WO2013165090A1 - 절삭공구용 경질피막 - Google Patents

절삭공구용 경질피막 Download PDF

Info

Publication number
WO2013165090A1
WO2013165090A1 PCT/KR2013/002168 KR2013002168W WO2013165090A1 WO 2013165090 A1 WO2013165090 A1 WO 2013165090A1 KR 2013002168 W KR2013002168 W KR 2013002168W WO 2013165090 A1 WO2013165090 A1 WO 2013165090A1
Authority
WO
WIPO (PCT)
Prior art keywords
alticrn
thin layer
tialn
altisin
altin
Prior art date
Application number
PCT/KR2013/002168
Other languages
English (en)
French (fr)
Inventor
박제훈
강재훈
안승수
김성현
이성구
김정욱
안선용
박동복
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to CN201380023044.XA priority Critical patent/CN104321460B/zh
Priority to DE112013002278.8T priority patent/DE112013002278B4/de
Priority to US14/398,125 priority patent/US9273388B2/en
Publication of WO2013165090A1 publication Critical patent/WO2013165090A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Definitions

  • the present invention relates to a hard film formed on a hard base material such as cemented carbide, cermet, high speed steel, end mills, drills, cBN, etc. used for cutting tools, and includes thin layer A, thin layer B, thin layer C, and thin layer D.
  • the present invention relates to a hard coating for cutting tools, which is composed of a nano multilayer structure or a repeating laminated structure thereof, and has improved wear resistance, lubricity, toughness, and oxidation resistance as compared with a conventional multilayer thin film structure.
  • wear resistance, oxidation resistance, or impact resistance such as TiN, Al 2 O 3 , TiAlN, AlTiN, AlCrN, etc.
  • a base material such as cemented carbide, cermet, end mill, and drills
  • Korean Patent No. 876366 discloses an underlayer for physical adhesion and the orientation of (200) planes on a cemented carbide tool insert, end mill, drill or cermet tool by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • the A, B, C and D layer consisting of TiAlN or AlTiSiN but different composition
  • a thin film structure is disclosed in which the uppermost layer having a structure composed of layers and alternately stacked thereon is improved in wear resistance and oxidation resistance of the uppermost layer.
  • Wear resistance and oxidation resistance can be improved through the multilayer structure as described above, but in order to evenly improve various characteristics required for cutting operations such as wear resistance, impact resistance (toughness) and chipping resistance, development of a hard film having a new structure is required. do.
  • the present invention is to provide a hard coating for a cutting tool improved overall wear resistance, lubricity, toughness (impact resistance) and oxidation resistance.
  • the hard film for cutting tools is a hard film formed on the surface of the base material, the hard film is nano-containing thin layer A, thin layer B, thin layer C and thin layer D It consists of a multi-layer structure or a structure in which the nano multi-layer structure is repeatedly laminated two or more times, wherein the thin layer A is made of Ti 1-x Al x N (0.5 ⁇ x ⁇ 0.7), and the thin layer B is Al 1-yz Ti y Cr z N (0.3 ⁇ y ⁇ 0.6, 0 ⁇ z ⁇ 0.3), the thin layer C is made of MeN (Me is Nb or V), the thin layer D is Al 1-ab Ti a Si b N (0.3 ⁇ a ⁇ 0.7, 0 ⁇ b ⁇ 0.1).
  • the nano multilayer structure is preferably laminated in the order of thin layer A, thin layer B, thin layer C and thin layer D from the base material.
  • the said thin layer A, thin layer B, thin layer C, and thin layer D are equipped with an average thickness of 3-50 nm, respectively.
  • the thin layer A, thin layer B, thin layer C, and thin layer D are most preferably provided with an average thickness of 20 to 40 nm, respectively.
  • the hard film for cutting tools is provided with an average thickness of 1-20 micrometers.
  • the hard film for cutting tools has a deterioration hardness of 35 GPa or more which is deteriorated at 900 ° C. for 30 minutes.
  • a composite nitride layer of Ti and Al having excellent adhesion to the base material and general abrasion resistance, a composite nitride layer of Al, Ti, Cr having excellent lubricity, toughness and chipping resistance
  • a composite nitride layer of Al, Ti, Cr having excellent lubricity, toughness and chipping resistance
  • a composite nitride layer of Al, Ti, and Si having excellent oxidation resistance, wear resistance, lubricity, toughness
  • the hard film for cutting tools of the present invention is laminated with a thin layer that reinforces the wear resistance, lubricity, toughness, and oxidation resistance of each thin layer periodically to maximize the function of each thin layer.
  • the required abrasion resistance, lubricity, toughness and oxidation resistance can be improved in a balanced manner.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the hard film for cutting tools according to the present invention.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a hard film for cutting tools according to an embodiment of the present invention.
  • the hard film for cutting tools according to a preferred embodiment of the present invention the nano-multi-layer structure consisting of a thin layer A, a thin layer B, a thin layer C and a thin layer D in order on the base material again twice It has a structure repeatedly stacked repeatedly.
  • the thin layer A is a thin layer whose main purpose is improved wear resistance and hardness, and its composition is made of Ti 1-x Al x N (0.5 ⁇ x ⁇ 0.7).
  • the content of Al is preferably 0.5 or more and 0.7 or less.
  • the thin layer B is a thin layer whose main purpose is to improve lubricity, and is composed of Al 1-yz Ti y Cr z N (0.3 ⁇ y ⁇ 0.6, 0 ⁇ z ⁇ 0.3).
  • Ti is preferably 0.3 or more and 0.6 or less.
  • the reason is that when the Ti content is less than 0.3, the brittleness increases due to the phase formation of the hexagonal B4 structure, which lowers the wear resistance and shortens the tool life.
  • the atomic radius is smaller than that of Ti, and the amount of solid solution is reduced, which reduces the hardness and wear resistance of the thin film, and facilitates the formation of TiO 2 oxide in a high temperature environment during cutting, thereby reducing the Ti element inside the thin film. This is because the diffusion to the outside may cause a high temperature hardness due to Ti element depletion.
  • the thin layer B contains less than or equal to 0.3.
  • the lubricity may be significantly improved.
  • the Cr content exceeds 0.3, it forms a coarse thin film structure and at the same time exposed to a high temperature environment during cutting, Cr 2 N segregation is formed, wear resistance is reduced and the tool life is shortened, so the content Is preferably limited to 0.3 or less.
  • the thin layer C is a thin layer mainly designed to improve toughness and chipping resistance, and is basically made of NbN or VN having high fracture toughness and chipping resistance.
  • the thin layer C has a phase change to V 2 O 5 or Nb 2 O 5 in a high temperature working environment, thereby improving the lubrication characteristics.
  • the chipping resistance and toughness are further improved by preventing falling off with the workpiece.
  • the thin layer C made of NbN or VN forms a nano-level multilayer with thin films of different composition
  • the hard coating film for cutting tools according to the present invention has a high balance in terms of toughness, chipping resistance, lubricity and wear resistance. It has a characteristic that is caught.
  • the thin layer D is a thin layer whose main purpose is to improve oxidation resistance, and its specific composition is made of Al 1-ab Ti a Si b N (0.3 ⁇ a ⁇ 0.7, 0 ⁇ b ⁇ 0.1).
  • the Ti content is preferably 0.3 or more and 0.7 or less.
  • the brittleness increases due to the phase formation of the hexagonal B4 structure, which lowers the wear resistance and the life of the tool.
  • the diameter is shorter than 0.7, Al has a small atomic radius compared to Ti, so that the amount of solid solution decreases, thereby decreasing the hardness and wear resistance of the thin film and easily forming TiO 2 oxide in a high temperature environment during cutting. This is because the Ti element is diffused to the outside and the high temperature hardness due to Ti element depletion may be reduced.
  • the thin layer D contains less than 0.1 Si, when a small amount (titration) of Si is added below 0.1, an amorphous Si 3 N 4 phase is formed along the grain boundaries of the crystalline AlTiN phase to refine the crystalline phase particles. And wear resistance are improved and preferable. In addition, an amorphous Si 3 N 4 phase forms SiO 2 oxide during high temperature cutting to prevent external diffusion of internal elements, thereby improving the life of the cutting tool.
  • the thin layer A, thin layer B, thin layer C, thin layer D is preferably an average thickness of 3 to 50nm, respectively.
  • the thin film is strengthened as the generation and movement of dislocations is suppressed.
  • the thickness of the thin layer is too thin, less than 3 nm, the boundary between nanolayers that suppress the generation and movement of dislocations is unclear.
  • the mixing zone is formed by mutual diffusion between two layers, the hardness and modulus of elasticity are lowered, so it is better to form it to be less than 3 nm, and when it exceeds 50 nm, the generation and movement of dislocations becomes easy, This is because not only the elastic modulus is lowered but also the matching strain energy is reduced by the formation of misfit dislocations, which is not preferable because of the phenomenon of decreasing the strengthening effect.
