなどにより回折の近軸パワーを増大させるのが望ましいが、その結果、DVD使用時にアポダイゼーションの逆の現象がより一層強く発生してしまうことがある。そのような場合には上述した式(2)の下限以上の値を満たすことにより、DVD使用時のスポット径を小さくすることができる In addition, when the lens has a small diameter that satisfies Equation (4) and requires a working distance of 0.25 mm or more when using a CD, the pitch of the optical path difference providing structure is reduced, and the number of annular zones is reduced. Although it is desirable to increase the paraxial power of diffraction, for example, by increasing the value, the reverse phenomenon of apodization may occur even more strongly when using a DVD. In such a case, the spot diameter when using the DVD can be reduced by satisfying a value equal to or higher than the lower limit of the above-described formula (2).
 さらに、第3光ディスクにおける十分なワーキングディスタンスを確保するという意味では、対物レンズに形成された輪帯の総数Nallは、100以上250以下であることが好ましい。 Further, in terms of ensuring a sufficient working distance in the third optical disc, the total number N all of the annular zones formed on the objective lens is preferably 100 or more and 250 or less.
 また、周辺領域の総輪帯数をN3としたときに、以下の式を満たすことが好ましい。
 5(mm)≦N3・f1≦100(mm)   (8)
式(8)の下限以上とすることで、BD使用時の温度変化に対して発生する球面収差が大きくなりすぎない。一方、式(8)の値を上限以下とすることで、ピッチが小さくなりすぎることを防止できるため、影の効果の抑制ができ、また加工性の低下を防ぎ形状誤差を低減でき、結果として回折効率の低下を防止できる。また、(8)の範囲にすることで、色収差も低減することができる。尚、周辺領域における光軸に略平行な段差数を、周辺領域の総輪帯数とみなしてよい。
Further, when the total number of ring zones in the peripheral region is N3, it is preferable to satisfy the following expression.
5 (mm) ≤ N3 · f1 ≤ 100 (mm) (8)
By setting the value to be equal to or higher than the lower limit of the formula (8), the spherical aberration generated with respect to the temperature change when using the BD is not excessively increased. On the other hand, by setting the value of equation (8) below the upper limit, it is possible to prevent the pitch from becoming too small, so that the effect of shadows can be suppressed, and the shape error can be reduced by preventing deterioration of workability. Decrease in diffraction efficiency can be prevented. In addition, by setting the range in (8), chromatic aberration can also be reduced. Note that the number of steps substantially parallel to the optical axis in the peripheral region may be regarded as the total number of ring zones in the peripheral region.
 また、対物レンズは、以下の条件式(7)を満たすことが好ましい。
 1.0≦d/f1≦1.5   (7)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。
The objective lens preferably satisfies the following conditional expression (7).
1.0 ≦ d / f1 ≦ 1.5 (7)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux.
 BDのような短波長、高NAの光ディスクに対応させる場合、対物レンズにおいて、非点収差が発生しやすくなり、偏心コマ収差も発生しやすくなるという課題が生じるが、条件式(7)の下限の値を超えないことにより非点収差や偏心コマ収差の発生を抑制することが可能となる。 When an optical disk with a short wavelength and high NA such as BD is used, there is a problem that astigmatism easily occurs and decentration coma easily occurs in the objective lens, but the lower limit of conditional expression (7) arises. By not exceeding this value, it is possible to suppress the generation of astigmatism and decentration coma.
 また、対物レンズの軸上厚が厚めの厚肉対物レンズになりやすく、CDの記録/再生時におけるワーキングディスタンスが短くなりがちになるため、条件式(7)の上限の値を超えないことが好ましい。 In addition, the objective lens tends to be a thick objective lens with a thick on-axis thickness, and the working distance at the time of CD recording / reproduction tends to be shortened. Therefore, the upper limit value of conditional expression (7) may not be exceeded. preferable.
 また、第3光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD3)は、0.15mm以上、1.5mm以下であることが好ましい。好ましくは、0.25mm以上、0.5mm以下である。次に、第2光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD2)は、0.2mm以上、1.3mm以下であることが好ましい。さらに、第1光ディスクを用いる際の対物光学素子のワーキングディスタンス(WD1)は、0.25mm以上、1.0mm以下であることが好ましい。 The working distance (WD3) of the objective optical element when using the third optical disk is preferably 0.15 mm or more and 1.5 mm or less. Preferably, they are 0.25 mm or more and 0.5 mm or less. Next, the working distance (WD2) of the objective optical element when using the second optical disc is preferably 0.2 mm or more and 1.3 mm or less. Furthermore, it is preferable that the working distance (WD1) of the objective optical element when using the first optical disc is 0.25 mm or more and 1.0 mm or less.
 第1光束、第2光束及び第3光束は、平行光として対物レンズに入射してもよいし、発散光若しくは収束光として対物レンズに入射してもよい。トラッキング時においても、コマ収差が発生することを防止するためには、第1光束、第2光束、及び第3光束を全て平行光又は略平行光として対物レンズに入射させることが好ましい。本発明の第1光路差付与構造を用いることによって、第1光束、第2光束及び第3光束の全てを平行光又は略平行光として対物レンズに入射させることが可能となるため、本発明の効果がより顕著となる。第1光束が平行光又は略平行光になる場合、第1光束が対物レンズに入射する時の対物レンズの結像倍率m1が、下記の式(22)を満たすことが好ましい。
 -0.01<m1<0.01   (22)
The first light beam, the second light beam, and the third light beam may be incident on the objective lens as parallel light, or may be incident on the objective lens as divergent light or convergent light. Even during tracking, in order to prevent coma from occurring, it is preferable that all of the first light beam, the second light beam, and the third light beam be incident on the objective lens as parallel light or substantially parallel light. By using the first optical path difference providing structure of the present invention, all of the first light beam, the second light beam, and the third light beam can be incident on the objective lens as parallel light or substantially parallel light. The effect becomes more remarkable. When the first light flux becomes parallel light or substantially parallel light, it is preferable that the imaging magnification m1 of the objective lens when the first light flux is incident on the objective lens satisfy the following formula (22).
-0.01 <m1 <0.01 (22)
 また、第2光束を平行光又は略平行光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(23)を満たすことが好ましい。
 -0.01<m2<0.01   (23)
In addition, when the second light beam is incident on the objective lens as parallel light or substantially parallel light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens satisfies the following expression (23). Is preferred.
-0.01 <m2 <0.01 (23)
 一方で、第2光束を発散光として対物レンズに入射させる場合、第2光束が対物レンズへ入射する時の、対物レンズの結像倍率m2が、下記の式(23)’を満たすことが好ましい。
 -0.025<m2≦-0.01   (23)’
On the other hand, when the second light beam is incident on the objective lens as diverging light, the imaging magnification m2 of the objective lens when the second light beam is incident on the objective lens preferably satisfies the following expression (23) ′. .
−0.025 <m2 ≦ −0.01 (23) ′
 また、第3光束を平行光束又は略平行光束として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(24)を満たすことが好ましい。
 -0.01<m3<0.01   (24)
When the third light beam is incident on the objective lens as a parallel light beam or a substantially parallel light beam, the imaging magnification m3 of the objective lens when the third light beam enters the objective lens satisfies the following expression (24). Is preferred.
