WO2013161692A1 - Method for parallel production of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane - Google Patents

Method for parallel production of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane Download PDF

Info

Publication number
WO2013161692A1
WO2013161692A1 PCT/JP2013/061591 JP2013061591W WO2013161692A1 WO 2013161692 A1 WO2013161692 A1 WO 2013161692A1 JP 2013061591 W JP2013061591 W JP 2013061591W WO 2013161692 A1 WO2013161692 A1 WO 2013161692A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen fluoride
tetrafluoropropene
reaction
trans
chloro
Prior art date
Application number
PCT/JP2013/061591
Other languages
French (fr)
Japanese (ja)
Inventor
冬彦 佐久
吉川 悟
覚 岡本
祥雄 西口
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2013161692A1 publication Critical patent/WO2013161692A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/087Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/196Separation; Purification by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen

Definitions

  • Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane are propellants that are propellants for aerosols in intermediate raw materials such as medical pesticides or functional materials, sprays, etc. It is useful as a protective gas used in manufacturing a magnesium alloy, an etching gas used in manufacturing a semiconductor, a foaming agent, a fire extinguishing agent, a heat medium or a refrigerant.
  • Fluorohydrocarbons have shifted to alternative chlorofluorocarbons with a low ozone depletion coefficient rather than specific chlorofluorocarbons that are regulated to protect the ozone layer by international treaties.
  • Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane which are alternative fluorocarbons with a low global warming potential, in addition to the ozone depletion potential, convert raw material compounds It has been studied to obtain a reaction efficiently and efficiently.
  • Patent Documents 1 to 3 disclose methods for obtaining 1,1,1,3,3-pentafluoropropane using 1-chloro-3,3,3-trifluoropropene as a raw material compound.
  • Patent Document 1 discloses a method for liquid-phase fluorination of 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of an antimony catalyst.
  • Patent Document 2 discloses that 1,1,1,3-tetrafluoro-3-chloropropane is added to 1-chloro-3,3,3-trifluoropropene by adding hydrogen fluoride in the presence of an addition catalyst. And then disproportionating the 1,1,1,3-tetrafluoro-3-chloropropane in the presence of a disproportionation catalyst.
  • Patent Document 3 discloses a method for producing 1,1,1,3,3-pentafluoropropane from 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in the presence of chlorine.
  • a fluorination reactor comprising a reactor (A) and a reactor (B) each filled with antimony pentachloride-supported activated carbon, and a first reactor set at 150 ° C.
  • the second reactors set at ° C are arranged in series, and in the first time section, the reactor (A) is the first reactor, the reactor (B) is the second reactor, and the second time section
  • the reaction is carried out using the reactor (B) as the first reactor and the reactor (A) as the second reactor, and then repeating the exchange of the reactor (A) and the reactor (B) in the same manner as described above.
  • a method comprising performing
  • Patent Document 4 1-chloro-3,3,3-trifluoropropene is fluorinated in the gas phase in the presence of a fluorination catalyst to obtain 1,3,3,3-tetrafluoropropene.
  • An oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or at least one metal selected from chromium, titanium, aluminum, manganese, nickel or cobalt as the fluorination catalyst The use of activated carbon carrying oxyfluoride chloride has been reported.
  • Patent Document 5 discloses 1, 3, 3, 3 in the presence of a hydrogen halide addition catalyst, which is a halide of at least one metal selected from the group consisting of aluminum, tin, bismuth, antimony and iron.
  • a hydrogen halide addition catalyst which is a halide of at least one metal selected from the group consisting of aluminum, tin, bismuth, antimony and iron.
  • 1,3,3,3-tetrafluoropropene using 1-chloro-3,3,3-trifluoropropene as a starting compound, 1-chloro-3,3,3-trifluoropropene are known, and 1,1,1,3,3-pentafluoropropane is obtained in a known manner.
  • the target compound, trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane are known. 1,3,3-pentafluoropropane can be obtained in good yield.
  • the present invention provides a method for efficiently producing trans-1,3,3,3-tetrafluoropropene and 1,1,3,3-pentafluoropropane in parallel with a raw material compound.
  • the present invention includes the following inventions 1 to 7.
  • a purification step to obtain residue F The residue E after dehydration in the dehydration step is rectified and contains trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene as fractions.
  • Fluorination catalyst is chromium, titanium, aluminum, manganese, nickel, cobalt, iron, copper, zinc, silver, molybdenum, zirconium, niobium, tantalum, iridium, tin, hafnium, vanadium, magnesium, lithium, sodium, potassium, calcium And at least one metal selected from the group consisting of antimony and nitrate, chloride, oxide, sulfate, fluoride, fluoride, oxyfluoride, oxychloride, or oxyfluoride The average production method.
  • invention 5 The parallel production method of inventions 1 to 4, wherein in the hydrogen fluoride separation step, hydrogen fluoride is absorbed and recovered by sulfuric acid.
  • the present invention uses readily available 1-chloro-3,3,3-trifluoropropene as a starting material compound, trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3 -Pentafluoropropane can be produced efficiently and in parallel.
  • the present invention uses 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in a gas phase in a gas phase, using a fluorination catalyst, at a temperature of 200 ° C. or higher and 450 ° C. or lower, a pressure of 0.05 MPa or higher, and 0.3 MPa.
  • the following reaction is conducted to produce trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and chloride.
  • the residue E after dehydration in the dehydration step is rectified and contains trans-1,3,3,3-tetrafluoropropene and
  • the method of the present invention reacts a raw material compound, that is, 1-chloro-3,3,3-trifluoropropene as a reactant with hydrogen fluoride, Operation to produce the desired product, trans-1,3,3,3-tetrafluoropropene,
  • the target compound trans-1,3,3,3-tetrafluoropropene after the “reaction step” and the by-product cis-1,3,3,3-tetrafluoropropene, Distilling reaction product A containing 1,1,1,3,3-pentafluoropropane and hydrogen chloride and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride, An operation of recovering unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride as bottoms and supplying them to the “reaction step”;
  • the “hydrogen fluoride separation step” an operation of separating and recovering hydrogen fluor
  • unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in the “reaction step” are recovered in the “distillation step”, and the “reaction step”
  • the product is returned to the reaction system and reused as a raw material compound.
  • the provision of the “distillation step” for generally recovering hydrogen fluoride reduces the burden of the subsequent steps “hydrogen fluoride separation step” and “hydrogen chloride separation step”.
  • the subsequent provision of the “dehydration drying step” reduces the load of the “purification step” for purifying trans-1,3,3,3-tetrafluoropropene by rectification.
  • hydrogen fluoride separated and recovered from the reaction product in the “hydrogen fluoride separation step” can be returned to the “reaction step”, and cis-1,3,3,3 in the residue F of the “purification step” can be returned.
  • 3-tetrafluoropropene is converted to 1,1,1,3,3-pentafluoropropane.
  • 1-chloro-3,3,3-trifluoropropene which is a starting material, is reacted with hydrogen fluoride to efficiently produce trans-1,3,3,3- Tetrafluoropropene and 1,1,1,3,3-pentafluoropropane can be produced in parallel, which is useful for mass production of these alternative chlorofluorocarbons in industrial plants.
  • the efficiency is further improved by selecting a fluorination catalyst to be used.
  • reaction product A means trans-1,3,3,3-tetrafluoropropene as the target compound, 1-chloro-3,3,3-trifluoropropene as an unreacted product, and fluorine.
  • This refers to the mixture after the “reaction step” including hydrogen chloride and by-products such as hydrogen chloride and organic substances (including cis-1,3,3,3-tetrafluoropropene).
  • the bottom liquid means a liquid rich in low volatility components obtained from the bottom of the distillation column after distillation.
  • 1-chloro-3,3,3-trifluoropropene refers to a cis isomer or a trans isomer or a mixture thereof, and 1,3,3,3-tetrafluoropropene and Refers to cis or trans isomers or mixtures thereof.
  • Rectification refers to an operation of purifying a target compound by distillation. Specifically, the residue E, which is a mixture of trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene in the “purification step”, is purified by distillation. This refers to an operation for obtaining pure trans-1,3,3,3-tetrafluoropropene.
  • reaction step is a process in which 1-chloro-3,3,3-trifluoropropene as a raw material compound and hydrogen fluoride are used in a gas phase in a reactor, using a fluorination catalyst, at a temperature of 200 ° C. or higher and 450 ° C. or lower.
  • the reaction is performed at a pressure of 0.05 MPa or more and 0.3 MPa or less, and the target product, trans-1,3,3,3-tetrafluoropropene, and the by-product, cis-1,3,3,3- Reaction product A containing tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and hydrogen chloride and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride It is the process of obtaining.
  • 1-chloro-3,3,3-trifluoropropene which is the starting material, is fluorinated with hydrogen fluoride using a fluorination catalyst, and trans-1,3,3,3-tetrafluoropropene is converted to obtain.
  • the raw material 1-chloro-3,3,3-trifluoro It is preferable to supply an excess amount of hydrogen fluoride relative to propene into the reaction system, specifically into the reactor. Further, excessive supply of hydrogen fluoride leads to protection of the fluorination catalyst, and has an effect of prolonging the lifetime having catalytic activity.
  • the starting compound in this step, 1-chloro-3,3,3-trifluoropropene exists in cis form or trans form, but only in cis form or trans form, or a mixture of cis form and trans form. Even if it exists, the reaction in this step proceeds.
  • the fluorination catalyst used in this step is chromium, titanium, aluminum, manganese, nickel, cobalt, iron, copper, zinc, silver, molybdenum, zirconium, niobium, tantalum, iridium, tin, hafnium, vanadium, magnesium, lithium Nitrate, chloride, oxide, sulfate, fluoride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride of at least one metal selected from the group consisting of sodium, potassium, calcium and antimony Things can be exemplified.
  • the metal oxide is preferably one in which part or all of the oxygen atoms are replaced with fluorine atoms using hydrogen fluoride or a fluorine-containing organic compound.
  • alumina, chromia, zirconia, titania or magnesia is fluorinated. It can be selected from fluorinated oxides in which some or all of the oxygen atoms are substituted with fluorine atoms.
  • fluorinated oxide of alumina and specific examples include fluorinated alumina prepared by fluorinating activated alumina with hydrogen fluoride or the like.
  • the metal fluorinated oxide may be simply referred to as “metal oxide”.
  • the metal oxide can be a commercially available product, and can be prepared by a known method.
  • a metal oxide can be prepared by adjusting the pH of an aqueous solution of a metal salt using ammonia or the like to precipitate a hydroxide, and drying or baking the precipitate.
  • the obtained metal oxide may be used after being pulverized or molded.
  • alumina is usually obtained by shaping or dewatering a precipitate produced by adding ammonia or the like to an aqueous solution of an aluminum salt.
  • ⁇ -alumina commercially available for catalyst support or for drying can be preferably used.
  • titania, zirconia, etc. can be prepared by the same method, and a commercial item can be used.
  • These metal oxides may be a composite oxide prepared by a coprecipitation method or the like, and can be suitably used as a fluorination catalyst in this step.
  • a metal-supported catalyst can be used as the fluorination catalyst.
  • the type, amount, and method of the supported metal can be selected based on ordinary knowledge of those skilled in the art of catalyst.
  • Metal-supported catalyst As the metal-supported catalyst, nitrate, chloride, oxide of at least one metal selected from the group consisting of chromium, titanium, aluminum, manganese, nickel, cobalt, zirconium, iron, copper, silver, molybdenum, and antimony,
  • a metal-supported catalyst in which sulfate, fluoride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride is supported on a support such as fluorinated alumina or activated carbon can be employed.
  • a method for preparing the metal-supported catalyst a method in which a carrier is impregnated with a solution in which one or more kinds of metal compounds are dissolved in a solvent, or is sprayed and adhered can be used.
  • Examples of the metal compound soluble in the solvent include nitrates, chlorides, oxides and sulfates of the above metals. Specifically, chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, iron chloride, iron sulfate, iron nitrate, titanium trichloride, titanium tetrachloride, manganese nitrate, manganese chloride, manganese dioxide, nickel nitrate, Examples thereof include nickel chloride, cobalt nitrate, cobalt chloride, copper nitrate, copper sulfate, copper chloride, silver nitrate, copper chromite, copper dichromate, silver dichromate, and sodium dichromate.
  • the solvent is not particularly limited as long as it dissolves the metal compound and does not alter the metal compound.
  • water alcohols such as methanol, ethanol or isopropanol, ketones such as methyl ethyl ketone or acetone, ethyl acetate or Examples thereof include carboxylic acid esters such as butyl acetate, halogen compounds such as methylene chloride, chloroform and trichloroethylene, and aromatics such as benzene and toluene.
  • the dissolution may be accelerated by adding an acid such as hydrochloric acid, sulfuric acid nitrate or aqua regia, or an alkali such as sodium hydroxide, potassium hydroxide or ammonia water. it can.
  • an acid such as hydrochloric acid, sulfuric acid nitrate or aqua regia
  • an alkali such as sodium hydroxide, potassium hydroxide or ammonia water. it can.
  • a catalyst in order to increase the reaction rate, selectivity of trans-1,3,3,3-tetrafluoropropene and yield in this step, as a catalyst, chromium, iron or copper nitrate, chloride, oxide as fluorinated alumina Alternatively, a metal-supported catalyst supporting sulfate or the like can be used.
  • the selectivity and yield of trans-1,3,3,3-tetrafluoropropene, nitrate, chloride, oxide or sulfuric acid selected from chromium, iron or copper A metal-supported catalyst in which a salt is supported on activated carbon can be used, and a metal compound selected from chromium oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride is activated carbon.
  • a metal-supported catalyst supported on the catalyst can be used.
  • the activated carbon supporting the fluorination catalyst which is a catalyst, includes vegetation based on wood, sawdust, charcoal, coconut shell charcoal, palm kernel charcoal, or raw ash, peat, lignite, lignite, bituminous coal, anthracite, etc.
  • a raw material coal-based, petroleum residue, sulfuric acid sludge or oil carbon as a raw material, or synthetic resin as a raw material.
  • Such activated carbon is commercially available and can be selected from commercially available products and used in this reaction step.
  • activated carbon (trade name, Calgon granular activated carbon CAL, manufactured by Calgon Carbon Japan Co., Ltd., etc.), coconut shell charcoal (manufactured by Nippon Enviro Chemicals Co., Ltd.) and the like manufactured from bituminous coal can be exemplified.
  • the activated carbon used in the parallel production method of the present invention is not limited to these types and manufacturers.
  • activated carbon is normally used in a granular form, the shape, particle size, and the like are not particularly limited.
  • the activated carbon may be used as it is, or activated carbon previously modified with a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, or the like.
  • the amount of metal supported on the carrier is 0.1% by mass or more and 80% by mass or less, preferably 1% by mass or more and 50% by mass or less based on the carrier.
  • the amount is less than 0.1% by mass, the catalytic effect is thin, and it is difficult to support more than 80% by mass and there is no necessity.
  • fluorine such as hydrogen fluoride, fluorinated hydrocarbon or fluorinated chlorinated hydrocarbon is previously used at a temperature equal to or higher than a predetermined reaction temperature before use in the reaction. It is effective to heat together with the agent to prevent changes in the composition of the catalyst during the reaction.
  • the amount of the fluorination catalyst added is preferably equal to or less than the amount of the raw material compound supplied to the reactor. It is not necessary to use more than 1x.
  • a gas such as oxygen, air or chlorine may be added as a companion gas in the reaction vessel as long as the reaction is not hindered.
  • An inert gas having poor reactivity such as nitrogen, argon, or helium, is preferable.
  • the supply amount of the gas is less than 1 times the total volume of organic substances and hydrogen chloride as reactants. If the amount of inert gas supplied to the reactor is 1 or more times, it is difficult to recover trans-1,3,3,3-tetrafluoropropene in the subsequent “purification step” (sixth step). .
  • activation of fluorination catalyst For the activation (activation or regeneration) of the fluorination catalyst used, a usual method used for regeneration of the fluorination catalyst can be employed.
  • the catalyst having reduced activity at a temperature equal to or higher than the reaction temperature employed in this step can be activated by appropriately contacting it with dry air, chlorine, hydrogen fluoride or the like while controlling heat generation.
  • reaction temperature The reaction temperature in this step is 200 ° C. or higher and 450 ° C. or lower, preferably 350 ° C. or higher and 400 ° C. or lower.
  • reaction temperature is lower than 200 ° C.
  • the reaction rate is slow and the reaction is difficult to proceed, which is not practical.
  • reaction temperature exceeds 450 ° C., the reaction proceeds rapidly, but decomposition products, high molecular weight organic substances, etc. are generated, and the selectivity for trans-1,3,3,3-tetrafluoropropene is lowered, which is not preferable. .
  • the higher the reaction temperature the faster the reaction proceeds because the equilibrium state in the reactor is closer to the target product.
  • reaction pressure is preferably reduced or equal to normal pressure (atmospheric pressure, about 0.1 MPa, the same shall apply hereinafter), but is not limited as long as it does not inhibit the reaction even if the pressure is higher than atmospheric pressure.
  • normal pressure atmospheric pressure, about 0.1 MPa, the same shall apply hereinafter
  • the existing hydrogen fluoride and organic matter do not have to be liquefied in the reaction system of this step, and the pressure is 0.05 MPa or more and 0.3 MPa or less.
  • reaction time The contact time (reaction time) in the gas phase reaction is usually from 0.1 seconds to 300 seconds, preferably from 3 seconds to 60 seconds. If the contact time is shorter than 0.1 seconds, the reaction may not proceed, and preferably 3 seconds or more. If it is longer than 300 seconds, it takes too much process work time (tact time) in the actual production in the plant, which is not efficient. Preferably, it is 60 seconds or less.
  • the molar ratio of hydrogen fluoride to 1-chloro-3,3,3-trifluoropropene should basically be such that hydrogen fluoride is greater than the theoretical value, but trans-1,3,3,
  • hydrogen fluoride: 1-chloro-3,3,3-trifluoropropene range 8: 1 to 25: 1 It is preferable that If hydrogen fluoride is excessively supplied so that this ratio exceeds 25: 1, unreacted hydrogen fluoride contained in the reaction product A of this step and the target product 1,3,3,3- This hinders separation of organic substances such as tetrafluoropropene by distillation.
  • hydrogen fluoride is supplied too little so that this ratio is smaller than 8: 1, the reaction rate is lowered and the selectivity for trans-1,3,3,3-tetra
  • the material of the reactor should be heat resistant and have corrosion resistance against hydrogen fluoride and hydrogen chloride, and it is preferable to use stainless steel, nickel alloy, platinum or the like.
  • Hastelloy (trade name) with nickel as the main component and molybdenum, nickel or chromium added
  • Monel product name with nickel as the main component and copper
  • the fraction B in this step is hydrogen fluoride that could not be recovered from the reaction product A in this step, the target product, trans-1,3,3,3-tetrafluoropropene, and the by-product chloride. And other organics.
  • the fraction B is sent to the “hydrogen fluoride separation step” (third step) of the next step.
  • the fraction B has a different composition depending on the reaction conditions of the preceding step “reaction step” (first step), but is generally 1-chloro-based on 1 mol of 1,3,3,3-tetrafluoropropene.
  • 3,3,3-trifluoropropene is 0.5 mol or more and 1 mol or less
  • 1,1,1,3,3-pentafluoropropane is 0.1 mol or more and 0.2 mol or less
  • hydrogen chloride is 1
  • the moles are 1.5 moles or more and 1.5 moles or less
  • hydrogen fluoride is 0.5 moles or more and 10 moles or less.
  • distillation conditions in this step are preferably 0.1 MPa or more and 1.0 MPa or less as the operating pressure.
  • the temperature conditions are the tower bottom temperature of 5 ° C. or more and 25 ° C. or less, the tower top temperature ⁇ 20 degreeC or more and 5 degrees C or less are preferable.
  • the cooling heat transfer area of the separation tower can be reduced. In that case, it is preferable to provide a compressor at the inlet of the separation tower and a pressure regulating valve at the outlet.
  • the packing material for the separation tower includes hydrogen fluoride, stainless steel that is corrosion resistant to hydrogen chloride, nickel, the nickel alloy such as the trade name Hastelloy or the trade name Monel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, and vinylidene fluoride.
  • Regular packing made of fluororesin such as resin or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (hereinafter sometimes abbreviated as PFA), or irregular packing such as lessing ring, pole ring or sulzer packing Can be used.
  • Number of separation towers The number of stages of the separation column varies depending on the operating pressure, but it may be 15 or more at normal pressure.
  • Hydrogen fluoride separation process (third process) In the “hydrogen fluoride separation step”, hydrogen fluoride is recovered from the fraction B after the bottoms are recovered in the “distillation step” (second step) and supplied to the gas phase reactor in the reaction step. It is a process.
  • the fraction B contains hydrogen fluoride, hydrogen chloride, trans-1,3,3,3-tetrafluoropropene and other organic substances distilled from the separation column in the “distillation step” (second step).
  • hydrogen fluoride is absorbed into sulfuric acid by a contact operation between fraction B and sulfuric acid. That is, a liquid phase part mainly composed of hydrogen fluoride and sulfuric acid, 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3, Hydrogen fluoride can be separated and recovered by dividing it into an organic substance such as 3-pentafluoropropane and a gas phase portion mainly composed of hydrogen chloride, and mainly separating hydrogen fluoride from the liquid phase portion.
  • the gas phase portion is supplied as the residue C to the subsequent “hydrogen chloride separation step” (fourth step).
  • the liquid phase part mainly composed of hydrogen fluoride and sulfuric acid obtained in this step evaporates hydrogen fluoride by heating, and then condenses it to separate and recover hydrogen fluoride.
  • the recovered hydrogen fluoride can be supplied again to the “reaction step” (first step).
  • any apparatus configuration and operation method may be adopted as long as hydrogen fluoride can be absorbed into sulfuric acid, but it is preferable that fraction B is brought into contact with sulfuric acid in a gaseous state. Therefore, the liquid temperature of sulfuric acid is preferably 10 ° C. or higher and 50 ° C. or lower, more preferably 10 ° C. or higher and 30 ° C. or lower at normal pressure. Sulfuric acid and hydrogen fluoride form fluorosulfuric acid (fluorosulfonic acid) by reaction, but it is difficult to operate when the temperature of sulfuric acid is 10 ° C. or lower, and 1,3,3,3 in the reaction product at 50 ° C. or higher.
  • -Tetrafluoropropene and the like are not preferable because they are polymerized.
  • a method in which sulfuric acid is put into a tank and a fraction B is blown in a gas state, a method in which a fraction B is blown into a sulfuric acid washing tower filled with a packing, and a gas in the fraction B and sulfuric acid are brought into countercurrent contact is adopted.
  • absorption of hydrogen fluoride into sulfuric acid is possible, not only these methods but also other methods may be used.
  • Hydrogen chloride separation process (4th process) In this step, hydrogen chloride is brought into contact with the residue C after recovering hydrogen fluoride from the fraction B in the “hydrogen fluoride separation step” (third step) in the previous step, and then contacted with water or an aqueous sodium hydroxide solution. This is a step of separating and removing.
  • the residue C is washed with water by a method in which the residual C is blown into the water tank so as to be in a fine bubble state, a method in which the residue C is blown into the water washing tower filled with the packing and brought into countercurrent contact, and the hydrogen chloride is absorbed in water.
  • Liquid phase ie hydrochloric acid, 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane Hydrogen chloride is separated and removed from organic substances such as
  • any apparatus configuration and operation method may be adopted as long as hydrogen chloride can be separated and removed from the residue C.
  • the organic substance separated from hydrogen chloride can be recovered in a gas or liquid state.
  • a mixture having a high composition of low-boiling trans-1,3,3,3-tetrafluoropropene (boiling point ⁇ 19 ° C.)
  • it is absorbed in contact with water in a gaseous state, and hydrogen chloride is removed from the mixture of organic matter and hydrogen chloride. It is preferable to separate and recover.
  • the hydrochloric acid recovered by absorbing hydrogen chloride in water in this step can be purified using known means such as adsorbing impurities such as hydrogen fluoride and organic substances on an adsorbent such as zeolite.
  • hydrogen chloride may be separated and recovered by contacting the residue C after the “hydrogen fluoride separation step” (third step) in the previous step with an aqueous sodium hydroxide solution.
  • the solubility of hydrogen chloride in water is preferably 25% by mass in normal conditions and 37% by mass in saturated conditions at normal temperature and normal pressure. If the water is less than 3, excess hydrogen chloride is liable to vaporize and easily volatilize. Absent.
  • the “dehydration step” is a step of dehydrating the residue D after separating and removing hydrogen chloride in the “hydrogen chloride separation step” (fourth step) of the previous step.
  • Residue D is accompanied by entrained water such as water, gaseous mist, etc. by water washing in the preceding step “hydrogen chloride separation step” (fourth step) or contact with an aqueous sodium hydroxide solution.
  • entrained water such as water, gaseous mist, etc.
  • hydroxide separation step fourth step
  • aqueous sodium hydroxide solution aqueous sodium hydroxide solution.
  • a residue D containing a large amount of water exceeding the saturated water amount after the “hydrogen chloride separation step” (fourth step) in the previous step a mixed gas in which organic substances such as 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane are mixed Is introduced into a heat exchanger set to a temperature equal to or lower than the condensation temperature of these organic substances, and condensed on a cooling surface, which is a cooled heat transfer surface, to substantially remove entrained water.
  • the melted frozen water is discharged from the lower part of the heat exchanger as a dehydrator in the state of water or steam.
  • the molten water containing this organic substance can be used in the “hydrogen chloride separation step” (fourth step) in the previous step.
  • the heat exchanger used for freezing the entrained water in the residue D is preferably a partition-type heat exchanger, and is cooled through the partition walls of the partition-type heat exchanger. Heat exchange is performed between the medium and the residue D.
  • the partition wall is provided with a heat transfer surface in contact with the cooling medium and a cooling surface for freezing and solidifying the mixed water of the mixed gas. Examples of such a partition wall type heat exchanger include a double tube type, a cylindrical multiple tube type, a cylindrical coil type, or a cylindrical heat exchanger with a jacket.