  • the average thickness of each of the thin layer A, thin layer B, thin layer C, thin layer D was 20 to 40 nm, and the interface between the thin layers was excellent in inhibiting dislocation movement due to plastic deformation. It was confirmed that the most preferred was found to be able to obtain an interfacial strengthening effect.
  • the thin layer A, thin layer B, thin layer C, thin layer D are sequentially stacked to form a nano-layered structure of ABCD, but the implementation manner is not limited thereto, such as ADCB, BADC, DACB It may be implemented in various forms.
  • the hard film for cutting tools according to the present invention when the thin film hardness (and residual stress) of each layer affecting the wear resistance and toughness of each thin layer is oscillated (oscillated) and are implemented in a structure that is laminated with each other, Since the wear resistance and toughness of the characteristics can be improved at the same time, it is most preferable to implement the nano multilayer structure of the thin layer ABCD.
  • the hard film for cutting tools according to the present invention having such a nano multilayer structure or a structure in which the nano multilayer structure is repeatedly laminated two or more times has an average thickness of 1 to 20 ⁇ m.
  • the present invention forms a nano-layered structure using a combination of TiAlN, AlTiCrN, AlTiSiN-based thin layer and NbN or VN thin layer, thereby evenly improving wear resistance, lubricity, toughness, chipping resistance and oxidation resistance of the entire hard film. Characterized in that.
  • the present invention is based on the WC-10wt% Co base material using the arc ion plating method of physical vapor deposition (PVD) on a hard base material surface including cemented carbide, cermet, high speed steel, end mill, drills, etc.
  • PVD physical vapor deposition
  • a hard thin film was formed on the coating.
  • a TiAl target for thin layer A, an AlTiCr target for thin layer B, an Nb or V target for thin layer C, and a AlTiSi target for thin layer D were used.
  • Initial vacuum pressure was reduced to 8.5 ⁇ 10 -5 Torr or less, and N 2 was injected into the reaction gas.
  • Gas pressure for the coating is 30mTorr or less, preferably 20mTorr or less, the coating temperature is 400 ⁇ 550 °C, the substrate bias voltage was applied at -20 ⁇ -150V during coating.
  • the coating conditions may be different from the present embodiment depending on the equipment characteristics and conditions.
  • This embodiment is a nano-multilayer by sequentially stacking the TiAlN film, which is an antiwear layer, the AlTiCrN film, which is a lubricating layer, the NbN film or the VN film, which is a toughness layer, and the AlTiSiN film, which is an oxidation resistant layer, in an average thickness of 28 to 31 nm.
  • the structure was formed, and the nano multilayer structure was repeatedly formed to complete a hard film for a cutting tool according to an embodiment of the present invention having a total thickness of 3.4 to 3.6 ⁇ m.
  • the hard film for the cutting tool according to the embodiment of the present invention uses physical vapor deposition (PVD), the thickness of the thin film may be formed up to about 20 ⁇ m.
  • PVD physical vapor deposition
  • Table 1 shows the composition, the target composition ratio, the average thickness of the thin layer, the total film thickness, and the lamination structure for the hard film for the cutting tool formed according to the embodiment of the present invention.
  • Comparative Examples 1 to 4 are sequentially stacked TiTiN film, AlTiN film, AlTiCrN film and TiN film with an average thickness of 30 ⁇ 31nm as an A / B / C laminated structure in a total thickness of 3.4 ⁇ 3.6
  • TiAlN film, AlTiN film, AlCrN film, AlTiCrN film, and AlTiSiN film were sequentially stacked with an average thickness of 30 to 31 nm as an A / B / C laminated structure.
  • a hard film having a thickness of 3.5 to 3.8 ⁇ m was formed, and Comparative Examples 9 to 12 were sequentially stacked with an average thickness of 28 to 30 nm as an A / B / C lamination structure of TiAlN film, AlTiN film, AlTiCrN film, and NbN film or VN film.
  • a hard film having a total thickness of 3.3 to 3.6 ⁇ m was formed, and these hard films were composed of nano multilayered compositions (excluding some thin films or general compositions such as TiN films or AlCrN films) with the hard films for cutting tools according to the embodiment of the present invention. Of thin film) and stacking performance It is to confirm the difference.
  • TiAlN films, AlTiCrN films, AlCrN films, NbN films, VN films, TiN films, AlTiN films, or AlTiSiN films were sequentially stacked with an average thickness of 31 to 33 nm as A / B / C / D stacked structures.
  • Hard films having a total thickness of 3.5 to 3.8 ⁇ m were formed, and these hard films were formed according to the difference of nano multilayer composition (some thin films were formed with other general compositions) with the hard film for cutting tools according to the embodiment of the present invention. This is to check the difference in cutting performance.
  • the actual composition of the formed hard film for the cutting tool is slightly different from the target composition, but shows a nearly similar composition.
  • This microhardness test was carried out under the conditions of a load of 30 mN, an unload of 30 mN, a load time of 10 sec, an unload time of 10 sec, and a creep time of 5 sec.
  • Hard coatings having a general composition and having a laminated structure of A / B / C are not only inferior to the 36.9-38.5 GPa levels of the Examples 1 to 8 of the present invention at a level of 33.5 to 36.8 GPa at room temperature.
  • Degradation hardness is 26.8 ⁇ 34.5GPa level significantly compared to 35.5 ⁇ 37.1GPa level of Examples 1 to 8 of the present invention can be seen that the degradation of hardness in a high temperature degradation environment is very large.
  • Comparative Examples 1 to 12 were found to be higher than the 0.35 ⁇ 0.42 level of the Examples 1 to 8 of the present invention, most of the friction coefficient is 0.4 ⁇ 0.6 level except 0.39 of Comparative Example 12.
  • Examples 1 to 8 of the present invention is 41 to 45 ⁇ m all short within 45 ⁇ m, hard for cutting tools according to an embodiment of the present invention The toughness of the film was confirmed to be excellent.
  • the crack length is also comparatively 13 ⁇ 15 is 49 ⁇ 51 ⁇ m level much longer than 41 ⁇ 45 ⁇ m of Examples 1 to 8 of the present invention is much superior to the toughness of the hard film for cutting tools according to an embodiment of the present invention It was confirmed that.
  • the hard film of Examples 1 to 8 of the present invention evenly compared with the hard film of Comparative Examples 1 to 15 in terms of hardness, lubricity (friction coefficient) and toughness (crack resistance). It can be seen that the improvement.
  • Examples 1 to 8 of the present invention has a cutting life of 17.5 to 18.5m, all of 17.5m or more and the cause of end of life are normal wear, as in Comparative Examples 1 to 12
  • the hard film having a lamination structure of A / B / C except for a few thin films of the nano multilayer composition or formed with a general composition such as a TiN film or an AlCrN film
  • the life was not terminated through normal wear, and all of them ended due to chipping or excessive wear.
  • the wear life was only 9 to 13m, which significantly reduced the wear resistance. You can see it falling.
  • the hard film for cutting tools of Examples 1 to 8 of the present invention has excellent wear resistance.
  • Examples 1 to 8 of the present invention has a cutting life of 10.5 to 13m, all of which are more than 10.5m and measured up to 13m, while Comparative Examples 1 to 15 have a cutting life of 8 to 8. It was confirmed that all 10.5m or less at 10.5m, the hard film for cutting tools according to the embodiment of the present invention shows excellent impact resistance.
  • the drilling process is slower than the milling process, and the cutting process is performed in wet conditions, so the lubrication (welding resistance) and chipping resistance of the cutting tool are very important.
  • the workpiece carbon steel (SM45C, carbon steel drilling), sample number: SPMT07T208 / XOMT07T205 (indexable drill insert, 20 ⁇ -5D), cutting speed: 150m / min, cutting feed rate: 0.1mm / rev, cutting depth: 90mm (penetration), the performance evaluation of drilling cutting performance was performed, as a result Are shown in Tables 11 and 12, respectively.
  • the life of the cutting tool forming the hard coating of Examples 1 to 8 of the present invention is similar to the above-described wear resistance, toughness (impact resistance) evaluation results are significantly better than the Comparative Examples 1 to 15 High levels.
  • the hard coatings of Examples 1 to 8 of the present invention exhibited excellent performance in comprehensive cutting performance evaluation. .
  • a composite nitride layer of Ti and Al having excellent abrasion resistance a composite nitride layer of Al, Ti, Cr having excellent lubricity, a nitride layer of Nb or V having excellent toughness and chipping resistance, and Al, Ti, Si having excellent oxidation resistance
  • Multi-layered multi-layered composite nitride layer can improve various properties required for hard film for cutting tools such as abrasion resistance, lubricity, toughness, chipping resistance, and oxidation resistance. It was confirmed that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

본 발명은 절삭공구용 경질피막에 관한 것으로서, 내마모성이 우수한 Ti과 Al의 복합 질화물층, 윤활성이 우수한 Al, Ti, Cr의 복합 질화물층, 인성과 내치핑성이 우수한 Nb 또는 V의 질화물층 및 내산화성이 우수한 Al, Ti, Si의 복합 질화물층을 순차 적층함으로써 형성되는 나노 다층구조의 반복 적층을 통해, 내마모성, 윤활성, 인성, 내치핑성, 내산화성 등의 절삭공구용 경질피막에 요구되는 다양한 특성을 고르게 향상시킬 수 있으므로 난삭재의 가공에 적합하게 사용될 수 있다.

