WO2013161995A1 - Zoom lens, image-capturing device, and digital instrument - Google Patents

Zoom lens, image-capturing device, and digital instrument Download PDF

Info

Publication number
WO2013161995A1
WO2013161995A1 PCT/JP2013/062375 JP2013062375W WO2013161995A1 WO 2013161995 A1 WO2013161995 A1 WO 2013161995A1 JP 2013062375 W JP2013062375 W JP 2013062375W WO 2013161995 A1 WO2013161995 A1 WO 2013161995A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
image
zoom
zoom lens
Prior art date
Application number
PCT/JP2013/062375
Other languages
French (fr)
Japanese (ja)
Inventor
尾崎雄一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013161995A1 publication Critical patent/WO2013161995A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera

Definitions

  • the present invention relates to a zoom lens that includes a plurality of lens groups and performs zooming by changing the distance between the lens groups in the optical axis direction, an imaging device including the zoom lens, and a digital device equipped with the imaging device.
  • Imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • An imaging apparatus including a system is generally used. Imaging devices mounted on portable information terminals are rapidly increasing in pixel count and functionality, can handle relatively high pixel imaging devices, and can shoot subjects away from the photographer.
  • a small zoom lens that can be mounted on a small portable device in order to enable photographing even when the distance from the subject cannot be separated as in indoor photographing.
  • a thin type zoom lens In order to mount a zoom lens on a cellular phone or a portable information terminal, it is particularly required to reduce the thickness direction among the miniaturization.
  • a thin type zoom lens often uses a bending optical system that bends the optical axis by 90 degrees using a reflecting optical element such as a prism, and the first lens group uses the reflecting optical element in the thickness direction.
  • a variable magnification optical system that is miniaturized (see, for example, Patent Documents 1 and 2).
  • a solid-state imaging device such as a CCD or a CMOS may cause a decrease in the amount of light in the peripheral portion or a false color if light is not incident at an angle close to the imaging surface. Incidence of light perpendicularly to the imaging surface increases the overall optical length and effective diameter, and in recent years, by appropriately arranging microlenses on the individual light receiving elements constituting the solid-state imaging element, In general, a method of efficiently causing obliquely incident light to reach the light receiving element and suppressing a decrease in light amount and false color is generally used. For this reason, an optimum light incident angle is set for each solid-state imaging device.
  • the aperture stop moves together with the movable lens at the time of zooming. May cause a decrease in the amount of light or a false color.
  • variable magnification optical system having five components, such as positive, negative, positive, positive, and negative components as in Patent Document 2, the size of the reflective optical element in the first lens group tends to be large, and is not suitable for thinning.
  • the present invention has been made in view of the above-described problems of the background art, and achieves a compact size in the thickness direction, and a zoom lens capable of maintaining an optimal light incident angle for an image sensor even when zoomed, and
  • An object of the present invention is to provide an imaging apparatus and a digital device using such a zoom lens.
  • a zoom lens according to the present invention has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power.
  • a zoom lens that includes a third lens group and a fourth lens group, and performs zooming by changing an interval between adjacent lens groups, and zooming from the wide-angle end to the telephoto end, The distance from the second lens group is reduced, the first lens group includes a reflective optical element having an action of bending the optical path by reflecting the light beam, and the fourth lens group includes at least two lenses, A lens having a negative refractive power on the most image side satisfies the following conditional expression.
  • f4N focal length of the lens closest to the image side of the fourth lens group
  • fW focal length of the entire system at the wide angle end
  • fT focal length of the entire system at the telephoto end
  • the zoom lens includes, in order from the object side, a first lens group including a reflective optical element having a negative refractive power and a function of bending a light path by reflecting a light beam, and a second lens group having a positive refractive power. And a third lens group having a negative refractive power and a fourth lens group having at least two lenses and having a lens having a negative refractive power closest to the image side.
  • the distance from the first lens group to the second lens group is reduced by zooming from the wide-angle end to the telephoto end. Therefore, the distance between the first lens group and the second lens group is the longest at the wide-angle end.
  • the power arrangement of the first lens group and the second lens group is a retrofocus type arrangement. Therefore, since the zoom lens can ensure a relatively long back focus while shortening the entire length, an optical low-pass filter, an infrared cut filter, or the like is disposed between the most image side surface of the zoom lens and the image sensor. Space can be secured.
  • the zoom lens can suppress the total optical length while ensuring a relatively long focal length.
  • Conditional expression (1) defines the ratio between the focal length of the lens closest to the image side in the fourth lens group and the focal length intermediate between the wide-angle end and the telephoto end.
  • the zoom lens satisfies the following conditional expression. 0.05 ⁇ sag4N2 / hmax4N2 ⁇ 0.30 (2)
  • sag4N2 Sag amount at the effective diameter of the image side lens of the fourth lens group in the most image side lens
  • hmax4N2 Effective diameter of the image side surface of the lens in the fourth lens group closest to the image side
  • Conditional expression (2) defines the ratio between the sag amount and the effective diameter at the effective diameter of the image side surface of the lens closest to the image side in the fourth lens group.
  • the sag amount means a distance in the optical axis direction from the plane to a specific position on the lens surface with reference to a plane orthogonal to the optical axis including the intersection of the focused lens surface and the optical axis.
  • conditional expression (2) when the upper limit value of conditional expression (2) is not reached, the occurrence of coma aberration and the like due to an excessive sag amount can be suppressed.
  • Conditional expression (3) defines the maximum value of the difference between the incident angle at the wide-angle end and the incident angle at the telephoto end of the principal ray at an arbitrary image height.
  • Conditional expression (4) defines the maximum value of the incident angle of the principal ray incident on the image plane at the wide angle end.
  • Conditional expression (5) defines the maximum value of the incident angle of the principal ray incident on the image plane at the telephoto end.
  • the sign of the incident angle is 0 in the direction parallel to the optical axis, and positive in the direction away from the optical axis when the light beam emitted from the final surface goes to the image plane.
  • the fourth lens group includes a lens having a positive refractive power closest to the object side, and satisfies the following conditional expression. 0.80 ⁇
  • f4P focal length of the lens closest to the object side of the fourth lens group
  • f4N focal length of the lens closest to the image side of the fourth lens group
  • the fourth lens group Since the fourth lens group has a lens having a positive refractive power closest to the object side, it becomes a combination of positive and negative lenses in the fourth lens group, so that various aberrations such as field curvature and lateral chromatic aberration are effectively corrected. It becomes possible.
  • Conditional expression (6) defines the ratio between the focal length of the lens closest to the object side and the focal length of the lens closest to the image side in the fourth lens group. By falling below the upper limit value of conditional expression (6), the lens on the most object side has an appropriate positive refractive power, and various aberrations such as field curvature and astigmatism can be effectively corrected.
  • conditional expression (6) it is possible to suppress an increase in the difference in incident angle on the imaging surface between the wide-angle end and the telephoto end due to the weakest refractive power of the lens on the image side. It becomes.
  • the fourth lens group includes a lens having a positive refractive power closest to the object side, and satisfies the following conditional expression. -10.0 ⁇ 4P ⁇ 4N ⁇ 50.0 (7)
  • ⁇ 4P Abbe number of the lens closest to the object side in the fourth lens group
  • ⁇ 4N Abbe number of the lens closest to the image side in the fourth lens group
  • Conditional expression (7) defines the difference between the Abbe number of the lens closest to the object side and the Abbe number of the lens closest to the image side in the fourth lens group.
  • the fourth lens group includes a lens having a positive refractive power closest to the object side, and the positive lens moves in an in-plane direction perpendicular to the optical axis direction, whereby an image is obtained.
  • the image blur on the surface is corrected and the following conditional expression is satisfied.
  • m4pT lateral magnification at the telephoto end of the lens closest to the object side of the fourth lens group
  • m4rT combined lateral magnification at the telephoto end of the lens group located on the image side of the lens closest to the object side of the fourth lens group
  • Conditional expression (8) indicates that the amount of movement of the axial ray on the image plane when the lens closest to the object side (hereinafter referred to as camera shake lens) in the fourth lens group moves by a distance of 1 perpendicular to the optical axis (that is, the lens). The movement ratio between the image and the image. Therefore, by exceeding the lower limit value of the conditional expression (8), it is possible to perform camera shake correction while suppressing the movement amount of the camera shake lens. On the other hand, by falling below the upper limit value of conditional expression (8), it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the camera shake lens.
  • the second lens group has an aperture stop.
  • the second lens group which is a movable group at the time of zooming, has an aperture stop, the movement amount of the moving group at the time of zooming is more limited than when a fixed aperture is arranged between the moving groups. Therefore, it is possible to achieve a high zoom ratio while suppressing the overall length.
  • the first lens group includes a lens having negative refractive power on the most object side, and satisfies the following conditional expression. 2.0 ⁇
  • f1a focal length of the lens closest to the object side in the first lens group
  • fW focal length of the entire system at the wide angle end
  • Conditional expression (9) defines the ratio between the focal length of the lens closest to the object side in the first lens group and the focal length of the entire system at the wide angle end.
  • the lens has an appropriate negative refractive power, and a wide angle of view can be secured at the wide angle end.
  • the lower limit value of the conditional expression (9) it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the lens.
  • Conditional expression (10) defines the ratio between the lateral magnification of the second lens group at the telephoto end and the lateral magnification of the second lens group at the wide-angle end.
  • focusing is performed by moving the third lens group. In this way, by performing focusing with the third lens group, it is possible to obtain a clear image up to a short-distance object without causing an increase in the total optical length or an increase in the front lens diameter due to the extension.
  • the third lens group is composed of a single lens.
  • the third lens group is a single lens, it is possible to prevent the entire third lens group from becoming large. Therefore, it is possible to secure a space for zooming and to reduce the cost. Furthermore, since the entire third lens group can be reduced in weight, the load on the actuator during zooming can be suppressed.
  • the fourth lens group does not move in the optical axis direction during zooming and focusing.
  • the fourth lens group is the lens group closest to the image sensor, and if the fourth lens group is moved during zooming or focusing, the distance from the image sensor becomes closer, and the final lens is also susceptible to dust and scratches. May be.
  • the tendency is prominent.
  • the distance between the final lens and the image sensor is fixed by not moving the fourth lens group, the influence of dust and scratches can be suppressed.
  • the image pickup device is in a sealed state, dust such as dust can be prevented from entering the image pickup device.
  • a lens having substantially no power is further included.
  • An imaging apparatus includes the zoom lens described above and an imaging element that photoelectrically converts an image formed on the imaging surface by the zoom lens.
  • a digital device includes the above-described imaging device and a display unit that displays an image.
  • a digital device that achieves compactness in the thickness direction can be obtained.
  • the digital device referred to in the present application is a concept including communication devices (mobile communication devices / terminals) and information devices (portable information devices / terminals) that can be carried and used, including mobile phones, PDAs, smartphones, and the like. .
  • FIG. 3A and 3B are perspective views of the front side and the back side of the digital device, respectively.
  • 4A is a cross-sectional view at the wide-angle end of Example 1
  • FIG. 4B is a cross-sectional view at the middle
  • FIG. 4C is a cross-sectional view at the telephoto end.
  • FIG. 5A is an aberration diagram at the wide-angle end in Example 1
  • FIG. 5B is an aberration diagram at the middle
  • FIG. 5C is an aberration diagram at the telephoto end.
  • FIG. 5A is an aberration diagram at the wide-angle end in Example 1
  • FIG. 5B is an aberration diagram at the middle
  • FIG. 5C is an aberration diagram at the telephoto end.
  • FIG. 6 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the first exemplary embodiment.
  • 7A is a cross-sectional view at the wide-angle end of the second embodiment
  • FIG. 7B is a cross-sectional view at the middle
  • FIG. 7C is a cross-sectional view at the telephoto end.
  • FIG. 8A is an aberration diagram at the wide-angle end of Example 2
  • FIG. 8B is an aberration diagram at the middle
  • FIG. 8C is an aberration diagram at the telephoto end.
  • FIG. 6 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the second exemplary embodiment.
  • FIG. 10A is a cross-sectional view at the wide-angle end of Example 3
  • FIG. 10B is a cross-sectional view at the middle
  • FIG. 10C is a cross-sectional view at the telephoto end.
  • 11A is an aberration diagram at the wide-angle end of Example 3
  • FIG. 11B is an aberration diagram at the middle
  • FIG. 11C is an aberration diagram at the telephoto end.
  • FIG. 10 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the third exemplary embodiment.
  • 13A is a cross-sectional view at the wide-angle end of Example 4
  • FIG. 13B is a cross-sectional view at the middle
  • FIG. 13C is a cross-sectional view at the telephoto end.
  • FIG. 14A is an aberration diagram at the wide-angle end of Example 4, FIG. 14B is an aberration diagram at the middle, and FIG. 14C is an aberration diagram at the telephoto end.
  • FIG. 10 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the fourth exemplary embodiment.
  • 16A is a cross-sectional view at the wide-angle end of Example 5
  • FIG. 16B is a cross-sectional view at the middle
  • FIG. 16C is a cross-sectional view at the telephoto end.
  • FIG. 17A is an aberration diagram at the wide-angle end of Example 5
  • FIG. 17B is an aberration diagram at the middle
  • FIG. 17C is an aberration diagram at the telephoto end.
  • FIG. 10 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the fifth exemplary embodiment.
  • FIG. 1 is a cross-sectional view illustrating a camera module that is an image pickup apparatus including a zoom lens according to an embodiment of the present invention.
  • the camera module (imaging device) 50 includes a zoom lens 10 that forms a subject image, an image sensor 51 that photoelectrically converts the subject image formed by the zoom lens 10, and holds the image sensor 51 from behind and wiring and the like.
  • a wiring board 52 having a zoom lens 10 and the like, and a lens barrel portion 54 having an opening OP through which a light beam from the object side is incident are provided.
  • the zoom lens 10 has a function of forming a subject image on the imaging surface (projected surface) I of the image sensor 51.
  • the camera module 50 is used by being incorporated in a digital device described later.
  • the zoom lens 10 includes a first lens group Gr1, a second lens group Gr2 (including an aperture stop S), a third lens group Gr3, and a fourth lens group Gr4 in order from the object side.
  • Each lens group Gr1 to Gr4 includes a single lens or a plurality of lenses.
  • the first lens group Gr1 incorporates a reflective optical element PRM that bends the optical path by reflection, and reflects the light beam traveling in the ⁇ Z direction by the inclined inner surface 12a so that it is bent by 90 ° and directed in the + Y direction.
  • the zoom lens 10 illustrated in FIG. 1 has the same configuration as the zoom lens 110 of Example 1 described later.
  • the image sensor 51 is a sensor chip made of a solid-state image sensor.
  • the photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each pixel of RGB, and outputs an analog signal thereof.
  • the surface of the photoelectric conversion unit 51a as the light receiving unit is an imaging surface (projected surface) I.
  • microlenses are arranged on the individual light receiving elements on the imaging surface I. That is, the image sensor 51 has an optimum light beam incident angle according to the incident position. When light beams are incident on each part of the image sensor 51 in an appropriate angle range, the occurrence of color misregistration and the peripheral light amount ratio The reduction can be suppressed.
  • the wiring substrate 52 has a role of aligning and fixing the image pickup device 51 to other members (for example, the lens barrel portion 54) via a support.
  • the wiring board 52 receives supply of voltages and signals for driving the image pickup device 51 and the first, second, and third drive mechanisms 55a, 55b, and 55c from an external circuit, and sends a detection signal to the external circuit. Or output to.
  • a holder member (not shown) is arranged and fixed so that a parallel flat plate F constituted by, for example, an IR (infrared) cut filter, an optical low-pass filter, etc. covers the image sensor 51 and the like. Has been.
  • the lens barrel portion 54 houses and holds the zoom lens 10.
  • the lens barrel portion 54 moves the second and third lens groups Gr2 and Gr3 of the lens groups Gr1 to Gr4 constituting the zoom lens 10 along the optical axis AX, thereby changing the magnification and focusing of the zoom lens 10.
  • the first and second drive mechanisms 55a and 55b are provided. Both drive mechanisms 55a and 55b can operate independently.
  • the first drive mechanism 55a reciprocates the second lens group Gr2 along the optical axis AX
  • the second drive mechanism 55b reciprocates the third lens group Gr3 along the optical axis AX.
  • the lens barrel portion 54 includes a third drive mechanism 55c that reciprocates the eighth lens L41 closest to the object side in the fourth lens group Gr4 perpendicularly to the optical axis AX.
  • the third drive mechanism 55c enables camera shake correction that appropriately shifts the image on the imaging surface I in the X direction and the Z direction.
  • These drive mechanisms 55a, 55b, and 55c include actuators such as stepping motors and voice coil motors, and linear motion guides and other mechanical mechanisms.
  • FIGS. 2, 3A, and 3B An example of the mobile communication terminal 300 that is a digital device equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 2, 3A, and 3B.
  • the mobile communication terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging function unit 100 having a camera module 50 that is an imaging device, and a control unit that comprehensively controls each unit and executes a program corresponding to each process ( CPU) 310, display operation unit 320 that is a touch panel that displays data related to communication, captured images and videos, and receives user operations, an operation unit 330 including a power switch, and the like, via antenna 341
  • a wireless communication unit 340 for realizing various types of information communication with an external server, etc.
  • a storage unit (ROM) storing necessary data such as system programs, various processing programs, and terminal IDs of the mobile communication terminal 300 360, various processing programs and data executed by the control unit 310, processing data, Ku has a temporary storage unit used as a work area for temporarily storing the imaging data and the like by the imaging function unit 100 (RAM) 370 or the like.
  • the imaging function unit 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, a camera shake detection sensor 109, and the like in addition to the camera module 50 described above.
  • the control unit 103 controls each unit of the imaging function unit 100.
  • the control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs read out from the ROM and expanded in the RAM are cooperated with the CPU. Execute the process.
  • the control unit 310 is communicably connected to the control unit 103 of the imaging function unit 100, and can exchange control signals and image data.
  • the optical system drive unit 105 operates the first and second drive mechanisms 55a and 55b of the zoom lens 10 when zooming, focusing, exposure, and the like under the control of the control unit 103, and the state of the zoom lens 10 To control.
  • the optical system driving unit 105 operates the first driving mechanism 55a to appropriately move the second lens group Gr2 along the optical axis AX, and operates the second driving mechanism 55b to operate the third lens.
  • the zoom lens 10 is caused to perform a zoom operation. That is, during the zoom operation, the first and fourth lens groups Gr1 and Gr4 are fixed.
  • the optical system driving unit 105 causes the zoom lens 10 to perform a focusing operation by operating the second driving mechanism 55b alone and moving the third lens group Gr3 appropriately along the optical axis AX. That is, during the focusing operation, the first, second, and fourth lens groups Gr1, Gr2, and Gr4 are fixed. Further, the optical system driving unit 105 operates the third driving mechanism 55c to appropriately move the eighth lens L41 of the fourth lens group Gr4 in the direction perpendicular to the optical axis AX, thereby performing a camera shake correction operation on the zoom lens 10. To do. That is, during the camera shake correction operation, the ninth lens L42 of the first to third lens groups Gr1 to Gr3 and the fourth lens group Gr4 is fixed.
  • the image sensor driving unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor drive unit 107 controls the image sensor 51 by scanning and driving based on the timing signal. Further, the image sensor driving unit 107 converts the detection signal output from the image sensor 51 or an analog signal as a photoelectric conversion signal into digital image data. Further, the image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal transmitted from the image sensor 51.
  • the image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.
  • the camera shake detection sensor 109 for example, an acceleration sensor or the like is used, and detects the shake in the pitch direction (vertical direction) and yaw direction (horizontal direction) of the mobile communication terminal 300 and transmits it to the control unit 103 during imaging. Based on this, the control unit 103 operates the third drive mechanism 55c via the optical system drive unit 105 to move the eighth lens L41 of the fourth lens group Gr4 in the direction perpendicular to the optical axis AX, thereby performing a camera shake correction operation. To do.
  • the photographing operation of the mobile communication terminal 300 including the imaging function unit 100 will be described.
  • subject monitoring through image display
  • image shooting execution are performed.
  • an image of the subject obtained through the zoom lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51.
  • the image sensor 51 is scanned and driven by the image sensor driving unit 107, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.
  • This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51.
  • the digital data is subjected to color process processing including pixel interpolation processing and Y correction processing, and a digital luminance signal Y and color difference signals Cb, Cr (image data) are generated and stored in the image memory 108.
  • the stored digital data is periodically read out from the image memory 108 to generate a video signal thereof, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.
  • This display operation unit 320 functions as an electronic viewfinder in monitoring, and displays captured images in real time. In this state, zooming, focusing, exposure, and the like of the zoom lens 10 are set by driving the optical system driving unit 105 based on operation input performed by the user via the display operation unit 320 at any time.
  • the imaging function unit 100 described above is an example of a functional unit configuration suitable for the present invention, and the present invention is not limited to this.
  • the camera module 50 that is an imaging device equipped with the zoom lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.
  • PDA Personal Digital Assistant
  • the zoom lens 10 shown in FIG. 1 forms a subject image on the imaging surface I of the image sensor 51, and in order from the object side, a first lens group Gr1 having a negative refractive power and a positive refractive power.
  • the first lens group Gr1 includes, for example, a negative first lens L11 that is convex toward the object side, a reflective optical element PRM that is a prism mirror, a negative second lens L12 that is biconcave, and a biconvex positive lens.
  • the second lens L12 and the third lens L13 are, for example, cemented lenses.
  • the second lens group Gr2 includes, for example, a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. . Both surfaces of the fourth lens L21 are aspheric.
  • the fifth lens L22 and the sixth lens L23 are, for example, cemented lenses.
  • the third lens group Gr3 includes, for example, a biconcave negative seventh lens L31.
  • the seventh lens L31 is a single lens made of plastic, and both surfaces of the seventh lens L31 are aspheric.
  • the fourth lens group Gr4 includes at least two lenses, and includes, for example, a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. That is, in the fourth lens group Gr4, the eighth lens L41 closest to the object side has a positive refractive power. The ninth lens L42 closest to the image side has negative refractive power. Both surfaces of the eighth lens L41 are aspheric.
  • the aperture stop S is not limited to the position between the fourth lens L21 and the fifth lens L22, but is disposed, for example, on the object side of the fourth lens L21 or the image side of the sixth lens L23. Also good.
  • the zoom lens 10 changes the positions of the second lens group Gr2 and the third lens group Gr3 among the first to fourth lens groups Gr1 to Gr4 upon zooming from the wide angle end to the telephoto end. Specifically, during zooming from the wide-angle end to the telephoto end, the first and fourth lens groups Gr1 and Gr4 are fixed and do not move, and the second lens group Gr2 moves to the object side and moves to the first lens group. The distance from Gr1 is reduced, the third lens group Gr3 is also moved to the object side, and the distance from the fourth lens group Gr4 is increased.
  • the first lens group Gr1 By making the first lens group Gr1 in a negative configuration, it is possible to quickly loosen light rays incident at a large angle from the object side, which is advantageous in terms of downsizing the front lens diameter. Further, by providing the reflective optical element PRM in the first lens group Gr1, the size or thickness of the camera module (imaging device) 50 in the depth direction (Z direction) can be reduced. In the zoom lens 10, the second lens group Gr2 and the third lens group Gr2 move by zooming from the wide-angle end to the telephoto end, and at the wide-angle end, the first lens group Gr1 and the second lens group are moved. The distance from Gr2 is the farthest.
  • the power arrangement of the first lens group Gr1 and the second lens group Gr2 is a retrofocus type arrangement. Therefore, since the zoom lens 10 can ensure a relatively long back focus while shortening the entire length, a sufficient space for disposing the parallel plate F between the image-side surface of the zoom lens 10 and the image sensor 51. Can be secured. On the other hand, the distance between the first lens group Gr1 and the second lens group Gr2 becomes narrower as the lens moves from the wide-angle end to the telephoto end side, so that positive power is exhibited by combining the first and second lens groups Gr1 and Gr2. .
  • the zoom lens 10 can suppress the total optical length while ensuring a relatively long focal length.
  • the above zoom lens 10 satisfies the conditional expressions (1) to (10) described above.
  • the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction.
  • the height in the direction perpendicular to the optical axis is h, and is expressed by the following “Equation 1”.
  • Equation 1 Ai: i-order aspheric coefficient
  • R radius of curvature
  • K conic constant
  • Table 1 shows lens data of Example 1.
  • the surface number is S
  • the effective radius (mm) is ER (mm)
  • the aperture is stop.
  • S R (mm) D (mm) Nd ⁇ d ER (mm) (Surface No.) (Effective radius) 1 9.521 0.400 1.88300 40.8 3.61 2 4.805 1.595 3.13 3 infinity 5.000 1.84670 23.8 2.97 4 infinity 0.960 2.03 5 -5.643 0.400 1.83480 42.7 1.79 6 12.621 0.888 1.92290 20.9 1.77 7 -18.972 d1 1.75 8 * 4.116 1.691 1.58910 61.3 1.90 9 * -9.131 0.300 1.77 10 (stop) infinity 0.000 1.61 11 14.631 0.400 1.91080 35.3 1.59 12 3.092 1.917 1.49710 81.6 1.51 13 * -5.436 d2 1.50 14 * -23.150 0.500 1.54470 56.2 1.52 15 * 5.562 d3 1.53 16 * 12.
  • Table 2 shows the aspherical coefficients of the lens surfaces of the zoom lens of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • FIGS. 4A to 4C are cross-sectional views of the zoom lens 110 (10) of the first embodiment.
  • 4A is a cross-sectional view at the wide-angle end
  • FIG. 4B is a cross-sectional view at the middle
  • FIG. 4C is a cross-sectional view at the telephoto end.
  • the reflective optical element PRM is represented as a parallel plate equivalent to the optical path length.
  • the zoom lens 110 (10) of Example 1 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4.
  • the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens.
  • a third lens L13 is cemented lenses.
  • the second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23.
  • the fifth lens L22 and the sixth lens L23 are cemented lenses.
  • the third lens group Gr3 is composed of a single lens and includes a biconcave negative seventh lens L31.
  • the fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42.
  • symbol F shows the parallel plate which assumed the optical low-pass filter, IR cut filter, the sealing glass of a solid-state image sensor, etc.
  • Reference numeral I denotes an imaging surface of the imaging element 51.
  • FIG. 5A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide angle end of the zoom lens 110
  • FIG. 5B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 5C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
  • the solid line represents the d line and the dotted line represents the g line
  • the solid line represents the sagittal image plane and the dotted line represents the meridional. It shall represent the image plane.
  • FIG. 6 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 110 according to the first embodiment, in which the horizontal axis represents the image height and the vertical axis represents the chief ray incident angle.
  • the solid line represents the incident angle at the wide-angle end
  • the dotted line represents the incident angle at the telephoto end.
  • the zoom lens 110 of Example 1 the second lens group Gr2 moves to the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4.
  • the remaining lens groups Gr1 and Gr4 are fixed during zooming.
  • focusing from infinity to a finite distance can be performed by moving the third lens group Gr3.
  • the fourth lens L21 and the sixth lens L23 are assumed to be glass mold lenses
  • the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses
  • the other lenses L11, L12, L13, L22, L42 Assumes a polished lens made of glass material.
  • the eighth lens L41 moves in the in-plane direction perpendicular to the optical axis AX direction, so that the imaging position is compensated for the change in the position of the target image on the imaging surface I. To correct camera shake.
  • the second lens group Gr2 includes the aperture stop S, the light flux passing through the lens constituting the second lens group Gr2 is thick, and the second lens group Gr2 moves a long distance upon zooming from the wide angle end to the telephoto end.
  • the decentering error sensitivity of the lens group Gr2 needs to be as small as possible. Therefore, by aligning the fourth lens L21, it is possible to reduce asymmetric blur in the screen called single blur that occurs in the entire system.
  • the F-number is smaller at the wide-angle end than the telephoto end, the depth of focus is shallow, and it is easily affected by one blur. Therefore, it is preferable to perform this alignment at the wide-angle end during assembly. .
  • the alignment means that the lens is decentered with respect to the optical axis AX, thereby canceling and reducing one-sided blur caused by other than the fourth lens L21.
  • decentering with respect to the optical axis AX not only parallel decentering but also tilt decentering may be performed. Further, alignment may be performed for the purpose of reducing axial coma rather than reducing one-sided blur.
  • Table 5 shows lens data of Example 2.
  • S R (mm) D (mm) Nd ⁇ d ER (mm) 1 12.007 0.400 1.90370 31.3 3.82 2 6.530 1.304 3.44 3 infinity 5.553 1.84670 23.8 3.32 4 infinity 1.084 2.21 5 -5.137 0.400 1.72920 54.7 1.93 6 34.774 0.774 1.92290 20.9 1.92 7 -18.395 d1 1.90 8 * 4.338 1.783 1.59200 67.0 1.86 9 * -13.189 0.300 1.68 10 (stop) infinity 0.000 1.54 11 16.865 0.400 1.90370 31.3 1.54 12 4.553 1.420 1.49710 81.6 1.50 13 * -6.275 d2 1.50 14 * 50.581 0.500 1.54470 56.2 1.51 15 * 4.216 d3 1.50 16 * 6.728 1.600 1.54470 56.2 2.26 17 * -16.363 0.987 2.20 18 * -7.210 0.898 1.85 130 40.1 2.02 19 * 77.266
  • Table 6 shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 2.
  • FIGS. 7A to 7C are cross-sectional views of the zoom lens 210 (10) of the second embodiment.
  • 7A is a cross-sectional view at the wide-angle end
  • FIG. 7B is a cross-sectional view at the middle
  • FIG. 7C is a cross-sectional view at the telephoto end.
  • the zoom lens 210 (10) of Example 2 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4.
  • the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens.
  • a third lens L13 is cemented lenses.
  • the second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23.
  • the fifth lens L22 and the sixth lens L23 are cemented lenses.
  • the third lens group Gr3 includes a single lens, and includes a seventh meniscus L31 that is convex on the object side and has a negative meniscus.
  • the fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42.
  • symbol F shows the parallel plate which assumed the optical low-pass filter, IR cut filter, the sealing glass of a solid-state image sensor, etc.
  • Reference numeral I denotes an imaging surface of the imaging element 51.
  • FIG. 8A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 210
  • FIG. 8B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 8C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
  • FIG. 9 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 210 of the second embodiment.
  • the solid line represents the incident angle at the wide-angle end
  • the dotted line represents the incident angle at the telephoto end.
  • the zoom lens 210 of Example 2 the second lens group Gr2 moves toward the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4.
  • the remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3.
  • the fourth lens L21, the sixth lens L23, and the ninth lens L42 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13 and L22 are assumed to be polished lenses made of a glass material.
  • camera shake correction is performed by moving the eighth lens L41 in the in-plane direction perpendicular to the optical axis AX direction.
  • Table 9 shows lens data of Example 3.
  • Table 10 below shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 3.
  • FIG. 10A to 10C are cross-sectional views of the zoom lens 310 (10) of the third embodiment.
  • 10A is a cross-sectional view at the wide-angle end
  • FIG. 10B is a cross-sectional view at the middle
  • FIG. 10C is a cross-sectional view at the telephoto end.
  • the zoom lens 310 (10) of Example 3 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4.
  • the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens.
  • the second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23.
  • the fifth lens L22 and the sixth lens L23 are cemented lenses.
  • the third lens group Gr3 is composed of a single lens and includes a biconcave negative seventh lens L31.
  • the fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42.
  • the symbol F indicates a parallel plate
  • the symbol I indicates an imaging surface of the imaging element 51.
  • FIG. 11A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 310
  • FIG. 11B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 11C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
  • FIG. 12 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 310 of the third embodiment.
  • the solid line represents the incident angle at the wide-angle end
  • the dotted line represents the incident angle at the telephoto end.
  • the zoom lens 310 of Example 3 the second lens group Gr2 moves to the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4.
  • the remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3.
  • the fourth lens L21, the sixth lens L23, and the ninth lens L42 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13 and L22 are assumed to be polished lenses made of a glass material.
  • camera shake correction is performed by the eighth lens L41 moving in the in-plane direction perpendicular to the optical axis AX direction.
  • Table 13 shows lens data of Example 4.
  • S R (mm) D (mm) Nd ⁇ d ER (mm) 1 12.899 0.400 1.88100 40.1 3.62 2 4.980 1.606 3.10 3 infinity 4.928 1.84666 23.8 2.91 4 infinity 0.964 2.02 5 -5.495 0.400 1.72916 54.7 1.78 6 12.100 0.812 1.92286 20.9 1.75 7 -36.129 d1 1.72 8 * 4.318 1.953 1.62263 58.2 1.92 9 * -8.313 0.012 1.76 10 (stop) infinity 0.298 1.69 11 14.657 0.400 1.90366 31.3 1.63 12 3.229 1.748 1.49700 81.6 1.54 13 * -6.865 d2 1.53 14 * -19.438 0.500 1.54470 56.2 1.54 15 * 6.323 d3 1.55 16 * 23.928 1.443 1.63469 23.9 2.08 17 * -4.105 0.300 2.07 18 -9.276 0.
  • Table 14 below shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 4.
  • FIG. 13A to 13C are cross-sectional views of the zoom lens 410 (10) of the fourth embodiment.
  • 13A is a cross-sectional view at the wide-angle end
  • FIG. 13B is a cross-sectional view at the middle
  • FIG. 13C is a cross-sectional view at the telephoto end.
  • the zoom lens 410 (10) of Example 4 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4.
  • the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens.
  • the second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23.
  • the fifth lens L22 and the sixth lens L23 are cemented lenses.
  • the third lens group Gr3 is composed of a single lens and includes a biconcave negative seventh lens L31.
  • the fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42.
  • the symbol F indicates a parallel plate
  • the symbol I indicates an imaging surface of the imaging element 51.
  • FIG. 14A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 410
  • FIG. 14B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 14C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
  • FIG. 15 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 410 according to the fourth embodiment.
  • the solid line represents the incident angle at the wide-angle end
  • the dotted line represents the incident angle at the telephoto end.
  • the zoom lens 410 of Example 4 the second lens group Gr2 moves toward the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving toward the image side and changing the interval between the adjacent lens groups Gr1 to Gr4.
  • the remaining lens groups Gr1 and Gr4 are fixed during zooming.
  • focusing from infinity to a finite distance can be performed by moving the third lens group Gr3.
  • the fourth lens L21 and the sixth lens L23 are assumed to be glass mold lenses
  • the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses
  • the other lenses L11, L12, L13, L22, L42 Assumes a polished lens made of glass material.
  • zoom lens 410 of Example 4 camera shake correction is performed by the eighth lens L41 moving in the in-plane direction perpendicular to the optical axis AX direction.
  • Table 17 shows lens data of Example 5.
  • S R (mm) D (mm) Nd ⁇ d ER (mm) 1 15.851 0.400 1.88300 40.8 4.03 2 5.952 1.586 3.49 3 infinity 5.593 1.84666 23.8 3.31 4 infinity 1.086 2.20 5 -5.137 0.400 1.72916 54.7 1.93 6 49.267 0.761 1.92286 20.9 1.91 7 -16.917 d1 1.90 8 * 4.195 1.820 1.59201 67.0 1.82 9 * -9.446 0.300 1.64 10 (stop) infinity 0.000 1.48 11 49.985 0.400 1.91082 35.3 1.48 12 4.409 1.508 1.49700 81.6 1.44 13 * -5.399 d2 1.45 14 * 37.205 0.500 1.54470 56.2 1.50 15 * 4.477 d3 1.50 16 * 7.092 1.600 1.54470 56.2 2.22 17 * -8.114 1.055 2.31 18 * -5.899 0.846 1.88202 37.2 2
  • Table 18 shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 5.
  • FIG. 16A to 16C are cross-sectional views of the zoom lens 510 (10) of the fifth embodiment.
  • 16A is a cross-sectional view at the wide-angle end
  • FIG. 16B is a cross-sectional view at the middle
  • FIG. 16C is a cross-sectional view at the telephoto end.
  • the zoom lens 510 (10) of Example 5 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4.
  • the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens.
  • the second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23.
  • the fifth lens L22 and the sixth lens L23 are cemented lenses.
  • the third lens group Gr3 includes a single lens, and includes a seventh meniscus L31 that is convex on the object side and has a negative meniscus.
  • the fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42.
  • the symbol F indicates a parallel plate
  • the symbol I indicates an imaging surface of the imaging element 51.
  • FIG. 17A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 510
  • FIG. 17B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration).
  • FIG. 17C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
  • FIG. 18 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 510 according to the fifth embodiment.
  • the solid line represents the incident angle at the wide-angle end
  • the dotted line represents the incident angle at the telephoto end.
  • zoom lens 510 of Example 5 when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis AX direction, and the third lens group Gr3 moves in the optical axis AX direction.
  • the zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4.
  • the remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3.
  • the fourth lens L21, the sixth lens L23, and the ninth lens L42 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13 and L22 are assumed to be polished lenses made of a glass material.
  • camera shake correction is performed by the eighth lens L41 moving in the in-plane direction perpendicular to the optical axis AX direction.
  • Table 21 summarizes the values of Examples 1 to 5 corresponding to the conditional expressions (1) to (10) for reference. [Table 21]
  • the present invention has been described based on the embodiment and examples, but the present invention is not limited to the examples described in the specification, and includes other examples and modifications. It will be apparent to those skilled in the art from the examples and ideas described in this specification.
  • the incident angle may be maintained from the image height to the maximum image height, or may be a maximum value at the intermediate image height and the incident angle may be decreased from the intermediate image height to the maximum image height.
  • a lens having substantially no power can be disposed between the ninth lens L42 of the fourth lens group Gr4 and the imaging surface I. In this case, the most image side of the fourth lens group Gr4. This lens effectively becomes the ninth lens L42.
  • a lens having substantially no power can be disposed between the eighth lens L41 and the third lens group Gr3 of the fourth lens group Gr4. In this case, the most object side lens of the fourth lens group Gr4 is effectively the eighth lens L41.
  • a lens having substantially no power can be disposed on the fourth lens group Gr4 side or the second lens group Gr2 side of the third lens group Gr3.
  • a lens having substantially no power can be arranged on the first lens group Gr1 side or the third lens group Gr3 side of the fourth lens L21 of the second lens group Gr2.
  • a lens having substantially no power can be disposed on the object side or the second lens group Gr2 side of the first lens group Gr1. In this case, the most object side lens of the first lens group Gr1 is effectively the first lens L11.
  • the temperature change of the plastic material can be reduced. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering.
  • the refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other.
  • a plastic material with extremely low temperature dependency of the refractive index is obtained.
  • the refractive index change due to temperature change can be reduced.
  • the plastic lens such as the seventh or eighth lens L31 or L41 in the first to fifth embodiments
  • the temperature of the entire zoom lens system can be changed. It is possible to further suppress the image point position fluctuations of.
  • An energy curable resin may be used to manufacture a plastic lens such as the eighth lens L41 in Examples 1 to 5.
  • a reflow process heating process
  • a technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting the substrate.
  • it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, a lens using a thermoplastic resin is not suitable.
  • the energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