  • a heat exchanger in which the heat transfer area is expanded by attaching an external jacket to a cylindrical multi-tube type or a cylindrical coil type can also be used.
  • the material of the heat exchanger is preferably a metal having high thermal conductivity, such as iron, steel, copper, lead, zinc, brass, stainless steel, titanium, aluminum, magnesium, or nickel such as trade name Monel, trade name Inconel or Hastelloy.
  • a heat exchanger in which a resin lining, ceramics, glass lining, or the like is applied to the heat transfer surface on the side where the mixed gas is cooled and condensed can be used.
  • the heat transfer area of the heat exchanger depends on the temperature of the cooling medium used, but at a minimum, the area sufficient to condense the gaseous residue D and exchange the amount of heat necessary to freeze the accompanying water. It is preferable that there is. In addition, since the heat transfer coefficient decreases when entrained water freezes and solidifies on the cooling surface of the heat exchanger, it is preferable to take at least 1.5 times the heat transfer area necessary for calculation.
  • a heat exchanger with fins attached to the heat transfer surface can be used.
  • it is also effective from the viewpoint of heat transfer efficiency to attach fins to the cooling surface side with which the residue D is in contact to expand the heat transfer area.
  • Examples of the method for introducing the residue D into the heat exchanger include a flow-through method in which the residue D is passed through a heat exchanger having a sufficient heat transfer area.
  • the direction of introduction of the residue D which is a mixed gas, is preferably such that the gas is introduced from the top when the heat exchanger is a vertical type, in which case freezing and solidification of the entrained water starts from the top of the cooling surface of the heat exchanger. Since it occurs and closes, it is desirable to provide a plurality of inlets at the bottom and move the introduction of the residue D to the bottom.
  • the heat exchanger can be used as a horizontal type, and in this case as well, it is desirable to introduce the residue D from the top, and a plurality of inlets can be provided in parallel.
  • the cooling medium used for heat exchange is not particularly limited, but an aqueous medium, inorganic brine, or organic brine can be selected and used depending on the cooling temperature.
  • the liquefied gas is evaporated again and supplied to the distillation tower.
  • the latent heat of vaporization of liquefied trans-1,3,3,3-tetrafluoropropene can be used. If evaporation of the liquefied gas is performed on the cooling medium flow side of the heat exchange dehydrator, the heating and heat removal load by the external heat source can be reduced, which is also effective from the viewpoint of energy saving.
  • the heat exchange dehydrator Preferably employed.
  • the set temperature of the cooling surface in the heat exchanger is not particularly limited, but gaseous trans-1,3,3,3-tetrafluoropropene (boiling point ⁇ 19 ° C.) is condensed under the operating pressure. Lower the temperature below the The cooling temperature is ⁇ 50 ° C. or higher and ⁇ 20 ° C. or lower, and preferably ⁇ 40 ° C. or higher and ⁇ 25 ° C. or lower at normal pressure.
  • the entrained water is removed by freezing and solidification, and the condensed and liquefied mixed gas is collected in a receiving tank provided at the lower part of the heat exchanger.
  • the temperature of the receiving tank is preferably not higher than the temperature at which trans-1,3,3,3-tetrafluoropropene is condensed.
  • a U-shaped or coil-type cooling pipe is installed inside the receiving tank, and liquefied 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,3 It is also possible to remove the entrained water in the residue D containing 1,3,3-pentafluoropropane by freezing and solidifying.
  • the dehydration using the heat exchanger in this step may be performed under pressurized conditions, and the pressure of the mixed gas in the heat exchanger is usually preferably 0.1 MPa or more and 1 MPa or less.
  • the cooling temperature under the pressurizing condition can be appropriately selected according to the processing pressure.
  • the linear velocity of the residue D to be dehydrated in the heat exchanger is about 30 m / hr or more and 1200 m / hr or less, and preferably 60 m / hr or more and 600 m / hr or less. If the linear velocity is less than 30 m / hr, the dehydration time becomes longer, which is not preferable. When it is higher than 1200 m / hr, the freezing and coagulation of the entrained water in the residue D and the condensation of the organic matter become insufficient, which is not preferable.
  • the amount of frozen water adhering to the cooling surface of the heat exchanger which is a dehydrator, increases as the flow time of the mixed gas containing water increases. For this reason, it is necessary to melt and remove frozen water after a certain period of time.
  • a method for melting and removing frozen water a method can be used in which a dried inert gas having a temperature of 5 ° C. or higher and 200 ° C. or lower is circulated from the top of the heat exchanger as a dehydrator.
  • the temperature of the inert gas may be high, but is preferably 20 ° C. or higher and 100 ° C.
  • the cooling medium and the heating medium are not limited to be the same substance or different substances.
  • the type of inert gas is not particularly limited, but it is desirable to use dry air or dry nitrogen from the viewpoint of economy.
  • a method of dehydrating using an adsorbent for example, a method of dehydrating by contacting with a specific zeolite is carried out regardless of whether 1,3,3,3-tetrafluoropropene in the residue D is in a gaseous state or a liquid state. It is possible and excellent.
  • this dehydration method is carried out using a dehydration tower packed with zeolite, the residue D after the “hydrogen chloride separation step” (fourth step) in the previous step contains water vapor and has a water content of 1000 ppm or more.
  • the residue D when further moisture reduction is desired, the residue D is dehydrated such as calcium chloride, calcium oxide, magnesium sulfate, or diphosphorus pentoxide at a later stage of this step. It can be dried by contacting with an adsorbent or an adsorbent such as silica gel or zeolite.
  • the “purification step” is a step of rectifying the residue E after dehydration in the previous step “dehydration step” (fifth step) to obtain a fraction containing trans-1,3,3,3-tetrafluoropropene. It is. In this case, a residue F containing cis-1,3,3,3-tetrafluoropropene is obtained.
  • Rectification can be carried out either batchwise or continuously, and can be carried out at normal pressure or under pressure, but pressure conditions that can increase the condensation temperature in rectification should be selected. Is preferred.
  • Rectification can be carried out batchwise using a single multi-stage distillation column, but it is more efficient to carry out rectification continuously using a double distillation column comprising a first distillation column and a second distillation column. .
  • low-boiling point 3,3,3-trifluoropropyne, 2,3,3,3-tetrafluoropropene and the like, which are by-products contained in a trace amount in the residue E, are removed from the top of the distillation column. It is recovered as a distillate and returned again to the reaction system of the “reaction step” (first step), that is, supplied to the gas phase reactor for reuse and 1,1,1,3,3-penta Fluoropropane is obtained.
  • the bottoms of the first distillation column can be distilled, and the target trans-1,3,3,3-tetrafluoropropene can be recovered as a distillate from the top of the distillation column. .
  • cis-1,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene are recovered as a bottom boiling liquid, and the first “reaction step” (No. 1 step) and can be reused.
  • the recovered mixture of cis-1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane If a distillation column is used, it can be separated and purified by operations such as extractive distillation.
  • the distillation column used in this step may be any wall as long as the wall surface is inert to the distillate, the wall surface may be made of glass or stainless steel, tetrafluoroethylene resin, chlorotrifluoroethylene resin on a substrate such as steel Also, a distillation column having a vinylidene fluoride resin, PFA resin or glass lined inside may be used.
  • the distillation column may be a plate type or a packed column packed with packing such as Raschig ring, Lessing ring, Dickson ring, pole ring, interlock saddle or sulzer packing.
  • the rectification can be performed at normal pressure, but it is preferable to perform the rectification under a pressurized condition because the pressure loss in the distillation column can be reduced and the load on the condenser can be reduced.
  • the number of distillation columns required for the rectification operation is not limited, but is preferably 5 to 100, more preferably 10 to 50. If the number of stages is less than 5, the purity of trans-1,3,3,3-tetrafluoropropene does not increase sufficiently, and if the number of stages is 100 or more, the economic burden of the distillation column itself increases. In addition, the time required for the rectification operation is increased, which is not preferable.
  • the boiling point of 1-chloro-3,3,3-trifluoropropene is 21 ° C. for the trans isomer and 39 ° C. for the cis isomer.
  • the boiling point of 1,3,3,3-tetrafluoropropene is ⁇ 19 ° C. for the trans isomer and 9 ° C. for the cis isomer.
  • the boiling point of 1,1,1,3,3-pentafluoropropane is 15 ° C. From these mixtures, trans-1,3,3,3-tetrafluoropropene is separated and purified by rectification due to the difference in boiling point. Is possible.
  • antimony pentachloride for example, to convert cis-1,3,3,3-tetrafluoropropene to 1,1,1,3,3-pentafluoropropane, antimony pentachloride, antimony trichloride, antimony pentabromide, triodor
  • At least one metal compound selected from antimony fluoride, tin tetrachloride, titanium tetrachloride, molybdenum pentachloride, tantalum pentachloride, niobium pentachloride, and the like can be used. It is preferable to use a metal-supported catalyst that is a solid catalyst supported on a support such as activated carbon, fluorinated alumina, or fluorinated zirconia.
  • Cis-1,3,3,3-tetrafluoropropene is preferably reacted with excess hydrogen fluoride in the gas phase or with hydrogen fluoride in the liquid phase, and in particular, antimony pentachloride is activated carbon. It is preferable to continuously react with hydrogen fluoride using a supported metal supported catalyst.
  • a distillation operation is performed in the “distillation step”, and the reaction product A after the “reaction step” is distilled to give unreacted 1-chloro-3,3,3-trifluoro. It is characterized in that most of propene and hydrogen fluoride are recovered by distillation as a bottoms which is a liquid rich in low volatility components obtained from the bottom of the distillation column.
  • reaction step if an excessive amount of hydrogen fluoride is supplied into the reaction system of the “reaction step”, a large amount of unreacted hydrogen fluoride remains in the reaction product A, and hydrogen fluoride remains. If the rectification to obtain trans-1,3,3,3-tetrafluoropropene by distilling the reaction product A in such a state, the rectification load increases. However, in the parallel production method of the present invention, most of the hydrogen fluoride was separated and recovered in the “distillation step” that follows the “reaction step”. In addition, the fraction B after the “distillation step” is sent to the “hydrogen fluoride separation step” in the next step, and the remaining hydrogen fluoride is separated and recovered to form a residue C.
  • the “hydrogen chloride separation step” in the next step The hydrogen chloride produced as a by-product is separated and removed to form a residue D, and the residue after dehydration in the next “dehydration step” is rectified in the “purification step”.
  • the reaction product (residue C) is washed with water or brought into contact with an aqueous sodium hydroxide solution to separate and remove hydrogen chloride, entrained water is mixed into the reaction product. Since the entrained water is dehydrated in the “dehydration step”, rectification of trans-1,3,3,3-tetrafluoropropene in the “purification step” is facilitated.
  • the common production method of the present invention is the above-mentioned “conversion step”, wherein cis-1,3,3,3-tetrafluoropropene in residue F after “purification step” is trans-1,3,3,3-tetrafluoro.
  • conversion step By converting to propene, 1,1,1,3,3-pentafluoropropane is obtained, and trans-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and Can be produced in parallel.
  • reaction product A From the reaction product A, most of unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride were separated and recovered as bottoms, and the recovered 1-chloro-3,3,3- Returning trifluoropropene and hydrogen fluoride back to the initial “reaction step” is a recyclable and environmentally friendly process that is efficient in industrial production.
  • the parallel production method of the present invention comprises 1-chloro-3,3, after rectifying the residue E to obtain trans-1,3,3,3-tetrafluoropropene in the first “purification step”.
  • this step further re-feeding of unreacted substances and effective utilization of by-products can be achieved.
  • FIG. 1 is an example of the method of the present invention. The method of the present invention is not limited to the following method.
  • reaction step 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride as raw materials a are reacted in the gas phase reactor 1 in the presence of a fluorination catalyst.
  • the reaction for obtaining trans-1,3,3,3-tetrafluoropropene is carried out.
  • the reaction product A after the reaction is supplied to the separation column 2 of the “distillation step” (second step) for distillation, and trans-1,3,3,3-tetrafluoropropene, hydrogen chloride and hydrogen fluoride. And the like and other fractions containing organic matter and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in the bottom b of the separation column 2 are separated. Is supplied to the gas phase reactor 1 and reused as a raw material compound. Distillation B, which is a distillate rich in highly volatile components, is obtained from the top of the separation column 2 by distillation, and a bottom b, rich in low volatile components, is obtained from the bottom.
  • the bottoms b stored in the lower heating tank of the separation column 2 is an organic substance mainly composed of 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane.
  • recovering the hydrogen fluoride and returning it to the gas phase reactor 1 in the reaction step reacts the raw material compound 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride, trans-1, It is effective for obtaining 3,3,3-tetrafluoropropene and can improve the efficiency of the parallel production method of the present invention.
  • the fraction B is sent to the hydrogen fluoride absorption tower 3 and comes into contact with sulfuric acid, so that hydrogen fluoride is absorbed by sulfuric acid.
  • the mixture c containing sulfuric acid and hydrogen fluoride is sent to the stripping tower 4, hydrogen fluoride d is taken out, and the taken out hydrogen fluoride d is supplied to the gas phase reactor 1 and reused as a raw material compound. .
  • Residue C after the recovery of hydrogen fluoride d is introduced into hydrogen chloride absorption tower 5 in the “hydrogen chloride separation process” (fourth process), and in hydrogen chloride absorption tower 5, water or sodium hydroxide is introduced. It is washed with water by means such as contact mixing with an aqueous solution, for example, bubbling, and hydrogen chloride e is separated and removed.
  • the residue D from which the hydrogen chloride e has been separated and removed is introduced into the mist separator 6 and dehydrated to remove the moisture h1, if necessary, in the “dehydration step” (fifth step). Thereafter, the residue D is introduced into the heat exchanger 7, the entrained water in the residue D is cooled and frozen and solidified, and the organic matter in the residue D is cooled and condensed from the gas to become a liquefied product. Water h2 is removed.
  • the composition ratio of the reaction product in this example is such that a reaction product containing a distillate from a distillation column is directly injected into gas chromatography (hereinafter abbreviated as GC), and a hydrogen flame is applied to the detector. Measurement was performed using an ion detector (hereinafter abbreviated as FID). The composition ratio of each component is shown as a molar ratio determined from the area of the GC chart.
  • a fluorination catalyst used for the reaction for producing trans-1,3,3,3-tetrafluoropropene was prepared by the following procedure.
  • Activated alumina having a particle size of 2 mm to 4 mm (manufactured by Sumitomo Chemical Co., Ltd., trade name, NKHD-24, specific surface area, 340 m 2 / g) was weighed and washed at 1200 g. Next, 460 g of hydrogen fluoride was dissolved in 4140 g of water to prepare 10% by mass hydrofluoric acid. While stirring 10% by mass of hydrofluoric acid, the washed activated alumina was gradually added, and then allowed to stand for 3 hours. The activated alumina was again washed with water and filtered, and then heated to 200 ° C. in an electric furnace and dried for 2 hours.
  • SUS316L stainless steel
  • the flow rate of hydrogen fluoride and nitrogen and the ratio of hydrogen fluoride and nitrogen were adjusted so that the temperature of the activated alumina did not exceed 350 ° C.
  • the set temperature of the heat medium was changed to 450 ° C., and hydrogen fluoride and nitrogen were further introduced for 2 hours to prepare fluorinated alumina.
  • 2016 g of a commercially available special grade reagent, CrCl 3 .6H 2 O was dissolved in pure water to obtain a 1 L (1000 cm 3 ) aqueous solution.
  • 1500 ml (1500) of the prepared fluorinated alumina was immersed and allowed to stand overnight.
  • the fluorinated alumina was removed by filtration, and further dried in a hot air circulating dryer heated to 100 ° C. for a whole day and night to obtain a chromium-supported fluorinated alumina.
  • a hot air circulating dryer heated to 100 ° C. for a whole day and night to obtain a chromium-supported fluorinated alumina.
  • the temperature of the reaction tube was raised to 300 ° C. while flowing nitrogen gas, and water was retained from the reaction tube.
  • nitrogen fluoride was accompanied by hydrogen fluoride and introduced into the reaction tube to gradually increase the concentration of hydrogen fluoride.
  • the temperature of the reaction tube is increased to 450 ° C., then 1 hour at 450 ° C.
  • the fluorination catalyst was obtained by keeping the time.
  • CTFP 1-chloro-3,3,3-trifluoropropene
  • HF hydrogen fluoride
  • Fluorine prepared in Preparation Example 1 or Preparation Example 2 was added to a stainless steel (SUS316L) tubular gas phase reactor 1 made of a cylindrical reaction tube having a diameter of 1 inch (about 2.54 cm) and a length of 30 cm. 50 ml (50 cm 3 ) of the fluorination catalyst was charged.
  • SUS316L stainless steel
  • the reaction tube of the gas phase reactor 1 is heated to 200 ° C., then hydrogen fluoride is flowed at a flow rate of 0.10 g / min, In the reaction tube, the reaction tube was heated to 450 ° C. and kept for 1 hour while being accompanied by nitrogen.
  • the temperature of the reaction tube is lowered to 360 ° C. or 380 ° C., and hydrogen fluoride (HF) is supplied at a rate of 0.25 g / min or 0.49 g / min to pre-vaporize 1-chloro-3,3 , 3-trifluoropropene (CTFP) was fed to the gas phase reactor 1 at a rate of 0.16 g / min.
  • HF hydrogen fluoride
  • the reaction is stabilized after 1 hour from the start of the reaction, and then the product gas as the reaction product A distilled from the gas phase reactor 1 is blown into water for 2 hours, and then the acidic gas is separated and removed. 6.0 to 8.0 g of organic matter was collected with an acetone trap, and GC analysis of the collected organic matter was performed.
  • CTFP: HF 1: 8
  • CTFP 1-chloro-3,3,3-trifluoropropene
  • HF hydrogen fluoride
  • Table 1 shows the ratio (selectivity) of reaction product A to the reaction conditions measured by GC using an FID detector.
  • the unit is mol%, and is obtained from the area for each organic substance in the GC chart by the FID detector using an area percentage method in which the total area of the gas chromatography peak is 100%.
  • trans-1,3,3,3-tetrafluoropropene when the supply rate of hydrogen fluoride (HF) was 0.25 g / min.
  • HF feed rate 0.49 g / min
  • trans-1,3,3,3-tetrafluoropropene trans-TFP
  • the selectivity of trans-1,3,3,3-tetrafluoropropene is higher at 380 ° C. than at the reaction temperature of 360 ° C.
  • trans-1,3,3 under the conditions of HF supply rate of 0.25 g / min and reaction temperature of 360 ° C.
  • the selectivity of 1,3-tetrafluoropropene (trans-TFP) is 32.1 mol%, but 34.5% at a reaction temperature of 380 ° C.
  • the selectivity for trans-1,3,3,3-tetrafluoropropene (trans-TFP) at a feed rate of HF of 0.49 g / min and a reaction of 360 ° C. was 44.4 mol%, but the reaction temperature It is 46.6 mol% at 380 ° C.
  • trans-1,3,3,3-tetrafluoropropene (trans-TFP) under the conditions of HF supply rate of 0.25 g / min and reaction temperature of 360 ° C.
  • the selectivity of is 30.3 mol%, but it is 33.1 mol% at a reaction temperature of 380 ° C.
  • the catalyst of Catalyst Preparation Example 1 was used, the temperature of the reaction tube was set to 150 ° C., and hydrogen fluoride (HF) was supplied at a rate of 0.25 g / min or 0.49 g / min to vaporize in advance
  • HF hydrogen fluoride
  • CTFP Chloro-3,3,3-trifluoropropene
  • the reaction is stabilized after 1 hour from the start of the reaction, and then gas is distilled from the gas phase reactor 1 for 2 hours to blow water into the water to remove the acidic gas, and then 8.5 g of organic matter in a dry ice-acetone trap. Was collected, and gas chromatography analysis of the collected organic matter was performed.
  • Separation tower 2 is a distillation tower, having a heating tank for heating the bottoms at the bottom, a cooling condenser for liquefying the distillate at the top, and an inner diameter of separation tower 2 of 54.9 mm, The length was 40 cm and filled with 6 mm Raschig rings.
  • CTFP 1-chloro-3,3,3-trifluoropropene
  • HF hydrogen fluoride
  • reaction product A which is a gas
  • Table 2 shows the distillation conditions in the separation tower 2 and the composition measurement results of the distillate (fraction B).
  • distillation was performed under two types of distillation conditions in which the temperature setting of the heating tank and the temperature setting of the cooling condenser were changed. Specifically, as condition 1, the temperature of the heating tank is 24 ° C., the temperature of the cooling condenser is ⁇ 5 ° C., the pressure in the separation tower 2 is 0.2 MPa, and as the condition 2, the temperature of the heating tank is 25 ° C. Distillation was performed using the separation tower 2 at a condenser temperature of 1 ° C. and a pressure in the separation tower 2 of 0.2 MPa.
  • the distillation rate in Table 2 means the organic matter, HF or HCl in the fraction B, which is a distillate in distillation, when the amount of the organic matter, HF or HCl in the reaction product A is 100, respectively. Is expressed in mol%. That is, the calculation was performed by dividing the molar amount (in the fraction B) at the outlet by the molar amount (in the reaction product A) at the inlet of the separation tower 2 of each compound.
  • Distillation rate of organic substance in fraction B of condition 1 is 48.1 mol%, distillation rate of hydrogen fluoride (HF) is 6.9 mol%, distillation rate of hydrogen chloride is 91.8 mol%
  • concentration of trans-1,3,3,3-tetrafluoropropene (trans-TFP) in the organic substance is 26.0 mol% at the inlet of the separation tower 2 and 55.6 mol% at the outlet, and the concentration ratio Was 2.1.
  • the distillation rate of organic matter in fraction 2 of condition 2 is 63.8 mol%, the distillation rate of hydrogen fluoride (HF) is 10.2 mol%, and the distillation rate of hydrogen chloride is 91.5 mol%.
  • trans-1,3,3,3-tetrafluoropropene (trans-TFP) in the organic substance is 26.6 mol% at the inlet of the separation tower 2 and 42.5% at the distillate at the outlet of the separation tower 2.
  • concentration ratio was 2.1.
  • trans-1,3,3,3-tetrafluoropropene Is 26.0 mol%
  • cis-1,3,3,3-tetrafluoropropene cis-TFP1234zeZ
  • PFP 1,1,1,3,3-pentafluoropropane
  • CTFP 1-chloro-3,3,3-trifluoropropene
  • the composition of the organic substance in the outlet gas of the separation tower 2, that is, the fraction B of the separation tower 2 is 55.6 mol% of trans-1,3,3,3-tetrafluoropropene (trans-TFP).
  • Cis-1,3,3,3-tetrafluoropropene (cis-TFP) is 9.3 mol%
  • 1,1,1,3,3-pentafluoropropane (PFP) is 9.6 mol%
  • 1- Chloro-3,3,3-trifluoropropene (CTFP) was 25.3 mol%.
  • trans-1,3,3,3-tetrafluoropropene is the main component as the fraction B after the separation tower 2
  • trans-TFP trans-1,3,3,3-tetrafluoropropene
  • the above-mentioned condition 1 was adopted as the distillation condition using the separation tower 2 equipped with a cooling condenser at the top and a heating tank at the bottom, the inner diameter was 54.9 mm, the length was 40 cm, and 6 mm Raschig rings were packed.
  • a reaction for obtaining 3,3-tetrafluoropropene (trans-TFP) was carried out.
  • the reaction temperature is 360 ° C.
  • the supply of 1-chloro-3,3,3-trifluoropropene (CTFP) is 1.2 g / min
  • the supply of recovered organic matter is equal to 2.7 g / min.
  • the hydrogen fluoride (HF) was fed at 3.5 g / min or 7.1 g / min, and the reaction pressure was 0.1 MPa or 0.2 MPa.
  • 1,3,3,3-tetrafluoropropene (trans-TFP) was found to be 34.4 mol% and 29.2 mol when hydrogen fluoride (HF) was supplied at 3.5 g / min.
  • % Of hydrogen fluoride (HF) supplied at 7.1 g / min is 47.3 mol%
  • trans-1,3,3,3-tetrafluoropropene (trans-TFP) It was found that high selectivity can be obtained.
  • Residue C after separation of hydrogen fluoride was bubbled into water at a rate of 2.0 g / min in the hydrogen chloride absorption tower 5 in the hydrogen chloride separation step to remove hydrogen chloride e.
  • a SUS-316 mist separator 6 preliminarily filled with a SUS-316 filler and cooled with a refrigerant having a temperature of 5 ° C. was prepared. Residue D after separation of hydrogen chloride e was introduced into the prepared mist separator 6. The mist separator 6 removed mist-like entrained water h1 accompanying the residue D, which is a mixed gas. A gas in which a plurality of organic substances, which are the residue D at the outlet of the mist separator 6, was collected and the water content was measured by the Karl Fischer method. As a result, the water concentration was 1300 ppm.
  • the residue E which is an organic substance dehydrated by the above method, is rectified in the rectification column 8 in the purification step, and as a distillate, trans-1,3,3,3-tetrafluoropropene g (trans-TFP) is obtained. ) was isolated.
  • the water concentration measured by the Karl Fischer method was 78 ppm, and the purity measured by gas chromatography was 99.9%.
  • the generated hydrogen chloride is discharged from the pressure regulating valve provided at the rear of the reflux condenser, and after returning the pressure to normal pressure, the pressure regulating valve is closed, and the autoclave is cooled with dry ice-methanol to obtain cis-1,3,3, Add 114 g (1.0 mol) of 3-tetrafluoropropene and raise the reaction temperature to 50 ° C. while stirring. After 3.5 hours from the start of the reaction, cool the reactor to room temperature and lower the pressure to normal pressure. The gas distilled from the reactor through the aqueous layer and the concentrated sulfuric acid layer was collected in a trap cooled with dry ice-methanol.
  • the recovered organic substance weighed 123 g, and the product composition analyzed by gas chromatography was 98.5% 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene. 0.4% and 1-chloro-3,3,3-trifluoropropene 0.1%.
  • Table 4 The results are shown in Table 4.
  • D residue including 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane, water, etc.
  • E Residue including 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane, etc.
  • F Residue (residue after obtaining trans-1,3,3,3-tetrafluoropropene as a fraction by rectification) a Raw materials (1-chloro-3,3,3-trifluoropropene and hydrogen fluoride) b Bottomed liquid (unreacted organic matter such as 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride) c Hydrogen fluoride and sulfuric acid d Hydrogen fluoride e Hydrochloric acid h1, h2 Entrained water

Abstract

Disclosed is a method for the parallel production of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane. This method has: a reaction step for reacting 1-chloro-3,3,3-trifluoropropene and HF to obtain a product containing trans-1,3,3,3-tetrafluoropropene, cis-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane, and HCl; a distillation step for distilling the product, recovering 1-chloro-3,3,3-trifluoropropene and HF, and feeding the 1-chloro-3,3,3-trifluoropropene and HF to the reaction step; a hydrogen fluoride separation step for recovering HF from the fraction of the distillation step and feeding the HF to the reaction step; a hydrogen chloride separation step for bringing water or NaOH aqueous solution into contact with the residue of this step and removing the HCl; a drying step for dehydrating the residue of this step; a purification step for purifying the residue of this step; and a conversion step for making cis-1,3,3,3-tetrafluoropropene into 1,1,1,3,3-pentafluoropropane.