Description

절삭공구용 경질피막
본 발명은 절삭공구에 사용되는 초경합금, 써메트, 고속도강, 엔드밀, 드릴, cBN 등과 같은 경질의 모재 상에 형성되는 경질피막에 관한 것으로서, 박층A, 박층B, 박층C 및 박층D를 포함하는 나노 다층구조 또는 이들의 반복 적층구조로 이루어져 있어, 종래의 다층 박막 구조에 비해 내마모성, 윤활성, 인성 및 내산화성이 모두 향상된 절삭공구용 경질피막에 관한 것이다.
산업이 점차 정밀화, 고속화 및 대량 생산화됨에 따라 절삭공구에 대한 절삭성능 향상 및 수명개선이 요구되고 있다. 특히, 고경도 피삭재에 대한 고속 절삭가공 및 열전도도가 낮은 난삭재에 대한 절삭가공시에는 약 900℃ 이상의 고열이 피삭재와 마찰되는 절삭공구 선단에 국부적으로 발생하는데, 내산화성과 내마모성이 우수한 경질피막을 절삭공구의 절삭면에 형성함으로써, 절삭공구의 수명을 높일 수 있다.
종래부터 절삭성능 향상 및 수명개선을 위해 초경합금, 써메트, 엔드밀, 드릴류 등의 모재 위에, TiN, Al2O3, TiAlN, AlTiN, AlCrN 등 내마모성, 내산화성, 또는 내충격성 등을 구비한 단일층 경질피막 또는 이들이 2층 이상 적층된 다층 경질피막을 형성함으로써, 고경도 피삭재 또는 난삭재에 대한 요구에 대응하여 왔다.
최근 들어 피삭재가 점차 고경도화 되고 있고, 열전도도가 낮고 공구와 용착이 심한 난삭재에 대한 가공 수요도 높아지고 있다. 특히, 스테인레스강, 내열합금강, 구상흑연 주철 등은 열전도율이 일반적인 강에 비해 낮아 절삭가공시에 칩에 의해 절삭열이 배출되지 못하고 절삭공구의 인선부에 열이 집중됨에 따라 절삭공구와 피삭재의 화학반응에 의해 절삭공구 인선부에 마모, 용착 및 탈락 현상이 쉽게 발생하고 절삭공구의 수명이 급격히 줄어들게 된다.
따라서 전술된 조성의 단일층 또는 다층의 구조만으로는 우수한 내마모성, 내산화성, 윤활성 등의 특성을 고루 갖추어야 하는 이러한 난삭재 및 주철 가공을 위한 절삭공구의 수요에 대응하기 점점 어려워지고 있다.
이에 따라, 최근에는 물성이 상이한 2종 이상의 나노 레벨의 박막을 규칙적으로 반복 적층하는 방법을 통해, 절삭성능을 높이고자 하는 시도가 많아지고 있다.
예를 들어, 한국등록특허공보 제876366호에는, 물리증착법(PVD)에 의해, 초경 합금공구인 인서트, 엔드밀, 드릴 혹은 써메트 공구위에 밀착력 향상 및 (200)면의 결정배향을 위해 하지층을 증착시키고, 연속적으로 내충격성과 내치핑성을 향상시키기 위해 중간층인 (Ti,Al)N 다층박막을 증착시킨 후, TiAlN 또는 AlTiSiN으로 이루어지되 상호 조성이 다른 A층, B층, C층 및 D층으로 이루어지고 이들이 교대로 적층되는 구조를 갖는 최상층을 형성함으로써, 최상층의 내마모성과 내산화성을 향상시킨 박막구조가 개시되어 있다.
상기와 같은 다층 구조를 통해 내마모성 및 내산화성을 향상시킬 수 있으나, 내마모성, 내충격성(인성), 내치핑성 등 절삭작업에 요구되는 다양한 특성들을 고루 개선하기 위해서는 새로운 구조의 경질피막의 개발이 요구된다.
상기한 바와 같은 문제점을 해결하기 위해 본 발명은, 내마모성, 윤활성, 인성(내충격성) 및 내산화성 등이 전반적으로 향상된 절삭공구용 경질피막을 제공하고자 한다.
상기한 바와 같은 과제를 해결하기 위해, 본 발명에 따른 절삭공구용 경질피막은, 모재의 표면에 형성되는 경질피막으로서, 상기 경질피막은 박층A, 박층B, 박층C 및 박층D를 포함하는 나노 다층구조 또는 이 나노 다층구조가 2회 이상 반복 적층되는 구조로 이루어지되, 상기 박층A는 Ti1-xAlxN(0.5≤x≤0.7)으로 이루어지고, 상기 박층B는 Al1-y-zTiyCrzN(0.3≤y≤0.6, 0<z≤0.3)으로 이루어지며, 상기 박층C는 MeN(Me는 Nb 또는 V)으로 이루어지고, 상기 박층D는 Al1-a-bTiaSibN(0.3≤a≤0.7, 0<b<0.1)으로 이루어진다.
상기 나노 다층구조는, 상기 모재로부터 박층A, 박층B, 박층C 및 박층D의 순으로 적층되는 것이 바람직하다.
상기 박층A, 박층B, 박층C 및 박층D는, 평균두께가 각각 3 ~ 50nm로 구비되는 것이 바람직하다.
상기 박층A, 박층B, 박층C 및 박층D는, 평균두께가 각각 20 ~ 40nm로 구비되는 것이 가장 바람직하다.
상기 절삭공구용 경질피막은, 평균두께가 1 ~ 20㎛로 구비되는 것이 바람직하다.
상기 절삭공구용 경질피막은, 900℃에서 30분간 열화 처리된 열화경도가 35GPa 이상인 것이 바람직하다.
이러한 본 발명의 절삭공구용 경질피막에 의하면, 모재와의 밀착성과 범용적으로 내마모성이 우수한 Ti과 Al의 복합 질화물층, 윤활성이 우수한 Al, Ti, Cr의 복합 질화물층, 인성과 내치핑성이 우수하면서 고온 환경에서 윤활성이 향상되는 Nb 또는 V의 질화물층 및 내산화성이 우수한 Al, Ti, Si의 복합 질화물층을 순차 적층함으로써 형성되는 나노 다층구조의 반복 적층을 통해, 내마모성, 윤활성, 인성, 내치핑성, 내산화성 등의 절삭공구용 경질피막에 요구되는 다양한 특성을 고르게 향상시킬 수 있으므로 난삭재의 가공에 적합하게 사용될 수 있다.
즉, 본 발명의 절삭공구용 경질피막은, 각 박층의 내마모성, 윤활성, 인성, 내산화성을 강화하는 박층을 주기적으로 반복되도록 적층하여 각 박층의 기능을 극대화시켰으며, 이에 따라 난삭재 가공 시에 요구되는 내마모성, 윤활성, 인성, 내산화성을 균형있게 향상시킬 수 있다.
도 1은 본 발명에 따른 절삭공구용 경질피막의 구조를 개략적으로 도시한 단면도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자(이하, '통상의 기술자'라 한다)가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 그 범위가 여기에서 설명하는 실시예에 한정되지 않는다. 또한 첨부된 도면에서 막 또는 영역들의 크기 또는 두께는 발명의 이해를 돕기 위하여 과장된 것으로 이해되어야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 절삭공구용 경질피막의 구조를 개략적으로 도시한 단면도이다. 도 1에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 절삭공구용 경질피막은, 모재 상에 박층A, 박층B, 박층C 및 박층D가 순서대로 적층되어 이루어진 나노 다층구조가 다시 2회 이상 반복 적층된 구조를 갖는다.
상기 박층A는 내마모성과 경도 향상을 주목적으로 하는 박층으로서, 그 조성은 Ti1-xAlxN(0.5≤x≤0.7)으로 이루어진다.
상기 박층A에 있어서, Al의 함량이 0.5 미만일 경우 원자반경이 Ti에 비해 작은 Al이 치환되어 고용되는 양이 줄어들어 박막의 내마모성 및 경도가 저하되고 절삭가공시 고온의 환경에서 TiO2 산화물 형성이 용이해져 박막 내부의 Ti원소가 외부로 확산되어 Ti원소 고갈에 따른 고온경도 저하를 초래할 수 있고, 0.7 초과일 경우 육방정 B4구조의 상(phase) 형성으로 취성이 증가하여 내마모성이 저하되며 공구의 수명이 짧아질 수 있기 때문에, Al의 함량은 0.5 이상 0.7 이하인 것이 바람직하다.
상기 박층B는 윤활성 향상을 주목적으로 하는 박층으로서, Al1-y-zTiyCrzN(0.3≤y≤0.6, 0<z≤0.3)의 조성으로 이루어진다.
상기 박층B에 있어서, Ti는 0.3 이상 0.6 이하인 것이 바람직한데, 그 이유는 Ti의 함량이 0.3 미만일 경우 육방정 B4구조의 상(phase) 형성으로 취성이 증가하여 내마모성이 저하되며 공구의 수명이 짧아지게 되고, 0.6 초과일 경우 원자반경이 Ti에 비해 작은 Al이 치환되어 고용되는 양이 줄어들어 박막의 경도 및 내마모성이 저하되고 절삭가공시 고온의 환경에서 TiO2 산화물 형성이 용이해져 박막 내부의 Ti원소가 외부로 확산되어 Ti원소 고갈에 따른 고온경도 저하를 초래할 수 있기 때문이다.
또한 상기 박층B에는 Cr이 0.3 이하로 포함되는데, 이렇게 Cr이 포함될 경우 윤활성이 획기적으로 향상될 수 있다. 그러나 Cr의 함량이 0.3을 초과하는 경우 조대한 박막조직을 형성함과 동시에 절삭가공시에 고온의 환경에 노출되면 Cr2N의 편석이 형성되어 내마모성이 저하되며 공구의 수명이 짧아지기 때문에 그 함량은 0.3 이하로 한정되는 것이 바람직하다.
상기 박층C는 인성과 내치핑성 향상을 주목적으로 하는 박층으로서, 기본적으로 높은 파괴 인성 및 내치핑성을 갖는 NbN 또는 VN으로 이루어진다. 이러한 박층C는 고온의 작업환경에서 V2O5나 Nb2O5로 상변화가 발생하며 이에 따라 윤활 특성이 향상되는데, 상대적으로 연성이 높은 피삭재에 대한 작업시에 이러한 윤활 특성의 향상은 피막이 피삭재와 함께 떨어져 나가는 것을 방지하여 내치핑성과 인성이 더욱 향상되게 된다.
이와 같이 NbN 또는 VN으로 이루어지는 박층C는 다른 조성의 박막과 함께 나노 레벨의 멀티레이어를 형성하면서, 본 발명에 따른 절삭공구용 경질피막이 인성, 내치핑성, 윤활성, 내마모성의 다 측면에서 고루 높은 균형 잡힌 특성을 갖게 한다.
상기 박층D는 내산화성 향상을 주목적으로 하는 박층으로서, 그 구체적인 조성은 Al1-a-bTiaSibN(0.3≤a≤0.7, 0<b<0.1)으로 이루어진다.
상기 박층D에 있어서, Ti의 함량은 0.3 이상 0.7 이하인 것이 바람직한데, 그 이유는 Ti의 함량이 0.3 미만일 경우 육방정 B4구조의 상(phase) 형성으로 취성이 증가하여 내마모성이 저하되며 공구의 수명이 짧아지게 되고, 0.7 초과일 경우 원자반경이 Ti에 비해 작은 Al이 치환되어 고용되는 양이 줄어들어 박막의 경도 및 내마모성이 저하되고 절삭가공시 고온의 환경에서 TiO2 산화물 형성이 용이해져 박막 내부의 Ti원소가 외부로 확산되어 Ti원소 고갈에 따른 고온경도 저하를 초래할 수 있기 때문이다.
또한 상기 박층D에는 Si가 0.1 미만으로 포함되는데, 이는 Si가 0.1 미만으로 소량(적정량) 첨가될 경우, 비정질의 Si3N4 상이 결정질의 AlTiN 상의 입계를 따라 형성되어 결정질 상의 입자를 미세화시키므로 경도 및 내마모성이 향상되어 바람직하기 때문이다. 그리고 고온절삭가공시 비정질의 Si3N4 상이 SiO2 산화물을 형성하여 내부원소의 외부확산을 막아주는 역할을 함으로써 절삭공구의 수명을 향상시킬 수 있다.
그러나 상기 박층D에 있어서, Si의 함량이 0.1을 초과하는 경우는, 비정질의 Si3N4 상이 증가하여 자체 경도가 저하되며 또한 결정질의 AlTiN 상의 입자 미세화 효과가 낮아지기 때문에 내마모성을 저하시키는 원인이 될 수 있어 바람직하지 않다.
한편, 상기 박층A, 박층B, 박층C, 박층D는 평균두께가 각각 3 ~ 50nm인 것이 바람직하다.
이는 일반적으로 나노다층의 주기가 감소할수록 전위의 생성과 이동이 억제됨에 따라 박막이 강화되는데, 박층의 두께가 3nm 미만으로 너무 얇을 경우에는 전위의 생성과 이동을 억제하는 나노다층간의 경계가 불분명해지면서 두 층간의 상호확산에 의해 혼합 영역(mixing zone)이 형성되어 경도 및 탄성계수가 저하되므로 3nm 미만이 되지 않도록 형성하는 것이 좋고, 50nm를 초과할 경우 전위의 생성 및 이동이 쉬워지게 되므로 경도 및 탄성계수가 저하될 뿐만 아니라 불일치(misfit) 전위의 형성에 의해 정합 변형에너지가 감소되어 강화 효과 감소 현상이 수반되어 바람직하지 않기 때문이다.