Provided is a zoom lens that has a light-beam incident angle appropriate for an image-capturing element while allowing compactness in the thickness direction. The zoom lens comprises, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power, and a fourth lens group, power being varied by changing the gap between adjacent lens groups, wherein the gap between the first lens group and the second lens group is reduced when moving from a wide-angle end to a telephoto end; the first lens group includes a reflective optical element having a bending effect on a light path by reflecting light rays; and the fourth lens group comprises at least two lenses, has a negative-refraction lens closest to the image and satisfies the conditional expression 0.5<|f4N/(fW×fT)1/2|<1.5 (f4N is the focal distance of the lens closest to the image of the fourth lens group, fW is the focal distance of the complete system at the wide-angle end, and fT is the focal distance of the complete system at the telephoto end).

Description

ズームレンズ、撮像装置、及びデジタル機器Zoom lens, imaging device, and digital device
 本発明は、複数のレンズ群からなり光軸方向においてレンズ群の間隔を変えることで変倍を行うズームレンズ、かかるズームレンズを備える撮像装置、並びに、当該撮像装置を搭載したデジタル機器に関する。 The present invention relates to a zoom lens that includes a plurality of lens groups and performs zooming by changing the distance between the lens groups in the optical axis direction, an imaging device including the zoom lens, and a digital device equipped with the imaging device.
 近年、CCD(Charge Coupled Device)型イメージセンサー或いはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサー等の固体撮像素子を用いた撮像装置の高性能化及び小型化に伴い、撮像装置を備えた携帯電話や携帯情報端末が普及している。これらの機器では、サイズやコストの制約が非常に厳しいことから、通常のデジタルスチルカメラ等に比べて低画素数で小型の固体撮像素子と、1~4枚程度のプラスチックレンズからなる単焦点光学系とを備えた撮像装置が一般的に用いられている。携帯情報端末に搭載される撮像装置については、高画素化及び高機能化が急速に進んでおり、比較的高画素の撮像素子に対応でき、かつ、撮影者から離れた被写体をも撮影可能とするだけではなく、室内での撮影のように被写体からの距離を離すことができない場合にも撮影可能とするために、小型の携帯機器に搭載できる小型のズームレンズが要求されている。 In recent years, with the improvement in performance and miniaturization of imaging devices using solid-state imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, mobile phones equipped with imaging devices and Portable information terminals are widespread. Since these devices are extremely limited in size and cost, they have a small solid-state image sensor with a small number of pixels compared to ordinary digital still cameras, etc., and single-focus optics consisting of about 1 to 4 plastic lenses. An imaging apparatus including a system is generally used. Imaging devices mounted on portable information terminals are rapidly increasing in pixel count and functionality, can handle relatively high pixel imaging devices, and can shoot subjects away from the photographer. In addition, there is a demand for a small zoom lens that can be mounted on a small portable device in order to enable photographing even when the distance from the subject cannot be separated as in indoor photographing.
 携帯電話や携帯情報端末にズームレンズを搭載するためには、小型化のなかでも特に厚さ方向を薄くすることが求められている。
 厚みが薄いタイプのズームレンズには、プリズム等の反射光学素子を用いて光軸を90度折り曲げる屈曲光学系が多く用いられており、第1レンズ群に上記反射光学素子を用いて厚み方向の小型化を図った変倍光学系が知られている(例えば、特許文献1、2参照)。
In order to mount a zoom lens on a cellular phone or a portable information terminal, it is particularly required to reduce the thickness direction among the miniaturization.
A thin type zoom lens often uses a bending optical system that bends the optical axis by 90 degrees using a reflecting optical element such as a prism, and the first lens group uses the reflecting optical element in the thickness direction. There is known a variable magnification optical system that is miniaturized (see, for example, Patent Documents 1 and 2).
 一般に、CCDやCMOS等の固体撮像素子はフィルムとは異なり、光を撮像面に垂直に近い角度で入射させないと、周辺部での光量低下や、偽色等が発生することがある。光を撮像面に垂直に入射させることは、光学全長や有効径の増大をもたらすため、近年では、固体撮像素子を構成する個々の受光素子上にマイクロレンズを適切に配置することにより、周辺部で斜めに入射した光を効率よく受光素子上に到達させ、光量の低下や偽色を抑える方法が一般的に用いられている。そのため、固体撮像素子には、それぞれ最適な光線入射角度が設定されている。 Generally, unlike a film, a solid-state imaging device such as a CCD or a CMOS may cause a decrease in the amount of light in the peripheral portion or a false color if light is not incident at an angle close to the imaging surface. Incidence of light perpendicularly to the imaging surface increases the overall optical length and effective diameter, and in recent years, by appropriately arranging microlenses on the individual light receiving elements constituting the solid-state imaging element, In general, a method of efficiently causing obliquely incident light to reach the light receiving element and suppressing a decrease in light amount and false color is generally used. For this reason, an optimum light incident angle is set for each solid-state imaging device.
 しかしながら、ズームレンズにおいては、各ズームポジションで射出瞳位置が移動するため、像面への光線入射角度が変化する。この場合、上述のマイクロレンズによる固定的な補正を適正に維持するためには、ズームポジション毎の光線入射角度の変化量を小さくすることが必要となる。 However, in the zoom lens, since the exit pupil position moves at each zoom position, the light incident angle on the image plane changes. In this case, in order to properly maintain the fixed correction by the above-described microlens, it is necessary to reduce the amount of change in the light incident angle for each zoom position.
 それに対し、特許文献1のような負正負正4成分の変倍光学系では、変倍時に可動レンズとともに開口絞りが移動するため、広角端と望遠端での像面への光線入射角度の変化が大きく、光量の低下や偽色等を発生する可能性がある。 On the other hand, in a variable magnification optical system with negative, positive and negative four components as in Patent Document 1, the aperture stop moves together with the movable lens at the time of zooming. May cause a decrease in the amount of light or a false color.
 また、特許文献2のような正負正正負5成分の変倍光学系では、第1レンズ群における反射光学素子のサイズが大きくなりやすく、薄型化には不向きである。 Further, in a variable magnification optical system having five components, such as positive, negative, positive, positive, and negative components as in Patent Document 2, the size of the reflective optical element in the first lens group tends to be large, and is not suitable for thinning.
特開2010-152145号公報JP 2010-152145 A 特開2008-65347号公報JP 2008-65347 A
 本発明は、上記背景技術の問題に鑑みてなされたものであり、厚さ方向のコンパクト化を達成しつつ、さらに変倍しても撮像素子に最適な光線入射角度を維持できるズームレンズ、並びに、かかるズームレンズを用いた撮像装置及びデジタル機器を提供することを目的とする。 The present invention has been made in view of the above-described problems of the background art, and achieves a compact size in the thickness direction, and a zoom lens capable of maintaining an optimal light incident angle for an image sensor even when zoomed, and An object of the present invention is to provide an imaging apparatus and a digital device using such a zoom lens.
 上記目的を達成するため、本発明に係るズームレンズは、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、第4レンズ群とから構成され、隣接するレンズ群の間隔を変えることにより変倍を行うズームレンズであって、広角端から望遠端に至る変倍で第1レンズ群と第2レンズ群との間隔が縮小し、第1レンズ群は、光線を反射させることで光路を折り曲げる作用を持つ反射光学素子を含み、第4レンズ群は、少なくとも2枚のレンズから構成され、最も像側に負の屈折力のレンズを有し、以下の条件式を満足する。
 0.5<|f4N/(fW×fT)1/2|<1.5  …  (1)
ただし、
  f4N:第4レンズ群の最も像側のレンズの焦点距離
  fW:広角端における全系の焦点距離
  fT:望遠端における全系の焦点距離
In order to achieve the above object, a zoom lens according to the present invention has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. A zoom lens that includes a third lens group and a fourth lens group, and performs zooming by changing an interval between adjacent lens groups, and zooming from the wide-angle end to the telephoto end, The distance from the second lens group is reduced, the first lens group includes a reflective optical element having an action of bending the optical path by reflecting the light beam, and the fourth lens group includes at least two lenses, A lens having a negative refractive power on the most image side satisfies the following conditional expression.
0.5 <| f4N / (fW × fT) 1/2 | <1.5 (1)
However,
f4N: focal length of the lens closest to the image side of the fourth lens group fW: focal length of the entire system at the wide angle end fT: focal length of the entire system at the telephoto end
 上記ズームレンズは、物体側から順に、負の屈折力を有するとともに光線を反射させることで光路を折り曲げる作用を持つ反射光学素子を備える第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、少なくとも2枚のレンズから構成され、最も像側に負の屈折力のレンズを有する第4レンズ群とからなる。このような基本構成によって小型で収差の良好に補正されたズームレンズを提供できる。第1レンズ群を負の構成にすることにより、物体側から大きな角度で入射してくる光線をいち早く緩めることができ、前玉径のコンパクト化を図る点で有利となる。また、第1レンズ群内に反射光学素子を備えることにより、撮像装置の奥行き方向の大きさ又は厚みを小さくすることができる。 The zoom lens includes, in order from the object side, a first lens group including a reflective optical element having a negative refractive power and a function of bending a light path by reflecting a light beam, and a second lens group having a positive refractive power. And a third lens group having a negative refractive power and a fourth lens group having at least two lenses and having a lens having a negative refractive power closest to the image side. With such a basic configuration, it is possible to provide a zoom lens that is small and has good aberration correction. By making the first lens group in a negative configuration, it is possible to quickly relax a light beam incident at a large angle from the object side, which is advantageous in that the front lens diameter is reduced. In addition, by providing the reflective optical element in the first lens group, the size or thickness of the imaging device in the depth direction can be reduced.
 また、このズームレンズでは、広角端から望遠端に至るまでの変倍で、例えば第1レンズ群から第2レンズ群までの間隔が減少する。よって、広角端において、第1レンズ群と第2レンズ群との間隔が最も離れる。その上で、第2レンズ群が正の屈折力を持つことにより、第1レンズ群と第2レンズ群とのパワー配置はレトロフォーカスタイプの配置となる。したがって、ズームレンズは全長を短くしながらも、比較的長いバックフォーカスを確保できるので、ズームレンズの最も像側の面と撮像素子との間に、光学的ローパスフィルター、赤外線カットフィルター等を配置するスペースを確保できる。一方、広角端から望遠端側へ移動するにしたがい、第1レンズ群と第2レンズ群との間隔が狭まるので、両レンズ群の合成パワーが正パワーを発揮する。その上で、第3レンズ群が負の屈折力を持つことにより、第1レンズ群及び第2レンズ群の合成の正の屈折力と第3レンズ群の負の屈折力とのパワー配置は、「正・負」となりテレフォトタイプの配置となる。したがって、ズームレンズは比較的長い焦点距離を確保しつつ、光学全長を抑えることができる。 In this zoom lens, for example, the distance from the first lens group to the second lens group is reduced by zooming from the wide-angle end to the telephoto end. Therefore, the distance between the first lens group and the second lens group is the longest at the wide-angle end. In addition, since the second lens group has a positive refractive power, the power arrangement of the first lens group and the second lens group is a retrofocus type arrangement. Therefore, since the zoom lens can ensure a relatively long back focus while shortening the entire length, an optical low-pass filter, an infrared cut filter, or the like is disposed between the most image side surface of the zoom lens and the image sensor. Space can be secured. On the other hand, as the distance from the wide-angle end to the telephoto end increases, the distance between the first lens group and the second lens group decreases, so that the combined power of both lens groups exhibits positive power. In addition, since the third lens group has negative refractive power, the power arrangement of the combined positive refractive power of the first lens group and the second lens group and the negative refractive power of the third lens group is It becomes “positive / negative” and becomes a telephoto type arrangement. Therefore, the zoom lens can suppress the total optical length while ensuring a relatively long focal length.
 ズームレンズによってCCDやCMOS等の撮像素子上に結像させる場合、撮像素子を構成する個々の受光素子上にマイクロレンズが配置されている場合も、個々の受光素子とマイクロレンズとの位置関係は固定であるため、ズームレンズの各ポジションで射出瞳位置が移動しても、ズームポジション毎の光線入射角度の変化量は小さいことが望ましい。 When an image is formed on an image sensor such as a CCD or CMOS by a zoom lens, even when a micro lens is arranged on each light receiving element constituting the image sensor, the positional relationship between each light receiving element and the micro lens is Since it is fixed, it is desirable that the amount of change in the light incident angle for each zoom position is small even if the exit pupil position moves at each position of the zoom lens.
 条件式(1)は第4レンズ群の最も像側のレンズの焦点距離と、広角端及び望遠端の中間の焦点距離との比を規定している。条件式(1)の上限値を下回ることによって、最終レンズに強い負の屈折力が発生するため、ズームポジションに関わらず、射出瞳の位置が像側に寄るようになり、ポジション毎の像面への入射角度の変化が小さくなる。すなわち、変倍しても、撮像素子に設定されている光線入射角度をほぼ維持でき、色ずれや周辺光量比の低下を抑えることが可能となる。さらに、最も像側のレンズの有効径が比較的小さくなるため、薄型化が可能となる。一方、条件式(1)の下限値を上回ることにより、過度な屈折力によるコマ収差等の発生を抑えることが可能となる。 Conditional expression (1) defines the ratio between the focal length of the lens closest to the image side in the fourth lens group and the focal length intermediate between the wide-angle end and the telephoto end. By falling below the upper limit of conditional expression (1), a strong negative refractive power is generated in the final lens, so that the position of the exit pupil is closer to the image side regardless of the zoom position, and the image plane for each position. The change in the incident angle to becomes smaller. That is, even if the magnification is changed, the light incident angle set in the image sensor can be substantially maintained, and it is possible to suppress the color shift and the decrease in the peripheral light amount ratio. Furthermore, since the effective diameter of the lens closest to the image side is relatively small, the thickness can be reduced. On the other hand, exceeding the lower limit value of conditional expression (1) makes it possible to suppress the occurrence of coma aberration and the like due to excessive refractive power.
 本発明の具体的な側面又は観点では、上記ズームレンズにおいて、以下の条件式を満足する。
 0.05<sag4N2/hmax4N2<0.30  …  (2)
ただし、
  sag4N2:第4レンズ群の最も像側のレンズの像側面の有効径でのサグ量
  hmax4N2:第4レンズ群の最も像側のレンズの像側面の有効径
In a specific aspect or viewpoint of the present invention, the zoom lens satisfies the following conditional expression.
0.05 <sag4N2 / hmax4N2 <0.30 (2)
However,
sag4N2: Sag amount at the effective diameter of the image side lens of the fourth lens group in the most image side lens hmax4N2: Effective diameter of the image side surface of the lens in the fourth lens group closest to the image side
 条件式(2)は、第4レンズ群の最も像側にあるレンズの像側面の有効径におけるサグ量と有効径との比を規定したものである。ここで、サグ量は、着目するレンズ面と光軸との交点を含み光軸と直交する平面を基準として、当該平面からレンズ面上の特定位置までの光軸方向の距離を意味する。条件式(2)の下限値を上回ることにより、最も像側の面で負の屈折力が発生するため、ズームポジションに関わらず、射出瞳の位置が像側に寄るようになり、ポジション毎の像面への入射角度の変化が小さくなる。すなわち、変倍しても、撮像素子に設定されている光線入射角度をほぼ維持でき、色ずれや周辺光量比の低下を抑えることが可能となる。一方、条件式(2)の上限値を下回ることにより、過度なサグ量によるコマ収差等の発生を抑えることが可能となる。 Conditional expression (2) defines the ratio between the sag amount and the effective diameter at the effective diameter of the image side surface of the lens closest to the image side in the fourth lens group. Here, the sag amount means a distance in the optical axis direction from the plane to a specific position on the lens surface with reference to a plane orthogonal to the optical axis including the intersection of the focused lens surface and the optical axis. When the lower limit of conditional expression (2) is exceeded, negative refractive power is generated on the surface closest to the image side. Therefore, the position of the exit pupil moves closer to the image side regardless of the zoom position. The change in the incident angle on the image plane is reduced. That is, even if the magnification is changed, the light incident angle set in the image sensor can be substantially maintained, and it is possible to suppress the color shift and the decrease in the peripheral light amount ratio. On the other hand, when the upper limit value of conditional expression (2) is not reached, the occurrence of coma aberration and the like due to an excessive sag amount can be suppressed.
 第4レンズ群に関する値sag4N2/hmax4N2については、以下の条件式を満たすことがより望ましい。
 0.10<sag4N2/hmax4N2<0.20  …  (2')
For the value sag4N2 / hmax4N2 related to the fourth lens group, it is more desirable to satisfy the following conditional expression.
0.10 <sag4N2 / hmax4N2 <0.20 (2 ′)
 本発明の別の側面では、以下の条件式を満足する。
 -10.0<Δcra(W-T)<10.0  …  (3)
ただし、
  Δcra(W-T):任意の像高における主光線の入射角度の広角端と望遠端とにおける差の最大値
In another aspect of the present invention, the following conditional expression is satisfied.
−10.0 <Δcra (WT) <10.0 (3)
However,
Δc a (WT): the maximum value of the difference between the incident angle of the principal ray at an arbitrary image height between the wide-angle end and the telephoto end
 条件式(3)は、任意の像高における主光線の広角端における入射角度と望遠端における入射角度との差の最大値を規定している。条件式(3)を満たすことにより、あらゆるズームポジションにおいて主光線と撮像素子に適する光線入射角度とのずれが小さくなるので、色ずれや周辺光量比の低下を抑えることが可能となる。なお、近年では薄型化のために広角端において樽型の歪曲収差を大きく発生させ、画像処理によって歪曲収差を補正する方法が広く用いられているが、その結果、広角端においては撮像素子上で使用されない領域が発生する。その場合は、条件式(3)は全ズームポジションで使用される範囲の像高で計算するものとする。 Conditional expression (3) defines the maximum value of the difference between the incident angle at the wide-angle end and the incident angle at the telephoto end of the principal ray at an arbitrary image height. By satisfying conditional expression (3), the shift between the principal ray and the light incident angle suitable for the image sensor at any zoom position is reduced, so that it is possible to suppress the color shift and the decrease in the peripheral light amount ratio. In recent years, in order to reduce the thickness, a method of generating large barrel distortion at the wide-angle end and correcting the distortion by image processing has been widely used, but as a result, at the wide-angle end on the image sensor. An unused area occurs. In this case, conditional expression (3) is calculated with an image height in a range used in all zoom positions.
 本発明のさらに別の側面では、以下の条件式を満足する。
 20.0<craW<40.0  …  (4)
 15.0<craT<35.0  …  (5)
ただし、
  craW:広角端における像面に入射する主光線の入射角度の最大値
  craT:望遠端における像面に入射する主光線の入射角度の最大値
In still another aspect of the present invention, the following conditional expression is satisfied.
20.0 <craW <40.0 (4)
15.0 <craT <35.0 (5)
However,
craW: Maximum value of the incident angle of the chief ray incident on the image plane at the wide angle end.
 条件式(4)は、広角端における像面に入射する主光線の入射角度の最大値を規定している。条件式(5)は、望遠端における像面に入射する主光線の入射角度の最大値を規定している。なお、入射角度の符号は、光軸に平行な方向を0とし、最終面から出射した光線が像面に向かう際に光軸から離れる方向を正とする。それぞれの条件式の下限値を上回ることにより、最も像側のレンズの有効径が小さくなるため、薄型化が可能となる。一方、それぞれの条件式の上限値を下回ることにより、過度なバックフォーカスの減少による最終レンズにゴミやキズ等が発生した際の光学性能への影響を抑えることが可能となる。 Conditional expression (4) defines the maximum value of the incident angle of the principal ray incident on the image plane at the wide angle end. Conditional expression (5) defines the maximum value of the incident angle of the principal ray incident on the image plane at the telephoto end. The sign of the incident angle is 0 in the direction parallel to the optical axis, and positive in the direction away from the optical axis when the light beam emitted from the final surface goes to the image plane. When the lower limit value of each conditional expression is exceeded, the effective diameter of the lens closest to the image side becomes small, so that the thickness can be reduced. On the other hand, by lowering the upper limit value of each conditional expression, it is possible to suppress the influence on the optical performance when dust or scratches occur in the final lens due to excessive reduction of the back focus.
 主光線の入射角度に関する値craW,craTについては、以下の条件式を満たすことがより望ましい。
 25.0<craW<40.0  …  (4')
 20.0<craT<35.0  …  (5')
For the values craW and craT related to the incident angle of the chief ray, it is more desirable to satisfy the following conditional expression.
25.0 <craW <40.0 (4 ′)
20.0 <craT <35.0 (5 ′)
 本発明のさらに別の側面では、第4レンズ群は、最も物体側に正の屈折力のレンズを有し、以下の条件式を満足する。
 0.80<|f4P/f4N|<1.80  …  (6)
ただし、
  f4P:第4レンズ群の最も物体側のレンズの焦点距離
  f4N:第4レンズ群の最も像側のレンズの焦点距離
In still another aspect of the present invention, the fourth lens group includes a lens having a positive refractive power closest to the object side, and satisfies the following conditional expression.
0.80 <| f4P / f4N | <1.80 (6)
However,
f4P: focal length of the lens closest to the object side of the fourth lens group f4N: focal length of the lens closest to the image side of the fourth lens group
 第4レンズ群が最も物体側に正の屈折力のレンズを有することで、第4レンズ群内で正負のレンズの組み合わせとなるので、像面湾曲や倍率色収差といった諸収差を効果的に補正することが可能となる。
 条件式(6)は、第4レンズ群において最も物体側のレンズの焦点距離と最も像側のレンズの焦点距離との比を規定している。条件式(6)の上限値を下回ることによって、最も物体側のレンズが適度な正の屈折力を持ち、像面湾曲や非点収差といった諸収差を効果的に補正することが可能となる。一方、条件式(6)の下限値を上回ることによって、最も像側のレンズの屈折力が弱くなることによる広角端と望遠端とにおける撮像面への入射角度の差の増大を抑えることが可能となる。
Since the fourth lens group has a lens having a positive refractive power closest to the object side, it becomes a combination of positive and negative lenses in the fourth lens group, so that various aberrations such as field curvature and lateral chromatic aberration are effectively corrected. It becomes possible.
Conditional expression (6) defines the ratio between the focal length of the lens closest to the object side and the focal length of the lens closest to the image side in the fourth lens group. By falling below the upper limit value of conditional expression (6), the lens on the most object side has an appropriate positive refractive power, and various aberrations such as field curvature and astigmatism can be effectively corrected. On the other hand, by exceeding the lower limit value of conditional expression (6), it is possible to suppress an increase in the difference in incident angle on the imaging surface between the wide-angle end and the telephoto end due to the weakest refractive power of the lens on the image side. It becomes.
 第4レンズ群に関する値|f4P/f4N|については、以下の条件式を満たすことがより望ましい。
 1.00<|f4P/f4N|<1.50  …  (6')
For the value | f4P / f4N | regarding the fourth lens group, it is more desirable to satisfy the following conditional expression.
1.00 <| f4P / f4N | <1.50 (6 ′)
 本発明のさらに別の側面では、第4レンズ群は、最も物体側に正の屈折力のレンズを有し、以下の条件式を満足する。
 -10.0<ν4P-ν4N<50.0  …  (7)
ただし、
  ν4P:第4レンズ群の最も物体側のレンズのアッベ数
  ν4N:第4レンズ群の最も像側のレンズのアッベ数
In still another aspect of the present invention, the fourth lens group includes a lens having a positive refractive power closest to the object side, and satisfies the following conditional expression.
-10.0 <ν4P−ν4N <50.0 (7)
However,
ν4P: Abbe number of the lens closest to the object side in the fourth lens group ν4N: Abbe number of the lens closest to the image side in the fourth lens group
 条件式(7)は、第4レンズ群のうち最も物体側のレンズのアッベ数と最も像側のレンズのアッベ数との差を規定している。条件式(7)の下限値を上回ることによって、倍率色収差を適切に補正することが可能となる。一方、条件式(7)の上限値を下回ることによって、入手しやすい硝材で構成することが可能となる。 Conditional expression (7) defines the difference between the Abbe number of the lens closest to the object side and the Abbe number of the lens closest to the image side in the fourth lens group. By exceeding the lower limit value of conditional expression (7), it is possible to appropriately correct lateral chromatic aberration. On the other hand, when the lower limit value of conditional expression (7) is not reached, the glass material can be easily obtained.
 本発明のさらに別の側面では、第4レンズ群は、最も物体側に正の屈折力のレンズを有し、光軸方向に対し垂直な面内方向において、正レンズが移動することで、像面上の画像のブレが補正され、以下の条件式を満足する。
 0.3<(1-m4pT)・m4rT<0.8  …  (8)
ただし、
  m4pT:第4レンズ群の最も物体側のレンズの望遠端における横倍率
  m4rT:第4レンズ群の最も物体側のレンズよりも像側にあるレンズ群の望遠端における合成横倍率
In yet another aspect of the present invention, the fourth lens group includes a lens having a positive refractive power closest to the object side, and the positive lens moves in an in-plane direction perpendicular to the optical axis direction, whereby an image is obtained. The image blur on the surface is corrected and the following conditional expression is satisfied.