Description

トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法Parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane
 本発明は、トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法に関する。トランス-1,3,3,3-テトラフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンは、医農薬もしくは機能性材料等の中間原料、スプレー等におけるエアロゾルの噴射剤であるプロペラント、マグネシウム合金製造時に使用する保護ガス、半導体製造に用いるエッチングガス、発泡剤、消火剤、熱媒体または冷媒等として有用である。 The present invention relates to a parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane. Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane are propellants that are propellants for aerosols in intermediate raw materials such as medical pesticides or functional materials, sprays, etc. It is useful as a protective gas used in manufacturing a magnesium alloy, an etching gas used in manufacturing a semiconductor, a foaming agent, a fire extinguishing agent, a heat medium or a refrigerant.
発明の背景Background of the Invention
 フルオロハイドロカーボンは、国際条約により、オゾン層保護のため規制される特定フロンより、オゾン層破壊係数の低い代替フロンへと移行してきた。オゾン層破壊係数に加え、地球温暖化係数の低い代替フロンであるトランス-1,3,3,3-テトラフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンは、原料化合物を転化率および収率よく反応させて、効率よく得ることが検討されてきた。 Fluorohydrocarbons have shifted to alternative chlorofluorocarbons with a low ozone depletion coefficient rather than specific chlorofluorocarbons that are regulated to protect the ozone layer by international treaties. Trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane, which are alternative fluorocarbons with a low global warming potential, in addition to the ozone depletion potential, convert raw material compounds It has been studied to obtain a reaction efficiently and efficiently.
 1-クロロ-3,3,3-トリフルオロプロペンを原料化合物とし、1,1,1,3,3-ペンタフルオロプロパンを得る方法が、特許文献1~3等に開示されている。 Patent Documents 1 to 3 disclose methods for obtaining 1,1,1,3,3-pentafluoropropane using 1-chloro-3,3,3-trifluoropropene as a raw material compound.
 特許文献1には、1-クロロ-3,3,3-トリフルオロプロぺンをアンチモン触媒存在下フッ化水素により液相フッ素化する方法が開示されている。 Patent Document 1 discloses a method for liquid-phase fluorination of 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride in the presence of an antimony catalyst.
 また、特許文献2には、1-クロロ-3,3,3-トリフルオロプロペンに付加触媒存在下、フッ化水素を付加して、1,1,1,3-テトラフルオロ-3-クロロプロパンを得、次いで、該1,1,1,3-テトラフルオロ-3-クロロプロパンを不均化触媒存在下で不均化する方法が開示されている。 Patent Document 2 discloses that 1,1,1,3-tetrafluoro-3-chloropropane is added to 1-chloro-3,3,3-trifluoropropene by adding hydrogen fluoride in the presence of an addition catalyst. And then disproportionating the 1,1,1,3-tetrafluoro-3-chloropropane in the presence of a disproportionation catalyst.
 また、特許文献3には、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素から塩素存在下、1,1,1,3,3-ペンタフルオロプロパンを製造する方法であって、それぞれ五塩化アンチモン担持活性炭を充填した反応器(A)および反応器(B)を含んでなるフッ素化反応装置を使用し、上流から150℃以上に設定された第一反応器、20~150℃に設定された第二反応器が直列に配列され、第一の時間区分において反応器(A)を第一反応器とし、反応器(B)を第二反応器とし、第二の時間区分において反応器(B)を第一反応器とし、反応器(A)を第二反応器として反応を行い、次いで前記と同様に反応器(A)と反応器(B)の交換を繰り返して反応を行うことからなる方法が開示されている。 Patent Document 3 discloses a method for producing 1,1,1,3,3-pentafluoropropane from 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in the presence of chlorine. Using a fluorination reactor comprising a reactor (A) and a reactor (B) each filled with antimony pentachloride-supported activated carbon, and a first reactor set at 150 ° C. or higher from the upstream, The second reactors set at ° C are arranged in series, and in the first time section, the reactor (A) is the first reactor, the reactor (B) is the second reactor, and the second time section The reaction is carried out using the reactor (B) as the first reactor and the reactor (A) as the second reactor, and then repeating the exchange of the reactor (A) and the reactor (B) in the same manner as described above. A method comprising performing
 一方、特許文献4には、1-クロロ-3,3,3-トリフルオロプロペンを気相において、フッ素化触媒存在下でフッ素化し、1,3,3,3-テトラフルオロプロペンを得る方法において、フッ素化触媒がクロム、チタン、アルミニウム、マンガン、ニッケルまたはコバルトから選ばれる少なくとも1種または2種以上の金属の酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物あるいはオキシフッ化塩化物を担持した活性炭を用いることが報告されている。 On the other hand, in Patent Document 4, 1-chloro-3,3,3-trifluoropropene is fluorinated in the gas phase in the presence of a fluorination catalyst to obtain 1,3,3,3-tetrafluoropropene. An oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or at least one metal selected from chromium, titanium, aluminum, manganese, nickel or cobalt as the fluorination catalyst The use of activated carbon carrying oxyfluoride chloride has been reported.
 特許文献4に記載の方法は、フッ化水素が過剰または反応温度が低いと、以下の反応スキーム(1)に示すように、1,3,3,3-テトラフルオロプロペンに加え、フッ素化がさらに進行した高次フッ素化生成物である1,1,1,3,3-ペンタフルオロプロパンが副生する。 In the method described in Patent Document 4, when hydrogen fluoride is excessive or the reaction temperature is low, fluorination is performed in addition to 1,3,3,3-tetrafluoropropene as shown in the following reaction scheme (1). Further, 1,1,1,3,3-pentafluoropropane, which is a higher order fluorination product, is by-produced.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、特許文献5には、アルミニウム、錫、ビスマス、アンチモンおよび鉄からなる群より選ばれる少なくとも1種以上の金属のハロゲン化物である、ハロゲン化水素付加触媒存在下、1,3,3,3-テトラフルオロプロペンにフッ化水素を付加し、1,1,1,3,3-ペンタフルオロプロパンを得る製造方法が開示されている。 Patent Document 5 discloses 1, 3, 3, 3 in the presence of a hydrogen halide addition catalyst, which is a halide of at least one metal selected from the group consisting of aluminum, tin, bismuth, antimony and iron. A process for the production of 1,1,1,3,3-pentafluoropropane by adding hydrogen fluoride to tetrafluoropropene is disclosed.
特開平9-241188号公報JP-A-9-241188 特開平10-72381号公報Japanese Patent Laid-Open No. 10-72381 特開2002-105006号公報JP 2002-105006 A 特開平10-7604号公報Japanese Patent Laid-Open No. 10-7604 特開平10-17502号公報Japanese Patent Laid-Open No. 10-17502
 上述のように、1-クロロ-3,3,3-トリフルオロプロペンを原料化合物とし1,3,3,3-テトラフルオロプロペンを得る方法、1-クロロ-3,3,3-トリフルオロプロペンを原料化合物とし、1,1,1,3,3-ペンタフルオロプロパンを得る方法は夫々知られており、目的化合物であるトランス-1,3,3,3-テトラフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンは収率よく得られる。しかしながら、1-クロロ-3,3,3-トリフルオロプロペンを原料化合物とし、トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとを効率よく並産する方法は知られていない。 As described above, a method for obtaining 1,3,3,3-tetrafluoropropene using 1-chloro-3,3,3-trifluoropropene as a starting compound, 1-chloro-3,3,3-trifluoropropene Are known, and 1,1,1,3,3-pentafluoropropane is obtained in a known manner. The target compound, trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane, are known. 1,3,3-pentafluoropropane can be obtained in good yield. However, using 1-chloro-3,3,3-trifluoropropene as a raw material compound, trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane are efficient. There is no known method for producing a common product.
 本発明は、原料化合物に対して、トランス-1,3,3,3-テトラフルオロプロペンと1,1,3,3-ペンタフルオロプロパンを効率よく並産する方法を提供するものである。 The present invention provides a method for efficiently producing trans-1,3,3,3-tetrafluoropropene and 1,1,3,3-pentafluoropropane in parallel with a raw material compound.
 本発明者らは、かかる問題を解決するため、鋭意検討した結果、1-クロロ-3,3,3-トリフルオロプロペンを出発原料化合物として、フッ化水素を反応させて、トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとを効率よく並産する方法に到達した。 As a result of diligent investigations to solve such problems, the present inventors have reacted hydrogen fluoride using 1-chloro-3,3,3-trifluoropropene as a starting material compound to produce trans-1,3. , 3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane have been reached.
 即ち、本発明は、以下の発明1~7を含む。 That is, the present invention includes the following inventions 1 to 7.
[発明1]
1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素を気相において、フッ素化触媒を用い、温度200℃以上、450℃以下、圧力0.05MPa以上、0.3MPa以下で反応させて、トランス-1,3,3,3-テトラフルオロプロペンと、シス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンおよび塩化水素と、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む反応生成物Aを得る反応工程と、
反応生成物Aを蒸留して、1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む缶出液を前記反応工程に戻し、且つ留分Bを得る蒸留工程と、
前記蒸留工程後の留分Bよりフッ化水素を分離回収して前記反応工程に供給するフッ化水素分離工程と、
前記フッ化水素分離工程でフッ化水素を回収した後の残存物Cに水または水酸化ナトリウム水溶液を接触させて塩化水素を分離除去する塩化水素分離工程と、
前記塩化水素分離工程で塩化水素を分離した後の残存物Dを脱水する脱水工程と、
前記脱水工程で脱水した後の残存物Eを精留し、トランス-1,3,3,3-テトラフルオロプロペンを含む留分と、シス-1,3,3,3-テトラフルオロプロペンを含む残渣Fを得る精製工程と、
前記脱水工程で脱水した後の残存物Eを精留し、留分であるトランス-1,3,3,3-テトラフルオロプロペンと、シス-1,3,3,3-テトラフルオロプロペンを含む残渣Fを得る精製工程と、
前記精製工程の残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換する変換工程、
を含む、
トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンの並産方法
[Invention 1]
1-Chloro-3,3,3-trifluoropropene and hydrogen fluoride are reacted in the gas phase at a temperature of 200 ° C. or higher and 450 ° C. or lower and a pressure of 0.05 MPa or higher and 0.3 MPa or lower using a fluorination catalyst. Trans-1,3,3,3-tetrafluoropropene, cis-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and hydrogen chloride, A reaction step of obtaining a reaction product A containing 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride as reactants;
A distillation step of distilling reaction product A to return the bottoms containing 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride to the reaction step, and obtaining fraction B;
A hydrogen fluoride separation step in which hydrogen fluoride is separated and recovered from the fraction B after the distillation step and supplied to the reaction step;
A hydrogen chloride separation step of separating and removing hydrogen chloride by bringing water or an aqueous sodium hydroxide solution into contact with the residue C after recovering hydrogen fluoride in the hydrogen fluoride separation step;
A dehydration step of dehydrating the residue D after separating the hydrogen chloride in the hydrogen chloride separation step;
The residue E after dehydration in the dehydration step is rectified to contain a fraction containing trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene. A purification step to obtain residue F;
The residue E after dehydration in the dehydration step is rectified and contains trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene as fractions. A purification step to obtain residue F;
A conversion step of converting cis-1,3,3,3-tetrafluoropropene in the residue F of the purification step into 1,1,1,3,3-pentafluoropropane;
including,
Parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane
[発明2]
フッ素化触媒が、クロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、鉄、銅、亜鉛、銀、モリブデン、ジルコニウム、ニオブ、タンタル、イリジウム、錫、ハフニウム、バナジウム、マグネシウム、リチウム、ナトリウム、カリウム、カルシウムおよびアンチモンからなる群より選ばれた少なくとも1種の金属の硝酸塩、塩化物、酸化物、硫酸塩、フッ化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物である、発明1の並産方法。
[Invention 2]
Fluorination catalyst is chromium, titanium, aluminum, manganese, nickel, cobalt, iron, copper, zinc, silver, molybdenum, zirconium, niobium, tantalum, iridium, tin, hafnium, vanadium, magnesium, lithium, sodium, potassium, calcium And at least one metal selected from the group consisting of antimony and nitrate, chloride, oxide, sulfate, fluoride, fluoride, oxyfluoride, oxychloride, or oxyfluoride The average production method.
[発明3]
前記反応工程の反応が、塩化クロムを担持させたフッ素化アルミナをフッ素化触媒とし、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素の供給量をモル比で表わして1-クロロ-3,3,3-トリフルオロプロペン:フッ化水素=1:8~1:25とし行われる、発明1または発明2の並産方法。
[Invention 3]
The reaction in the reaction step is carried out by using fluorinated alumina supporting chromium chloride as a fluorination catalyst, and representing the supply amount of 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in molar ratio as 1- The parallel production method of Invention 1 or Invention 2, wherein chloro-3,3,3-trifluoropropene: hydrogen fluoride = 1: 8 to 1:25.
[発明4]
前記反応工程の反応が、クロムの酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物を担持させた活性炭をフッ素化触媒とし、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素の供給量をモル比で表わして1-クロロ-3,3,3-トリフルオロプロペン:フッ化水素=1:8~1:25とし行われる、発明1または発明2の並産方法。
[Invention 4]
The reaction in the reaction step is performed by using activated carbon supporting chromium oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride as a fluorination catalyst, and 1-chloro-3 , 3,3-trifluoropropene and hydrogen fluoride in terms of molar ratio, 1-chloro-3,3,3-trifluoropropene: hydrogen fluoride = 1: 8 to 1:25 The parallel production method of invention 1 or invention 2.
[発明5]
前記フッ化水素分離工程において、フッ化水素を硫酸に吸収させて回収する、発明1~4の並産方法。
[Invention 5]
The parallel production method of inventions 1 to 4, wherein in the hydrogen fluoride separation step, hydrogen fluoride is absorbed and recovered by sulfuric acid.
[発明6]
前記脱水工程において、塩化水素分離工程後の残存物Dの同伴水を熱交換器を用い、熱交換器の冷却面に氷結凝固させて脱水する、発明1~5の並産方法。
[Invention 6]
In the dehydration process, the entrained water of the residue D after the hydrogen chloride separation process is dehydrated by freezing and solidifying on the cooling surface of the heat exchanger using a heat exchanger.
[発明7]
前記脱水工程において、塩化水素分離工程後の残存物Dの同伴水を、吸着剤に吸着して脱水する、発明1~5の並産方法。
[Invention 7]
In the dehydration step, the entrained water of the residue D after the hydrogen chloride separation step is adsorbed by an adsorbent and dehydrated.
 本発明は、入手容易な1-クロロ-3,3,3-トリフルオロプロペンを出発原料化合物に用い、トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンが効率よく並産できる。 The present invention uses readily available 1-chloro-3,3,3-trifluoropropene as a starting material compound, trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3 -Pentafluoropropane can be produced efficiently and in parallel.
本発明のトランス-1,3,3,3-テトラフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンの並産方法を用いる製造工程のフロー図の例である。It is an example of the flowchart of the manufacturing process using the trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane production method of the present invention.
詳細な説明Detailed description
 以下、本発明の実施形態について説明する。本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し、適宜変更または改良を加えることも、本発明の範疇である。 Hereinafter, embodiments of the present invention will be described. It is also within the scope of the present invention to appropriately change or improve the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention.
1.トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法。 1. Parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane.
 本発明は、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素を気相において、フッ素化触媒を用い、温度200℃以上、450℃以下、圧力0.05MPa以上、0.3MPa以下で反応させて、トランス-1,3,3,3-テトラフルオロプロペンと、シス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンおよび塩化水素と、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む反応生成物Aを得る反応工程と、
反応生成物Aを蒸留し、1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む缶出液を回収し前記反応工程に供給し、且つ留分Bを得る蒸留工程と、
蒸留工程で缶出液を回収した後の留分Bよりフッ化水素を分離回収して前記反応工程に供給するフッ化水素分離工程と、
前記フッ化水素分離工程でフッ化水素を回収した後の残存物Cに水または水酸化ナトリウム水溶液を接触させて塩化水素を分離除去する塩化水素分離工程と、
前記塩化水素分離工程で塩化水素を分離した後の残存物Dを脱水する脱水工程と、
前記脱水工程で脱水した後の残存物Eを精留し、留分であるトランス-1,3,3,3-テトラフルオロプロペンと、シス-1,3,3,3-テトラフルオロプロペンを含む残渣Fを得る精製工程と、
前記精製工程の残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換する変換工程を含む、
トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法である。
The present invention uses 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in a gas phase in a gas phase, using a fluorination catalyst, at a temperature of 200 ° C. or higher and 450 ° C. or lower, a pressure of 0.05 MPa or higher, and 0.3 MPa. The following reaction is conducted to produce trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and chloride. A reaction step of obtaining a reaction product A containing hydrogen and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride;
A distillation step of distilling the reaction product A, collecting a bottoms solution containing 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride, supplying to the reaction step, and obtaining a fraction B;
A hydrogen fluoride separation step in which hydrogen fluoride is separated and recovered from the fraction B after the bottoms are collected in the distillation step and supplied to the reaction step;
A hydrogen chloride separation step of separating and removing hydrogen chloride by bringing water or an aqueous sodium hydroxide solution into contact with the residue C after recovering hydrogen fluoride in the hydrogen fluoride separation step;
A dehydration step of dehydrating the residue D after separating the hydrogen chloride in the hydrogen chloride separation step;
The residue E after dehydration in the dehydration step is rectified and contains trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene as fractions. A purification step to obtain residue F;
A conversion step of converting cis-1,3,3,3-tetrafluoropropene in the residue F of the purification step into 1,1,1,3,3-pentafluoropropane.
This is a parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane.
 具体的には、本発明の方法は、「反応工程」において、原料化合物、即ち、反応物(reactant)としての1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素と反応させ、目的生成物であるトランス-1,3,3,3-テトラフルオロプロペンを生成する操作、
「蒸留工程」において、前記「反応工程」後の目的化合物であるトランス-1,3,3,3-テトラフルオロプロペンと、副生物であるシス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンおよび塩化水素と、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む反応生成物Aを蒸留し、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を缶出液として回収し、前記「反応工程」に供給する操作、
「フッ化水素分離工程」において、前記「蒸留工程」での留出物である留分Bよりフッ化水素を分離回収して前記「反応工程」に供給する操作、
「塩化水素分離工程」において、前記「フッ化水素分離工程」でフッ化水素を回収した後の残存物Cに水または水酸化ナトリウム水溶液を接触させて塩化水素を分離除去する操作、
「脱水工程」において、前記「塩化水素分離工程」で塩化水素を分離した後の残存物Dを脱水する操作、
「精製工程」において、前記「脱水工程」で脱水した後の残存物Eを精留し、留分としてトランス-1,3,3,3-テトラフルオロプロペンを得、残渣Fとしてシス-1,3,3,3-テトラフルオロプロペンを得る操作、
「変換工程」において、前記「精製工程」の残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換する操作
を行う。
Specifically, in the “reaction step”, the method of the present invention reacts a raw material compound, that is, 1-chloro-3,3,3-trifluoropropene as a reactant with hydrogen fluoride, Operation to produce the desired product, trans-1,3,3,3-tetrafluoropropene,
In the “distillation step”, the target compound trans-1,3,3,3-tetrafluoropropene after the “reaction step” and the by-product cis-1,3,3,3-tetrafluoropropene, Distilling reaction product A containing 1,1,1,3,3-pentafluoropropane and hydrogen chloride and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride, An operation of recovering unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride as bottoms and supplying them to the “reaction step”;
In the “hydrogen fluoride separation step”, an operation of separating and recovering hydrogen fluoride from the fraction B which is a distillate in the “distillation step” and supplying it to the “reaction step”;
In the “hydrogen chloride separation step”, an operation of separating and removing hydrogen chloride by bringing water or an aqueous sodium hydroxide solution into contact with the residue C after recovering hydrogen fluoride in the “hydrogen fluoride separation step”;
In the “dehydration step”, an operation of dehydrating the residue D after separating hydrogen chloride in the “hydrogen chloride separation step”;
In the “purification step”, the residue E after dehydration in the “dehydration step” is rectified to obtain trans-1,3,3,3-tetrafluoropropene as a fraction and cis-1, Operation to obtain 3,3,3-tetrafluoropropene,
In the “conversion step”, an operation of converting cis-1,3,3,3-tetrafluoropropene in the residue F of the “purification step” into 1,1,1,3,3-pentafluoropropane is performed.
 また、本発明の並産方法において、「反応工程」における未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を「蒸留工程」において回収し、「反応工程」の反応系内に戻し原料化合物として再使用する。フッ化水素を概ね回収する「蒸留工程」を設けたことは、後工程である「フッ化水素分離工程」および「塩化水素分離工程」の負荷を軽減する。その後に「脱水乾燥工程」を設けたことは、精留によりトランス-1,3,3,3-テトラフルオロプロペンを精製する「精製工程」の負荷を軽減する。また、「フッ化水素分離工程」で反応生成物より分離回収したフッ化水素も「反応工程」に戻すことが可能であり、「精製工程」の残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換する。 Further, in the parallel production method of the present invention, unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in the “reaction step” are recovered in the “distillation step”, and the “reaction step” The product is returned to the reaction system and reused as a raw material compound. The provision of the “distillation step” for generally recovering hydrogen fluoride reduces the burden of the subsequent steps “hydrogen fluoride separation step” and “hydrogen chloride separation step”. The subsequent provision of the “dehydration drying step” reduces the load of the “purification step” for purifying trans-1,3,3,3-tetrafluoropropene by rectification. Further, hydrogen fluoride separated and recovered from the reaction product in the “hydrogen fluoride separation step” can be returned to the “reaction step”, and cis-1,3,3,3 in the residue F of the “purification step” can be returned. 3-tetrafluoropropene is converted to 1,1,1,3,3-pentafluoropropane.
 本発明の並産方法は、出発原料である1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素と反応させて、効率よく高い生産性でトランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとを並産することができ、工業的プラントにおけるこれら代替フロンの大量生産に有用である。 In the parallel production method of the present invention, 1-chloro-3,3,3-trifluoropropene, which is a starting material, is reacted with hydrogen fluoride to efficiently produce trans-1,3,3,3- Tetrafluoropropene and 1,1,1,3,3-pentafluoropropane can be produced in parallel, which is useful for mass production of these alternative chlorofluorocarbons in industrial plants.
 本発明の並産方法において、用いるフッ素化触媒を選択することで効率はさらに向上する。 In the average production method of the present invention, the efficiency is further improved by selecting a fluorination catalyst to be used.
 本明細書中、反応生成物Aとは、目的化合物であるトランス-1,3,3,3-テトラフルオロプロペン、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素に加え、副生物である塩化水素および(シス-1,3,3,3-テトラフルオロプロペンを含む)有機物等を含めた「反応工程」後の混合物をいう。缶出液とは、蒸留後に、蒸留塔の底部から得られる揮発性の低い成分に富んだ液をいう。特に断らない限り、本明細書中、1-クロロ-3,3,3-トリフルオロプロペンとは、シス体もしくはトランス体またはそれらの混合物を指し、1,3,3,3-テトラフルオロプロペンとは、シス体もしくはトランス体またはそれらの混合物を指す。精留とは、蒸留により目的化合物を精製する操作を言う。具体的には、「精製工程」のトランス-1,3,3,3-テトラフルオロプロペンとシス-1,3,3,3-テトラフルオロプロペン等の混合物である残存物Eから、蒸留により高純度のトランス-1,3,3,3-テトラフルオロプロペンを得る操作を指す。 In this specification, reaction product A means trans-1,3,3,3-tetrafluoropropene as the target compound, 1-chloro-3,3,3-trifluoropropene as an unreacted product, and fluorine. This refers to the mixture after the “reaction step” including hydrogen chloride and by-products such as hydrogen chloride and organic substances (including cis-1,3,3,3-tetrafluoropropene). The bottom liquid means a liquid rich in low volatility components obtained from the bottom of the distillation column after distillation. Unless otherwise specified, in this specification, 1-chloro-3,3,3-trifluoropropene refers to a cis isomer or a trans isomer or a mixture thereof, and 1,3,3,3-tetrafluoropropene and Refers to cis or trans isomers or mixtures thereof. Rectification refers to an operation of purifying a target compound by distillation. Specifically, the residue E, which is a mixture of trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene in the “purification step”, is purified by distillation. This refers to an operation for obtaining pure trans-1,3,3,3-tetrafluoropropene.
2.工程
 本発明の並産方法が含む各工程について説明する。
2. Processes Each process included in the method of parallel production of the present invention will be described.
2.1.反応工程(第1工程)
 「反応工程」は、原料化合物としての1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素を反応器内で気相において、フッ素化触媒を用い、温度200℃以上、450℃以下、圧力0.05MPa以上、0.3MPa以下で反応させて、目的生成物であるトランス-1,3,3,3-テトラフルオロプロペンと、副生物であるシス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンおよび塩化水素と、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む反応生成物Aを得る工程である。
2.1. Reaction step (first step)
The “reaction process” is a process in which 1-chloro-3,3,3-trifluoropropene as a raw material compound and hydrogen fluoride are used in a gas phase in a reactor, using a fluorination catalyst, at a temperature of 200 ° C. or higher and 450 ° C. or lower. The reaction is performed at a pressure of 0.05 MPa or more and 0.3 MPa or less, and the target product, trans-1,3,3,3-tetrafluoropropene, and the by-product, cis-1,3,3,3- Reaction product A containing tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and hydrogen chloride and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride It is the process of obtaining.
 本工程においては、出発原料である1-クロロ-3,3,3-トリフルオロプロペンを、フッ素化触媒を用い、フッ化水素によりフッ素化しトランス-1,3,3,3-テトラフルオロプロペンを得る。 In this step, 1-chloro-3,3,3-trifluoropropene, which is the starting material, is fluorinated with hydrogen fluoride using a fluorination catalyst, and trans-1,3,3,3-tetrafluoropropene is converted to obtain.
 本工程において、トランス-1,3,3,3-テトラフルオロプロペンの選択率および収率を高め、反応を速く進行させるためには、原料である1-クロロ-3,3,3-トリフルオロプロペンに対して過剰量のフッ化水素を反応系内、具体的には、反応器内に供給することが好ましい。また、フッ化水素を過剰に供給することは、フッ素化触媒の保護につながり、触媒活性を有する寿命を長引かせる効果もある。尚、本工程における原料化合物である1-クロロ-3,3,3-トリフルオロプロペンは、シス体、トランス体が存在するが、シス体またはトランス体のみ、あるいはシス体およびトランス体の混合物であっても、本工程における反応は進行する。 In this step, in order to increase the selectivity and yield of trans-1,3,3,3-tetrafluoropropene and advance the reaction quickly, the raw material 1-chloro-3,3,3-trifluoro It is preferable to supply an excess amount of hydrogen fluoride relative to propene into the reaction system, specifically into the reactor. Further, excessive supply of hydrogen fluoride leads to protection of the fluorination catalyst, and has an effect of prolonging the lifetime having catalytic activity. The starting compound in this step, 1-chloro-3,3,3-trifluoropropene, exists in cis form or trans form, but only in cis form or trans form, or a mixture of cis form and trans form. Even if it exists, the reaction in this step proceeds.
