WO2013168437A1 - 有機化合物ナノ粉体、その製造方法ならびに懸濁液 - Google Patents

有機化合物ナノ粉体、その製造方法ならびに懸濁液 Download PDF

Info

Publication number
WO2013168437A1
WO2013168437A1 PCT/JP2013/003023 JP2013003023W WO2013168437A1 WO 2013168437 A1 WO2013168437 A1 WO 2013168437A1 JP 2013003023 W JP2013003023 W JP 2013003023W WO 2013168437 A1 WO2013168437 A1 WO 2013168437A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
value
particle size
size distribution
compound
Prior art date
Application number
PCT/JP2013/003023
Other languages
English (en)
French (fr)
Inventor
貴広 多田
和宏 加賀美
志朗 横田
Original Assignee
株式会社アクティバスファーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to IN2002MUN2014 priority Critical patent/IN2014MN02002A/en
Priority to JP2014514390A priority patent/JP6054380B2/ja
Priority to CN201380017953.2A priority patent/CN104203217B/zh
Priority to MX2014010772A priority patent/MX341663B/es
Application filed by 株式会社アクティバスファーマ filed Critical 株式会社アクティバスファーマ
Priority to RU2014148792A priority patent/RU2613109C2/ru
Priority to ES13787260T priority patent/ES2952419T3/es
Priority to US14/001,645 priority patent/US9278071B2/en
Priority to AU2013259150A priority patent/AU2013259150B2/en
Priority to CA2867236A priority patent/CA2867236C/en
Priority to PL13787260.2T priority patent/PL2848243T3/pl
Priority to BR112014028431-8A priority patent/BR112014028431B1/pt
Priority to KR1020147022644A priority patent/KR101772263B1/ko
Priority to EP13787260.2A priority patent/EP2848243B1/en
Publication of WO2013168437A1 publication Critical patent/WO2013168437A1/ja
Priority to IL234327A priority patent/IL234327B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • B02C17/205Adding disintegrating members to the tumbling mill
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/06Selection or use of additives to aid disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears

Definitions

  • the present invention relates to an organic compound nanopowder, a method for producing the same, and a suspension in which an organic compound is dispersed.
  • the oral preparation has the advantage of being easy and less painful than the injection preparation, but has the disadvantage of low bioavailability.
  • bioavailability is low is that oral preparations are difficult to be absorbed from digestive organs such as the intestines. In order to increase the bioavailability of the preparation, it is necessary to reduce the size of the organic compound having a medicinal component to a level necessary to facilitate absorption into the blood from the digestive tract.
  • a necessary amount of a medicinal ingredient needs to reach a target site through a blood vessel in the body.
  • the inner diameter of the thinnest capillary in the blood vessel is about 5 ⁇ m.
  • the particle size of the organic compound is required to be smaller than 5 ⁇ m.
  • Solid whitening or moisturizing ingredients contained in cosmetics are easy to spread on the skin and spread thinly on the skin, and when taking the form of an emulsion, it is difficult to cause phase separation in the cosmetic container.
  • the cohesiveness is as low as possible and the particle diameter is as small as possible.
  • a method for narrowing the particle size distribution of an organic compound to a nano level for example, a method of pulverizing an organic compound by a bead mill using beads made of ceramics, glass, or the like is known (for example, patent document). 2). By applying such mechanical impact or grinding force to the organic compound particles, nanopowder having a narrow particle size distribution can be obtained. Furthermore, a method of wet pulverization in an organic liquid using salt particles as a pulverization medium is also known (see, for example, Patent Documents 3 and 4). Unlike the grinding method using beads, this grinding method has a great merit that the risk of contamination of impurities from the grinding media can be reduced. This is because impurities derived from beads cannot be easily removed, but impurities derived from salt particles can be removed by a water washing step (also referred to as a desalting step) because the salt is water-soluble.
  • a water washing step also referred to as a desalting step
  • JP 2006-089386 A Japanese Patent Laid-Open No. 04-295420 International Publication WO / 2008/1226797 International Publication WO / 2010/032434
  • the pulverization method using the salt particles as the pulverization medium has the merit that it is possible to prevent the entry of impurities that are difficult to remove, but requires further improvement.
  • One of them is to produce the salt mixed in the pulverized organic compound by a simple process as much as possible without performing the process of washing with water.
  • the salt is preferably charged into the wet pulverizer at a mass ratio of preferably 10 to 30 times that of the organic compound to be pulverized. Unless this large amount of salt is removed after pulverization, the organic compound after pulverization cannot be safely used in the living body or on the surface of the living body. Another is to prevent rusting of the wet pulverizer.
  • Rust contamination must be avoided for biological applications.
  • a rust preventive agent as a general rust preventive means, the contact of the rust preventive agent with an organic compound is not permitted.
  • a wet pulverization apparatus for example, a custom-made apparatus having a ceramic coating on the inside
  • a demerit that a special apparatus is used, leading to an increase in cost.
  • the present invention has been made to meet such demands, and it is an object of the present invention to provide organic compound nanopowder simply and at low cost while avoiding contamination of impurities to be removed.
  • the present inventors have been able to efficiently pulverize the organic compound by adding at least a granular saccharide compound to the granular organic compound and pulverizing, and The inventor obtained the knowledge that the desalting step after pulverization is no longer necessary, and that rusting of the pulverizer can be prevented, and the present invention has been completed.
  • salt is added in addition to the granular saccharide compound at the time of pulverization, but since only a small amount that cannot be compared with the amount used as a pulverization medium is added, a desalting step is unnecessary, and It was found that the rusting problem of the crusher can be reduced.
  • Specific contents of the present invention are as follows.
  • one embodiment of the present invention includes a granular organic compound having an average particle diameter of 500 nm or less and a 90% diameter of less than 1500 nm, and an organic compound composed of at least one of saccharides and sugar alcohols. And an organic compound nanopowder containing at least a saccharide compound having a mass ratio of 0.3 times or more.
  • Another aspect of the present invention is an organic compound nanopowder in which the saccharide compound is 0.5 to 30 times the mass ratio of the organic compound to the organic compound.
  • Another embodiment of the present invention is an organic compound nanopowder further containing a physiologically acceptable polyol.
  • Another aspect of the present invention is also an organic compound nanopowder containing the saccharide compound as one or more of mannitol, maltitol, xylitol, erythritol, glucose, fructose, inositol, lactose, trehalose, cellobiose and dextrin It is.
  • Another embodiment of the present invention is an organic compound nanopowder that further contains a physiologically acceptable salt.
  • Another embodiment of the present invention is an organic compound nanopowder in which a physiologically acceptable salt is sodium chloride.
  • Another form of the invention also provides the organic compound with clarithromycin, fexofenadine hydrochloride, fluorometholone, curcuminoid, curcumin, rutin, mefenamic acid, acetaminophen, ibuprofen, amphotericin B, diclofenac sodium, indomethacin,
  • the organic compound nanopowder is one or more selected from the group consisting of felbinac, pranlukast hydrate, dexamethasone and fenofibrate.
  • One embodiment of the present invention is a suspension obtained by dispersing at least an organic compound contained in any of the above-described organic compound nanopowder in a liquid dispersion medium in which the organic compound is insoluble or hardly soluble.
  • One embodiment of the present invention includes a granular organic compound and at least one of sugars and sugar alcohols, and a granular carbohydrate compound having a mass ratio of 0.3 times or more with respect to the organic compound.
  • Another aspect of the present invention is a method for producing an organic compound nanopowder in which the saccharide compound is 0.5 to 30 times the mass ratio of the organic compound.
  • Another embodiment of the present invention is a method for producing an organic compound nanopowder in which in the mixing step, a physiologically acceptable polyol is mixed as a liquid in which the organic compound is insoluble or hardly soluble.
  • Another embodiment of the present invention is a method for producing organic compound nanopowder, wherein the pulverization step is a step of pulverizing the organic compound while kneading the mixture after the mixing step in a kneader.
  • Another embodiment of the present invention is a method for producing organic compound nanopowder in which a drying step is performed after a pulverization step.
  • Another aspect of the present invention is also an organic compound nanopowder containing the saccharide compound as one or more of mannitol, maltitol, xylitol, erythritol, glucose, fructose, inositol, lactose, trehalose, cellobiose and dextrin It is a manufacturing method.
  • Another embodiment of the present invention is a method for producing an organic compound nanopowder in which a physiologically acceptable salt is further mixed in the mixing step.
  • Another aspect of the present invention is a method for producing an organic compound nanopowder in which a physiologically acceptable salt is sodium chloride.
  • Another form of the invention also provides the organic compound with clarithromycin, fexofenadine hydrochloride, fluorometholone, curcuminoid, curcumin, rutin, mefenamic acid, acetaminophen, ibuprofen, amphotericin B, diclofenac sodium, indomethacin,
  • This is a method for producing an organic compound nanopowder having one or more selected from the group consisting of felbinac, pranlukast hydrate, dexamethasone and fenofibrate.
  • organic compound nanopowder can be provided easily and at low cost while avoiding contamination of impurities to be removed.
  • Organic compound nano powder The organic compound nanopowder according to the embodiment of the present invention, A granular organic compound (A) having an average particle diameter of 500 nm or less and a 90% diameter of less than 1500 nm; A saccharide compound (B) comprising at least one of saccharides and sugar alcohols and having a mass ratio of 0.3 times or more to the organic compound; At least. Further, the organic compound nanopowder may contain a physiologically acceptable salt (C). Moreover, the organic compound nanopowder may contain other additives (D) other than those described above depending on the application.
  • the “average particle diameter” in the present specification means an arithmetic average diameter (here, D av value) in the particle size distribution measured by the dynamic light scattering photon correlation method.
  • 50% diameter median diameter, also referred to as a D 50 value
  • 90% diameter means a particle diameter at a position of 90% when counting from 0 (minimum) to 100% (maximum) in order from the smallest particle diameter in the particle size distribution measured by the above measurement method ( D 90 value).
  • “10% diameter” means a particle diameter at a position of 10% when counting from 0 (minimum) to 100% (maximum) in order from the smallest particle diameter in the particle size distribution measured by the above measurement method ( D 10 value).
  • the average particle size of the organic compound is more preferably 50 nm to 400 nm, still more preferably 100 nm to 350 nm.
  • the D 90 value of the organic compound is more preferably less than 700 nm, and still more preferably less than 500 nm.
  • the “organic compound nanopowder” referred to in the present specification may be a powder containing at least granular (A) organic compound and (B) saccharide compound, and in addition to these, other additives may be added. It may be included.
  • the particle size distribution measured by the dynamic light scattering photon correlation method uses a granular organic compound as a measurement target. However, when the saccharide compound is physically attached or chemically bonded to the particle surface of the organic compound, the particle size distribution is intended for a granular organic compound having the saccharide compound.
  • an organic compound contains what is used as active ingredients, such as a pharmaceutical, health food, a dietary supplement, cosmetics, for example, it is not limited to these uses.
  • drugs include obesity suppressants, corticosteroids, elastase inhibitors, analgesics, antifungals, cancer therapeutics, antiemetics, cardiovascular drugs, anti-inflammatory drugs, anthelmintics, antiarrhythmic drugs, antibiotics Anticoagulant, antidepressant, antidiabetic, antiepileptic, antihistamine, antihypertensive, antimuscarinic, antimycobacterial, antitumor, immunosuppressive, antithyroid, antiviral , Anti-anxiety sedatives, beta-adrenergic receptor blockers, blood products, cardiotonic agents, contrast agents, antitussives, diagnostic agents, diagnostic contrast agents, diuretics, dopamine agonists, hemostatic agents, immune agents, lipid regulators, muscles Relaxant, parasympathomimetic, par
  • Specific organic compounds for pharmaceutical use include 5-fluorouracil, 7- (3,5-dimethoxy-4-hydroxycinnamoylamino) -3-octyloxy-4-hydroxy-1-methyl-2 (1H)- Quinolinone, acarbose, acyclovir, acetylsalicylic acid, acetylphenetride, acetaminophenone, adenine, atenolol, opium alkaloid, amidotrizoic acid, amphotericin B, amoxapine, amobarbital, amlin, amoxicillin, aripiprazole, alprazolam, allopurinol, ampicillin, ampicillin Amlexanox, isoproterenol, ibuprofen, ipriflavone, imipramine, irbesartan, indomethacin, ubenimex, urapidil, ursodesoxyco Luric acid, est
  • Organic compounds for health foods or dietary supplements include astaxanthin, alliin, allicin, anthocyanin, isoflavone, isorhamnetin, ⁇ lipoic acid, oleuropein, ornithine, catechin, capsaicin, capsanthin, capsorubin, ⁇ -carotene, carnitine, carminic acid, Canthaxanthin, colloidal gin, glucan, chitosan, quinone, gymnemic acid, ⁇ -cryptoxanthin, curcuminoid, curcumin, glucosamine, creatine, chlorophyll, quercetin, sesame lignan, zeaxanthin, bixin, biotin, vitamin A and derivatives, vitamin D2, vitamin D3, Phytosterol, phosphatidylserine, ⁇ -apo-4-carotenal, ⁇ -apo-8-carotenoic acid ethyl ester, flavonoid, Examples include
  • Cosmetics include anti-aging agents, UV protection agents, tanning agents, antioxidants, anti-wrinkle agents, moisturizers, blood circulation promoters, antibacterial agents, bactericides, desiccants, cooling agents, warming agents, vitamins , Amino acids, wound healing promoters, stimulation relieving agents, analgesics, cell activators, various enzymes, and the like.
  • the cosmetics are not limited to those exemplified above.
  • organic compound for cosmetics examples include 4-n-butylresorcinol, N-acylated glutathione, ascorbic acid, ascorbate, ascorbic acid glucoside, ascorbic acid magnesium phosphate, arbutin, isoferulic acid, isoferlate , Ellagic acid, ergoic acid, ergoate, kinetin, casein, caffeic acid, caffeate, glabrizine, glycyrrhizic acid, glutathione, glutathione ester, glutathione salt, kojic acid, retinol acetate, cysteine, tannic acid, tranexamic acid, transferrin , Tretinoin, hydroquinone, hydroquinone salt, phytic acid, fibrin, fibroin, fibronectin, ferulic acid, ferulic acid salt, lycopene, retinyl acetate, retinyl palmitate Retino
  • the saccharide compound contains at least one of saccharides (monosaccharides, disaccharides, trisaccharides or higher polysaccharides, oligosaccharides) and sugar alcohols.
  • the carbohydrate compound is selected so as not to overlap with the organic compound described above.
  • Examples of monosaccharides include glucose (glucose), galactose, mannose, fructose, inositol, ribose, xylose and the like.
  • Examples of the disaccharide include lactose (lactose), sucrose, cellobiose, trehalose, maltose and the like.
  • Examples of the polysaccharide include pullulan, sodium hyaluronate, raffinose, melezitose, sodium chondroitin sulfate, cellulose, cluster dextrin, cyclodextrin, dextrin, dextran, xanthan gum, chitin, chitosan and the like.
  • oligosaccharides include fructooligosaccharides, galactooligosaccharides, mannan oligosaccharides, gentio-oligosaccharides, xylooligosaccharides, cellooligosaccharides, isomaltoligosaccharides, nigerooligosaccharides, chitooligosaccharides, fucoidan oligosaccharides, soybean oligosaccharides, and dairy oligosaccharides. .
  • sugar alcohols examples include palatinit, sorbitol, lactitol, erythritol, pentaerythritol, xylitol, maltitol, mannitol, dulcitol and the like.
  • sugar alcohols, monosaccharides or disaccharides can be preferably used as the carbohydrate compound, and more preferably mannitol, maltitol, erythritol, xylitol, glucose, fructose, lactose, trehalose, cellobiose. More preferably, D-mannitol, xylitol, glucose, fructose or trehalose can be used.
  • the sugar compound may be contained in the form of particles independent of the granular organic compound, and is physically attached or chemically bonded to the surface of the granular organic compound. It may be included in the form to do.
  • the saccharide compound is contained in the organic compound nanopowder in an amount of 0.3 times or more, preferably 0.3 to 100 times, more preferably 0.5 to 30 times by weight with respect to the organic compound. And even more preferably, it is contained in an amount of 0.8 to 20 times that of the organic compound.
  • the amount of the organic compound added is preferably 0.3 to 100 times or less with respect to the mass of the organic compound, more preferably 0.5 to 30 times, further 0.8 to 20 times, and further 1.0. It is preferable to make it 8 times.
  • the saccharide compound one kind of saccharide compound may be used, two or more kinds of saccharide compounds may be mixed and used, or fine particles may be used.
  • the carbohydrate compound can function as a grinding medium or a grinding aid when grinding the organic compound.
  • the grinding medium means a medium that directly exerts an impact or grinding action on the organic compound.
  • the grinding aid means a medium that does not directly exert the above-described action on the organic compound, but acts indirectly to facilitate grinding.
  • the carbohydrate compound can also have an action of reducing aggregation of particles of the organic compound.
  • the salt that can be contained in the organic compound nanopowder according to this embodiment is a salt that can be used without causing any particular physiological problems, that is, ingested in vivo or on the skin.
  • the salt is not particularly limited as long as it does not cause a big problem even if contacted.
  • the physiologically acceptable salt is preferably a salt having a hardness suitable for pulverization of an organic compound.
  • the amount of the salt mixed in the organic compound and the saccharide compound is an amount that does not cause a big problem in the living body even if ingested in the living body.
  • Suitable salts include, for example, sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, magnesium sulfate, potassium sulfate, calcium sulfate, sodium malate, sodium citrate, disodium citrate, sodium dihydrogen citrate, citric acid Examples thereof include potassium dihydrogen, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, and dipotassium hydrogen phosphate.
  • Further preferable salts include sodium chloride, potassium chloride, magnesium sulfate, calcium sulfate, sodium citrate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate and the like. Most preferred is sodium chloride.
  • the salt may be pulverized before mixing with the organic compound or carbohydrate compound to adjust the particle size.
  • the average particle diameter of the particles is preferably 0.01 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m, and still more preferably 0.5 to 50 ⁇ m.
  • the amount of the salt is contained in an amount of 0.02 to 4 times, preferably 0.05 to 2 times, more preferably, with respect to the total amount of the organic compound and the saccharide compound. Is contained in an amount of 0.1 to 1.5 times.
  • the salt one kind of salt may be used, or two or more kinds of salts may be mixed and used.
  • the salt can function as a grinding medium or a grinding aid when the organic compound is ground.
  • the organic compound nano-powder may contain a part or all of the viscosity modifier added during production.
  • a physiologically acceptable polyol can be preferably used.
  • physiologically acceptable polyols include glycerin, propylene glycol, polyethylene glycol, dipropylene glycol, ethylene glycol, diethylene glycol, citric acid, DL-malic acid, tartaric acid, lactic acid, urea, maleic acid and malonic acid.
  • citric acid, propylene glycol or glycerin One type of viscosity modifier may be used, or two or more types may be mixed and used.
  • Organic compound nanopowder is very easy to agglomerate because individual particles are nano-sized. For this reason, the organic compound nano-powder may contain a part or all of an aggregation inhibitor added at the time of pulverization or after pulverization in order to prevent aggregation after pulverization.
  • Anti-aggregation agents include ethanol, glycerin, propylene glycol, sodium citrate, purified soybean lecithin, phospholipid, D-sorbitol, lactose, xylitol, gum arabic, sucrose fatty acid ester, sodium dodecyl sulfate, polyoxyethylene hydrogenated castor oil, Polyoxyethylene fatty acid ester, polyoxyethylene glycol, polyoxyethylene sorbitan fatty acid ester, alkyl sulfate, alkylbenzene sulfonate, sulfosuccinate ester salt, polyoxyethylene polyoxypropylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, hydroxypropyl cellulose, Methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, carmellose sodium, carboxymethyl Sodium cellulose, carboxymethyl polymer, N-acyl-glutamate, acrylic acid copolymer, sodium myristoylmethyl taurate,
  • glycerin sucrose fatty acid ester, sodium dodecyl sulfate, polyvinyl pyrrolidone, polyvinyl alcohol, hydroxypropyl cellulose, sodium carboxymethyl cellulose, sodium myristoyl methyl taurate, polyoxyl stearate, carboxy vinyl polymer, sulfosuccinate Dioctyl sodium acid and xanthan gum
  • aggregation inhibitor may be used, or two or more types may be mixed and used.
  • other additives those which do not overlap with organic compounds, carbohydrate compounds and salts are selected.
  • the suspension according to the embodiment of the present invention is obtained by dispersing the above-described organic compound (A) in a liquid dispersion medium in which it is insoluble or hardly soluble.
  • insoluble or hardly soluble means that the solubility of an organic compound in a liquid dispersion medium is 10 mg / mL or less, preferably 1 mg / mL or less, at a normal handling temperature, for example, room temperature around 25 ° C. It means that there is.
  • the liquid dispersion medium in which the organic compound is insoluble or hardly soluble includes water; an organic solvent such as ethanol; or a polyol such as glycerin, propylene glycol, polyethylene glycol, ethylene glycol, and diethylene glycol.
  • the liquid dispersion medium is not limited to the liquids exemplified above, and any kind of medium may be used as long as it can exist as a liquid at room temperature around 25 ° C.
  • the polyol when a polyol is selected as the liquid dispersion medium, the polyol also functions as a viscosity modifier or an aggregation inhibitor.
  • the organic compound when the organic compound is a water-soluble compound, the liquid dispersion medium in which the organic compound is insoluble or hardly soluble means a dispersion medium other than water, and the organic compound is a compound that is soluble in a specific organic solvent. In some cases, it means a dispersion medium other than the specific organic solvent.
  • the liquid dispersion medium is selected so that the organic compound can exist in a dispersed state without being completely dissolved.
  • a dispersion medium mainly composed of water it is preferable to use.
  • the suspension according to this embodiment may contain various viscosity adjusting agents and anti-aggregation agents described in the above (D) other additives, and further, emulsifiers, pH adjusting agents, buffering agents, antiseptics. It may contain an agent.
  • the suspension may be monobasic sodium phosphate, dibasic sodium phosphate, tribasic sodium phosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium hexametaphosphate, acidic sodium hexametaphosphate, primary phosphorous Phosphate represented by potassium acid or the like or a hydrate thereof; sodium edetate; sodium hydroxide or the like may be contained.
  • the method for producing an organic compound nanopowder according to this embodiment includes: It consists of a granular organic compound and at least one of saccharides and sugar alcohols, and a granular saccharide compound having a mass ratio of 0.3 times or more with respect to the organic compound, and the organic compound is insoluble or difficult.
  • the method for producing organic compound nano-powder may have a drying step (C) after the pulverizing step (B).
  • a drying step (C) after the pulverizing step (B).
  • the “mixing step”, “pulverizing step”, and “drying step” will be described.
  • the mixing step included in the method for producing organic compound nanopowder is a step of mixing at least a granular organic compound, a granular saccharide compound, and a liquid in which the organic compound is insoluble or hardly soluble. Additives other than these (anti-aggregation agent, viscosity modifier, pH adjuster, etc.) may also be added and mixed.
  • the mixing step is characterized by adding a granular saccharide compound to the granular organic compound and adding a saccharide compound 0.3 times or more the organic compound at a mass ratio. When the saccharide compound is added 0.3 times or more by mass ratio with respect to the organic compound and pulverized, the organic compound can be finely pulverized.
  • the saccharide compound is mixed 0.3 times or more with respect to the organic compound, it can be finely pulverized, but it is necessary to reduce the amount of the organic compound put into the pulverizer, and the amount of pulverization in one pulverization step is reduced. descend.
  • the addition amount of the saccharide compound is preferably 0.3 to 100 times the mass of the organic compound, and more preferably It is preferably 0.5 to 30 times, more preferably 0.8 to 20 times, and further preferably 1.0 to 8 times.
  • Carbohydrate compounds have a function as an anti-aggregation agent, but if they only exert their functions, they should be added in “particulate form” and “more than 0.3 times the mass of the organic compound”. I don't need it. Adding a saccharide compound in “particulate form” and adding “more than 0.3 times the mass of the organic compound” directly impacts or grinds the particulate organic compound during the grinding process. This is because the carbohydrate compound exerts a function as a grinding medium that exerts an influence on the surface, or a function as a grinding aid that indirectly participates in order to promote impact and grinding between particulate organic compounds.
  • various saccharides already described in the section of the organic compound nano powder various sugar alcohols, or a mixture of two or more thereof can be used.
  • sugar alcohols, monosaccharides or disaccharides can be used, more preferably mannitol, maltitol, erythritol, xylitol, glucose, fructose, lactose, trehalose, cellobiose, more preferably D-mannitol, Xylitol, glucose, fructose, trehalose can be used.
  • the particle size of the granular saccharide compound can be variously selected depending on the pulverization conditions, but in order to efficiently perform the function as a pulverization medium or a pulverization aid, the average particle size is 0.5 ⁇ m to 1,000 ⁇ m. It is preferable to use a carbohydrate compound in the range, further 1 ⁇ m to 700 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m.
  • a physiologically acceptable salt can be further mixed.
  • a physiologically acceptable salt in this case, for example, it is preferable to mix a physiologically acceptable salt in a mass ratio of 0.02 to 4 times the total amount of the organic compound and the saccharide compound.
  • the salt various salts already described in the section of the organic compound nanopowder can be used.
  • the particle diameter of the granular salt can be variously selected, but is preferably 0.01 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m, and still more preferably 0.5 to 50 ⁇ m.
  • the liquid in which the organic compound is insoluble or hardly soluble means a liquid in which the solubility of the organic compound in the liquid is 10 mg / mL, preferably 1 mg / mL or less at a normal handling temperature, for example, room temperature around 25 ° C. .
  • the liquid in which the organic compound is insoluble or hardly soluble includes water; an organic solvent such as ethanol; or a polyol such as glycerin, propylene glycol, polyethylene glycol, ethylene glycol, and diethylene glycol.
  • the liquid is not limited to those exemplified above, and any kind of liquid may be used as long as it can exist as a liquid at room temperature around 25 ° C.
  • the polyol when a polyol is selected as the liquid, the polyol also functions as a viscosity modifier or an aggregation inhibitor.
  • the liquid in which the organic compound is insoluble or hardly soluble means, for example, a liquid other than water when the organic compound is a water-soluble compound, and when the organic compound is a compound that is soluble in a specific organic solvent. It means liquid other than the specific organic solvent. That is, the liquid is selected so that the organic compound can exist without being completely dissolved in the mixing step and the subsequent grinding step.