-0.01 <m3 <0.01 (24)
 一方で、第3光束を発散光として対物レンズに入射させる場合、第3光束が対物レンズへ入射する時の、対物レンズの結像倍率m3が、下記の式(24)’を満たすことが好ましい。
 -0.025<m3≦-0.01     (24)’
これによりトラッキング時に発生するコマ収差が記録・再生可能な範囲となる。
On the other hand, when the third light beam is incident on the objective lens as diverging light, the imaging magnification m3 of the objective lens when the third light beam is incident on the objective lens preferably satisfies the following expression (24) ′. .
−0.025 <m3 ≦ −0.01 (24) ′
As a result, the coma generated during tracking falls within a recordable / reproducible range.
 光ピックアップ装置は、少なくとも第1光束と第2光束が通過するカップリングレンズを有していてもよく、カップリングレンズを光軸方向に移動させるアクチュエータ―を有するようにしてもよい。特に、BDが2層や3層以上など複数の情報記録面を持っている場合には、或る層の記録/再生から他の層の記録/再生を行う際には、透明基板厚に差が生じるため、当該厚みの差に起因して発生する球面収差を補正しなければならない。その際に、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変えることによって、当該発生する球面収差を補正することが考えられる。また、温度変化や波長変化の際に発生する球面収差も、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変えることによって補正することができる。 The optical pickup device may include a coupling lens through which at least the first light beam and the second light beam pass, and may include an actuator that moves the coupling lens in the optical axis direction. In particular, when the BD has a plurality of information recording surfaces such as two layers or three layers or more, when recording / reproducing one layer to another layer, the difference in the thickness of the transparent substrate is required. Therefore, spherical aberration generated due to the difference in thickness must be corrected. At that time, it is conceivable to correct the generated spherical aberration by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. Further, spherical aberration that occurs when the temperature or wavelength changes can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
 しかしながら、例え、BD使用時にカップリングレンズを光軸方向に移動させて各種球面収差を補正する光ピックアップ装置であっても、DVD使用時においては、カップリングレンズの光軸方向の位置が固定されていることが好ましい。 However, even in the case of an optical pickup device that corrects various spherical aberrations by moving the coupling lens in the optical axis direction when using BD, the position of the coupling lens in the optical axis direction is fixed when using DVD. It is preferable.
 その理由としては、BD使用時には、フレアが発生しないが、DVD使用時には、フレアが発生するため、カップリングレンズを変異させることにより、そのフレアの収差が変化し、結果としてそのフレアが記録/再生に悪影響を与える可能性が生じるという理由や、ドライブでのカップリングレンズの変位の制御を単純化したいという理由などが挙げられる。 The reason for this is that flare does not occur when using BD, but flare occurs when using DVD. Therefore, by changing the coupling lens, the aberration of the flare changes, and as a result, the flare is recorded / reproduced. The reason is that there is a possibility of adversely affecting the driving force, and the reason why it is desired to simplify the control of the displacement of the coupling lens in the drive.
 DVD使用時にカップリングレンズの光軸方向の位置を固定させるためには、対物レンズの第2光路差付与構造を構成する第3基礎構造と第4基礎構造のうち一方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正不足方向に変化し、その他方において、入射する光束の波長がより長くなるよう変化した場合には球面収差が補正過剰方向に変化させることで、DVD使用時の温度変化や波長変化に伴う球面収差を記録・再生可能なレベルにすることが可能となり、結果として、DVD使用時に、第2光束が通過するときにカップリングレンズを光軸方向の位置を固定した状態でも、DVDの情報記録面に対して情報の記録/再生を行うことができるようになるため好ましい。 In order to fix the position of the coupling lens in the optical axis direction when using a DVD, the wavelength of the incident light beam in one of the third basic structure and the fourth basic structure constituting the second optical path difference providing structure of the objective lens. The spherical aberration changes in the direction of undercorrection when it changes to become longer, while the spherical aberration changes in the overcorrection direction when the wavelength of the incident light beam becomes longer in the other direction. The spherical aberration accompanying the temperature change and wavelength change when using the DVD can be recorded and reproduced. As a result, when using the DVD, the coupling lens is moved in the optical axis direction when the second light beam passes. Even when the position is fixed, information can be recorded / reproduced on the information recording surface of the DVD.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、高い成形性を有しながら、小型化にも対応可能であり、BD使用時にも適切なスポット径を形成することによる安定した情報の記録/再生を行うことができる、コンパクトな光ピックアップ装置に好適な対物レンズ、及びこの対物レンズを搭載した光ピックアップ装置を提供することができる。 According to the present invention, it is possible to cope with downsizing while having high moldability, and it is possible to perform stable information recording / reproduction by forming an appropriate spot diameter even when using a BD. An objective lens suitable for such an optical pickup device and an optical pickup device equipped with this objective lens can be provided.
本実施形態にかかる単玉の対物レンズOLを光軸方向に見た図である。It is the figure which looked at the single objective lens OL concerning this embodiment in the optical axis direction. 影の効果を説明するための図である。It is a figure for demonstrating the effect of a shadow. 対物レンズを通過した第3光束が第3光ディスクの情報記録面上で形成するスポットを形成する状態を示す図である。It is a figure which shows the state which forms the spot which the 3rd light beam which passed the objective lens forms on the information recording surface of a 3rd optical disk. 光路差付与構造の例を示す軸線方向断面図であり、(a)、(b)はブレーズ型構造の例を示し、(c)、(d)は階段型構造の例を示す。It is an axial direction sectional view showing an example of an optical path difference grant structure, (a) and (b) show an example of a blaze type structure, and (c) and (d) show an example of a step type structure. (a)は段差が光軸の方向を向いている状態を示し、(b)は段差が光軸とは逆の方向を向いている状態を示す図である。(A) shows a state in which the step is directed in the direction of the optical axis, and (b) is a diagram showing a state in which the step is directed in a direction opposite to the optical axis. (a)は光軸付近では段差が光軸の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸とは逆の方を向くような形状を示し、(b)は光軸付近では段差が光軸とは逆の方向を向いているが、途中で切り替わり、中間領域付近では段差が光軸の方を向くような形状を示す図である。(A) shows a shape in which the step is in the direction of the optical axis in the vicinity of the optical axis, but changes in the middle, and in the vicinity of the intermediate region, the step is in the direction opposite to the optical axis. FIG. 4 is a diagram showing a shape in which a step is directed in the opposite direction to the optical axis in the vicinity of the axis, but is switched in the middle, and the step is directed toward the optical axis in the vicinity of the intermediate region. 第1光路差付与構造の概念図であり、(a)、(b)、(c)は好ましい第1光路差付与構造の例を示し、(d)は第1基礎構造と第2基礎構造とを重畳した例を示す。It is a conceptual diagram of a 1st optical path difference providing structure, (a), (b), (c) shows the example of a preferable 1st optical path difference providing structure, (d) is a 1st foundation structure and a 2nd foundation structure, An example in which is superimposed is shown. 好ましい対物レンズの模式図である。It is a schematic diagram of a preferable objective lens. 異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this embodiment which can perform recording and / or reproduction | regeneration of information appropriately with respect to BD, DVD, and CD which are different optical disks. 実施例1及び2における球面収差と正弦条件を表した図であり、(a)はBD、(b)はDVD、(c)はCDの場合である。It is a figure showing the spherical aberration and sine condition in Example 1 and 2, (a) is BD, (b) is DVD, (c) is the case of CD. 実施例3及び4における球面収差と正弦条件を表した図であり、(a)はBD、(b)はDVD、(c)はCDの場合である。It is a figure showing the spherical aberration and sine condition in Example 3 and 4, (a) is BD, (b) is DVD, (c) is the case of CD. 実施例5及び6における球面収差と正弦条件を表した図であり、(a)はBD、(b)はDVD、(c)はCDの場合である。It is a figure showing the spherical aberration and sine condition in Example 5 and 6, (a) is BD, (b) is DVD, (c) is the case of CD. 実施例7及び8における球面収差と正弦条件を表した図であり、(a)はBD、(b)はDVD、(c)はCDの場合である。It is a figure showing the spherical aberration and sine condition in Example 7 and 8, (a) is BD, (b) is DVD, (c) is the case of CD.