 本工程においては、入手容易な1-クロロ-3,3,3-トリフルオロプロペンを出発原料に用い、フッ素化触媒存在下でフッ化水素と反応させ、反応に適した反応温度および反応圧力を調整する。フッ素化触媒の触媒活性を持続させつつ反応させて反応を速やかに進行させるには、1-クロロ-3,3,3-トリフルオロプロペンに対して、過剰のフッ化水素を反応器内に供給することが好ましい。 In this step, readily available 1-chloro-3,3,3-trifluoropropene is used as a starting material and reacted with hydrogen fluoride in the presence of a fluorination catalyst, and the reaction temperature and pressure suitable for the reaction are adjusted. adjust. To allow the reaction to proceed rapidly while maintaining the catalytic activity of the fluorination catalyst, supply excess hydrogen fluoride to the reactor relative to 1-chloro-3,3,3-trifluoropropene. It is preferable to do.
[フッ素化触媒]
 本工程で使用するフッ素化触媒には、クロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、鉄、銅、亜鉛、銀、モリブデン、ジルコニウム、ニオブ、タンタル、イリジウム、錫、ハフニウム、バナジウム、マグネシウム、リチウム、ナトリウム、カリウム、カルシウムおよびアンチモンからなる群より選ばれた少なくとも1種の金属の硝酸塩、塩化物、酸化物、硫酸塩、フッ化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物を例示することができる。
[Fluorination catalyst]
The fluorination catalyst used in this step is chromium, titanium, aluminum, manganese, nickel, cobalt, iron, copper, zinc, silver, molybdenum, zirconium, niobium, tantalum, iridium, tin, hafnium, vanadium, magnesium, lithium Nitrate, chloride, oxide, sulfate, fluoride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride of at least one metal selected from the group consisting of sodium, potassium, calcium and antimony Things can be exemplified.
 前記金属酸化物は、その酸素原子の一部または全部をフッ化水素またはフッ素含有有機化合物を用いてフッ素原子に置換したものが好ましく、例えば、アルミナ、クロミア、ジルコニア、チタニアまたはマグネシアをフッ素化して酸素原子の一部または全部をフッ素原子で置換したフッ素化酸化物から選択することができる。特に、アルミナのフッ素化酸化物を用いることが好ましく、具体的には活性アルミナをフッ化水素等でフッ素化して調製されるフッ素化アルミナを例示することができる。以下、本発明において、金属フッ素化酸化物を、単に「金属酸化物」と呼びことがある。 The metal oxide is preferably one in which part or all of the oxygen atoms are replaced with fluorine atoms using hydrogen fluoride or a fluorine-containing organic compound. For example, alumina, chromia, zirconia, titania or magnesia is fluorinated. It can be selected from fluorinated oxides in which some or all of the oxygen atoms are substituted with fluorine atoms. In particular, it is preferable to use a fluorinated oxide of alumina, and specific examples include fluorinated alumina prepared by fluorinating activated alumina with hydrogen fluoride or the like. Hereinafter, in the present invention, the metal fluorinated oxide may be simply referred to as “metal oxide”.
 前記金属酸化物は、市販品を使用することができ、公知の方法で調製することが可能である。アンモニア等を用いて、金属塩の水溶液のpHを調整して水酸化物を沈殿させ、沈殿を乾燥または焼成することで、金属酸化物を調製することができる。得られた金属酸化物は、粉砕または成形して用いてもよい。例えば、アルミナは、通常、アルミニウム塩の水溶液にアンモニア等を加えて生じさせた沈殿を、成形または脱水して得られる。また、本工程で使用するフッ素化触媒として、触媒担体用あるいは乾燥用として市販されているγ-アルミナが好ましく使用できる。また、チタニア、ジルコニア等も同様の方法で調製することができ、市販品を使用できる。また、これらの金属酸化物は、共沈法等で調製した複合酸化物としてもよく、本工程におけるフッ素化触媒として好適に使用できる。 The metal oxide can be a commercially available product, and can be prepared by a known method. A metal oxide can be prepared by adjusting the pH of an aqueous solution of a metal salt using ammonia or the like to precipitate a hydroxide, and drying or baking the precipitate. The obtained metal oxide may be used after being pulverized or molded. For example, alumina is usually obtained by shaping or dewatering a precipitate produced by adding ammonia or the like to an aqueous solution of an aluminum salt. As the fluorination catalyst used in this step, γ-alumina commercially available for catalyst support or for drying can be preferably used. Moreover, titania, zirconia, etc. can be prepared by the same method, and a commercial item can be used. These metal oxides may be a composite oxide prepared by a coprecipitation method or the like, and can be suitably used as a fluorination catalyst in this step.
 また、フッ素化触媒として、金属担持触媒を使用することもできる。金属担持触媒は、担持される金属の種類、量および担持の方法等は、触媒の技術分野における当業者の通常の知識に基づいて選択することが可能である。 Also, a metal-supported catalyst can be used as the fluorination catalyst. For the metal-supported catalyst, the type, amount, and method of the supported metal can be selected based on ordinary knowledge of those skilled in the art of catalyst.
[金属担持触媒]
 金属担持触媒としては、クロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、ジルコニウム、鉄、銅、銀、モリブテンおよびアンチモンからなる群より選ばれた少なくとも1種の金属の硝酸塩、塩化物、酸化物、硫酸塩、フッ化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物を、フッ素化アルミナあるいは活性炭等の担体に担持した金属担持触媒を採用することができる。
[Metal-supported catalyst]
As the metal-supported catalyst, nitrate, chloride, oxide of at least one metal selected from the group consisting of chromium, titanium, aluminum, manganese, nickel, cobalt, zirconium, iron, copper, silver, molybdenum, and antimony, A metal-supported catalyst in which sulfate, fluoride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride is supported on a support such as fluorinated alumina or activated carbon can be employed.
 金属担持触媒の調製方法は、担体に、上記の1種以上の金属化合物を溶媒に溶解した溶液を含浸する、または散布し付着させる方法を用いることができる。 As a method for preparing the metal-supported catalyst, a method in which a carrier is impregnated with a solution in which one or more kinds of metal compounds are dissolved in a solvent, or is sprayed and adhered can be used.
 溶媒に可溶な金属化合物としては、上記金属の硝酸塩、塩化物、酸化物または硫酸塩等が挙げられる。具体的には、硝酸クロム、三塩化クロム、三酸化クロム、重クロム酸カリウム、塩化鉄、硫酸鉄、硝酸鉄、三塩化チタン、四塩化チタン、硝酸マンガン、塩化マンガン、二酸化マンガン、硝酸ニッケル、塩化ニッケル、硝酸コバルト、塩化コバルト、硝酸銅、硫酸銅、塩化銅、硝酸銀、亜クロム酸銅、二クロム酸銅、二クロム酸銀、または二クロム酸ナトリウム等を例示することができる。 Examples of the metal compound soluble in the solvent include nitrates, chlorides, oxides and sulfates of the above metals. Specifically, chromium nitrate, chromium trichloride, chromium trioxide, potassium dichromate, iron chloride, iron sulfate, iron nitrate, titanium trichloride, titanium tetrachloride, manganese nitrate, manganese chloride, manganese dioxide, nickel nitrate, Examples thereof include nickel chloride, cobalt nitrate, cobalt chloride, copper nitrate, copper sulfate, copper chloride, silver nitrate, copper chromite, copper dichromate, silver dichromate, and sodium dichromate.
 前記溶媒としては、金属化合物を溶解し、金属化合物を変質させない溶媒であれば特に限定されず、例えば、水、メタノール、エタノールまたはイソプロパノール等のアルコール類、メチルエチルケトンまたはアセトン等のケトン類、酢酸エチルまたは酢酸ブチル等のカルボン酸エステル類、塩化メチレン、クロロホルムまたはトリクロロエチレン等のハロゲン系化合物、あるいはベンゼンまたはトルエン等の芳香族類を例示することができる。水に溶解しにくい場合には、塩酸、硝酸硫酸または王水等の酸、または水酸化ナトリウム、水酸化カリウムもしくはアンモニア水等のアルカリ等の溶解助剤を添加することにより溶解を促進することができる。 The solvent is not particularly limited as long as it dissolves the metal compound and does not alter the metal compound. For example, water, alcohols such as methanol, ethanol or isopropanol, ketones such as methyl ethyl ketone or acetone, ethyl acetate or Examples thereof include carboxylic acid esters such as butyl acetate, halogen compounds such as methylene chloride, chloroform and trichloroethylene, and aromatics such as benzene and toluene. If it is difficult to dissolve in water, the dissolution may be accelerated by adding an acid such as hydrochloric acid, sulfuric acid nitrate or aqua regia, or an alkali such as sodium hydroxide, potassium hydroxide or ammonia water. it can.
 本工程における反応率、トランス-1,3,3,3-テトラフルオロプロペンの選択率および収率を上げるには、触媒として、フッ素化アルミナにクロム、鉄または銅の硝酸塩、塩化物、酸化物または硫酸塩等を担持した金属担持触媒を用いることができる。 In order to increase the reaction rate, selectivity of trans-1,3,3,3-tetrafluoropropene and yield in this step, as a catalyst, chromium, iron or copper nitrate, chloride, oxide as fluorinated alumina Alternatively, a metal-supported catalyst supporting sulfate or the like can be used.
 また、本工程における反応率、トランス-1,3,3,3-テトラフルオロプロペンの選択率および収率を上げるには、クロム、鉄または銅から選ばれる、硝酸塩、塩化物、酸化物または硫酸塩を活性炭に担持させた金属担持触媒を用いることができ、クロムの酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物から選ばれる金属化合物を活性炭に担持させた金属担持触媒を用いることができる。 Further, in order to increase the reaction rate in this step, the selectivity and yield of trans-1,3,3,3-tetrafluoropropene, nitrate, chloride, oxide or sulfuric acid selected from chromium, iron or copper A metal-supported catalyst in which a salt is supported on activated carbon can be used, and a metal compound selected from chromium oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride is activated carbon. A metal-supported catalyst supported on the catalyst can be used.
 触媒であるフッ素化触媒を担持する活性炭には、木材、のこくず、木炭、椰子殻炭、パーム核炭または素灰等を原料とする植物質系、泥炭、亜炭、褐炭、瀝青炭または無煙炭等を原料とする石炭系、石油残渣、硫酸スラッジまたはオイルカーボン等を原料とする石油系、あるいは合成樹脂を原料とするもの等がある。このような活性炭は、各種市販されており、市販品の中から選んで本反応工程に使用することができる。例えば、瀝青炭から製造された活性炭(商品名、カルゴン粒状活性炭CAL、カルゴンカーボンジャパン株式会社製等)、椰子殻炭(日本エンバイロケミカルズ株式会社製)等を例示することができる。しかしながら、本発明の並産方法に使用する活性炭は、これらの種類および製造業者に限られるものではない。また、通常、活性炭は粒状で使用するが、その形状および粒径等は特に限定されない。活性炭は、そのまま用いてもよく、または予めフッ化水素、塩化水素、塩素化フッ素化炭化水素等のハロゲンで修飾された活性炭を用いてもよい。 The activated carbon supporting the fluorination catalyst, which is a catalyst, includes vegetation based on wood, sawdust, charcoal, coconut shell charcoal, palm kernel charcoal, or raw ash, peat, lignite, lignite, bituminous coal, anthracite, etc. As a raw material, coal-based, petroleum residue, sulfuric acid sludge or oil carbon as a raw material, or synthetic resin as a raw material. Such activated carbon is commercially available and can be selected from commercially available products and used in this reaction step. For example, activated carbon (trade name, Calgon granular activated carbon CAL, manufactured by Calgon Carbon Japan Co., Ltd., etc.), coconut shell charcoal (manufactured by Nippon Enviro Chemicals Co., Ltd.) and the like manufactured from bituminous coal can be exemplified. However, the activated carbon used in the parallel production method of the present invention is not limited to these types and manufacturers. Moreover, although activated carbon is normally used in a granular form, the shape, particle size, and the like are not particularly limited. The activated carbon may be used as it is, or activated carbon previously modified with a halogen such as hydrogen fluoride, hydrogen chloride, chlorinated fluorinated hydrocarbon, or the like.
 担体への金属担持量は、担体を基準として、0.1質量%以上、80質量%以下、好ましくは1質量%以上、50質量%以下である。0.1質量%より少ないと触媒効果が薄く、80質量%より多く担持させることは難しく、必要性もない。 The amount of metal supported on the carrier is 0.1% by mass or more and 80% by mass or less, preferably 1% by mass or more and 50% by mass or less based on the carrier. When the amount is less than 0.1% by mass, the catalytic effect is thin, and it is difficult to support more than 80% by mass and there is no necessity.
 尚、何れの方法で調製したフッ素化触媒であっても、反応で使用する前に所定の反応温度以上の温度で、予めフッ化水素、フッ素化炭化水素またはフッ素化塩素化炭化水素等のフッ素化剤と共に加熱し、反応中の触媒の組成変化を防止することが有効である。 In addition, even if it is a fluorination catalyst prepared by any method, fluorine such as hydrogen fluoride, fluorinated hydrocarbon or fluorinated chlorinated hydrocarbon is previously used at a temperature equal to or higher than a predetermined reaction temperature before use in the reaction. It is effective to heat together with the agent to prevent changes in the composition of the catalyst during the reaction.
[フッ素化触媒の添加量]
 フッ素化触媒の添加量は、反応器へ供給される原料化合物の量に対し、等倍以下とするのが好ましい。等倍を超えて使用する必要はない。
[Amount of addition of fluorination catalyst]
The amount of the fluorination catalyst added is preferably equal to or less than the amount of the raw material compound supplied to the reactor. It is not necessary to use more than 1x.
[フッ素化触媒の保護]
 反応中の触媒表面に炭素質の固体が付着するコーキングを防ぐためには、反応に支障がなければ反応容器内に、酸素、空気、塩素等のガスを同伴ガスとして加えてもよい。好ましくは、窒素、アルゴン、ヘリウム等の反応性に乏しいイナートガスである。前記ガスの供給量は、反応物である有機物および塩化水素の総容量に対し1倍未満とする。イナートガスの反応器への供給量を1倍以上とすると、後工程の「精製工程」(第6工程)で、トランス-1,3,3,3-テトラフルオロプロペンが回収し難くなる虞がある。
[Protection of fluorination catalyst]
In order to prevent coking in which carbonaceous solid adheres to the surface of the catalyst during the reaction, a gas such as oxygen, air or chlorine may be added as a companion gas in the reaction vessel as long as the reaction is not hindered. An inert gas having poor reactivity, such as nitrogen, argon, or helium, is preferable. The supply amount of the gas is less than 1 times the total volume of organic substances and hydrogen chloride as reactants. If the amount of inert gas supplied to the reactor is 1 or more times, it is difficult to recover trans-1,3,3,3-tetrafluoropropene in the subsequent “purification step” (sixth step). .
[フッ素化触媒の賦活]
 使用したフッ素化触媒の賦活(活性化または再生)については、フッ素化触媒の再生に用いられる通常の方法を採用することができる。例えば、本工程で採用した反応温度以上の温度下で、活性が低下した触媒を、乾燥空気、塩素またはフッ化水素等に、発熱を制御しながら適宜接触させることにより賦活させることができる。
[Activation of fluorination catalyst]
For the activation (activation or regeneration) of the fluorination catalyst used, a usual method used for regeneration of the fluorination catalyst can be employed. For example, the catalyst having reduced activity at a temperature equal to or higher than the reaction temperature employed in this step can be activated by appropriately contacting it with dry air, chlorine, hydrogen fluoride or the like while controlling heat generation.
[反応温度]
 本工程における反応温度は、200℃以上、450℃以下である、好ましくは350℃以上、400℃以下である。反応温度が200℃より低いと、反応速度が遅く、反応が進行しがたく実用的ではない。反応温度が450℃を超えると、反応は速く進行するが分解生成物、高分子量の有機物等が生成し、トランス-1,3,3,3-テトラフルオロプロペンの選択率が低下するので好ましくない。反応温度が高いほどに、反応器内の平衡状態が目的生成物側に寄るため反応は速く進行する。しかしながら、フッ素化触媒の触媒活性の持続性(触媒寿命)が短くなり、触媒劣化が早く、反応器の材質が限られ、特にプラントにおいては加熱操作が難しいため、実用的には450℃より高い温度、好ましくは400℃より高い温度は避けることが好ましい。
[Reaction temperature]
The reaction temperature in this step is 200 ° C. or higher and 450 ° C. or lower, preferably 350 ° C. or higher and 400 ° C. or lower. When the reaction temperature is lower than 200 ° C., the reaction rate is slow and the reaction is difficult to proceed, which is not practical. When the reaction temperature exceeds 450 ° C., the reaction proceeds rapidly, but decomposition products, high molecular weight organic substances, etc. are generated, and the selectivity for trans-1,3,3,3-tetrafluoropropene is lowered, which is not preferable. . The higher the reaction temperature, the faster the reaction proceeds because the equilibrium state in the reactor is closer to the target product. However, the sustainability of catalyst activity (catalyst life) of the fluorination catalyst is shortened, catalyst deterioration is fast, the material of the reactor is limited, and the heating operation is difficult especially in plants, so practically higher than 450 ° C. It is preferred to avoid temperatures, preferably above 400 ° C.
[反応圧力]
 反応圧力は、常圧(大気圧、約0.1MPa、以下同じ)より減圧または同じが好ましいが、大気圧より加圧であっても反応を阻害しない限り限定されることなく、反応系内に存在するフッ化水素および有機物が、本工程の反応系内で液化しなければよく、0.05MPa以上、0.3MPa以下である。
[Reaction pressure]
The reaction pressure is preferably reduced or equal to normal pressure (atmospheric pressure, about 0.1 MPa, the same shall apply hereinafter), but is not limited as long as it does not inhibit the reaction even if the pressure is higher than atmospheric pressure. The existing hydrogen fluoride and organic matter do not have to be liquefied in the reaction system of this step, and the pressure is 0.05 MPa or more and 0.3 MPa or less.
[反応時間]
 気相反応における接触時間(反応時間)は、通常0.1秒以上、300秒以下、好ましくは3秒以上、60秒以下である。接触時間が0.1秒より短いと、反応が進行しない虞があり、好ましくは3秒以上である。300秒より長いと、プラントにおける実生産においては工程作業時間(タクトタイム)がかかりすぎ効率的ではない。好ましくは、60秒以下である。
[Reaction time]
The contact time (reaction time) in the gas phase reaction is usually from 0.1 seconds to 300 seconds, preferably from 3 seconds to 60 seconds. If the contact time is shorter than 0.1 seconds, the reaction may not proceed, and preferably 3 seconds or more. If it is longer than 300 seconds, it takes too much process work time (tact time) in the actual production in the plant, which is not efficient. Preferably, it is 60 seconds or less.
[1-クロロ-3,3,3-トリフルオロプロペンに対するフッ化水素のモル比]
 本工程において、1-クロロ-3,3,3-トリフルオロプロペンに対するフッ化水素のモル比は、基本的にはフッ化水素が理論値以上あればよいが、トランス-1,3,3,3-テトラフルオロプロペンの高い選択率および収率を得るには、モル比で表わして、フッ化水素:1-クロロ-3,3,3-トリフルオロプロペン=8:1~25:1の範囲であることが好ましい。この比が25:1を超える程にフッ化水素を過剰に供給すると、本工程の反応生成物Aに含まれる未反応のフッ化水素と、目的生成物である1,3,3,3-テトラフルオロプロペン等の有機物の蒸留による分離に支障をきたす。一方、この比が8:1よりも小さくなる程にフッ化水素を過少に供給すると、反応率が低下し、トランス-1,3,3,3-テトラフルオロプロペンの選択率が低下するので好ましくない。
[Molar ratio of hydrogen fluoride to 1-chloro-3,3,3-trifluoropropene]
In this step, the molar ratio of hydrogen fluoride to 1-chloro-3,3,3-trifluoropropene should basically be such that hydrogen fluoride is greater than the theoretical value, but trans-1,3,3, To obtain a high selectivity and yield of 3-tetrafluoropropene, expressed in molar ratio, hydrogen fluoride: 1-chloro-3,3,3-trifluoropropene = range 8: 1 to 25: 1 It is preferable that If hydrogen fluoride is excessively supplied so that this ratio exceeds 25: 1, unreacted hydrogen fluoride contained in the reaction product A of this step and the target product 1,3,3,3- This hinders separation of organic substances such as tetrafluoropropene by distillation. On the other hand, if hydrogen fluoride is supplied too little so that this ratio is smaller than 8: 1, the reaction rate is lowered and the selectivity for trans-1,3,3,3-tetrafluoropropene is preferably lowered. Absent.
[反応器の材質]
 反応器の材質は、耐熱性があり、フッ化水素および塩化水素に対する耐食性があればよく、ステンレス鋼、ニッケル合金または白金等を用いることが好ましい。例えば、ニッケルを主成分としモリブデン、ニッケルもしくはクロムを加えたハステロイ(商品名、)、ニッケルを主成分とし銅を加えたモネル(商品名)、またはニッケルを主成分とし鉄、クロム、ニオブもしくはモリブデンを加えたインコネル(商品名)を例示することができる。また、反応器壁をこれらの金属で被覆(ライニング)した反応器を用いてもよい。
[Reactor material]
The material of the reactor should be heat resistant and have corrosion resistance against hydrogen fluoride and hydrogen chloride, and it is preferable to use stainless steel, nickel alloy, platinum or the like. For example, Hastelloy (trade name) with nickel as the main component and molybdenum, nickel or chromium added, Monel (product name) with nickel as the main component and copper, or iron, chromium, niobium or molybdenum with nickel as the main component Inconel (trade name) to which is added can be exemplified. Moreover, you may use the reactor which coat | covered the reactor wall with these metals (lining).
2.2 蒸留工程(第2工程)
 「蒸留工程」は、前記「反応工程」(第1工程)で得られた反応生成物Aを、蒸留塔等を用いて蒸留し、未反応の1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を有する缶出液を前工程「反応工程」(第1工程)の気相反応器中に戻す工程である。
2.2 Distillation process (second process)
In the “distillation step”, the reaction product A obtained in the “reaction step” (first step) is distilled using a distillation column or the like, and unreacted 1-chloro-3,3,3-trifluoro This is a step of returning the bottoms having propene and hydrogen fluoride to the gas phase reactor in the “reaction step” (first step) of the previous step.
 本工程における留分Bは、反応生成物Aより本工程で回収しきれなかったフッ化水素、目的生成物であるトランス-1,3,3,3-テトラフルオロプロペン、副生物である塩化物および他の有機物を含む。留分Bは、次工程の「フッ化水素分離工程」(第3工程)に送られる。留分Bは、前工程「反応工程」(第1工程)の反応条件の違いにより組成が異なるが、1,3,3,3-テトラフルオロプロペン、1モルに対して、概ね1-クロロ-3,3,3-トリフルオロプロペンが0.5モル以上、1モル以下、1,1,1,3,3-ペンタフルオロプロパンが0.1モル以上、0.2モル以下、塩化水素が1モル以上、1.5モル以下であり、フッ化水素は0.5モル以上、10モル以下となる。 The fraction B in this step is hydrogen fluoride that could not be recovered from the reaction product A in this step, the target product, trans-1,3,3,3-tetrafluoropropene, and the by-product chloride. And other organics. The fraction B is sent to the “hydrogen fluoride separation step” (third step) of the next step. The fraction B has a different composition depending on the reaction conditions of the preceding step “reaction step” (first step), but is generally 1-chloro-based on 1 mol of 1,3,3,3-tetrafluoropropene. 3,3,3-trifluoropropene is 0.5 mol or more and 1 mol or less, 1,1,1,3,3-pentafluoropropane is 0.1 mol or more and 0.2 mol or less, and hydrogen chloride is 1 The moles are 1.5 moles or more and 1.5 moles or less, and hydrogen fluoride is 0.5 moles or more and 10 moles or less.
[蒸留条件]
 本工程の蒸留条件は、操作圧力としては0.1MPa以上、1.0MPa以下が好ましく、操作圧力が常圧の場合では、温度条件は塔底温度5℃以上、25℃以下、塔頂温度-20℃以上、5℃以下が好ましい。加圧条件下で蒸留を行う場合は、分離塔の冷却伝熱面積を小さくすることができる。その際は、分離塔入口に圧縮機を備え、出口に調圧弁を備えることが好ましい。
[Distillation conditions]
The distillation conditions in this step are preferably 0.1 MPa or more and 1.0 MPa or less as the operating pressure. When the operating pressure is normal pressure, the temperature conditions are the tower bottom temperature of 5 ° C. or more and 25 ° C. or less, the tower top temperature− 20 degreeC or more and 5 degrees C or less are preferable. When distillation is performed under pressurized conditions, the cooling heat transfer area of the separation tower can be reduced. In that case, it is preferable to provide a compressor at the inlet of the separation tower and a pressure regulating valve at the outlet.
[充填材]
 分離塔の充填材としては、フッ化水素、塩化水素に耐食性があるステンレス、ニッケル、商品名ハステロイまたは商品名モネル等の前記ニッケル合金、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂またはテトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体樹脂(以下、PFAと略することがある)等のフッ素樹脂製の規則充填物、あるいはレッシングリング、ポールリングまたはスルザーパッキン等の不規則充填物を用いることができる。
[Filler]
The packing material for the separation tower includes hydrogen fluoride, stainless steel that is corrosion resistant to hydrogen chloride, nickel, the nickel alloy such as the trade name Hastelloy or the trade name Monel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, and vinylidene fluoride. Regular packing made of fluororesin such as resin or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (hereinafter sometimes abbreviated as PFA), or irregular packing such as lessing ring, pole ring or sulzer packing Can be used.
[分離塔の段数]
 分離塔の段数は操作圧力により異なるが、常圧の場合15段以上あればよい。
[Number of separation towers]
The number of stages of the separation column varies depending on the operating pressure, but it may be 15 or more at normal pressure.
2.3 フッ化水素分離工程(第3工程)
 「フッ化水素分離工程」は、前記「蒸留工程」(第2工程)で缶出液を回収した後の留分Bよりフッ化水素を回収して反応工程の気相反応器内に供給する工程である。
2.3 Hydrogen fluoride separation process (third process)
In the “hydrogen fluoride separation step”, hydrogen fluoride is recovered from the fraction B after the bottoms are recovered in the “distillation step” (second step) and supplied to the gas phase reactor in the reaction step. It is a process.
 留分Bは、前記「蒸留工程」(第2工程)における分離塔から留出したフッ化水素、塩化水素、トランス-1,3,3,3-テトラフルオロプロペンおよび他の有機物を含む。 The fraction B contains hydrogen fluoride, hydrogen chloride, trans-1,3,3,3-tetrafluoropropene and other organic substances distilled from the separation column in the “distillation step” (second step).
 本工程において、例えば、留分Bと硫酸との接触操作により、フッ化水素を硫酸に吸収させる。即ち、フッ化水素と硫酸を主とする液相部と、1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパン等の有機物と塩化水素を主とする気相部とに分割し、液相部から主としてフッ化水素を分離することによりフッ化水素を分離回収することができる。気相部を残存物Cとして次工程である前記「塩化水素分離工程」(第4工程)に供給する。 In this step, for example, hydrogen fluoride is absorbed into sulfuric acid by a contact operation between fraction B and sulfuric acid. That is, a liquid phase part mainly composed of hydrogen fluoride and sulfuric acid, 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3, Hydrogen fluoride can be separated and recovered by dividing it into an organic substance such as 3-pentafluoropropane and a gas phase portion mainly composed of hydrogen chloride, and mainly separating hydrogen fluoride from the liquid phase portion. The gas phase portion is supplied as the residue C to the subsequent “hydrogen chloride separation step” (fourth step).
 フッ化水素を回収する際の、硫酸のフッ化水素に対する質量比は、硫酸:フッ化水素=2:1~20:1である。好ましくは、硫酸:フッ化水素=2:1~15:1であり、より好ましくは、硫酸:フッ化水素=2:1~10:1である。系内に塩化水素が混在する系において、硫酸の割合が2より少ないと、フッ化水素の溶解が充分でなく、気相部にフッ化水素がともなわれ、塩化水素の除去が困難になる。 The mass ratio of sulfuric acid to hydrogen fluoride when recovering hydrogen fluoride is sulfuric acid: hydrogen fluoride = 2: 1 to 20: 1. Sulfuric acid: hydrogen fluoride = 2: 1 to 15: 1 is preferable, and sulfuric acid: hydrogen fluoride = 2: 1 to 10: 1 is more preferable. In a system in which hydrogen chloride is mixed in the system, if the ratio of sulfuric acid is less than 2, the dissolution of hydrogen fluoride is not sufficient, and hydrogen fluoride is accompanied in the gas phase, making it difficult to remove hydrogen chloride. .
 本工程で得られたフッ化水素と硫酸を主とする液相部は、加熱することでフッ化水素を気化させ、次いでそれを凝縮させて、フッ化水素を分離回収する。回収されたフッ化水素は、再び前記「反応工程」(第1工程)へ供給することができる。 The liquid phase part mainly composed of hydrogen fluoride and sulfuric acid obtained in this step evaporates hydrogen fluoride by heating, and then condenses it to separate and recover hydrogen fluoride. The recovered hydrogen fluoride can be supplied again to the “reaction step” (first step).
[接触条件]
 本工程では、硫酸へのフッ化水素の吸収が可能であれば、如何なる装置形態および操作方法を採用してもよいが、留分Bは気体状態で硫酸と接触させることが好ましい。よって、硫酸の液温度は常圧において、10℃以上、50℃以下が好ましく、より好ましくは10℃以上、30℃以下である。硫酸とフッ化水素は反応によりフルオロ硫酸(フルオロスルホン酸)を形成するが、硫酸の温度が10℃以下では操作しがたく、50℃以上では、反応生成物中の1,3,3,3-テトラフルオロプロペン等が高分子化するので好ましくない。硫酸を槽に張り込み留分Bをガス状態で吹き込む方法、充填物を充填した硫酸洗浄塔へ留分Bを吹き込み、留分Bのガスと硫酸を向流接触させる方法等が採用されるが、硫酸へのフッ化水素の吸収が可能であれば、これらに方法に限らず、別の方法を用いてもよい。
[Contact conditions]