  • the mixing step is performed in the mixing vessel by preparing a mixing container different from the pulverizing device in addition to the step executed before or simultaneously with the pulverizing in the pulverizing device used in the pulverizing step described below. It may be a process. In the latter case, when performing the mixing process, a stirrer that rotates the stirring blade, a magnetic stirrer that rotates the stirrer in the container using magnetism, a vibration mill that vibrates the container up and down, and an ultrasonic wave oscillate You may use the bathtub to make it.
  • the pulverizer used for wet pulverization of the organic compound has the ability to make the organic compound fine by mechanical means. If there is, it can be used without any particular limitation.
  • the pulverizer include commonly used pulverizers such as a kneader, a two-roll, a three-roll, a fret mill, a hoover muller, a disk blade kneader, and a biaxial extruder.
  • a major feature of this grinding process is that no grinding media such as balls or beads are used.
  • the abrasion powder from the ball or bead is mixed into the ground object and cannot be removed or theoretically possible. Even so, it requires a lot of labor and cost.
  • a pulverizing apparatus that only gives power for kneading the object to be pulverized is used, and the granular organic compound or between the granular organic compound and the granular saccharide compound The organic compound is refined by utilizing the impact or grinding action between the two.
  • the pulverization step is a step of pulverizing the organic compound while kneading the mixture after the mixing step in a kneader.
  • the organic compound pulverization step may be performed after all of the organic compound, saccharide compound, and a small amount of liquid have been put into the pulverizer, or may be added little by little during the pulverization.
  • the pulverization temperature can be appropriately determined in consideration of the organic compound to be pulverized, the pulverizer, and the like.
  • the pulverization temperature is not particularly limited as long as it can reduce melting or decomposition of the organic compound, but is preferably ⁇ 50 to 50 ° C., more preferably ⁇ 20 to 30 ° C., and most preferably ⁇ 10 to 25 ° C.
  • the pulverization time can be appropriately determined in consideration of the organic compound to be pulverized, the pulverizing apparatus, and the like.
  • the pulverization time can be, for example, about 1 to 50 hours, preferably 2 to 20 hours, and more preferably 3 to 10 hours.
  • the organic compound nanopowder can be obtained as a solid, not in the form of a dispersion solution, by performing a drying treatment.
  • the method for the drying treatment is not particularly limited, and can be usually performed by a method used for drying an organic compound. Examples of the drying method include a vacuum drying method, a freeze drying method, a spray drying method, and a freeze spray drying method.
  • Drying is preferably performed at a low temperature, and more preferably by a reduced pressure drying method, a freeze drying method, a spray drying method, or a freeze spray drying method.
  • the organic compound nanopowder obtained by the production method according to the present embodiment is excellent in formulation characteristics and can be used as various dosage forms.
  • the content obtained after the pulverization step can be suspended in water and adjusted to porous particles of about 1 to 30 ⁇ m by freeze spray drying.
  • a small amount of a surfactant may be added to the water.
  • a small amount of a volatile additive such as ethanol may be added.
  • the volatile additive can be distilled off at the time of drying. Therefore, the irritation can be improved as compared with the case where a surfactant is added.
  • an agglomeration inhibitor is added to the contents after the pulverization step to prepare an aqueous dispersion.
  • the anti-aggregation agent include known surfactants.
  • various aggregation preventing agents described in the section of the organic compound nanopowder can be used.
  • An aqueous dispersion using a polymer such as an acrylic acid copolymer or a methacrylic acid copolymer as an anti-aggregation agent can be used as a DDS agent.
  • the aqueous dispersion can also be pulverized by vacuum drying, spray drying, freeze drying, freeze spray drying, or the like. Since the powder prepared in this way is excellent in redispersibility in water, it has excellent properties as an injection, an eye drop, and an oral preparation for use at the time of use.
  • the organic compound nano powder can be dispersed in an oily substance and used for ointments, capsules, transdermal absorbents and the like.
  • the oily substance is not particularly limited as long as it is a substance usually used in formulation. Examples of the oily substance include liquid paraffin, petrolatum, propylene glycol, glycerin, polyethylene glycol, vegetable oil and the like.
  • the oily substance may be used alone or in combination of two or more oily substances. Moreover, you may use the apparatus etc. which are normally used at the time of oily substance dispersion preparation.
  • Examples of the apparatus include a homogenizer, a homomixer, an ultrasonic disperser, a high-pressure homogenizer, a two-roll, a three-roll, a disk blade kneading disperser, and a twin screw extruder.
  • the particle size distribution measured using a particle size distribution measuring apparatus is average particle diameter (D av ): 12820 nm, D 10 value: 3793 nm, D 50 value: 10530 nm, D 90 value: 25520 nm.
  • Dough A 10 mg portion of the kneaded product taken out after mixing and stirring (referred to as “Dough”) was weighed into a 50 mL glass vial, 10 mL of purified water was added thereto, and then a bathtub-type ultrasonic disperser ( Dispersion treatment was performed for 1 to 2 minutes using a model: US100III, manufactured by ASONE Corporation.
  • the particle size distribution measured using the particle size distribution measuring device was an average particle diameter (D av ): 223 nm, D 10 value: 99 nm, D 50 value: 185 nm, D 90 value: 336 nm.
  • Example 2 Production of powder containing 20 wt% of turmeric (1) Mixing step and grinding step 20 g of turmeric powder used in Example 1, 65 g of D-(-)-mannitol used in Example 1, sucrose fatty acid ester used in Example 1 10 g, 1.6 g of sodium carboxymethylcellulose used in Example 1, and 9 g of purified water were placed in the trimix kneader used in Example 1, and mixed and stirred under the same conditions as in Example 1. A 10 mg portion of the dough was weighed into a 50 mL glass vial, 20 mL of purified water was added thereto, and then a dispersion treatment was performed in the same manner as in Example 1.
  • the particle size distribution measured using the particle size distribution measuring apparatus used in Example 1 is as follows: average particle diameter (D av ): 379 nm, D 10 value: 155 nm, D 50 value: 298 nm, D 90 value: It was 603 nm.
  • Dispersion Step 270 g of purified water was added to 30 g of the obtained dough, and a dispersion treatment was performed under the same conditions as in Example 1.
  • the particle size distribution measured using the particle size distribution measuring device was an average particle diameter (D av ): 463 nm, D 10 value: 147 nm, D 50 value: 359 nm, D 90 value: 802 nm.
  • the particle size distribution measured using the particle size distribution measuring apparatus of Example 1 before the mixing step of the synthetic curcumin is the average particle diameter (D av ): 17270 nm, D 10 value: 4422 nm, D 50 value: 15070 nm, D 90 value: It was 33850 nm.
  • 300 mg of the dough obtained after mixing and stirring was weighed into a 50 mL glass vial, and 5 mL of a mixed solution of 0.1% SDS (sodium dodecyl sulfate) and 0.1% hydrogenated soybean lecithin was added thereto.
  • SDS sodium dodecyl sulfate
  • the dispersion treatment is performed for 1 to 2 minutes using the bathtub-type ultrasonic disperser used in Example 1, and 45 mL of purified water is further added, and the dispersion is again performed for 1 to 2 minutes using the above-described bathtub-type ultrasonic disperser.
  • the particle size distribution measured using the particle size distribution measuring device was an average particle size (D av ): 96 nm, D 10 value: 37 nm, D 50 value: 78 nm, D 90 value: 162 nm.
  • Washing step 300 mg of the obtained dough was weighed into a 50 mL falcon tube, 10 mL of purified water was added thereto, and the mixture was vortexed and diffused.
  • a desktop centrifuge (rotation speed: 6000 rpm, 10 minutes) Centrifugation was performed at Thereafter, the supernatant was discarded, and 10 mL of purified water was added to the remaining portion, followed by centrifugation. This operation was repeated until the final supernatant had an electric conductivity of 10 ⁇ s / cm or less to obtain a wet cake (containing about 30 mg of curcumin).
  • 5 mL of a mixture of 0.1% SDS (sodium dodecyl sulfate) and 0.1% hydrogenated soybean lecithin is added, and the mixture is dispersed for 1 to 2 minutes using the above-described bathtub-type ultrasonic disperser.
  • Table 1 shows the particle size distribution in each step of the products obtained in Example 1, Example 2, and Comparative Example 1.
  • the finer nanopowder can be obtained by pulverization using a conventional salt unless the drying step is performed, but the pulverization using a salt is performed when the drying step is performed. Then, aggregation of particles is likely to occur.
  • the method of pulverizing using D-mannitol according to Examples 1 and 2 nanopowder having a particle size distribution that does not greatly change from the particle size distribution immediately after pulverization even after the drying step was obtained. This means that the pulverization using D-mannitol can obtain a powder that hardly causes aggregation even when dried.
  • Example 3 Production of powder containing 10% by weight of rutin (1)
  • Mixing step and grinding step 10 g of rutin powder (manufactured by Wako Pure Chemical Industries, Ltd.), 80 g of D-( ⁇ )-mannitol used in Example 1, 10 g of sugar fatty acid ester, 2.0 g of sodium carboxymethylcellulose used in Example 1 and 10 g of purified water are placed in a 500 mL Trimix kneader (manufactured by Inoue Seisakusho Co., Ltd.) and mixed under the same conditions as in Example 1.
  • Trimix kneader manufactured by Inoue Seisakusho Co., Ltd.
  • the particle size distribution measured using the particle size distribution measuring apparatus of Example 1 before the rutin powder mixing step is as follows: average particle diameter (D av ): 8949 nm, D 10 value: 1972 nm, D 50 value: 5007 nm, D 90 value: It was 21450 nm.
  • a portion of 30 mg of the dough taken out after mixing and stirring was weighed into a 50 mL glass vial, 3 mL of 10% mannitol solution was added thereto, and then 0.5 ⁇ m was added using the bathtub-type ultrasonic disperser used in Example 1. Dispersion treatment was performed for ⁇ 1 minute.
  • the particle size distribution measured by the particle size distribution measuring apparatus after the dispersion treatment of the kneaded product was an average particle size (D av ): 277 nm, a D 10 value: 136 nm, a D 50 value: 226 nm, and a D 90 value: 410 nm.
  • Drying step 10 g of the dough obtained in the above step was supplied to a shelf type vacuum dryer (model: VOS-300VD, manufactured by EYELA) and dried under reduced pressure. As a result, 9.27 g of dry powder was obtained. It was.
  • a portion of 30 mg of the obtained dry powder was mixed with 3 mL of a 10% mannitol solution, and subjected to a dispersion treatment for 0.5 to 1 minute using the above-described bathtub-type ultrasonic disperser.
  • the particle size distribution measured using the above particle size distribution measuring apparatus was an average particle size (D av ): 321 nm, D 10 value: 140 nm, D 50 value: 265 nm, D 90 value: 492 nm.
  • Example 4 Production of kneaded product containing 45% by weight of fexofenadine hydrochloride (1) Mixing step and grinding step 20 g of fexofenadine hydrochloride (manufactured by Sumitomo Chemical Co., Ltd.), 20 g of D-(-)-mannitol used in Example 1, hydroxy 2 g of propyl cellulose (product name: SSL, manufactured by NISSO) and 13.3 g of 10% polyvinyl alcohol (product name: Poval 217C, manufactured by Kuraray Co., Ltd.) were placed in the trimix kneader used in Example 1, and Example 1 The mixture was stirred under the same conditions.
  • fexofenadine hydrochloride manufactured by Sumitomo Chemical Co., Ltd.
  • hydroxy 2 g of propyl cellulose product name: SSL, manufactured by NISSO
  • 13.3 g of 10% polyvinyl alcohol product name
  • the particle size distribution measured by the particle size distribution measuring apparatus used in Example 1 before the mixing step of fexofenadine hydrochloride was as follows: average particle size (D av ): 45660 nm, D 10 value: 3225 nm, D 50 value: 27320 nm, D 90 value: 139600 nm.
  • a portion of 15 mg of the dough taken out after mixing and stirring was weighed into a 50 mL glass vial, 5 mL of 0.4% sodium chloride aqueous solution was added thereto, and then the bath type ultrasonic disperser used in Example 1 was used. Dispersion treatment was performed for 0.5 to 1 minute.
  • the particle size distribution measured by the particle size distribution measuring apparatus after the dispersion treatment of the kneaded product was average particle size (D av ): 316 nm, D 10 value: 142 nm, D 50 value: 250 nm, D 90 value: 489 nm.
  • (2) Drying Step 20 g of the dough obtained in the above step was supplied to the vacuum dryer used in Example 3 and dried under reduced pressure. As a result, 15.5 g of dry powder was obtained. A 15 mg portion of the obtained dry powder was mixed with 5 mL of 0.4% sodium chloride aqueous solution, and a probe type ultrasonic dispersion machine (model: probe type 419, Amp. 25, 1 min, S4000 type, manufactured by Astrason) was used.
  • the dispersion process was carried out.
  • the particle size distribution measured using the above particle size distribution measuring apparatus after the dispersion treatment was average particle size (D av ): 230 nm, D 10 value: 129 nm, D 50 value: 198 nm, D 90 value: 309 nm.
  • the particle size distribution measured by the particle size distribution measuring apparatus used in Example 1 before the mixing step of fluorometholone was as follows: average particle diameter (D av ): 3148 nm, D 10 value: 1389 nm, D 50 value: 2636 nm, D 90 value: It was 5709 nm.
  • a 60 mg portion of the dough obtained by mixing and stirring is weighed into a 50 mL glass vial, 5 mL of a mixture of 0.1% SDS and 0.1% hydrogenated soybean lecithin is added, and then the above-described bathtub-type ultrasonic wave is added. The dispersion treatment was performed for 1 to 2 minutes using a disperser.
  • the particle size distribution measured by the particle size distribution measuring device was an average particle size (D av ): 136 nm, D 10 value: 68 nm, D 50 value: 114 nm, D 90 value: 202 nm.
  • Dispersing step To 4.5 g of the dough obtained in the above step, 1.0% HCO 60 (36 g), 1.0% HEC (36 g) and 0.01% benzalkonium chloride (36 g) were added. Dispersion treatment was performed using a probe type ultrasonic disperser (model: probe type 406HWS, Amp. 30, 4 min, S4000 type, manufactured by Astrason).
  • 6% disodium phosphate.12 hydrate-0.6% sodium dihydrogen phosphate.dihydrate-0.1% EDTA.2Na mixed solution (36 g) and 1.0% methylcellulose (36 g) were added.
  • purified water was added to 360 g, and dispersion treatment was performed using a probe type ultrasonic dispersion machine (model: probe type 406HWS, Amp. 30, 1 min, S4000 type, manufactured by Astrason).
  • the obtained prescription preparation was obtained with a quality that almost permeated through a 0.2 ⁇ m membrane filter (HPLC analysis value with a transmittance of 90% or more), and was in good agreement with the particle size results obtained by testing dough.
  • the prescription preparation had an osmotic pressure ratio of approximately 1 (0.3 Osmol / kg H 2 O), and could be used as it was as an eye drop.
  • the particle size distribution measured by the particle size distribution measuring apparatus used in Example 1 before the mixing step of clarithromycin was as follows: average particle diameter (D av ): 10160 nm, D 10 value: 2277 nm, D 50 value: 6872 nm, D 90 value : 22850 nm.
  • D av average particle diameter
  • a 100 mg portion of the dough obtained by mixing and stirring was weighed into a 50 mL glass vial, 3 mL of 0.1% HCO 60 was added thereto, and the dispersion treatment was performed for 3 minutes using the above-described bathtub-type ultrasonic disperser. .
  • the particle size distribution measured by the particle size distribution measuring device was an average particle size (D av ): 145 nm, D 10 value: 81 nm, D 50 value: 125 nm, D 90 value: 197 nm.
  • (2) Dispersing step After adding 0.1% HCO 60 (65 g) and 2.0% hypromellose (13 g) to 1.3 g of the obtained dough, the mixture is dispersed for 10 minutes with the above-described bathtub-type ultrasonic disperser. Then, purified water was added to make 130 g, and further, a dispersion treatment was performed for 1 minute using the bathtub-type ultrasonic disperser.
  • the obtained prescription preparation was obtained with a quality that almost permeated through a 0.2 ⁇ m membrane filter (HPLC analysis value with a transmittance of 90% or more), and was in good agreement with the particle size results obtained by testing dough.
  • the prescription preparation had an osmotic pressure ratio of approximately 1 (0.3 Osmol / kg H 2 O), and could be used as it was as an eye drop.
  • the organic compound nano powder or the suspension containing the powder can be manufactured by a simple process without the water washing process. There is no recovery loss.
  • the water washing step is not performed, the aggregation of the organic compound particles hardly occurs, and the particle diameter of the particles in the dough obtained immediately after pulverization can be maintained as it is.
  • Table 2 shows the granular saccharide compounds used in the following experiments.
  • “Dav” is the average particle diameter (D av )
  • “D10” is the position of 10% when counting from 0 (minimum) to 100% (maximum) in order from the smallest particle diameter in the particle size distribution.
  • the particle diameter (D 10 value) in “D50” is the diameter (D 50 value) in which the larger side and the smaller side are equivalent when the powder is divided into two from the particle diameter
  • D90 In the particle size distribution, the particle diameter (D 90 value) at the position of 90% when counting from 0 (minimum) to 100% (maximum) in order from the smaller particle diameter is meant. The same applies to the following tables.
  • turmeric powder was pulverized in a state where dough was formed by repeating 20 rotations 5 times and kneading.
  • curcumin is the main component of turmeric powder
  • turmeric powder is also referred to as curcumin.
  • the particle size distribution of curcumin measured using the same particle size distribution measuring apparatus as in Example 1 was D av : 384 nm, D 10 value: 154 nm, D 50 value: 280 nm, D 90 value: 569 nm.
  • Example 8 Production of mefenamic acid nanopowder Mefenamic acid was pulverized and then dispersed in the same conditions as in Example 7 except that the turmeric powder was changed to 100 mg of mefenamic acid (manufactured by Tokyo Chemical Industry Co., Ltd.). As a result, the particle size distribution of mefenamic acid was D av : 247 nm, D 10 value: 99 nm, D 50 value: 198 nm, D 90 value: 403 nm.
  • Example 9 Production of nano powder of acetaminophen Turmeric powder to 100 mg acetaminophen (manufactured by Tokyo Chemical Industry Co., Ltd.) and sucrose fatty acid ester to decagri monostearate (product name: dekagrin 1-SV, Nikko Chemicals Co., Ltd.) Acetaminophen was pulverized under the same conditions as in Example 7 except for the change. Next, 100 mg of the crushed dough was weighed, and 5 mL of 0.1% sodium dodecyl sulfate (same as that used in Example 7; the same applies to the subsequent experiments) was added, and 0.01% hydrogenated soybeans were added.
  • Dispersion treatment was carried out under the same conditions as in Example 7 except that lecithin (same as that used in Example 7 and the same in subsequent experiments) was not added.
  • lecithin as that used in Example 7 and the same in subsequent experiments
  • the particle size distribution of acetaminophen was D av : 443 nm, D 10 value: 92 nm, D 50 value: 286 nm, D 90 value: 886 nm.
  • Example 10 Manufacture of ibuprofen nanopowder Ibuprofen was ground under the same conditions as in Example 7 except that turmeric powder was changed to 100 mg of ibuprofen (manufactured by Tokyo Chemical Industry Co., Ltd.) and sucrose fatty acid ester was changed to hydrogenated soybean lecithin. . Next, a dispersion treatment was performed under the same conditions as in Example 7 except that 10 mL of a mixed solution of 0.1% sodium dodecyl sulfate and 0.01% hydrogenated soybean lecithin was added. As a result, the particle size distribution of ibuprofen was D av : 286 nm, D 10 value: 71 nm, D 50 value: 122 nm, D 90 value: 257 nm.
  • Example 11 Production of Amphotericin B Nanopowder
  • Example 12 Manufacture of nano powder of diclofenac sodium Turmeric powder is 100 mg of diclofenac sodium (manufactured by Tokyo Chemical Industry Co., Ltd.), and sucrose fatty acid ester is the same as that used in Decagril monostearate (same as in Example 9. The same applies to the subsequent experiments. ), Except that the conditions were the same as in Example 7, and diclofenac sodium was pulverized. Next, 100 mg of the crushed dough was weighed out, 5 mL of 0.1% sodium dodecyl sulfate was added alone, and 0.01% hydrogenated soybean lecithin was not added, and the dispersion treatment was performed under the same conditions as in Example 7. It was. As a result, the particle size distribution of diclofenac sodium, D av: 303 nm, D 10 value: 99 nm, D 50 values: 228 nm, D 90 values were: 536 nm.
  • Example 13 Production of indomethacin nanopowder Indomethacin was ground under the same conditions as in Example 7 except that the turmeric powder was changed to 100 mg of indomethacin (Wako Pure Chemical Industries, Ltd.). Next, 10 mL of 0.1% sodium dodecyl sulfate alone was added, and a dispersion treatment was performed under the same conditions as in Example 7 except that 0.01% hydrogenated soybean lecithin was not added. As a result, the particle size distribution of indomethacin was D av : 353 nm, D 10 value: 155 nm, D 50 value: 289 nm, D 90 value: 539 nm.
  • Example 14 Production of felbinac nanopowder Felbinac was pulverized under the same conditions as in Example 7 except that the turmeric powder was changed to 100 mg felbinac (manufactured by Wako Pure Chemical Industries, Ltd.). Next, 10 mL of 0.1% sodium dodecyl sulfate was added, and a dispersion treatment was performed under the same conditions as in Example 7 except that 0.01% hydrogenated soybean lecithin was not added. As a result, the particle size distribution of felbinac was D av : 335 nm, D 10 value: 170 nm, D 50 value: 279 nm, D 90 value: 481 nm.
  • Example 15 Manufacture of nano powder of pranlukast hydrate Crush pranlukast hydrate under the same conditions as in Example 7 except that turmeric powder was changed to 100 mg of pranlukast hydrate (Halochem, China). It was. Next, 10 mL of 0.1% sodium dodecyl sulfate alone was added, and a dispersion treatment was performed under the same conditions as in Example 7 except that 0.01% hydrogenated soybean lecithin was not added. As a result, the particle size distribution of pranlukast hydrate was D av : 152 nm, D 10 value: 85 nm, D 50 value: 132 nm, D 90 value: 208 nm.
  • Example 16 Production of Dexamethasone Nanopowder
  • Dexamethasone was ground under the same conditions as in Example 7 except that the turmeric powder was changed to 100 mg of dexamethasone (Wako Pure Chemical Industries, Ltd.).
  • 20 mg of the crushed dough was weighed, and 5 mL of 0.1% polyoxyethylene hydrogenated castor oil 60 (product name: NIKKOLHCO-60, manufactured by Nikko Chemicals Co., Ltd.) alone was added, under the same conditions as in Example 7.
  • Distributed processing was performed.
  • the particle size distribution of the dexamethasone, D av: 179 nm, D 10 value: 102 nm, D 50 values: 155 nm, D 90 values were: 240 nm.
  • Example 3 Grinding of mefenamic acid without using D-mannitol Grinding the mefenamic acid used in Example 8 under the same conditions as in Example 8 without adding D-(-) mannitol, and then adding 2 mg of the ground dough to 50 mL of glass The sample was weighed into a vial and subjected to dispersion treatment under the same conditions as in Example 8. As a result, the particle size distribution of the mefenamic acid, D av: 926nm, D 10 value: 155 nm, D 50 values: 276 nm, D 90 values: a 3673nm, D av exceeds 500 nm, and greater than the D 90 value is 1500nm It was.
  • Example 4 Grinding of acetaminophen without using D-mannitol Grinding under the same conditions as in Example 9 without adding D-(-) mannitol to the acetaminophen used in Example 9, and 50 ml of the milled dough 20 mg
  • the glass vial was weighed and dispersed under the same conditions as in Example 9.
  • the particle size distribution of acetaminophen is D av : 1124 nm, D 10 value: 134 nm, D 50 value: 400 nm, D 90 value: 2899 nm, D av exceeds 500 nm, and D 90 value is 1500 nm. It was over.
  • Example 5 Grinding of ibuprofen without D-mannitol Grinding ibuprofen used in Example 10 under the same conditions as in Example 10 without adding D-( ⁇ ) mannitol, and adding 2 mg of the ground dough into a 50 mL glass vial. Weighed and distributed processing was performed under the same conditions as in Example 10. As a result, the particle size distribution of ibuprofen is D av : 2873 nm, D 10 value: 403 nm, D 50 value: 619 nm, D 90 value: 10421 nm, D av exceeds 500 nm, and D 90 value exceeds 1500 nm It was.
  • Example 7 Grinding of diclofenac sodium without using D-mannitol
  • the diclofenac sodium used in Example 12 was ground under the same conditions as in Example 12 without adding D-(-) mannitol, and 20 mg of the ground dough was added to 50 mL of glass.
  • the sample was weighed into a vial and subjected to dispersion treatment under the same conditions as in Example 12.
  • the particle size distribution of diclofenac sodium is D av : 589 nm, D 10 value: 78 nm, D 50 value: 196 nm, D 90 value: 2364 nm, D av exceeds 500 nm, and D 90 value exceeds 1500 nm It was.
  • ⁇ Comparative Example 9 Grinding of felbinac without using D-mannitol 30 mg of polyvinylpyrrolidone (same as that used in Comparative Example 8 and the same in the subsequent experiments) without adding D-(-) mannitol to felbinac used in Example 14. 50 mg of hydrogenated soybean lecithin and 50 mg of glycerin (same as used in Comparative Example 8; the same applies to the subsequent experiments) are placed on a glass disk of a Hoover Mahler, kneaded by repeating 20 rotations 5 times, Felvinac was pulverized in the state of formation.
  • the particle size distribution of felbinac is: D av : 1457 nm, D 10 value: 154 nm, D 50 value: 309 nm, D 90 value: 5452 nm, D av exceeds 500 nm, and D 90 value exceeds 1500 nm It was.
  • the particle size distribution of pranlukast hydrate was D av : 1102 nm, D 10 value: 129 nm, D 50 value: 408 nm, D 90 value: 4226 nm, D av exceeded 500 nm, and D 90 value Was over 1500 nm.
  • the particle size distribution of dexamethasone is D av : 3704 nm, D 10 value: 138 nm, D 50 value: 852 nm, D 90 value: 12321 nm, D av exceeds 500 nm, and D 90 value exceeds 1500 nm. It was.
  • Table 3 shows the particle size distribution of the various organic compound powders obtained in Examples 7 to 16 and Comparative Examples 2 to 11 in comparison with the particle size distribution before pulverization.
  • “Cur” is curcumin
  • “Mef” is mefenamic acid
  • “Ace” is acetaminophen
  • “Ibu” is ibuprofen
  • “Amp” is amphotericin B
  • “Dic” is diclofenac sodium.
  • “Ind” represents indomethacin
  • Fel represents felbinac
  • Pra represents pranlukast hydrate
  • “Dex” represents dexamethasone. The same applies to the following tables.
  • Example 18 Production of mefenamic acid nano-powder The same conditions as in Example 17 except that the turmeric powder was changed to 100 mg of mefenamic acid (same as used in Example 8. The same applies to the subsequent experiments). Was distributed. As a result, the particle size distribution of mefenamic acid was D av : 241 nm, D 10 value: 98 nm, D 50 value: 191 nm, D 90 value: 398 nm.