그리고 상기 박층A, 박층B, 박층C, 박층D의 두께만을 달리한 실험을 통해 그 평균두께가 각각 20 ~ 40nm인 것이 각각의 박층 간의 계면이 소성변형에 의한 전위(dislocation) 이동을 억제하는 우수한 계면 강화 효과를 얻을 수 있는 것으로 나타나 가장 바람직한 것으로 확인되었다.
본 발명의 바람직한 실시예에 있어서, 상기 박층A, 박층B, 박층C, 박층D는 순서대로 적층되어 A-B-C-D의 나노 다층구조를 이루게 구현되었으나, 그 구현 방식은 이에 한정되지 않고 A-D-C-B, B-A-D-C, D-A-C-B 등 다양한 형태로 구현될 수 있다.
그러나 본 발명에 따른 절삭공구용 경질피막은, 각 박층의 내마모성과 인성에 영향을 미치는 각층의 박막경도(및 잔류응력)가 주기적으로 오실레이션(oscillation) 되며 적층되는 구조로 구현될 경우, 서로 상대적인 특성을 나타내는 내마모성과 인성을 동시에 향상시킬 수 있으므로 박층A-B-C-D의 나노 다층구조로 구현되는 것이 가장 바람직하다.
이와 같은 나노 다층구조 또는 이 나노 다층구조가 2회 이상 반복 적층되는 구조를 갖는 본 발명에 따른 절삭공구용 경질피막은, 1 ~ 20㎛의 평균두께를 갖는 것이 바람직하다.
이상과 같이, 본 발명은 TiAlN, AlTiCrN, AlTiSiN계 박층과 NbN 또는 VN 박층을 조합으로 하여 나노 다층구조를 형성함으로써, 경질피막 전체에 대해 내마모성, 윤활성, 인성, 내치핑성 및 내산화성의 고른 향상을 도모한 것을 특징으로 한다.
[실시예]
본 발명은 초경합금, 써메트, 고속도강, 엔드밀, 드릴류 등을 포함하는 경질 모재 표면 위에 물리적 기상 증착법(physical vapor deposition: PVD)인 아크 이온 플레이팅 법을 이용하여, WC-10wt%Co의 모재 상에 경질박막을 코팅 형성하였으며, 코팅 시에 박층A에 대해서는 TiAl 타겟, 박층B에 대해서는 AlTiCr 타겟, 박층C에 대해서는 Nb 또는 V 타겟, 박층D에 대해서는 AlTiSi의 타겟을 사용하였다. 초기 진공압력은 8.5×10-5Torr 이하로 감압하였으며, 반응가스로 N2를 주입하였다. 코팅을 위한 가스압력은 30mTorr 이하이며, 바람직하게는 20mTorr 이하이며, 코팅 온도는 400 ~ 550℃로 하였으며, 코팅 시 기판 바이어스 전압은 -20 ~ -150V로 인가하였다. 물론, 코팅 조건은 장비 특성 및 조건에 따라 본 실시예와 다르게 할 수 있다.
본 실시예는 전술한 코팅 방법을 통해, 내마모층인 TiAlN 막, 윤활층인 AlTiCrN 막, 인성층인 NbN 막 또는 VN 막, 내산화층인 AlTiSiN 막을 28 ~ 31nm의 평균 두께로 순차 적층하여 나노 다층구조를 형성하였으며, 이러한 나노 다층구조를 반복 형성하여 총 두께가 3.4 ~ 3.6㎛인 본 발명의 실시예에 따른 절삭공구용 경질피막을 완성하였다.
한편, 필요한 경우 본 발명의 실시예에 따라 형성한 절삭공구용 경질피막 상에 추가로 다양한 형태의 박막이 형성될 수 있음은 물론이다. 또한, 본 발명의 실시예에 따른 절삭공구용 경질피막은 물리적 기상 증착법(physical vapor deposition: PVD)을 이용하므로, 박막 두께는 최대 20㎛ 정도까지 형성할 수 있다.
하기 표 1에 본 발명의 실시예에 따라 형성한 절삭공구용 경질피막에 대한 조성, 타겟조성비, 박층 평균 두께, 총 피막두께 및 적층구조를 각각 나타내었다.
표 1
실시예No. 경질피막의 구조
나노 다층구조(타겟조성비) 박층 평균두께(nm) 총 피막두께(㎛) 적층구조
1 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 31 3.5 5원계 A/B/C/D나노 다층
2 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 30 3.4 5원계 A/B/C/D나노 다층
3 TiAlN(5:5)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 30 3.6 5원계 A/B/C/D나노 다층
4 TiAlN(5:5)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 31 3.4 5원계 A/B/C/D나노 다층
5 AlTiN(7:3)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 31 3.5 5원계 A/B/C/D나노 다층
6 AlTiN(7:3)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 30 3.4 5원계 A/B/C/D나노 다층
7 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 30 3.5 5원계 A/B/C/D나노 다층
8 AlTiN(7:3)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 28 3.4 5원계 A/B/C/D나노 다층
그리고 본 발명의 실시예에 따라 형성한 절삭공구용 경질피막의 특성을 상대 평가하기 위하여, 본 발명의 실시예와 동일한 WC-10wt%Co의 모재 상에 하기 표 2와 같은 박막 구조로 본 발명의 실시예에 따른 경질피막과 거의 동일한 두께의 경질피막을 형성하였다.
표 2
비교예No. 경질피막의 구조
나노 다층구조(타겟조성비) 박층 평균두께 (nm) 총 피막두께(㎛) 적층구조
1 TiAlN(5:5)/AlTiCrN(54:38:8)/TiN 30 3.5 3원계 A/B/C나노 다층
2 TiAlN(5:5)/AlTiCrN(4:3:3)/TiN 30 3.5 3원계 A/B/C나노 다층
3 AlTiN(7:3)/AlTiCrN(54:38:8)/TiN 31 3.4 3원계 A/B/C나노 다층
4 AlTiN(7:3)/AlTiCrN(4:3:3)/TiN 31 3.6 3원계 A/B/C나노 다층
5 AlTiN(7:3)/AlCrN(7:3)/AlTiSiN(58:37:5) 30 3.6 4원계 A/B/C나노 다층
6 TiAlN(5:5)/AlCrN(7:3)/AlTiSiN(58:37:5) 31 3.7 4원계 A/B/C나노 다층
7 AlTiN(7:3)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 31 3.8 4원계 A/B/C나노 다층
8 TiAlN(5:5)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 30 3.5 4원계 A/B/C나노 다층
9 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN 30 3.4 4원계 A/B/C나노 다층
10 TiAlN(5:5)/AlTiCrN(4:3:3)/VN 29 3.4 4원계 A/B/C나노 다층
11 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN 28 3.6 4원계 A/B/C나노 다층
12 AlTiN(7:3)/AlTiCrN(4:3:3)/VN 29 3.3 4원계 A/B/C나노 다층
13 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiN(67:33) 31 3.5 4원계 A/B/C/D나노 다층
14 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiN(67:33) 32 3.6 4원계 A/B/C/D나노 다층
15 TiAlN(5:5)/AlCrN(7:3)/TiN/AlTiSiN(58:37:5) 33 3.8 4원계 A/B/C/D나노 다층
상기 표 2에서 확인되는 바와 같이, 비교예 1 ~ 4는 TiAlN 막이나 AlTiN 막, AlTiCrN 막 및 TiN 막을 A/B/C 적층구조로써 30 ~ 31nm의 평균 두께로 순차 적층하여 총 두께가 3.4 ~ 3.6㎛인 경질피막을 형성한 것이고, 비교예 5 ~ 8은 TiAlN 막이나 AlTiN 막, AlCrN 막이나 AlTiCrN 막 및 AlTiSiN 막을 A/B/C 적층구조로써 30 ~ 31nm의 평균 두께로 순차 적층하여 총 두께가 3.5 ~ 3.8㎛인 경질피막을 형성한 것이며, 비교예 9 ~ 12는 TiAlN 막이나 AlTiN 막, AlTiCrN 막 및 NbN 막이나 VN 막을 A/B/C 적층구조로써 28 ~ 30nm의 평균 두께로 순차 적층하여 총 두께가 3.3 ~ 3.6㎛인 경질피막을 형성한 것으로서, 이들 경질피막은 본 발명의 실시예에 따른 절삭공구용 경질피막과의 나노 다층 조성(일부 박막 제외 또는 TiN 막이나 AlCrN 막과 같이 일반적인 조성의 박막으로 형성) 및 적층구조의 차이에 따른 절삭성능의 차이를 확인하기 위한 것이다.
그리고 비교예 13 ~ 15는 TiAlN 막, AlTiCrN 막이나 AlCrN 막, NbN 막이나 VN 막이나 TiN 막, AlTiN 막이나 AlTiSiN 막을 A/B/C/D 적층구조로써 31 ~ 33nm의 평균 두께로 순차 적층하여 총 두께가 3.5 ~ 3.8㎛인 경질피막을 형성한 것으로서, 이들 경질피막은 본 발명의 실시예에 따른 절삭공구용 경질피막과의 나노 다층 조성(일부 박막을 다른 일반적인 조성으로 형성)의 차이에 따른 절삭성능의 차이를 확인하기 위한 것이다.
하기의 표 3과 표 4는 본 발명의 실시예 및 비교예에 따라 절삭공구용 경질피막을 형성한 후, 에너지 회절 X선 분석(EDX, Energy Dispersive X-ray Spectrometer)을 통해, 각 층을 구성하는 박막의 실제 조성을 측정한 결과를 나타낸 것이다.
표 3
실시예No. 나노 다층구조(타겟조성비) 박막 조성(EDX, at%)
Al Ti Cr Nb V Si N
1 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 23.9 18.4 1.2 14.8 0.7 41
2 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 22.1 17.1 1.1 13.7 0.7 45.4
3 TiAlN(5:5)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 20.1 15.9 4.1 13.6 0.7 45.
4 TiAlN(5:5)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 20.2 16 4.1 13.7 0.7 45.4
5 AlTiN(7:3)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 24.2 14 1.1 13.3 0.7 46.8
6 AlTiN(7:3)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 24.9 14.4 1.1 13.7 0.7 45.2
7 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 23.1 13.3 4.1 13.8 0.7 45
8 AlTiN(7:3)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 23.5 13.6 4.2 14 0.7 44.1
표 4
비교예No. 나노 다층구조(타겟조성비) 박막 조성(EDX, at%)
Al Ti Cr Nb V Si N
1 TiAlN(5:5)/AlTiCrN(54:38:8)/TiN 19.4 35.1 1.5 44
2 TiAlN(5:5)/AlTiCrN(4:3:3)/TiN 16.8 33.6 5.6 44