 以下、本発明の実施形態を、図面を参照して説明する。図9は、異なる光ディスクであるBDとDVDとCDに対して適切に情報の記録及び/又は再生を行うことができる本実施形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、スリムタイプであり、薄型の光情報記録再生装置に搭載できる。ここでは、第1光ディスクをBDとし、第2光ディスクをDVDとし、第3光ディスクをCDとする。なお、本発明は、本実施形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 9 is a diagram schematically showing a configuration of the optical pickup apparatus PU1 of the present embodiment that can appropriately record and / or reproduce information on BD, DVD, and CD, which are different optical disks. The optical pickup device PU1 is a slim type and can be mounted on a thin optical information recording / reproducing device. Here, the first optical disc is a BD, the second optical disc is a DVD, and the third optical disc is a CD. Note that the present invention is not limited to this embodiment.
 光ピックアップ装置PU1は、対物レンズOL、λ/4波長板QWP、コリメートレンズCOL、偏光ビームスプリッタBS、ダイクロイックプリズムDP,BDに対して情報の記録/再生を行う場合に発光され波長λ1=405nmのレーザ光束(第1光束)を射出する第1半導体レーザLD1(第1光源)と、DVDに対して情報の記録/再生を行う場合に発光され波長λ2=660nmのレーザ光束(第2光束)を射出する第2半導体レーザLD2(第2光源)及びCDに対して情報の記録/再生を行う場合に発光され波長λ3=785nmのレーザ光束(第3光束)を射出する第3半導体レーザLD3を一体化したレーザユニットLDP、センサレンズSEN、光検出器としての受光素子PD等を有する。 The optical pickup device PU1 emits light when recording / reproducing information with respect to the objective lens OL, the λ / 4 wavelength plate QWP, the collimating lens COL, the polarization beam splitter BS, and the dichroic prisms DP and BD, and has a wavelength of λ1 = 405 nm. A first semiconductor laser LD1 (first light source) that emits a laser beam (first beam) and a laser beam (second beam) that is emitted when recording / reproducing information on a DVD and has a wavelength λ2 = 660 nm. The second semiconductor laser LD2 (second light source) that emits and the third semiconductor laser LD3 that emits a laser beam (third beam) having a wavelength λ3 = 785 nm emitted when information is recorded / reproduced with respect to the CD are integrated. A laser unit LDP, a sensor lens SEN, a light receiving element PD as a photodetector, and the like.
 図1に示されるように、本実施形態にかかる単玉の対物レンズOLにおいて、光源側の非球面光学面に光軸を含む中央領域CNと、その周囲に配置された中間領域MDと、更にその周囲に配置された周辺領域OTとが、光軸を中心とする同心円状に形成されている。図示していないが、中心領域CNには既に詳述した第1光路差付与構造が形成され、中間領域MDには既に詳述した第2光路差付与構造が形成されている。また、周辺領域OTには、第3光路差付与構造が形成されている。本実施形態では、第3光路差付与構造はブレーズ型の回折構造である。また、本実施形態の対物レンズはプラスチックレンズである。対物レンズOLの中心領域CNに形成された第1光路差付与構造は、第1基礎構造と第2基礎構造とを重ね合わせた構造であり、第1基礎構造は、第1基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第1基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造は、第2基礎構造を通過した第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第2基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくする。 As shown in FIG. 1, in the single objective lens OL according to the present embodiment, a central region CN including the optical axis on the aspherical optical surface on the light source side, an intermediate region MD arranged around the center region CN, and A peripheral region OT disposed around the periphery is formed concentrically with the optical axis as the center. Although not shown, the first optical path difference providing structure already described in detail is formed in the center region CN, and the second optical path difference providing structure already described in detail is formed in the intermediate region MD. In addition, a third optical path difference providing structure is formed in the peripheral region OT. In the present embodiment, the third optical path difference providing structure is a blazed diffractive structure. The objective lens of this embodiment is a plastic lens. The first optical path difference providing structure formed in the center region CN of the objective lens OL is a structure in which the first basic structure and the second basic structure are overlapped, and the first basic structure has passed through the first basic structure. The first order diffracted light amount of the first light beam is made larger than any other order diffracted light amount, and the first order diffracted light amount of the second light beam that has passed through the first basic structure is made larger than any other order diffracted light amount. The first-order diffracted light quantity of the third light beam that has passed through the first basic structure is made larger than any other order of diffracted light quantity, and the second basic structure has a second-order diffracted light quantity that has passed through the second basic structure. Make the diffracted light quantity larger than any other order diffracted light quantity, make the first diffracted light quantity of the second light flux that passed through the second basic structure larger than any other order diffracted light quantity, and pass through the second basic structure The first-order diffracted light quantity of the third light flux To be larger than the amount of light.
 対物レンズOLの中間領域MDに形成された第2光路差付与構造は、第3基礎構造と第4基礎構造とを重ね合わせた構造であり、第3基礎構造は、第3基礎構造を通過した第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第3基礎構造を通過した第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造は、第4基礎構造を通過した第1光束の5次または7次の回折光量を他のいかなる次数の回折光量よりも大きくし、第4基礎構造を通過した第2光束の3次または4次の回折光量を他のいかなる次数の回折光量よりも大きくする。 The second optical path difference providing structure formed in the intermediate region MD of the objective lens OL is a structure in which the third basic structure and the fourth basic structure are overlapped, and the third basic structure has passed through the third basic structure. The first order diffracted light amount of the first light beam is made larger than any other order diffracted light amount, and the first order diffracted light amount of the second light beam that has passed through the third basic structure is made larger than any other order diffracted light amount. The first-order diffracted light amount of the third light beam that has passed through the third basic structure is made larger than any other order of diffracted light amount, and the fourth basic structure is the fifth-order or first-order light beam that has passed through the fourth basic structure. The seventh-order diffracted light amount is made larger than any other order diffracted light amount, and the third-order or fourth-order diffracted light amount of the second light flux that has passed through the fourth basic structure is made larger than any other order diffracted light amount.
 対物レンズOLの周辺領域OTに形成された第3光路差付与構造は、第5基礎構造を有し、第5基礎構造は、第5基礎構造を通過した第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくする。 The third optical path difference providing structure formed in the peripheral region OT of the objective lens OL has a fifth basic structure, and the fifth basic structure is the second or fourth order of the first light flux that has passed through the fifth basic structure. Make the amount of diffracted light greater than the amount of diffracted light of any other order.