In this step, any apparatus configuration and operation method may be adopted as long as hydrogen fluoride can be absorbed into sulfuric acid, but it is preferable that fraction B is brought into contact with sulfuric acid in a gaseous state. Therefore, the liquid temperature of sulfuric acid is preferably 10 ° C. or higher and 50 ° C. or lower, more preferably 10 ° C. or higher and 30 ° C. or lower at normal pressure. Sulfuric acid and hydrogen fluoride form fluorosulfuric acid (fluorosulfonic acid) by reaction, but it is difficult to operate when the temperature of sulfuric acid is 10 ° C. or lower, and 1,3,3,3 in the reaction product at 50 ° C. or higher. -Tetrafluoropropene and the like are not preferable because they are polymerized. A method in which sulfuric acid is put into a tank and a fraction B is blown in a gas state, a method in which a fraction B is blown into a sulfuric acid washing tower filled with a packing, and a gas in the fraction B and sulfuric acid are brought into countercurrent contact is adopted. As long as absorption of hydrogen fluoride into sulfuric acid is possible, not only these methods but also other methods may be used.
2.4 塩化水素分離工程(第4工程)
 本工程は、前工程の「フッ化水素分離工程」(第3工程)で、留分Bよりフッ化水素を回収した後の残存物Cに水または水酸化ナトリウム水溶液を接触させて、塩化水素を分離除去する工程である。
2.4 Hydrogen chloride separation process (4th process)
In this step, hydrogen chloride is brought into contact with the residue C after recovering hydrogen fluoride from the fraction B in the “hydrogen fluoride separation step” (third step) in the previous step, and then contacted with water or an aqueous sodium hydroxide solution. This is a step of separating and removing.
 具体的には、残存物Cを、水槽中に微小な気泡状態となるように吹き込む方法、充填物を充填した水洗浄塔へ吹き込み向流接触させる方法等により水洗し、塩化水素を水に吸収させ、液相部、即ち、塩酸とし、1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパン等の有機物より、塩化水素を分離除去する。 Specifically, the residue C is washed with water by a method in which the residual C is blown into the water tank so as to be in a fine bubble state, a method in which the residue C is blown into the water washing tower filled with the packing and brought into countercurrent contact, and the hydrogen chloride is absorbed in water. Liquid phase, ie hydrochloric acid, 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane Hydrogen chloride is separated and removed from organic substances such as
 本工程では、残存物Cより、塩化水素を分離除去することが可能であれば、如何なる装置形態、操作方法をとってもよい。また、塩化水素と分離した有機物は、気体あるいは液体の状態で回収することができる。低沸点のトランス-1,3,3,3-テトラフルオロプロペン(沸点-19℃)の組成が高い混合物では、気体状態で水に接触吸収させ、有機物と塩化水素の前記混合物より、塩化水素を分離回収することが好ましい。 In this step, any apparatus configuration and operation method may be adopted as long as hydrogen chloride can be separated and removed from the residue C. Moreover, the organic substance separated from hydrogen chloride can be recovered in a gas or liquid state. In a mixture having a high composition of low-boiling trans-1,3,3,3-tetrafluoropropene (boiling point −19 ° C.), it is absorbed in contact with water in a gaseous state, and hydrogen chloride is removed from the mixture of organic matter and hydrogen chloride. It is preferable to separate and recover.
 本工程で塩化水素を水に吸収させることで回収した塩酸は、不純物のフッ化水素、有機物を、ゼオライト等の吸着剤に吸着させる等の公知の手段を用いて精製することができる。 The hydrochloric acid recovered by absorbing hydrogen chloride in water in this step can be purified using known means such as adsorbing impurities such as hydrogen fluoride and organic substances on an adsorbent such as zeolite.
 本工程では、水洗の代わりに、前工程の「フッ化水素分離工程」(第3工程)後の残存物Cを水酸化ナトリウム水溶液と接触させることで塩化水素を分離回収してもよい。 In this step, instead of washing with water, hydrogen chloride may be separated and recovered by contacting the residue C after the “hydrogen fluoride separation step” (third step) in the previous step with an aqueous sodium hydroxide solution.
[分離条件]
 水洗にて塩化水素を除去する際に使用する水の塩化水素に対する質量比は、常温(約20℃、以下同じ)、常圧で、水:塩化水素=3:1~20:1であることが好ましい。より好ましくは、水:塩化水素=5:1~10:1である。塩化水素の水に対する溶解性は、常温、常圧で、通常状態で25質量%、飽和状態で37質量%であり、水が3未満では、過剰の塩化水素が蒸気となり揮発しやすくなるため好ましくない。
[Separation conditions]
The mass ratio of water to hydrogen chloride used to remove hydrogen chloride by washing with water should be water: hydrogen chloride = 3: 1 to 20: 1 at normal temperature (about 20 ° C, the same shall apply hereinafter) and normal pressure. Is preferred. More preferably, water: hydrogen chloride = 5: 1 to 10: 1. The solubility of hydrogen chloride in water is preferably 25% by mass in normal conditions and 37% by mass in saturated conditions at normal temperature and normal pressure. If the water is less than 3, excess hydrogen chloride is liable to vaporize and easily volatilize. Absent.
2.5 脱水工程(第5工程)
 「脱水工程」は、前工程の「塩化水素分離工程」(第4工程)で塩化水素を分離除去した後の残存物Dを脱水する工程である。
2.5 Dehydration process (5th process)
The “dehydration step” is a step of dehydrating the residue D after separating and removing hydrogen chloride in the “hydrogen chloride separation step” (fourth step) of the previous step.
 残存物Dは、前工程の「塩化水素分離工程」(第4工程)における水洗または水酸化ナトリウム水溶液との接触による水、ガス状のミスト等の同伴水を伴う。本工程では、このような残存物Dの同伴水を、熱交換器を用い、熱交換器が有する冷却面に氷結凝固させて脱水する方法、またはゼオライト等の吸着剤に吸着して脱水する方法を用いる。 Residue D is accompanied by entrained water such as water, gaseous mist, etc. by water washing in the preceding step “hydrogen chloride separation step” (fourth step) or contact with an aqueous sodium hydroxide solution. In this step, a method of dehydrating the entrained water of the residue D by using a heat exchanger to freeze and solidify on the cooling surface of the heat exchanger, or a method of desorbing by adsorbing to an adsorbent such as zeolite Is used.
[熱交換器を用いる方法]
 熱交換器を用いて脱水する方法は、残存物D中の同伴水を氷結分離するだけでなく、同時に1,3,3,3-テトラフルオロプロペンの凝縮を行うので、従来の吸着剤としてのゼオライトを用いる脱水に比べ、脱水設備を小型・簡略化でき、脱水操作を効率的且つ容易にする。
[Method using heat exchanger]
The method of dehydrating using a heat exchanger not only freezes and separates the entrained water in the residue D, but also condenses 1,3,3,3-tetrafluoropropene at the same time. Compared to dehydration using zeolite, the dehydration equipment can be reduced in size and simplified, making the dehydration operation efficient and easy.
 熱交換器を用い同伴水を氷結凝固させて分離脱水する脱水方法を用いれば、前工程の「塩化水素分離工程」(第4工程)後の飽和水分量以上の多量に水を含む残存物D、即ち、1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン等の有機物が混合した混合ガスを、これらの有機物の凝縮温度以下に設定した熱交換器に導入し、冷却した伝熱面である冷却面上に凝縮させることで、同伴水を殆ど除くことができる。 If a dehydration method in which the entrained water is frozen and solidified using a heat exchanger is separated and dehydrated, a residue D containing a large amount of water exceeding the saturated water amount after the “hydrogen chloride separation step” (fourth step) in the previous step. That is, a mixed gas in which organic substances such as 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane are mixed Is introduced into a heat exchanger set to a temperature equal to or lower than the condensation temperature of these organic substances, and condensed on a cooling surface, which is a cooled heat transfer surface, to substantially remove entrained water.
 尚、融解した氷結水は、水または水蒸気の状態で、脱水装置としての熱交換器下部より排出される。この有機物を含む融解水は、前工程の「塩化水素分離工程」(第4工程)で使用することができる。 In addition, the melted frozen water is discharged from the lower part of the heat exchanger as a dehydrator in the state of water or steam. The molten water containing this organic substance can be used in the “hydrogen chloride separation step” (fourth step) in the previous step.
[熱交換器]
 本工程において、残存物D(混合ガス)中の同伴水を氷結除去するために使用する熱交換器は、隔壁型の熱交換器が好ましく、隔壁型の熱交換器の隔壁を介して、冷却媒体と残存物Dを熱交換させる。隔壁には冷却媒体と接触する側の伝熱面と、前記混合ガスの同伴水を氷結凝固させるための冷却面を備える。このような隔壁型の熱交換器としては、二重管式、円筒多重管式、円筒コイル式またはジャケット付円筒式熱交換器を例示することができる。また、円筒多重管式または円筒コイル式に外部ジャケットを付けて伝熱面積を拡大した熱交換器を用いることもできる。
[Heat exchanger]
In this step, the heat exchanger used for freezing the entrained water in the residue D (mixed gas) is preferably a partition-type heat exchanger, and is cooled through the partition walls of the partition-type heat exchanger. Heat exchange is performed between the medium and the residue D. The partition wall is provided with a heat transfer surface in contact with the cooling medium and a cooling surface for freezing and solidifying the mixed water of the mixed gas. Examples of such a partition wall type heat exchanger include a double tube type, a cylindrical multiple tube type, a cylindrical coil type, or a cylindrical heat exchanger with a jacket. A heat exchanger in which the heat transfer area is expanded by attaching an external jacket to a cylindrical multi-tube type or a cylindrical coil type can also be used.
 熱交換器の材質には、熱伝導率が大きい金属が好ましく、鉄、鉄鋼、銅、鉛、亜鉛、真鍮、ステンレス、チタン、アルミニウム、マグネシウム、または商品名モネル、商品名インコネルもしくはハステロイ等のニッケル合金が挙げられ、腐食性の物質が含まれる場合には、前記混合ガスを冷却し凝縮する側の伝熱面に樹脂ライニング、セラミックス、グラスライニング等を施した熱交換器を用いることができる。 The material of the heat exchanger is preferably a metal having high thermal conductivity, such as iron, steel, copper, lead, zinc, brass, stainless steel, titanium, aluminum, magnesium, or nickel such as trade name Monel, trade name Inconel or Hastelloy. When an alloy is used and a corrosive substance is included, a heat exchanger in which a resin lining, ceramics, glass lining, or the like is applied to the heat transfer surface on the side where the mixed gas is cooled and condensed can be used.
 熱交換器の伝熱面積は、用いる冷却媒体の温度に依存するが、最低限、ガス状の残存物Dを凝縮し、その同伴水を氷結するために必要な熱量を交換するに十分な面積があることが好ましい。また、同伴水が熱交換器の冷却面に氷結凝固すると伝熱係数が下がるため、少なくとも計算上必要な伝熱面積の1.5倍以上の面積をとることが好ましい。 The heat transfer area of the heat exchanger depends on the temperature of the cooling medium used, but at a minimum, the area sufficient to condense the gaseous residue D and exchange the amount of heat necessary to freeze the accompanying water. It is preferable that there is. In addition, since the heat transfer coefficient decreases when entrained water freezes and solidifies on the cooling surface of the heat exchanger, it is preferable to take at least 1.5 times the heat transfer area necessary for calculation.
 また、熱交換器の伝熱面にはフィンを取り付けたものを使用することもできる。特に、残存物Dが接触する冷却面側にフィンを取り付けて伝熱面積を拡大することは、伝熱効率からも有効である。 Also, a heat exchanger with fins attached to the heat transfer surface can be used. In particular, it is also effective from the viewpoint of heat transfer efficiency to attach fins to the cooling surface side with which the residue D is in contact to expand the heat transfer area.
 残存物Dの熱交換器への導入方法は、十分な伝熱面積を有する熱交換器へ前記残存物Dを通過させる流通式方法が挙げられる。混合ガスである残存物Dの導入方向は、熱交換器を縦型にした場合、上部からガスを導入することが好ましく、その場合、同伴水の氷結凝固は熱交換器の冷却面の上部から発生し閉塞してくるので、導入口を下部に複数個設け、残存物Dの導入を下部に移動することが望ましい。また、熱交換器を横型としても利用することができ、この場合も上部から残存物Dを導入することが望ましく、導入口を並列して複数個設けることもできる。 Examples of the method for introducing the residue D into the heat exchanger include a flow-through method in which the residue D is passed through a heat exchanger having a sufficient heat transfer area. The direction of introduction of the residue D, which is a mixed gas, is preferably such that the gas is introduced from the top when the heat exchanger is a vertical type, in which case freezing and solidification of the entrained water starts from the top of the cooling surface of the heat exchanger. Since it occurs and closes, it is desirable to provide a plurality of inlets at the bottom and move the introduction of the residue D to the bottom. Also, the heat exchanger can be used as a horizontal type, and in this case as well, it is desirable to introduce the residue D from the top, and a plurality of inlets can be provided in parallel.
 熱交換に使用する冷却媒体は特に限定されないが、冷却温度によって、水性媒体、無機ブライン、有機ブラインを選択して使用することができる。 The cooling medium used for heat exchange is not particularly limited, but an aqueous medium, inorganic brine, or organic brine can be selected and used depending on the cooling temperature.
 工業的な製造方法の中間精製工程として、熱交換器によるガスの凝縮を行う場合、液化したガスを、再度蒸発させて蒸留塔へ供することが考えられる。例えば、液化したトランス-1,3,3,3-テトラフルオロプロペンの蒸発潜熱が利用できる。液化したガスの蒸発を熱交換式脱水装置の冷却媒体流通側で行うと外部熱源による加熱および除熱の負荷を低減することができるため、省エネルギーの観点からも有効であり、本発明の方法に好適に採用される。 As an intermediate purification step in an industrial production method, when gas is condensed by a heat exchanger, it is conceivable that the liquefied gas is evaporated again and supplied to the distillation tower. For example, the latent heat of vaporization of liquefied trans-1,3,3,3-tetrafluoropropene can be used. If evaporation of the liquefied gas is performed on the cooling medium flow side of the heat exchange dehydrator, the heating and heat removal load by the external heat source can be reduced, which is also effective from the viewpoint of energy saving. Preferably employed.
[熱交換器による脱水条件]
 熱交換器における冷却面の設定温度、即ち、冷却温度は、特に限定されないが、操作圧力下において、気体状のトランス-1,3,3,3-テトラフルオロプロペン(沸点-19℃)が凝縮する温度以下に下げて行う。冷却温度としては、常圧においては-50℃以上、-20℃以下であり、-40℃以上、-25℃以下が好ましい。同伴水を氷結凝固させて除去し、凝縮し液化した混合ガスは、熱交換器の下部に設けた受槽に回収する。受槽の温度はトランス-1,3,3,3-テトラフルオロプロペンが凝縮する温度以下であることが好ましい。また、受槽内部にU字型またはコイル型の冷却管を設置し、液化した1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンを含む残存物D中の同伴水を氷結凝固させ除去することも可能である。
[Dehydration conditions by heat exchanger]
The set temperature of the cooling surface in the heat exchanger, that is, the cooling temperature is not particularly limited, but gaseous trans-1,3,3,3-tetrafluoropropene (boiling point−19 ° C.) is condensed under the operating pressure. Lower the temperature below the The cooling temperature is −50 ° C. or higher and −20 ° C. or lower, and preferably −40 ° C. or higher and −25 ° C. or lower at normal pressure. The entrained water is removed by freezing and solidification, and the condensed and liquefied mixed gas is collected in a receiving tank provided at the lower part of the heat exchanger. The temperature of the receiving tank is preferably not higher than the temperature at which trans-1,3,3,3-tetrafluoropropene is condensed. In addition, a U-shaped or coil-type cooling pipe is installed inside the receiving tank, and liquefied 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,3 It is also possible to remove the entrained water in the residue D containing 1,3,3-pentafluoropropane by freezing and solidifying.
 本工程における熱交換器を用いた脱水は加圧条件でもよく、熱交換器中の混合ガスの圧力は通常0.1MPa以上、1MPa以下で行うことが好ましい。加圧条件での冷却温度は処理圧力に応じて適宜選択することができる。 The dehydration using the heat exchanger in this step may be performed under pressurized conditions, and the pressure of the mixed gas in the heat exchanger is usually preferably 0.1 MPa or more and 1 MPa or less. The cooling temperature under the pressurizing condition can be appropriately selected according to the processing pressure.
 熱交換器における流通式方法では、脱水処理する残存物Dの、熱交換器内の線速は30m/hr以上、1200m/hr以下程度であり、60m/hr以上、600m/hr以下が好ましい。線速が30m/hrより小さいと脱水処理時間が長くなるため好ましくない。1200m/hrより大きい場合は、残存物D中の同伴水の氷結凝固および有機物の凝縮が不十分となるため好ましくない。 In the flow method in the heat exchanger, the linear velocity of the residue D to be dehydrated in the heat exchanger is about 30 m / hr or more and 1200 m / hr or less, and preferably 60 m / hr or more and 600 m / hr or less. If the linear velocity is less than 30 m / hr, the dehydration time becomes longer, which is not preferable. When it is higher than 1200 m / hr, the freezing and coagulation of the entrained water in the residue D and the condensation of the organic matter become insufficient, which is not preferable.
 また、熱交換器における流通式方法では、脱水装置である熱交換器の冷却面への氷結水の付着量は、水を含む混合ガスの流通時間が長くなるにつれて多くなる。このため、一定時間経過後に氷結水の融解除去が必要となる。氷結水の融解除去方法は、5℃以上、200℃以下の乾燥したイナートガスを脱水装置である熱交換器上部より流通させる方法を用いることができる。イナートガスの温度は高温であってもよいが、熱交換器による脱水装置の材料の熱応力負荷および省エネルギーの観点から、20℃以上、100℃以下が好ましい。氷結水を融解するための加熱の方法として、冷却媒体が流通する部位に対向して、加熱媒体を流通させることも可能である。このとき、冷却媒体と加熱媒体は同一の物質または別の物質であることは限定されない。また、前記イナートガスの種類は特に限定されないが、経済性の観点から乾燥した空気または乾燥した窒素を使用することが望ましい。 Also, in the flow method in the heat exchanger, the amount of frozen water adhering to the cooling surface of the heat exchanger, which is a dehydrator, increases as the flow time of the mixed gas containing water increases. For this reason, it is necessary to melt and remove frozen water after a certain period of time. As a method for melting and removing frozen water, a method can be used in which a dried inert gas having a temperature of 5 ° C. or higher and 200 ° C. or lower is circulated from the top of the heat exchanger as a dehydrator. The temperature of the inert gas may be high, but is preferably 20 ° C. or higher and 100 ° C. or lower from the viewpoint of thermal stress load and energy saving of the material of the dehydrator using the heat exchanger. As a heating method for melting the frozen water, it is possible to circulate the heating medium so as to face the portion where the cooling medium circulates. At this time, the cooling medium and the heating medium are not limited to be the same substance or different substances. The type of inert gas is not particularly limited, but it is desirable to use dry air or dry nitrogen from the viewpoint of economy.
[吸着剤による方法]
 吸着剤を用いて脱水する方法、例えば、特定のゼオライトと接触させる脱水方法は、残存物D中の1,3,3,3-テトラフルオロプロペンが気体状態または液体状態の何れであっても実施可能であり優れた方法である。しかしながら、ゼオライトを充填した脱水塔を用い、本脱水方法を実施する場合、前工程の「塩化水素分離工程」(第4工程)後の残存物Dは、水蒸気を含み、含水量が1000ppm以上となる気体状態の混合ガスであり、液体と比較して体積が概ね230倍になることから、工業生産に見合う量に対応させるために、単位時間当たりに脱水塔を通過する同伴水を含む混合ガスの質量流量を多くする必要がある。しかしながら、質量流量を多くすると、それに伴い脱水塔の容量を大きくする必要があり、脱水剤であるゼオライトを多量使用しなければならず、さらにゼオライトの再生も必要である。
[Method using adsorbent]
A method of dehydrating using an adsorbent, for example, a method of dehydrating by contacting with a specific zeolite is carried out regardless of whether 1,3,3,3-tetrafluoropropene in the residue D is in a gaseous state or a liquid state. It is possible and excellent. However, when this dehydration method is carried out using a dehydration tower packed with zeolite, the residue D after the “hydrogen chloride separation step” (fourth step) in the previous step contains water vapor and has a water content of 1000 ppm or more. In order to correspond to the amount commensurate with industrial production, the mixed gas containing entrained water that passes through the dehydration tower per unit time because the volume is approximately 230 times that of the liquid. It is necessary to increase the mass flow rate. However, when the mass flow rate is increased, the capacity of the dehydration tower needs to be increased accordingly, a large amount of zeolite as a dehydrating agent must be used, and regeneration of the zeolite is also necessary.
[脱水工程の前後]
 また、前工程の「塩化水素分離工程」(第4工程)と本工程の間に、ミストセパレータ等を用いる水分分離工程を設けることが好ましい。前述のように、前工程の「塩化水素分離工程」(第4工程)において、その前の工程の「フッ化水素分離工程」(第3工程)後の残存物Cを、前工程の「塩化水素分離工程」(第4工程)において水洗または水酸化ナトリウム水溶液と接触させ、塩化水素を分離除去したことにより、前工程の「塩化水素分離工程」(第4工程)後の残存物Dは同伴水を含み、気体状の場合は同伴水のミストを伴う。通常、水洗浄後の残存物Dの同伴水の含有率は、3000ppm以上、10%以下である。しかしながら、前工程の「塩化水素分離工程」(第4工程)と本工程の間に、ミストセパレータ等を用いる水分分離工程を設ければ、水の含量を1300ppm程度に低減できる。ミストセパレータで脱水した後で、さらに本工程において、反応生成物中の水分を、熱交換器を用いて氷結凝固させて脱水を行えば、前記残存物Eの水の含有率を100ppm未満に減少させることができる。
[Before and after the dehydration process]
Further, it is preferable to provide a water separation step using a mist separator or the like between the previous step “hydrogen chloride separation step” (fourth step) and this step. As described above, in the “hydrogen chloride separation step” (fourth step) in the previous step, the residue C after the “hydrogen fluoride separation step” (third step) in the previous step is replaced with the “chlorination” in the previous step. In the "hydrogen separation step" (fourth step), the residue D after the "hydrogen chloride separation step" (fourth step) of the previous step is entrained by washing with water or contacting with an aqueous sodium hydroxide solution to separate and remove hydrogen chloride. Contains water, if accompanied by gas mist with accompanying water. Usually, the content of entrained water in the residue D after washing with water is 3000 ppm or more and 10% or less. However, if a water separation step using a mist separator or the like is provided between the previous step “hydrogen chloride separation step” (fourth step) and this step, the water content can be reduced to about 1300 ppm. After dehydrating with a mist separator, if the moisture in the reaction product is frozen and solidified using a heat exchanger in this step, the water content of the residue E is reduced to less than 100 ppm. Can be made.
 さらに、前記残存物Dを凝縮させた液において、さらなる水分低下が望まれる場合には、本工程の後段で、残存物Dを、塩化カルシウム、酸化カルシウム、硫酸マグネシウムまたは五酸化二リン等の脱水剤、あるいはシリカゲルまたはゼオライト等の吸着剤と接触させて乾燥することができる。 Further, in the liquid obtained by condensing the residue D, when further moisture reduction is desired, the residue D is dehydrated such as calcium chloride, calcium oxide, magnesium sulfate, or diphosphorus pentoxide at a later stage of this step. It can be dried by contacting with an adsorbent or an adsorbent such as silica gel or zeolite.
2.6 精製工程(第6工程)
 「精製工程」は、前工程「脱水工程」(第5工程)で脱水した後の残存物Eを精留し、トランス-1,3,3,3-テトラフルオロプロペンを含む留分を得る工程である。その際の、シス-1,3,3,3-テトラフルオロプロペンを含む残渣Fが得られる。
2.6 Purification step (sixth step)
The “purification step” is a step of rectifying the residue E after dehydration in the previous step “dehydration step” (fifth step) to obtain a fraction containing trans-1,3,3,3-tetrafluoropropene. It is. In this case, a residue F containing cis-1,3,3,3-tetrafluoropropene is obtained.
[精留]
 精留は、バッチ式で行うことも連続式で行うこともでき、常圧または加圧いずれの圧力下においても可能であるが、精留における凝縮温度を上げることができる圧力条件を選定することが好ましい。
[Rectification]
Rectification can be carried out either batchwise or continuously, and can be carried out at normal pressure or under pressure, but pressure conditions that can increase the condensation temperature in rectification should be selected. Is preferred.
 精留は多段の蒸留塔1本を用いバッチ式で行うことも可能であるが、第1蒸留塔および第2蒸留塔からなる2連の蒸留塔を用いて連続で行う方が効率的である。 Rectification can be carried out batchwise using a single multi-stage distillation column, but it is more efficient to carry out rectification continuously using a double distillation column comprising a first distillation column and a second distillation column. .
 第1蒸留塔においては、残存物Eに微量に含まれる副生物である低沸点の3,3,3-トリフルオロプロピン、2,3,3,3-テトラフルオロプロペン等を蒸留塔の頂部から留出物として回収し、再び、前記「反応工程」(第1工程)の反応系に戻す、即ち、気相反応器に供給して再利用するとともに1,1,1,3,3-ペンタフルオロプロパンを得る。第2蒸留塔においては、第1蒸留塔の缶出液を蒸留し、目的物のトランス-1,3,3,3-テトラフルオロプロペンを蒸留塔の頂部から留出物として回収することができる。一方、低沸点分の缶出液として、シス-1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペンを回収し、最初の「反応工程」(第1工程)に供給して再利用することができる。回収したシス-1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンからなる混合物は、第2蒸留塔を用いれば、抽出蒸留等の操作により、夫々分離精製することができる。 In the first distillation column, low-boiling point 3,3,3-trifluoropropyne, 2,3,3,3-tetrafluoropropene and the like, which are by-products contained in a trace amount in the residue E, are removed from the top of the distillation column. It is recovered as a distillate and returned again to the reaction system of the “reaction step” (first step), that is, supplied to the gas phase reactor for reuse and 1,1,1,3,3-penta Fluoropropane is obtained. In the second distillation column, the bottoms of the first distillation column can be distilled, and the target trans-1,3,3,3-tetrafluoropropene can be recovered as a distillate from the top of the distillation column. . On the other hand, cis-1,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene are recovered as a bottom boiling liquid, and the first “reaction step” (No. 1 step) and can be reused. The recovered mixture of cis-1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane If a distillation column is used, it can be separated and purified by operations such as extractive distillation.
[蒸留塔]
 本工程で使用する蒸留塔は、壁面が蒸留物に対して不活性であればよく、壁面がガラス製またはステンレス製でもよく、鋼等の基材に四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂またはガラスを内部にライニングしている蒸留塔でもよい。蒸留塔は、棚段式あるいは、ラシヒリング、レッシングリング、ディクソンリング、ポールリング、インターロックサドルまたはスルザーパッキン等の充填物を充填した充填塔であってもよい。
[Distillation tower]
The distillation column used in this step may be any wall as long as the wall surface is inert to the distillate, the wall surface may be made of glass or stainless steel, tetrafluoroethylene resin, chlorotrifluoroethylene resin on a substrate such as steel Also, a distillation column having a vinylidene fluoride resin, PFA resin or glass lined inside may be used. The distillation column may be a plate type or a packed column packed with packing such as Raschig ring, Lessing ring, Dickson ring, pole ring, interlock saddle or sulzer packing.
 精留は、常圧でも行うことができるが、加圧条件下で行うと、蒸留塔内の圧力損失を小さくすることができ、凝縮器の負荷を低減することができるため好ましい。この精留操作に要求される蒸留塔の段数に制限はないが、5段~100段が好ましく、さらに好ましくは10段~50段である。段数が5段未満であると、トランス-1,3,3,3-テトラフルオロプロペンの純度が十分に高まらず、段数が100段以上であると蒸留塔自体の経済的負担が大きくなること、加えて精留操作の所要時間が長くなることから好ましくない。 The rectification can be performed at normal pressure, but it is preferable to perform the rectification under a pressurized condition because the pressure loss in the distillation column can be reduced and the load on the condenser can be reduced. The number of distillation columns required for the rectification operation is not limited, but is preferably 5 to 100, more preferably 10 to 50. If the number of stages is less than 5, the purity of trans-1,3,3,3-tetrafluoropropene does not increase sufficiently, and if the number of stages is 100 or more, the economic burden of the distillation column itself increases. In addition, the time required for the rectification operation is increased, which is not preferable.