3 AlTiN(7:3)/AlTiCrN(54:38:8)/TiN 22.7 30.8 1.5 45
4 AlTiN(7:3)/AlTiCrN(4:3:3)/TiN 20 29.1 5.5 45.5
5 AlTiN(7:3)/AlCrN(7:3)/AlTiSiN(58:37:5) 36.3 12.3 5.5 0.9 45
6 TiAlN(5:5)/AlCrN(7:3)/AlTiSiN(58:37:5) 33.2 16.2 5.6 0.9 44
7 AlTiN(7:3)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 34.5 19.9 1.5 0.9 43.2
8 TiAlN(5:5)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 29.1 22.5 1.4 0.9 46.1
9 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN 18.4 15.5 1.4 17.7 47
10 TiAlN(5:5)/AlTiCrN(4:3:3)/VN 15.8 14.1 5.3 17.6 47.2
11 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN 20.2 11 5.5 18.3 45
12 AlTiN(7:3)/AlTiCrN(4:3:3)/VN 20 10.9 5.5 18.2 45.4
13 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiN(67:33) 24.3 17.2 1.1 14.2 43.2
14 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiN(67:33) 24.8 17.5 1.2 14.5 42
15 TiAlN(5:5)/AlCrN(7:3)/TiN/AlTiSiN(58:37:5) 25.1 26.4 4.2 0.7 43.5
상기 표 3에서 확인되는 바와 같이, 형성된 절삭공구용 경질피막의 실제 조성은 목표한 조성과 다소 차이는 있으나, 거의 유사한 조성을 나타낸다.
상온경도, 열화경도, 마찰계수 및 크랙길이 평가
상술한 바와 같이 형성한 본 발명의 실시예 1 ~ 8과 비교예 1 ~ 15의 경도를 비교 평가하기 위하여 피셔스코프(모델명 HP100C-XYP; 독일 HELMUT FISCHER GMBH, ISO14577)를 사용하여 미소 경도 시험을 실시하였으며, 경도는 경질피막을 형성한 직후의 상온경도와 900℃에서 30분간 고온 열화 처리를 한 후의 열화경도를 각각 측정하였다.
이러한 미소 경도 시험은 로드 30mN, 언로드 30mN, 로드 시간 10sec, 언로드 시간 10sec, 크립 시간 5sec의 조건으로 실시되었다.
또한, 경질피막의 마찰특성을 평가하기 위하여, CETR UMT-2 micro-tribometer를 사용하여 ball-on-disc 테스트를 통해 슬라이딩 거리(ball(재질 Si3N4, 직경 4mm, 경도 HV50g1600)의 60회 회전)를 측정하였다. 이때 마찰특성 평가는 20 ~ 25℃의 온도에서 상대습도 50 ~ 60%, 회전속도 318rpm(10m/min)의 조건으로 실시되었다.
또한, 경질피막의 인성(내크랙성)을 평가하기 위하여 30kgf 하중의 다이아몬드 압흔을 적용하여 경질피막에 생성된 크랙의 길이를 측정하였다.
이와 같은 본 발명의 실시예 1 ~ 8과 비교예 1 ~ 15에 대한 상온경도, 열화경도, 마찰계수 및 크랙길이의 측정 결과는 하기의 표 5와 표 6에 각각 나타내었다.
표 5
실시예No. 나노 다층구조(타겟조성비) 상온경도(GPa) 열화경도(GPa) 마찰계수(COF) 크랙길이(㎛)
1 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 38 36.2 0.4 42
2 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 37.2 36 0.42 43
3 TiAlN(5:5)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 36.9 35.9 0.35 41
4 TiAlN(5:5)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 37 35.5 0.38 44
5 AlTiN(7:3)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 38.5 36.7 0.41 45
6 AlTiN(7:3)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 38.4 36.9 0.42 45
7 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 38.1 37.1 0.39 41
8 AlTiN(7:3)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 37.9 36.5 0.39 42
표 6
비교예No. 나노 다층구조(타겟조성비) 상온경도(GPa) 열화경도(GPa) 마찰계수(COF) 크랙길이(㎛)
1 TiAlN(5:5)/AlTiCrN(54:38:8)/TiN 34 28 0.6 43
2 TiAlN(5:5)/AlTiCrN(4:3:3)/TiN 33.5 27 0.42 49
3 AlTiN(7:3)/AlTiCrN(54:38:8)/TiN 35.8 28.4 0.58 44
4 AlTiN(7:3)/AlTiCrN(4:3:3)/TiN 34.2 26.8 0.48 45
5 AlTiN(7:3)/AlCrN(7:3)/AlTiSiN(58:37:5) 36.8 34.5 0.5 47
6 TiAlN(5:5)/AlCrN(7:3)/AlTiSiN(58:37:5) 36.4 34.1 0.54 44
7 AlTiN(7:3)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 36.5 34.4 0.56 42
8 TiAlN(5:5)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 35.9 34.1 0.59 42
9 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN 35.8 30.1 0.45 52
10 TiAlN(5:5)/AlTiCrN(4:3:3)/VN 35 31.5 0.4 49
11 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN 34.9 30 0.42 48
12 AlTiN(7:3)/AlTiCrN(4:3:3)/VN 35.1 30.3 0.39 44
13 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiN(67:33) 37.5 32.5 0.54 50
14 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiN(67:33) 38 32 0.56 49
15 TiAlN(5:5)/AlCrN(7:3)/TiN/AlTiSiN(58:37:5) 37.4 31.8 0.52 51
상기 표 5와 표 6에서 확인되는 바와 같이, 비교예 1 ~ 12와 같이 본 발명의 실시예에 따른 절삭공구용 경질피막과 비교하여, 나노 다층 조성 중 일부 박막을 제외하거나 TiN 막이나 AlCrN 막과 같이 일반적인 조성으로 형성하고 A/B/C의 적층구조를 갖는 경질피막은, 상온경도가 33.5 ~ 36.8GPa 수준으로 본 발명의 실시예 1 ~ 8의 36.9 ~ 38.5GPa 수준에 비해 떨어질 뿐만 아니라, 특히 열화경도가 26.8 ~ 34.5GPa 수준으로 본 발명의 실시예 1 ~ 8의 35.5 ~ 37.1GPa 수준에 비해 크게 떨어져 고온 열화환경에서 경도의 저하가 매우 큰 것을 확인할 수 있다.
또한, 비교예 1 ~ 12는 마찰계수도 비교예 12의 0.39를 제외하고는 대부분 0.4 ~ 0.6 수준으로 본 발명의 실시예 1 ~ 8의 0.35 ~ 0.42 수준에 비해 높은 것을 확인할 수 있었다.
뿐만 아니라, 크랙길이도 비교예 1 ~ 12는 42 ~ 52㎛인 것이 비해, 본 발명의 실시예 1 ~ 8은 41 ~ 45㎛로 모두 45㎛ 이내로 짧아 본 발명의 실시예에 따른 절삭공구용 경질피막의 인성이 우수한 것으로 확인되었다.
한편, 비교예 13 ~ 15와 같이 본 발명의 실시예에 따른 절삭공구용 경질피막과 비교하여, A/B/C/D의 적층구조를 갖는 것은 동일하되 그 나노 다층 조성 중 일부 박막을 TiN 막이나 AlCrN 막과 같이 일반적인 조성으로 형성한 경질피막은, 상온경도가 37.4 ~ 38GPa 수준으로 본 발명의 실시예 1 ~ 8의 36.9 ~ 38.5GPa 수준과 다소 비슷하였으나 열화경도는 31.8 ~ 32.5GPa 수준으로 본 발명의 실시예 1 ~ 8의 35.5 ~ 37.1GPa 수준에 비해 여전히 크게 떨어지는 것으로 확인되었다.
그리고 비교예 13 ~ 15는 마찰계수가 0.52 ~ 0.56 수준으로 본 발명의 실시예 1 ~ 8의 0.35 ~ 0.42 수준에 비해 매우 높아 본 발명의 실시예 1 ~ 8에 비해 윤활성이 낮은 것으로 나타났다.
게다가 크랙길이도 비교예 13 ~ 15는 49 ~ 51㎛ 수준으로 본 발명의 실시예 1 ~ 8의 41 ~ 45㎛에 비해 많이 길어 본 발명의 실시예에 따른 절삭공구용 경질피막의 인성이 훨씬 우수한 것으로 확인되었다.
이상과 같은 경질피막의 물성에 대한 평가로부터 본 발명의 실시예 1 ~ 8의 경질피막이 비교예 1 ~ 15의 경질피막에 비해, 경도와 윤활성(마찰계수) 및 인성(내크랙성) 등이 고르게 향상되었음을 알 수 있다.
내마모성 평가
본 발명의 실시예 1 ~ 8 및 비교예 1 ~ 15의 경질피막을 특히 내마모성이 요구되는 절삭작업에 사용하였을 때의 절삭성능을 평가하기 위하여, 피삭재: 합금강(SCM440, 합금강 밀링가공), 샘플형번 : SPKN1504EDSR(ISO), 절삭 속도: 200m/min, 절삭 이송: 0.2mm/tooth, 절삭 깊이: 2mm의 조건으로 밀링가공 절삭시험을 수행하였으며, 그 결과를 하기 표 7과 표 8에 각각 나타내었다.
표 7
실시예No. 나노 다층구조(타겟조성비) 절삭수명(가공거리, m) 수명 종료원인
1 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 18 정상마모
2 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 17.5 정상마모
3 TiAlN(5:5)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 17.5 정상마모
4 TiAlN(5:5)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 17.8 정상마모
5 AlTiN(7:3)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 18.2 정상마모
6 AlTiN(7:3)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 18.5 정상마모
7 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 17.5 정상마모
8 AlTiN(7:3)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 17.5 정상마모
표 8
비교예No. 나노 다층구조(타겟조성비) 절삭수명(가공거리, m) 수명 종료원인
1 TiAlN(5:5)/AlTiCrN(54:38:8)/TiN 9 치핑