0.3 <(1-m4pT) · m4rT <0.8 (8)
However,
m4pT: lateral magnification at the telephoto end of the lens closest to the object side of the fourth lens group m4rT: combined lateral magnification at the telephoto end of the lens group located on the image side of the lens closest to the object side of the fourth lens group
 条件式(8)は、第4レンズ群の最も物体側のレンズ(以下、手振れレンズ)が光軸に対し垂直に距離1移動した際の軸上光線の像面上での移動量(つまりレンズと像との移動比)を表したものである。よって、条件式(8)の下限値を上回ることによって、手振れレンズの移動量を抑えつつ、手振れ補正を行うことが可能となる。一方、条件式(8)の上限値を下回ることによって、手振れレンズの屈折力の増大による収差の発生を抑えることができる。 Conditional expression (8) indicates that the amount of movement of the axial ray on the image plane when the lens closest to the object side (hereinafter referred to as camera shake lens) in the fourth lens group moves by a distance of 1 perpendicular to the optical axis (that is, the lens). The movement ratio between the image and the image. Therefore, by exceeding the lower limit value of the conditional expression (8), it is possible to perform camera shake correction while suppressing the movement amount of the camera shake lens. On the other hand, by falling below the upper limit value of conditional expression (8), it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the camera shake lens.
 本発明のさらに別の側面では、第2レンズ群は、開口絞りを有する。この場合、変倍時における可動群である第2レンズ群が開口絞りを有することにより、移動群間に固定の絞りが配置されている場合に比べ、変倍時の移動群の移動量の制約が無くなるため、全長を抑えつつ、高変倍化が可能となる。 In still another aspect of the present invention, the second lens group has an aperture stop. In this case, since the second lens group, which is a movable group at the time of zooming, has an aperture stop, the movement amount of the moving group at the time of zooming is more limited than when a fixed aperture is arranged between the moving groups. Therefore, it is possible to achieve a high zoom ratio while suppressing the overall length.
 本発明のさらに別の側面では、第1レンズ群は、最も物体側に、負の屈折力を持つレンズを有し、以下の条件式を満足する。
 2.0<|f1a/fW|<5.0  …  (9)
ただし、
  f1a:第1レンズ群の最も物体側のレンズの焦点距離
  fW:広角端における全系の焦点距離
In still another aspect of the present invention, the first lens group includes a lens having negative refractive power on the most object side, and satisfies the following conditional expression.
2.0 <| f1a / fW | <5.0 (9)
However,
f1a: focal length of the lens closest to the object side in the first lens group fW: focal length of the entire system at the wide angle end
 条件式(9)は、第1レンズ群の最も物体側のレンズの焦点距離と広角端における全系の焦点距離との比を規定している。条件式(9)の上限値を下回ることによって、レンズが適度な負の屈折力を持ち、広角端において、広い画角を確保することができる。一方、条件式(9)の下限値を上回ることによって、レンズの屈折力の増大による収差の発生を抑えることができる。 Conditional expression (9) defines the ratio between the focal length of the lens closest to the object side in the first lens group and the focal length of the entire system at the wide angle end. By falling below the upper limit value of conditional expression (9), the lens has an appropriate negative refractive power, and a wide angle of view can be secured at the wide angle end. On the other hand, by exceeding the lower limit value of the conditional expression (9), it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the lens.
 本発明のさらに別の側面では、以下の条件式を満足する。
 1.5<m2T/m2W<3.0  …  (10)
ただし、
  m2T:第2レンズ群の望遠端における横倍率
  m2W:第2レンズ群の広角端における横倍率
In still another aspect of the present invention, the following conditional expression is satisfied.
1.5 <m2T / m2W <3.0 (10)
However,
m2T: lateral magnification at the telephoto end of the second lens group m2W: lateral magnification at the wide-angle end of the second lens group
 条件式(10)は、望遠端における第2レンズ群の横倍率と広角端における第2レンズ群の横倍率との比を規定している。条件式(10)の下限値を上回ることによって、第2レンズ群の十分な変倍効果を確保することができるので、第3レンズ群の屈折力の増大による非点収差などの収差の発生を抑えることができる。一方、条件式(10)の上限値を下回ることによって、第2レンズ群の過度な変倍効果による、第2レンズ群の屈折力の増大による球面収差やコマ収差の発生や、第2レンズ群の移動量の増大に伴う全長の増加を抑えることができる。 Conditional expression (10) defines the ratio between the lateral magnification of the second lens group at the telephoto end and the lateral magnification of the second lens group at the wide-angle end. By exceeding the lower limit value of the conditional expression (10), it is possible to secure a sufficient zooming effect of the second lens group, so that aberration such as astigmatism is generated due to an increase in the refractive power of the third lens group. Can be suppressed. On the other hand, when the value falls below the upper limit of conditional expression (10), spherical aberration and coma due to an increase in refractive power of the second lens group due to an excessive zooming effect of the second lens group, and the second lens group The increase in the total length accompanying the increase in the amount of movement can be suppressed.
 本発明のさらに別の側面では、第3レンズ群を移動させることにより、合焦を行う。このように、第3レンズ群によって合焦を行うことによって、繰り出しによる光学全長の増加や前玉径の増大を招くことなく、近距離物体まで鮮明な画像を得ることができる。 In yet another aspect of the present invention, focusing is performed by moving the third lens group. In this way, by performing focusing with the third lens group, it is possible to obtain a clear image up to a short-distance object without causing an increase in the total optical length or an increase in the front lens diameter due to the extension.
 本発明のさらに別の側面では、第3レンズ群は、単レンズで構成されている。このように、第3レンズ群を単レンズとすることにより、第3レンズ群全体が大きくなることを抑えることができるので、変倍のためのスペースを確保し、かつコストを抑えることができる。さらに、第3レンズ群全体の軽量化をすることができるので、変倍時におけるアクチュエーターの負荷を抑えることができる。 In yet another aspect of the present invention, the third lens group is composed of a single lens. As described above, since the third lens group is a single lens, it is possible to prevent the entire third lens group from becoming large. Therefore, it is possible to secure a space for zooming and to reduce the cost. Furthermore, since the entire third lens group can be reduced in weight, the load on the actuator during zooming can be suppressed.
 本発明のさらに別の側面では、第4レンズ群は、変倍時及び合焦時ともに光軸方向には移動しない。 In still another aspect of the present invention, the fourth lens group does not move in the optical axis direction during zooming and focusing.
 第4レンズ群は撮像素子に最も近いレンズ群であり、第4レンズ群で変倍及び合焦時に移動を行うと、撮像素子との距離が近づき、最終レンズでもゴミやキズの影響を受けやすくなることがある。特に小型化されたズームレンズでは、より最終レンズと固体撮像素子との距離も近づくので、その傾向が顕著に表れる。それに対し、第4レンズ群を移動させないことによって、最終レンズと撮像素子との距離が固定されるので、ゴミやキズの影響を抑えることができる。また、撮像素子が密封状態になるので、撮像素子にホコリ等のゴミが混入することを防ぐことができる。 The fourth lens group is the lens group closest to the image sensor, and if the fourth lens group is moved during zooming or focusing, the distance from the image sensor becomes closer, and the final lens is also susceptible to dust and scratches. May be. In particular, in a miniaturized zoom lens, since the distance between the final lens and the solid-state image sensor is closer, the tendency is prominent. On the other hand, since the distance between the final lens and the image sensor is fixed by not moving the fourth lens group, the influence of dust and scratches can be suppressed. In addition, since the image pickup device is in a sealed state, dust such as dust can be prevented from entering the image pickup device.
 本発明のさらに別の側面では、実質的にパワーを持たないレンズをさらに有する。 In still another aspect of the present invention, a lens having substantially no power is further included.
 本発明に係る撮像装置は、上述したズームレンズと、当該ズームレンズにより撮像面に形成された画像を光電変換する撮像素子とを有する。本発明のズームレンズを用いることで、厚さ方向のコンパクト化を達成しつつ、さらに変倍に伴う光線入射角度の変動を抑えて色ずれや周辺光量比の低下を防止した撮像装置を得ることができる。 An imaging apparatus according to the present invention includes the zoom lens described above and an imaging element that photoelectrically converts an image formed on the imaging surface by the zoom lens. By using the zoom lens of the present invention, it is possible to obtain an imaging device that achieves compactness in the thickness direction and further suppresses a variation in light incident angle due to zooming to prevent color shift and a decrease in the peripheral light amount ratio. Can do.
 本発明に係るデジタル機器は、上述した撮像装置と、画像を表示する表示部とを備える。本発明の撮像装置を用いることで、厚さ方向のコンパクト化を達成したデジタル機器を得ることができる。 A digital device according to the present invention includes the above-described imaging device and a display unit that displays an image. By using the imaging apparatus of the present invention, a digital device that achieves compactness in the thickness direction can be obtained.
 なお、本願でいうデジタル機器は、例えば携帯電話、PDA、スマートフォン等を含む、携帯して利用可能な通信機器(携帯通信機器・端末)や情報機器(携帯情報機器・端末)を含む概念である。 The digital device referred to in the present application is a concept including communication devices (mobile communication devices / terminals) and information devices (portable information devices / terminals) that can be carried and used, including mobile phones, PDAs, smartphones, and the like. .
本発明の一実施形態のズームレンズを備える撮像装置を説明する図である。It is a figure explaining an imaging device provided with the zoom lens of one embodiment of the present invention. 図1の撮像装置を備えるデジタル機器を説明するブロック図である。It is a block diagram explaining a digital apparatus provided with the imaging device of FIG. 図3A及び3Bは、それぞれデジタル機器の表面側及び裏面側の斜視図である。3A and 3B are perspective views of the front side and the back side of the digital device, respectively. 図4Aは、実施例1の広角端における断面図であり、図4Bは、中間における断面図であり、図4Cは、望遠端における断面図である。4A is a cross-sectional view at the wide-angle end of Example 1, FIG. 4B is a cross-sectional view at the middle, and FIG. 4C is a cross-sectional view at the telephoto end. 図5Aは、実施例1の広角端における収差図であり、図5Bは、中間における収差図であり、図5Cは、望遠端における収差図である。FIG. 5A is an aberration diagram at the wide-angle end in Example 1, FIG. 5B is an aberration diagram at the middle, and FIG. 5C is an aberration diagram at the telephoto end. 実施例1のズームレンズによって像面に入射する主光線の入射角度を示す図である。FIG. 6 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the first exemplary embodiment. 図7Aは、実施例2の広角端における断面図であり、図7Bは、中間における断面図であり、図7Cは、望遠端における断面図である。7A is a cross-sectional view at the wide-angle end of the second embodiment, FIG. 7B is a cross-sectional view at the middle, and FIG. 7C is a cross-sectional view at the telephoto end. 図8Aは、実施例2の広角端における収差図であり、図8Bは、中間における収差図であり、図8Cは、望遠端における収差図である。FIG. 8A is an aberration diagram at the wide-angle end of Example 2, FIG. 8B is an aberration diagram at the middle, and FIG. 8C is an aberration diagram at the telephoto end. 実施例2のズームレンズによって像面に入射する主光線の入射角度を示す図である。FIG. 6 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the second exemplary embodiment. 図10Aは、実施例3の広角端における断面図であり、図10Bは、中間における断面図であり、図10Cは、望遠端における断面図である。10A is a cross-sectional view at the wide-angle end of Example 3, FIG. 10B is a cross-sectional view at the middle, and FIG. 10C is a cross-sectional view at the telephoto end. 図11Aは、実施例3の広角端における収差図であり、図11Bは、中間における収差図であり、図11Cは、望遠端における収差図である。11A is an aberration diagram at the wide-angle end of Example 3, FIG. 11B is an aberration diagram at the middle, and FIG. 11C is an aberration diagram at the telephoto end. 実施例3のズームレンズによって像面に入射する主光線の入射角度を示す図である。FIG. 10 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the third exemplary embodiment. 図13Aは、実施例4の広角端における断面図であり、図13Bは、中間における断面図であり、図13Cは、望遠端における断面図である。13A is a cross-sectional view at the wide-angle end of Example 4, FIG. 13B is a cross-sectional view at the middle, and FIG. 13C is a cross-sectional view at the telephoto end. 図14Aは、実施例4の広角端における収差図であり、図14Bは、中間における収差図であり、図14Cは、望遠端における収差図である。FIG. 14A is an aberration diagram at the wide-angle end of Example 4, FIG. 14B is an aberration diagram at the middle, and FIG. 14C is an aberration diagram at the telephoto end. 実施例4のズームレンズによって像面に入射する主光線の入射角度を示す図である。FIG. 10 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the fourth exemplary embodiment. 図16Aは、実施例5の広角端における断面図であり、図16Bは、中間における断面図であり、図16Cは、望遠端における断面図である。16A is a cross-sectional view at the wide-angle end of Example 5, FIG. 16B is a cross-sectional view at the middle, and FIG. 16C is a cross-sectional view at the telephoto end. 図17Aは、実施例5の広角端における収差図であり、図17Bは、中間における収差図であり、図17Cは、望遠端における収差図である。FIG. 17A is an aberration diagram at the wide-angle end of Example 5, FIG. 17B is an aberration diagram at the middle, and FIG. 17C is an aberration diagram at the telephoto end. 実施例5のズームレンズによって像面に入射する主光線の入射角度を示す図である。FIG. 10 is a diagram illustrating an incident angle of a principal ray incident on an image plane by the zoom lens according to the fifth exemplary embodiment.
 図1は、本発明の一実施形態であるズームレンズを備える撮像装置であるカメラモジュールを説明する断面図である。 FIG. 1 is a cross-sectional view illustrating a camera module that is an image pickup apparatus including a zoom lens according to an embodiment of the present invention.
 カメラモジュール(撮像装置)50は、被写体像を形成するズームレンズ10と、ズームレンズ10によって形成された被写体像を光電変換する撮像素子51と、この撮像素子51を背後から保持するとともに配線等を有する配線基板52と、ズームレンズ10等を保持するとともに物体側からの光束を入射させる開口部OPを有する鏡筒部54とを備える。ズームレンズ10は、被写体像を撮像素子51の撮像面(被投影面)Iに結像させる機能を有する。このカメラモジュール50は、後述するデジタル機器に組み込まれて使用される。 The camera module (imaging device) 50 includes a zoom lens 10 that forms a subject image, an image sensor 51 that photoelectrically converts the subject image formed by the zoom lens 10, and holds the image sensor 51 from behind and wiring and the like. A wiring board 52 having a zoom lens 10 and the like, and a lens barrel portion 54 having an opening OP through which a light beam from the object side is incident are provided. The zoom lens 10 has a function of forming a subject image on the imaging surface (projected surface) I of the image sensor 51. The camera module 50 is used by being incorporated in a digital device described later.
 ズームレンズ10は、物体側から順に、第1レンズ群Gr1と、第2レンズ群Gr2(開口絞りSを含む)と、第3レンズ群Gr3と、第4レンズ群Gr4とを備える。各レンズ群Gr1~Gr4は、単一又は複数のレンズからなる。第1レンズ群Gr1には、反射によって光路を折り曲げる反射光学素子PRMが組み込まれており、-Z方向に向かう光線を傾斜した内面12aで反射させることにより、90°折り曲げて+Y方向に向ける。なお、図1に例示したズームレンズ10は、後述する実施例1のズームレンズ110と同一の構成となっている。 The zoom lens 10 includes a first lens group Gr1, a second lens group Gr2 (including an aperture stop S), a third lens group Gr3, and a fourth lens group Gr4 in order from the object side. Each lens group Gr1 to Gr4 includes a single lens or a plurality of lenses. The first lens group Gr1 incorporates a reflective optical element PRM that bends the optical path by reflection, and reflects the light beam traveling in the −Z direction by the inclined inner surface 12a so that it is bent by 90 ° and directed in the + Y direction. The zoom lens 10 illustrated in FIG. 1 has the same configuration as the zoom lens 110 of Example 1 described later.
 撮像素子51は、固体撮像素子からなるセンサーチップである。撮像素子51の光電変換部51aは、CCD(電荷結合素子)やCMOS(相補型金属酸化物半導体)からなり、入射光をRGBの各画素毎に光電変換し、そのアナログ信号を出力する。受光部としての光電変換部51aの表面は、撮像面(被投影面)Iとなっている。なお、図面では省略しているが、撮像面I上の個々の受光素子上には、マイクロレンズが配置されている。つまり、撮像素子51には、入射位置に応じて最適な光線入射角度が設定されており、撮像素子51の各部に適切な角度範囲で光線が入射した場合、色ずれの発生や周辺光量比の低下を抑えることができるようになっている。 The image sensor 51 is a sensor chip made of a solid-state image sensor. The photoelectric conversion unit 51a of the image sensor 51 is composed of a CCD (charge coupled device) or a CMOS (complementary metal oxide semiconductor), photoelectrically converts incident light for each pixel of RGB, and outputs an analog signal thereof. The surface of the photoelectric conversion unit 51a as the light receiving unit is an imaging surface (projected surface) I. Although omitted in the drawing, microlenses are arranged on the individual light receiving elements on the imaging surface I. That is, the image sensor 51 has an optimum light beam incident angle according to the incident position. When light beams are incident on each part of the image sensor 51 in an appropriate angle range, the occurrence of color misregistration and the peripheral light amount ratio The reduction can be suppressed.
 配線基板52は、支持体を介して撮像素子51を他の部材(例えば鏡筒部54)に対してアライメントして固定する役割を有する。配線基板52は、外部回路から撮像素子51や第1、第2、及び第3駆動機構55a,55b,55cを駆動するための電圧や信号の供給を受けたり、また、検出信号を上記外部回路へ出力したりすることを可能としている。 The wiring substrate 52 has a role of aligning and fixing the image pickup device 51 to other members (for example, the lens barrel portion 54) via a support. The wiring board 52 receives supply of voltages and signals for driving the image pickup device 51 and the first, second, and third drive mechanisms 55a, 55b, and 55c from an external circuit, and sends a detection signal to the external circuit. Or output to.
 撮像素子51のズームレンズ10側には、不図示のホルダー部材によって、例えばIR(赤外線)カットフィルター、光学的ローパスフィルター等で構成された平行平板Fが撮像素子51等を覆うように配置・固定されている。 On the zoom lens 10 side of the image sensor 51, a holder member (not shown) is arranged and fixed so that a parallel flat plate F constituted by, for example, an IR (infrared) cut filter, an optical low-pass filter, etc. covers the image sensor 51 and the like. Has been.
 鏡筒部54は、ズームレンズ10を収納し保持している。鏡筒部54は、ズームレンズ10を構成するレンズ群Gr1~Gr4のうち第2及び第3レンズ群Gr2,Gr3を光軸AXに沿って移動させることにより、ズームレンズ10の変倍及び合焦の動作を可能にするため、第1及び第2駆動機構55a,55bを有している。両駆動機構55a,55bは独立して動作可能である。第1駆動機構55aは、第2レンズ群Gr2を光軸AXに沿って往復移動させ、第2駆動機構55bは、第3レンズ群Gr3を光軸AXに沿って往復移動させる。鏡筒部54は、第4レンズ群Gr4のうち最も物体側の第8レンズL41を光軸AXに垂直に往復移動させる第3駆動機構55cを有している。第3駆動機構55cは、撮像面I上の像をX方向やZ方向に適宜シフトさせる手振れ補正を可能にする。これらの駆動機構55a,55b,55cは、ステッピングモーター、ボイスコイルモーター等のアクチュエーターと、直動ガイドその他の機械機構とを備える。 The lens barrel portion 54 houses and holds the zoom lens 10. The lens barrel portion 54 moves the second and third lens groups Gr2 and Gr3 of the lens groups Gr1 to Gr4 constituting the zoom lens 10 along the optical axis AX, thereby changing the magnification and focusing of the zoom lens 10. In order to enable this operation, the first and second drive mechanisms 55a and 55b are provided. Both drive mechanisms 55a and 55b can operate independently. The first drive mechanism 55a reciprocates the second lens group Gr2 along the optical axis AX, and the second drive mechanism 55b reciprocates the third lens group Gr3 along the optical axis AX. The lens barrel portion 54 includes a third drive mechanism 55c that reciprocates the eighth lens L41 closest to the object side in the fourth lens group Gr4 perpendicularly to the optical axis AX. The third drive mechanism 55c enables camera shake correction that appropriately shifts the image on the imaging surface I in the X direction and the Z direction. These drive mechanisms 55a, 55b, and 55c include actuators such as stepping motors and voice coil motors, and linear motion guides and other mechanical mechanisms.
 次に、図2、図3A、及び3Bを参照して、図1に例示されるカメラモジュール50を搭載したデジタル機器である携帯通信端末300の一例について説明する。 Next, an example of the mobile communication terminal 300 that is a digital device equipped with the camera module 50 illustrated in FIG. 1 will be described with reference to FIGS. 2, 3A, and 3B.
 携帯通信端末300は、スマートフォン型の携帯通信端末であり、撮像装置であるカメラモジュール50を有する撮像機能部100と、各部を統括的に制御するとともに各処理に応じたプログラムを実行する制御部(CPU)310と、通信に関連するデータ、撮像した画像・映像等を表示するとともにユーザーの操作を受け付けるタッチパネルである表示操作部320と、電源スイッチ等を含む操作部330と、アンテナ341を介して外部サーバー等との間の各種情報通信を実現するための無線通信部340と、携帯通信端末300のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)360と、制御部310によって実行される各種処理プログラムやデータ、処理データ、若しくは撮像機能部100による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)370等を備えている。 The mobile communication terminal 300 is a smartphone-type mobile communication terminal, and includes an imaging function unit 100 having a camera module 50 that is an imaging device, and a control unit that comprehensively controls each unit and executes a program corresponding to each process ( CPU) 310, display operation unit 320 that is a touch panel that displays data related to communication, captured images and videos, and receives user operations, an operation unit 330 including a power switch, and the like, via antenna 341 A wireless communication unit 340 for realizing various types of information communication with an external server, etc., and a storage unit (ROM) storing necessary data such as system programs, various processing programs, and terminal IDs of the mobile communication terminal 300 360, various processing programs and data executed by the control unit 310, processing data, Ku has a temporary storage unit used as a work area for temporarily storing the imaging data and the like by the imaging function unit 100 (RAM) 370 or the like.
 撮像機能部100は、既に説明したカメラモジュール50のほかに、制御部103、光学系駆動部105、撮像素子駆動部107、画像メモリー108、手振れ検出センサー109等を備える。 The imaging function unit 100 includes a control unit 103, an optical system driving unit 105, an imaging element driving unit 107, an image memory 108, a camera shake detection sensor 109, and the like in addition to the camera module 50 described above.
 制御部103は、撮像機能部100の各部を制御する。 制御部103は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含み、ROMから読み出されてRAMに展開された各種プログラムとCPUとの協働で各種処理を実行する。なお、制御部310は、撮像機能部100の制御部103と通信可能に接続されており、制御信号や画像データの授受が可能になっている。 The control unit 103 controls each unit of the imaging function unit 100. The control unit 103 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and various types of programs read out from the ROM and expanded in the RAM are cooperated with the CPU. Execute the process. The control unit 310 is communicably connected to the control unit 103 of the imaging function unit 100, and can exchange control signals and image data.
 光学系駆動部105は、制御部103の制御により変倍、合焦、露出等を行う際に、ズームレンズ10の第1及び第2駆動機構55a,55b等を動作させてズームレンズ10の状態を制御する。具体的には、光学系駆動部105は、第1駆動機構55aを動作させて第2レンズ群Gr2を光軸AXに沿って適宜移動させるとともに、第2駆動機構55bを動作させて第3レンズ群Gr3を光軸AXに沿って適宜移動させることにより、ズームレンズ10にズーム動作を行わせる。つまり、ズーム動作に際して、第1及び第4レンズ群Gr1,Gr4は固定されている。また、光学系駆動部105は、第2駆動機構55bを単独で動作させて第3レンズ群Gr3を光軸AXに沿って適宜移動させることにより、ズームレンズ10に合焦動作を行わせる。つまり、合焦動作に際して、第1、第2、及び第4レンズ群Gr1,Gr2,Gr4は固定されている。さらに、光学系駆動部105は、第3駆動機構55cを動作させて第4レンズ群Gr4の第8レンズL41を光軸AXに垂直な方向に適宜移動させることにより、ズームレンズ10に手振れ補正動作を行わせる。つまり、手振れ補正動作に際して、第1~第3レンズ群Gr1~Gr3及び第4レンズ群Gr4の第9レンズL42は固定されている。 The optical system drive unit 105 operates the first and second drive mechanisms 55a and 55b of the zoom lens 10 when zooming, focusing, exposure, and the like under the control of the control unit 103, and the state of the zoom lens 10 To control. Specifically, the optical system driving unit 105 operates the first driving mechanism 55a to appropriately move the second lens group Gr2 along the optical axis AX, and operates the second driving mechanism 55b to operate the third lens. By appropriately moving the group Gr3 along the optical axis AX, the zoom lens 10 is caused to perform a zoom operation. That is, during the zoom operation, the first and fourth lens groups Gr1 and Gr4 are fixed. Further, the optical system driving unit 105 causes the zoom lens 10 to perform a focusing operation by operating the second driving mechanism 55b alone and moving the third lens group Gr3 appropriately along the optical axis AX. That is, during the focusing operation, the first, second, and fourth lens groups Gr1, Gr2, and Gr4 are fixed. Further, the optical system driving unit 105 operates the third driving mechanism 55c to appropriately move the eighth lens L41 of the fourth lens group Gr4 in the direction perpendicular to the optical axis AX, thereby performing a camera shake correction operation on the zoom lens 10. To do. That is, during the camera shake correction operation, the ninth lens L42 of the first to third lens groups Gr1 to Gr3 and the fourth lens group Gr4 is fixed.