 青紫色半導体レーザLD1から射出された第1光束(λ1=405nm)の発散光束は、実線で示すように、ダイクロイックプリズムDPを通過し、偏光ビームスプリッタBSを通過した後、コリメートレンズCOLを通過して平行光となり、λ/4波長板QWPにより直線偏光から円偏光に変換され、不図示の絞りによりその光束径が規制され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域と周辺領域により集光された光束は、厚さ0.1mmの保護基板PL1を介して、BDの情報記録面RL1上に形成されるスポットとなる。 The divergent light beam of the first light beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD1 passes through the dichroic prism DP, passes through the polarization beam splitter BS, and then passes through the collimating lens COL as shown by the solid line. It becomes parallel light, is converted from linearly polarized light into circularly polarized light by the λ / 4 wavelength plate QWP, the light beam diameter is regulated by a diaphragm (not shown), and enters the objective lens OL. Here, the light beam condensed by the central region, the intermediate region, and the peripheral region of the objective lens OL becomes a spot formed on the information recording surface RL1 of the BD through the protective substrate PL1 having a thickness of 0.1 mm. .
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOL、不図示の絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、2軸アクチュエータAC1により対物レンズOLをフォーカシングやトラッキングさせることで、BDに記録された情報を読み取ることができる。ここで、第1光束に波長変動が生じた場合や、複数の情報記録層を有するBDの記録/再生を行う場合、波長変動や異なる情報記録層に起因して発生する球面収差を、倍率変更手段としてのコリメートレンズCOLを1軸アクチュエータAC2により光軸方向に変化させて、対物光学素子OLに入射する光束の発散角又は収束角を変更することで補正できるようになっている。 The reflected light beam modulated by the information pits on the information recording surface RL1 is again transmitted through the objective lens OL and a diaphragm (not shown), and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and by the collimating lens COL. A converged light beam is reflected by the polarization beam splitter BS, and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. The information recorded on the BD can be read by using the output signal of the light receiving element PD to focus or track the objective lens OL by the biaxial actuator AC1. Here, when the wavelength fluctuation occurs in the first light flux or when recording / reproducing of a BD having a plurality of information recording layers, the spherical aberration generated due to the wavelength fluctuation or different information recording layers is changed in magnification. The collimating lens COL as a means is changed in the optical axis direction by the uniaxial actuator AC2, and can be corrected by changing the divergence angle or convergence angle of the light beam incident on the objective optical element OL.
 レーザユニットLDPの半導体レーザLD2から射出された第2光束(λ2=660nmまたは658nm)の発散光束は、点線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域と中間領域により集光された(周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ0.6mmの保護基板PL2を介して、DVDの情報記録面RL2に形成されるスポットとなり、スポット中心部を形成する。 The divergent light beam of the second light beam (λ2 = 660 nm or 658 nm) emitted from the semiconductor laser LD2 of the laser unit LDP is reflected by the dichroic prism DP and passes through the polarization beam splitter BS and the collimating lens COL as indicated by the dotted line. The λ / 4 wavelength plate QWP converts the linearly polarized light into circularly polarized light and enters the objective lens OL. Here, the light beam condensed by the central region and the intermediate region of the objective lens OL (the light beam that has passed through the peripheral region is flared and forms a spot peripheral part) is passed through the protective substrate PL2 having a thickness of 0.6 mm. Thus, the spot is formed on the information recording surface RL2 of the DVD and forms the center of the spot.
 情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてDVDに記録された情報を読み取ることができる。本実施形態ではカップリングレンズCOLを固定した状態でも、DVDに情報の記録/再生を行えるので、光ピックアップ装置の制御系が簡素化される。 The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective lens OL, converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and converted into a convergent light beam by the collimating lens COL. The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on DVD can be read using the output signal of light receiving element PD. In the present embodiment, since the information can be recorded / reproduced on the DVD even when the coupling lens COL is fixed, the control system of the optical pickup device is simplified.
 レーザユニットLDPの半導体レーザLD3から射出された第3光束(λ3=785nm)の発散光束は、一点鎖線で示すように、ダイクロイックプリズムDPで反射され、偏光ビームスプリッタBS、コリメートレンズCOLを通過し、λ/4波長板QWPにより直線偏光から円偏光に変換され、対物レンズOLに入射する。ここで、対物レンズOLの中央領域により集光された(中間領域及び周辺領域を通過した光束はフレア化され、スポット周辺部を形成する)光束は、厚さ1.2mmの保護基板PL3を介して、CDの情報記録面RL3上に形成されるスポットとなる。 The divergent light beam of the third light beam (λ3 = 785 nm) emitted from the semiconductor laser LD3 of the laser unit LDP is reflected by the dichroic prism DP as shown by a one-dot chain line, passes through the polarization beam splitter BS, and the collimating lens COL. The linearly polarized light is converted into circularly polarized light by the λ / 4 wavelength plate QWP, and is incident on the objective lens OL. Here, the light beam condensed by the central region of the objective lens OL (the light beam that has passed through the intermediate region and the peripheral region is flared to form a spot peripheral portion) is passed through the protective substrate PL3 having a thickness of 1.2 mm. Thus, the spot is formed on the information recording surface RL3 of the CD.
 情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOLを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、コリメートレンズCOLにより収斂光束とされ、偏光ビームスプリッタBSで反射され、センサレンズSENを介して受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いてCDに記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective lens OL again, is converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and is converged by the collimating lens COL, The light is reflected by the polarization beam splitter BS and converges on the light receiving surface of the light receiving element PD via the sensor lens SEN. And the information recorded on CD can be read using the output signal of light receiving element PD.
(実施例) 
 以下、上述した実施形態に用いることができる実施例について説明する。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。また、対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Examples that can be used in the above-described embodiments will be described below. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Formula 1.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (with the light traveling direction being positive), κ is a conical coefficient, Ai is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial radius of curvature. It is.
 また、回折構造を用いた実施例の場合、その回折構造により各波長の光束に対して与えられる光路差は、数2式の光路差関数に、表に示す係数を代入した数式で規定される。 Further, in the case of the embodiment using the diffractive structure, the optical path difference given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2. .
  [数2]
Φ(h)=Σ(C2i2i×λ×m/λB)
ここで、λ:使用波長、m:回折次数、λB:製造波長、h:光軸から光軸垂直方向の距離である。尚、「製造波長」とは、第i基礎構造を通過した際にMi次の回折効率が最も高くなる光束の波長である。
また、ピッチP(h)=λB/(Σ(2i×C2i×h2i-1))とする。
[Equation 2]
Φ (h) = Σ (C 2i h 2i × λ × m / λB)
Here, λ: wavelength used, m: diffraction order, λB: manufacturing wavelength, h: distance in the direction perpendicular to the optical axis from the optical axis. The “manufacturing wavelength” is the wavelength of the luminous flux that gives the highest Mi-order diffraction efficiency when passing through the i-th basic structure.
Further, the pitch P (h) = λB / (Σ (2i × C 2i × h 2i-1 )).