2 TiAlN(5:5)/AlTiCrN(4:3:3)/TiN 9.5 과대마모
3 AlTiN(7:3)/AlTiCrN(54:38:8)/TiN 11 과대마모
4 AlTiN(7:3)/AlTiCrN(4:3:3)/TiN 11 과대마모
5 AlTiN(7:3)/AlCrN(7:3)/AlTiSiN(58:37:5) 12 치핑
6 TiAlN(5:5)/AlCrN(7:3)/AlTiSiN(58:37:5) 12.5 치핑
7 AlTiN(7:3)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 13 정상마모
8 TiAlN(5:5)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 12.5 정상마모
9 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN 12 과대마모
10 TiAlN(5:5)/AlTiCrN(4:3:3)/VN 11.5 과대마모
11 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN 11 과대마모
12 AlTiN(7:3)/AlTiCrN(4:3:3)/VN 12 과대마모
13 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiN(67:33) 15 정상마모
14 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiN(67:33) 16.2 정상마모
15 TiAlN(5:5)/AlCrN(7:3)/TiN/AlTiSiN(58:37:5) 16 정상마모
상기 표 7과 표 8에서 확인되는 바와 같이, 본 발명의 실시예 1 ~ 8은 절삭수명이 17.5 ~ 18.5m로 모두 17.5m 이상이며 수명 종료 원인이 정상마모인 반면, 비교예 1 ~ 12와 같이 본 발명의 실시예에 따른 절삭공구용 경질피막과 비교하여, 나노 다층 조성 중 일부 박막을 제외하거나 TiN 막이나 AlCrN 막과 같이 일반적인 조성으로 형성하고 A/B/C의 적층구조를 갖는 경질피막은, 비교예 7과 8을 제외하고는 정상적인 마모를 통해 수명이 종료되지 않고 모두 치핑이나 과대마모로 수명이 종료되었고, 비교예 7과 8을 포함하더라도 절삭수명이 9 ~ 13m에 불과하여 내마모성이 현저히 떨어지는 것을 확인할 수 있다.
또한, 본 발명의 실시예와 유사한 A/B/C/D의 적층구조를 갖지만 나노 다층 조성 중 일부 박막이 TiN 막이나 AlCrN 막과 같이 일반적인 조성으로 형성되는 비교예 13 ~ 15는 정상적인 마모를 통해 수명이 종료되었으나 그 절삭수명은 15 ~ 16.2 수준으로 본 발명의 실시예 1 ~ 8의 17.5 ~ 18.5m 수준에 비해 뒤쳐지는 것으로 나타났다.
따라서 본 발명의 실시예 1 ~ 8의 절삭공구용 경질피막은 우수한 내마모 특성을 가지고 있음이 확인된다.
인성(내충격성) 평가
본 발명의 실시예 1 ~ 8 및 비교예 1 ~ 15의 경질피막을 특히 인성(내충격성)이 요구되는 절삭조건에 사용하였을 때의 절삭성능을 평가하기 위하여, 밀링가공 내충격 절삭성능 평가결과(단속평가)를, 피삭재 : 합금강(SCM440, 합금강 3조 격판 밀링가공), 샘플형번 : SPKN1504EDSR(ISO), 절삭 속도: 200m/min, 절삭 이송: 0.2mm/tooth, 절삭 깊이: 2mm의 조건으로 수행하였으며, 경질피막을 코팅한 인서트의 파손시까지 평가를 진행하였고, 그 결과를 하기 표 9와 표 10에 나타내었다.
표 9
실시예No. 나노 다층구조(타겟조성비) 절삭수명(가공거리, m)
1 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 13
2 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 10.5
3 TiAlN(5:5)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 11
4 TiAlN(5:5)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 11.2
5 AlTiN(7:3)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 10.7
6 AlTiN(7:3)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 10.5
7 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 11.5
8 AlTiN(7:3)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 12
표 10
비교예No. 나노 다층구조(타겟조성비) 절삭수명(가공거리, m)
1 TiAlN(5:5)/AlTiCrN(54:38:8)/TiN 8
2 TiAlN(5:5)/AlTiCrN(4:3:3)/TiN 8.5
3 AlTiN(7:3)/AlTiCrN(54:38:8)/TiN 8.5
4 AlTiN(7:3)/AlTiCrN(4:3:3)/TiN 8.5
5 AlTiN(7:3)/AlCrN(7:3)/AlTiSiN(58:37:5) 9
6 TiAlN(5:5)/AlCrN(7:3)/AlTiSiN(58:37:5) 9.5
7 AlTiN(7:3)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 8
8 TiAlN(5:5)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 8.5
9 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN 10
10 TiAlN(5:5)/AlTiCrN(4:3:3)/VN 10.5
11 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN 11
12 AlTiN(7:3)/AlTiCrN(4:3:3)/VN 10.5
13 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiN(67:33) 9
14 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiN(67:33) 10
15 TiAlN(5:5)/AlCrN(7:3)/TiN/AlTiSiN(58:37:5) 9
상기 표 9와 표 10에서 확인되는 바와 같이, 본 발명의 실시예 1 ~ 8은 절삭수명이 10.5 ~ 13m로 모두 10.5m 이상이며 13m까지도 측정되는 반면, 비교예 1 ~ 15는 절삭수명이 8 ~ 10.5m로 모두 10.5 m 이하인 것으로 확인되어 본 발명의 실시예에 따른 절삭공구용 경질피막이 우수한 내충격성을 보여준다.
종합 절삭성능 평가
일반적으로 드릴링가공은 밀링가공에 비해, 절삭속도가 느리고 습식조건에서 실시하므로 절삭공구의 윤활성(내용착성)과 내치핑성이 매우 중요하다. 본 발명의 실시예 1 ~ 8 및 비교예 1 ~ 15에 따른 경질피막의 윤활성, 내치핑성, 내마모성 및 인성을 종합적으로 평가하기 위해, 피삭재 : 탄소강(SM45C,탄소강 드릴링가공), 샘플형번 : SPMT07T208/XOMT07T205(인덱서블 드릴 인써트, 20Ф-5D), 절삭 속도 : 150m/min, 절삭 이송: 0.1mm/rev, 절삭 깊이: 90mm(관통)의 조건으로, 드릴링가공 절삭성능 평가를 수행하였으며, 그 결과를 하기 표 11과 표 12에 각각 나타내었다.
표 11
실시예No. 나노 다층구조(타겟조성비) 절삭수명(hole: 20Ф-90mm) 수명 종료원인
1 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 256 정상마모
2 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 256 정상마모
3 TiAlN(5:5)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 256 정상마모
4 TiAlN(5:5)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 256 정상마모
5 AlTiN(7:3)/AlTiCrN(54:38:8)/NbN/AlTiSiN(58:37:5) 256 정상마모
6 AlTiN(7:3)/AlTiCrN(54:38:8)/VN/AlTiSiN(58:37:5) 256 정상마모
7 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN/AlTiSiN(58:37:5) 256 정상마모
8 AlTiN(7:3)/AlTiCrN(4:3:3)/VN/AlTiSiN(58:37:5) 256 정상마모
표 12
비교예No. 나노 다층구조(타겟조성비) 절삭수명(hole: 20Ф-90mm) 수명 종료원인
1 TiAlN(5:5)/AlTiCrN(54:38:8)/TiN 52 용착/치핑
2 TiAlN(5:5)/AlTiCrN(4:3:3)/TiN 52 과대마모
3 AlTiN(7:3)/AlTiCrN(54:38:8)/TiN 104 용착/치핑
4 AlTiN(7:3)/AlTiCrN(4:3:3)/TiN 52 과대마모
5 AlTiN(7:3)/AlCrN(7:3)/AlTiSiN(58:37:5) 156 치핑
6 TiAlN(5:5)/AlCrN(7:3)/AlTiSiN(58:37:5) 208 치핑
7 AlTiN(7:3)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 208 치핑
8 TiAlN(5:5)/AlTiCrN(54:38:8)/AlTiSiN(58:37:5) 208 치핑
9 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN 232 과대마모
10 TiAlN(5:5)/AlTiCrN(4:3:3)/VN 156 과대마모
11 AlTiN(7:3)/AlTiCrN(4:3:3)/NbN 156 과대마모
12 AlTiN(7:3)/AlTiCrN(4:3:3)/VN 156 과대마모
13 TiAlN(5:5)/AlTiCrN(54:38:8)/NbN/AlTiN(67:33) 232 과대마모
14 TiAlN(5:5)/AlTiCrN(54:38:8)/VN/AlTiN(67:33) 256 정상마모
15 TiAlN(5:5)/AlCrN(7:3)/TiN/AlTiSiN(58:37:5) 232 과대마모
상기 표 11과 표 12를 살펴보면, 전술된 내마모성, 인성(내충격성) 평가 결과와 유사하게 본 발명의 실시예 1 ~ 8의 경질피막을 형성한 절삭공구의 수명이 비교예 1 ~ 15에 비해 월등히 높은 수준을 나타내었다. 특히 비교예 1 ~ 15 중 비교예 14를 제외하고는 모두 용착/치핑이나 과대마모로 수명이 종료되는 것으로 나타나 종합 절삭성능 평가에서 본 발명의 실시예 1 ~ 8의 경질피막이 매우 우수한 성능을 발휘하였다.
이와 같이, 내마모성이 우수한 Ti과 Al의 복합 질화물층, 윤활성이 우수한 Al, Ti, Cr의 복합 질화물층, 인성과 내치핑성이 우수한 Nb 또는 V의 질화물층 및 내산화성이 우수한 Al, Ti, Si의 복합 질화물층을 순차 적층한 나노 다층구조가 내마모성, 윤활성, 인성, 내치핑성, 내산화성 등의 절삭공구용 경질피막에 요구되는 다양한 특성을 고르게 향상시킬 수 있어 난삭재용 절삭공구에 적합하게 사용될 수 있음이 확인되었다.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 통상의 기술자에게 있어 명백한 것이며, 이러한 변형 및 수정이 첨부되어 있는 특허청구범위에 속함은 당연한 것이다.