  • Example 19 Production of ibuprofen nanopowder Ibuprofen was ground under the same conditions as in Example 17 except that the turmeric powder was changed to 100 mg of ibuprofen (same as that used in Example 10. The same applies in the subsequent experiments). Next, a dispersion treatment was performed under the same conditions as in Example 17 except that 10 mL of a mixed solution of 0.1% sodium dodecyl sulfate and 0.01% hydrogenated soybean lecithin was added. As a result, the particle size distribution of ibuprofen, D av: 321 nm, D 10 value: 150 nm, D 50 values: 265 nm, D 90 values were: 477 nm.
  • Example 20 Production of Amphotericin B Nanopowder Example except that turmeric powder was changed to 100 mg of amphotericin B (same as used in Example 11. The same applies in the subsequent experiments) and sucrose fatty acid ester was changed to hydrogenated soybean lecithin. Under the same conditions as in No. 17, amphotericin B was pulverized. Next, 5 mL of 0.1% sodium dodecyl sulfate alone was added, and a dispersion treatment was performed under the same conditions as in Example 17 except that 0.01% hydrogenated soybean lecithin was not added. As a result, the particle size distribution of amphotericin B was D av : 343 nm, D 10 value: 107 nm, D 50 value: 170 nm, D 90 value: 326 nm.
  • Example 21 Production of diclofenac sodium nanopowder Turmeric powder was used in diclofenac sodium (same as used in Example 12; the same in subsequent experiments) and 100 mg of sucrose fatty acid ester was used in Decagril monostearate (used in Example 9). Diclofenac sodium was pulverized under the same conditions as in Example 17 except that the same was applied. Next, 100 mg of the crushed dough was weighed, 5 mL of 0.1% sodium dodecyl sulfate alone was added, and 0.01% hydrogenated soybean lecithin was not added, and the dispersion treatment was performed under the same conditions as in Example 17. It was. As a result, the particle size distribution of diclofenac sodium, D av: 200 nm, D 10 value: 58 nm, D 50 values: 178 nm, D 90 values were: 300 nm.
  • Table 4 shows the particle size distribution of the various organic compound nano powders obtained in Examples 17 to 21 in comparison with the particle size distribution before pulverization.
  • Example 23 Production of mefenamic acid nanopowder
  • the mefenamic acid was pulverized and then subjected to dispersion treatment under the same conditions as in Example 22 except that the turmeric powder was changed to 100 mg of mefenamic acid.
  • the particle size distribution of mefenamic acid was D av : 224 nm, D 10 value: 85 nm, D 50 value: 193 nm, D 90 value: 339 nm.
  • Example 24 Production of ibuprofen nanopowder Ibuprofen was ground under the same conditions as in Example 22 except that the turmeric powder was changed to 100 mg of ibuprofen and the sucrose fatty acid ester was changed to hydrogenated soybean lecithin. Next, a dispersion treatment was performed under the same conditions as in Example 22 except that 10 mL of a mixed solution of 0.1% sodium dodecyl sulfate and 0.01% hydrogenated soybean lecithin was added. As a result, the particle size distribution of ibuprofen was D av : 327 nm, D 10 value: 156 nm, D 50 value: 266 nm, D 90 value: 489 nm.
  • Diclofenac sodium was pulverized under the same conditions as in Example 22 except that the turmeric powder was changed to 100 mg diclofenac sodium and the sucrose fatty acid ester was changed to decagli monostearate.
  • 100 mg of the crushed dough was weighed, 5 mL of 0.1% sodium dodecyl sulfate was added alone, and 0.01% hydrogenated soybean lecithin was not added, and the dispersion treatment was performed under the same conditions as in Example 22. It was.
  • the particle size distribution of diclofenac sodium was D av : 244 nm, D 10 value: 78 nm, D 50 value: 130 nm, D 90 value: 266 nm.
  • Table 5 shows the particle size distribution of the various organic compound nano powders obtained in Examples 22 to 25 in comparison with the particle size distribution before pulverization.
  • Dispersion treatment was performed for ⁇ 2 minutes.
  • the particle size distribution of curcumin, D av: 181 nm, D 10 value: 82 nm, D 50 values: 144 nm, D 90 values were: 286 nm.
  • Example 27 Production of mefenamic acid nanopowder
  • the mefenamic acid was pulverized and then dispersed in the same conditions as in Example 26 except that the turmeric powder was changed to 100 mg of mefenamic acid.
  • the particle size distribution of mefenamic acid was D av : 205 nm, D 10 value: 84 nm, D 50 value: 165 nm, D 90 value: 328 nm.
  • acetaminophen nanopowder Except that the turmeric powder was changed to 100 mg acetaminophen (same as used in Example 9. The same applies to the subsequent experiments), and the sucrose fatty acid ester was changed to decagli monostearate.
  • Acetaminophen was pulverized under the same conditions as in Example 26. Next, 100 mg of the dough after pulverization was weighed out, 5 mL of 0.1% sodium dodecyl sulfate alone was added, and 0.01% hydrogenated soybean lecithin was not added, and the dispersion treatment was performed under the same conditions as in Example 26. It was. As a result, the particle size distribution of acetaminophen was D av : 186 nm, D 10 value: 82 nm, D 50 value: 148 nm, D 90 value: 296 nm.
  • Example 29 Production of ibuprofen nanopowder Ibuprofen was ground under the same conditions as in Example 26 except that the turmeric powder was changed to 100 mg of ibuprofen. Next, a dispersion treatment was performed under the same conditions as in Example 26, except that 10 mL of a mixed solution of 0.1% sodium dodecyl sulfate and 0.01% hydrogenated soybean lecithin was added. As a result, the particle size distribution of ibuprofen was D av : 434 nm, D 10 value: 176 nm, D 50 value: 335 nm, D 90 value: 711 nm.
  • Example 30 Production of Amphotericin B Nanopowder
  • Amphotericin B was ground under the same conditions as in Example 26 except that the turmeric powder was changed to 100 mg of amphotericin B and the sucrose fatty acid ester was changed to hydrogenated soybean lecithin.
  • 5 mL of 0.1% sodium dodecyl sulfate alone was added, and a dispersion treatment was performed under the same conditions as in Example 26 except that 0.01% hydrogenated soybean lecithin was not added.
  • the particle size distribution of the Amphotericin B is, D av: 376 nm, D 10 value: 132 nm, D 50 values: 298 nm, D 90 values were: 625 nm.
  • Table 6 shows the particle size distribution of the various organic compound nano powders obtained in Examples 26 to 30 in comparison with the particle size distribution before pulverization.
  • Dispersion treatment was performed for ⁇ 2 minutes.
  • the particle size distribution of curcumin was D av : 263 nm, D 10 value: 86 nm, D 50 value: 211 nm, D 90 value: 444 nm.
  • Example 32 Production of mefenamic acid nanopowder
  • the mefenamic acid was pulverized and then dispersed in the same conditions as in Example 31 except that the turmeric powder was changed to 100 mg of mefenamic acid.
  • the particle size distribution of the mefenamic acid, D av: 193 nm, D 10 value: 105 nm, D 50 values: 167 nm, D 90 values were: 264 nm.
  • Example 33 Production of Acetaminophen Nanopowder
  • Acetaminophen was ground under the same conditions as in Example 31 except that the turmeric powder was changed to 100 mg acetaminophen and the sucrose fatty acid ester was changed to monostearic acid decagrid.
  • 100 mg of the crushed dough was weighed, 5 mL of 0.1% sodium dodecyl sulfate was added alone, and 0.01% hydrogenated soybean lecithin was not added, and the dispersion treatment was performed under the same conditions as in Example 31. It was.
  • the particle size distribution of acetaminophen was D av : 238 nm, D 10 value: 87 nm, D 50 value: 196 nm, D 90 value: 381 nm.
  • Example 34 Production of Amphotericin B Nanopowder
  • Amphotericin B was ground under the same conditions as in Example 31 except that the turmeric powder was changed to 100 mg of amphotericin B and the sucrose fatty acid ester was changed to hydrogenated soybean lecithin.
  • 5 mL of 0.1% sodium dodecyl sulfate alone was added, and a dispersion treatment was performed under the same conditions as in Example 31 except that 0.01% hydrogenated soybean lecithin was not added.
  • the particle size distribution of the Amphotericin B is, D av: 162 nm, D 10 value: 83 nm, D 50 values: 137 nm, D 90 values were: 229 nm.
  • Table 7 shows the particle size distribution of the various organic compound nano powders obtained in Examples 31 to 34 in comparison with the particle size distribution before pulverization.
  • Example 35 Carbohydrate compound: D-mannitol
  • Example 35 is the same as Example 7.
  • the particle size distribution of curcumin was D av : 384 nm, D 10 value: 154 nm, D 50 value: 280 nm, D 90 value: 569 nm.
  • Example 36 Carbohydrate Compound: Maltitol Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 35 except that maltitol was used as the saccharide compound. As a result, the particle size distribution of curcumin, D av: 199 nm, D 10 value: 95 nm, D 50 values: 176 nm, D 90 values were: 286 nm.
  • Example 37 Carbohydrate Compound: Erythritol Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 35 except that erythritol was used as the saccharide compound. As a result, the particle size distribution of curcumin was D av : 275 nm, D 10 value: 98 nm, D 50 value: 201 nm, D 90 value: 483 nm.
  • Example 38 Carbohydrate Compound: Xylitol
  • Example 38 is the same as Example 17.
  • Example 39 Carbohydrate Compound: Glucose
  • Example 39 is the same as Example 22.
  • the particle size distribution of curcumin was D av : 345 nm, D 10 value: 96 nm, D 50 value: 242 nm, D 90 value: 648 nm.
  • Example 40 Carbohydrate Compound: Fructose Example 40 is the same as Example 26.
  • Example 41 Carbohydrate Compound: Lactose Monohydrate Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 35 except that lactose monohydrate was used as the saccharide compound. As a result, the particle size distribution of curcumin, D av: 320 nm, D 10 value: 102 nm, D 50 values: 232 nm, D 90 values were: 574 nm.
  • Example 42 Carbohydrate Compound: Trehalose Example 42 is the same as Example 31.
  • Example 43 Carbohydrate Compound: Cellobiose Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 35 except that cellobiose was used as the carbohydrate compound. As a result, the particle size distribution of curcumin was D av : 273 nm, D 10 value: 41 nm, D 50 value: 241 nm, D 90 value: 435 nm.
  • Example 44 (2) Grinding of mefenamic acid ⁇ Example 44> Carbohydrate compound: D-mannitol Example 44 is the same as Example 8. The particle size distribution of mefenamic acid was D av : 247 nm, D 10 value: 99 nm, D 50 value: 198 nm, D 90 value: 403 nm.
  • Example 45 Carbohydrate Compound: Maltitol Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 44 except that maltitol was used as the saccharide compound. As a result, the particle size distribution of mefenamic acid was D av : 209 nm, D 10 value: 115 nm, D 50 value: 185 nm, D 90 value: 284 nm.
  • Example 46 Carbohydrate Compound: Erythritol Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 44 except that erythritol was used as the saccharide compound. As a result, the particle size distribution of the mefenamic acid, D av: 185 nm, D 10 value: 119 nm, D 50 values: 164 nm, D 90 values were: 230 nm.
  • Example 47 Carbohydrate Compound: Xylitol
  • Example 47 is the same as Example 18.
  • Example 48 Carbohydrate Compound: Glucose
  • Example 48 is the same as Example 23.
  • Example 49 Carbohydrate Compound: Fructose
  • Example 49 is the same as Example 27.
  • Example 50 Carbohydrate compound: Lactose monohydrate Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 44 except that lactose monohydrate was used as the saccharide compound. As a result, the particle size distribution of mefenamic acid was D av : 261 nm, D 10 value: 114 nm, D 50 value: 207 nm, D 90 value: 417 nm.
  • Example 51 Carbohydrate Compound: Trehalose Example 50 is the same as Example 32.
  • Example 52 Carbohydrate Compound: Cellobiose Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 44 except that cellobiose was used as the saccharide compound. As a result, the particle size distribution of the mefenamic acid, D av: 271 nm, D 10 value: 122 nm, D 50 values: 217 nm, D 90 values were: 424 nm.
  • Example 53 Carbohydrate Compound: Inositol Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 44 except that inositol was used as the saccharide compound. As a result, the particle size distribution of mefenamic acid was D av : 223 nm, D 10 value: 101 nm, D 50 value: 183 nm, D 90 value: 341 nm.
  • Tables 8 and 9 show the particle size distributions of the various organic compound nano powders obtained in Examples 35 to 43 and Examples 44 to 53, respectively, in comparison with the particle size distribution before pulverization.
  • Man is D-mannitol
  • Mal is maltitol
  • Ery is erythritol
  • Xyl is xylitol
  • Glu is glucose
  • Fru is fructose
  • Lac represents lactose
  • Tere represents trehalose
  • Cel represents cellobiose
  • Ino represents inositol. The same applies to the following tables.
  • sugar alcohols such as mannitol, maltitol, erythritol, and xylitol
  • monosaccharides such as inositol, glucose, and fructose
  • disaccharides such as lactose, trehalose, and cellobiose
  • the particle size distribution of curcumin was D av : 237 nm, D 10 value: 98 nm, D 50 value: 183 nm, D 90 value: 394 nm.
  • the particle size distribution of curcumin was D av : 254 nm, D 10 value: 83 nm, D 50 value: 189 nm, D 90 value: 454 nm.
  • Example 57 Mixed system: D-mannitol + sorbitol A pulverization and dispersion treatment was performed under the same conditions as in Example 54 except that mefenamic acid was used instead of the turmeric powder.
  • the particle size distribution of mefenamic acid was D av : 365 nm, D 10 value: 127 nm, D 50 value: 239 nm, D 90 value: 518 nm.
  • Example 58 Mixed system: D-mannitol + xylitol A pulverization and dispersion treatment was performed under the same conditions as in Example 55 except that mefenamic acid was used instead of the turmeric powder. As a result, the particle size distribution of mefenamic acid was D av : 226 nm, D 10 value: 105 nm, D 50 value: 182 nm, D 90 value: 350 nm.
  • Example 59 Mixed system: D-mannitol + dextrin A pulverization and dispersion treatment was performed under the same conditions as in Example 56 except that mefenamic acid was used instead of the turmeric powder. As a result, the particle size distribution of mefenamic acid was D av : 238 nm, D 10 value: 123 nm, D 50 value: 193 nm, D 90 value: 351 nm.
  • Tables 10 and 11 show the particle size distributions of the various organic compound nano powders obtained in Examples 54 to 56 and Examples 57 to 59, respectively, in comparison with the particle size distribution before pulverization.
  • “Sor” indicates sorbitol
  • “Dext” indicates dextrin.
  • indomethacin 100 mg of indomethacin, 600 mg of D-( ⁇ )-mannitol, 100 mg of sodium chloride (product name: Tomita Salt K30, manufactured by Tomita Pharmaceutical Co., Ltd.), 30 mg of polyvinylpyrrolidone, 50 mg of hydrogenated soy lecithin, and 200 mg of glycerin on a Hoovermarer glass disk Then, indomethacin was pulverized in a state where kneading was performed by repeating 20 rotations 5 times to form a dough.
  • the other conditions were the same as those in Example 61, followed by pulverization and subsequent dispersion treatment.
  • the particle size distribution of indomethacin was D av : 255 nm, D 10 value: 100 nm, D 50 value: 199 nm, D 90 value: 419 nm.
  • Fenofibrate (Sigma Aldrich, D av: 48170nm, D 10 value: 3520nm, D 50 value: 33720nm, D 90 value: 115590nm) 100mg, D - ( -) - mannitol 600 mg, sodium chloride 100mg, polyvinylpyrrolidone 30mg Then, 50 mg of hydrogenated soybean lecithin and 200 mg of glycerin were placed on a glass disk of Hoover Mahler, kneaded by repeating 20 rotations 5 times, and fenofibrate was pulverized while forming a dough.
  • Table 12 shows the particle size distribution of various organic compound nano powders obtained in Examples 60 to 79. “Fen” in Table 12 indicates fenofibrate.
  • Example 80 Place indomethacin 100 mg, D-(-)-mannitol 600 mg, sodium chloride 100 mg, and glycerin 200 mg on a glass disk of Hoover Mahler, knead 20 times 5 times and knead indomethacin to form a dough. went. 10 mg of the crushed dough was weighed into a 50 mL glass vial, 10 mL of 0.1% sodium dodecyl sulfate was added thereto, and the dispersion treatment was performed for 1 to 2 minutes with a bath layer type ultrasonic disperser. As a result, the particle size distribution of indomethacin was D av : 335 nm, D 10 value: 115 nm, D 50 value: 237 nm, and D 90 value: 609 nm.
  • Example 81 The D-( ⁇ )-mannitol was 350 mg, the sodium chloride was 350 mg, and the other conditions were the same as in Example 80, followed by pulverization and subsequent dispersion treatment. As a result, the particle size distribution of indomethacin, D av: 243 nm, D 10 value: 132 nm, D 50 values: 209 nm, D 90 values were: 332 nm.
  • Example 82 The amount of D-( ⁇ )-mannitol was 700 mg, sodium chloride was not added, and the other conditions were the same as those in Example 80, followed by pulverization and subsequent dispersion treatment. As a result, the particle size distribution of indomethacin was D av : 283 nm, D 10 value: 128 nm, D 50 value: 231 nm, D 90 value: 433 nm.
  • Felbinac 100 mg, D-(-)-mannitol 600 mg, sodium chloride 100 mg, and glycerin 200 mg were placed on a glass disk of Hoovermarer and kneaded by repeating 20 rotations 5 times to form a dough. went. 10 mg of the crushed dough was weighed into a 50 mL glass vial, 10 mL of 0.1% sodium dodecyl sulfate was added thereto, and the dispersion treatment was performed for 1 to 2 minutes with a bath layer type ultrasonic disperser. As a result, the particle size distribution of felbinac was D av : 415 nm, D 10 value: 236 nm, D 50 value: 360 nm, D 90 value: 588 nm.
  • Example 84 The D-( ⁇ )-mannitol was 350 mg, the sodium chloride was 350 mg, and the other conditions were the same as in Example 83, followed by pulverization and subsequent dispersion treatment.
  • the particle size distribution of felbinac was D av : 479 nm, D 10 value: 257 nm, D 50 value: 414 nm, D 90 value: 690 nm.
  • Example 85 The amount of D-( ⁇ )-mannitol was adjusted to 700 mg, sodium chloride was not added, and the other conditions were the same as those in Example 83, followed by pulverization and subsequent dispersion treatment. As a result, the particle size distribution of felbinac was D av : 488 nm, D 10 value: 242 nm, D 50 value: 410 nm, D 90 value: 744 nm.
  • Example 87 The D-(-)-mannitol was 350 mg, the sodium chloride was 350 mg, and the other conditions were the same as those in Example 86, followed by pulverization and subsequent dispersion treatment.
  • the particle size distribution of pranlukast hydrate was D av : 190 nm, D 10 value: 93 nm, D 50 value: 158 nm, D 90 value: 282 nm.
  • Example 88 D-( ⁇ )-mannitol was adjusted to 700 mg, sodium chloride was not added, and the other conditions were the same as those in Example 86, followed by pulverization and subsequent dispersion treatment.
  • the particle size distribution of pranlukast hydrate was D av : 188 nm, D 10 value: 100 nm, D 50 value: 159 nm, D 90 value: 265 nm.
  • Example 90 The D-(-)-mannitol was 350 mg, the sodium chloride was 350 mg, and the other conditions were the same as in Example 89, followed by pulverization and subsequent dispersion treatment. As a result, the particle size distribution of dexamethasone was D av : 227 nm, D 10 value: 133 nm, D 50 value: 198 nm, D 90 value: 295 nm.
  • Example 91 The amount of D-( ⁇ )-mannitol was adjusted to 700 mg, sodium chloride was not added, and the other conditions were the same as those in Example 89, followed by pulverization and subsequent dispersion treatment. As a result, the particle size distribution of dexamethasone was D av : 270 nm, D 10 value: 125 nm, D 50 value: 225 nm, D 90 value: 401 nm.
  • Table 13 shows the particle size distribution of the various organic compound nano powders obtained in Examples 80 to 91.
  • the organic compound can be nano-sized without adding an anti-aggregation agent typified by lecithin or polyvinylpyrrolidone during grinding.
  • Example 92 Indomethacin 100 mg, xylitol 700 mg, and ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) 200 mg are placed on a glass disk of Hoover Mahler and kneaded by repeating 20 revolutions 5 times to form dough. went. 10 mg of the crushed dough was weighed into a 50 mL glass vial, 10 mL of 0.1% sodium dodecyl sulfate was added thereto, and the dispersion treatment was performed for 1 to 2 minutes with a bath layer type ultrasonic disperser. As a result, the particle size distribution of indomethacin was D av : 487 nm, D 10 value: 121 nm, D 50 value: 204 nm, D 90 value: 498 nm.
  • Example 93 Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 92 except that xylitol was fructose. As a result, the particle size distribution of indomethacin, D av: 261 nm, D 10 value: 142 nm, D 50 values: 227 nm, D 90 values were: 353 nm.
  • Example 94 Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 92 except that xylitol was trehalose. As a result, the particle size distribution of indomethacin, D av: 420 nm, D 10 value: 130 nm, D 50 values: 309 nm, D 90 values were: 749Nm.
  • Example 95 The ethylene glycol was propylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., the same applies hereinafter), and the other conditions were the same as in Example 92, followed by pulverization and subsequent dispersion treatment.
  • the particle size distribution of indomethacin was D av : 217 nm, D 10 value: 125 nm, D 50 value: 189 nm, D 90 value: 284 nm.
  • Example 96 Grinding and subsequent dispersion treatment were carried out under the same conditions as in Example 95 except that xylitol was fructose. As a result, the particle size distribution of indomethacin was D av : 316 nm, D 10 value: 118 nm, D 50 value: 222 nm, D 90 value: 497 nm.
  • Example 97 Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 95 except that xylitol was trehalose. As a result, the particle size distribution of indomethacin was D av : 365 nm, D 10 value: 158 nm, D 50 value: 283 nm, D 90 value: 598 nm.
  • Example 98> Ethylene glycol was polyethylene glycol 400 (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter the same), and the other conditions were the same as in Example 92, followed by pulverization and subsequent dispersion treatment.
  • the particle size distribution of indomethacin was D av : 456 nm, D 10 value: 136 nm, D 50 value: 278 nm, D 90 value: 726 nm.
  • Example 99 Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 98 except that xylitol was used as fructose. As a result, the particle size distribution of indomethacin was D av : 368 nm, D 10 value: 145 nm, D 50 value: 281 nm, D 90 value: 616 nm.
  • Example 100 Grinding and subsequent dispersion treatment were performed under the same conditions as in Example 98 except that xylitol was trehalose. As a result, the particle size distribution of indomethacin was D av : 454 nm, D 10 value: 151 nm, D 50 value: 351 nm, D 90 value: 776 nm.
  • Table 14 shows the particle size distribution of indomethacin obtained in Examples 92 to 100.
  • the organic compound could be nano-sized.
  • Example 12 Grinding was carried out under the following conditions without adding D-mannitol. 100 mg of mefenamic acid, 0 mg of D-( ⁇ )-mannitol, 50 mg of sucrose fatty acid ester, 9 mg of sodium carboxymethylcellulose, and 110 mg of purified water used in Example 8 of Experiment 4 were placed on a Hoover Muller glass disk and rotated 20 times. Was repeated and kneaded, and mefenamic acid was pulverized in a state where a dough was formed.
  • D-mannitol was pulverized with respect to mefenamic acid under the conditions of a mass ratio of 0.1. Specifically, pulverization and subsequent dispersion treatment were performed under the same conditions as in Comparative Example 12 except that 10 mg of D-( ⁇ )-mannitol was added and pulverized, and 4 mg of the pulverized dough was weighed into a glass vial. It was. As a result, the particle size distribution of mefenamic acid was D av : 1013 nm, D 10 value: 212 nm, D 50 value: 467 nm, D 90 value: 1722 nm.
  • Example 101 D-mannitol was pulverized with respect to mefenamic acid under the condition of 0.3 times by mass. Specifically, pulverization and subsequent dispersion treatment were performed under the same conditions as in Comparative Example 12 except that 33 mg of D-( ⁇ )-mannitol was added and pulverized, and 5 mg of the pulverized dough was weighed into a glass vial. It was. As a result, the particle size distribution of mefenamic acid was D av : 326 nm, D 10 value: 150 nm, D 50 value: 265 nm, D 90 value: 495 nm.
  • Example 102 D-mannitol was pulverized with respect to mefenamic acid under the conditions of a mass ratio of 0.5 times. Specifically, pulverization and subsequent dispersion treatment were performed under the same conditions as in Comparative Example 12, except that 50 mg of D-( ⁇ )-mannitol was added and pulverized, and 7 mg of the pulverized dough was weighed into a glass vial. It was. As a result, the particle size distribution of mefenamic acid was D av : 382 nm, D 10 value: 169 nm, D 50 value: 316 nm, D 90 value: 573 nm.
  • Example 103 D-mannitol was pulverized under the conditions of 1.0 times the mass ratio of mefenamic acid. Specifically, pulverization and subsequent dispersion treatment were performed under the same conditions as in Comparative Example 12, except that 100 mg of D-( ⁇ )-mannitol was added and pulverized, and 10 mg of the pulverized dough was weighed into a glass vial. It was. As a result, the particle size distribution of mefenamic acid was D av : 267 nm, D 10 value: 125 nm, D 50 value: 217 nm, D 90 value: 404 nm.
  • Example 104 D-mannitol was pulverized under the conditions of about 3.3 times by mass with respect to mefenamic acid. Specifically, pulverization and subsequent dispersion treatment were performed under the same conditions as in Comparative Example 12, except that 325 mg of D-( ⁇ )-mannitol was added and pulverized, and 10 mg of the pulverized dough was weighed into a glass vial. It was. As a result, the particle size distribution of mefenamic acid was D av : 247 nm, D 10 value: 99 nm, D 50 value: 198 nm, D 90 value: 403 nm.
  • D-mannitol was pulverized with respect to mefenamic acid under the conditions of a mass ratio of 30 times. Specifically, 10 mg of mefenamic acid, 300 mg of D-( ⁇ )-mannitol, 5 mg of sucrose fatty acid ester, 1 mg of sodium carboxymethylcellulose, and 200 mg of purified water were placed on a Hoovermarer glass disk, and 20 rotations were repeated 5 times. And kneaded to pulverize mefenamic acid in a state where a dough was formed.
  • Example 106 D-mannitol was pulverized with respect to mefenamic acid under the conditions of a mass ratio of 50 times. Specifically, pulverization and subsequent dispersion treatment were performed under the same conditions as in Example 105, except that 500 mg of D-( ⁇ )-mannitol was added and pulverized, and 150 mg of the pulverized dough was weighed into a glass vial. It was. As a result, the particle size distribution of mefenamic acid was D av : 245 nm, D 10 value: 117 nm, D 50 value: 207 nm, D 90 value: 358 nm.
  • Example 107 D-mannitol was pulverized with respect to mefenamic acid at a mass ratio of 100 times. Specifically, 1000 mg of D-( ⁇ )-mannitol and 250 mg of purified water were pulverized, and 300 mg of the dough after pulverization was measured in a glass vial under the same conditions as in Example 105. Was distributed. As a result, the particle size distribution of mefenamic acid was D av : 264 nm, D 10 value: 132 nm, D 50 value: 217 nm, D 90 value: 386 nm.
  • Table 15 shows the particle size distribution of mefenamic acid obtained in Comparative Examples 12 and 13 and Examples 101 to 107.
  • the addition ratio of the saccharide compound was pulverized under the condition that the mass ratio was 0.3 times or more with respect to the organic compound.
  • the average particle diameter was 500 nm or less and the 90% diameter was less than 1500 nm.
  • the organic compound nanopowder was successfully produced.
  • the present invention can be used, for example, in the fields of medicine, health food and drink, and cosmetics.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Pain & Pain Management (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Saccharide Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