 撮像素子駆動部107は、制御部103の制御により露出等を行う際に、撮像素子51の動作を制御する。具体的には、撮像素子駆動部107は、タイミング信号に基づいて撮像素子51を走査駆動させて制御する。また、撮像素子駆動部107は、撮像素子51から出力された検出信号又は光電変換信号としてのアナログ信号をデジタルの画像データに変換する。さらに、撮像素子駆動部107は、撮像素子51から送出された画像信号に対して、歪み補正、色補正、圧縮等の各種画像処理を施すことができる。 The image sensor driving unit 107 controls the operation of the image sensor 51 when performing exposure or the like under the control of the control unit 103. Specifically, the image sensor drive unit 107 controls the image sensor 51 by scanning and driving based on the timing signal. Further, the image sensor driving unit 107 converts the detection signal output from the image sensor 51 or an analog signal as a photoelectric conversion signal into digital image data. Further, the image sensor driving unit 107 can perform various image processing such as distortion correction, color correction, and compression on the image signal transmitted from the image sensor 51.
 画像メモリー108は、デジタル化された画像信号を撮像素子駆動部107から受け取って、読み出し及び書き込み可能な画像データとして記憶する。 The image memory 108 receives the digitized image signal from the image sensor driving unit 107 and stores it as readable and writable image data.
 手振れ検出センサー109は、例えば加速度センサー等が用いられ、撮像時に、携帯通信端末300のピッチ方向(垂直方向)、ヨー方向(水平方向)の振れを検出して制御部103に伝送する。制御部103は、これに基づき、光学系駆動部105を介して第3駆動機構55cを動作させて第4レンズ群Gr4の第8レンズL41を光軸AXに垂直な方向に移動させ手振れ補正動作を行わせる。 As the camera shake detection sensor 109, for example, an acceleration sensor or the like is used, and detects the shake in the pitch direction (vertical direction) and yaw direction (horizontal direction) of the mobile communication terminal 300 and transmits it to the control unit 103 during imaging. Based on this, the control unit 103 operates the third drive mechanism 55c via the optical system drive unit 105 to move the eighth lens L41 of the fourth lens group Gr4 in the direction perpendicular to the optical axis AX, thereby performing a camera shake correction operation. To do.
 ここで、上記撮像機能部100を含む携帯通信端末300の撮影動作を説明する。携帯通信端末300をカメラとして動作させるカメラモードに設定されると、被写体のモニタリング(スルー画像表示)と、画像撮影実行とが行われる。モニタリングにおいては、ズームレンズ10を介して得られた被写体の像が、撮像素子51の撮像面I(図1参照)に結像される。撮像素子51は、撮像素子駆動部107によって走査駆動され、一定周期毎に結像した光像に対応する光電変換出力としてのアナログ信号を1画面分出力する。 Here, the photographing operation of the mobile communication terminal 300 including the imaging function unit 100 will be described. When the camera mode in which the mobile communication terminal 300 is operated as a camera is set, subject monitoring (through image display) and image shooting execution are performed. In the monitoring, an image of the subject obtained through the zoom lens 10 is formed on the imaging surface I (see FIG. 1) of the imaging element 51. The image sensor 51 is scanned and driven by the image sensor driving unit 107, and outputs an analog signal for one screen as a photoelectric conversion output corresponding to a light image formed at regular intervals.
 このアナログ信号は、撮像素子51に付属する回路においてRGBの各原色成分毎に適宜ゲイン調整された後に、デジタルデータに変換される。そのデジタルデータは、画素補間処理及びY補正処理を含むカラープロセス処理が行われて、デジタル値の輝度信号Y及び色差信号Cb,Cr(画像データ)が生成されて画像メモリー108に格納される。格納されたデジタルデータは、画像メモリー108から定期的に読み出されてそのビデオ信号が生成されて、制御部103及び制御部310を介して、表示操作部320に出力される。 This analog signal is converted into digital data after gain adjustment is appropriately performed for each primary color component of RGB in a circuit attached to the image sensor 51. The digital data is subjected to color process processing including pixel interpolation processing and Y correction processing, and a digital luminance signal Y and color difference signals Cb, Cr (image data) are generated and stored in the image memory 108. The stored digital data is periodically read out from the image memory 108 to generate a video signal thereof, and is output to the display operation unit 320 via the control unit 103 and the control unit 310.
 この表示操作部320は、モニタリングにおいては電子ファインダーとして機能し、撮像画像をリアルタイムに表示することとなる。この状態で、随時、ユーザーが表示操作部320を介して行う操作入力に基づいて、光学系駆動部105の駆動によりズームレンズ10の変倍、合焦、露出等が設定される。 This display operation unit 320 functions as an electronic viewfinder in monitoring, and displays captured images in real time. In this state, zooming, focusing, exposure, and the like of the zoom lens 10 are set by driving the optical system driving unit 105 based on operation input performed by the user via the display operation unit 320 at any time.
 このようなモニタリング状態において、ユーザーが表示操作部320を適宜操作することにより、静止画像データが撮影される。表示操作部320の操作内容に応じて、画像メモリー108に格納された1コマの画像データが読み出されて、撮像素子駆動部107により圧縮される。その圧縮された画像データは、制御部103及び制御部310を介して、例えばRAM370等に記録される。 In such a monitoring state, when the user appropriately operates the display operation unit 320, still image data is captured. One frame of image data stored in the image memory 108 is read in accordance with the operation content of the display operation unit 320, and compressed by the image sensor driving unit 107. The compressed image data is recorded in the RAM 370, for example, via the control unit 103 and the control unit 310.
 なお、上述の撮像機能部100は、本発明に好適な機能部構成の一例であり、本発明は、これに限定されるものではない。 The imaging function unit 100 described above is an example of a functional unit configuration suitable for the present invention, and the present invention is not limited to this.
 すなわち、ズームレンズ10を搭載した撮像装置であるカメラモジュール50は、スマートフォン型の携帯通信端末300に内蔵されるものに限らず、携帯電話、PHS(Personal Handyphone System)等に内蔵されるものであってもよく、PDA(Personal Digital Assistant)、タブレットパソコン、モバイルパソコン、デジタルスチルカメラ、ビデオカメラ等に内蔵されるものであってもよい。 In other words, the camera module 50 that is an imaging device equipped with the zoom lens 10 is not limited to the one built in the smartphone type mobile communication terminal 300, but is built into a mobile phone, a PHS (Personal Handyphone System), or the like. Alternatively, it may be incorporated in a PDA (Personal Digital Assistant), a tablet personal computer, a mobile personal computer, a digital still camera, a video camera, or the like.
 以下、図1に戻って、本発明の一実施形態であるズームレンズ10について詳細に説明する。図1に示すズームレンズ10は、撮像素子51の撮像面Iに被写体像を結像させるものであって、物体側より順に、負の屈折力を有する第1レンズ群Gr1と、正の屈折力を有する第2レンズ群Gr2と、負の屈折力を有する第3レンズ群Gr3と、第4レンズ群Gr4とからなる。ここで、第1レンズ群Gr1は、例えば物体側に凸で負の第1レンズL11と、プリズムミラーである反射光学素子PRMと、両凹で負の第2レンズL12と、両凸で正の第3レンズL13とを含む。第2レンズL12と第3レンズL13とは、例えば接合レンズとなっている。第2レンズ群Gr2は、例えば両凸で正の第4レンズL21と、開口絞りSと、物体側に凸で負メニスカスの第5レンズL22と、両凸で正の第6レンズL23とを含む。第4レンズL21の両面は非球面となっている。第5レンズL22と第6レンズL23とは、例えば接合レンズとなっている。第3レンズ群Gr3は、例えば両凹で負の第7レンズL31を含む。第7レンズL31は、プラスチックからなる単レンズであり、第7レンズL31の両面は非球面となっている。第4レンズ群Gr4は、少なくとも2枚のレンズから構成され、例えば両凸で正の第8レンズL41と、両凹で負の第9レンズL42とを含む。つまり、第4レンズ群Gr4において、最も物体側の第8レンズL41は、正の屈折力を有するものとなっている。また、最も像側の第9レンズL42は、負の屈折力を有するものとなっている。第8レンズL41の両面は非球面となっている。なお、第2レンズ群Gr2において、開口絞りSは、第4レンズL21と第5レンズL22との間に限らず、例えば第4レンズL21の物体側や第6レンズL23の像側に配置してもよい。 Hereinafter, returning to FIG. 1, the zoom lens 10 according to an embodiment of the present invention will be described in detail. The zoom lens 10 shown in FIG. 1 forms a subject image on the imaging surface I of the image sensor 51, and in order from the object side, a first lens group Gr1 having a negative refractive power and a positive refractive power. A second lens group Gr2 having a negative refractive power, a third lens group Gr3 having a negative refractive power, and a fourth lens group Gr4. Here, the first lens group Gr1 includes, for example, a negative first lens L11 that is convex toward the object side, a reflective optical element PRM that is a prism mirror, a negative second lens L12 that is biconcave, and a biconvex positive lens. A third lens L13. The second lens L12 and the third lens L13 are, for example, cemented lenses. The second lens group Gr2 includes, for example, a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. . Both surfaces of the fourth lens L21 are aspheric. The fifth lens L22 and the sixth lens L23 are, for example, cemented lenses. The third lens group Gr3 includes, for example, a biconcave negative seventh lens L31. The seventh lens L31 is a single lens made of plastic, and both surfaces of the seventh lens L31 are aspheric. The fourth lens group Gr4 includes at least two lenses, and includes, for example, a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. That is, in the fourth lens group Gr4, the eighth lens L41 closest to the object side has a positive refractive power. The ninth lens L42 closest to the image side has negative refractive power. Both surfaces of the eighth lens L41 are aspheric. In the second lens group Gr2, the aperture stop S is not limited to the position between the fourth lens L21 and the fifth lens L22, but is disposed, for example, on the object side of the fourth lens L21 or the image side of the sixth lens L23. Also good.
 ズームレンズ10は、広角端から望遠端への変倍に際し、第1~第4レンズ群Gr1~Gr4のうち第2レンズ群Gr2及び第3レンズ群Gr3の位置を変更する。具体的には、広角端から望遠端に至る変倍に際して、第1及び第4レンズ群Gr1,Gr4が固定されて移動せず、第2レンズ群Gr2が物体側に移動して第1レンズ群Gr1との間隔が縮小し、第3レンズ群Gr3も物体側に移動し第4レンズ群Gr4との間隔が拡大する。 The zoom lens 10 changes the positions of the second lens group Gr2 and the third lens group Gr3 among the first to fourth lens groups Gr1 to Gr4 upon zooming from the wide angle end to the telephoto end. Specifically, during zooming from the wide-angle end to the telephoto end, the first and fourth lens groups Gr1 and Gr4 are fixed and do not move, and the second lens group Gr2 moves to the object side and moves to the first lens group. The distance from Gr1 is reduced, the third lens group Gr3 is also moved to the object side, and the distance from the fourth lens group Gr4 is increased.
 第1レンズ群Gr1を負の構成にすることにより、物体側から大きな角度で入射してくる光線をいち早く緩めることができ、前玉径のコンパクト化を図る点で有利となる。また、第1レンズ群Gr1内に反射光学素子PRMを備えることにより、カメラモジュール(撮像装置)50の奥行き方向(Z方向)の大きさ又は厚みを小さくすることができる。
 また、このズームレンズ10では、広角端から望遠端に至るまでの変倍で、第2レンズ群Gr2及び第3レンズ群Gr2が移動し、広角端において、第1レンズ群Gr1と第2レンズ群Gr2との間隔が最も離れた状態となる。その上で、第2レンズ群Gr2が正の屈折力を持つことにより、第1レンズ群Gr1と第2レンズ群Gr2とのパワー配置は、レトロフォーカスタイプの配置となる。したがって、ズームレンズ10は全長を短くしながらも、比較的長いバックフォーカスを確保できるので、ズームレンズ10の最も像側の面と撮像素子51との間に、平行平板Fを配置する十分なスペースを確保できる。一方、広角端から望遠端側に移動するにしたがい、第1レンズ群Gr1と第2レンズ群Gr2との間隔が狭まるので、第1及び第2レンズ群Gr1,Gr2の合成によって正パワーを発揮する。その上で、第3レンズ群Gr3が負の屈折力を持つことにより、第1及び第2レンズ群Gr1,Gr2を合成した正の屈折力と第3レンズ群Gr3の負の屈折力とのパワー配置は、テレフォトタイプの配置となる。したがって、ズームレンズ10は比較的長い焦点距離を確保しつつ、光学全長を抑えることができる。
By making the first lens group Gr1 in a negative configuration, it is possible to quickly loosen light rays incident at a large angle from the object side, which is advantageous in terms of downsizing the front lens diameter. Further, by providing the reflective optical element PRM in the first lens group Gr1, the size or thickness of the camera module (imaging device) 50 in the depth direction (Z direction) can be reduced.
In the zoom lens 10, the second lens group Gr2 and the third lens group Gr2 move by zooming from the wide-angle end to the telephoto end, and at the wide-angle end, the first lens group Gr1 and the second lens group are moved. The distance from Gr2 is the farthest. In addition, since the second lens group Gr2 has a positive refractive power, the power arrangement of the first lens group Gr1 and the second lens group Gr2 is a retrofocus type arrangement. Therefore, since the zoom lens 10 can ensure a relatively long back focus while shortening the entire length, a sufficient space for disposing the parallel plate F between the image-side surface of the zoom lens 10 and the image sensor 51. Can be secured. On the other hand, the distance between the first lens group Gr1 and the second lens group Gr2 becomes narrower as the lens moves from the wide-angle end to the telephoto end side, so that positive power is exhibited by combining the first and second lens groups Gr1 and Gr2. . In addition, since the third lens group Gr3 has negative refractive power, the power of the positive refractive power obtained by combining the first and second lens groups Gr1 and Gr2 and the negative refractive power of the third lens group Gr3. The arrangement is a telephoto type arrangement. Therefore, the zoom lens 10 can suppress the total optical length while ensuring a relatively long focal length.
 以上のズームレンズ10は、既に説明した条件式(1)~(10)等を満足するものとなっている。 The above zoom lens 10 satisfies the conditional expressions (1) to (10) described above.
〔実施例〕
 以下、本発明のズームレンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f  :ズームレンズ全系の焦点距離
Fno:Fナンバー
2Y :固体撮像素子の撮像面対角線長
R  :近軸曲率半径
D  :軸上面間隔
Nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
〔Example〕
Examples of the zoom lens of the present invention will be described below. Symbols used in each example are as follows.
f: Focal length of the entire zoom lens system Fno: F number 2Y: Diagonal length of the imaging surface of the solid-state imaging device R: Paraxial radius of curvature D: Spacing on the axial surface Nd: Refractive index νd of lens material with respect to d-line: Abbe of lens material number
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
〔数1〕
Figure JPOXMLDOC01-appb-I000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is h, and is expressed by the following “Equation 1”.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
 以下、本発明のズームレンズの具体的な実施例を説明する。
 〔実施例1〕
ズーム比 = 2.85
レンズ全長 = 27.087
Specific examples of the zoom lens according to the present invention will be described below.
[Example 1]
Zoom ratio = 2.85
Total lens length = 27.087
 実施例1のレンズデータを表1に示す。なお、これ以降の表において、面番号をS、有効半径(mm)をER(mm)、絞りをstopと表す。
 〔表1〕
   S          R(mm)      D(mm)    Nd         νd         ER(mm)
(Surface No.)                                     (Effective radius)
   1           9.521     0.400    1.88300    40.8        3.61
   2           4.805     1.595                           3.13
   3        infinity     5.000    1.84670    23.8        2.97
   4        infinity     0.960                           2.03
   5          -5.643     0.400    1.83480    42.7        1.79
   6          12.621     0.888    1.92290    20.9        1.77
   7         -18.972     d1                              1.75
   8*          4.116     1.691    1.58910    61.3        1.90
   9*         -9.131     0.300                           1.77
  10(stop)  infinity     0.000                           1.61
  11          14.631     0.400    1.91080    35.3        1.59
  12           3.092     1.917    1.49710    81.6        1.51
  13*         -5.436     d2                              1.50
  14*        -23.150     0.500    1.54470    56.2        1.52
  15*          5.562     d3                              1.53
  16*         12.342     1.600    1.63470    23.9        2.12
  17*         -4.271     0.300                           2.11
  18         -21.155     0.500    1.92290    20.9        1.99
  19           5.142     0.937                           1.94
  20        infinity     0.210    1.51680    64.2        2.11
  21        infinity     0.500                           2.15
Table 1 shows lens data of Example 1. In the following tables, the surface number is S, the effective radius (mm) is ER (mm), and the aperture is stop.
[Table 1]
S R (mm) D (mm) Nd νd ER (mm)
(Surface No.) (Effective radius)
1 9.521 0.400 1.88300 40.8 3.61
2 4.805 1.595 3.13
3 infinity 5.000 1.84670 23.8 2.97
4 infinity 0.960 2.03
5 -5.643 0.400 1.83480 42.7 1.79
6 12.621 0.888 1.92290 20.9 1.77
7 -18.972 d1 1.75
8 * 4.116 1.691 1.58910 61.3 1.90
9 * -9.131 0.300 1.77
10 (stop) infinity 0.000 1.61
11 14.631 0.400 1.91080 35.3 1.59
12 3.092 1.917 1.49710 81.6 1.51
13 * -5.436 d2 1.50
14 * -23.150 0.500 1.54470 56.2 1.52
15 * 5.562 d3 1.53
16 * 12.342 1.600 1.63470 23.9 2.12
17 * -4.271 0.300 2.11
18 -21.155 0.500 1.92290 20.9 1.99
19 5.142 0.937 1.94
20 infinity 0.210 1.51680 64.2 2.11
21 infinity 0.500 2.15
 実施例1のズームレンズのレンズ面の非球面係数を以下の表2に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。
 〔表2〕
第8面
K=0.00000E+00, A4=-0.28241E-02, A6=0.37624E-03, A8=-0.37045E-03, 
A10=0.86188E-04, A12=-0.87053E-05
第9面
K=0.00000E+00, A4=0.19053E-02, A6=-0.37382E-04, A8=-0.24271E-03, 
A10=0.53035E-04, A12=-0.47646E-05
第13面
K=0.00000E+00, A4=-0.15540E-04, A6=-0.63840E-03, A8=0.74582E-03, 
A10=-0.29787E-03, A12=0.42764E-04
第14面
K=0.00000E+00, A4=-0.10898E-01, A6=0.31052E-01, A8=-0.40629E-01, 
A10=0.27789E-01, A12=-0.95371E-02, A14=0.12865E-02
第15面
K=0.00000E+00, A4=-0.11626E-01, A6=0.36543E-01, A8=-0.43414E-01, 
A10=0.26886E-01, A12=-0.83442E-02, A14=0.10160E-02
第16面
K=0.00000E+00, A4=-0.13996E-03, A6=0.57362E-03, A8=-0.33268E-04, 
A10=0.43742E-05, A12=0.48336E-07
第17面
K=0.00000E+00, A4=0.55026E-02, A6=0.30324E-03, A8=0.34194E-05, 
A10=0.39722E-05, A12=0.20705E-08
Table 2 below shows the aspherical coefficients of the lens surfaces of the zoom lens of Example 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02).
[Table 2]
8th page
K = 0.00000E + 00, A4 = -0.28241E-02, A6 = 0.37624E-03, A8 = -0.37045E-03,
A10 = 0.86188E-04, A12 = -0.87053E-05
9th page
K = 0.00000E + 00, A4 = 0.19053E-02, A6 = -0.37382E-04, A8 = -0.24271E-03,
A10 = 0.53035E-04, A12 = -0.47646E-05
Side 13
K = 0.00000E + 00, A4 = -0.15540E-04, A6 = -0.63840E-03, A8 = 0.74582E-03,
A10 = -0.29787E-03, A12 = 0.42764E-04
14th page
K = 0.00000E + 00, A4 = -0.10898E-01, A6 = 0.31052E-01, A8 = -0.40629E-01,
A10 = 0.27789E-01, A12 = -0.95371E-02, A14 = 0.12865E-02
15th page
K = 0.00000E + 00, A4 = -0.11626E-01, A6 = 0.36543E-01, A8 = -0.43414E-01,
A10 = 0.26886E-01, A12 = -0.83442E-02, A14 = 0.10160E-02
16th page
K = 0.00000E + 00, A4 = -0.13996E-03, A6 = 0.57362E-03, A8 = -0.33268E-04,
A10 = 0.43742E-05, A12 = 0.48336E-07
17th page
K = 0.00000E + 00, A4 = 0.55026E-02, A6 = 0.30324E-03, A8 = 0.34194E-05,
A10 = 0.39722E-05, A12 = 0.20705E-08
 実施例1のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d3)を以下の表3に示す。なお、Po=1は広角端であり、Po=2は中間であり、Po=3は望遠端である。
 〔表3〕
Po  f      Fno    画角   2Y      d1      d2      d3
1   3.46   2.88   73.1   4.600   5.801   1.965   1.224
2   5.75   3.92   43.7   4.600   3.016   2.275   3.700
3   9.88   5.25   25.4   4.600   0.250   4.705   4.036
 実施例1のズームレンズの各レンズ群のデータを以下の表4に示す。
The focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d3) of the entire system at each position (Po) 1 to 3 of the zoom lens according to the first exemplary embodiment. ) Is shown in Table 3 below. Note that Po = 1 is the wide-angle end, Po = 2 is the middle, and Po = 3 is the telephoto end.
[Table 3]
Po f Fno Angle of view 2Y d1 d2 d3
1 3.46 2.88 73.1 4.600 5.801 1.965 1.224
2 5.75 3.92 43.7 4.600 3.016 2.275 3.700
3 9.88 5.25 25.4 4.600 0.250 4.705 4.036
The data of each lens group of the zoom lens of Example 1 is shown in Table 4 below.
 〔表4〕
レンズ群    始面         焦点距離(mm)
  1           1            -4.76
  2           8             5.04
  3          14            -8.18
  4          16          1345.87
[Table 4]
Lens group Start surface Focal length (mm)
1 1 -4.76
2 8 5.04
3 14 -8.18
4 16 1345.87
 図4A~4Cは、実施例1のズームレンズ110(10)の断面図である。このうち、図4Aは広角端における断面図であり、図4Bは中間における断面図であり、図4Cは望遠端における断面図である。なお、図4A~4C及びこれ以後の断面図において、反射光学素子PRMは、その光路長と等価な平行平板として表されている。 4A to 4C are cross-sectional views of the zoom lens 110 (10) of the first embodiment. 4A is a cross-sectional view at the wide-angle end, FIG. 4B is a cross-sectional view at the middle, and FIG. 4C is a cross-sectional view at the telephoto end. 4A to 4C and subsequent sectional views, the reflective optical element PRM is represented as a parallel plate equivalent to the optical path length.
 実施例1のズームレンズ110(10)は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4とからなる。ここで、第1レンズ群Gr1は、物体側に凸で負メニスカスの第1レンズL11と、直角プリズムである反射光学素子PRMと、両凹で負の第2レンズL12と、両凸で正の第3レンズL13とを有する。これらのうち、第2レンズL12と第3レンズL13とは接合レンズとなっている。第2レンズ群Gr2は、両凸で正の第4レンズL21と、開口絞りSと、物体側に凸で負メニスカスの第5レンズL22と、両凸で正の第6レンズL23とを有する。これらのうち、第5レンズL22と第6レンズL23とは接合レンズとなっている。第3レンズ群Gr3は、単レンズで構成され、両凹で負の第7レンズL31を有する。第4レンズ群Gr4は、両凸で正の第8レンズL41と、両凹で負の第9レンズL42とを有する。その他、符号Fは、光学的ローパスフィルター、IRカットフィルター、固体撮像素子のシールガラス等を想定した平行平板を示す。また、符号Iは、撮像素子51の撮像面を示す。 The zoom lens 110 (10) of Example 1 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4. Here, the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens. And a third lens L13. Among these, the second lens L12 and the third lens L13 are cemented lenses. The second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. Among these, the fifth lens L22 and the sixth lens L23 are cemented lenses. The third lens group Gr3 is composed of a single lens and includes a biconcave negative seventh lens L31. The fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. In addition, the code | symbol F shows the parallel plate which assumed the optical low-pass filter, IR cut filter, the sealing glass of a solid-state image sensor, etc. Reference numeral I denotes an imaging surface of the imaging element 51.
 図5Aは、ズームレンズ110の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図5Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)であり、図5Cは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。なお、上記収差図及び以後の収差図において、球面収差図では、実線がd線を表し、点線がg線を表すものとし、非点収差図では、実線がサジタル像面を表し、点線がメリジオナル像面を表すものとする。 FIG. 5A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide angle end of the zoom lens 110, and FIG. 5B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration). FIG. 5C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end. In the aberration diagrams and the subsequent aberration diagrams, in the spherical aberration diagram, the solid line represents the d line and the dotted line represents the g line, and in the astigmatism diagram, the solid line represents the sagittal image plane and the dotted line represents the meridional. It shall represent the image plane.
 図6は、実施例1のズームレンズ110によって撮像面Iに入射する主光線の入射角度を示すグラフであり、横軸が像高を示し縦軸が主光線の入射角度を示す。グラフ中で実線が広角端における入射角度を表し、点線が望遠端における入射角度を表す。 FIG. 6 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 110 according to the first embodiment, in which the horizontal axis represents the image height and the vertical axis represents the chief ray incident angle. In the graph, the solid line represents the incident angle at the wide-angle end, and the dotted line represents the incident angle at the telephoto end.
 実施例1のズームレンズ110は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第3レンズ群Gr3が光軸AX方向に沿って物体側に移動して、隣接するレンズ群Gr1~Gr4の間隔を変えることにより変倍を行うことができる。残りのレンズ群Gr1,Gr4は、変倍に際し固定されている。また、第3レンズ群Gr3を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第4レンズL21と第6レンズL23とはガラスモールドレンズを想定し、第7レンズL31と第8レンズL41とはプラスチックレンズを想定し、それ以外のレンズL11,L12,L13,L22,L42はガラス材料による研磨レンズを想定している。 In the zoom lens 110 of Example 1, the second lens group Gr2 moves to the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end. The zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4. The remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3. The fourth lens L21 and the sixth lens L23 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13, L22, L42. Assumes a polished lens made of glass material.
 実施例1のズームレンズ110では、第8レンズL41が光軸AX方向に対し垂直な面内方向において移動することで、撮像面I上の対象像の位置の変化を補償するように結像位置を移動させて、手振れ補正を行っている。 In the zoom lens 110 according to the first embodiment, the eighth lens L41 moves in the in-plane direction perpendicular to the optical axis AX direction, so that the imaging position is compensated for the change in the position of the target image on the imaging surface I. To correct camera shake.