Claims (6)

  1. 모재의 표면에 형성되는 경질피막으로서,
    상기 경질피막은 박층A, 박층B, 박층C 및 박층D를 포함하는 나노 다층구조 또는 이 나노 다층구조가 2회 이상 반복 적층되는 구조로 이루어지되,
    상기 박층A는 Ti1-xAlxN(0.5≤x≤0.7)으로 이루어지고,
    상기 박층B는 Al1-y-zTiyCrzN(0.3≤y≤0.6, 0<z≤0.3)으로 이루어지며,
    상기 박층C는 MeN(Me는 Nb 또는 V)으로 이루어지고,
    상기 박층D는 Al1-a-bTiaSibN(0.3≤a≤0.7, 0<b<0.1)으로 이루어지는 것을 특징으로 하는 절삭공구용 경질피막.
  2. 제1항에 있어서,
    상기 나노 다층구조는,
    상기 모재로부터 박층A, 박층B, 박층C 및 박층D의 순으로 적층되는 것을 특징으로 하는 절삭공구용 경질피막.
  3. 제1항 또는 제2항에 있어서,
    상기 박층A, 박층B, 박층C 및 박층D는,
    평균두께가 각각 3 ~ 50nm로 구비되는 것을 특징으로 하는 절삭공구용 경질피막.
  4. 제1항 또는 제2항에 있어서,
    상기 박층A, 박층B, 박층C 및 박층D는,
    평균두께가 각각 20 ~ 40nm로 구비되는 것을 특징으로 하는 절삭공구용 경질피막.
  5. 제1항 또는 제2항에 있어서,
    상기 절삭공구용 경질피막은,
    평균두께가 1 ~ 20㎛로 구비되는 것을 특징으로 하는 절삭공구용 경질피막.
  6. 제1항 또는 제2항에 있어서,
    상기 절삭공구용 경질피막은,
    900℃에서 30분간 열화 처리된 열화경도가 35GPa 이상인 것을 특징으로 하는 절삭공구용 경질피막.
PCT/KR2013/002168 2012-05-02 2013-03-18 절삭공구용 경질피막 WO2013165090A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380023044.XA CN104321460B (zh) 2012-05-02 2013-03-18 切削工具用硬质涂层
DE112013002278.8T DE112013002278B4 (de) 2012-05-02 2013-03-18 Hartbeschichtung für ein Schneidwerkzeug
US14/398,125 US9273388B2 (en) 2012-05-02 2013-03-18 Hard film for cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120046529A KR101351844B1 (ko) 2012-05-02 2012-05-02 절삭공구용 경질피막
KR10-2012-0046529 2012-05-02