(実施例1)
 表1に実施例1のレンズデータを示す。実施例1の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造、第5基礎構造の段差は光軸の方向を向いている。また、実施例1の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(5/3)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
Example 1
Table 1 shows lens data of Example 1. The objective lens of Example 1 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure. The level difference of the structure faces the direction of the optical axis. In addition, the first optical path difference providing structure of Example 1 has (1/1/1) of the second basic structure which is a blazed diffraction structure of (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 また、図10に実施例1における、球面収差SAと正弦条件SCの図を示す。なお、図10において、(a)はBD使用時、(b)はDVD使用時、(c)はCD使用時のグラフとなっており、(a)の縦軸はBD使用時の光束の有効径(直径)の半分の値(h1/2)を1.0とした場合の、(b)の縦軸はDVD使用時の光束の有効径(直径)の半分の値(h2/2)を1.0とした場合の、(c)の縦軸はCD使用時の光束の有効径(直径)の半分の値(h3/2)を1.0とした場合の、光軸からの距離を表している。 FIG. 10 shows a diagram of the spherical aberration SA and the sine condition SC in Example 1. In FIG. 10, (a) is a graph when BD is used, (b) is when DVD is used, (c) is a graph when CD is used, and the vertical axis of (a) is the effective luminous flux when BD is used. When the half value (h1 / 2) of the diameter (diameter) is 1.0, the vertical axis of (b) is the half value (h2 / 2) of the effective diameter (diameter) of the luminous flux when using the DVD. The vertical axis of (c) in the case of 1.0 is the distance from the optical axis when the half value (h3 / 2) of the effective diameter (diameter) of the light beam when using the CD is 1.0. Represents.
(実施例2)
 表2に実施例2のレンズデータを示す。実施例2の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造、第5基礎構造の段差は光軸の方向を向いている。また、実施例2の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(5/3)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の4次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 2)
Table 2 shows lens data of Example 2. The objective lens of Example 2 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure. The level difference of the structure faces the direction of the optical axis. In addition, the first optical path difference providing structure of Example 2 has (1/1/1) of the second basic structure which is a blazed diffraction structure of (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例2は実施例1と第5基礎構造において違いがあるのみであり、実施例1の図10(a)では、周辺領域を通過したDVD及びCDのフレア光については省略しているため、実施例2における球面収差SAと正弦条件SCの図は実施例1の図10と同じとなる。 Example 2 is different from Example 1 only in the fifth basic structure. In FIG. 10A of Example 1, the flare light of DVD and CD that has passed through the peripheral region is omitted. The spherical aberration SA and sine condition SC in the second embodiment are the same as those in FIG. 10 in the first embodiment.
(実施例3)
 表3に実施例3のレンズデータを示す。実施例3の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造、第5基礎構造の段差は光軸の方向を向いている。また、実施例3の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(7/4)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 3)
Table 3 shows lens data of Example 3. The objective lens of Example 3 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure. The level difference of the structure faces the direction of the optical axis. Further, the first optical path difference providing structure of Example 3 has (1/1/1) of the (2/1/1) blazed diffraction structure of the second basic structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 また、図11に実施例3における、球面収差SAと正弦条件SCの図を示す。なお、図11において、(a)はBD使用時、(b)はDVD使用時、(c)はCD使用時のグラフとなっており、(a)の縦軸はBD使用時の光束の有効径の半分の値(h1/2)を1.0とした場合の、(b)の縦軸はDVD使用時の光束の有効径の半分の値(h2/2)を1.0とした場合の、(c)の縦軸はCD使用時の光束の有効径の半分の値(h3/2)を1.0とした場合の、光軸からの距離を表している。 FIG. 11 shows a diagram of spherical aberration SA and sine condition SC in Example 3. In FIG. 11, (a) is a graph when BD is used, (b) is a graph when DVD is used, (c) is a graph when CD is used, and the vertical axis of (a) is the effective luminous flux when BD is used. When the half value (h1 / 2) of the diameter is 1.0, the vertical axis of (b) is when the half value (h2 / 2) of the effective diameter of the luminous flux when using the DVD is 1.0. The vertical axis of (c) represents the distance from the optical axis when the half value (h3 / 2) of the effective diameter of the light beam when using the CD is 1.0.
(実施例4)
 表4に実施例4のレンズデータを示す。実施例4の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造、第5基礎構造の段差は光軸の方向を向いている。また、実施例4の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(7/4)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の4次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 4)
Table 4 shows lens data of Example 4. The objective lens of Example 4 is a plastic single lens, and the steps of the first basic structure and the third basic structure are opposite to the optical axis, and the second basic structure, the fourth basic structure, and the fifth basic structure. The level difference of the structure faces the direction of the optical axis. Further, the first optical path difference providing structure of Example 4 has (1/1/1) of the second basic structure which is a (2/1/1) blazed diffraction structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 実施例4は実施例3と第5基礎構造において違いがあるのみであり、実施例3の図11(a)では、周辺領域を通過したDVD及びCDのフレア光については省略しているため、実施例4における球面収差SAと正弦条件SCの図は実施例3の図11と同じとなる。 Example 4 is different from Example 3 only in the fifth basic structure. FIG. 11A of Example 3 omits the flare light of the DVD and CD that have passed through the peripheral region. The diagram of the spherical aberration SA and the sine condition SC in the fourth embodiment is the same as FIG. 11 in the third embodiment.
(実施例5)
 表5に実施例5のレンズデータを示す。実施例5の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造、第5基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造の段差は光軸の方向を向いている。また、実施例5の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(5/3)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 5)
Table 5 shows lens data of Example 5. The objective lens of Example 5 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure. The level difference of the structure faces the direction of the optical axis. Further, the first optical path difference providing structure of Example 5 has (1/1/1) of the second basic structure which is a blazed diffraction structure of (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 また、図12に実施例5における、球面収差SAと正弦条件SCの図を示す。なお、図12において、(a)はBD使用時、(b)はDVD使用時、(c)はCD使用時のグラフとなっており、(a)の縦軸はBD使用時の光束の有効径の半分の値(h1/2)を1.0とした場合の、(b)の縦軸はDVD使用時の光束の有効径の半分の値(h2/2)を1.0とした場合の、(c)の縦軸はCD使用時の光束の有効径の半分の値(h3/2)を1.0とした場合の、光軸からの距離を表している。 FIG. 12 shows a diagram of spherical aberration SA and sine condition SC in Example 5. In FIG. 12, (a) is a graph when BD is used, (b) is when DVD is used, (c) is a graph when CD is used, and the vertical axis of (a) is the effective luminous flux when BD is used. When the half value (h1 / 2) of the diameter is 1.0, the vertical axis of (b) is when the half value (h2 / 2) of the effective diameter of the luminous flux when using the DVD is 1.0. The vertical axis of (c) represents the distance from the optical axis when the half value (h3 / 2) of the effective diameter of the light beam when using the CD is 1.0.
(実施例6)
 表6に実施例6のレンズデータを示す。実施例6の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造、第5基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造の段差は光軸の方向を向いている。また、実施例6の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(5/3)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の4次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 6)
Table 6 shows lens data of Example 6. The objective lens of Example 6 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure. The level difference of the structure faces the direction of the optical axis. In addition, the first optical path difference providing structure of Example 6 has (1/1/1) of the second basic structure which is a (2/1/1) blazed diffraction structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure is the fourth basic structure, which is a blazed diffraction structure of (5/3), and the third basic structure, which is a blazed diffraction structure of (1/1), in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例6は実施例5と第5基礎構造において違いがあるのみであり、実施例5の図12(a)では、周辺領域を通過したDVD及びCDのフレア光については省略しているため、実施例6における球面収差SAと正弦条件SCの図は実施例5の図12と同じとなる。 Example 6 is different from Example 5 only in the fifth basic structure. In FIG. 12A of Example 5, the flare light of the DVD and CD that has passed through the peripheral region is omitted. The spherical aberration SA and the sine condition SC in Example 6 are the same as those in Example 5 shown in FIG.