 また、第2レンズ群Gr2は、開口絞りSを含むことからこれを構成するレンズを通過する光束が太いことや、広角端から望遠端への変倍に際し長い距離を移動することから、第2レンズ群Gr2の偏芯誤差感度はできるだけ小さくする必要がある。そこで、第4レンズL21を調芯することによって、全系で発生する片ボケと呼ばれる画面内の非対称なボケを低減させることができる。実施例1のズームレンズ110では、広角端の方が望遠端よりもFナンバーが小さく、焦点深度が浅く片ボケの影響を受けやすいため、組み立て時に広角端において、この調芯を行うことが好ましい。ここで調芯とは、レンズを光軸AXに対して偏芯させることによって、第4レンズL21以外に起因する片ボケをキャンセルさせて低減させることを言う。なお、光軸AXに対して偏芯させる場合、平行偏芯だけでなく、傾き偏芯させてもよい。また、片ボケを低減させるのではなく、軸上コマ収差を低減させる目的で調芯を行ってもよい。 In addition, since the second lens group Gr2 includes the aperture stop S, the light flux passing through the lens constituting the second lens group Gr2 is thick, and the second lens group Gr2 moves a long distance upon zooming from the wide angle end to the telephoto end. The decentering error sensitivity of the lens group Gr2 needs to be as small as possible. Therefore, by aligning the fourth lens L21, it is possible to reduce asymmetric blur in the screen called single blur that occurs in the entire system. In the zoom lens 110 according to the first exemplary embodiment, the F-number is smaller at the wide-angle end than the telephoto end, the depth of focus is shallow, and it is easily affected by one blur. Therefore, it is preferable to perform this alignment at the wide-angle end during assembly. . Here, the alignment means that the lens is decentered with respect to the optical axis AX, thereby canceling and reducing one-sided blur caused by other than the fourth lens L21. In addition, when decentering with respect to the optical axis AX, not only parallel decentering but also tilt decentering may be performed. Further, alignment may be performed for the purpose of reducing axial coma rather than reducing one-sided blur.
 〔実施例2〕
ズーム比 = 2.85
レンズ全長 = 27.607
[Example 2]
Zoom ratio = 2.85
Total lens length = 27.607
 実施例2のレンズデータを表5に示す。
 〔表5〕
   S          R(mm)      D(mm)    Nd         νd         ER(mm)
   1          12.007     0.400    1.90370    31.3        3.82
   2           6.530     1.304                           3.44
   3        infinity     5.553    1.84670    23.8        3.32
   4        infinity     1.084                           2.21
   5          -5.137     0.400    1.72920    54.7        1.93
   6          34.774     0.774    1.92290    20.9        1.92
   7         -18.395     d1                              1.90
   8*          4.338     1.783    1.59200    67.0        1.86
   9*        -13.189     0.300                           1.68
  10(stop)  infinity     0.000                           1.54
  11          16.865     0.400    1.90370    31.3        1.54
  12           4.553     1.420    1.49710    81.6        1.50
  13*         -6.275     d2                              1.50
  14*         50.581     0.500    1.54470    56.2        1.51
  15*          4.216     d3                              1.50
  16*          6.728     1.600    1.54470    56.2        2.26
  17*        -16.363     0.987                           2.20
  18*         -7.210     0.898    1.85130    40.1        2.02
  19*         77.266     0.825                           1.92
  20        infinity     0.210    1.51680    64.2        2.13
  21        infinity     0.300                           2.18
Table 5 shows lens data of Example 2.
[Table 5]
S R (mm) D (mm) Nd νd ER (mm)
1 12.007 0.400 1.90370 31.3 3.82
2 6.530 1.304 3.44
3 infinity 5.553 1.84670 23.8 3.32
4 infinity 1.084 2.21
5 -5.137 0.400 1.72920 54.7 1.93
6 34.774 0.774 1.92290 20.9 1.92
7 -18.395 d1 1.90
8 * 4.338 1.783 1.59200 67.0 1.86
9 * -13.189 0.300 1.68
10 (stop) infinity 0.000 1.54
11 16.865 0.400 1.90370 31.3 1.54
12 4.553 1.420 1.49710 81.6 1.50
13 * -6.275 d2 1.50
14 * 50.581 0.500 1.54470 56.2 1.51
15 * 4.216 d3 1.50
16 * 6.728 1.600 1.54470 56.2 2.26
17 * -16.363 0.987 2.20
18 * -7.210 0.898 1.85 130 40.1 2.02
19 * 77.266 0.825 1.92
20 infinity 0.210 1.51680 64.2 2.13
21 infinity 0.300 2.18
 実施例2のズームレンズのレンズ面の非球面係数を以下の表6に示す。
 〔表6〕
第8面
K=0.00000E+00, A4=-0.19884E-02, A6=0.55058E-04, A8=-0.21499E-03, 
A10=0.61349E-04, A12=-0.87053E-05
第9面
K=0.00000E+00, A4=0.16027E-02, A6=-0.80613E-03, A8=0.43169E-04, 
A10=0.77959E-05, A12=-0.47646E-05
第13面
K=0.00000E+00, A4=0.18176E-02, A6=0.17288E-03, A8=0.41918E-03, 
A10=-0.22145E-03, A12=0.42764E-04
第14面
K=0.00000E+00, A4=-0.64985E-02, A6=0.24852E-01, A8=-0.38100E-01, 
A10=0.27482E-01, A12=-0.95371E-02, A14=0.12865E-02
第15面
K=0.00000E+00, A4=-0.56187E-02, A6=0.27219E-01, A8=-0.39156E-01, 
A10=0.26228E-01, A12=-0.83442E-02, A14=0.10160E-02
第16面
K=0.00000E+00, A4=0.11313E-02, A6=0.11330E-03, A8=-0.18338E-04, 
A10=0.29848E-05, A12=0.48336E-07
第17面
K=0.00000E+00, A4=-0.41038E-02, A6=0.18029E-02, A8=-0.31664E-03, 
A10=0.21378E-04, A12=0.20705E-08
第18面
K=0.00000E+00, A4=0.16518E-01, A6=-0.35537E-03, A8=-0.21790E-03, 
A10=0.31519E-05, A12=-0.10568E-13
第19面
K=0.00000E+00, A4=0.24814E-01, A6=-0.68965E-03, A8=0.13269E-03, 
A10=-0.46419E-04, A12=-0.86952E-14
Table 6 below shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 2.
[Table 6]
8th page
K = 0.00000E + 00, A4 = -0.19884E-02, A6 = 0.55058E-04, A8 = -0.21499E-03,
A10 = 0.61349E-04, A12 = -0.87053E-05
9th page
K = 0.00000E + 00, A4 = 0.16027E-02, A6 = -0.80613E-03, A8 = 0.43169E-04,
A10 = 0.77959E-05, A12 = -0.47646E-05
Side 13
K = 0.00000E + 00, A4 = 0.18176E-02, A6 = 0.17288E-03, A8 = 0.41918E-03,
A10 = -0.22145E-03, A12 = 0.42764E-04
14th page
K = 0.00000E + 00, A4 = -0.64985E-02, A6 = 0.24852E-01, A8 = -0.38100E-01,
A10 = 0.27482E-01, A12 = -0.95371E-02, A14 = 0.12865E-02
15th page
K = 0.00000E + 00, A4 = -0.56187E-02, A6 = 0.27219E-01, A8 = -0.39156E-01,
A10 = 0.26228E-01, A12 = -0.83442E-02, A14 = 0.10160E-02
16th page
K = 0.00000E + 00, A4 = 0.11313E-02, A6 = 0.11330E-03, A8 = -0.18338E-04,
A10 = 0.29848E-05, A12 = 0.48336E-07
17th page
K = 0.00000E + 00, A4 = -0.41038E-02, A6 = 0.18029E-02, A8 = -0.31664E-03,
A10 = 0.21378E-04, A12 = 0.20705E-08
18th page
K = 0.00000E + 00, A4 = 0.16518E-01, A6 = -0.35537E-03, A8 = -0.21790E-03,
A10 = 0.31519E-05, A12 = -0.10568E-13
19th page
K = 0.00000E + 00, A4 = 0.24814E-01, A6 = -0.68965E-03, A8 = 0.13269E-03,
A10 = -0.46419E-04, A12 = -0.86952E-14
 実施例2のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d3)を以下の表7に示す。なお、Po=1は広角端であり、Po=2は中間であり、Po=3は望遠端である。
 〔表7〕
Po  f      Fno    画角   2Y      d1      d2      d3
1   3.80   2.88   66.7   4.600   6.325   1.371   1.172
2   6.31   3.91   39.5   4.600   3.210   1.492   4.166
3  10.83   5.27   23.2   4.600   0.250   3.117   5.501
The focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d3) of the entire system at each position (Po) 1 to 3 of the zoom lens according to the second embodiment. ) Is shown in Table 7 below. Note that Po = 1 is the wide-angle end, Po = 2 is the middle, and Po = 3 is the telephoto end.
[Table 7]
Po f Fno Angle of view 2Y d1 d2 d3
1 3.80 2.88 66.7 4.600 6.325 1.371 1.172
2 6.31 3.91 39.5 4.600 3.210 1.492 4.166
3 10.83 5.27 23.2 4.600 0.250 3.117 5.501
 実施例2のズームレンズの各レンズ群のデータを以下の表8に示す。
 〔表8〕
レンズ群    始面         焦点距離(mm)
  1           1            -6.02
  2           8             5.04
  3          14            -8.48
  4          16           133.74
The data of each lens group of the zoom lens of Example 2 is shown in Table 8 below.
[Table 8]
Lens group Start surface Focal length (mm)
1 1 -6.02
2 8 5.04
3 14 -8.48
4 16 133.74
 図7A~7Cは、実施例2のズームレンズ210(10)の断面図である。このうち、図7Aは広角端における断面図であり、図7Bは中間における断面図であり、図7Cは望遠端における断面図である。 7A to 7C are cross-sectional views of the zoom lens 210 (10) of the second embodiment. 7A is a cross-sectional view at the wide-angle end, FIG. 7B is a cross-sectional view at the middle, and FIG. 7C is a cross-sectional view at the telephoto end.
 実施例2のズームレンズ210(10)は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4とからなる。ここで、第1レンズ群Gr1は、物体側に凸で負メニスカスの第1レンズL11と、直角プリズムである反射光学素子PRMと、両凹で負の第2レンズL12と、両凸で正の第3レンズL13とを有する。これらのうち、第2レンズL12と第3レンズL13とは接合レンズとなっている。第2レンズ群Gr2は、両凸で正の第4レンズL21と、開口絞りSと、物体側に凸で負メニスカスの第5レンズL22と、両凸で正の第6レンズL23とを有する。これらのうち、第5レンズL22と第6レンズL23とは接合レンズとなっている。第3レンズ群Gr3は、単レンズで構成され、物体側に凸で負メニスカスの第7レンズL31を有する。第4レンズ群Gr4は、両凸で正の第8レンズL41と、両凹で負の第9レンズL42とを有する。その他、符号Fは、光学的ローパスフィルター、IRカットフィルター、固体撮像素子のシールガラス等を想定した平行平板を示す。また、符号Iは、撮像素子51の撮像面を示す。 The zoom lens 210 (10) of Example 2 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4. Here, the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens. And a third lens L13. Among these, the second lens L12 and the third lens L13 are cemented lenses. The second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. Among these, the fifth lens L22 and the sixth lens L23 are cemented lenses. The third lens group Gr3 includes a single lens, and includes a seventh meniscus L31 that is convex on the object side and has a negative meniscus. The fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. In addition, the code | symbol F shows the parallel plate which assumed the optical low-pass filter, IR cut filter, the sealing glass of a solid-state image sensor, etc. Reference numeral I denotes an imaging surface of the imaging element 51.
 図8Aは、ズームレンズ210の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図8Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)であり、図8Cは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。 8A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 210, and FIG. 8B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration). FIG. 8C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
 図9は、実施例2のズームレンズ210によって撮像面Iに入射する主光線の入射角度を示すグラフである。グラフ中で実線が広角端における入射角度を表し、点線が望遠端における入射角度を表す。 FIG. 9 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 210 of the second embodiment. In the graph, the solid line represents the incident angle at the wide-angle end, and the dotted line represents the incident angle at the telephoto end.
 実施例2のズームレンズ210は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第3レンズ群Gr3が光軸AX方向に沿って物体側に移動して、隣接するレンズ群Gr1~Gr4の間隔を変えることにより変倍を行うことができる。残りのレンズ群Gr1,Gr4は、変倍に際し固定されている。また、第3レンズ群Gr3を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第4レンズL21と第6レンズL23と第9レンズL42とはガラスモールドレンズを想定し、第7レンズL31と第8レンズL41とはプラスチックレンズを想定し、それ以外のレンズL11,L12,L13,L22はガラス材料による研磨レンズを想定している。 In the zoom lens 210 of Example 2, the second lens group Gr2 moves toward the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end. The zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4. The remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3. The fourth lens L21, the sixth lens L23, and the ninth lens L42 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13 and L22 are assumed to be polished lenses made of a glass material.
 実施例2のズームレンズ210では、第8レンズL41が光軸AX方向に対し垂直な面内方向において移動することで手振れ補正を行っている。また、実施例2のズームレンズ210では、第4レンズL21の調芯を行うことが好ましく、全系で発生する片ボケを低減させることができる。 In the zoom lens 210 of Example 2, camera shake correction is performed by moving the eighth lens L41 in the in-plane direction perpendicular to the optical axis AX direction. In the zoom lens 210 according to the second embodiment, it is preferable to perform alignment of the fourth lens L21, and one-side blur occurring in the entire system can be reduced.
 〔実施例3〕
ズーム比 = 2.85
レンズ全長 = 26.996
Example 3
Zoom ratio = 2.85
Total lens length = 26.996
 実施例3のレンズデータを表9に示す。
 〔表9〕
   S          R(mm)      D(mm)    Nd         νd         ER(mm)
   1          10.402     0.484    1.88300    40.8        3.69
   2           4.970     1.516                           3.15
   3        infinity     5.000    1.84670    23.8        3.01
   4        infinity     1.003                           2.03
   5          -5.087     0.400    1.84230    43.3        1.77
   6          17.056     0.874    1.92290    20.9        1.76
   7         -14.276     d1                              1.75
   8*          4.188     1.789    1.58740    60.0        1.90
   9*         -9.299     0.300                           1.75
  10(stop)  infinity     0.000                           1.59
  11          15.723     0.400    1.89040    34.5        1.58
  12           3.213     1.878    1.49700    81.6        1.51
  13*         -5.281     d2                              1.50
  14*        -31.280     0.500    1.54470    56.2        1.51
  15*          5.386     d3                              1.53
  16*          9.984     1.600    1.57860    36.8        2.11
  17*         -4.887     0.414                           2.07
  18*         -6.593     0.579    1.88300    40.8        1.97
  19*          9.829     0.831                           1.93
  20        infinity     0.210    1.51680    64.2        2.12
  21        infinity     0.300                           2.18
Table 9 shows lens data of Example 3.
[Table 9]
S R (mm) D (mm) Nd νd ER (mm)
1 10.402 0.484 1.88300 40.8 3.69
2 4.970 1.516 3.15
3 infinity 5.000 1.84670 23.8 3.01
4 infinity 1.003 2.03
5 -5.087 0.400 1.84230 43.3 1.77
6 17.056 0.874 1.92290 20.9 1.76
7 -14.276 d1 1.75
8 * 4.188 1.789 1.58740 60.0 1.90
9 * -9.299 0.300 1.75
10 (stop) infinity 0.000 1.59
11 15.723 0.400 1.89040 34.5 1.58
12 3.213 1.878 1.49700 81.6 1.51
13 * -5.281 d2 1.50
14 * -31.280 0.500 1.54470 56.2 1.51
15 * 5.386 d3 1.53
16 * 9.984 1.600 1.57860 36.8 2.11
17 * -4.887 0.414 2.07
18 * -6.593 0.579 1.88300 40.8 1.97
19 * 9.829 0.831 1.93
20 infinity 0.210 1.51680 64.2 2.12
21 infinity 0.300 2.18
 実施例3のズームレンズのレンズ面の非球面係数を以下の表10に示す。
 〔表10〕
第8面
K=0.00000E+00, A4=-0.27650E-02, A6=0.39585E-03, A8=-0.36683E-03, 
A10=0.85939E-04, A12=-0.87053E-05
第9面
K=0.00000E+00, A4=0.18915E-02, A6=-0.19851E-04, A8=-0.24281E-03, 
A10=0.52904E-04, A12=-0.47646E-05
第13面
K=0.00000E+00, A4=0.27358E-03, A6=-0.58628E-03, A8=0.74791E-03, 
A10=-0.29812E-03, A12=0.42764E-04
第14面
K=0.00000E+00, A4=-0.11561E-01, A6=0.32024E-01, A8=-0.40755E-01, 
A10=0.27727E-01, A12=-0.95371E-02, A14=0.12865E-02
第15面
K=0.00000E+00, A4=-0.11953E-01, A6=0.36620E-01, A8=-0.42856E-01, 
A10=0.26663E-01, A12=-0.83442E-02, A14=0.10160E-02
第16面
K=0.00000E+00, A4=-0.18996E-02, A6=0.47182E-03, A8=0.13628E-03, 
A10=-0.11772E-04, A12=0.48336E-07
第17面
K=0.00000E+00, A4=-0.26987E-02, A6=0.21748E-02, A8=-0.83394E-04, 
A10=-0.27134E-05, A12=0.20705E-08
第18面
K=0.00000E+00, A4=0.13716E-01, A6=-0.79216E-03, A8=-0.92168E-04, 
A10=0.89662E-06, A12=0.60500E-17
第19面
K=0.00000E+00, A4=0.17266E-01, A6=-0.97475E-03, A8=-0.25664E-03, 
A10=0.35503E-04, A12=-0.47300E-17
Table 10 below shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 3.
[Table 10]
8th page
K = 0.00000E + 00, A4 = -0.27650E-02, A6 = 0.39585E-03, A8 = -0.36683E-03,
A10 = 0.85939E-04, A12 = -0.87053E-05
9th page
K = 0.00000E + 00, A4 = 0.18915E-02, A6 = -0.19851E-04, A8 = -0.24281E-03,
A10 = 0.52904E-04, A12 = -0.47646E-05
Side 13
K = 0.00000E + 00, A4 = 0.27358E-03, A6 = -0.58628E-03, A8 = 0.74791E-03,
A10 = -0.29812E-03, A12 = 0.42764E-04
14th page
K = 0.00000E + 00, A4 = -0.11561E-01, A6 = 0.32024E-01, A8 = -0.40755E-01,
A10 = 0.27727E-01, A12 = -0.95371E-02, A14 = 0.12865E-02
15th page
K = 0.00000E + 00, A4 = -0.11953E-01, A6 = 0.36620E-01, A8 = -0.42856E-01,
A10 = 0.26663E-01, A12 = -0.83442E-02, A14 = 0.10160E-02
16th page
K = 0.00000E + 00, A4 = -0.18996E-02, A6 = 0.47182E-03, A8 = 0.13628E-03,
A10 = -0.11772E-04, A12 = 0.48336E-07
17th page
K = 0.00000E + 00, A4 = -0.26987E-02, A6 = 0.21748E-02, A8 = -0.83394E-04,
A10 = -0.27134E-05, A12 = 0.20705E-08
18th page
K = 0.00000E + 00, A4 = 0.13716E-01, A6 = -0.79216E-03, A8 = -0.92168E-04,
A10 = 0.89662E-06, A12 = 0.60500E-17
19th page
K = 0.00000E + 00, A4 = 0.17266E-01, A6 = -0.97475E-03, A8 = -0.25664E-03,
A10 = 0.35503E-04, A12 = -0.47300E-17
 実施例3のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d3)を以下の表11に示す。なお、Po=1は広角端であり、Po=2は中間であり、Po=3は望遠端である。
 〔表11〕
Po  f      Fno    画角   2Y      d1      d2      d3
1   3.40   2.88   75.2   4.600   5.770   1.964   1.184
2   5.66   3.93   44.5   4.600   2.988   2.170   3.761
3   9.70   5.27   26.0   4.600   0.250   4.417   4.252
The focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d3) of the entire system at each position (Po) 1 to 3 of the zoom lens according to the third exemplary embodiment. ) Is shown in Table 11 below. Note that Po = 1 is the wide-angle end, Po = 2 is the middle, and Po = 3 is the telephoto end.
[Table 11]
Po f Fno Angle of view 2Y d1 d2 d3
1 3.40 2.88 75.2 4.600 5.770 1.964 1.184
2 5.66 3.93 44.5 4.600 2.988 2.170 3.761
3 9.70 5.27 26.0 4.600 0.250 4.417 4.252
 実施例3のズームレンズの各レンズ群のデータを以下の表12に示す。
 〔表12〕
レンズ群    始面         焦点距離(mm)
  1           1            -4.69
  2           8             5.01
  3          14            -8.40
  4          16           -41.54
The data of each lens group of the zoom lens of Example 3 is shown in Table 12 below.
[Table 12]
Lens group Start surface Focal length (mm)
1 1 -4.69
2 8 5.01
3 14 -8.40
4 16 -41.54
 図10A~10Cは、実施例3のズームレンズ310(10)の断面図である。このうち、図10Aは広角端における断面図であり、図10Bは中間における断面図であり、図10Cは望遠端における断面図である。
 実施例3のズームレンズ310(10)は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4とからなる。ここで、第1レンズ群Gr1は、物体側に凸で負メニスカスの第1レンズL11と、直角プリズムである反射光学素子PRMと、両凹で負の第2レンズL12と、両凸で正の第3レンズL13とを有する。これらのうち、第2レンズL12と第3レンズL13とは接合レンズとなっている。第2レンズ群Gr2は、両凸で正の第4レンズL21と、開口絞りSと、物体側に凸で負メニスカスの第5レンズL22と、両凸で正の第6レンズL23とを有する。これらのうち、第5レンズL22と第6レンズL23とは接合レンズとなっている。第3レンズ群Gr3は、単レンズで構成され、両凹で負の第7レンズL31を有する。第4レンズ群Gr4は、両凸で正の第8レンズL41と、両凹で負の第9レンズL42とを有する。その他、符号Fは平行平板を示し、符号Iは撮像素子51の撮像面を示す。
10A to 10C are cross-sectional views of the zoom lens 310 (10) of the third embodiment. 10A is a cross-sectional view at the wide-angle end, FIG. 10B is a cross-sectional view at the middle, and FIG. 10C is a cross-sectional view at the telephoto end.
The zoom lens 310 (10) of Example 3 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4. Here, the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens. And a third lens L13. Among these, the second lens L12 and the third lens L13 are cemented lenses. The second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. Among these, the fifth lens L22 and the sixth lens L23 are cemented lenses. The third lens group Gr3 is composed of a single lens and includes a biconcave negative seventh lens L31. The fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. In addition, the symbol F indicates a parallel plate, and the symbol I indicates an imaging surface of the imaging element 51.
 図11Aは、ズームレンズ310の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図11Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)であり、図11Cは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。 FIG. 11A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 310, and FIG. 11B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration). FIG. 11C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
 図12は、実施例3のズームレンズ310によって撮像面Iに入射する主光線の入射角度を示すグラフである。グラフ中で実線が広角端における入射角度を表し、点線が望遠端における入射角度を表す。 FIG. 12 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 310 of the third embodiment. In the graph, the solid line represents the incident angle at the wide-angle end, and the dotted line represents the incident angle at the telephoto end.
 実施例3のズームレンズ310は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第3レンズ群Gr3が光軸AX方向に沿って物体側に移動して、隣接するレンズ群Gr1~Gr4の間隔を変えることにより変倍を行うことができる。残りのレンズ群Gr1,Gr4は、変倍に際し固定されている。また、第3レンズ群Gr3を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第4レンズL21と第6レンズL23と第9レンズL42とはガラスモールドレンズを想定し、第7レンズL31と第8レンズL41とはプラスチックレンズを想定し、それ以外のレンズL11,L12,L13,L22はガラス材料による研磨レンズを想定している。 In the zoom lens 310 of Example 3, the second lens group Gr2 moves to the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end. The zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4. The remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3. The fourth lens L21, the sixth lens L23, and the ninth lens L42 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13 and L22 are assumed to be polished lenses made of a glass material.
 実施例3のズームレンズ310では、第8レンズL41が光軸AX方向に対し垂直な面内方向において移動することで手振れ補正を行っている。また、実施例3のズームレンズ310では、第4レンズL21の調芯を行うことが好ましく、全系で発生する片ボケを低減させることができる。 In the zoom lens 310 of Example 3, camera shake correction is performed by the eighth lens L41 moving in the in-plane direction perpendicular to the optical axis AX direction. In the zoom lens 310 according to the third embodiment, it is preferable to align the fourth lens L21, and one-side blur occurring in the entire system can be reduced.
 〔実施例4〕
ズーム比 = 2.85
レンズ全長 = 26.995
Example 4
Zoom ratio = 2.85
Total lens length = 26.995
 実施例4のレンズデータを表13に示す。
 〔表13〕
   S          R(mm)      D(mm)    Nd         νd         ER(mm)
   1          12.899     0.400    1.88100    40.1        3.62
   2           4.980     1.606                           3.10
   3        infinity     4.928    1.84666    23.8        2.91
   4        infinity     0.964                           2.02
   5          -5.495     0.400    1.72916    54.7        1.78
   6          12.100     0.812    1.92286    20.9        1.75
   7         -36.129     d1                              1.72
   8*          4.318     1.953    1.62263    58.2        1.92
   9*         -8.313     0.012                           1.76
  10(stop)  infinity     0.298                           1.69
  11          14.657     0.400    1.90366    31.3        1.63
  12           3.229     1.748    1.49700    81.6        1.54
  13*         -6.865     d2                              1.53
  14*        -19.438     0.500    1.54470    56.2        1.54
  15*          6.323     d3                              1.55
  16*         23.928     1.443    1.63469    23.9        2.08
  17*         -4.105     0.300                           2.07
  18          -9.276     0.500    1.92286    20.9        1.98
  19          12.752     1.095                           1.99
  20        infinity     0.210    1.51680    64.2        2.16
  21        infinity     0.500                           2.18
Table 13 shows lens data of Example 4.
[Table 13]
S R (mm) D (mm) Nd νd ER (mm)
1 12.899 0.400 1.88100 40.1 3.62
2 4.980 1.606 3.10
3 infinity 4.928 1.84666 23.8 2.91
4 infinity 0.964 2.02
5 -5.495 0.400 1.72916 54.7 1.78
6 12.100 0.812 1.92286 20.9 1.75
7 -36.129 d1 1.72
8 * 4.318 1.953 1.62263 58.2 1.92
9 * -8.313 0.012 1.76
10 (stop) infinity 0.298 1.69
11 14.657 0.400 1.90366 31.3 1.63
12 3.229 1.748 1.49700 81.6 1.54
13 * -6.865 d2 1.53
14 * -19.438 0.500 1.54470 56.2 1.54
15 * 6.323 d3 1.55
16 * 23.928 1.443 1.63469 23.9 2.08
17 * -4.105 0.300 2.07
18 -9.276 0.500 1.92286 20.9 1.98
19 12.752 1.095 1.99
20 infinity 0.210 1.51680 64.2 2.16
21 infinity 0.500 2.18
 実施例4のズームレンズのレンズ面の非球面係数を以下の表14に示す。
 〔表14〕
第8面
K=0.00000E+00, A4=-0.25944E-02, A6=0.34085E-03, A8=-0.35138E-03, 
A10=0.86901E-04, A12=-0.87053E-05
第9面
K=0.00000E+00, A4=0.19129E-02, A6=-0.20647E-03, A8=-0.17959E-03, 
A10=0.48246E-04, A12=-0.47646E-05
第13面
K=0.00000E+00, A4=-0.17778E-03, A6=-0.10607E-03, A8=0.56712E-03, 
A10=-0.26853E-03, A12=0.42764E-04
第14面
K=0.00000E+00, A4=-0.80876E-02, A6=0.33040E-01, A8=-0.42183E-01, 
A10=0.28079E-01, A12=-0.95371E-02, A14=0.12865E-02
第15面
K=0.00000E+00, A4=-0.89359E-02, A6=0.38882E-01, A8=-0.45231E-01, 
A10=0.27247E-01, A12=-0.83442E-02, A14=0.10160E-02
第16面
K=0.00000E+00, A4=-0.54725E-03, A6=0.79901E-03, A8=0.64206E-06, 
A10=0.27987E-05, A12=0.48336E-07
第17面
K=0.00000E+00, A4=0.28132E-02, A6=0.83859E-03, A8=-0.35202E-04, 
A10=0.11730E-04, A12=0.20705E-08
Table 14 below shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 4.
[Table 14]
8th page