 1-クロロ-3,3,3-トリフルオロプロペンの沸点は、トランス体が21℃であり、シス体が39℃である。1,3,3,3-テトラフルオロプロペンの沸点は、トランス体が-19℃であり、シス体が9℃である。1,1,1,3,3-ペンタフルオロプロパンの沸点は15℃であり、これらの混合物より、トランス-1,3,3,3-テトラフルオロプロペンは沸点の差により、精留により分離精製することが可能である。 The boiling point of 1-chloro-3,3,3-trifluoropropene is 21 ° C. for the trans isomer and 39 ° C. for the cis isomer. The boiling point of 1,3,3,3-tetrafluoropropene is −19 ° C. for the trans isomer and 9 ° C. for the cis isomer. The boiling point of 1,1,1,3,3-pentafluoropropane is 15 ° C. From these mixtures, trans-1,3,3,3-tetrafluoropropene is separated and purified by rectification due to the difference in boiling point. Is possible.
2.7.変換工程(第7工程)
 変換工程は、前工程「精製工程」(第6工程)後の残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換し、1,1,1,3,3-ペンタフルオロプロパンを得る工程である。
2.7. Conversion process (7th process)
In the conversion step, cis-1,3,3,3-tetrafluoropropene in residue F after the previous step “purification step” (sixth step) is converted to 1,1,1,3,3-pentafluoropropane. In this step, 1,1,1,3,3-pentafluoropropane is obtained.
 残渣F中に、1-クロロ-3,3,3-トリフルオロプロペンまたはシス-1,3,3,3-テトラフルオロプロペンが含まれる場合、これらの化合物を1,1,1,3,3-ペンタフルオロプロパンに変換する方法は特許文献1~3に開示されており、これら公知の方法を用いることが可能である。 When 1-chloro-3,3,3-trifluoropropene or cis-1,3,3,3-tetrafluoropropene is contained in the residue F, these compounds are converted into 1,1,1,3,3 Methods for converting to pentafluoropropane are disclosed in Patent Documents 1 to 3, and these known methods can be used.
 例えば、シス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換するには、五塩化アンチモン、三塩化アンチモン、五臭化アンチモン、三臭化アンチモン、四塩化スズ、四塩化チタン、五塩化モリブテン、五塩化タンタルまたは五塩化ニオブ等から選ばれる少なくとも1種の金属化合物を用いることができる。活性炭、フッ素化アルミナまたはフッ素化ジルコニア等の担体に担持した固体触媒である金属担持触媒を用いることが好ましい。シス-1,3,3,3-テトラフルオロプロペンは、気相中で過剰のフッ化水素と反応させるか、液相中でフッ化水素と反応させることが好ましく、特に五塩化アンチモンを活性炭に担持した金属担持触媒を用いて、連続的にフッ化水素と反応させることが好ましい。 For example, to convert cis-1,3,3,3-tetrafluoropropene to 1,1,1,3,3-pentafluoropropane, antimony pentachloride, antimony trichloride, antimony pentabromide, triodor At least one metal compound selected from antimony fluoride, tin tetrachloride, titanium tetrachloride, molybdenum pentachloride, tantalum pentachloride, niobium pentachloride, and the like can be used. It is preferable to use a metal-supported catalyst that is a solid catalyst supported on a support such as activated carbon, fluorinated alumina, or fluorinated zirconia. Cis-1,3,3,3-tetrafluoropropene is preferably reacted with excess hydrogen fluoride in the gas phase or with hydrogen fluoride in the liquid phase, and in particular, antimony pentachloride is activated carbon. It is preferable to continuously react with hydrogen fluoride using a supported metal supported catalyst.
3.本発明の並産方法の特徴および作用
 本発明の並産方法における前記「反応工程」において、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素を反応させトランス-1,3,3,3-テトラフルオロプロペンを生成する反応には化学平衡があり、反応生成物側に平衡を傾けるには、反応における1-クロロ-3,3,3-トリフルオロプロペンに対するフッ化水素の比を増加させる必要がある。1-クロロ-3,3,3-トリフルオロプロペンに対して過剰のフッ化水素を加え、且つ、特定のフッ素化触媒を選択し、当該フッ素化触媒に対する反応条件(圧力および温度)を調整することにより、フッ素化触媒の触媒活性を持続させた効果として、反応は良好に進行する。
3. Features and Actions of the Parallel Production Method of the Present Invention In the “reaction step” in the parallel production method of the present invention, 1-chloro-3,3,3-trifluoropropene is reacted with hydrogen fluoride to produce trans-1,3, The reaction that produces 3,3-tetrafluoropropene has a chemical equilibrium, and in order to tilt the equilibrium toward the reaction product, the ratio of hydrogen fluoride to 1-chloro-3,3,3-trifluoropropene in the reaction Need to be increased. Add excess hydrogen fluoride to 1-chloro-3,3,3-trifluoropropene, select a specific fluorination catalyst, and adjust the reaction conditions (pressure and temperature) for the fluorination catalyst As a result, the reaction proceeds well as an effect of maintaining the catalytic activity of the fluorination catalyst.
 本発明の並産方法においては、前記「蒸留工程」において蒸留操作を行い、前記「反応工程」後の反応生成物Aを蒸留し、未反応の1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素の大部分を蒸留により、蒸留塔の底部から得られる揮発性の低い成分に富んだ液である缶出液として回収することを特徴とする。 In the average production method of the present invention, a distillation operation is performed in the “distillation step”, and the reaction product A after the “reaction step” is distilled to give unreacted 1-chloro-3,3,3-trifluoro. It is characterized in that most of propene and hydrogen fluoride are recovered by distillation as a bottoms which is a liquid rich in low volatility components obtained from the bottom of the distillation column.
 前記「反応工程」において、過剰量のフッ化水素を「反応工程」の反応系中に供給すると、反応生成物Aに多量の未反応のフッ化水素が残ることになり、フッ化水素が残った状態で反応生成物Aを蒸留しトランス-1,3,3,3-テトラフルオロプロペンを得る精留を行うと、精留の負荷が増大する。しかしながら、本発明の並産方法においては、「反応工程」の後工程の「蒸留工程」でフッ化水素の大部分を分離回収した。加えて、「蒸留工程」後の留分Bを、次工程の「フッ化水素分離工程」に送り、残りのフッ化水素を分離回収し残存物Cとし、次工程の「塩化水素分離工程」で副生した塩化水素を分離除去し残存物Dとし、さらに次工程の「脱水工程」で脱水した後の残存物を「精製工程」で精留する。前記「塩化水素分離工程」において、塩化水素を分離除去するために反応生成物(残存物C)を水洗または水酸化ナトリウム水溶液と接触させる際、反応生成物に同伴水が混入するが、その後の「脱水工程」において同伴水を脱水するため、「精製工程」におけるトランス-1,3,3,3-テトラフルオロプロペンの精留が容易となる。 In the “reaction step”, if an excessive amount of hydrogen fluoride is supplied into the reaction system of the “reaction step”, a large amount of unreacted hydrogen fluoride remains in the reaction product A, and hydrogen fluoride remains. If the rectification to obtain trans-1,3,3,3-tetrafluoropropene by distilling the reaction product A in such a state, the rectification load increases. However, in the parallel production method of the present invention, most of the hydrogen fluoride was separated and recovered in the “distillation step” that follows the “reaction step”. In addition, the fraction B after the “distillation step” is sent to the “hydrogen fluoride separation step” in the next step, and the remaining hydrogen fluoride is separated and recovered to form a residue C. The “hydrogen chloride separation step” in the next step The hydrogen chloride produced as a by-product is separated and removed to form a residue D, and the residue after dehydration in the next “dehydration step” is rectified in the “purification step”. In the “hydrogen chloride separation step”, when the reaction product (residue C) is washed with water or brought into contact with an aqueous sodium hydroxide solution to separate and remove hydrogen chloride, entrained water is mixed into the reaction product. Since the entrained water is dehydrated in the “dehydration step”, rectification of trans-1,3,3,3-tetrafluoropropene in the “purification step” is facilitated.
 このように、大部分のフッ化水素を前記「蒸留工程」で分離除去したことで、後段の「フッ化水素分離工程」でフッ化水素を分離回収することが容易となり、「塩化水素分離工程」、「脱水工程」および「精製工程」における残存したフッ化水素による工程の負荷が軽減し、「精製工程」において、トランス-1,3,3,3-テトラフルオロプロペンにフッ化水素や塩化水素が混入することなく、高純度のトランス-1,3,3,3-テトラフルオロプロペンを簡便に得ることが容易となる。また、「蒸留工程」も設け蒸留を行うことは、後工程の「フッ化水素分離工程」における留分Bを硫酸と接触させるフッ化水素の分離において、使用する硫酸の量を減らすことができる。 As described above, most of the hydrogen fluoride is separated and removed in the “distillation step”, so that it is easy to separate and recover hydrogen fluoride in the subsequent “hydrogen fluoride separation step”. ”,“ Dehydration step ”and“ purification step ”, the load of the remaining hydrogen fluoride is reduced, and in the“ purification step ”, trans-1,3,3,3-tetrafluoropropene is converted to hydrogen fluoride or chloride. It becomes easy to easily obtain high-purity trans-1,3,3,3-tetrafluoropropene without mixing with hydrogen. In addition, performing distillation by providing a “distillation step” can reduce the amount of sulfuric acid used in the separation of hydrogen fluoride in which the fraction B is brought into contact with sulfuric acid in the subsequent “hydrogen fluoride separation step”. .
 本発明の並産方法は前記「変換工程」で、「精製工程」後の残渣F中のシス-1,3,3,3-テトラフルオロプロペンをトランス-1,3,3,3-テトラフルオロプロペンに変換することで1,1,1,3,3-ペンタフルオロプロパンを得、トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産を可能とする。 The common production method of the present invention is the above-mentioned “conversion step”, wherein cis-1,3,3,3-tetrafluoropropene in residue F after “purification step” is trans-1,3,3,3-tetrafluoro. By converting to propene, 1,1,1,3,3-pentafluoropropane is obtained, and trans-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and Can be produced in parallel.
 以上の作用効果により、本発明の並産方法を用い、シス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンの工業プラントにおける実生産を行った際、工程の省力化、前記「蒸留工程」以降の操作の安定化および安全化、およびフッ酸に対する装置の保護がはかれる。また、後工程の「精製工程」での反応生成物の精留による分離精製において、より簡便に高純度のトランス-1,3,3,3-テトラフルオロプロペンを得られる。反応生成物Aより、未反応の1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素の大部分を缶出液として分離回収し、回収した1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を再び最初の「反応工程」戻すことは、工業生産において効率がよい、リサイクルよく環境に優しいプロセスである。 Due to the above effects, actual production of cis-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane in an industrial plant is performed using the method of parallel production of the present invention. In this case, labor saving of the process, stabilization and safety of the operation after the “distillation process”, and protection of the apparatus against hydrofluoric acid can be achieved. Further, in the separation and purification by rectification of the reaction product in the subsequent “purification step”, high-purity trans-1,3,3,3-tetrafluoropropene can be obtained more easily. From the reaction product A, most of unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride were separated and recovered as bottoms, and the recovered 1-chloro-3,3,3- Returning trifluoropropene and hydrogen fluoride back to the initial “reaction step” is a recyclable and environmentally friendly process that is efficient in industrial production.
 本発明の並産方法は、最初の「精製工程」において残存物Eを精留してトランス-1,3,3,3-テトラフルオロプロペンを得た後の、1-クロロ-3,3,3-トリフルオロプロペン、シス-1,3,3,3-テトラフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンが含まれる残渣Fを最初の「反応工程」に供給する工程をさらに加えてもよい。本工程により、さらなる未反応物の再供給および副生成物の有効利用が図れる。 The parallel production method of the present invention comprises 1-chloro-3,3, after rectifying the residue E to obtain trans-1,3,3,3-tetrafluoropropene in the first “purification step”. Supplying a residue F containing 3-trifluoropropene, cis-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane to the first “reaction step”; Furthermore, you may add. By this step, further re-feeding of unreacted substances and effective utilization of by-products can be achieved.
4.本発明の方法のフロー図による説明
 本発明の1,1,1,3,3-ペンタフルオロプロパンとトランス-1,3,3,3-テトラフルオロプロペンの並産方法の一例を、図1のフロー図を用いて説明する。図1は、本発明の方法の一例である。本発明の方法は、以下の方法に限定されるものではない。
4). Description of the method of the present invention with reference to a flow diagram An example of the method for producing 1,1,1,3,3-pentafluoropropane and trans-1,3,3,3-tetrafluoropropene according to the present invention is shown in FIG. This will be described with reference to a flow diagram. FIG. 1 is an example of the method of the present invention. The method of the present invention is not limited to the following method.
 「反応工程」(第1工程)においては、気相反応器1で原料aである1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を、フッ素化触媒の存在下で反応させ、トランス-1,3,3,3-テトラフルオロプロペンを得る反応を行う。 In the “reaction step” (first step), 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride as raw materials a are reacted in the gas phase reactor 1 in the presence of a fluorination catalyst. The reaction for obtaining trans-1,3,3,3-tetrafluoropropene is carried out.
 反応後の反応生成物Aは、「蒸留工程」(第2工程)の分離塔2に供給されて蒸留を行い、トランス-1,3,3,3-テトラフルオロプロペン、塩化水素およびフッ化水素等および他の有機物を含む留分Bと、未反応の1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む分離塔2の缶出液bに分離され、缶出液bは気相反応器1に供給され、原料化合物として再使用される。蒸留により、分離塔2の上部からは揮発性の高い成分に富んだ留出液である留分Bが得られ、底部からは揮発性の低い成分に富んだ缶出液bが得られる。 The reaction product A after the reaction is supplied to the separation column 2 of the “distillation step” (second step) for distillation, and trans-1,3,3,3-tetrafluoropropene, hydrogen chloride and hydrogen fluoride. And the like and other fractions containing organic matter and unreacted 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in the bottom b of the separation column 2 are separated. Is supplied to the gas phase reactor 1 and reused as a raw material compound. Distillation B, which is a distillate rich in highly volatile components, is obtained from the top of the separation column 2 by distillation, and a bottom b, rich in low volatile components, is obtained from the bottom.
 例えば分離塔2の下部加熱槽に貯まった缶出液bとして、1-クロロ-3,3,3-トリフルオロプロペンおよび1,1,1,3,3-ペンタフルオロプロパンを主成分とする有機物およびフッ化水素を回収し反応工程における気相反応器1に戻すことが、原料化合物である1-クロロ-3,3,3-トリフルオロプロペンをフッ化水素と反応させて、トランス-1,3,3,3-テトラフルオロプロペンを得るに有効であり、本発明の並産方法を効率化できる。 For example, the bottoms b stored in the lower heating tank of the separation column 2 is an organic substance mainly composed of 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane. And recovering the hydrogen fluoride and returning it to the gas phase reactor 1 in the reaction step reacts the raw material compound 1-chloro-3,3,3-trifluoropropene with hydrogen fluoride, trans-1, It is effective for obtaining 3,3,3-tetrafluoropropene and can improve the efficiency of the parallel production method of the present invention.
 また、分離塔2でフッ化水素を回収し反応工程の気相反応器1に戻すことで、出発原料である1-クロロ-3,3,3-トリフルオロプロペンに対し過剰のフッ化水素が容易に供給され、反応後のトランス-1,3,3,3-テトラフルオロプロペンの高い選択率が得られ、生成物A中のフッ化水素を分離塔2で大方回収することで、後段のフッ化水素分離工程におけるフッ化水素吸収塔3および放散塔4での硫酸を用いたフッ化水素c、dの回収、塩化水素分離工程における塩化水素吸収塔5での塩化水素eの分離、脱水工程におけるミストセパレータ6および熱交換器7による脱水、精製工程の精留塔8におけるトランス-1,3,3,3-テトラフルオロプロペンgの分離精製の負荷が著しく軽減される。 In addition, by collecting hydrogen fluoride in the separation tower 2 and returning it to the gas phase reactor 1 in the reaction step, excess hydrogen fluoride with respect to the starting material 1-chloro-3,3,3-trifluoropropene is obtained. It is easily supplied, and a high selectivity of trans-1,3,3,3-tetrafluoropropene after the reaction can be obtained, and the hydrogen fluoride in the product A is mostly recovered in the separation tower 2, Recovery of hydrogen fluoride c and d using sulfuric acid in the hydrogen fluoride absorption tower 3 and diffusion tower 4 in the hydrogen fluoride separation process, separation of hydrogen chloride e in the hydrogen chloride absorption tower 5 in the hydrogen chloride separation process, dehydration The load of separation and purification of trans-1,3,3,3-tetrafluoropropene g in the rectification column 8 in the purification process is significantly reduced by dehydration by the mist separator 6 and the heat exchanger 7 in the process.
 次いで、「フッ化水素分離工程」(第3工程)で、留分Bはフッ化水素吸収塔3に送られ、硫酸と接触することで、フッ化水素が硫酸に吸収される。硫酸およびフッ化水素を含む混合物cは、放散塔4に送られ、フッ化水素dが取り出され、取り出されたフッ化水素dは気相反応器1に供給され、原料化合物として再使用される。 Next, in the “hydrogen fluoride separation step” (third step), the fraction B is sent to the hydrogen fluoride absorption tower 3 and comes into contact with sulfuric acid, so that hydrogen fluoride is absorbed by sulfuric acid. The mixture c containing sulfuric acid and hydrogen fluoride is sent to the stripping tower 4, hydrogen fluoride d is taken out, and the taken out hydrogen fluoride d is supplied to the gas phase reactor 1 and reused as a raw material compound. .
 フッ化水素dが回収された後の残存物Cは、「塩化水素分離工程」(第4工程)で、塩化水素吸収塔5に導入され、塩化水素吸収塔5内で、水または水酸化ナトリウム水溶液と接触混合、例えば、バブリング等の手段で水洗され、塩化水素eが分離除去される。 Residue C after the recovery of hydrogen fluoride d is introduced into hydrogen chloride absorption tower 5 in the “hydrogen chloride separation process” (fourth process), and in hydrogen chloride absorption tower 5, water or sodium hydroxide is introduced. It is washed with water by means such as contact mixing with an aqueous solution, for example, bubbling, and hydrogen chloride e is separated and removed.
 塩化水素eが分離除去された残存物Dは、「脱水工程」(第5工程)で、必要であれば、ミストセパレータ6に導入され脱水されて水分h1が除去される。その後、残存物Dは、熱交換器7に導入され、残存物D中の同伴水は冷却されて氷結凝固され、残存物D中の有機物は冷却されてガスから凝縮して液化物となり、同伴水h2が除去される。 The residue D from which the hydrogen chloride e has been separated and removed is introduced into the mist separator 6 and dehydrated to remove the moisture h1, if necessary, in the “dehydration step” (fifth step). Thereafter, the residue D is introduced into the heat exchanger 7, the entrained water in the residue D is cooled and frozen and solidified, and the organic matter in the residue D is cooled and condensed from the gas to become a liquefied product. Water h2 is removed.
 「脱水工程」(第5工程)後の同伴水を除去された残存物Eは、「精製工程」(第6工程)で精留塔8に送られ、トランス-1,3,3,3-テトラフルオロプロペンgが精製される。 Residue E from which the entrained water has been removed after the “dehydration step” (fifth step) is sent to the rectification column 8 in the “purification step” (sixth step), Tetrafluoropropene g is purified.
 「変換工程」(第7工程)においては、トランス-1,3,3,3-テトラフルオロプロペンgを精製した際の、1-クロロ-3,3,3-トリフルオロプロペンおよびシス-1,3,3,3-テトラフルオロプロペンが含まれ残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換する。 In the “conversion step” (seventh step), 1-chloro-3,3,3-trifluoropropene and cis-1, when trans-1,3,3,3-tetrafluoropropene g is purified. 3,3,3-Tetrafluoropropene is contained and cis-1,3,3,3-tetrafluoropropene in the residue F is converted to 1,1,1,3,3-pentafluoropropane.
 以下に、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、本実施例における反応生成物の組成比は、蒸留塔よりの留出物を含む反応生成物を、直接、ガスクロマトグラフィー(以下、GCと略する)に注入し、検出器に水素炎イオン検出器(以下、FIDと略する)を用い測定した。各成分の組成比は、GCチャートの面積から求めたモル比で示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. The composition ratio of the reaction product in this example is such that a reaction product containing a distillate from a distillation column is directly injected into gas chromatography (hereinafter abbreviated as GC), and a hydrogen flame is applied to the detector. Measurement was performed using an ion detector (hereinafter abbreviated as FID). The composition ratio of each component is shown as a molar ratio determined from the area of the GC chart.
 [フッ素化触媒の調製]
 始めに、トランス-1,3,3,3-テトラフルオロプロペンの生成反応に用いるフッ素化触媒を下記の手順で調製した。
[Preparation of fluorination catalyst]
First, a fluorination catalyst used for the reaction for producing trans-1,3,3,3-tetrafluoropropene was prepared by the following procedure.
[触媒調製例1]
 活性アルミナにフッ化水素を接触させフッ素化アルミナとし、そのフッ素化アルミナにクロムを担持させることにより、フッ素化触媒を得た。詳細な手順は以下の通りである。
[Catalyst Preparation Example 1]
Hydrogen fluoride was brought into contact with activated alumina to form fluorinated alumina, and chromium was supported on the fluorinated alumina to obtain a fluorination catalyst. The detailed procedure is as follows.
 粒径、2mm~4mmの活性アルミナ(住友化学工業株式会社製、商品名、NKHD-24、比表面積、340m2/g)を、1200g計り取り洗浄した。次いで、水4140gにフッ化水素460gを溶解し、10質量%濃度のフッ酸を調製した。10質量%のフッ酸を攪拌しつつ、洗浄した活性アルミナを徐々に加え、その後、3時間静置した。再度、活性アルミナを水洗し、ろ過した後、電気炉にて、200℃に加熱して2時間、乾燥させた。乾燥した活性アルミナ、1600ml(1600cm3)を、気相反応装置に充填した。直径5cm、長さ90cmの、熱媒循環装置に接続した外套を備えたステンレス鋼(SUS316L)製の円筒形反応管からなる気相反応器に窒素を流しながら、熱媒循環装置を作動させ、200℃の熱媒を循環させ円筒型反応管を加熱した。次いで、質量比、HF/N2=1/10~1/5にて、フッ化水素を窒素に同伴させて導入した。フッ化水素を導入するにつれて活性アルミナの温度が上昇する。その際、活性アルミナの温度が350℃を越えないように、フッ化水素と窒素の流量、およびフッ化水素と窒素の比率を調節した。発熱が終了した時点で、熱媒の設定温度を450℃に変更し、さらに2時間フッ化水素と窒素を導入して、フッ素化アルミナを調製した。次いで、市販の特級試薬、CrCl3・6H2O、2016gを純水に溶かして、1L(1000cm3)の水溶液を得た。当該水溶液に、調製したフッ素化アルミナ1500ml(1500)を浸漬し、一昼夜静置した。次に濾過してフッ素化アルミナを取り出し、さらに、100℃に加熱した熱風循環式乾燥器中で一昼夜乾燥させ、クロム担持フッ素化アルミナを得た。得られたクロム担持フッ素化アルミナを、直径5cm、長さ90cmの円筒形SUS316L製反応管に充填した後、窒素ガスを流しながら、反応管を300℃に昇温し、反応管より水の留出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させ反応管内に導入し、フッ化水素の濃度を徐々に高めた。充填されたクロム担持アルミナのフッ素化の吸着により、周囲より高温になっている部位であるホットスポットが反応管出口端に達したところで、反応管を450℃に昇温した後、450℃で1時間保ち、フッ素化触媒を得た。 Activated alumina having a particle size of 2 mm to 4 mm (manufactured by Sumitomo Chemical Co., Ltd., trade name, NKHD-24, specific surface area, 340 m 2 / g) was weighed and washed at 1200 g. Next, 460 g of hydrogen fluoride was dissolved in 4140 g of water to prepare 10% by mass hydrofluoric acid. While stirring 10% by mass of hydrofluoric acid, the washed activated alumina was gradually added, and then allowed to stand for 3 hours. The activated alumina was again washed with water and filtered, and then heated to 200 ° C. in an electric furnace and dried for 2 hours. Dry activated alumina, 1600 ml (1600 cm 3 ) was charged to the gas phase reactor. While flowing nitrogen into a gas phase reactor composed of a cylindrical reaction tube made of stainless steel (SUS316L) having a mantle connected to the heat medium circulation device having a diameter of 5 cm and a length of 90 cm, the heat medium circulation device was operated, A 200 ° C. heat medium was circulated to heat the cylindrical reaction tube. Next, hydrogen fluoride was introduced together with nitrogen at a mass ratio of HF / N 2 = 1/10 to 1/5. As hydrogen fluoride is introduced, the temperature of the activated alumina increases. At that time, the flow rate of hydrogen fluoride and nitrogen and the ratio of hydrogen fluoride and nitrogen were adjusted so that the temperature of the activated alumina did not exceed 350 ° C. When the heat generation was completed, the set temperature of the heat medium was changed to 450 ° C., and hydrogen fluoride and nitrogen were further introduced for 2 hours to prepare fluorinated alumina. Next, 2016 g of a commercially available special grade reagent, CrCl 3 .6H 2 O, was dissolved in pure water to obtain a 1 L (1000 cm 3 ) aqueous solution. In the aqueous solution, 1500 ml (1500) of the prepared fluorinated alumina was immersed and allowed to stand overnight. Next, the fluorinated alumina was removed by filtration, and further dried in a hot air circulating dryer heated to 100 ° C. for a whole day and night to obtain a chromium-supported fluorinated alumina. After filling the obtained chromium-supported fluorinated alumina in a cylindrical SUS316L reaction tube having a diameter of 5 cm and a length of 90 cm, the temperature of the reaction tube was raised to 300 ° C. while flowing nitrogen gas, and water was retained from the reaction tube. When no longer seen, nitrogen fluoride was accompanied by hydrogen fluoride and introduced into the reaction tube to gradually increase the concentration of hydrogen fluoride. When the hot spot, which is a part that is hotter than the surroundings, has reached the outlet end of the reaction tube due to adsorption of the fluorinated alumina loaded with chromium, the temperature of the reaction tube is increased to 450 ° C., then 1 hour at 450 ° C. The fluorination catalyst was obtained by keeping the time.
[触媒調製例2]
 4×10メッシュアンダーの椰子殻破砕炭(カルゴンカーボンジャパン株式会社製、製品名、PCB)100gを純水150gに浸漬し、別途、CrCl3・6HO(特級試薬)40gを純水100gに溶かした溶液と混合し攪拌した後、一昼夜静置した。次いで、静置後の液を濾過して活性炭を取り出し、電気炉中で200℃に加熱し、2時間焼成した。得られた塩化クロム担持活性炭を、直径5cm、長さ30cmのSUS316L製円筒形反応管に充填し、窒素ガスを流しながら、反応管を200℃に過熱し、円筒管より水の留出が見られなくなった時点で、窒素ガスにフッ化水素を同伴させ、フッ化水素の濃度を徐々に高くした。充填されたクロム担持活性炭へのフッ化水素の吸着により、周囲より高温になっている部位であるホットスポットが反応管出口端に達したところで、450℃に昇温した後、450℃で1時間保ち、フッ素化触媒を得た。
[Catalyst Preparation Example 2]
100 g of 4 × 10 mesh under coconut shell crushed charcoal (product name, PCB, manufactured by Calgon Carbon Japan Co., Ltd.) was immersed in 150 g of pure water, and 40 g of CrCl 3 · 6HO (special grade reagent) was separately dissolved in 100 g of pure water. After mixing with the solution and stirring, it was left to stand overnight. Next, the liquid after standing was filtered to remove activated carbon, heated to 200 ° C. in an electric furnace, and baked for 2 hours. The obtained activated carbon loaded with chromium chloride is filled into a cylindrical reaction tube made of SUS316L having a diameter of 5 cm and a length of 30 cm, and the reaction tube is heated to 200 ° C. while flowing nitrogen gas. When it was no longer possible, the concentration of hydrogen fluoride was gradually increased by bringing hydrogen fluoride into the nitrogen gas. When the hot spot, which is a part having a higher temperature than the surrounding due to adsorption of hydrogen fluoride on the filled chromium-supported activated carbon, reaches the outlet end of the reaction tube, the temperature is raised to 450 ° C., and then at 450 ° C. for 1 hour. And a fluorination catalyst was obtained.
[1,3,3,3-テトラフルオロプロペンの生成(反応工程)]
 次いで、触媒調製例1および触媒調整例2で得たフッ素化触媒を用い、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)をフッ化水素(HF)と反応させて、トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)を得る反応を気相反応器1中で行った。その際、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)の供給量を一定にして、フッ化水素(HF)の供給量を0.25g/minまたは0.49g/min、温度を360℃または380℃、反応器内圧力を0.1MPaまたは0.2MPaとした。以下に詳細な手順を示す。
[Production of 1,3,3,3-tetrafluoropropene (reaction process)]