 【課題】 除去すべき不純物のコンタミネーションを避け、簡易かつ低コストで、有機化合物ナノ粉体を提供する。 【解決手段】 本発明は、平均粒子径が500nm以下でかつ90%径が1500nm未満である粒状の有機化合物と、糖類および糖アルコール類の内の少なくともいずれか1つから成り、有機化合物に対して質量比にて0.3倍以上の糖質化合物とを少なくとも含む有機化合物ナノ粉体、当該有機化合物ナノ粉体の製造方法、ならびに有機化合物が不溶若しくは難溶の液状分散媒に当該有機化合物ナノ粉体を分散してなる懸濁液に関する。

Description

有機化合物ナノ粉体、その製造方法ならびに懸濁液 クロスレフアレンス
 本出願は、2012年5月11日に日本国において出願された特願2012-108972に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。
 本発明は、有機化合物ナノ粉体、その製造方法、ならびに有機化合物を分散させた懸濁液に関する。
 製剤あるいは健康食品を過剰に摂取することなく、その有効成分の本来持つ機能を十分に発揮させるには、製剤あるいは健康食品の生体内利用率を高める必要がある。製剤を例にとると、経口製剤は、注射製剤と比べて手軽で苦痛が少ないという長所を有する反面、生体内利用率が低いという短所を有する。経口製剤は、胃、十二指腸を経て腸に入り、主に腸管から血液に吸収され、門脈を通って肝臓に送られる。経口製剤がこのような長い経路を通る間に、その一部は胃酸などの作用を受けて分解し、あるいは肝臓内にて代謝され全く別の物質に変わる。生体内利用率が低い大きな理由の一つは、経口製剤が腸などの消化器官から吸収されにくいことである。製剤の生体内利用率を高めるためには、薬効成分を有する有機化合物が消化器官から血液内に吸収されやすくするために必要なレベルまで、その大きさを小さくする必要がある。
 また、非経口製剤の代表例である注射製剤の場合には、必要な量の薬効成分が体内の血管を通って標的部位に到達する必要がある。血管の中で最も細い毛細血管の内径は約5μmである。このため、薬効成分を有する有機化合物が毛細血管を閉塞させることなく通過するためには、当該有機化合物の粒子径が5μmより小さいことが求められる。一方、健康食品についても、経口製剤と同様の理由から、有効成分を有する有機化合物が消化器官から血液内に吸収されやすくするために必要なレベルまで、その大きさを小さくする必要がある。
 化粧料に含まれる固形の美白成分若しくは保湿成分などは、肌にのりやすく、かつ肌面で薄く広がりやすくし、また乳液の形態をとる場合には化粧料の容器内で相分離を起こしにくく均一な分散状態を保持しやすくするために、できるだけ凝集性が低く、粒子径が小さいことが要求される。
 最近のナノテクノロジーの発達に伴い、上記要求に応えるべく、有機化合物のナノ化に期待が寄せられている。例えば、粒度分布の中心が0.005~5μmの範囲にあって、粒子径分布の90%径が10μm以下のステロイドまたはステロイド誘導体を含有する製剤が知られている(例えば、特許文献1を参照)。しかし、当該粒度分布が広すぎ、数%存在する粗大粒子の影響によって懸濁液の安定性、すなわち粒子の分散性が低下するという問題がある。
 有機化合物の粒度分布を狭く、かつナノレベルまでに微細化する手段としては、例えば、セラミックス、ガラス等から成るビーズを用いたビーズミルによって有機化合物を粉砕する方法が知られている(例えば、特許文献2を参照)。このような機械的な衝撃あるいは磨砕力を有機化合物の粒子に与えることにより、粒度分布の狭いナノ粉体を得ることができる。さらに、粉砕媒体として塩の粒子を用い、有機液体中で湿式粉砕する方法も知られている(例えば、特許文献3,4参照)。この粉砕方法では、ビーズを用いた粉砕方法と異なり、粉砕媒体からの不純物のコンタミネーションのリスクを低減できるという大きなメリットがある。ビーズ由来の不純物は容易に除去できないが、塩の粒子由来の不純物は、塩が水溶性であることから、水洗工程(脱塩工程ともいう)を経ることによって除去することができるからである。
特開2006-089386号公報 特開平04-295420号公報 国際公開WO/2008/126797 国際公開WO/2010/032434
 しかし、塩の粒子を粉砕媒体として用いる粉砕方法は、除去困難な不純物の混入を防ぐことができるというメリットを有する一方で、さらなる改善を要する。その一つは、粉砕後の有機化合物に混入した塩を水洗する工程を行わず、できるだけ簡易な工程で製造することである。粉砕媒体として塩の粒子を用いる場合、通常、粉砕対象となる有機化合物に対して質量比にて、好ましくは10~30倍の塩を湿式粉砕装置に投入する。粉砕後、この多量の塩を除去しなければ、粉砕後の有機化合物を、生体内あるいは生体の表面に安全に使用することはできない。もう一つは、湿式粉砕装置の錆びを防ぐことである。錆びのコンタミネーションは、生体への用途にとって絶対に避けなければならない。また、一般的な防錆手段として防錆剤を用いることも知られているが、有機化合物への防錆剤の接触も許されない。また、錆びにくい材料で構成される湿式粉砕装置(例えば、内側をセラミックスコーティングした特注の装置)を用いるという選択肢もあるが、特殊な装置を用いることになり、コストアップにつながるというデメリットがある。
 本発明は、かかる要求に応えるべくなされたものであって、除去すべき不純物のコンタミネーションを避け、簡易かつ低コストで、有機化合物ナノ粉体を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、粒状の有機化合物に、少なくとも粒状の糖質化合物を加えて粉砕することにより、該有機化合物を効率良く粉砕することができ、かつ粉砕後の脱塩工程が不要となり、加えて粉砕装置の錆びを防ぐこともできるという知見を得て、本発明の完成に至った。また、粉砕時に、粒状の糖質化合物以外に塩を加えるケースもあるが、粉砕媒体として使用する量とは比較にならないほどの少量を加えるに過ぎないことから、脱塩工程は不要で、かつ粉砕装置の錆びの問題も低減できることがわかった。本発明の具体的な内容は、以下の通りである。
 すなわち、本発明の一形態は、平均粒子径が500nm以下でかつ90%径が1500nm未満である粒状の有機化合物と、糖類および糖アルコール類の内の少なくともいずれか1つから成り有機化合物に対して質量比にて0.3倍以上の糖質化合物と、を少なくとも含む有機化合物ナノ粉体である。
 本発明の別の形態は、さらに、糖質化合物が有機化合物に対して質量比にて0.5~30倍の有機化合物ナノ粉体である。
 本発明の別の形態は、生理的に許容されるポリオールを、さらに含む有機化合物ナノ粉体である。
 本発明の別の形態は、また、糖質化合物を、マンニトール、マルチトール、キシリトール、エリスリトール、グルコース、フルクトース、イノシトール、乳糖、トレハロース、セロビオースおよびデキストリンの内の1以上を含むものとする有機化合物ナノ粉体である。
 本発明の別の形態は、また、生理的に許容される塩を、さらに含む有機化合物ナノ粉体である。
 本発明の別の形態は、さらに、生理的に許容される塩を塩化ナトリウムとする有機化合物ナノ粉体である。
 本発明の別の形態は、また、有機化合物を、クラリスロマイシン、フェキソフェナジン塩酸塩、フルオロメトロン、クルクミノイド、クルクミン、ルチン、メフェナム酸、アセトアミノフェン、イブプロフェン、アムホテリシンB、ジクロフェナクナトリウム、インドメタシン、フェルビナク、プランルカスト水和物、デキサメタゾンおよびフェノフィブラートからなる群より選ばれる1以上とする有機化合物ナノ粉体である。
 本発明の一形態は、また、上述のいずれかの有機化合物ナノ粉体に含まれる少なくとも有機化合物を、有機化合物が不溶若しくは難溶の液状分散媒に分散してなる懸濁液である。
 本発明の一形態は、粒状の有機化合物と、糖類および糖アルコール類の内の少なくともいずれか1つから成り、有機化合物に対して質量比にて0.3倍以上の粒状の糖質化合物と、有機化合物が不溶若しくは難溶の液体とを混合する混合工程と、混合工程後に有機化合物をその平均粒子径が500nm以下でかつ90%径が1500nm未満にまで湿式粉砕する粉砕工程と、を少なくとも有する有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、さらに、糖質化合物を有機化合物に対して質量比にて0.5~30倍とした有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、混合工程において、有機化合物が不溶若しくは難溶の液体として生理的に許容されるポリオールを混合する有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、さらに、粉砕工程を、混合工程後の混合物を混練機内で練りながら有機化合物を粉砕する工程とする有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、また、粉砕工程の後に乾燥工程を行う有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、また、糖質化合物を、マンニトール、マルチトール、キシリトール、エリスリトール、グルコース、フルクトース、イノシトール、乳糖、トレハロース、セロビオースおよびデキストリンの内の1以上を含むものとする有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、また、混合工程において、生理的に許容される塩を、さらに混合する有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、さらに、生理的に許容される塩を塩化ナトリウムとする有機化合物ナノ粉体の製造方法である。
 本発明の別の形態は、また、有機化合物を、クラリスロマイシン、フェキソフェナジン塩酸塩、フルオロメトロン、クルクミノイド、クルクミン、ルチン、メフェナム酸、アセトアミノフェン、イブプロフェン、アムホテリシンB、ジクロフェナクナトリウム、インドメタシン、フェルビナク、プランルカスト水和物、デキサメタゾンおよびフェノフィブラートからなる群より選ばれる1以上とする有機化合物ナノ粉体の製造方法である。
 本発明によれば、除去すべき不純物のコンタミネーションを避け、簡易かつ低コストで、有機化合物ナノ粉体を提供することができる。
 次に、本発明の有機化合物ナノ粉体、その製造方法ならびに懸濁液の各実施の形態につき、説明する。
<1.有機化合物ナノ粉体>
 本発明の実施の形態に係る有機化合物ナノ粉体は、
 平均粒子径が500nm以下でかつ90%径が1500nm未満である粒状の有機化合物(A)と、
 糖類および糖アルコール類の内の少なくともいずれか1つから成り有機化合物に対して質量比にて0.3倍以上の糖質化合物(B)と、
を少なくとも含む。
 さらに、有機化合物ナノ粉体は、生理的に許容される塩(C)を含んでも良い。
 また、有機化合物ナノ粉体は、その用途に応じて、上記以外のその他添加剤(D)を含んでいても良い。
 本明細書でいう「平均粒子径」とは、動的光散乱光子相関法によって測定される粒度分布における算術平均径(ここでは、Dav値とする)を意味する。50%径(メディアン径、D50値ともいう)は、粉体をある粒子径から2つに分けたとき、大きい側と小さい側が等量となる径を意味する。「90%径」とは、上記測定法にて測定される粒度分布において粒子径の小さい側から順に0(最小)~100%(最大)までカウントしたときの90%の位置にある粒子径(D90値)を意味する。「10%径」とは、上記測定法にて測定される粒度分布において粒子径の小さい側から順に0(最小)~100%(最大)までカウントしたときの10%の位置にある粒子径(D10値)を意味する。有機化合物の平均粒子径は、より好ましくは、50nm~400nm、さらに好ましくは100nm~350nmである。また、有機化合物のD90値は、より好ましくは、700nm未満、さらに好ましくは500nm未満である。
 本明細書でいう「有機化合物ナノ粉体」は、少なくとも、粒状の(A)有機化合物と、(B)糖質化合物とを含む粉体であれば良く、それら以外に、別の添加物を含んでいても良い。動的光散乱光子相関法によって測定される粒度分布は、粒状の有機化合物を測定対象とする。ただし、糖質化合物が有機化合物の粒子表面に物理的に付着若しくは化学的に結合している場合には、上記粒度分布は、当該糖質化合物を有する粒状の有機化合物を対象とする。
(A)有機化合物
 有機化合物は、例えば、医薬、健康食品、栄養補助食品、化粧料などの有効成分として用いられるものを含むが、これらの用途に限定されない。医薬としては、例えば、肥満抑制薬、コルチコステロイド、エラスターゼインヒビター、鎮痛薬、抗真菌薬、がん治療薬、抗嘔吐薬、心臓血管薬、抗炎症薬、駆虫剤、抗不整脈薬、抗生物質、抗凝血剤、抗うつ薬、抗糖尿病薬、抗てんかん薬、抗ヒスタミン剤、降圧剤、抗ムスカリン様作用薬、抗マイコバクテリア症薬、抗腫瘍薬、免疫抑制剤、抗甲状腺薬、抗ウィルス薬、抗不安鎮静剤、ベータアドレナリン受容体ブロッカー、血液製剤、強心薬、造影剤、鎮咳剤、診断用薬剤、診断用造影剤、利尿剤、ドーパミン作動薬、止血薬、免疫剤、脂質調節剤、筋弛緩剤、副交感神経興奮薬、副甲状腺カルシトニンおよび二ホスホン酸塩、プロスタグランジン、放射線医薬品、性ホルモン、抗アレルギー剤、興奮剤、食欲抑制薬、交感神経興奮薬、甲状腺薬、血管拡張薬、抗パーキンソン、精神神経用剤、中枢神経用剤、解熱剤、抗不安定剤、催眠剤などを例示できる。しかし、医薬は、上記例示のものに限定されない。
 具体的な医薬用の有機化合物としては、5-フルオロウラシル、7-(3,5-ジメトキシ-4-ヒドロキシシンナモイルアミノ)-3-オクチルオキシ-4-ヒドロキシ-1-メチル-2(1H)-キノリノン、アカルボース、アシクロビル、アセチルサリチル酸、アセチルフェネトライド、アセトアミノフェノン、アデニン、アテノロール、アヘンアルカロイド、アミドトリゾ酸、アムホテリシンB、アモキサピン、アモバルビタール、アムリン、アモキシシリン、アリピプラゾール、アルプラゾラム、アロプリノール、アンピシリン、アンピロキシカム、アンレキサノクス、イソプロテレノール、イブプロフェン、イプリフラボン、イミプラミン、イルベサルタン、インドメタシン、ウベニメクス、ウラピジル、ウルソデスオキシコール酸、エスタゾラム、エストラジオール、エチゾラム、エテンザミド、エトトイン、エノキサシン、エプロサルタン、エミグリテート、エリスロマイシン、塩酸プラゾシン、塩酸プロパフェノン、エンタカポン、オキサゾラム、オキサプロジン、オキシコドン、オキシテトラサイクリン、オキシペルチン、オキセンドロン、オメプラゾール、オランザピン、オリザノール、カフェイン、カプトプリル、カベルゴリン、カルバマゼピン、カルバミン酸クロルフェネシン、カルピプラミンマレイン酸塩、カルボクロメン、カルモナムナトリウム、カンデサルタンシレキセチル、クアゼパム、グアンファシン、クエン酸シルデナフィル、クラリスロマイシン、グリセオフルビン、クロキサゾラム、クロザピン、クロチアゼパム、クロナゼパム、クロバザム、クロラムフェニコール、クロルジアゼポキシド、クロルゾキサジン、クロルタリドン、クロルフェニラミン、クロルプロマジン、クロルヘキシジン、ケトプロフェン、コカイン、コデイン、コルヒチン、酢酸クロルマジノン、酢酸コルチゾン、サッカリン、ザフィルルカスト、サラゾスルファピリジン、サルブタモール、ジアスターゼ、ジアゼパム、ジギトキシン、シクラシリン、ジクロフェナクナトリウム、ジゴキシン、ジソピラミド、シチコリン、ジヒドロコレステロール、ジピリダモール、ジヒドロコデイン、ジフェニドール、ジフェンヒドラミン、シメチジン、ジメンヒドリナート、シロスタゾール、シンバスタチン、スコポラミン、スタノゾロール、スパルフロキサシン、スピペロン、スピロノラクトン、スリンダク、スルピリド、スルベニシリンナトリウム、セファレキシン、セフィキシム、セフォゾプラン、セフォチアム、セフスロジンナトリウム、セフメノキシム、セラトロダスト、セラペプターゼ、セレコキシブ、ゾテピン、ゾニサミド、ゾビクロン、ダカルバジン、タクロリムス水和物、タソサルタン、ダナゾール、ダントロレンナトリウム、チアプロフェン、チニダゾール、チミペロン、テオフィリン、デキサメタゾン、デキストロメトルファン、デラプリル、テルグリド、テルミサルタン、トコン、トフィソパム、トランドラプリル、トリアゾラム、トリアムシノロン、トリアムシノロンアセトニド、トリアムテレン、トルブタミド、トレピブトン、トログリタゾン、ドロペリドール、ナプロキセン、ナリジクス酸、ニカルジピン、ニセルゴリン、ニトラゼパム、ニフェジピン、ニメタゼパム、ニモジピン、ネモナプリド、ノスカピン、パクリタキセル、パパベリン、バルサルタン、ハロペリドール、ビオグリタゾン、ビカルタミド、ビスベンチアミン、ヒドララジン、ヒドロキシジンパモ酸塩、ピプメシリナム、ビペリデン、ピモジド、ピレノキシン、ピロキシカム、ピンドロール、ファモチジン、ファレカルシトリオール、フェキソフェナジン塩酸塩、フェナセミド、フェニトイン、フェニレフリン、フェノバルビタールナトリウム、フェノフィブラート、フェルビナク、フェンプロバメート、フォラサルタン、ブコローム、ブデソニド、フマル酸クレマスチン、フマル酸ポルモテロール、プラノプロフェン、プラバスタチン、プランルカスト水和物、プリミドン、フルジアゼパム、フルニトラゼパム、プログルメタシンマレイン酸塩、ブロナンセリン、プロフェナミンヒベンズ酸塩、ブロマゼパム、フルタゾラム、フルオシノロンアセトニド、フルオロメトロン、フルコナゾール、フルトプラゼパム、フルニソリド、フルフェナジンデカン酸エステル、フルファナム酸アルミニウム、フルマゼニル、フルルビプロフェン、プレドニゾロン、プロカインアミド、フロセミド、ブロチゾラム、プロピオン酸フルチカゾン、プロピオン酸ベクロメタゾン、プロプラノロール、プロペリシアジン、プロメタジン、ブロムペリドール、ブロモクリプチンメシル酸塩、β―カロテン、ベタメタゾン、ベラパミル、ベンズチアジド、ペンタゾシン、ボグリボース、没食子酸プロピル、ポリチアジド、マイトマイシンC、マジンドール、マニジピン、マプロチリン、マルトール、マレイン酸リスリド、ミグリトール、ミコナゾール、ミダゾラム、ミノキシジル、ミルリノン、メキサゾラム、メキタジン、メクリジン、メクロフェノキサート、メダゼパム、メチルエフェドリン、メチルドパ、メトカルバモール、メトクロプラミド、メトトレキサート、メフェナム酸、メロキシカム、モダフィニル、モフェゾラク、モルシドミン、葉酸、ラニチジン、ラベタロール、ラベプラゾール、ラメルテオン、ランソプラゾール、リオチロニンナトリウム、リスペリドン、リゾチーム、リドカイン、リファンピシン、リュープロレリン、レセルピン、レバロルファン、レボドバ、リルゾール、ロサルタン、ロフェブラミン塩酸塩、ロラゼパム、ロルメタゼパムなどを例示できる。しかし、有機化合物は、これらに限定されない。上記有機化合物の中でも、特に好適に、クラリスロマイシン、フェキソフェナジン塩酸塩およびフルオロメトロンを用いる。
 健康食品あるいは栄養補助食品用の有機化合物としては、アスタキサンチン、アリイン、アリシン、アントシアニン、イソフラボン、イソラムネチン、αリポ酸、オレウロペイン、オルニチン、カテキン、カプサイシン、カプサンチン、カプソルビン、β-カロチン、カルニチン、カルミン酸、カンタキサンチン、ギンコロイド、グルカン、キトサン、キノン、ギムネマ酸、β-クリプトキサンチン、クルクミノイド、クルクミン、グルコサミン、クレアチン、クロロフィル、ケルセチン、ゴマリグナン、ゼアキサンチン、ビキシン、ビオチン、ビタミンAおよび誘導体、ビタミンD2、ビタミンD3、フィトステロール、フォスファチジルセリン、β-アポ-4-カロテナール、β-アポ-8-カロテン酸エチルエステル、フラボノイド、プロアントシアニジン、ペクチン、ポリフェノール、モナコリンK、ユビキノン、リコペン、レスベラトロール、ルテイン、ルチン等を例示できる。しかし、有機化合物は、これらに限定されない。上記有機化合物の中でも、特に好適に、クルクミノイド、クルクミンおよびルチンを用いる。
 化粧料としては、老化防止剤、紫外線防御剤、ひきしめ剤、抗酸化剤、抗しわ剤、保湿剤、血行促進剤、抗菌剤、殺菌剤、乾燥剤、冷感剤、温感剤、ビタミン類、アミノ酸、創傷治癒促進剤、刺激緩和剤、鎮痛剤、細胞賦活剤、各種酵素などを例示できる。しかし、化粧料は、上記例示のものに限定されない。
 化粧料用の有機化合物としては、例えば、4-n-ブチルレゾルシノール、N-アシル化グルタチオン、アスコルビン酸、アスコルビン酸塩、アスコルビン酸グルコシド、アスコルビン酸リン酸マグネシウム塩、アルブチン、イソフェルラ酸、イソフェルラ酸塩、エラグ酸、エルゴ酸、エルゴ酸塩、カイネチン、カゼイン、カフェー酸、カフェー酸塩、グラブリジン、グリチルリチン酸、グルタチオン、グルタチオンエステル、グルタチオン塩、コウジ酸、酢酸レチノール、システイン、タンニン酸、トラネキサム酸、トランスフェリン、トレチノイン、ハイドロキノン、ハイドロキノン塩、フィチン酸、フィブリン、フィブロイン、フィブロネクチン、フェルラ酸、フェルラ酸塩、リコピン、レチニルアセテート、レチニルパルミテート、レチノール、レチノイン酸、レチノイン酸トコフェリルなどを例示できる。しかし、有機化合物は、これらに限定されない。
(B)糖質化合物
 糖質化合物は、糖類(単糖類、二糖類、三糖類以上の多糖類、オリゴ糖類)および糖アルコール類の内の少なくとも1つを含む。糖質化合物は、先に述べた有機化合物と重複しないように選択される。
 単糖類としては、グルコース(ブドウ糖)、ガラクトース、マンノース、フルクトース、イノシトール、リボース、キシロース等を例示できる。二糖類としては、ラクトース(乳糖)、ショ糖、セロビオース、トレハロース、マルトース等を例示できる。多糖類としては、プルラン、ヒアルロン酸ナトリウム、ラフィノース、メレジトース、コンドロイチン硫酸ナトリウム、セルロース、クラスターデキストリン、シクロデキストリン、デキストリン、デキストラン、キサンタンガム、キチン、キトサン等を例示できる。オリゴ糖類としては、フラクトオリゴ糖、ガラクトオリゴ糖、マンナンオリゴ糖、ゲンチオオリゴ糖、キシロオリゴ糖、セロオリゴ糖、イソマルトオリゴ糖、ニゲロオリゴ糖、キトオリゴ糖、フコイダンオリゴ糖、大豆オリゴ糖、乳果オリゴ糖等を例示できる。糖アルコール類としては、パラチニット、ソルビトール、ラクチトール、エリスリトール、ペンタエリスリトール、キシリトール、マルチトール、マンニトール、ズルシトール等を例示できる。この実施の形態では、糖質化合物として、好適に糖アルコール類、単糖類あるいは二糖類を用いることができ、より好適にはマンニトール、マルチトール、エリスリトール、キシリトール、グルコース、フルクトース、ラクトース、トレハロース、セロビオース、を、さらに好適にはD-マンニトール、キシリトール、グルコース、フルクトース、トレハロースを用いることができる。
 糖質化合物は、有機化合物ナノ粉体において、粒状の有機化合物とは独立した粒子の形態にて含まれていても良く、また、粒状の有機化合物の表面に物理的に付着若しくは化学的に結合する形態で含まれていても良い。
 糖質化合物は、有機化合物ナノ粉体中に、有機化合物に対して質量比にて0.3倍以上、好ましくは0.3~100倍、さらに好ましくは0.5~30倍の量にて含まれ、さらにより好ましくは、有機化合物に対して0.8~20倍の量で含まれる。有機化合物の粉砕後に糖質化合物を過度に除く必要が無く、かつ過剰の糖質化合物の存在により使用時に当該糖質化合物を含む液体の浸透圧が過度に高くなるのを防止する目的から、糖質化合物の添加量は、有機化合物の質量に対して0.3~100倍以下とするのが好ましく、さらには0.5~30倍、さらには0.8~20倍、さらには1.0~8倍とするのが好ましい。該糖質化合物は、1種類の糖質化合物を用いてもよく、2種類以上の糖質化合物を混合して用いてもよく、また、微粒子化したものを用いても良い。
 糖質化合物は、有機化合物を粉砕する際の粉砕媒体あるいは粉砕助剤として機能し得る。ここで、粉砕媒体とは、有機化合物に対して直接的に衝撃や磨砕の作用を及ぼす媒体を意味する。また、粉砕助剤とは、有機化合物に対して直接的な上記作用を及ぼさないが、間接的に粉砕しやすくする作用を及ぼす媒体を意味する。また、糖質化合物は、有機化合物の粒子同士の凝集を低減する作用も備え得る。
(C)生理的に許容される塩
 この実施の形態に係る有機化合物ナノ粉体に含み得る塩は、生理学上特に問題を生じることなく用いることができる塩、すなわち、生体内に摂取あるいは肌に接触せしめても大きな問題を生じない塩であれば特に限定されない。生理的に許容される塩として、好ましくは、有機化合物の微粉砕化に適した硬さを有している塩である。また、ここで、有機化合物及び糖質化合物に混在する塩の量は、生体内に摂取されても生体に大きな問題を起こさない量である。
 好適な塩としては、例えば、塩化ナトリウム、塩化カリウム、塩化アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、硫酸カルシウム、リンゴ酸ナトリウム、クエン酸ナトリウム、クエン酸二ナトリウム、クエン酸二水素ナトリウム、クエン酸二水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、及びリン酸水素二カリウム等が挙げられる。さらに好適な塩としては、塩化ナトリウム、塩化カリウム、硫酸マグネシウム、硫酸カルシウム、クエン酸ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸水素二ナトリウム、リン酸水素二カリウム等を挙げることができ、最も好ましくは塩化ナトリウムである。
 また、塩は、有機化合物あるいは糖質化合物と混合する前に、粉砕等を行って、粒子径を整えておいてもよい。塩の粒子径を予め調整する場合、粒子の平均粒子径として、好ましくは0.01~300μmであり、さらに好ましくは0.1~100μmであり、さらにより好ましくは、0.5~50μmである。また、該塩の量は、有機化合物および糖質化合物の総量に対して、質量比にて0.02~4倍の量にて含まれ、好ましくは、0.05~2倍、さらに、好ましくは0.1~1.5倍にて含まれる。該塩は1種類の塩を用いてもよく、2種類以上の塩を混合して用いてもよい。塩は、有機化合物を粉砕する際の粉砕媒体あるいは粉砕助剤として機能し得る。
(D)その他添加剤
 有機化合物ナノ粉体は、製造時に添加される粘度調整剤の一部または全部を含んでいても良い。粘度調整剤として、生理的に許容されるポリオールを好適に使用できる。「生理的に許容される」の意味は、上述の生理的に許容される塩で述べた意味と同様である。生理的に許容されるポリオールとしては、例えば、グリセリン、プロピレングリコール、ポリエチレングリコール、ジプロピレングリコール、エチレングリコール、ジエチレングリコール、クエン酸、DL-リンゴ酸、酒石酸、乳酸、尿素、マレイン酸およびマロン酸を挙げることができ、好ましくは、クエン酸、プロピレングリコールまたはグリセリンである。粘度調整剤は1種類を用いてもよく、2種類以上を混合して用いてもよい。
 有機化合物ナノ粉体は、個々の粒子がナノレベルの大きさであるため、非常に凝集し易い。このため、有機化合物ナノ粉体は、粉砕後の凝集を防止するために粉砕時あるいは粉砕後に添加した凝集防止剤の一部または全部を含んでいても良い。凝集防止剤として、エタノール、グリセリン、プロピレングリコール、クエン酸ナトリウム、精製大豆レシチン、リン脂質、D-ソルビトール、乳糖、キシリトール、アラビアゴム、ショ糖脂肪酸エステル、ドデシル硫酸ナトリウム、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、スルホコハク酸エステル塩、ポリオキシエチレンポリオキシプロピレングリコール、ポリビニルピロリドン、ポリビニルアルコール、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、カルメロースナトリウム、カルボキシメチルセルロースナトリウム、カルボキシメチルポリマー、N-アシル-グルタミン酸塩、アクリル酸コポリマー、ミリストイルメチルタウリンナトリウム、ステアリン酸ポリオキシル、カルボキシビニルポリマー、スルホコハク酸ジオクチルナトリウム、キサンタンガム、メタクリル酸コポリマー、カゼインナトリウム、L-バリン、L-ロイシン、L-イソロイシン、塩化ベンザルコニウム、塩化ベンゼトニウム等を例示できる。これらの凝集防止剤として、好適には、グリセリン、ショ糖脂肪酸エステル、ドデシル硫酸ナトリウム、ポリビニルピロリドン、ポリビニルアルコール、ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、ミリストイルメチルタウリンナトリウム、ステアリン酸ポリオキシル、カルボキシビニルポリマー、スルホコハク酸ジオクチルナトリウム、キサンタンガムを用いることができる。凝集防止剤は1種類を用いてもよく、2種類以上を混合して用いてもよい。なお、その他添加剤としては、有機化合物、糖質化合物、塩と重複しないものが選択される。
<2.有機化合物ナノ粉体を分散する懸濁液>
 本発明の実施の形態に係る懸濁液は、上述の(A)有機化合物を、それが不溶若しくは難溶の液状分散媒に分散してなる。
 本明細書でいう「不溶若しくは難溶」とは、有機化合物の液状分散媒への溶解度が通常の取扱い温度、例えば、室温25℃付近において、10mg/mL以下、好ましくは、1mg/mL以下であることを意味する。有機化合物が不溶若しくは難溶の液状分散媒は、水; エタノール等の有機溶媒; あるいはグリセリン、プロピレングリコール、ポリエチレングリコール、エチレングリコール、ジエチレングリコール等のポリオールを含む。ただし、当該液状分散媒は、上記例示の液体に限定されず、室温25℃付近において液体で存在し得る限り、如何なる種類の媒体でも良い。例えば、当該液状分散媒としてポリオールを選択した場合、そのポリオールは、粘度調整剤あるいは凝集防止剤としても機能する。有機化合物が不溶若しくは難溶の液状分散媒は、例えば、有機化合物が水溶性の化合物である場合には水以外の分散媒を意味し、有機化合物が特定の有機溶媒に可溶な化合物である場合には当該特定の有機溶媒以外の分散媒を意味する。すなわち、液状の分散媒は、有機化合物が完全に溶解しないで分散状態にて存在し得るように選択される。懸濁液をそのままの状態で薬剤、健康食品、化粧品として用いる場合には、水を主とする分散媒を用いる方が望ましい。
 この実施の形態に係る懸濁液は、上述の(D)その他添加剤で述べた各種粘度調整剤や凝集防止剤を含んでいても良く、さらには、乳化剤、pH調整剤、緩衝剤、防腐剤などを含んでいても良い。例えば、懸濁液は、第一リン酸ナトリウム、第二リン酸ナトリウム、第三リン酸ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、酸性ヘキサメタリン酸ナトリウム、第一リン酸カリウム等に代表されるリン酸塩またはその水和物; エデト酸ナトリウム;水酸化ナトリウム等を含んでいても良い。
<3.有機化合物ナノ粉体の製造方法>
 この実施の形態に係る有機化合物ナノ粉体の製造方法は、
 粒状の有機化合物と、糖類および糖アルコール類の内の少なくともいずれか1つから成り、有機化合物に対して質量比にて0.3倍以上の粒状の糖質化合物と、有機化合物が不溶若しくは難溶の液体とを混合する混合工程(A)と、
 混合工程後に有機化合物をその平均粒子径が500nm以下でかつ90%径が1500nm未満にまで湿式粉砕する粉砕工程(B)と、
を少なくとも有する。
 有機化合物ナノ粉体の製造方法は、粉砕工程(B)の後に、乾燥工程(C)を有しても良い。以下、「混合工程」、「粉砕工程」および「乾燥工程」について説明する。
(A)混合工程
 有機化合物ナノ粉体の製造方法に含まれる混合工程は、粒状の有機化合物と、粒状の糖質化合物と、有機化合物が不溶若しくは難溶の液体とを少なくとも混合する工程であり、これら以外の添加物(凝集防止剤、粘度調整剤、pH調整剤等)をも加えて混合しても良い。混合工程では、粒状の有機化合物に、粒状の糖質化合物を加えることおよび質量比にて有機化合物の0.3倍以上の糖質化合物を加えることに特徴がある。糖質化合物を有機化合物に対して質量比にて0.3倍以上加えて粉砕を行うと、有機化合物を微細に粉砕することができる。糖質化合物を有機化合物に対して0.3倍以上混合しても微細に粉砕できるが、粉砕装置内に入れる有機化合物の量を少なくする必要が生じ、1回の粉砕工程での粉砕量が低下する。有機化合物の粉砕量を保持し、かつ微細に粉砕を行う目的によれば、糖質化合物の添加量は、有機化合物の質量に対して0.3~100倍以下とするのが好ましく、さらには0.5~30倍、さらには0.8~20倍、さらには1.0~8倍とするのが好ましい。
 糖質化合物は、凝集防止剤としての機能を有するが、その機能を発揮させるだけであれば、「粒状の形態」での添加、および「有機化合物の質量の0.3倍以上」の添加を要しない。糖質化合物を「粒状の形態」で添加し、かつ「有機化合物の質量の0.3倍以上」を添加するのは、粉砕工程で、粒状の有機化合物に直接的に衝撃や磨砕の作用を及ぼす粉砕媒体としての機能、あるいは粒状の有機化合物同士の衝撃や磨砕を促進するために間接的に関与する粉砕助剤としての機能を、糖質化合物に発揮させるためである。
 粒状の糖質化合物としては、有機化合物ナノ粉体の項で既に説明した各種の糖類、各種の糖アルコール類、あるいはそれらの2以上の混合物を用いることができる。特に、糖アルコール類、単糖類あるいは二糖類を用いることができ、より好適にはマンニトール、マルチトール、エリスリトール、キシリトール、グルコース、フルクトース、ラクトース、トレハロース、セロビオース、を、さらに好適にはD-マンニトール、キシリトール、グルコース、フルクトース、トレハロースを用いることができる。粒状の糖質化合物の粒子径は、粉砕条件に応じて種々選択できるが、粉砕媒体あるいは粉砕助剤としての機能を効率的に発揮するには、平均粒子径が0.5μm~1,000μmの範囲、さらには、1μm~700μm、さらには、5μm~200μmの範囲の糖質化合物を用いるのが好ましい。
 混合工程において、さらに、生理的に許容される塩を混合することもできる。この場合、例えば、有機化合物および糖質化合物の総量に対して質量比にて0.02~4倍の生理的に許容される塩を混合するのが好ましい。かかる量の塩を混合する限り、脱塩の必要は無く、かつ粉砕装置等の錆びの問題も低減できる。塩としては、有機化合物ナノ粉体の項で既に説明した各種の塩を用いることができる。特に、塩化ナトリウムを用いるのが好ましい。粒状の塩の粒子径は、種々選択できるが、好ましくは0.01~300μmであり、さらに好ましくは0.1~100μmであり、さらにより好ましくは、0.5~50μmである。
 有機化合物が不溶若しくは難溶の液体は、有機化合物の当該液体への溶解度が通常の取扱い温度、例えば、室温25℃付近において、10mg/mL、好ましくは、1mg/mL以下である液体を意味する。有機化合物が不溶若しくは難溶の液体は、水; エタノール等の有機溶媒; あるいはグリセリン、プロピレングリコール、ポリエチレングリコール、エチレングリコール、ジエチレングリコール等のポリオールを含む。ただし、当該液体は、上記例示のものに限定されず、室温25℃付近において液体で存在し得る限り、如何なる種類のものでも良い。例えば、当該液体としてポリオールを選択した場合、そのポリオールは、粘度調整剤あるいは凝集防止剤としても機能する。有機化合物が不溶若しくは難溶の液体は、例えば、有機化合物が水溶性の化合物である場合には水以外の液体を意味し、有機化合物が特定の有機溶媒に可溶な化合物である場合には当該特定の有機溶媒以外の液体を意味する。すなわち、当該液体は、混合工程およびその後の粉砕工程において、有機化合物が完全に溶解しないで存在し得るように選択される。
 混合工程は、次に説明する粉砕工程に用いる粉砕装置内にて粉砕前あるいは粉砕と同時に実行される工程の他、粉砕装置とは別の混合容器を用意して当該混合容器内にて実行される工程でも良い。後者の場合、混合工程を行うに際し、攪拌羽根を回転させる攪拌機、容器内に入れた攪拌子を、磁気を利用して回転させるマグネチックスターラー、容器を上下に振動させる振動ミル、超音波を発振させる浴槽などを用いても良い。
(B)粉砕工程
 本実施の形態に係る有機化合物ナノ粉体の製造方法において、有機化合物を湿式粉砕するために用いられる粉砕装置は、機械的手段によって有機化合物を微細にできる能力を有するものであれば、特に制限なく用いることができる。該粉砕装置として、例えば、ニーダー、二本ロール、三本ロール、フレットミル、フーバーマーラー、円盤ブレード混練機、二軸エクストルーダー等の通常用いられている粉砕装置を挙げることができる。この粉砕工程における大きな特徴は、ボールやビーズといった粉砕媒体を使わないことである。粉砕対象の有機化合物とボールやビーズを粉砕装置の中に入れる従来の粉砕方法では、ボールやビーズからの磨耗粉が粉砕対象物中に混入してしまい、その除去が不可能、あるいは理論上可能であっても大きな労力と費用を要するためである。このような従来の欠点を解消するため、この粉砕工程では、粉砕対象物を練るための動力を与えるだけの粉砕装置を用い、粒状の有機化合物同士、あるいは粒状の有機化合物と粒状の糖質化合物との間における衝撃若しくは磨砕作用を利用して、有機化合物を微細化するようにしている。かかる技術的思想を前提とすると、上記粉砕装置の中でも、特に、ブレードの遊星運動により強力な混練力を出力できる円盤ブレード混練機を用いるのが好ましい。この場合、粉砕工程は、混合工程後の混合物を混練機内で練りながら有機化合物を粉砕する工程になる。
 有機化合物の粉砕工程において、粉砕装置内に有機化合物、糖質化合物および少量の液体を全て投入してから行い、あるいは糖質化合物や液体を粉砕中に少しずつ加えて行っても良い。粉砕温度は、粉砕される有機化合物や、粉砕装置等を考慮して適宜決定することができる。粉砕温度として、有機化合物の融解あるいは分解を低減できる温度であれば、特に制限はないが、好ましくは-50~50℃であり、より好ましくは-20~30℃であり、最も好ましくは、-10~25℃である。また、粉砕時間は、粉砕される有機化合物、粉砕装置等を考慮して適宜決定することができる。粉砕時間は、例えば、1~50時間程度とすることができ、好ましくは、2~20時間であり、より好ましくは、3~10時間である。
(C)乾燥工程
 上述の粉砕工程の後、乾燥処理を行うことにより、有機化合物ナノ粉体を分散溶液の形態ではなく、固体として得ることができる。該乾燥処理の方法は、特に限定されるものではなく、通常、有機化合物を乾燥するために用いられる方法で行うことができる。該乾燥方法として、例えば、減圧乾燥法、凍結乾燥法、噴霧乾燥法、凍結噴霧乾燥法等がある。該乾燥における乾燥温度や乾燥時間等は特に制限されるものではないが、有機化合物ナノ粉体を構成する個々の粒子の化学的安定性の保持および該粒子の二次凝集を防止するめに、該乾燥は低温で行うことが好ましく、減圧乾燥法、凍結乾燥法、噴霧乾燥法、凍結噴霧乾燥法で行うことがより好ましい。
(D)その他工程
 なお、粉砕後の内容物(通常、「Dough」の形態で得られることが多い)を取り出して、そのまま乾燥工程に供することもできるが、乾燥工程の前に、分散工程を行っても良い。例えば、粉砕後の内容物に水(あるいは有機溶媒)を添加して、マグネチックスターラー、超音波分散機、高圧ホモジナイザー等の分散処理装置を用いて、当該内容物中の凝集粒子を分散させてから、乾燥工程を行う方が望ましい。
<4.剤型>
 本実施の形態に係る製造方法により得られる有機化合物ナノ粉体は、製剤特性にも優れており、様々な剤型として用いることができる。例えば、吸入剤として使用する場合、粉砕工程後に得られた内容物を水に縣濁させ、凍結噴霧乾燥法により1~30μm程度の多孔質粒子として調整することができる。粒子の分散性を改善するため、該水に界面活性剤を少量添加してもよい。また、同様に分散性を改善するために、エタノールのような揮発性の添加剤を少量添加してもよい。揮発性の添加剤を添加した場合には、乾燥時に揮発性の添加剤の留去が可能であるため、界面活性剤を添加する場合よりも、刺激性を改善することができる。
 また、有機化合物ナノ粉体を、注射剤、点眼剤、軟膏剤、経皮吸収剤等に使用する場合は、粉砕工程後の内容物に、凝集防止剤を添加して水分散体を調製して用いることができる。該凝集防止剤として、例えば、公知の界面活性剤等がある。具体的には、有機化合物ナノ粉体の項で述べた各種の凝集防止剤を用いることができる。凝集防止剤として、アクリル酸コポリマー、メタクリル酸コポリマー等の高分子を使用した水分散体は、DDS剤として使用することができる。また、水分散体調製時に、通常使用されている装置等を用いてもよい。該装置として、例えば、ホモジナイザー、ホモミキサー、超音波分散機、高圧ホモジナイザー等を挙げることができる。
 該水分散体は、減圧乾燥、噴霧乾燥、凍結乾燥又は凍結噴霧乾燥等により粉末化することもできる。このようにして調製した粉体は、水に対する再分散性に優れるため、用時調製用の注射剤及び点眼剤、経口剤として優れた特性を有する。