K = 0.00000E + 00, A4 = -0.25944E-02, A6 = 0.34085E-03, A8 = -0.35138E-03,
A10 = 0.86901E-04, A12 = -0.87053E-05
9th page
K = 0.00000E + 00, A4 = 0.19129E-02, A6 = -0.20647E-03, A8 = -0.17959E-03,
A10 = 0.48246E-04, A12 = -0.47646E-05
Side 13
K = 0.00000E + 00, A4 = -0.17778E-03, A6 = -0.10607E-03, A8 = 0.56712E-03,
A10 = -0.26853E-03, A12 = 0.42764E-04
14th page
K = 0.00000E + 00, A4 = -0.80876E-02, A6 = 0.33040E-01, A8 = -0.42183E-01,
A10 = 0.28079E-01, A12 = -0.95371E-02, A14 = 0.12865E-02
15th page
K = 0.00000E + 00, A4 = -0.89359E-02, A6 = 0.38882E-01, A8 = -0.45231E-01,
A10 = 0.27247E-01, A12 = -0.83442E-02, A14 = 0.10160E-02
16th page
K = 0.00000E + 00, A4 = -0.54725E-03, A6 = 0.79901E-03, A8 = 0.64206E-06,
A10 = 0.27987E-05, A12 = 0.48336E-07
17th page
K = 0.00000E + 00, A4 = 0.28132E-02, A6 = 0.83859E-03, A8 = -0.35202E-04,
A10 = 0.11730E-04, A12 = 0.20705E-08
 実施例4のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d3)を以下の表15に示す。なお、Po=1は広角端であり、Po=2は中間であり、Po=3は望遠端である。
 〔表15〕
Po  f      Fno    画角   2Y      d1      d2      d3
1   3.27   2.88   79.2   4.600   5.651   1.866   1.409
2   5.38   3.87   47.3   4.600   3.011   2.362   3.552
3   9.32   5.14   26.9   4.600   0.250   5.864   2.812
The focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d3) of the entire system at each position (Po) 1 to 3 of the zoom lens according to the fourth exemplary embodiment. ) Is shown in Table 15 below. Note that Po = 1 is the wide-angle end, Po = 2 is the middle, and Po = 3 is the telephoto end.
[Table 15]
Po f Fno Angle of view 2Y d1 d2 d3
1 3.27 2.88 79.2 4.600 5.651 1.866 1.409
2 5.38 3.87 47.3 4.600 3.011 2.362 3.552
3 9.32 5.14 26.9 4.600 0.250 5.864 2.812
 実施例4のズームレンズの各レンズ群のデータを以下の表16に示す。
 〔表16〕
レンズ群    始面         焦点距離(mm)
  1           1            -4.16
  2           8             4.97
  3          14            -8.70
  4          16            48.86
Data of each lens group of the zoom lens of Example 4 is shown in Table 16 below.
[Table 16]
Lens group Start surface Focal length (mm)
1 1 -4.16
2 8 4.97
3 14 -8.70
4 16 48.86
 図13A~13Cは、実施例4のズームレンズ410(10)の断面図である。このうち、図13Aは広角端における断面図であり、図13Bは中間における断面図であり、図13Cは望遠端における断面図である。
 実施例4のズームレンズ410(10)は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4とからなる。ここで、第1レンズ群Gr1は、物体側に凸で負メニスカスの第1レンズL11と、直角プリズムである反射光学素子PRMと、両凹で負の第2レンズL12と、両凸で正の第3レンズL13とを有する。これらのうち、第2レンズL12と第3レンズL13とは接合レンズとなっている。第2レンズ群Gr2は、両凸で正の第4レンズL21と、開口絞りSと、物体側に凸で負メニスカスの第5レンズL22と、両凸で正の第6レンズL23とを有する。これらのうち、第5レンズL22と第6レンズL23とは接合レンズとなっている。第3レンズ群Gr3は、単レンズで構成され、両凹で負の第7レンズL31を有する。第4レンズ群Gr4は、両凸で正の第8レンズL41と、両凹で負の第9レンズL42とを有する。その他、符号Fは平行平板を示し、符号Iは撮像素子51の撮像面を示す。
13A to 13C are cross-sectional views of the zoom lens 410 (10) of the fourth embodiment. 13A is a cross-sectional view at the wide-angle end, FIG. 13B is a cross-sectional view at the middle, and FIG. 13C is a cross-sectional view at the telephoto end.
The zoom lens 410 (10) of Example 4 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4. Here, the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens. And a third lens L13. Among these, the second lens L12 and the third lens L13 are cemented lenses. The second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. Among these, the fifth lens L22 and the sixth lens L23 are cemented lenses. The third lens group Gr3 is composed of a single lens and includes a biconcave negative seventh lens L31. The fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. In addition, the symbol F indicates a parallel plate, and the symbol I indicates an imaging surface of the imaging element 51.
 図14Aは、ズームレンズ410の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図14Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)であり、図14Cは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。 FIG. 14A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 410, and FIG. 14B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration). FIG. 14C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
 図15は、実施例4のズームレンズ410によって撮像面Iに入射する主光線の入射角度を示すグラフである。グラフ中で実線が広角端における入射角度を表し、点線が望遠端における入射角度を表す。 FIG. 15 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 410 according to the fourth embodiment. In the graph, the solid line represents the incident angle at the wide-angle end, and the dotted line represents the incident angle at the telephoto end.
 実施例4のズームレンズ410は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第3レンズ群Gr3が光軸AX方向に沿って物体側に移動した後、像側に移動して、隣接するレンズ群Gr1~Gr4の間隔を変えることにより変倍を行うことができる。残りのレンズ群Gr1,Gr4は、変倍に際し固定されている。また、第3レンズ群Gr3を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第4レンズL21と第6レンズL23とはガラスモールドレンズを想定し、第7レンズL31と第8レンズL41とはプラスチックレンズを想定し、それ以外のレンズL11,L12,L13,L22,L42はガラス材料による研磨レンズを想定している。 In the zoom lens 410 of Example 4, the second lens group Gr2 moves toward the object side along the optical axis AX direction and the third lens group Gr3 moves in the optical axis AX direction during zooming from the wide-angle end to the telephoto end. After moving along the object side, the zooming can be performed by moving toward the image side and changing the interval between the adjacent lens groups Gr1 to Gr4. The remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3. The fourth lens L21 and the sixth lens L23 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13, L22, L42. Assumes a polished lens made of glass material.
 実施例4のズームレンズ410では、第8レンズL41が光軸AX方向に対し垂直な面内方向において移動することで手振れ補正を行っている。また、実施例4のズームレンズ410では、第4レンズL21の調芯を行うことが好ましく、全系で発生する片ボケを低減させることができる。 In the zoom lens 410 of Example 4, camera shake correction is performed by the eighth lens L41 moving in the in-plane direction perpendicular to the optical axis AX direction. In the zoom lens 410 according to the fourth embodiment, it is preferable to perform the alignment of the fourth lens L21, and the one-sided blur that occurs in the entire system can be reduced.
 〔実施例5〕
ズーム比 = 2.85
レンズ全長 = 28.000
Example 5
Zoom ratio = 2.85
Total lens length = 28.000
 実施例5のレンズデータを表17に示す。
 〔表17〕
   S          R(mm)      D(mm)    Nd         νd         ER(mm)
   1          15.851     0.400    1.88300    40.8        4.03
   2           5.952     1.586                           3.49
   3        infinity     5.593    1.84666    23.8        3.31
   4        infinity     1.086                           2.20
   5          -5.137     0.400    1.72916    54.7        1.93
   6          49.267     0.761    1.92286    20.9        1.91
   7         -16.917     d1                              1.90
   8*          4.195     1.820    1.59201    67.0        1.82
   9*         -9.446     0.300                           1.64
  10(stop)  infinity     0.000                           1.48
  11          49.985     0.400    1.91082    35.3        1.48
  12           4.409     1.508    1.49700    81.6        1.44
  13*         -5.399     d2                              1.45
  14*         37.205     0.500    1.54470    56.2        1.50
  15*          4.477     d3                              1.50
  16*          7.092     1.600    1.54470    56.2        2.22
  17*         -8.114     1.055                           2.31
  18*         -5.899     0.846    1.88202    37.2        2.00
  19*         76.929     0.821                           1.85
  20        infinity     0.210    1.51680    64.2        2.07
  21        infinity     0.300                           2.13
Table 17 shows lens data of Example 5.
[Table 17]
S R (mm) D (mm) Nd νd ER (mm)
1 15.851 0.400 1.88300 40.8 4.03
2 5.952 1.586 3.49
3 infinity 5.593 1.84666 23.8 3.31
4 infinity 1.086 2.20
5 -5.137 0.400 1.72916 54.7 1.93
6 49.267 0.761 1.92286 20.9 1.91
7 -16.917 d1 1.90
8 * 4.195 1.820 1.59201 67.0 1.82
9 * -9.446 0.300 1.64
10 (stop) infinity 0.000 1.48
11 49.985 0.400 1.91082 35.3 1.48
12 4.409 1.508 1.49700 81.6 1.44
13 * -5.399 d2 1.45
14 * 37.205 0.500 1.54470 56.2 1.50
15 * 4.477 d3 1.50
16 * 7.092 1.600 1.54470 56.2 2.22
17 * -8.114 1.055 2.31
18 * -5.899 0.846 1.88202 37.2 2.00
19 * 76.929 0.821 1.85
20 infinity 0.210 1.51680 64.2 2.07
21 infinity 0.300 2.13
 実施例5のズームレンズのレンズ面の非球面係数を以下の表18に示す。
 〔表18〕
第8面
K=0.00000E+00, A4=-0.22948E-02, A6=0.57751E-04, A8=-0.23068E-03, 
A10=0.60055E-04, A12=-0.87053E-05
第9面
K=0.00000E+00, A4=0.23842E-02, A6=-0.82008E-03, A8=0.26676E-04, 
A10=0.56109E-05, A12=-0.47646E-05
第13面
K=0.00000E+00, A4=0.14078E-02, A6=-0.11204E-03, A8=0.58490E-03, 
A10=-0.25379E-03, A12=0.42764E-04
第14面
K=0.00000E+00, A4=-0.59192E-02, A6=0.26807E-01, A8=-0.38709E-01, 
A10=0.27474E-01, A12=-0.95371E-02, A14=0.12865E-02
第15面
K=0.00000E+00, A4=-0.58845E-02, A6=0.30383E-01, A8=-0.40420E-01, 
A10=0.26355E-01, A12=-0.83442E-02, A14=0.10160E-02
第16面
K=0.00000E+00, A4=-0.25831E-02, A6=0.82955E-04, A8=-0.15374E-03, 
A10=0.80788E-05, A12=0.48336E-07
第17面
K=0.00000E+00, A4=-0.44015E-02, A6=0.52997E-03, A8=-0.22503E-03, 
A10=0.15086E-04, A12=0.20705E-08
第18面
K=0.00000E+00, A4=0.24133E-01, A6=-0.12703E-02, A8=-0.11060E-03, 
A10=-0.45618E-05, A12=-0.10569E-13
第19面
K=0.00000E+00, A4=0.25874E-01, A6=-0.10551E-02, A8=0.10819E-02, 
A10=-0.19666E-03, A12=-0.87046E-14
Table 18 below shows the aspheric coefficients of the lens surfaces of the zoom lens of Example 5.
[Table 18]
8th page
K = 0.00000E + 00, A4 = -0.22948E-02, A6 = 0.57751E-04, A8 = -0.23068E-03,
A10 = 0.60055E-04, A12 = -0.87053E-05
9th page
K = 0.00000E + 00, A4 = 0.23842E-02, A6 = -0.82008E-03, A8 = 0.26676E-04,
A10 = 0.56109E-05, A12 = -0.47646E-05
Side 13
K = 0.00000E + 00, A4 = 0.14078E-02, A6 = -0.11204E-03, A8 = 0.58490E-03,
A10 = -0.25379E-03, A12 = 0.42764E-04
14th page
K = 0.00000E + 00, A4 = -0.59192E-02, A6 = 0.26807E-01, A8 = -0.38709E-01,
A10 = 0.27474E-01, A12 = -0.95371E-02, A14 = 0.12865E-02
15th page
K = 0.00000E + 00, A4 = -0.58845E-02, A6 = 0.30383E-01, A8 = -0.40420E-01,
A10 = 0.26355E-01, A12 = -0.83442E-02, A14 = 0.10160E-02
16th page
K = 0.00000E + 00, A4 = -0.25831E-02, A6 = 0.82955E-04, A8 = -0.15374E-03,
A10 = 0.80788E-05, A12 = 0.48336E-07
17th page
K = 0.00000E + 00, A4 = -0.44015E-02, A6 = 0.52997E-03, A8 = -0.22503E-03,
A10 = 0.15086E-04, A12 = 0.20705E-08
18th page
K = 0.00000E + 00, A4 = 0.24133E-01, A6 = -0.12703E-02, A8 = -0.11060E-03,
A10 = -0.45618E-05, A12 = -0.10569E-13
19th page
K = 0.00000E + 00, A4 = 0.25874E-01, A6 = -0.10551E-02, A8 = 0.10819E-02,
A10 = -0.19666E-03, A12 = -0.87046E-14
 実施例5のズームレンズの各ポジション(Po)1~3における全系の焦点距離(f)、Fナンバー(Fno)、画角、撮像面対角長(2Y)、及び群間隔(d1~d3)を以下の表19に示す。なお、Po=1は広角端であり、Po=2は中間であり、Po=3は望遠端である。
 〔表19〕
Po  f      Fno    画角   2Y      d1      d2      d3
1   3.13   2.88   81.0   4.600   6.217   1.385   1.212
2   5.41   3.98   46.3   4.600   2.913   1.804   4.098
3   8.92   5.21   27.9   4.600   0.250   4.084   4.480
The focal length (f), F number (Fno), field angle, imaging surface diagonal length (2Y), and group interval (d1 to d3) of the entire system at each position (Po) 1 to 3 of the zoom lens of Embodiment 5. ) Is shown in Table 19 below. Note that Po = 1 is the wide-angle end, Po = 2 is the middle, and Po = 3 is the telephoto end.
[Table 19]
Po f Fno Angle of view 2Y d1 d2 d3
1 3.13 2.88 81.0 4.600 6.217 1.385 1.212
2 5.41 3.98 46.3 4.600 2.913 1.804 4.098
3 8.92 5.21 27.9 4.600 0.250 4.084 4.480
 実施例5のズームレンズの各レンズ群のデータを以下の表20に示す。
 〔表20〕
レンズ群    始面         焦点距離(mm)
  1           1            -4.85
  2           8             5.16
  3          14            -9.40
  4          16            71.08
The data of each lens group of the zoom lens of Example 5 is shown in Table 20 below.
[Table 20]
Lens group Start surface Focal length (mm)
1 1 -4.85
2 8 5.16
3 14 -9.40
4 16 71.08
 図16A~16Cは、実施例5のズームレンズ510(10)の断面図である。このうち、図16Aは広角端における断面図であり、図16Bは中間における断面図であり、図16Cは望遠端における断面図である。
 実施例5のズームレンズ510(10)は、物体側より順に、第1レンズ群Gr1と、第2レンズ群Gr2と、第3レンズ群Gr3と、第4レンズ群Gr4とからなる。ここで、第1レンズ群Gr1は、物体側に凸で負メニスカスの第1レンズL11と、直角プリズムである反射光学素子PRMと、両凹で負の第2レンズL12と、両凸で正の第3レンズL13とを有する。これらのうち、第2レンズL12と第3レンズL13とは接合レンズとなっている。第2レンズ群Gr2は、両凸で正の第4レンズL21と、開口絞りSと、物体側に凸で負メニスカスの第5レンズL22と、両凸で正の第6レンズL23とを有する。これらのうち、第5レンズL22と第6レンズL23とは接合レンズとなっている。第3レンズ群Gr3は、単レンズで構成され、物体側に凸で負メニスカスの第7レンズL31を有する。第4レンズ群Gr4は、両凸で正の第8レンズL41と、両凹で負の第9レンズL42とを有する。その他、符号Fは平行平板を示し、符号Iは撮像素子51の撮像面を示す。
16A to 16C are cross-sectional views of the zoom lens 510 (10) of the fifth embodiment. 16A is a cross-sectional view at the wide-angle end, FIG. 16B is a cross-sectional view at the middle, and FIG. 16C is a cross-sectional view at the telephoto end.
The zoom lens 510 (10) of Example 5 includes, in order from the object side, a first lens group Gr1, a second lens group Gr2, a third lens group Gr3, and a fourth lens group Gr4. Here, the first lens group Gr1 includes a negative meniscus first lens L11 that is convex on the object side, a reflective optical element PRM that is a right-angle prism, a biconcave negative second lens L12, and a biconvex positive lens. And a third lens L13. Among these, the second lens L12 and the third lens L13 are cemented lenses. The second lens group Gr2 includes a biconvex positive fourth lens L21, an aperture stop S, a negative meniscus fifth lens L22 convex toward the object side, and a biconvex positive sixth lens L23. Among these, the fifth lens L22 and the sixth lens L23 are cemented lenses. The third lens group Gr3 includes a single lens, and includes a seventh meniscus L31 that is convex on the object side and has a negative meniscus. The fourth lens group Gr4 includes a biconvex positive eighth lens L41 and a biconcave negative ninth lens L42. In addition, the symbol F indicates a parallel plate, and the symbol I indicates an imaging surface of the imaging element 51.
 図17Aは、ズームレンズ510の広角端における収差図(球面収差、非点収差、及び歪曲収差)であり、図17Bは、中間における収差図(球面収差、非点収差、及び歪曲収差)であり、図17Cは、望遠端における収差図(球面収差、非点収差、及び歪曲収差)である。 FIG. 17A is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the wide-angle end of the zoom lens 510, and FIG. 17B is an intermediate aberration diagram (spherical aberration, astigmatism, and distortion aberration). FIG. 17C is an aberration diagram (spherical aberration, astigmatism, and distortion aberration) at the telephoto end.
 図18は、実施例5のズームレンズ510によって撮像面Iに入射する主光線の入射角度を示すグラフである。グラフ中で実線が広角端における入射角度を表し、点線が望遠端における入射角度を表す。 FIG. 18 is a graph showing the incident angle of the chief ray incident on the imaging surface I by the zoom lens 510 according to the fifth embodiment. In the graph, the solid line represents the incident angle at the wide-angle end, and the dotted line represents the incident angle at the telephoto end.
 実施例5のズームレンズ510は、広角端から望遠端への変倍に際し、第2レンズ群Gr2が光軸AX方向に沿って物体側に移動し、第3レンズ群Gr3が光軸AX方向に沿って物体側に移動して、隣接するレンズ群Gr1~Gr4の間隔を変えることにより変倍を行うことができる。残りのレンズ群Gr1,Gr4は、変倍に際し固定されている。また、第3レンズ群Gr3を移動させることによって無限遠から有限距離への合焦を行うことができる。なお、第4レンズL21と第6レンズL23と第9レンズL42とはガラスモールドレンズを想定し、第7レンズL31と第8レンズL41とはプラスチックレンズを想定し、それ以外のレンズL11,L12,L13,L22はガラス材料による研磨レンズを想定している。 In zoom lens 510 of Example 5, when zooming from the wide-angle end to the telephoto end, the second lens group Gr2 moves toward the object side along the optical axis AX direction, and the third lens group Gr3 moves in the optical axis AX direction. The zooming can be performed by moving toward the object side and changing the interval between the adjacent lens groups Gr1 to Gr4. The remaining lens groups Gr1 and Gr4 are fixed during zooming. Further, focusing from infinity to a finite distance can be performed by moving the third lens group Gr3. The fourth lens L21, the sixth lens L23, and the ninth lens L42 are assumed to be glass mold lenses, the seventh lens L31 and the eighth lens L41 are assumed to be plastic lenses, and the other lenses L11, L12, L13 and L22 are assumed to be polished lenses made of a glass material.
 実施例5のズームレンズ510では、第8レンズL41が光軸AX方向に対し垂直な面内方向において移動することで手振れ補正を行っている。また、実施例5のズームレンズ510では、第4レンズL21の調芯を行うことが好ましく、全系で発生する片ボケを低減させることができる。 In the zoom lens 510 of Example 5, camera shake correction is performed by the eighth lens L41 moving in the in-plane direction perpendicular to the optical axis AX direction. In the zoom lens 510 according to the fifth embodiment, it is preferable to perform the alignment of the fourth lens L21, and the one-sided blur that occurs in the entire system can be reduced.
 以下の表21は、参考のため、各条件式(1)~(10)に対応する各実施例1~5の値をまとめたものである。
〔表21〕
Figure JPOXMLDOC01-appb-I000002
Table 21 below summarizes the values of Examples 1 to 5 corresponding to the conditional expressions (1) to (10) for reference.
[Table 21]
Figure JPOXMLDOC01-appb-I000002
 以上では、実施形態や実施例に即して本発明を説明したが、本発明は、明細書に記載の実施例等に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例等や思想から本分野の当業者にとって明らかである。
 例えば、上記実施例では、最大像高において像面に入射する主光線の入射角度が最大値となる例を示したが、これに限るものでなく、中間の像高で最大値となり該中間の像高から最大像高までその入射角度が維持されるものや、中間の像高で最大値となり該中間の像高から最大像高までは入射角度が減少するものであってもよい。
In the above, the present invention has been described based on the embodiment and examples, but the present invention is not limited to the examples described in the specification, and includes other examples and modifications. It will be apparent to those skilled in the art from the examples and ideas described in this specification.
For example, in the above-described embodiment, an example in which the incident angle of the chief ray incident on the image surface at the maximum image height is the maximum value is shown. However, the present invention is not limited to this. The incident angle may be maintained from the image height to the maximum image height, or may be a maximum value at the intermediate image height and the incident angle may be decreased from the intermediate image height to the maximum image height.
 また、例えば実質的にパワーを持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。具体的には、第4レンズ群Gr4の第9レンズL42と撮像面Iとの間に実質的にパワーを持たないレンズを配置することができ、この場合、第4レンズ群Gr4の最も像側のレンズとは、実効的に考えて第9レンズL42となる。また、第4レンズ群Gr4の第8レンズL41と第3レンズ群Gr3との間に実質的にパワーを持たないレンズを配置することができる。この場合、第4レンズ群Gr4の最も物体側のレンズとは、実効的に考えて第8レンズL41となる。また、第3レンズ群Gr3の第4レンズ群Gr4側又は第2レンズ群Gr2側に実質的にパワーを持たないレンズを配置することもできる。さらに、第2レンズ群Gr2の第4レンズL21の第1レンズ群Gr1側又は第3レンズ群Gr3側に実質的にパワーを持たないレンズを配置することもできる。また、第1レンズ群Gr1の物体側又は第2レンズ群Gr2側に実質的にパワーを持たないレンズを配置することもできる。この場合、第1レンズ群Gr1の最も物体側のレンズとは、実効的に考えて第1レンズL11となる。 For example, even when a dummy lens having substantially no power is further provided, it is within the scope of the present invention. Specifically, a lens having substantially no power can be disposed between the ninth lens L42 of the fourth lens group Gr4 and the imaging surface I. In this case, the most image side of the fourth lens group Gr4. This lens effectively becomes the ninth lens L42. In addition, a lens having substantially no power can be disposed between the eighth lens L41 and the third lens group Gr3 of the fourth lens group Gr4. In this case, the most object side lens of the fourth lens group Gr4 is effectively the eighth lens L41. In addition, a lens having substantially no power can be disposed on the fourth lens group Gr4 side or the second lens group Gr2 side of the third lens group Gr3. Furthermore, a lens having substantially no power can be arranged on the first lens group Gr1 side or the third lens group Gr3 side of the fourth lens L21 of the second lens group Gr2. In addition, a lens having substantially no power can be disposed on the object side or the second lens group Gr2 side of the first lens group Gr1. In this case, the most object side lens of the first lens group Gr1 is effectively the first lens L11.
 最近では、プラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性のきわめて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、実施例1~5における第7又は第8レンズL31,L41のようなプラスチックレンズに、このような無機粒子を分散させたプラスチック材料を用いることにより、ズームレンズ全系の温度変化時の像点位置変動をより小さく抑えることが可能となる。 Recently, it has been found that by mixing inorganic fine particles in a plastic material, the temperature change of the plastic material can be reduced. More specifically, mixing fine particles with a transparent plastic material generally causes light scattering and lowers the transmittance, so it was difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering. The refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other. Specifically, by dispersing inorganic particles having a maximum length of 20 nanometers or less in a plastic material as a base material, a plastic material with extremely low temperature dependency of the refractive index is obtained. For example, by dispersing fine particles of niobium oxide (Nb 2 O 5 ) in acrylic, the refractive index change due to temperature change can be reduced. In the present invention, when a plastic material in which such inorganic particles are dispersed is used for the plastic lens such as the seventh or eighth lens L31 or L41 in the first to fifth embodiments, the temperature of the entire zoom lens system can be changed. It is possible to further suppress the image point position fluctuations of.
 実施例1~5の第8レンズL41等のようなプラスチックレンズの作製に、エネルギー硬化性樹脂を用いてもよい。
 近年、撮像装置を低コストに且つ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。このようなリフロー処理を用いて実装を行うためには、電子部品ととともに光学素子を約200~260℃に加熱する必要があるが、このような高温下では、熱可塑性樹脂を用いたレンズは熱変形し或いは変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能を両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりも一般にコストが高い。
 そこで、ズームレンズ(具体的には第7又は第8レンズL31,L41)の材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下が小さくリフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、ズームレンズを組み込んだ撮像装置の低コストと量産性とを両立できる。なお、エネルギー硬化性樹脂とは、熱硬化性樹脂及び紫外線硬化性樹脂のいずれをも指すものとする。
An energy curable resin may be used to manufacture a plastic lens such as the eighth lens L41 in Examples 1 to 5.
In recent years, as a method for mounting an image pickup apparatus at a low cost and in large quantities, a reflow process (heating process) is performed on a substrate on which solder is previously potted while an IC chip or other electronic component and an optical element are placed on the substrate. A technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting the substrate. In order to perform mounting using such a reflow process, it is necessary to heat the optical element together with the electronic components to about 200 to 260 ° C. Under such a high temperature, a lens using a thermoplastic resin is not suitable. There is a problem that the optical performance deteriorates due to thermal deformation or discoloration. As one of the methods for solving such problems, a technology has been proposed that uses a glass mold lens with excellent heat resistance and achieves both miniaturization and optical performance in a high temperature environment. The cost is generally higher than the lens used.
Therefore, by using an energy curable resin for the material of the zoom lens (specifically, the seventh or eighth lens L31, L41), compared to a lens using a thermoplastic resin such as polycarbonate or polyolefin, The decrease in optical performance when exposed to a high temperature is small and effective for reflow processing, and it is easier to manufacture than a glass mold lens and is cheaper. Thus, both low cost and mass productivity of an imaging device incorporating a zoom lens can be achieved. The energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.