(実施例7)
 表7に実施例7のレンズデータを示す。実施例7の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造、第5基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造の段差は光軸の方向を向いている。また、実施例7の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(7/4)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 7)
Table 7 shows lens data of Example 7. The objective lens of Example 7 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure. The level difference of the structure faces the direction of the optical axis. Further, the first optical path difference providing structure of Example 7 has (1/1/1) of the (2/1/1) blazed diffractive structure (2/1/1) in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the second-order diffracted light amount of the first light beam larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 また、図13に実施例3における、球面収差SAと正弦条件SCの図を示す。なお、図13において、(a)はBD使用時、(b)はDVD使用時、(c)はCD使用時のグラフとなっており、(a)の縦軸はBD使用時の光束の有効径の半分の値(h1/2)を1.0とした場合の、(b)の縦軸はDVD使用時の光束の有効径の半分の値(h2/2)を1.0とした場合の、(c)の縦軸はCD使用時の光束の有効径の半分の値(h3/2)を1.0とした場合の、光軸からの距離を表している。 FIG. 13 shows a diagram of spherical aberration SA and sine condition SC in Example 3. In FIG. 13, (a) is a graph when BD is used, (b) is when DVD is used, (c) is a graph when CD is used, and the vertical axis of (a) is the effective luminous flux when BD is used. When the half value (h1 / 2) of the diameter is 1.0, the vertical axis of (b) is when the half value (h2 / 2) of the effective diameter of the luminous flux when using the DVD is 1.0. The vertical axis of (c) represents the distance from the optical axis when the half value (h3 / 2) of the effective diameter of the light beam when using the CD is 1.0.
(実施例8)
 表8に実施例8のレンズデータを示す。実施例8の対物レンズはプラスチック単玉レンズであり、第1基礎構造、第3基礎構造、第5基礎構造の段差は光軸と逆の方向を向いており、第2基礎構造、第4基礎構造の段差は光軸の方向を向いている。また、実施例8の第1光路差付与構造は、中央領域の全領域において、(2/1/1)のブレーズ型の回折構造である第2基礎構造に、(1/1/1)のブレーズ型の回折構造である第1基礎構造が重ねあわされた光路差付与構造となっている。第2光路差付与構造は、中間領域の全領域において、(7/4)のブレーズ型の回折構造である第4基礎構造に、(1/1)のブレーズ型の回折構造である第3基礎構造が重ねあわされた光路差付与構造となっている。
第3光路差付与構造は、周辺領域の全領域において、第1光束の4次の回折光量を他のいかなる次数の回折光量よりも大きくする第5基礎構造を有している。
(Example 8)
Table 8 shows lens data of Example 8. The objective lens of Example 8 is a plastic single lens, and the steps of the first basic structure, the third basic structure, and the fifth basic structure are opposite to the optical axis, and the second basic structure and the fourth basic structure. The level difference of the structure faces the direction of the optical axis. In addition, the first optical path difference providing structure of Example 8 has (1/1/1) of the second basic structure which is a (2/1/1) blazed diffraction structure in the entire central region. It is an optical path difference providing structure in which the first basic structure which is a blazed diffraction structure is overlapped. The second optical path difference providing structure has a (7/4) blazed diffractive structure as a fourth basic structure (7/1) blazed diffractive structure as a third basic structure in the entire intermediate region. It is an optical path difference providing structure in which the structures are overlapped.
The third optical path difference providing structure has a fifth basic structure that makes the fourth-order diffracted light amount of the first light flux larger than any other order diffracted light amount in the entire peripheral region.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 実施例8は実施例7と第5基礎構造において違いがあるのみであり、実施例7の図13(a)では、周辺領域を通過したDVD及びCDのフレア光については省略しているため、実施例8における球面収差SAと正弦条件SCの図は実施例7の図13と同じとなる。 Example 8 is different from Example 7 only in the fifth basic structure. In FIG. 13A of Example 7, the flare light of the DVD and CD that has passed through the peripheral region is omitted. The spherical aberration SA and sine condition SC in Example 8 are the same as those in FIG. 13 in Example 7.
 実施例1~8の全てにおいて、BD使用時にスポット径が大きくなり過ぎず良好なスポット径を形成する。また、表9に各実施例における、式(1)~(8)の値を載せる。 In all of Examples 1 to 8, the spot diameter does not become too large when BD is used, and a favorable spot diameter is formed. Table 9 lists the values of equations (1) to (8) in each example.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や技術思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and includes other embodiments and modifications for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
AC1 2軸アクチュエータ
B 段差量
BS 偏光ビームスプリッタ
CN 中央領域
COL コリメートレンズ
DP ダイクロイックプリズム
LD1 第1半導体レーザ又は青紫色半導体レーザ
LD2 第2半導体レーザ
LD3 第3半導体レーザ
LDP レーザユニット
MD 中間領域
OA 光軸
ODS 光路差付与構造
OL 対物レンズ
OT 周辺領域
P ピッチ
PD 受光素子
PL1 保護基板
PL2 保護基板
PL3 保護基板
PU1 光ピックアップ装置
QWP λ/4波長板
RL1 情報記録面
RL2 情報記録面
RL3 情報記録面
SEN センサレンズ
AC1 Biaxial actuator B Step amount BS Polarizing beam splitter CN Central region COL Collimating lens DP Dichroic prism LD1 First semiconductor laser or blue-violet semiconductor laser LD2 Second semiconductor laser LD3 Third semiconductor laser LDP Laser unit MD Intermediate region OA Optical axis ODS Optical path difference providing structure OL Objective lens OT Peripheral region P Pitch PD Light receiving element PL1 Protective substrate PL2 Protective substrate PL3 Protective substrate PU1 Optical pickup device QWP λ / 4 wavelength plate RL1 Information recording surface RL2 Information recording surface RL3 Information recording surface SEN Sensor lens

Claims (11)

  1.  第1波長λ1(390nm≦λ1≦415nm)の第1光束を射出する第1光源と、第2波長λ2(630nm≦λ2≦670nm)の第2光束を射出する第2光源と、第3波長λ3(760nm≦λ3≦820nm)の第3光束を射出する第3光源とを有し、前記第1光束を用いて厚さがt1の保護基板を有するBDの情報の記録及び/又は再生を行い、前記第2光束を用いて厚さがt2(t1<t2)の保護基板を有するDVDの情報の記録及び/又は再生を行い、前記第3光束を用いて厚さがt3(t2<t3)の保護基板を有するCDの情報の記録及び/又は再生を行う光ピックアップ装置において用いられる対物レンズであって、
     前記対物レンズは単玉レンズであり、
     前記対物レンズの光学面は、中央領域と、前記中央領域の周りの中間領域と、前記中間領域の周りの周辺領域とを少なくとも有し、
     前記中央領域は第1光路差付与構造を有し、
     前記中間領域は第2光路差付与構造を有し、
     前記周辺領域は第3光路差付与構造を有し、
     前記対物レンズは、前記中央領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中央領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光し、
     前記対物レンズは、前記中間領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記中間領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記対物レンズは、前記周辺領域を通過する前記第1光束を、前記BDの情報記録面上に情報の記録及び/又は再生ができるように集光し、前記周辺領域を通過する前記第2光束を、前記DVDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、前記周辺領域を通過する前記第3光束を、前記CDの情報記録面上に情報の記録及び/又は再生ができるように集光せず、
     前記第1光路差付与構造は、少なくとも第1基礎構造と第2基礎構造とを重ね合わせた構造であり、
     前記第1基礎構造はブレーズ型構造であり、前記第1基礎構造を通過した前記第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した前記第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第1基礎構造を通過した前記第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2基礎構造はブレーズ型構造であり、前記第2基礎構造を通過した前記第1光束の2次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した前記第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第2基礎構造を通過した前記第3光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第2光路差付与構造は、少なくとも第3基礎構造と第4基礎構造とを重ね合わせた構造であり、