 また、有機化合物ナノ粉体を、油状物質中に分散させ、軟膏剤、カプセル剤、経皮吸収剤等に使用することもできる。該油状物質は、通常製剤化において用いられる物質であれば、特に限定されるものではない。該油状物質として、例えば、流動パラフィン、ワセリン、プロピレングリコール、グリセリン、ポリエチレングリコール、植物油等が挙げられる。該油状物質は1種類で用いても良く、2種類以上の油状物質を混合して用いてもよい。また、油状物質分散体調製時に、通常使用されている装置等を用いてもよい。該装置として、例えば、ホモジナイザー、ホモミキサー、超音波分散機、高圧ホモジナイザー、二本ロール、三本ロール、円盤ブレード混練分散機、二軸エクストルーダー等を例示できる。
 次に、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されるものではない。
実験1 有機化合物ナノ粉体の製造
<実施例1>
ウコン10wt%含有粉末の製造
(1)混合工程および粉砕工程
 ウコン粉末(クルクミノイド>90%、 バイオアクティブジャパン株式会社製)10g、D-(-)-マンニトール(和光純薬工業株式会社製、粒度分布:10~300μm)78g、ショ糖脂肪酸エステル(品名:DKエステルSS、第一工業製薬株式会社製)10g、カルボキシメチルセルロースナトリウム(品名:セロゲンF-3H、第一工業製薬株式会社製)1.7g、および精製水9gを、内容量500mLのトリミックス混練機(株式会社井上製作所製)に入れ、負荷電流値0.95~1.2(A)に保ち、約3時間を要して混合撹拌した。ウコン粉末の混合工程前の粒度分布測定装置(装置名:Delsa Nano、Beckman Coulter Inc.製)を用いて測定した粒度分布は、平均粒子径(Dav):12820nm、D10値:3793nm、D50値:10530nm、D90値:25520nmであった。混合攪拌した後に取り出した混練物(これを、ドウ(Dough)と称する)の一部10mgを50mLのガラスバイアルに計り取り、そこに10mLの精製水を加えた後、浴槽型超音波分散機(型式:US100III、アズワン株式会社製)にて1~2分間、分散処理を行った。混練物の分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):202nm、D10値:78nm、D50値:162nm、D90値:338nmであった。
(2)分散工程
 得られたドウ6gに精製水54gを加え、マグネチックスターラーを用いて撹拌した後、プローブ式超音波分散機(型式:プローブタイプ406HWS、 Amp.30、2min、S4000型、アストラソン社製)を用いて分散処理を行った。
(3)乾燥工程
 次に、上記分散工程にて得られた分散液をスプレードライヤー(型式:B-290、ビュッヒ社製)に供給した(Flow:45、Inlet Temp.:150℃、Aspirator:100%、送液ポンプ:35%)。その結果、ドライパウダーとして、4.35gが得られた。得られたドライパウダーの一部10mgを10mLの精製水に混ぜ、上記浴槽型超音波分散機にて1~2分間、分散処理を行った。当該分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):223nm、D10値:99nm、D50値:185nm、D90値:336nmであった。
<実施例2>
ウコン20wt%含有粉末の製造
(1)混合工程および粉砕工程
 実施例1で用いたウコン粉末20g、実施例1で用いたD-(-)-マンニトール65g、実施例1で用いたショ糖脂肪酸エステル10g、実施例1で用いたカルボキシメチルセルロースナトリウム1.6g、および精製水9gを、実施例1で用いたトリミックス混練機に入れ、実施例1と同条件で混合撹拌した。ドウの一部10mgを50mLのガラスバイアルに計り取り、そこに20mLの精製水を加えた後、実施例1と同様に分散処理を行った。当該分散処理後に、実施例1で用いた粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):379nm、D10値:155nm、D50値:298nm、D90値:603nmであった。
(2)分散工程
 得られたドウ30gに精製水270gを加え、実施例1と同条件で分散処理を行った。
(3)乾燥工程
 次に、上記分散工程にて得られた分散液を凍結乾燥機(型式:FDU-2100、EYELA社製)に供給し、ドライパウダーとして27.5gを得た。得られたドライパウダーの一部10mgを20mLの精製水に混ぜ、実施例1で用いた浴槽型超音波分散機にて1~2分間、分散処理を行った。当該分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):463nm、D10値:147nm、D50値:359nm、D90値:802nmであった。
<比較例1>
塩を用いて粉砕したウコン含有粉末の製造
(1)混合工程・粉砕工程
 合成クルクミン(和光純薬工業株式会社製)10g、粉砕した塩(和光純薬工業株式会社製)80g、およびグリセリン(関東化学株式会社製)17.2gを、実施例1で用いたトリミックス混練機に入れ、実施例1と同条件で混合撹拌した。合成クルクミンの混合工程前における実施例1の粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):17270nm、D10値:4422nm、D50値:15070nm、D90値:33850nmであった。混合攪拌後に得られたドウ300mgを50mLのガラスバイアルに計り取り、そこに、0.1%SDS(ドデシル硫酸ナトリウム)と0.1%水添大豆レシチンの混液5mLを加えた。次いで、実施例1で用いた浴槽型超音波分散機にて1~2分間分散処理を行い、さらに45mLの精製水を加え、再度、上記の浴槽型超音波分散機にて1~2分間分散処理を行った。当該分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):96nm、D10値:37nm、D50値:78nm、D90値:162nmであった。
(2)水洗工程
 得られたドウ300mgを50mL用ファルコンチューブに計り取り、そこに精製水10mLを加えて、ボルテックスにて拡散させた後、卓上型遠心分離機(回転数:6000rpm、10分間)にて遠心分離を行った。その後、上澄み液を捨て、残部に再度、精製水10mLを加えて、遠心分離を行った。この操作を、最終の上澄み液の電気伝導率が10μs/cm以下になるまで繰り返し行い、ウェットケーキを得た(クルクミンを約30mg含有)。得られたウェットケーキに、0.1%SDS(ドデシル硫酸ナトリウム)と0.1%水添大豆レシチンの混液5mLを加え、前述の浴槽型超音波分散機を用いて1~2分間分散処理を行い、さらに45mLの精製水を加え、再度、前述の浴槽型超音波分散機を用いて1~2分間分散処理を行った。当該分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):255nm、D10値:102nm、D50値:192nm、D90値:431nmであった。
(3)乾燥工程
 水洗工程と同様の操作にて得られたウェットケーキに対して、減圧乾燥(条件:30℃以下、1hPa、18時間)を行った結果、28mgのドライパウダーを得た。得られたドライパウダーに、0.1%SDS(ドデシル硫酸ナトリウム)と0.1%水添大豆レシチンの混液5mLを加え、前述の浴槽型超音波分散機を用いて1~2分間分散処理を行い、さらに45mLの精製水を加え、再度、前述の浴槽型超音波分散機を用いて1~2分間分散処理を行った。当該分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):3048nm、D10値:133nm、D50値:507nm、D90値:9376nmであった。
 表1に、実施例1、実施例2および比較例1にて得た成果物の各工程における粒度分布を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、乾燥工程を経なければ、従来の塩を用いた粉砕の方がより微細なナノ粉体を得ることができるが、乾燥工程を経る場合には、塩を用いた粉砕では粒子の凝集が生じやすい。一方、実施例1,2によるD-マンニトールを用いて粉砕する方法では、乾燥工程を経ても粉砕直後の粒度分布と大きく変化することのない粒度分布を持つナノ粉体が得られた。このことは、D-マンニトールを用いた粉砕では、乾燥しても凝集が生じにくい粉体が得られることを意味する。
<実施例3>
ルチン10wt%含有粉末の製造
(1)混合工程および粉砕工程
 ルチン粉末(和光純薬工業株式会社製)10g、実施例1で用いたD-(-)-マンニトール80g、実施例1で用いたショ糖脂肪酸エステル10g、実施例1で用いたカルボキシメチルセルロースナトリウム2.0g、および精製水10gを、内容量500mLのトリミックス混練機(株式会社井上製作所製)に入れ、実施例1と同条件で混合撹拌した。ルチン粉末の混合工程前における実施例1の粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):8949nm、D10値:1972nm、D50値:5007nm、D90値:21450nmであった。混合攪拌する後に取り出したドウの一部30mgを50mLのガラスバイアルに計り取り、そこに3mLの10%マンニトール溶液を加えた後、実施例1で用いた浴槽型超音波分散機にて0.5~1分間、分散処理を行った。混練物の分散処理後に上記粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):277nm、D10値:136nm、D50値:226nm、D90値:410nmであった。
(2)乾燥工程
 上記工程にて得られたドウ10gを棚段式減圧乾燥機(型式:VOS-300VD、 EYELA社製)に供給して減圧乾燥を行った結果、ドライパウダー9.27gを得た。得られたドライパウダーの一部30mgを3mLの10%マンニトール溶液に混ぜ、前述の浴槽型超音波分散機にて0.5~1分間、分散処理を行った。当該分散処理後に、上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):321nm、D10値:140nm、D50値:265nm、D90値:492nmであった。
<実施例4>
フェキソフェナジン塩酸塩45wt%含有混練物の製造
(1)混合工程および粉砕工程
 フェキソフェナジン塩酸塩(住友化学株式会社製)20g、実施例1で用いたD-(-)-マンニトール20g、ヒドロキシプロピルセルロース2g(品名:SSL、NISSO社製)、および10%ポリビニルアルコール(品名:ポバール217C、株式会社クラレ製)13.3gを、実施例1で用いたトリミックス混練機に入れ、実施例1と同条件で混合撹拌した。フェキソフェナジン塩酸塩の混合工程前における実施例1で用いた粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):45660nm、D10値:3225nm、D50値:27320nm、D90値:139600nmであった。混合攪拌した後に取り出したドウの一部15mgを50mLのガラスバイアルに計り取り、そこに5mLの0.4%塩化ナトリウム水溶液を加えた後、実施例1で用いた浴槽型超音波分散機にて0.5~1分間、分散処理を行った。混練物の分散処理後に上記粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):316nm、D10値:142nm、D50値:250nm、D90値:489nmであった。
(2)乾燥工程
 上記工程にて得られたドウ20gを実施例3で用いた減圧乾燥機に供給して減圧乾燥を行った結果、ドライパウダー15.5gを得た。得られたドライパウダーの一部15mgを5mLの0.4%塩化ナトリウム水溶液に混ぜ、プローブ式超音波分散機(型式:プローブタイプ419、 Amp.25、1min、S4000型、アストラソン社製)を用いて分散処理を行った。当該分散処理後に上記粒度分布測定装置を用いて測定した粒度分布は、平均粒子径(Dav):230nm、D10値:129nm、D50値:198nm、D90値:309nmであった。
<実施例5>
実験2 フルオロメトロン含有点眼剤の製造
(1)混合工程および粉砕工程
 フルオロメトロン(製造元: Sicor Biotech)8g、実施例1で用いたD-(-)-マンニトール32g、粉砕塩(品名:トミタソルトK-30、富田製薬株式会社製)40g、およびグリセリン(和光純薬工業株式会社製)14gを、実施例1で用いたトリミックス混練機に入れ、実施例1と同条件で混合攪拌した。フルオロメトロンの混合工程前における実施例1で用いた粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):3148nm、D10値:1389nm、D50値:2636nm、D90値:5709nmであった。混合攪拌して得られたドウの一部60mgを50mLのガラスバイアルに計り取り、5mLの0.1%SDSと0.1%水添大豆レシチンの混液を加えた後、前述の浴槽型超音波分散機にて1~2分間分散処理を行った。当該分散処理後に、上記粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):136nm、D10値:68nm、D50値:114nm、D90値:202nmであった。
(2)分散工程
 上記工程にて得られたドウ4.5gに、1.0%HCO60(36g)と1.0%HEC(36g)および0.01%塩化ベンザルコニウム(36g)を添加し、プローブ式超音波分散機(型式:プローブタイプ406HWS、Amp.30、4min、S4000型、アストラソン社製)を用いて分散処理を行った。その後、6%リン酸二ナトリウム・12水和物-0.6%リン酸二水素ナトリウム・2水和物-0.1%EDTA・2Na混液(36g)および1.0%メチルセルロース(36g)を添加したのち、精製水を加えて360gとし、プローブ式超音波分散機(型式:プローブタイプ406HWS、Amp.30、1min、S4000型、アストラソン社製)を用いて分散処理を行った。得られた処方製剤は0.2μmメンブランフィルターをほぼ透過する品質(透過率90%以上のHPLC分析値)で得られ、ドウを検定した粒子径の結果と良く一致した。なお、当該処方製剤は、浸透圧比がほぼ1(0.3Osmol/kg HO)であり、点眼剤としてそのまま使用することができるものであった。
<実施例6>
実験3 クラリスロマイシン含有医薬品の製造
(1)混合工程・粉砕工程
 クラリスロマイシン(Assia Chemical Industries Ltd.製)10g、実施例1で用いたD-(-)-マンニトール60g、実施例5で用いた粉砕塩10g、ポリビニルピロリドン3g、水添大豆レシチン(エイチ・ホルスタイン社製)5.0g、およびグリセリン20gを、実施例1で用いたトリミックス混練機に入れ、実施例1と同条件で混合撹拌した。クラリスロマイシンの混合工程前における実施例1で用いた粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):10160nm、D10値:2277nm、D50値:6872nm、D90値:22850nmであった。混合攪拌して得られたドウの一部100mgを50mLのガラスバイアルに計り取り、そこに3mLの0.1%HCO60を加え、前述の浴槽型超音波分散機にて3分間分散処理を行った。当該分散処理後に、上記粒度分布測定装置により測定した粒度分布は、平均粒子径(Dav):145nm、D10値:81nm、D50値:125nm、D90値:197nmであった。
(2)分散工程
 得られたドウ1.3gに0.1%HCO60(65g)と2.0%ヒプロメロース(13g)を添加し、前述の浴槽型超音波分散機にて10分間分散させたのち、精製水を加えて130gとし、さらに、上記浴槽型超音波分散機にて1分間分散処理を行った。得られた処方製剤は、0.2μmメンブランフィルターをほぼ透過する品質(透過率90%以上のHPLC分析値)で得られ、ドウを検定した粒子径の結果と良く一致した。なお、当該処方製剤は、浸透圧比がほぼ1(0.3 Osmol/kg HO)であり、点眼剤としてそのまま使用することができるものであった。
 このように、マンニトールのような糖質化合物を用いて粉砕工程を行うと、水洗工程を経ない簡易な工程で有機化合物ナノ粉体あるいは当該粉体を含む懸濁液を製造でき、粉体の回収ロスなども生じない。また、水洗工程を経ないため、有機化合物の粒子の凝集も生じにくくなり、粉砕直後に得られるドウ中の粒子の粒子径をそのまま保持することも可能である。
 表2に、以下の各実験において使用した粒状の糖質化合物を示す。表2中、「Dav」は平均粒子径(Dav)を、「D10」は粒度分布において粒子径の小さい側から順に0(最小)~100%(最大)までカウントしたときの10%の位置にある粒子径(D10値)を、「D50」は粉体をある粒子径から2つに分けたときに大きい側と小さい側が等量となる径(D50値)を、「D90」は粒度分布において粒子径の小さい側から順に0(最小)~100%(最大)までカウントしたときの90%の位置にある粒子径(D90値)を、それぞれ意味する。以後の表でも同様である。
Figure JPOXMLDOC01-appb-T000002
実験4 D-マンニトールを用いた粉砕
<実施例7>
クルクミンのナノ粉末の製造
 ウコン粉末(クルクミン含量70%以上またはクルクミノイド含量90%以上、 バイオアクティブジャパン株式会社製)100mg、実施例1で用いたD-(-)-マンニトール325mg、ショ糖脂肪酸エステル(品名:DKエステルSS、第一工業製薬株式会社製)50mg、カルボキシメチルセルロースナトリウム(品名:セロゲンF-3H、第一工業製薬株式会社製)9mg、および精製水110mgを、フーバーマーラー(株式会社井元製作所製)のガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、ウコン粉末の粉砕を行った。以後、クルクミンがウコン粉末の主成分であることから、ウコン粉末をクルクミンとも称する。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、0.1%ドデシル硫酸ナトリウム(和光純薬工業株式会社製)と0.01%水添大豆レシチン(品名: phospholipon 90H, リポイド社製)との混合液5mLを加え、浴槽型超音波分散機(型式:US100III、アズワン株式会社製、以下、同じ。)にて1~2分間、分散処理を行った。実施例1と同じ粒度分布測定装置を用いて測定したクルクミンの粒度分布は、Dav:384nm、D10値:154nm、D50値:280nm、D90値:569nmであった。
<実施例8>
メフェナム酸のナノ粉末の製造
 ウコン粉末をメフェナム酸(東京化成工業株式会社製)100mgに変更した以外を実施例7と同一条件とし、メフェナム酸の粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:247nm、D10値:99nm、D50値:198nm、D90値:403nmであった。
<実施例9>
アセトアミノフェンのナノ粉末の製造
 ウコン粉末をアセトアミノフェン(東京化成工業株式会社製)100mgに、かつショ糖脂肪酸エステルをモノステアリン酸デカグリル(品名: デカグリン1-SV、 日光ケミカルズ株式会社製)に変更した以外を実施例7と同一条件とし、アセトアミノフェンの粉砕を行った。次に、粉砕後のドウ100mgを計り取り、5mLの0.1%ドデシル硫酸ナトリウム(実施例7で用いたものと同じ。以後の実験でも同様。)のみを加え、0.01%水添大豆レシチン(実施例7で用いたものと同じ。以後の実験でも同様。)を加えなかった以外、実施例7と同一条件で分散処理を行った。その結果、アセトアミノフェンの粒度分布は、Dav:443nm、D10値:92nm、D50値:286nm、D90値:886nmであった。
<実施例10>
イブプロフェンのナノ粉末の製造
 ウコン粉末をイブプロフェン(東京化成工業株式会社製)100mgに、かつショ糖脂肪酸エステルを水添大豆レシチンに変更した以外を実施例7と同一条件とし、イブプロフェンの粉砕を行った。次に、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液10mLを加えた以外、実施例7と同一条件で分散処理を行った。その結果、イブプロフェンの粒度分布は、Dav:286nm、D10値:71nm、D50値:122nm、D90値:257nmであった。
<実施例11>
アムホテリシンBのナノ粉末の製造
 ウコン粉末をアムホテリシンB(和光純薬工業株式会社製)100mgに、かつショ糖脂肪酸エステルを水添大豆レシチンに変更した以外を実施例7と同一条件とし、アムホテリシンBの粉砕を行った。次に、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例7と同一条件で分散処理を行った。その結果、アムホテリシンBの粒度分布は、Dav:242nm、D10値:87nm、D50値:195nm、D90値:397nmであった。
<実施例12>
ジクロフェナクナトリウムのナノ粉末の製造
 ウコン粉末をジクロフェナクナトリウム(東京化成工業株式会社製)100mgに、かつショ糖脂肪酸エステルをモノステアリン酸デカグリル(実施例9で用いたものと同じ。以後の実験でも同様。)に変更した以外を実施例7と同一条件とし、ジクロフェナクナトリウムの粉砕を行った。次に、粉砕後のドウ100mgを計り取り、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例7と同一条件で分散処理を行った。その結果、ジクロフェナクナトリウムの粒度分布は、Dav:303nm、D10値:99nm、D50値:228nm、D90値:536nmであった。
<実施例13>
インドメタシンのナノ粉末の製造
 ウコン粉末をインドメタシン(和光純薬工業株式会社製)100mgに変更した以外を実施例7と同一条件とし、インドメタシンの粉砕を行った。次に、10mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例7と同一条件で分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:353nm、D10値:155nm、D50値:289nm、D90値:539nmであった。
<実施例14>
フェルビナクのナノ粉末の製造
 ウコン粉末をフェルビナク(和光純薬工業株式会社製)100mgに変更した以外を実施例7と同一条件とし、フェルビナクの粉砕を行った。次に、10mLの0.1%ドデシル硫酸ナトリウムを加え、0.01%水添大豆レシチンを加えなかった以外、実施例7と同一条件で分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:335nm、D10値:170nm、D50値:279nm、D90値:481nmであった。
<実施例15>
プランルカスト水和物のナノ粉末の製造
 ウコン粉末をプランルカスト水和物(ハロケム社、中国)100mgに変更した以外を実施例7と同一条件とし、プランルカスト水和物の粉砕を行った。次に、10mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例7と同一条件で分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:152nm、D10値:85nm、D50値:132nm、D90値:208nmであった。
<実施例16>
デキサメタゾンのナノ粉末の製造
 ウコン粉末をデキサメタゾン(和光純薬工業株式会社製)100mgに変更した以外を実施例7と同一条件とし、デキサメタゾンの粉砕を行った。次に、粉砕後のドウ20mgを計り取り、5mLの0.1%ポリオキシエチレン硬化ひまし油60(品名:NIKKOLHCO-60、日光ケミカルズ株式会社製)のみを加えた以外、実施例7と同一条件で分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:179nm、D10値:102nm、D50値:155nm、D90値:240nmであった。
<比較例2>
D-マンニトールを用いないクルクミンの粉砕
 実施例7で用いたウコン粉末にD-(-)マンニトールを加えずに、実施例7と同一条件で粉砕を行い、粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例7と同一条件で分散処理を行った。その結果、クルクミンの粒度分布は、Dav:716nm、D10値:131nm、D50値:216nm、D90値:2983nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例3>
D-マンニトールを用いないメフェナム酸の粉砕
 実施例8で用いたメフェナム酸にD-(-)マンニトールを加えずに、実施例8と同一条件で粉砕を行い、粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例8と同一条件で分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:926nm、D10値:155nm、D50値:276nm、D90値:3673nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例4>
D-マンニトールを用いないアセトアミノフェンの粉砕
 実施例9で用いたアセトアミノフェンにD-(-)マンニトールを加えずに、実施例9と同一条件で粉砕を行い、粉砕後のドウ20mgを50mLのガラスバイアルに計り取り、実施例9と同一条件で分散処理を行った。その結果、アセトアミノフェンの粒度分布は、Dav:1124nm、D10値:134nm、D50値:400nm、D90値:2899nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例5>
D-マンニトールを用いないイブプロフェンの粉砕
 実施例10で用いたイブプロフェンにD-(-)マンニトールを加えずに、実施例10と同一条件で粉砕を行い、粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例10と同一条件で分散処理を行った。その結果、イブプロフェンの粒度分布は、Dav:2873nm、D10値:403nm、D50値:619nm、D90値:10421nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例6>
D-マンニトールを用いないアムホテリシンBの粉砕
 実施例11で用いたアムホテリシンBにD-(-)マンニトールを加えずに、実施例11と同一条件で粉砕を行い、粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例11と同一条件で分散処理を行った。その結果、アムホテリシンBの粒度分布は、Dav:750nm、D10値:159nm、D50値:314nm、D90値:841nmであり、Davが500nmを超えていた。
<比較例7>
D-マンニトールを用いないジクロフェナクナトリウムの粉砕
 実施例12で用いたジクロフェナクナトリウムにD-(-)マンニトールを加えずに、実施例12と同一条件で粉砕を行い、粉砕後のドウ20mgを50mLのガラスバイアルに計り取り、実施例12と同一条件で分散処理を行った。その結果、ジクロフェナクナトリウムの粒度分布は、Dav:589nm、D10値:78nm、D50値:196nm、D90値:2364nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例8>
D-マンニトールを用いないインドメタシンの粉砕
 実施例13で用いたインドメタシンにD-(-)マンニトールを加えずに、ポリビニルピロリドン(品名:K25、和光純薬工業株式会社製)30mg、水添大豆レシチン50mg、およびグリセリン(純正化学株式会社製)50mgを、フーバーマーラー(実施例7で用いたものと同じ。以後の実験でも同様。)のガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、インドメタシンの粉砕を行った。粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例13と同一条件で分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:1346nm、D10値:145nm、D50値:219nm、D90値:4154nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例9>
D-マンニトールを用いないフェルビナクの粉砕
 実施例14で用いたフェルビナクにD-(-)マンニトールを加えずに、ポリビニルピロリドン(比較例8で用いたものと同じ。以後の実験でも同様。)30mg、水添大豆レシチン50mg、およびグリセリン(比較例8で用いたものと同じ。以後の実験でも同様。)50mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、フェルビナクの粉砕を行った。粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例14と同一条件で分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:1457nm、D10値:154nm、D50値:309nm、D90値:5452nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例10>
D-マンニトールを用いないプランルカスト水和物の粉砕
 実施例15で用いたプランルカスト水和物(以後の実験でも同様。)にD-(-)マンニトールを加えずに、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン75mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、プランルカスト水和物の粉砕を行った。粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、実施例15と同一条件で分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:1102nm、D10値:129nm、D50値:408nm、D90値:4226nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
<比較例11>
D-マンニトールを用いないデキサメタゾンの粉砕
 実施例16で用いたデキサメタゾンにD-(-)マンニトールを加えずに、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン50mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、デキサメタゾンの粉砕を行った。粉砕後のドウ4mgを50mLのガラスバイアルに計り取り、実施例16と同一条件で分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:3704nm、D10値:138nm、D50値:852nm、D90値:12321nmであり、Davが500nmを超え、かつD90値が1500nmを超えていた。
 表3に、実施例7~16および比較例2~11により得られた各種有機化合物粉体の粒度分布を、粉砕前の粒度分布と比較して示す。表3中の「Cur」はクルクミンを、「Mef」はメフェナム酸を、「Ace」はアセトアミノフェンを、「Ibu」はイブプロフェンを、「Amp」はアムホテリシンBを、「Dic」はジクロフェナクナトリウムを、「Ind」はインドメタシンを、「Fel」はフェルビナクを、「Pra」はプランルカスト水和物を、「Dex」はデキサメタゾンを、それぞれ示す。以後の表でも、同様である。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、糖質化合物としてD-マンニトールを用いて粉砕を行うと、非常に粒子径の小さな有機化合物ナノ粉体を得ることができた。一方、D-マンニトールを用いないで有機化合物を粉砕しても、Davが500nm以下で、かつD90値が1500nm未満のナノ粉体は得られなかった。この結果から、糖質化合物は、有機化合物の粉砕効率を向上させるのに大きく寄与していると考えられる。
実験5 キシリトールを用いた粉砕
<実施例17>
クルクミンのナノ粉末の製造
 ウコン粉末(実施例7で用いたものと同じ。以後の実験でも同様。)100mg、キシリトール325mg、ショ糖脂肪酸エステル(実施例7で用いたものと同じ。以後の実験でも同様。)50mg、カルボキシメチルセルロースナトリウム(実施例7で用いたものと同じ。以後の実験でも同様。)9mg、および精製水110mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、ウコン粉末の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液5mLを加え、浴槽型超音波分散機(実施例7で用いたものと同じ。以後の実験でも同様。)にて1~2分間、分散処理を行った。その結果、クルクミンの粒度分布は、Dav:283nm、D10値:138nm、D50値:234nm、D90値:418nmであった。
<実施例18>
メフェナム酸のナノ粉末の製造
 ウコン粉末をメフェナム酸(実施例8で用いたものと同じ。以後の実験でも同様。)100mgに変更した以外を実施例17と同一条件とし、メフェナム酸の粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:241nm、D10値:98nm、D50値:191nm、D90値:398nmであった。
<実施例19>
イブプロフェンのナノ粉末の製造
 ウコン粉末をイブプロフェン(実施例10で用いたものと同じ。以後の実験でも同様。)100mgに変更した以外を実施例17と同一条件とし、イブプロフェンの粉砕を行った。次に、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液10mLを加えた以外、実施例17と同一条件で分散処理を行った。その結果、イブプロフェンの粒度分布は、Dav:321nm、D10値:150nm、D50値:265nm、D90値:477nmであった。
<実施例20>
アムホテリシンBのナノ粉末の製造
 ウコン粉末をアムホテリシンB(実施例11で用いたものと同じ。以後の実験でも同様。)100mgに、かつショ糖脂肪酸エステルを水添大豆レシチンに変更した以外を実施例17と同一条件とし、アムホテリシンBの粉砕を行った。次に、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例17と同一条件で分散処理を行った。その結果、アムホテリシンBの粒度分布は、Dav:343nm、D10値:107nm、D50値:170nm、D90値:326nmであった。
<実施例21>
ジクロフェナクナトリウムのナノ粉末の製造
 ウコン粉末をジクロフェナクナトリウム(実施例12で用いたものと同じ。以後の実験でも同様。)100mgに、かつショ糖脂肪酸エステルをモノステアリン酸デカグリル(実施例9で用いたものと同じ。以後の実験でも同様。)に変更した以外を実施例17と同一条件とし、ジクロフェナクナトリウムの粉砕を行った。次に、粉砕後のドウ100mgを計り取り、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例17と同一条件で分散処理を行った。その結果、ジクロフェナクナトリウムの粒度分布は、Dav:200nm、D10値:58nm、D50値:178nm、D90値:300nmであった。
 表4に、実施例17~21により得られた各種有機化合物ナノ粉体の粒度分布を、粉砕前の粒度分布と比較して示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、糖質化合物としてキシリトールを用いて粉砕を行うと、非常に粒子径の小さな有機化合物ナノ粉体を得ることができた。
実験6 グルコースを用いた粉砕
<実施例22>
クルクミンのナノ粉末の製造
 ウコン粉末100mg、グルコース325mg、ショ糖脂肪酸エステル50mg、カルボキシメチルセルロースナトリウム9mg、および精製水110mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、ウコン粉末の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液5mLを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、クルクミンの粒度分布は、Dav:345nm、D10値:96nm、D50値:242nm、D90値:648nmであった。
<実施例23>
メフェナム酸のナノ粉末の製造
 ウコン粉末をメフェナム酸100mgに変更した以外を実施例22と同一条件とし、メフェナム酸の粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:224nm、D10値:85nm、D50値:193nm、D90値:339nmであった。
<実施例24>
イブプロフェンのナノ粉末の製造
 ウコン粉末をイブプロフェン100mgに変更し、かつショ糖脂肪酸エステルを水添大豆レシチンに変更した以外を実施例22と同一条件とし、イブプロフェンの粉砕を行った。次に、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液10mLを加えた以外、実施例22と同一条件で分散処理を行った。その結果、イブプロフェンの粒度分布は、Dav:327nm、D10値:156nm、D50値:266nm、D90値:489nmであった。
<実施例25>
ジクロフェナクナトリウムのナノ粉末の製造
 ウコン粉末をジクロフェナクナトリウム100mgに、かつショ糖脂肪酸エステルをモノステアリン酸デカグリルに変更した以外を実施例22と同一条件とし、ジクロフェナクナトリウムの粉砕を行った。次に、粉砕後のドウ100mgを計り取り、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例22と同一条件で分散処理を行った。その結果、ジクロフェナクナトリウムの粒度分布は、Dav:244nm、D10値:78nm、D50値:130nm、D90値:266nmであった。
 表5に、実施例22~25により得られた各種有機化合物ナノ粉体の粒度分布を、粉砕前の粒度分布と比較して示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、糖質化合物としてグルコースを用いて粉砕を行うと、非常に粒子径の小さな有機化合物ナノ粉体を得ることができた。
実験7 フルクトースを用いた粉砕
<実施例26>
クルクミンのナノ粉末の製造
 ウコン粉末100mg、フルクトース325mg、ショ糖脂肪酸エステル50mg、カルボキシメチルセルロースナトリウム9mg、および精製水110mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、ウコン粉末の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液5mLを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、クルクミンの粒度分布は、Dav:181nm、D10値:82nm、D50値:144nm、D90値:286nmであった。
<実施例27>
メフェナム酸のナノ粉末の製造
 ウコン粉末をメフェナム酸100mgに変更した以外を実施例26と同一条件とし、メフェナム酸の粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:205nm、D10値:84nm、D50値:165nm、D90値:328nmであった。
<実施例28>
アセトアミノフェンのナノ粉末の製造
 ウコン粉末をアセトアミノフェン(実施例9で用いたものと同じ。以後の実験でも同様。)100mgに、かつショ糖脂肪酸エステルをモノステアリン酸デカグリルに変更した以外を実施例26と同一条件とし、アセトアミノフェンの粉砕を行った。次に、粉砕後のドウ100mgを計り取り、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例26と同一条件で分散処理を行った。その結果、アセトアミノフェンの粒度分布は、Dav:186nm、D10値:82nm、D50値:148nm、D90値:296nmであった。
<実施例29>
イブプロフェンのナノ粉末の製造
 ウコン粉末をイブプロフェン100mgに変更した以外を実施例26と同一条件とし、イブプロフェンの粉砕を行った。次に、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液10mLを加えた以外、実施例26と同一条件で分散処理を行った。その結果、イブプロフェンの粒度分布は、Dav:434nm、D10値:176nm、D50値:335nm、D90値:711nmであった。
<実施例30>
アムホテリシンBのナノ粉末の製造