Claims (16)

  1.  物体側より順に、
     負の屈折力を有する第1レンズ群と、
     正の屈折力を有する第2レンズ群と、
     負の屈折力を有する第3レンズ群と、
     第4レンズ群とから構成され、
     隣接するレンズ群の間隔を変えることにより変倍を行うズームレンズであって、
     広角端から望遠端に至る変倍で前記第1レンズ群と前記第2レンズ群との間隔が縮小し、
     前記第1レンズ群は、光線を反射させることで光路を折り曲げる作用を持つ反射光学素子を含み、
     前記第4レンズ群は、少なくとも2枚のレンズから構成され、
     最も像側に負の屈折力のレンズを有し、
     以下の条件式を満足するズームレンズ。
     0.5<|f4N/(fW×fT)1/2|<1.5 … (1)
    ただし、
      f4N:前記第4レンズ群の最も像側のレンズの焦点距離
      fW:広角端における全系の焦点距離
      fT:望遠端における全系の焦点距離
    From the object side,
    A first lens group having negative refractive power;
    A second lens group having a positive refractive power;
    A third lens group having negative refractive power;
    A fourth lens group,
    A zoom lens that performs zooming by changing the interval between adjacent lens groups,
    The magnification between the wide-angle end and the telephoto end reduces the distance between the first lens group and the second lens group,
    The first lens group includes a reflective optical element having an action of bending a light path by reflecting a light beam,
    The fourth lens group is composed of at least two lenses.
    It has a lens with negative refractive power on the most image side,
    A zoom lens that satisfies the following conditional expression.
    0.5 <| f4N / (fW × fT) 1/2 | <1.5 (1)
    However,
    f4N: focal length of the lens closest to the image side of the fourth lens group fW: focal length of the entire system at the wide angle end fT: focal length of the entire system at the telephoto end
  2.  以下の条件式を満足する、請求項1に記載のズームレンズ。
     0.05<sag4N2/hmax4N2<0.30 … (2)
    ただし、
      sag4N2:前記第4レンズ群の最も像側のレンズの像側面の有効径でのサグ量
      hmax4N2:前記第4レンズ群の最も像側のレンズの像側面の有効径
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    0.05 <sag4N2 / hmax4N2 <0.30 (2)
    However,
    sag4N2: Sag amount at the effective diameter of the image side lens of the fourth lens group on the most image side lens hmax4N2: Effective diameter of the image side surface of the lens on the most image side of the fourth lens group
  3.  以下の条件式を満足する、請求項1に記載のズームレンズ。
     -10.0<Δcra(W-T)<10.0 … (3)
    ただし、
      Δcra(W-T):任意の像高における主光線の入射角度の広角端と望遠端とにおける差の最大値
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    −10.0 <Δcra (WT) <10.0 (3)
    However,
    Δc a (WT): the maximum value of the difference between the incident angle of the principal ray at an arbitrary image height between the wide-angle end and the telephoto end
  4.  以下の条件式を満足する、請求項1に記載のズームレンズ。
     20.0<craW<40.0 … (4)
     15.0<craT<35.0 … (5)
    ただし、
      craW:広角端における像面に入射する主光線の入射角度の最大値
      craT:望遠端における像面に入射する主光線の入射角度の最大値
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    20.0 <craW <40.0 (4)
    15.0 <craT <35.0 (5)
    However,
    craW: Maximum value of the incident angle of the chief ray incident on the image plane at the wide angle end.
  5.  前記第4レンズ群は、最も物体側に正の屈折力のレンズを有し、
    以下の条件式を満足する、請求項1に記載のズームレンズ。
     0.80<|f4P/f4N|<1.80 … (6)
    ただし、
      f4P:前記第4レンズ群の最も物体側のレンズの焦点距離
      f4N:前記第4レンズ群の最も像側のレンズの焦点距離
    The fourth lens group has a lens having a positive refractive power closest to the object side,
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    0.80 <| f4P / f4N | <1.80 (6)
    However,
    f4P: focal length of the lens closest to the object side of the fourth lens group f4N: focal length of the lens closest to the image side of the fourth lens group
  6.  前記第4レンズ群は、最も物体側に正の屈折力のレンズを有し、
     以下の条件式を満足する、請求項1に記載のズームレンズ。
     -10.0<ν4P-ν4N<50.0 … (7)
    ただし、
      ν4P:前記第4レンズ群の最も物体側のレンズのアッベ数
      ν4N:前記第4レンズ群の最も像側のレンズのアッベ数
    The fourth lens group has a lens having a positive refractive power closest to the object side,
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    -10.0 <ν4P−ν4N <50.0 (7)
    However,
    ν4P: Abbe number of the lens closest to the object side of the fourth lens group ν4N: Abbe number of the lens closest to the image side of the fourth lens group
  7.  前記第4レンズ群は、最も物体側に正の屈折力のレンズを有し、
     光軸方向に対し垂直な面内方向において、前記正レンズが移動することで、像面上の画像のブレが補正され、
     以下の条件式を満足する、請求項1に記載のズームレンズ。
     0.3<(1-m4pT)・m4rT<0.8 … (8)
    ただし、
      m4pT:前記第4レンズ群の最も物体側のレンズの望遠端における横倍率
      m4rT:前記第4レンズ群の最も物体側のレンズよりも像側にあるレンズ群の望遠端における合成横倍率
    The fourth lens group has a lens having a positive refractive power closest to the object side,
    In the in-plane direction perpendicular to the optical axis direction, the movement of the positive lens corrects image blur on the image plane,
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    0.3 <(1-m4pT) · m4rT <0.8 (8)
    However,
    m4pT: lateral magnification at the telephoto end of the lens closest to the object side of the fourth lens group m4rT: combined lateral magnification at the telephoto end of the lens group located on the image side of the lens closest to the object side of the fourth lens group
  8.  前記第2レンズ群は、開口絞りを有する、請求項1に記載のズームレンズ。 The zoom lens according to claim 1, wherein the second lens group has an aperture stop.
  9.  前記第1レンズ群は、最も物体側に、負の屈折力を持つレンズを有し、以下の条件式を満足する、請求項1に記載のズームレンズ。
     2.0<|f1a/fW|<5.0 … (9)
    ただし、
      f1a:前記第1レンズ群の最も物体側のレンズの焦点距離
      fW:広角端における全系の焦点距離
    2. The zoom lens according to claim 1, wherein the first lens group includes a lens having negative refractive power closest to the object side, and satisfies the following conditional expression.
    2.0 <| f1a / fW | <5.0 (9)
    However,
    f1a: focal length of the lens closest to the object side in the first lens group fW: focal length of the entire system at the wide angle end
  10.  以下の条件式を満足する、請求項1に記載のズームレンズ。
     1.5<m2T/m2W<3.0 … (10)
    ただし、
      m2T:前記第2レンズ群の望遠端における横倍率
      m2W:前記第2レンズ群の広角端における横倍率
    The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
    1.5 <m2T / m2W <3.0 (10)
    However,
    m2T: lateral magnification at the telephoto end of the second lens group m2W: lateral magnification at the wide-angle end of the second lens group
  11.  前記第3レンズ群を移動させることにより、合焦を行う、請求項1に記載のズームレンズ。 The zoom lens according to claim 1, wherein focusing is performed by moving the third lens group.
  12.  前記第3レンズ群は、単レンズで構成されている、請求項1に記載のズームレンズ。 The zoom lens according to claim 1, wherein the third lens group includes a single lens.
  13.  前記第4レンズ群は、変倍時及び合焦時ともに光軸方向には移動しない、請求項1に記載のズームレンズ。 2. The zoom lens according to claim 1, wherein the fourth lens group does not move in the optical axis direction at the time of zooming and focusing.
  14.  実質的にパワーを持たないレンズをさらに有する、請求項1に記載のズームレンズ。 The zoom lens according to claim 1, further comprising a lens having substantially no power.
  15.  請求項1に記載のズームレンズと、前記ズームレンズにより撮像面に形成された画像を光電変換する撮像素子とを有する撮像装置。 An image pickup apparatus comprising: the zoom lens according to claim 1; and an image pickup device that photoelectrically converts an image formed on an image pickup surface by the zoom lens.
  16.  請求項15に記載の撮像装置と、画像を表示する表示部とを備えるデジタル機器。 A digital device comprising the imaging device according to claim 15 and a display unit for displaying an image.
PCT/JP2013/062375 2012-04-27 2013-04-26 Zoom lens, image-capturing device, and digital instrument WO2013161995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012104202 2012-04-27
JP2012-104202 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161995A1 true WO2013161995A1 (en) 2013-10-31