     前記第3基礎構造はブレーズ型構造であり、前記第3基礎構造を通過した前記第1光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第3基礎構造を通過した前記第2光束の1次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第4基礎構造はブレーズ型構造であり、前記第4基礎構造を通過した前記第1光束の5次または7次の回折光量を他のいかなる次数の回折光量よりも大きくし、前記第4基礎構造を通過した前記第2光束の3次または4次の回折光量を他のいかなる次数の回折光量よりも大きくし、
     前記第3光路差付与構造は、少なくとも第5基礎構造を有し、
     前記第5基礎構造はブレーズ型構造であり、前記第5基礎構造を通過した前記第1光束の2次または4次の回折光量を他のいかなる次数の回折光量よりも大きくしていることを特徴とする対物レンズ。
    A first light source that emits a first light beam with a first wavelength λ1 (390 nm ≦ λ1 ≦ 415 nm), a second light source that emits a second light beam with a second wavelength λ2 (630 nm ≦ λ2 ≦ 670 nm), and a third wavelength λ3 A third light source that emits a third light beam (760 nm ≦ λ3 ≦ 820 nm), and recording and / or reproducing information of a BD having a protective substrate with a thickness of t1 using the first light beam, Recording and / or reproducing information of a DVD having a protective substrate having a thickness of t2 (t1 <t2) using the second light flux, and having a thickness of t3 (t2 <t3) using the third light flux. An objective lens used in an optical pickup device for recording and / or reproducing information of a CD having a protective substrate,
    The objective lens is a single lens,
    The optical surface of the objective lens has at least a central region, an intermediate region around the central region, and a peripheral region around the intermediate region,
    The central region has a first optical path difference providing structure,
    The intermediate region has a second optical path difference providing structure,
    The peripheral region has a third optical path difference providing structure;
    The objective lens condenses the first light flux that passes through the central region so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux that passes through the central region. Are recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the central region is recorded and / or recorded on the information recording surface of the CD. Or collect it so that it can be regenerated,
    The objective lens condenses the first light flux passing through the intermediate area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the intermediate area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the intermediate region is recorded and / or recorded on the information recording surface of the CD. Or do not concentrate so that it can be regenerated,
    The objective lens condenses the first light flux passing through the peripheral area so that information can be recorded and / or reproduced on the information recording surface of the BD, and the second light flux passes through the peripheral area. Is recorded on the information recording surface of the DVD so that information can be recorded and / or reproduced, and the third light flux passing through the peripheral area is recorded on the information recording surface of the CD. And / or do not collect light for playback
    The first optical path difference providing structure is a structure in which at least a first basic structure and a second basic structure are overlapped,
    The first basic structure is a blaze-type structure, and the first-order diffracted light quantity of the first light beam that has passed through the first basic structure is made larger than any other order of diffracted light quantity, and passes through the first basic structure. The first-order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the first-order diffracted light quantity of the third light flux that has passed through the first basic structure is changed to any other order diffracted light quantity. Bigger than
    The second basic structure is a blazed structure, and the second-order diffracted light quantity of the first light beam that has passed through the second basic structure is made larger than any other order of diffracted light quantity, and passes through the second basic structure. The first order diffracted light quantity of the second light flux is made larger than any other order diffracted light quantity, and the first diffracted light quantity of the third light flux that has passed through the second basic structure is changed to any other order diffracted light quantity. Bigger than
    The second optical path difference providing structure is a structure in which at least a third basic structure and a fourth basic structure are overlapped,
    The third basic structure is a blazed structure, and the first-order diffracted light quantity of the first light beam that has passed through the third basic structure is made larger than any other order of diffracted light quantity, and passes through the third basic structure. The first-order diffracted light amount of the second light flux is made larger than any other order diffracted light amount,
    The fourth foundation structure is a blazed structure, and the fifth or seventh-order diffracted light quantity of the first light flux that has passed through the fourth basic structure is made larger than any other order of diffracted light quantity, Making the third or fourth order diffracted light quantity of the second light flux that has passed through the structure larger than any other order diffracted light quantity;
    The third optical path difference providing structure has at least a fifth basic structure,
    The fifth basic structure is a blazed structure, and the second-order or fourth-order diffracted light quantity of the first light beam that has passed through the fifth basic structure is made larger than any other order diffracted light quantity. Objective lens.
  2.  前記第2光束における、前記対物レンズの光軸中心近傍に対する前記中間領域の前記周辺領域近傍における瞳透過率の比率r2が、
     r2≦0.9   (1)
    であり、
     前記対物レンズの前記第2光束における有効径をh2、前記第2光束における結像倍率をm2、前記第1光束における焦点距離をf1、とした場合に、
     0.66≦h2/(2・f1・(1-m2))≦0.75   (2)
    を満たすことを特徴とする請求項1に記載の対物レンズ
    The ratio r2 of the pupil transmittance in the vicinity of the peripheral region of the intermediate region with respect to the vicinity of the optical axis center of the objective lens in the second light flux,
    r2 ≦ 0.9 (1)
    And
    When the effective diameter of the objective lens in the second light flux is h2, the imaging magnification in the second light flux is m2, and the focal length in the first light flux is f1,
    0.66 ≦ h2 / (2 · f1 · (1-m2)) ≦ 0.75 (2)
    The objective lens according to claim 1, wherein
  3.  以下の式を満たすことを特徴とする請求項1または2に記載の対物レンズ。
     1.0≦f1≦2.2   (3)
    The objective lens according to claim 1, wherein the following expression is satisfied.
    1.0 ≦ f1 ≦ 2.2 (3)
  4.  前記対物レンズの前記第1光束における有効径をh1とした場合に、以下の式を満たすことを特徴とする請求項1~3のいずれか一項に記載の対物レンズ。
     1.9≦h1≦3.0   (4)
    The objective lens according to any one of claims 1 to 3, wherein the following expression is satisfied when an effective diameter of the objective lens in the first light flux is h1.