Next, using the fluorination catalyst obtained in Catalyst Preparation Example 1 and Catalyst Preparation Example 2, 1-chloro-3,3,3-trifluoropropene (CTFP) is reacted with hydrogen fluoride (HF) to produce trans- The reaction to obtain 1,3,3,3-tetrafluoropropene (trans-TFP) was carried out in the gas phase reactor 1. At that time, the supply amount of 1-chloro-3,3,3-trifluoropropene (CTFP) is kept constant, the supply amount of hydrogen fluoride (HF) is 0.25 g / min or 0.49 g / min, the temperature Was 360 ° C. or 380 ° C., and the pressure in the reactor was 0.1 MPa or 0.2 MPa. The detailed procedure is shown below.
 直径、1インチ(約2.54cm)、長さ、30cmの円筒形反応管からなるステンレス鋼(SUS316L)製の管型の気相反応器1に、調製例1または調製例2で調製したフッ素化触媒を50ml(50cm3)充填した。 Fluorine prepared in Preparation Example 1 or Preparation Example 2 was added to a stainless steel (SUS316L) tubular gas phase reactor 1 made of a cylindrical reaction tube having a diameter of 1 inch (about 2.54 cm) and a length of 30 cm. 50 ml (50 cm 3 ) of the fluorination catalyst was charged.
 次いで、窒素を30ml/min(30cm3/min)の流量で流しながら、気相反応器1の反応管を200℃に加熱し、次いで、フッ化水素を0.10g/minの流量で流し、反応管中、窒素と同伴させつつ、反応管を450℃に昇温し、1時間保った。 Next, while flowing nitrogen at a flow rate of 30 ml / min (30 cm 3 / min), the reaction tube of the gas phase reactor 1 is heated to 200 ° C., then hydrogen fluoride is flowed at a flow rate of 0.10 g / min, In the reaction tube, the reaction tube was heated to 450 ° C. and kept for 1 hour while being accompanied by nitrogen.
 次いで、反応管の温度を360℃または380℃に下げ、フッ化水素(HF)を0.25g/minまたは0.49g/minの速度で供給し、予め気化させた1-クロロ-3,3,3-トリフルオロプロペン(CTFP)を0.16g/minの速度で気相反応器1へ供給した。 Next, the temperature of the reaction tube is lowered to 360 ° C. or 380 ° C., and hydrogen fluoride (HF) is supplied at a rate of 0.25 g / min or 0.49 g / min to pre-vaporize 1-chloro-3,3 , 3-trifluoropropene (CTFP) was fed to the gas phase reactor 1 at a rate of 0.16 g / min.
 反応開始から1時間経過後に反応は安定し、その後、2時間、気相反応器1から留出する反応生成物Aとしての生成ガスを、水中に吹き込み酸性ガスを分離除去した後、ドライアイス-アセトントラップで6.0~8.0gの有機物を捕集し、捕集した有機物のGC分析を行った。 The reaction is stabilized after 1 hour from the start of the reaction, and then the product gas as the reaction product A distilled from the gas phase reactor 1 is blown into water for 2 hours, and then the acidic gas is separated and removed. 6.0 to 8.0 g of organic matter was collected with an acetone trap, and GC analysis of the collected organic matter was performed.
 尚、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)の供給速度が0.16g/min、フッ化水素(HF)の供給速度0.25g/minである場合の供給量のモル比は、CTFP:HF=1:8であり、尚、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)の供給速度が0.16g/min、フッ化水素(HF)の供給速度0.49g/minである場合の供給量のモル比は、CTFP:HF=1:20である。 Incidentally, the molar amount of the supply when the supply rate of 1-chloro-3,3,3-trifluoropropene (CTFP) is 0.16 g / min and the supply rate of hydrogen fluoride (HF) is 0.25 g / min. The ratio is CTFP: HF = 1: 8, where the supply rate of 1-chloro-3,3,3-trifluoropropene (CTFP) is 0.16 g / min and the supply rate of hydrogen fluoride (HF) The molar ratio of the supply amount in the case of 0.49 g / min is CTFP: HF = 1: 20.
 GCでFID検出器を用い測定した反応条件に対する反応生成物Aの割合(選択率)を表1に示す。単位はモル%であり、ガスクロマトグラフィーのピークの総面積を100%とした面積百分率法を用いて、FID検出器によるGCチャートの各有機物に対する面積より求めたものである。 Table 1 shows the ratio (selectivity) of reaction product A to the reaction conditions measured by GC using an FID detector. The unit is mol%, and is obtained from the area for each organic substance in the GC chart by the FID detector using an area percentage method in which the total area of the gas chromatography peak is 100%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 触媒調製例1の触媒を用いた反応系においては、フッ化水素(HF)の供給速度が0.25g/minである場合のトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の選択率32.1モル%、34.5モル%に比べ、HF供給速度が0.49g/minである場合の方がトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の選択率が高く、各々44.4モル%、46.6モル%である。また、他が同一の反応条件では、反応温度360℃に比較して、380℃の方がトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の選択率が高い。具体的には、表1に記載のように、触媒調製例1の触媒を用いた場合は、HFの供給速度が0.25g/min、反応温度360℃の条件におけるトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の選択率は32.1モル%であるが、反応温度380℃では34.5%である。また、HFの供給速度が0.49g/min、反応360℃におけるトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の選択率は44.4モル%であるが、反応温度380℃では46.6モル%である。 In the reaction system using the catalyst of Catalyst Preparation Example 1, trans-1,3,3,3-tetrafluoropropene (trans-TFP) when the supply rate of hydrogen fluoride (HF) was 0.25 g / min. ) In the case where the HF feed rate is 0.49 g / min, compared to 32.1 mol% and 34.5 mol%, trans-1,3,3,3-tetrafluoropropene (trans-TFP ) Are high, 44.4 mol% and 46.6 mol%, respectively. Further, under the same reaction conditions, the selectivity of trans-1,3,3,3-tetrafluoropropene (trans-TFP) is higher at 380 ° C. than at the reaction temperature of 360 ° C. Specifically, as shown in Table 1, when the catalyst of Catalyst Preparation Example 1 was used, trans-1,3,3 under the conditions of HF supply rate of 0.25 g / min and reaction temperature of 360 ° C. The selectivity of 1,3-tetrafluoropropene (trans-TFP) is 32.1 mol%, but 34.5% at a reaction temperature of 380 ° C. Further, the selectivity for trans-1,3,3,3-tetrafluoropropene (trans-TFP) at a feed rate of HF of 0.49 g / min and a reaction of 360 ° C. was 44.4 mol%, but the reaction temperature It is 46.6 mol% at 380 ° C.
 触媒調製例2の触媒を用いた反応系においては、HFの供給速度が0.25g/min、反応温度360℃の条件におけるトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の選択率は30.3モル%であるが、反応温度380℃では33.1モル%である。 In the reaction system using the catalyst of Catalyst Preparation Example 2, trans-1,3,3,3-tetrafluoropropene (trans-TFP) under the conditions of HF supply rate of 0.25 g / min and reaction temperature of 360 ° C. The selectivity of is 30.3 mol%, but it is 33.1 mol% at a reaction temperature of 380 ° C.
 また、触媒調製例1の触媒を用い、反応管の温度を150℃とし、フッ化水素(HF)を0.25g/minまたは0.49g/minの速度で供給し、予め気化させた1-クロロ-3,3,3-トリフルオロプロペン(CTFP)を0.16g/minの速度で気相反応器1へ供給した。反応開始から1時間経過後に反応は安定し、その後、2時間、気相反応器1から留出するガスを、水中に吹き込み酸性ガスを除去した後、ドライアイス-アセトントラップで8.5gの有機物を捕集し、捕集した有機物のガスクロマトグラフィー分析を行った。得られた有機物の殆どが、未反応の1-クロロ-3,3,3-トリフルオロプロペン(CTFP)であり、目的物であるトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の収率は、1%未満であり、満足のいくものではなかった。このことは、反応温度が低すぎた結果である。 Further, the catalyst of Catalyst Preparation Example 1 was used, the temperature of the reaction tube was set to 150 ° C., and hydrogen fluoride (HF) was supplied at a rate of 0.25 g / min or 0.49 g / min to vaporize in advance 1- Chloro-3,3,3-trifluoropropene (CTFP) was fed to the gas phase reactor 1 at a rate of 0.16 g / min. The reaction is stabilized after 1 hour from the start of the reaction, and then gas is distilled from the gas phase reactor 1 for 2 hours to blow water into the water to remove the acidic gas, and then 8.5 g of organic matter in a dry ice-acetone trap. Was collected, and gas chromatography analysis of the collected organic matter was performed. Most of the obtained organic substance is unreacted 1-chloro-3,3,3-trifluoropropene (CTFP), and the target product, trans-1,3,3,3-tetrafluoropropene (trans- The yield of TFP) was less than 1% and was not satisfactory. This is a result of the reaction temperature being too low.
[1,3,3,3-テトラフルオロプロペンの生成とリサイクル(反応工程+分離工程)]
[工程例1]
 内径、52.7cm、長さ、58cmの円筒形反応管からなるステンレス鋼(SUS316L)製の気相反応器1に調製例1で得たフッ素化触媒を1200ml(1200cm3)充填した。
[Production and recycling of 1,3,3,3-tetrafluoropropene (reaction process + separation process)]
[Process Example 1]
1200 ml (1200 cm3) of the fluorination catalyst obtained in Preparation Example 1 was packed in a gas phase reactor 1 made of stainless steel (SUS316L) composed of a cylindrical reaction tube having an inner diameter of 52.7 cm and a length of 58 cm.
 次いで、気相反応器1の後段に、冷却凝縮器を上部に、加熱槽を下部に備えた分離塔2を設置した。分離塔2は、蒸留塔であり、下部に缶出液を加熱するための加熱槽、上部に留出分を液化するための冷却凝縮器を有し、分離塔2の内径は54.9mm、長さは40cmであり、6mmのラシヒリングを充填した。 Next, a separation tower 2 equipped with a cooling condenser at the upper part and a heating tank at the lower part was installed in the subsequent stage of the gas phase reactor 1. Separation tower 2 is a distillation tower, having a heating tank for heating the bottoms at the bottom, a cooling condenser for liquefying the distillate at the top, and an inner diameter of separation tower 2 of 54.9 mm, The length was 40 cm and filled with 6 mm Raschig rings.
 次いで、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)をフッ化水素(HF)と反応させて、トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)を得る反応を気相反応器1中で行った。反応温度、360℃、反応圧力、0.2MPa、フッ化水素(HF)の供給量を6.0g/minとし、予め気化させた1-クロロ-3,3,3-トリフルオロプロペン(CTFP)を3.8g/minの条件で、気相反応器1へ供給した。供給量のモル比は、CTFP:HF=1:10である。 Next, 1-chloro-3,3,3-trifluoropropene (CTFP) is reacted with hydrogen fluoride (HF) to obtain trans-1,3,3,3-tetrafluoropropene (trans-TFP). The reaction was carried out in the gas phase reactor 1. 1-chloro-3,3,3-trifluoropropene (CTFP) previously vaporized with a reaction temperature of 360 ° C., a reaction pressure of 0.2 MPa, and a supply amount of hydrogen fluoride (HF) of 6.0 g / min. Was supplied to the gas phase reactor 1 under the condition of 3.8 g / min. The molar ratio of the supply amount is CTFP: HF = 1: 10.
 トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の生成反応開始後、反応が安定した2時間後に、分離塔2にガスである反応生成物Aを導入した。 2 hours after the start of the reaction for producing trans-1,3,3,3-tetrafluoropropene (trans-TFP), the reaction product A, which is a gas, was introduced into the separation tower 2 after the reaction had stabilized.
 分離塔2における蒸留条件および留出物(留分B)の組成測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、加熱槽の温度設定および冷却凝縮器の温度設定を変えた2種類の蒸留条件で蒸留を行った。具体的には、条件1として、加熱槽の温度24℃、冷却凝縮器の温度を-5℃、分離塔2内の圧力を0.2MPaとし、条件2として、加熱槽の温度25℃、冷却凝縮器の温度を1℃、分離塔2内圧力を0.2MPaとし、分離塔2を用いて蒸留を行った。フッ化水素(HF)および塩化水素(HCl)の定量は滴定により行なった。尚、表2で言う留出率とは、反応生成物A中の有機物、HFまたはHClの量を各々100とした際の、蒸留における留出物である留分B中の有機物、HFまたはHClの量をモル%で表したものである。即ち、各々の化合物の分離塔2入口におけるモル量(反応生成物A中のモル量)で、出口におけるモル量(留分B中の)を割ることにより、算出した。
Table 2 shows the distillation conditions in the separation tower 2 and the composition measurement results of the distillate (fraction B).
Figure JPOXMLDOC01-appb-T000003
As shown in Table 2, distillation was performed under two types of distillation conditions in which the temperature setting of the heating tank and the temperature setting of the cooling condenser were changed. Specifically, as condition 1, the temperature of the heating tank is 24 ° C., the temperature of the cooling condenser is −5 ° C., the pressure in the separation tower 2 is 0.2 MPa, and as the condition 2, the temperature of the heating tank is 25 ° C. Distillation was performed using the separation tower 2 at a condenser temperature of 1 ° C. and a pressure in the separation tower 2 of 0.2 MPa. Quantification of hydrogen fluoride (HF) and hydrogen chloride (HCl) was performed by titration. The distillation rate in Table 2 means the organic matter, HF or HCl in the fraction B, which is a distillate in distillation, when the amount of the organic matter, HF or HCl in the reaction product A is 100, respectively. Is expressed in mol%. That is, the calculation was performed by dividing the molar amount (in the fraction B) at the outlet by the molar amount (in the reaction product A) at the inlet of the separation tower 2 of each compound.
 条件1の留分Bにおける有機物の留出率は48.1モル%、フッ化水素(HF)の留出率は6.9モル%、塩化水素の留出率は91.8モル%であり、有機物中のトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の濃度は分離塔2入口で26.0モル%であり、出口で55.6モル%であり、濃縮比は2.1であった。条件2の留分Bにおける有機物の留出率は63.8モル%、フッ化水素(HF)の留出率は10.2モル%、塩化水素の留出率は91.5モル%であり、有機物中のトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の濃度は分離塔2入口で26.6モル%であり、分離塔2出口の留出分で42.5モル%であり、濃縮比は2.1であった。 Distillation rate of organic substance in fraction B of condition 1 is 48.1 mol%, distillation rate of hydrogen fluoride (HF) is 6.9 mol%, distillation rate of hydrogen chloride is 91.8 mol% The concentration of trans-1,3,3,3-tetrafluoropropene (trans-TFP) in the organic substance is 26.0 mol% at the inlet of the separation tower 2 and 55.6 mol% at the outlet, and the concentration ratio Was 2.1. The distillation rate of organic matter in fraction 2 of condition 2 is 63.8 mol%, the distillation rate of hydrogen fluoride (HF) is 10.2 mol%, and the distillation rate of hydrogen chloride is 91.5 mol%. The concentration of trans-1,3,3,3-tetrafluoropropene (trans-TFP) in the organic substance is 26.6 mol% at the inlet of the separation tower 2 and 42.5% at the distillate at the outlet of the separation tower 2. The concentration ratio was 2.1.
 また、条件1により蒸留した際の、分離塔2入口の反応生成物Aガス中の有機物組成は、GCにて測定したところ、トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)が26.0モル%、シス-1,3,3,3-テトラフルオロプロペン(シス-TFP1234zeZ)が6.3モル%、1,1,1,3,3-ペンタフルオロプロパン(PFP)が17.7モル%、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)が49.6モル%であった。一方、分離塔2の出口ガス、即ち、分離塔2の留分B中の有機物組成は、トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)が、55.6モル%、シス-1,3,3,3-テトラフルオロプロペン(シス-TFP)が9.3モル%、1,1,1,3,3-ペンタフルオロプロパン(PFP)が9.6モル%、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)が、25.3モル%であった。 In addition, the organic composition in the reaction product A gas at the inlet of the separation tower 2 when distilled under condition 1 was measured by GC. As a result, trans-1,3,3,3-tetrafluoropropene (trans-TFP ) Is 26.0 mol%, cis-1,3,3,3-tetrafluoropropene (cis-TFP1234zeZ) is 6.3 mol%, 1,1,1,3,3-pentafluoropropane (PFP) is 17.7 mol%, 1-chloro-3,3,3-trifluoropropene (CTFP) was 49.6 mol%. On the other hand, the composition of the organic substance in the outlet gas of the separation tower 2, that is, the fraction B of the separation tower 2, is 55.6 mol% of trans-1,3,3,3-tetrafluoropropene (trans-TFP). Cis-1,3,3,3-tetrafluoropropene (cis-TFP) is 9.3 mol%, 1,1,1,3,3-pentafluoropropane (PFP) is 9.6 mol%, 1- Chloro-3,3,3-trifluoropropene (CTFP) was 25.3 mol%.
 即ち、条件1の蒸留条件で分離塔2を用いて蒸留を行えば、分離塔2後の留分Bとして、トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)を主成分とする有機物が、反応工程後の反応生成物A中の有機物に対し、約50モル%、塩化水素が理論生成量に対し、約90モル%が留出した。 That is, if distillation is performed using the separation tower 2 under the distillation conditions of Condition 1, trans-1,3,3,3-tetrafluoropropene (trans-TFP) is the main component as the fraction B after the separation tower 2 As a result, about 50 mol% of the organic matter was distilled out with respect to the organic matter in the reaction product A after the reaction step, and about 90 mol% of hydrogen chloride with respect to the theoretical production amount.
[工程例2]
 次いで、内径、52.7cm、長さ、58cmの円筒形反応管からなるステンレス鋼(SUS316L)製の前記気相反応器1に、調製例1で得たフッ素化触媒を1200ml充填した。
[Process Example 2]
Subsequently, 1200 ml of the fluorination catalyst obtained in Preparation Example 1 was charged into the gas phase reactor 1 made of stainless steel (SUS316L) composed of a cylindrical reaction tube having an inner diameter of 52.7 cm and a length of 58 cm.
 冷却凝縮器を上部に、加熱槽を下部に備えた、内径は54.9mm、長さは40cmで、6mmのラシヒリングを充填した前記分離塔2を用い、蒸留条件に前述の条件1を採用し、分離塔2の缶出液bとして回収したフッ化水素(HF)および有機物と新たに1-クロロ-3,3,3-トリフルオロプロペン(CTFP)およびフッ化水素(HF)を追加した原料を前記気相反応器1に供給し、反応条件を変えて、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)をフッ化水素(HF)と反応させてトランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)を得る反応を行なった。 The above-mentioned condition 1 was adopted as the distillation condition using the separation tower 2 equipped with a cooling condenser at the top and a heating tank at the bottom, the inner diameter was 54.9 mm, the length was 40 cm, and 6 mm Raschig rings were packed. Raw material obtained by adding hydrogen fluoride (HF) and organic matter recovered as the bottoms b of the separation tower 2 and 1-chloro-3,3,3-trifluoropropene (CTFP) and hydrogen fluoride (HF) Is supplied to the gas phase reactor 1 and 1-chloro-3,3,3-trifluoropropene (CTFP) is reacted with hydrogen fluoride (HF) by changing the reaction conditions to obtain trans-1,3,3. A reaction for obtaining 3,3-tetrafluoropropene (trans-TFP) was carried out.
 反応条件および結果を表3に示す。具体的には、新規トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)およびフッ化水素(HF)に加え、分離塔2の缶出液bとして回収した回収有機物を前記気相反応器1に供給した。 Reaction conditions and results are shown in Table 3. Specifically, in addition to the novel trans-1,3,3,3-tetrafluoropropene (trans-TFP) and hydrogen fluoride (HF), the recovered organic matter recovered as the bottoms b of the separation tower 2 Feeded to phase reactor 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、反応温度は360℃、1-クロロ-3,3,3-トリフルオロプロペン(CTFP)の供給は1.2g/min、回収有機物の供給は2.7g/minで等しくして、フッ化水素(HF)の供給を3.5g/minまたは7.1g/min、反応圧力を0.1MPaまたは0.2MPaで反応させた。その結果、1,3,3,3-テトラフルオロプロペン(トランス-TFP)が、フッ化水素(HF)の供給量が3.5g/minである場合の34.4モル%および29.2モル%に比べて、フッ化水素(HF)の供給量が7.1g/minの場合は47.3モル%であり、トランス-1,3,3,3-テトラフルオロプロペン(トランス-TFP)の高い選択率が得られることがわかった。 As shown in Table 3, the reaction temperature is 360 ° C., the supply of 1-chloro-3,3,3-trifluoropropene (CTFP) is 1.2 g / min, and the supply of recovered organic matter is equal to 2.7 g / min. The hydrogen fluoride (HF) was fed at 3.5 g / min or 7.1 g / min, and the reaction pressure was 0.1 MPa or 0.2 MPa. As a result, 1,3,3,3-tetrafluoropropene (trans-TFP) was found to be 34.4 mol% and 29.2 mol when hydrogen fluoride (HF) was supplied at 3.5 g / min. % Of hydrogen fluoride (HF) supplied at 7.1 g / min is 47.3 mol%, and trans-1,3,3,3-tetrafluoropropene (trans-TFP) It was found that high selectivity can be obtained.
[脱フッ化水素(フッ化水素分離工程)、脱塩化水素(塩化水素分離工程)および脱水(脱水工程)]
 分離工程において前述の蒸留条件2にて分離塔2により反応生成物Aの蒸留を行い、分離塔2から留出した留分Bを、フッ化水素分離工程でフッ化水素吸収塔3にて硫酸に接触させて、フッ化水素(HF)を硫酸に吸収させて除去した。
[Dehydrofluorination (hydrogen fluoride separation step), Dehydrochlorination (hydrogen chloride separation step) and Dehydration (dehydration step)]
In the separation step, the reaction product A is distilled by the separation tower 2 under the distillation condition 2 described above, and the fraction B distilled from the separation tower 2 is sulfuric acid in the hydrogen fluoride absorption tower 3 in the hydrogen fluoride separation step. And hydrogen fluoride (HF) was absorbed and removed by sulfuric acid.
 フッ化水素分離後の残存物Cを、塩化水素分離工程で、塩化水素吸収塔5内で、2.0g/minの速度で水にバブリングさせ、塩化水素eを除去した。 Residue C after separation of hydrogen fluoride was bubbled into water at a rate of 2.0 g / min in the hydrogen chloride absorption tower 5 in the hydrogen chloride separation step to remove hydrogen chloride e.
 その後段の脱水工程で、予めSUS-316製充填物を充填し、温度5℃の冷媒を用いて冷却したSUS-316製ミストセパレータ6を用意した。塩化水素e分離後の残存物Dを、用意した当該ミストセパレータ6に導入した。ミストセパレータ6により、混合ガスである残存物Dに同伴する霧状の同伴水h1を除去した。ミストセパレータ6出口の残存物Dである複数の有機物が混合したガスを捕集し、カールフィッシャ法で水分の測定したところ、水分濃度は1300ppmであった。 In the subsequent dehydration step, a SUS-316 mist separator 6 preliminarily filled with a SUS-316 filler and cooled with a refrigerant having a temperature of 5 ° C. was prepared. Residue D after separation of hydrogen chloride e was introduced into the prepared mist separator 6. The mist separator 6 removed mist-like entrained water h1 accompanying the residue D, which is a mixed gas. A gas in which a plurality of organic substances, which are the residue D at the outlet of the mist separator 6, was collected and the water content was measured by the Karl Fischer method. As a result, the water concentration was 1300 ppm.
[トランス-1,3,3,3-テトラフルオロプロペンの精製(精製工程)]
 その後段の精製工程では、熱交換器7としての、外管の内径12mm、内管の外径6mm、長さ300mmのSUS-316製二重管式冷却管を用意した。内管には-40℃の冷媒を流通させて、ミストセパレータ6通過後の残存物Dである前記ガスを、二重管式冷却管の外管と内管の間に2.0g/minの速度で供給することにより、前記ガスを冷却し凝縮させ、冷却管下部から液化した有機物(残存物E)を捕集した。捕集した有機物の水分濃度をカールフィッシャ法で測定したところ、65ppmであった。また、GC分析した結果、新たな有機物は見出されなかった。このようにして、冷却管に導入した有機物の98.0質量%を回収した。
[Purification of trans-1,3,3,3-tetrafluoropropene (purification step)]
In the subsequent purification step, a SUS-316 double-tube cooling tube having an inner diameter of 12 mm, an outer diameter of 6 mm, and a length of 300 mm was prepared as the heat exchanger 7. A refrigerant of −40 ° C. is circulated through the inner tube, and the gas which is the residue D after passing through the mist separator 6 is supplied at a rate of 2.0 g / min between the outer tube and the inner tube of the double tube type cooling tube. By supplying at a speed, the gas was cooled and condensed, and the liquefied organic matter (residue E) was collected from the lower part of the cooling pipe. The water concentration of the collected organic matter was measured by the Karl Fischer method and found to be 65 ppm. As a result of GC analysis, no new organic matter was found. In this way, 98.0% by mass of the organic matter introduced into the cooling pipe was recovered.
 上記の方法で脱水した有機物である残存物Eを、精製工程で精留塔8にて精留し、留出分として、トランス-1,3,3,3-テトラフルオロプロペンg(トランス-TFP)を単離した。カールフィッシャ法で測定した水分濃度は78ppm、ガスクロマトグラフィーで測定した純度は99.9%であった。 The residue E, which is an organic substance dehydrated by the above method, is rectified in the rectification column 8 in the purification step, and as a distillate, trans-1,3,3,3-tetrafluoropropene g (trans-TFP) is obtained. ) Was isolated. The water concentration measured by the Karl Fischer method was 78 ppm, and the purity measured by gas chromatography was 99.9%.
[シス-1,3,3,3-テトラフルオロプロペンの1,1,1,3,3-ペンタフルオロプロパンへの変換(変換工程)]
 残渣F中のシス-1,3,3,3-テトラフルオロプロペンの1,1,1,3,3-ペンタフルオロプロパンへの変換を行った。
[Conversion of cis-1,3,3,3-tetrafluoropropene to 1,1,1,3,3-pentafluoropropane (conversion step)]
Conversion of cis-1,3,3,3-tetrafluoropropene in residue F to 1,1,1,3,3-pentafluoropropane was performed.
[変換例1]
 攪拌機、-30℃に保った還流冷却器ならびに調圧弁を備えた500mlのSUS304製オートクレーブに、触媒として五塩化アンチモン6.0g(0.02モル)、フッ化水素100g(5.0モル)を仕込み30分間攪拌し、触媒の活性化を行った。発生塩化水素を還流冷却器の後部に備えられた調圧弁より排出し、圧力を常圧に戻した後、調圧弁を閉じ、ドライアイス-メタノールでオートクレーブを冷却しシス-1,3,3,3-テトラフルオロプロペン114g(1.0モル)を入れ、攪拌しながら反応温度を50℃に昇温した 反応開始3.5時間後、反応器を室温まで冷却し、圧力を常圧に下げることにより反応器から留出したガスを水層および濃硫酸層を通した上で、ドライアイス-メタノールで冷却されたトラップに捕集した。回収された有機物の重量は123gであり、ガスクロマトグラフにより分析した生成物組成は、1,1,1,3,3-ペンタフルオロプロパン98.5%、1,3,3,3-テトラフルオロプロペン0.4%ならびに1-クロロ-3,3,3-トリフルオロプロペン0.1%であった。結果を表4に示す。
[Conversion Example 1]
In a 500 ml SUS304 autoclave equipped with a stirrer, a reflux condenser maintained at −30 ° C. and a pressure regulating valve, 6.0 g (0.02 mol) of antimony pentachloride and 100 g (5.0 mol) of hydrogen fluoride were used as catalysts. The mixture was stirred for 30 minutes to activate the catalyst. The generated hydrogen chloride is discharged from the pressure regulating valve provided at the rear of the reflux condenser, and after returning the pressure to normal pressure, the pressure regulating valve is closed, and the autoclave is cooled with dry ice-methanol to obtain cis-1,3,3, Add 114 g (1.0 mol) of 3-tetrafluoropropene and raise the reaction temperature to 50 ° C. while stirring. After 3.5 hours from the start of the reaction, cool the reactor to room temperature and lower the pressure to normal pressure. The gas distilled from the reactor through the aqueous layer and the concentrated sulfuric acid layer was collected in a trap cooled with dry ice-methanol. The recovered organic substance weighed 123 g, and the product composition analyzed by gas chromatography was 98.5% 1,1,1,3,3-pentafluoropropane, 1,3,3,3-tetrafluoropropene. 0.4% and 1-chloro-3,3,3-trifluoropropene 0.1%. The results are shown in Table 4.
[変換例2、3、4、5]
変換例1と同様の反応操作にて、表4に示す条件で反応を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
[Conversion Examples 2, 3, 4, 5]
The reaction was conducted under the conditions shown in Table 4 by the same reaction procedure as in Conversion Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
1 気相反応器
2 分離塔
3 フッ化水素吸収塔
4 放散塔
5 塩化水素吸収塔
6 ミストセパレータ
7 熱交換器
8 精留塔
A 反応生成物A
B 留分(フッ化水素、塩化水素、1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン等を含む)
C 残存物(塩化水素、1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン、水等を含む)
D 残存物(1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン、水等を含む)
E 残存物(1,3,3,3-テトラフルオロプロペン、1-クロロ-3,3,3-トリフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパン等を含む)
F 残存物(精留でトランス-1,3,3,3-テトラフルオロプロペンを留分として得た後の残渣)
a 原料(1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素)
b 缶出液(未反応の1-クロロ-3,3,3-トリフルオロプロペン等の回収有機物およびフッ化水素)
c フッ化水素および硫酸
d フッ化水素
e 塩酸
h1、h2 同伴水
g トランス-1,3,3,3-テトラフルオロプロペン
DESCRIPTION OF SYMBOLS 1 Gas phase reactor 2 Separation tower 3 Hydrogen fluoride absorption tower 4 Stripping tower 5 Hydrogen chloride absorption tower 6 Mist separator 7 Heat exchanger 8 Rectifying tower A Reaction product A
B fraction (hydrogen fluoride, hydrogen chloride, 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane Etc.)
C Residues (hydrogen chloride, 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane, water, etc. Including)
D residue (including 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane, water, etc.)
E Residue (including 1,3,3,3-tetrafluoropropene, 1-chloro-3,3,3-trifluoropropene, 1,1,1,3,3-pentafluoropropane, etc.)
F Residue (residue after obtaining trans-1,3,3,3-tetrafluoropropene as a fraction by rectification)
a Raw materials (1-chloro-3,3,3-trifluoropropene and hydrogen fluoride)
b Bottomed liquid (unreacted organic matter such as 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride)
c Hydrogen fluoride and sulfuric acid d Hydrogen fluoride e Hydrochloric acid h1, h2 Entrained water g Trans-1,3,3,3-tetrafluoropropene