Family

ID=49483292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062375 WO2013161995A1 (en) 2012-04-27 2013-04-26 Zoom lens, image-capturing device, and digital instrument

Country Status (2)

Country Link
JP (1) JPWO2013161995A1 (en)
WO (1) WO2013161995A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163927A (en) * 2014-02-28 2015-09-10 株式会社タムロン Inner focus lens
JP2015163926A (en) * 2014-02-28 2015-09-10 株式会社タムロン Inner focus lens
WO2016011801A1 (en) * 2014-07-22 2016-01-28 浙江舜宇光学有限公司 Projection lens
JP2016188968A (en) * 2015-03-30 2016-11-04 株式会社タムロン Inner focusing lens
JP2016188967A (en) * 2015-03-30 2016-11-04 株式会社タムロン Inner focusing lens
CN106526788A (en) * 2016-08-25 2017-03-22 玉晶光电(厦门)有限公司 Optical imaging lens
CN106526787A (en) * 2016-08-25 2017-03-22 玉晶光电(厦门)有限公司 Optical imaging lens
CN109856783A (en) * 2019-02-22 2019-06-07 厦门力鼎光电股份有限公司 A kind of optical imaging lens
JP2019152683A (en) * 2018-02-28 2019-09-12 キヤノン株式会社 Optical system and image capturing device
CN111630428A (en) * 2018-01-19 2020-09-04 Lg伊诺特有限公司 Imaging lens and camera module including the same
JP7432337B2 (en) 2019-10-23 2024-02-16 株式会社タムロン Zoom lens and imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162022A (en) * 1985-01-11 1986-07-22 Canon Inc Reflection/refraction type zoom lens
JP2004069808A (en) * 2002-08-02 2004-03-04 Olympus Corp Zoom lens and electronic imaging apparatus using it
JP2007108702A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it
JP2008046612A (en) * 2006-07-21 2008-02-28 Nikon Corp Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2010152145A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, imaging apparatus, and camera
JP2010160276A (en) * 2009-01-07 2010-07-22 Panasonic Corp Zoom lens system, imaging device, and camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162022A (en) * 1985-01-11 1986-07-22 Canon Inc Reflection/refraction type zoom lens
JP2004069808A (en) * 2002-08-02 2004-03-04 Olympus Corp Zoom lens and electronic imaging apparatus using it
JP2007108702A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it
JP2008046612A (en) * 2006-07-21 2008-02-28 Nikon Corp Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2010152145A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, imaging apparatus, and camera
JP2010160276A (en) * 2009-01-07 2010-07-22 Panasonic Corp Zoom lens system, imaging device, and camera

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163927A (en) * 2014-02-28 2015-09-10 株式会社タムロン Inner focus lens
JP2015163926A (en) * 2014-02-28 2015-09-10 株式会社タムロン Inner focus lens
WO2016011801A1 (en) * 2014-07-22 2016-01-28 浙江舜宇光学有限公司 Projection lens
US9529180B2 (en) 2014-07-22 2016-12-27 Zhejiang Sunny Optics Co., Ltd. Projection lens
JP2016188968A (en) * 2015-03-30 2016-11-04 株式会社タムロン Inner focusing lens
JP2016188967A (en) * 2015-03-30 2016-11-04 株式会社タムロン Inner focusing lens
CN106526788A (en) * 2016-08-25 2017-03-22 玉晶光电(厦门)有限公司 Optical imaging lens
CN106526787A (en) * 2016-08-25 2017-03-22 玉晶光电(厦门)有限公司 Optical imaging lens
CN111630428A (en) * 2018-01-19 2020-09-04 Lg伊诺特有限公司 Imaging lens and camera module including the same
CN111630428B (en) * 2018-01-19 2023-12-01 Lg伊诺特有限公司 Imaging lens and camera module including the same
JP2019152683A (en) * 2018-02-28 2019-09-12 キヤノン株式会社 Optical system and image capturing device
US10983315B2 (en) 2018-02-28 2021-04-20 Canon Kabushiki Kaisha Optical system and imaging apparatus
CN109856783A (en) * 2019-02-22 2019-06-07 厦门力鼎光电股份有限公司 A kind of optical imaging lens
CN109856783B (en) * 2019-02-22 2024-03-29 厦门力鼎光电股份有限公司 Optical imaging lens
JP7432337B2 (en) 2019-10-23 2024-02-16 株式会社タムロン Zoom lens and imaging device

Also Published As

Publication number Publication date
JPWO2013161995A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6237106B2 (en) Zoom lens and imaging device
WO2013161995A1 (en) Zoom lens, image-capturing device, and digital instrument
US7593164B2 (en) Zoom lens system and image-sensing apparatus having image shake correcting capability
JP5413206B2 (en) Zoom lens and imaging device
US9316822B2 (en) Zoom lens and imaging apparatus
JP2013182090A (en) Imaging lens, imaging apparatus, and portable terminal
TWI424190B (en) Imaging lens system
JP2006209100A (en) Zoom lens and imaging apparatus
KR101890304B1 (en) Zoom lens and photographing apparatus
US11768360B2 (en) Imaging lens, imaging optical device, digital device, and method of manufacturing imaging lens
WO2013125603A1 (en) Zoom lens, imaging device, and portable terminal
JPWO2013065391A1 (en) Variable magnification optical system
KR20150006936A (en) Zoom lens and photographing lens having the same
US20130070114A1 (en) Inner-Focus Zoom Lens System
JP2013044755A (en) Zoom lens and imaging apparatus
JP2005321545A (en) Imaging apparatus
JPWO2011062076A1 (en) Zoom lens and imaging device
JP2014238469A (en) Zoom lens and imaging apparatus
JP2009025800A (en) Zoom lens and image pickup device
JP6124028B2 (en) Zoom lens and imaging device
JP2013044757A (en) Zoom lens and imaging apparatus
JP2015222333A (en) Zoom lens and image capturing device
WO2013027516A1 (en) Zoom lens and imaging device
CN112180575B (en) Zoom lens and image pickup apparatus
WO2012063711A1 (en) Zoom lens and image pick-up device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780632

Country of ref document: EP

Kind code of ref document: A1