    1.9 ≦ h1 ≦ 3.0 (4)
  5.  前記対物レンズの第i基礎構造は、次の数式
    φi(h)=(Ci2×h2+Ci4×h4+Ci6×h6+Ci8×h8+Ci10×h10)Miλ/λBi
    (但し、h(単位:mm)は、光軸からの高さを、Ci2、Ci4、Ci6・・・はそれぞれ、第i基礎構造の光路差関数(iは自然数)における二次、四次、六次、の光路差関数係数を、Miは、入射光束の回折次数が最大となる第i基礎構造の光路差関数における回折次数を、λ(単位:mm)は前記入射光束の使用波長を、λBi(単位:mm)は第i基礎構造における製造波長を、それぞれ示す。)の形に光路差関数を展開できる構造を有し、 前記第1基礎構造が有する焦点距離をfD1(単位:mm)と定義した場合に、以下の式を満たし、
     -0.40<f1/fD1<-0.10・・・(5)
    (但し、fD1=―λB1/(2×C12×M1×λ)であり、M1の値は1である。)、
    且つ、前記第2光束の有効径(直径)をh2(単位:mm)と定義し、前記第3光束の有効径(直径)をh3(単位:mm)と定義した場合に、次の条件式(6)
     -0.025<(φ5(h3/2)-φ5(h2/2))/(M5×f1)<0.025・・・(6)
    (但し、M5の値は2又は4である。)
    を満たすことを特徴とする請求項1~4のいずれか一項に記載の対物レンズ。
    The i-th basic structure of the objective lens has the following formula φ i (h) = (C i2 × h 2 + C i4 × h 4 + C i6 × h 6 + C i8 × h 8 + C i10 × h 10 ) Miλ / λB i
    (Where h (unit: mm) is the height from the optical axis, C i2 , C i4 , C i6 ... Are quadratic in the optical path difference function (i is a natural number) of the i-th substructure, The fourth-order and sixth-order optical path difference function coefficients, Mi is the diffraction order in the optical path difference function of the i-th basic structure that maximizes the diffraction order of the incident light beam, and λ (unit: mm) is the use of the incident light beam. ΛB i (unit: mm) indicates the manufacturing wavelength of the i-th basic structure, respectively)), and the focal length of the first basic structure is expressed as fD 1 When defined as (unit: mm), the following equation is satisfied,
    −0.40 <f1 / fD 1 <−0.10 (5)
    (However, fD 1 = −λB 1 / (2 × C 12 × M1 × λ), and the value of M1 is 1.)
    When the effective diameter (diameter) of the second light beam is defined as h2 (unit: mm) and the effective diameter (diameter) of the third light beam is defined as h3 (unit: mm), the following conditional expression (6)
    −0.025 <(φ 5 (h3 / 2) −φ 5 (h2 / 2)) / (M5 × f1) <0.025 (6)
    (However, the value of M5 is 2 or 4.)
    The objective lens according to any one of claims 1 to 4, wherein:
  6.  以下の式を満たすことを特徴とする請求項1~5のいずれか一項に記載の対物レンズ。
     0.68≦h2/(2・f1・(1-m2))≦0.74   (2)’
    The objective lens according to any one of claims 1 to 5, wherein the following expression is satisfied.
    0.68 ≦ h2 / (2 · f1 · (1-m2)) ≦ 0.74 (2) ′
  7.  前記対物レンズの光軸上の厚さをd(mm)とした場合に、以下の式を満たすことを特徴とする請求項1~6のいずれか一項に記載の対物レンズ。
     1.0≦d/f1≦1.5   (7)
    The objective lens according to any one of claims 1 to 6, wherein when the thickness on the optical axis of the objective lens is d (mm), the following expression is satisfied.
    1.0 ≦ d / f1 ≦ 1.5 (7)
  8.  少なくとも前記中央領域の光軸付近に設けられる前記第1基礎構造は、その段差が光軸とは逆の方向を向いており、
     少なくとも前記中央領域の光軸付近に設けられる前記第2基礎構造は、その段差が光軸の方向を向いていることを特徴とする請求項1~7のいずれか一項に記載の対物レンズ。
    The first basic structure provided at least near the optical axis of the central region has a step in a direction opposite to the optical axis,
    The objective lens according to any one of claims 1 to 7, wherein the second basic structure provided at least in the vicinity of the optical axis of the central region has a step in the direction of the optical axis.
  9.  前記周辺領域の総輪帯数をN3とした場合に、以下の式を満たすことを特徴とする請求項1~8のいずれかに記載の対物レンズ。
     5(mm)≦N3・f1≦100(mm)   (8)
    9. The objective lens according to claim 1, wherein the following expression is satisfied when the total number of annular zones in the peripheral region is N3.
    5 (mm) ≤ N3 · f1 ≤ 100 (mm) (8)
  10.  請求項1~9のいずれか一項に記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 9.
  11.  少なくとも前記第1光束と前記第2光束が通過するカップリングレンズと、前記カップリングレンズを光軸方向に移動させるアクチュエータ―を有し、
     前記第1光束が通過するときは、前記アクチュエータ―によって前記カップリングレンズが光軸方向に変位可能とされており、
     前記第2光束が通過するときには、前記カップリングレンズは、光軸方向の位置を固定されていることを特徴とする請求項10に記載の光ピックアップ装置。
    A coupling lens through which at least the first luminous flux and the second luminous flux pass, and an actuator for moving the coupling lens in the optical axis direction;
    When the first light beam passes, the coupling lens can be displaced in the optical axis direction by the actuator;
    The optical pickup device according to claim 10, wherein when the second light beam passes, the coupling lens is fixed in a position in an optical axis direction.
PCT/JP2013/062815 2012-05-11 2013-05-07 Objective lens and optical pickup device WO2013168692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380024707.XA CN104335277A (en) 2012-05-11 2013-05-07 Objective lens and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109038 2012-05-11
JP2012109038 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168692A1 true WO2013168692A1 (en) 2013-11-14

Family

ID=49550727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062815 WO2013168692A1 (en) 2012-05-11 2013-05-07 Objective lens and optical pickup device

Country Status (3)

Country Link
JP (1) JPWO2013168692A1 (en)
CN (1) CN104335277A (en)
WO (1) WO2013168692A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216176A (en) * 2010-03-19 2011-10-27 Hoya Corp Objective optical system for optical information recording and reproducing device, and optical information recording and reproducing device
JP2011233183A (en) * 2010-04-23 2011-11-17 Konica Minolta Opto Inc Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2012043506A1 (en) * 2010-09-29 2012-04-05 コニカミノルタオプト株式会社 Objective lens for optical pickup device, and optical pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216176A (en) * 2010-03-19 2011-10-27 Hoya Corp Objective optical system for optical information recording and reproducing device, and optical information recording and reproducing device
JP2011233183A (en) * 2010-04-23 2011-11-17 Konica Minolta Opto Inc Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2012043506A1 (en) * 2010-09-29 2012-04-05 コニカミノルタオプト株式会社 Objective lens for optical pickup device, and optical pickup device

Also Published As

Publication number Publication date
JPWO2013168692A1 (en) 2016-01-07
CN104335277A (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5062365B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
WO2011136096A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2011132691A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
JP6065347B2 (en) Objective lens and optical pickup device
JP5152439B2 (en) Objective lens for optical pickup device and optical pickup device
JP2011233183A (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2013005672A1 (en) Optical pickup device
WO2013168692A1 (en) Objective lens and optical pickup device
JP5713280B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5229657B2 (en) Objective lens for optical pickup device, optical pickup device and optical information recording / reproducing device
JP5963120B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
JP5585879B2 (en) Optical pickup device and optical information recording / reproducing device
WO2013114662A1 (en) Objective lens for optical pickup device, and optical pickup device
WO2011132696A1 (en) Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
WO2013084558A1 (en) Objective lens for optical pickup device, optical pickup device and optical information recording and reproducing device
WO2012090852A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information record/play device
WO2012063850A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2012133363A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recorder / player
JP2013157049A (en) Objective lens for optical pickup apparatus, optical pickup apparatus and optical information recording and reproducing apparatus
JP2014164791A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording reproducer
JP2013206515A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing apparatus
JP2013206514A (en) Objective for optical pickup device, and optical pickup device and optical information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787095

Country of ref document: EP

Kind code of ref document: A1