 ウコン粉末をアムホテリシンB100mgに、かつショ糖脂肪酸エステルを水添大豆レシチンに変更した以外を実施例26と同一条件とし、アムホテリシンBの粉砕を行った。次に、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例26と同一条件で分散処理を行った。その結果、アムホテリシンBの粒度分布は、Dav:376nm、D10値:132nm、D50値:298nm、D90値:625nmであった。
 表6に、実施例26~30により得られた各種有機化合物ナノ粉体の粒度分布を、粉砕前の粒度分布と比較して示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、糖質化合物としてフルクトースを用いて粉砕を行うと、非常に粒子径の小さな有機化合物ナノ粉体を得ることができた。
実験8 トレハロースを用いた粉砕
<実施例31>
クルクミンのナノ粉末の製造
 ウコン粉末100mg、トレハロース325mg、ショ糖脂肪酸エステル50mg、カルボキシメチルセルロースナトリウム9mg、および精製水110mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、ウコン粉末の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液5mLを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、クルクミンの粒度分布は、Dav:263nm、D10値:86nm、D50値:211nm、D90値:444nmであった。
<実施例32>
メフェナム酸のナノ粉末の製造
 ウコン粉末をメフェナム酸100mgに変更した以外を実施例31と同一条件とし、メフェナム酸の粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:193nm、D10値:105nm、D50値:167nm、D90値:264nmであった。
<実施例33>
アセトアミノフェンのナノ粉末の製造
 ウコン粉末をアセトアミノフェン100mgに、かつショ糖脂肪酸エステルをモノステアリン酸デカグリルに変更した以外を実施例31と同一条件とし、アセトアミノフェンの粉砕を行った。次に、粉砕後のドウ100mgを計り取り、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例31と同一条件で分散処理を行った。その結果、アセトアミノフェンの粒度分布は、Dav:238nm、D10値:87nm、D50値:196nm、D90値:381nmであった。
<実施例34>
アムホテリシンBのナノ粉末の製造
 ウコン粉末をアムホテリシンB100mgに、かつショ糖脂肪酸エステルを水添大豆レシチンに変更した以外を実施例31と同一条件とし、アムホテリシンBの粉砕を行った。次に、5mLの0.1%ドデシル硫酸ナトリウムのみを加え、0.01%水添大豆レシチンを加えなかった以外、実施例31と同一条件で分散処理を行った。その結果、アムホテリシンBの粒度分布は、Dav:162nm、D10値:83nm、D50値:137nm、D90値:229nmであった。
 表7に、実施例31~34により得られた各種有機化合物ナノ粉体の粒度分布を、粉砕前の粒度分布と比較して示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、糖質化合物としてトレハロースを用いて粉砕を行うと、非常に粒子径の小さな有機化合物ナノ粉体を得ることができた。
実験9 各種糖質化合物を用いた粉砕
 (1)クルクミンの粉砕
<実施例35>
糖質化合物: D-マンニトール
 実施例35は、実施例7と同一である。クルクミンの粒度分布は、Dav:384nm、D10値:154nm、D50値:280nm、D90値:569nmであった。
<実施例36>
糖質化合物: マルチトール
 糖質化合物にマルチトールを用いた以外、実施例35と同一の条件で粉砕およびその後の分散処理を行った。その結果、クルクミンの粒度分布は、Dav:199nm、D10値:95nm、D50値:176nm、D90値:286nmであった。
<実施例37>
糖質化合物: エリスリトール
 糖質化合物にエリスリトールを用いた以外、実施例35と同一の条件で粉砕およびその後の分散処理を行った。その結果、クルクミンの粒度分布は、Dav:275nm、D10値:98nm、D50値:201nm、D90値:483nmであった。
<実施例38>
糖質化合物: キシリトール
 実施例38は、実施例17と同一である。クルクミンの粒度分布は、Dav:283nm、D10値:138nm、D50値:234nm、D90値:418nmであった。
<実施例39>
糖質化合物: グルコース
 実施例39は、実施例22と同一である。クルクミンの粒度分布は、Dav:345nm、D10値:96nm、D50値:242nm、D90値:648nmであった。
<実施例40>
糖質化合物: フルクトース
 実施例40は、実施例26と同一である。クルクミンの粒度分布は、Dav:181nm、D10値:82nm、D50値:144nm、D90値:286nmであった。
<実施例41>
糖質化合物: 乳糖一水和物
 糖質化合物に乳糖一水和物を用いた以外、実施例35と同一の条件で粉砕およびその後の分散処理を行った。その結果、クルクミンの粒度分布は、Dav:320nm、D10値:102nm、D50値:232nm、D90値:574nmであった。
<実施例42>
糖質化合物: トレハロース
 実施例42は、実施例31と同一である。クルクミンの粒度分布は、Dav:263nm、D10値:86nm、D50値:211nm、D90値:444nmであった。
<実施例43>
糖質化合物: セロビオース
 糖質化合物にセロビオースを用いた以外、実施例35と同一の条件で粉砕およびその後の分散処理を行った。その結果、クルクミンの粒度分布は、Dav:273nm、D10値:41nm、D50値:241nm、D90値:435nmであった。
 (2)メフェナム酸の粉砕
<実施例44>
糖質化合物: D-マンニトール
 実施例44は、実施例8と同一である。メフェナム酸の粒度分布は、Dav:247nm、D10値:99nm、D50値:198nm、D90値:403nmであった。
<実施例45>
糖質化合物: マルチトール
 糖質化合物にマルチトールを用いた以外、実施例44と同一の条件で粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:209nm、D10値:115nm、D50値:185nm、D90値:284nmであった。
<実施例46>
糖質化合物: エリスリトール
 糖質化合物にエリスリトールを用いた以外、実施例44と同一の条件で粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:185nm、D10値:119nm、D50値:164nm、D90値:230nmであった。
<実施例47>
糖質化合物: キシリトール
 実施例47は、実施例18と同一である。メフェナム酸の粒度分布は、Dav:241nm、D10値:98nm、D50値:191nm、D90値:398nmであった。
<実施例48>
糖質化合物: グルコース
 実施例48は、実施例23と同一である。メフェナム酸の粒度分布は、Dav:224nm、D10値:85nm、D50値:193nm、D90値:339nmであった。
<実施例49>
糖質化合物: フルクトース
 実施例49は、実施例27と同一である。メフェナム酸の粒度分布は、Dav:205nm、D10値:84nm、D50値:165nm、D90値:328nmであった。
<実施例50>
糖質化合物: 乳糖一水和物
 糖質化合物に乳糖一水和物を用いた以外、実施例44と同一の条件で粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:261nm、D10値:114nm、D50値:207nm、D90値:417nmであった。
<実施例51>
糖質化合物: トレハロース
 実施例50は、実施例32と同一である。メフェナム酸の粒度分布は、Dav:193nm、D10値:105nm、D50値:167nm、D90値:264nmであった。
<実施例52>
糖質化合物: セロビオース
 糖質化合物にセロビオースを用いた以外、実施例44と同一の条件で粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:271nm、D10値:122nm、D50値:217nm、D90値:424nmであった。
<実施例53>
糖質化合物: イノシトール
 糖質化合物にイノシトールを用いた以外、実施例44と同一の条件で粉砕およびその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:223nm、D10値:101nm、D50値:183nm、D90値:341nmであった。
 表8および表9に、実施例35~43および実施例44~53により得られた各種有機化合物ナノ粉体の粒度分布を、、粉砕前の粒度分布と比較してそれぞれ示す。表8および表9中の「Man」はD-マンニトールを、「Mal」はマルチトールを、「Ery」はエリスリトールを、「Xyl」はキシリトールを、「Glu」はグルコースを、「Fru」はフルクトースを、「Lac」は乳糖を、「Tre」はトレハロースを、「Cel」はセロビオースを、「Ino」はイノシトールを、それぞれ示す。以後の表でも、同様である。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表8および表9に示すように、マンニトール、マルチトール、エリスリトール、キシリトールのような糖アルコール; イノシトール、グルコース、フルクトースのような単糖類; 乳糖、トレハロース、セロビオースのような二糖類を用いても、非常に粒子径の小さな有機化合物ナノ粉体を得ることができた。
実験10 糖質化合物の混合系を用いた粉砕
 (1)クルクミンの粉砕
<実施例54>
混合系: D-マンニトール+ソルビトール
 ウコン粉末100mg、D-(-)-マンニトール162.5mgとソルビトール162.5mgの混合糖(質量比=1:1)、ショ糖脂肪酸エステル50mg、カルボキシメチルセルロースナトリウム9mg、および精製水110mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、ウコン粉末の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、5mLの0.1%ドデシル硫酸ナトリウムと0.01%水添大豆レシチンとの混合液を加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、クルクミンの粒度分布は、Dav:421nm、D10値:80nm、D50値:199nm、D90値:685nmであった。
<実施例55>
混合系: D-マンニトール+キシリトール
 D-(-)-マンニトール162.5mgとソルビトール162.5mgの混合糖(質量比=1:1)に代えて、D-(-)-マンニトール162.5mgとキシリトール162.5mgの混合糖(質量比=1:1)を用いた以外、実施例54と同一の条件にて、粉砕および分散処理を行った。その結果、クルクミンの粒度分布は、Dav:237nm、D10値:98nm、D50値:183nm、D90値:394nmであった。
<実施例56>
混合系: D-マンニトール+デキストリン
 D-(-)-マンニトール162.5mgとソルビトール162.5mgの混合糖(質量比=1:1)に代えて、D-(-)-マンニトール162.5mgとデキストリン162.5mgの混合糖(質量比=1:1)を用いた以外、実施例54と同一の条件にて、粉砕および分散処理を行った。その結果、クルクミンの粒度分布は、Dav:254nm、D10値:83nm、D50値:189nm、D90値:454nmであった。
 (2)メフェナム酸の粉砕
<実施例57>
混合系: D-マンニトール+ソルビトール
 ウコン粉末に代えて、メフェナム酸を用いた以外、実施例54と同一条件にて、粉砕および分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:365nm、D10値:127nm、D50値:239nm、D90値:518nmであった。
<実施例58>
混合系: D-マンニトール+キシリトール
 ウコン粉末に代えて、メフェナム酸を用いた以外、実施例55と同一条件にて、粉砕および分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:226nm、D10値:105nm、D50値:182nm、D90値:350nmであった。
<実施例59>
混合系: D-マンニトール+デキストリン
 ウコン粉末に代えて、メフェナム酸を用いた以外、実施例56と同一条件にて、粉砕および分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:238nm、D10値:123nm、D50値:193nm、D90値:351nmであった。
 表10および表11に、実施例54~56および実施例57~59により得られた各種有機化合物ナノ粉体の粒度分布を、粉砕前の粒度分布と比較してそれぞれ示す。表10および表11中の「Sor」はソルビトールを、「Dext」はデキストリンを、それぞれ示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10および表11に示すように、マンニトールとソルビトールの混合系よりも、マンニトールとキシリトールの混合系、およびマンニトールとデキストリンの混合系の方が粉砕力に優れることがわかった。
実験11 糖質化合物と塩との混合系を用いた粉砕
 糖質化合物と塩の混合物を用いて、各種有機化合物の粉砕を行った。
(1)インドメタシンのナノ粉末の製造
<実施例60>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物と、水添大豆レシチンを使用して、以下の条件で粉砕を行った。
 インドメタシン100mg、D-(-)-マンニトール600mg、塩化ナトリウム(品名:トミタソルト K30、富田製薬株式会社製。)100mg、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン200mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、インドメタシンの粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:283nm、D10値:104nm、D50値:204nm、D90値:500nmであった。
<実施例61>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物を使用し、水添大豆レシチンを使用せずに、それ以外の条件を実施例60の条件と同一として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:253nm、D10値:98nm、D50値:189nm、D90値:432nmであった。
<実施例62>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例60の条件と同一として粉砕及びその後の分散処理を行った。インドメタシンの粒度分布は、Dav:340nm、D10値:171nm、D50値:296nm、D90値:474nmであった。
<実施例63>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、水添大豆レシチンを使用せずに、それ以外の条件を実施例61の条件と同一として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:255nm、D10値:100nm、D50値:199nm、D90値:419nmであった。
(2)フェルビナクのナノ粉末の製造
<実施例64>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物と、水添大豆レシチンを使用して、以下の条件で粉砕を行った。
 フェルビナク(実施例14で用いたものと同じ。以後の実験でも同様。)100mg、D-(-)-マンニトール600mg、塩化ナトリウム(実施例60で用いたものと同じ。以後の実験でも同様。)100mg、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン200mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、フェルビナクの粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:246nm、D10値:137nm、D50値:212nm、D90値:330nmであった。
<実施例65>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物を使用し、水添大豆レシチンを使用せずに、それ以外の条件を実施例64の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:228nm、D10値:105nm、D50値:186nm、D90値:349nmであった。
<実施例66>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例64の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:211nm、D10値:115nm、D50値:181nm、D90値:292nmであった。
<実施例67>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例65の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:228nm、D10値:126nm、D50値:199nm、D90値:305nmであった。
(3)プランルカスト水和物のナノ粉末の製造
<実施例68>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物と、水添大豆レシチンを使用して、以下の条件で粉砕を行った。
 プランルカスト水和物100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン200mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、プランルカスト水和物の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:151nm、D10値:60nm、D50値:116nm、D90値:253nmであった。
<実施例69>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物を使用し、水添大豆レシチンを使用せずに、それ以外の条件を実施例68の条件と同一として粉砕及びその後の分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:195nm、D10値:56nm、D50値:152nm、D90値:345nmであった。
<実施例70>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例68の条件と同一として粉砕及びその後の分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:192nm、D10値:90nm、D50値:158nm、D90値:295nmであった。
<実施例71>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例69の条件と同一として粉砕及びその後の分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:204nm、D10値:81nm、D50値:166nm、D90値:326nmであった。
(4)デキサメタゾンのナノ粉末の製造
<実施例72>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物と、水添大豆レシチンを使用して、以下の条件で粉砕を行った。
 デキサメタゾン100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン200mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、デキサメタゾンの粉砕を行った。粉砕後のドウ20mgを50mLのガラスバイアルに計り取り、そこに、5mLのポリオキシエチレン硬化ひまし油60(NIKKOLHCO-60、日光ケミカルズ株式会社製)を加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:217nm、D10値:74nm、D50値:158nm、D90値:389nmであった。
<実施例73>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物を使用し、水添大豆レシチンを使用せずに、それ以外の条件を実施例72の条件と同一として粉砕及びその後の分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:168nm、D10値:82nm、D50値:149nm、D90値:240nmであった。
<実施例74>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例72の条件と同一として粉砕及びその後の分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:205nm、D10値:75nm、D50値:166nm、D90値:336nmであった。
<実施例75>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例73の条件と同一として粉砕及びその後の分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:185nm、D10値:108nm、D50値:162nm、D90値:243nmであった。
(5)フェノフィブラートのナノ粉末の製造
<実施例76>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物と、水添大豆レシチンを使用して、以下の条件で粉砕を行った。
 フェノフィブラート(シグマ・アルドリッチ社製、Dav:48170nm、D10値:3520nm、D50値:33720nm、D90値:115590nm)100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ポリビニルピロリドン30mg、水添大豆レシチン50mg、およびグリセリン200mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、フェノフィブラートの粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、フェノフィブラートの粒度分布は、Dav:320nm、D10値:149nm、D50値:265nm、D90値:474nmであった。
<実施例77>
 D-マンニトール:塩化ナトリウム=6:1の糖質化合物と塩との混合物を使用し、水添大豆レシチンを使用せずに、それ以外の条件を実施例76の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェノフィブラートの粒度分布は、Dav:269nm、D10値:132nm、D50値:223nm、D90値:397nmであった。
<実施例78>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例76の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェノフィブラートの粒度分布は、Dav:368nm、D10値:182nm、D50値:298nm、D90値:547nmであった。
<実施例79>
 D-マンニトール:塩化ナトリウム=1:1の糖質化合物と塩との混合物(D-(-)-マンニトールを350mg、塩化ナトリウムを350mg)を使用し、それ以外の条件を実施例77の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェノフィブラートの粒度分布は、Dav:311nm、D10値:172nm、D50値:264nm、D90値:427nmであった。
 表12に、実施例60~79により得られた各種有機化合物ナノ粉体の粒度分布を示す。表12中の「Fen」はフェノフィブラートを示す。
Figure JPOXMLDOC01-appb-T000012
 表12より、糖と塩の比率やレシチンの添加の有無により各種有機化合物の粒度分布が大きく変動する結果は認められなかった。
実験12 凝集防止剤を添加しない系での粉砕
 糖質化合物とポリオール、あるいは条件によってさらに塩を加え、各種有機化合物の粉砕を行った。
(1)インドメタシンのナノ粉末の製造
<実施例80>
 インドメタシン100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ならびにグリセリン200mgをフーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、インドメタシンの粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴層型超音波分散機にて1~2分間、分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:335nm、D10値:115nm、D50値:237nm、D90値:609nmであった。
<実施例81>
 D-(-)-マンニトールを350mg、塩化ナトリウムを350mgとし、それ以外の条件を実施例80の条件と同一として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:243nm、D10値:132nm、D50値:209nm、D90値:332nmであった。
<実施例82>
 D-(-)-マンニトールを700mgとし、塩化ナトリウムを加えず、それ以外の条件を実施例80の条件と同一として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:283nm、D10値:128nm、D50値:231nm、D90値:433nmであった。
(2)フェルビナクのナノ粉末の製造
<実施例83>
 フェルビナク100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ならびにグリセリン200mgをフーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、フェルビナクの粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴層型超音波分散機にて1~2分間、分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:415nm、D10値:236nm、D50値:360nm、D90値:588nmであった。
<実施例84>
 D-(-)-マンニトールを350mg、塩化ナトリウムを350mgとし、それ以外の条件を実施例83の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:479nm、D10値:257nm、D50値:414nm、D90値:690nmであった。
<実施例85>
 D-(-)-マンニトールを700mgとし、塩化ナトリウムを加えず、それ以外の条件を実施例83の条件と同一として粉砕及びその後の分散処理を行った。その結果、フェルビナクの粒度分布は、Dav:488nm、D10値:242nm、D50値:410nm、D90値:744nmであった。
(3)プランルカスト水和物のナノ粉末の製造
<実施例86>
 プランルカスト水和物100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ならびにグリセリン200mgをフーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、プランルカスト水和物の粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ポリオキシエチレン硬化ひまし油60を加え、浴層型超音波分散機にて1~2分間、分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:286nm、D10値:95nm、D50値:171nm、D90値:327nmであった。
<実施例87>
 D-(-)-マンニトールを350mg、塩化ナトリウムを350mgとし、それ以外の条件を実施例86の条件と同一として粉砕及びその後の分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:190nm、D10値:93nm、D50値:158nm、D90値:282nmであった。
<実施例88>
 D-(-)-マンニトールを700mgとし、塩化ナトリウムを加えず、それ以外の条件を実施例86の条件と同一として粉砕及びその後の分散処理を行った。その結果、プランルカスト水和物の粒度分布は、Dav:188nm、D10値:100nm、D50値:159nm、D90値:265nmであった。
(4)デキサメタゾンのナノ粉末の製造
<実施例89>
 デキサメタゾン100mg、D-(-)-マンニトール600mg、塩化ナトリウム100mg、ならびにグリセリン200mgをフーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、デキサメタゾンの粉砕を行った。粉砕後のドウ20mgを50mLのガラスバイアルに計り取り、そこに、5mLの0.1%ポリオキシエチレン硬化ひまし油60を加え、浴層型超音波分散機にて1~2分間、分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:221nm、D10値:114nm、D50値:185nm、D90値:318nmであった。
<実施例90>
 D-(-)-マンニトールを350mg、塩化ナトリウムを350mgとし、それ以外の条件を実施例89の条件と同一として粉砕及びその後の分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:227nm、D10値:133nm、D50値:198nm、D90値:295nmであった。
<実施例91>
 D-(-)-マンニトールを700mgとし、塩化ナトリウムを加えず、それ以外の条件を実施例89の条件と同一として粉砕及びその後の分散処理を行った。その結果、デキサメタゾンの粒度分布は、Dav:270nm、D10値:125nm、D50値:225nm、D90値:401nmであった。
 表13に、実施例80~91により得られた各種有機化合物ナノ粉体の粒度分布を示す。
Figure JPOXMLDOC01-appb-T000013
 表13から明らかなように、粉砕時に、レシチンやポリビニルピロリドンに代表される凝集防止剤を入れなくても、有機化合物のナノ化を実現できた。
実験13 各種ポリオールを用いた系での粉砕
 グリセリン以外のポリオールと糖質化合物とを加え、インドメタシンの粉砕を行った。
(1)エチレングリコールを用いた粉砕
<実施例92>
 インドメタシン100mg、キシリトール700mg、ならびにエチレングリコール(和光純薬工業株式会社製)200mgをフーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、インドメタシンの粉砕を行った。粉砕後のドウ10mgを50mLのガラスバイアルに計り取り、そこに、10mLの0.1%ドデシル硫酸ナトリウムを加え、浴層型超音波分散機にて1~2分間、分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:487nm、D10値:121nm、D50値:204nm、D90値:498nmであった。
<実施例93>
 キシリトールをフルクトースとし、それ以外の条件を実施例92と同一の条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:261nm、D10値:142nm、D50値:227nm、D90値:353nmであった。
<実施例94>
 キシリトールをトレハロースとし、それ以外の条件を実施例92と同一の条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:420nm、D10値:130nm、D50値:309nm、D90値:749nmであった。
(2)プロピレングリコールを用いた粉砕
<実施例95>
 エチレングリコールをプロピレングリコール(和光純薬工業株式会社製。以下、同様。)とし、それ以外の条件を実施例92と同一条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:217nm、D10値:125nm、D50値:189nm、D90値:284nmであった。
<実施例96>
 キシリトールをフルクトースとし、それ以外の条件を実施例95と同一条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:316nm、D10値:118nm、D50値:222nm、D90値:497nmであった。
<実施例97>
 キシリトールをトレハロースとし、それ以外の条件を実施例95と同一条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:365nm、D10値:158nm、D50値:283nm、D90値:598nmであった。
(3)ポリエチレングリコールを用いた粉砕
<実施例98>
 エチレングリコールをポリエチレングリコール400(和光純薬工業株式会社製。以下、同様。)とし、それ以外の条件を実施例92と同一条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:456nm、D10値:136nm、D50値:278nm、D90値:726nmであった。
<実施例99>
 キシリトールをフルクトースとし、それ以外の条件を実施例98と同一条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:368nm、D10値:145nm、D50値:281nm、D90値:616nmであった。
<実施例100>
 キシリトールをトレハロースとし、それ以外の条件を実施例98と同一条件として粉砕及びその後の分散処理を行った。その結果、インドメタシンの粒度分布は、Dav:454nm、D10値:151nm、D50値:351nm、D90値:776nmであった。
 表14に、実施例92~100により得られたインドメタシンの粒度分布を示す。
Figure JPOXMLDOC01-appb-T000014
 表14から明らかなように、グリセリン以外のポリオールを用いても、有機化合物のナノ化を実現できた。
実験14 糖質化合物の添加比率の検討
 糖質化合物の有機化合物に対する添加比率を変えて、メフェナム酸の粉砕を行った。
<比較例12>
 D-マンニトールを添加せずに以下の条件で粉砕を行った。
 実験4の実施例8で用いたメフェナム酸100mg、D-(-)-マンニトール0mg、ショ糖脂肪酸エステル50mg、カルボキシメチルセルロースナトリウム9mg、および精製水110mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、メフェナム酸の粉砕を行った。粉砕後のドウ2mgを50mLのガラスバイアルに計り取り、そこに、5mLの0.1%ドデシル硫酸ナトリウムおよび0.01%水添大豆レシチンの混液を加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:926nm、D10値:155nm、D50値:276nm、D90値:3673nmであった。
<比較例13>
 D-マンニトールをメフェナム酸に対して質量比にて0.1倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを10mg添加して粉砕し、かつ粉砕後のドウ4mgをガラスバイアルに計り取る以外、比較例12と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:1013nm、D10値:212nm、D50値:467nm、D90値:1722nmであった。
<実施例101>
 D-マンニトールをメフェナム酸に対して質量比にて0.3倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを33mg添加して粉砕し、かつ粉砕後のドウ5mgをガラスバイアルに計り取る以外、比較例12と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:326nm、D10値:150nm、D50値:265nm、D90値:495nmであった。
<実施例102>
 D-マンニトールをメフェナム酸に対して質量比にて0.5倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを50mg添加して粉砕し、かつ粉砕後のドウ7mgをガラスバイアルに計り取る以外、比較例12と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:382nm、D10値:169nm、D50値:316nm、D90値:573nmであった。
<実施例103>
 D-マンニトールをメフェナム酸に対して質量比にて1.0倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを100mg添加して粉砕し、かつ粉砕後のドウ10mgをガラスバイアルに計り取る以外、比較例12と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:267nm、D10値:125nm、D50値:217nm、D90値:404nmであった。
<実施例104>
 D-マンニトールをメフェナム酸に対して質量比にて約3.3倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを325mg添加して粉砕し、かつ粉砕後のドウ10mgをガラスバイアルに計り取る以外、比較例12と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:247nm、D10値:99nm、D50値:198nm、D90値:403nmであった。
<実施例105>
 D-マンニトールをメフェナム酸に対して質量比にて30倍の条件の下で粉砕を行った。具体的には、メフェナム酸10mg、D-(-)-マンニトール300mg、ショ糖脂肪酸エステル5mg、カルボキシメチルセルロースナトリウム1mg、および精製水200mgを、フーバーマーラーのガラスディスク上に置き、20回転を5回繰り返して混練し、ドウを形成する状態で、メフェナム酸の粉砕を行った。粉砕後のドウ100mgを50mLのガラスバイアルに計り取り、そこに、5mLの0.1%ドデシル硫酸ナトリウムおよび0.01%水添大豆レシチンの混液を加え、浴槽型超音波分散機にて1~2分間、分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:271nm、D10値:126nm、D50値:227nm、D90値:403nmであった。
<実施例106>
 D-マンニトールをメフェナム酸に対して質量比にて50倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを500mg添加して粉砕し、かつ粉砕後のドウ150mgをガラスバイアルに計り取る以外、実施例105と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:245nm、D10値:117nm、D50値:207nm、D90値:358nmであった。
<実施例107>
 D-マンニトールをメフェナム酸に対して質量比にて100倍の条件の下で粉砕を行った。具体的には、D-(-)-マンニトールを1000mg、精製水250mgを添加して粉砕し、かつ粉砕後のドウ300mgをガラスバイアルに計り取る以外、実施例105と同一条件として、粉砕及びその後の分散処理を行った。その結果、メフェナム酸の粒度分布は、Dav:264nm、D10値:132nm、D50値:217nm、D90値:386nmであった。
 表15に、比較例12,13および実施例101~107により得られたメフェナム酸の粒度分布を示す。
Figure JPOXMLDOC01-appb-T000015
 表15から明らかなように、糖質化合物の添加比率を有機化合物に対して質量比にて0.3倍以上の条件で粉砕した結果、平均粒子径が500nm以下でかつ90%径が1500nm未満の有機化合物ナノ粉体を製造することができた。
 本発明は、例えば、医薬、健康飲食品、化粧品の分野で利用可能である。