Publications (1)

Publication Number Publication Date
WO2013165090A1 true WO2013165090A1 (ko) 2013-11-07

Family

ID=49514465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002168 WO2013165090A1 (ko) 2012-05-02 2013-03-18 절삭공구용 경질피막

Country Status (5)

Country Link
US (1) US9273388B2 (ko)
KR (1) KR101351844B1 (ko)
CN (1) CN104321460B (ko)
DE (1) DE112013002278B4 (ko)
WO (1) WO2013165090A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789925A (zh) * 2015-02-12 2015-07-22 青岛新晟威环保设备有限公司 一种用于金属阀门的pvd复合涂层及涂镀工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228726A1 (en) * 2016-04-08 2017-10-11 Seco Tools Ab Coated cutting tool
CN114059029B (zh) * 2021-11-18 2023-05-09 西华大学 用于高温合金加工的Cr/CrN/NbN/NbXN稀土超晶格涂层及其制备方法
DE102022113731A1 (de) 2022-05-31 2023-11-30 Hartmetall-Werkzeugfabrik Paul Horn Gmbh Beschichtetes Werkzeugteil und Beschichtungsverfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061520A (ja) * 2007-09-05 2009-03-26 Mitsubishi Materials Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
KR20100051642A (ko) * 2007-08-10 2010-05-17 미츠비시 마테리알 가부시키가이샤 표면 피복 절삭 공구
US20110111197A1 (en) * 2008-02-21 2011-05-12 Seco Tools Ab Multilayered coated cutting tool
KR20110105980A (ko) * 2010-03-22 2011-09-28 한국야금 주식회사 고경도 및 내산화성을 갖는 다층막 절삭공구
JP2012035378A (ja) * 2010-08-09 2012-02-23 Mitsubishi Materials Corp 表面被覆切削工具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576638B2 (ja) * 2007-05-30 2010-11-10 住友電工ハードメタル株式会社 表面被覆切削工具
KR100876366B1 (ko) 2008-04-24 2008-12-31 한국야금 주식회사 절삭공구용 다층경질 박막
US8409695B2 (en) 2010-05-28 2013-04-02 Kennametal Inc. Multilayer nitride hard coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051642A (ko) * 2007-08-10 2010-05-17 미츠비시 마테리알 가부시키가이샤 표면 피복 절삭 공구
JP2009061520A (ja) * 2007-09-05 2009-03-26 Mitsubishi Materials Corp 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
US20110111197A1 (en) * 2008-02-21 2011-05-12 Seco Tools Ab Multilayered coated cutting tool
KR20110105980A (ko) * 2010-03-22 2011-09-28 한국야금 주식회사 고경도 및 내산화성을 갖는 다층막 절삭공구
JP2012035378A (ja) * 2010-08-09 2012-02-23 Mitsubishi Materials Corp 表面被覆切削工具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789925A (zh) * 2015-02-12 2015-07-22 青岛新晟威环保设备有限公司 一种用于金属阀门的pvd复合涂层及涂镀工艺
CN104789925B (zh) * 2015-02-12 2017-08-25 青岛新晟威环保设备有限公司 一种用于金属阀门的pvd复合涂层及涂镀工艺

Also Published As

Publication number Publication date
US9273388B2 (en) 2016-03-01
KR101351844B1 (ko) 2014-01-16
CN104321460A (zh) 2015-01-28
CN104321460B (zh) 2016-04-20
KR20130123237A (ko) 2013-11-12
DE112013002278T5 (de) 2015-03-05
US20150125677A1 (en) 2015-05-07
DE112013002278B4 (de) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2013165091A1 (ko) 절삭공구용 경질피막
WO2013081232A1 (ko) 절삭공구용 경질피막
WO2015034203A1 (ko) 절삭공구용 경질피막
WO2017047949A1 (ko) 절삭공구용 경질피막
WO2013165092A1 (ko) 절삭공구용 경질피막
WO2012165696A1 (ko) 절삭공구용 코팅층
KR100576321B1 (ko) 고인성 절삭공구/내마모성 공구
WO2013165090A1 (ko) 절삭공구용 경질피막
JP2006305721A (ja) 被覆工具
US10309017B2 (en) Laminated hard film and cutting tool
WO2022102929A1 (ko) 절삭공구용 경질 피막
WO2018016732A1 (ko) 절삭공구용 경질피막
JPH08209337A (ja) 被覆硬質合金
US7326461B2 (en) Composite material
WO2019045235A1 (ko) 내마모성과 인성이 우수한 경질피막
WO2016108421A1 (ko) 인성이 향상된 초경합금
WO2023090620A1 (ko) 내마모성과 인성이 우수한 경질피막을 포함하는 절삭공구
WO2016104943A1 (ko) 절삭공구
WO2021125516A1 (ko) 경질 피막이 형성된 절삭공구
WO2020111657A1 (ko) 절삭공구용 경질피막
KR101528790B1 (ko) 경질피막이 코팅된 절삭공구
JP6703311B2 (ja) 被覆切削工具
KR101215463B1 (ko) 절삭공구용 박막
WO2017104958A1 (ko) 절삭공구용 경질피막
KR20200079643A (ko) 절삭공구용 경질피막 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380023044.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13784203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14398125

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130022788

Country of ref document: DE

Ref document number: 112013002278

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13784203

Country of ref document: EP

Kind code of ref document: A1