Claims (17)

  1.  平均粒子径が500nm以下でかつ90%径が1500nm未満である粒状の有機化合物と、
     糖類および糖アルコール類の内の少なくともいずれか1つから成り上記有機化合物に対して質量比にて0.3倍以上の糖質化合物と、
    を少なくとも含む有機化合物ナノ粉体。
  2.  前記糖質化合物が前記有機化合物に対して質量比にて0.5~30倍であることを特徴とする請求項1に記載の有機化合物ナノ粉体。
  3.  生理的に許容されるポリオールを、さらに含むことを特徴とする請求項1または請求項2に記載の有機化合物ナノ粉体。
  4.  前記糖質化合物は、マンニトール、マルチトール、キシリトール、エリスリトール、グルコース、フルクトース、イノシトール、乳糖、トレハロース、セロビオースおよびデキストリンの内の1以上を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の有機化合物ナノ粉体。
  5.  生理的に許容される塩を、さらに含むことを特徴とする請求項1から請求項4のいずれか1項に記載の有機化合物ナノ粉体。
  6.  前記生理的に許容される塩は、塩化ナトリウムであることを特徴とする請求項5に記載の有機化合物ナノ粉体。
  7.  前記有機化合物は、クラリスロマイシン、フェキソフェナジン塩酸塩、フルオロメトロン、クルクミノイド、クルクミン、ルチン、メフェナム酸、アセトアミノフェン、イブプロフェン、アムホテリシンB、ジクロフェナクナトリウム、インドメタシン、フェルビナク、プランルカスト水和物、デキサメタゾンおよびフェノフィブラートからなる群より選ばれる1以上である、請求項1から請求項6のいずれか1項に記載の有機化合物ナノ粉体。
  8.  請求項1~請求項7のいずれか1項に記載の有機化合物ナノ粉体に含まれる少なくとも有機化合物を、前記有機化合物が不溶若しくは難溶の液状分散媒に分散してなる懸濁液。
  9.  粒状の有機化合物と、糖類および糖アルコール類の内の少なくともいずれか1つから成り、上記有機化合物に対して質量比にて0.3倍以上の粒状の糖質化合物と、上記有機化合物が不溶若しくは難溶の液体とを混合する混合工程と、
     上記混合工程後に上記有機化合物をその平均粒子径が500nm以下でかつ90%径が1500nm未満にまで湿式粉砕する粉砕工程と、
    を少なくとも有する有機化合物ナノ粉体の製造方法。
  10.  前記糖質化合物が前記有機化合物に対して質量比にて0.5~30倍であることを特徴とする請求項9に記載の有機化合物ナノ粉体の製造方法。
  11.  前記混合工程において、前記有機化合物が不溶若しくは難溶の液体として生理的に許容されるポリオールを混合することを特徴とする請求項9または請求項10に記載の有機化合物ナノ粉体の製造方法。
  12.  前記粉砕工程は、前記混合工程後の混合物を混練機内で練りながら前記有機化合物を粉砕する工程であることを特徴とする請求項9から請求項11のいずれか1項に記載の有機化合物ナノ粉体の製造方法。
  13.  前記粉砕工程の後に、乾燥工程を行うことを特徴とする請求項9から請求項12のいずれか1項に記載の有機化合物ナノ粉体の製造方法。
  14.  前記糖質化合物は、マンニトール、マルチトール、キシリトール、エリスリトール、グルコース、フルクトース、イノシトール、乳糖、トレハロース、セロビオースおよびデキストリンの内の1以上を含むことを特徴とする請求項9から請求項13のいずれか1項に記載の有機化合物ナノ粉体の製造方法。
  15.  前記混合工程において、生理的に許容される塩を、さらに混合することを特徴とする請求項9から請求項14のいずれか1項に記載の有機化合物ナノ粉体の製造方法。
  16.  前記生理的に許容される塩は、塩化ナトリウムであることを特徴とする請求項15に記載の有機化合物ナノ粉体の製造方法。
  17.  前記有機化合物は、クラリスロマイシン、フェキソフェナジン塩酸塩、フルオロメトロン、クルクミノイド、クルクミン、ルチン、メフェナム酸、アセトアミノフェン、イブプロフェン、アムホテリシンB、ジクロフェナクナトリウム、インドメタシン、フェルビナク、プランルカスト水和物、デキサメタゾンおよびフェノフィブラートからなる群より選ばれる1以上である、請求項9から請求項16のいずれか1項に記載の有機化合物ナノ粉体の製造方法。
PCT/JP2013/003023 2012-05-11 2013-05-11 有機化合物ナノ粉体、その製造方法ならびに懸濁液 WO2013168437A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES13787260T ES2952419T3 (es) 2012-05-11 2013-05-11 Nanopolvo de compuesto orgánico, método de producción del mismo, y suspensión
CN201380017953.2A CN104203217B (zh) 2012-05-11 2013-05-11 有机化合物纳米粉体的制造方法
MX2014010772A MX341663B (es) 2012-05-11 2013-05-11 Nanopolvo de compuesto organico, metodo para producirlo y su suspension.
AU2013259150A AU2013259150B2 (en) 2012-05-11 2013-05-11 Organic compound nanopowder, production method therefor, and suspension
RU2014148792A RU2613109C2 (ru) 2012-05-11 2013-05-11 Нанопорошки органических соединений, способы их получения и их суспензии
JP2014514390A JP6054380B2 (ja) 2012-05-11 2013-05-11 有機化合物ナノ粉体、その製造方法ならびに懸濁液
US14/001,645 US9278071B2 (en) 2012-05-11 2013-05-11 Organic compound nano-powder, method for producing the same and suspension
IN2002MUN2014 IN2014MN02002A (ja) 2012-05-11 2013-05-11
CA2867236A CA2867236C (en) 2012-05-11 2013-05-11 Organic compound nano-powder, method for producing the same and suspension
PL13787260.2T PL2848243T3 (pl) 2012-05-11 2013-05-11 Nanoproszek związku organicznego, sposób wytwarzania i zawiesina
BR112014028431-8A BR112014028431B1 (pt) 2012-05-11 2013-05-11 Nanopó de composto orgânico, método para produzir o mesmo e suspensão
KR1020147022644A KR101772263B1 (ko) 2012-05-11 2013-05-11 유기 화합물 나노분체, 그 제조 방법 및 현탁액
EP13787260.2A EP2848243B1 (en) 2012-05-11 2013-05-11 Organic compound nanopowder, production method therefor, and suspension
IL234327A IL234327B (en) 2012-05-11 2014-08-27 Nano powder of an organic compound, method for production and suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012108972 2012-05-11
JP2012-108972 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168437A1 true WO2013168437A1 (ja) 2013-11-14

Family

ID=49550500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003023 WO2013168437A1 (ja) 2012-05-11 2013-05-11 有機化合物ナノ粉体、その製造方法ならびに懸濁液

Country Status (17)

Country Link
US (1) US9278071B2 (ja)
EP (1) EP2848243B1 (ja)
JP (1) JP6054380B2 (ja)
KR (1) KR101772263B1 (ja)
CN (1) CN104203217B (ja)
AU (1) AU2013259150B2 (ja)
BR (1) BR112014028431B1 (ja)
CA (1) CA2867236C (ja)
ES (1) ES2952419T3 (ja)
IL (1) IL234327B (ja)
IN (1) IN2014MN02002A (ja)
MX (1) MX341663B (ja)
PL (1) PL2848243T3 (ja)
PT (1) PT2848243T (ja)
RU (1) RU2613109C2 (ja)
TW (1) TWI579004B (ja)
WO (1) WO2013168437A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068397A1 (ja) * 2013-11-08 2015-05-14 株式会社アクティバスファーマ マクロライド系抗菌剤のナノ微粒子を含有する水性懸濁液剤
WO2015137289A1 (ja) * 2014-03-10 2015-09-17 国立大学法人 東京大学 水分散性非晶質粒子及びその調製方法
EP3102185A1 (en) * 2014-02-03 2016-12-14 Apurano Pharmaceuticals GmbH Nanosuspension of natural materials and preparation method thereof
JP2017031087A (ja) * 2015-07-31 2017-02-09 東洋精糖株式会社 α−グルコシルルチン含有プテリジン誘導体ナノ粒子の製造方法およびα−グルコシルルチン含有プテリジン誘導体ナノ粒子
JPWO2016181935A1 (ja) * 2015-05-08 2018-02-22 株式会社アクティバスファーマ グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
JP2018522073A (ja) * 2015-08-04 2018-08-09 アプラノ ライフ サイエンシズ ゲーエムベーハー 天然材料の粒子および抽出物を含むナノ懸濁液
US11737980B2 (en) 2020-05-18 2023-08-29 Orexo Ab Pharmaceutical composition for drug delivery
US11957647B2 (en) 2021-11-25 2024-04-16 Orexo Ab Pharmaceutical composition comprising adrenaline

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123079A1 (en) 2015-01-26 2016-08-04 Bausch & Lomb Incorporated Ophthalmic suspension composition
CZ307916B6 (cs) * 2017-05-08 2019-08-21 mcePharma s. r. o. Orodispergovatelná tableta s biodostupným kurkuminem a její použití
CN111253498B (zh) * 2020-03-10 2021-11-09 中国科学院海洋研究所 一种褐藻多糖衍生物纳米胶束的制备
CN113209031A (zh) * 2021-04-30 2021-08-06 青岛农业大学 一种负载两性霉素B与β-1,3-葡聚糖酶的双靶向复合纳米体系及其制备方法、应用
CN113620937A (zh) * 2021-08-03 2021-11-09 湖南复瑞生物医药技术有限责任公司 一种高纯度小粒径普仑司特的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295420A (ja) 1991-01-25 1992-10-20 Sterling Winthrop Inc 表面変性薬物微小粒子
JP2006089386A (ja) 2004-09-21 2006-04-06 Nippon Tenganyaku Kenkyusho:Kk ステロイドまたはステロイド誘導体を含有する懸濁性医薬組成物
WO2008126797A1 (ja) 2007-04-06 2008-10-23 Activus Pharma Co., Ltd. 微粉砕化有機化合物粒子の製造方法
WO2010032434A1 (ja) 2008-09-19 2010-03-25 株式会社アクティバスファーマ 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
WO2011118960A2 (ko) * 2010-03-22 2011-09-29 (주)바이오시네틱스 나노입자 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU767154B2 (en) * 1998-11-20 2003-10-30 Skyepharma Canada Inc. Dispersible phospholipid stabilized microparticles
CA2420597C (en) * 2000-08-31 2011-05-17 Rtp Pharma Inc. Milled particles
KR20090027734A (ko) * 2006-07-27 2009-03-17 (주)아모레퍼시픽 난용성 약물의 나노입자를 포함하는 분말의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295420A (ja) 1991-01-25 1992-10-20 Sterling Winthrop Inc 表面変性薬物微小粒子
JP2006089386A (ja) 2004-09-21 2006-04-06 Nippon Tenganyaku Kenkyusho:Kk ステロイドまたはステロイド誘導体を含有する懸濁性医薬組成物
WO2008126797A1 (ja) 2007-04-06 2008-10-23 Activus Pharma Co., Ltd. 微粉砕化有機化合物粒子の製造方法
WO2010032434A1 (ja) 2008-09-19 2010-03-25 株式会社アクティバスファーマ 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
WO2011118960A2 (ko) * 2010-03-22 2011-09-29 (주)바이오시네틱스 나노입자 제조방법

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658203A (zh) * 2013-11-08 2016-06-08 株式会社活效制药 含有大环内酯类抗菌剂的纳米微粒的水性悬浮剂
WO2015068397A1 (ja) * 2013-11-08 2015-05-14 株式会社アクティバスファーマ マクロライド系抗菌剤のナノ微粒子を含有する水性懸濁液剤
CN105658203B (zh) * 2013-11-08 2021-03-16 株式会社活效制药 含有大环内酯类抗菌剂的纳米微粒的水性悬浮剂
US10792248B2 (en) 2013-11-08 2020-10-06 Activus Pharma Co., Ltd. Aqueous suspension preparation comprising nanoparticles of macrolide antibacterial agent
US10213382B2 (en) 2014-02-03 2019-02-26 Apurano Pharmaceuticals Gmbh Nanosuspension of natural materials and preparation method thereof
EP3102185B1 (en) * 2014-02-03 2021-07-14 Apurano Pharmaceuticals GmbH Nanosuspension of natural materials and preparation method thereof
EP3102185A1 (en) * 2014-02-03 2016-12-14 Apurano Pharmaceuticals GmbH Nanosuspension of natural materials and preparation method thereof
CN106068319A (zh) * 2014-03-10 2016-11-02 国立大学法人东京大学 水分散性非晶质粒子及其制备方法
JPWO2015137289A1 (ja) * 2014-03-10 2017-04-06 国立大学法人 東京大学 水分散性非晶質粒子及びその調製方法
WO2015137289A1 (ja) * 2014-03-10 2015-09-17 国立大学法人 東京大学 水分散性非晶質粒子及びその調製方法
JPWO2016181935A1 (ja) * 2015-05-08 2018-02-22 株式会社アクティバスファーマ グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
JP2017031087A (ja) * 2015-07-31 2017-02-09 東洋精糖株式会社 α−グルコシルルチン含有プテリジン誘導体ナノ粒子の製造方法およびα−グルコシルルチン含有プテリジン誘導体ナノ粒子
JP2018522073A (ja) * 2015-08-04 2018-08-09 アプラノ ライフ サイエンシズ ゲーエムベーハー 天然材料の粒子および抽出物を含むナノ懸濁液
US11737980B2 (en) 2020-05-18 2023-08-29 Orexo Ab Pharmaceutical composition for drug delivery
US11957647B2 (en) 2021-11-25 2024-04-16 Orexo Ab Pharmaceutical composition comprising adrenaline

Also Published As

Publication number Publication date
JPWO2013168437A1 (ja) 2016-01-07
EP2848243A1 (en) 2015-03-18
TWI579004B (zh) 2017-04-21
US9278071B2 (en) 2016-03-08
MX341663B (es) 2016-08-30
ES2952419T3 (es) 2023-10-31
RU2014148792A (ru) 2016-06-27
IN2014MN02002A (ja) 2015-08-07
IL234327B (en) 2018-06-28
MX2014010772A (es) 2014-10-14
RU2613109C2 (ru) 2017-03-15
PL2848243T3 (pl) 2024-04-08
EP2848243B1 (en) 2023-07-12
CN104203217A (zh) 2014-12-10
AU2013259150A1 (en) 2014-08-28
PT2848243T (pt) 2023-08-02
TW201400142A (zh) 2014-01-01
CN104203217B (zh) 2017-02-15
KR20150008376A (ko) 2015-01-22
CA2867236A1 (en) 2013-11-14
US20140328917A1 (en) 2014-11-06
CA2867236C (en) 2017-02-28
BR112014028431A2 (pt) 2017-06-27
JP6054380B2 (ja) 2016-12-27
KR101772263B1 (ko) 2017-08-28
AU2013259150B2 (en) 2016-07-14
BR112014028431B1 (pt) 2022-01-11
EP2848243A4 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
JP6054380B2 (ja) 有機化合物ナノ粉体、その製造方法ならびに懸濁液
EP3368014B1 (en) Novel cannabinoid formulations
Kanikkannan Technologies to improve the solubility, dissolution and bioavailability of poorly soluble drugs
AU2006328424B2 (en) Method of producing drug-containing wax matrix particles, extruder to be used in the method and sustained-release preparation containing cilostazol
CN101636150B (zh) 难水溶性医疗用有机化合物微粒子的制造方法
JP4884975B2 (ja) 微粒子含有組成物およびその製造方法
JP5536654B2 (ja) 医療用複合有機化合物粉体、その製造方法ならびに懸濁液
JP6856525B2 (ja) グルココルチコステロイドのナノ微粒子を含有する水性懸濁液剤
BR112021011263A2 (pt) Pó de celulose, uso do mesmo, e comprimidos
JP6579956B2 (ja) 神経変性疾患および他の疾患の治療のための併用治療薬および方法
CA2877102C (en) Topical formulations including lipid microcapsule delivery vehicles and their uses
Wasim et al. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems
POJARANİ et al. Formulation and chracterization of meloxicam loaded niosome-based hydrogel formulations for topical applications
Averineni et al. Formulation of gliclazide encapsulated chitosan nanoparticles: in vitro and in vivo evaluation
WO2023187599A1 (en) Methods and bioavailable highly permeable compounds for the treatment of viral diseases
El-Marasy et al. Anti-depressant effect of Naringenin-loaded hybridized nanoparticles in diabetic rats via PPARγ/NLRP3 pathway

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14001645

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147022644

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 234327

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2013259150

Country of ref document: AU

Date of ref document: 20130511

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/010772

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2867236

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201407084

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2013787260

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014148792

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014028431

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014028431

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141111