Claims (7)

  1. 1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素を気相において、フッ素化触媒を用い、温度200℃以上、450℃以下、圧力0.05MPa以上、0.3MPa以下で反応させて、トランス-1,3,3,3-テトラフルオロプロペンと、シス-1,3,3,3-テトラフルオロプロペン、1,1,1,3,3-ペンタフルオロプロパンおよび塩化水素と、未反応物である1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む反応生成物Aを得る反応工程と、
    反応生成物Aを蒸留して、1-クロロ-3,3,3-トリフルオロプロペンおよびフッ化水素を含む缶出液を前記反応工程に戻し、且つ留分Bを得る蒸留工程と、
    前記蒸留工程後の留分Bよりフッ化水素を分離回収して前記反応工程に供給するフッ化水素分離工程と、
    前記フッ化水素分離工程でフッ化水素を回収した後の残存物Cに水または水酸化ナトリウム水溶液を接触させて塩化水素を分離除去する塩化水素分離工程と、
    前記塩化水素分離工程で塩化水素を分離した後の残存物Dを脱水する脱水工程と、
    前記脱水工程で脱水した後の残存物Eを精留し、トランス-1,3,3,3-テトラフルオロプロペンを含む留分と、シス-1,3,3,3-テトラフルオロプロペンを含む残渣Fを得る精製工程と、
    前記精製工程の残渣F中のシス-1,3,3,3-テトラフルオロプロペンを1,1,1,3,3-ペンタフルオロプロパンに変換する変換工程、
    を含む、
    トランス-1,3,3,3-テトラフルオロプロペンと1,1,1,3,3-ペンタフルオロプロパンとの並産方法。
    1-Chloro-3,3,3-trifluoropropene and hydrogen fluoride are reacted in the gas phase at a temperature of 200 ° C. or higher and 450 ° C. or lower and a pressure of 0.05 MPa or higher and 0.3 MPa or lower using a fluorination catalyst. Trans-1,3,3,3-tetrafluoropropene, cis-1,3,3,3-tetrafluoropropene, 1,1,1,3,3-pentafluoropropane and hydrogen chloride, A reaction step of obtaining a reaction product A containing 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride as reactants;
    A distillation step of distilling reaction product A to return the bottoms containing 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride to the reaction step, and obtaining fraction B;
    A hydrogen fluoride separation step in which hydrogen fluoride is separated and recovered from the fraction B after the distillation step and supplied to the reaction step;
    A hydrogen chloride separation step of separating and removing hydrogen chloride by bringing water or an aqueous sodium hydroxide solution into contact with the residue C after recovering hydrogen fluoride in the hydrogen fluoride separation step;
    A dehydration step of dehydrating the residue D after separating the hydrogen chloride in the hydrogen chloride separation step;
    The residue E after dehydration in the dehydration step is rectified to contain a fraction containing trans-1,3,3,3-tetrafluoropropene and cis-1,3,3,3-tetrafluoropropene. A purification step to obtain residue F;
    A conversion step of converting cis-1,3,3,3-tetrafluoropropene in the residue F of the purification step into 1,1,1,3,3-pentafluoropropane;
    including,
    Parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane.
  2. フッ素化触媒が、クロム、チタン、アルミニウム、マンガン、ニッケル、コバルト、鉄、銅、亜鉛、銀、モリブデン、ジルコニウム、ニオブ、タンタル、イリジウム、錫、ハフニウム、バナジウム、マグネシウム、リチウム、ナトリウム、カリウム、カルシウムおよびアンチモンからなる群より選ばれた少なくとも1種の金属の硝酸塩、塩化物、酸化物、硫酸塩、フッ化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物である、請求項1に記載の並産方法。 Fluorination catalyst is chromium, titanium, aluminum, manganese, nickel, cobalt, iron, copper, zinc, silver, molybdenum, zirconium, niobium, tantalum, iridium, tin, hafnium, vanadium, magnesium, lithium, sodium, potassium, calcium And at least one metal selected from the group consisting of antimony and nitrates, chlorides, oxides, sulfates, fluorides, fluorides, oxyfluorides, oxychlorides or oxyfluoride chlorides. 1. The method of common production according to 1.
  3. 前記反応工程の反応が、塩化クロムを担持させたフッ素化アルミナをフッ素化触媒とし、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素の供給量をモル比で表わして1-クロロ-3,3,3-トリフルオロプロペン:フッ化水素=1:8~1:25とし行われる、請求項1または請求項2に記載の並産方法。 The reaction in the reaction step is carried out by using fluorinated alumina supporting chromium chloride as a fluorination catalyst, and representing the supply amount of 1-chloro-3,3,3-trifluoropropene and hydrogen fluoride in molar ratio as 1- The parallel production method according to claim 1 or 2, wherein chloro-3,3,3-trifluoropropene: hydrogen fluoride = 1: 8 to 1:25.
  4. 前記反応工程の反応が、クロムの酸化物、フッ化物、塩化物、フッ化塩化物、オキシフッ化物、オキシ塩化物またはオキシフッ化塩化物を担持させた活性炭をフッ素化触媒とし、1-クロロ-3,3,3-トリフルオロプロペンとフッ化水素の供給量をモル比で表わして1-クロロ-3,3,3-トリフルオロプロペン:フッ化水素=1:8~1:25とし行われる、請求項1または請求項2に記載の並産方法。 The reaction in the reaction step is performed by using activated carbon supporting chromium oxide, fluoride, chloride, fluorinated chloride, oxyfluoride, oxychloride or oxyfluorinated chloride as a fluorination catalyst, and 1-chloro-3 , 3,3-trifluoropropene and hydrogen fluoride in terms of molar ratio, 1-chloro-3,3,3-trifluoropropene: hydrogen fluoride = 1: 8 to 1:25 The parallel production method according to claim 1 or claim 2.
  5. 前記フッ化水素分離工程において、フッ化水素を硫酸に吸収させて回収する、請求項1乃至請求項4のいずれか1項に記載の並産方法。 The parallel production method according to any one of claims 1 to 4, wherein in the hydrogen fluoride separation step, hydrogen fluoride is absorbed and recovered by sulfuric acid.
  6. 前記脱水工程において、塩化水素分離工程後の残存物Dの同伴水を熱交換器を用い、熱交換器が有する冷却面に氷結凝固させて脱水する、請求項1乃至請求項5のいずれか1項に記載の並産方法。 6. The dehydration step, wherein the entrained water of the residue D after the hydrogen chloride separation step is dehydrated by freezing and solidifying the cooling surface of the heat exchanger using a heat exchanger. The average production method described in the paragraph.
  7. 前記脱水工程において、塩化水素分離工程後の残存物Dの同伴水を、吸着剤に吸着して脱水する、請求項1乃至請求項5のいずれか1項に記載の並産方法。 The parallel production method according to any one of claims 1 to 5, wherein in the dehydration step, entrained water of the residue D after the hydrogen chloride separation step is adsorbed on an adsorbent and dehydrated.
PCT/JP2013/061591 2012-04-26 2013-04-19 Method for parallel production of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane WO2013161692A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012101281 2012-04-26
JP2012-101281 2012-04-26
JP2013081546A JP6119388B2 (en) 2012-04-26 2013-04-09 Parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane
JP2013-081546 2013-04-09

Publications (1)

Publication Number Publication Date
WO2013161692A1 true WO2013161692A1 (en) 2013-10-31

Family

ID=49483012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061591 WO2013161692A1 (en) 2012-04-26 2013-04-19 Method for parallel production of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane

Country Status (2)

Country Link
JP (1) JP6119388B2 (en)
WO (1) WO2013161692A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197713A (en) * 2015-04-06 2016-11-24 セントラル硝子株式会社 Dry etching gas and dry etching method
US20180057433A1 (en) * 2016-08-31 2018-03-01 Honeywell International Inc. AZEOTROPIC OR AZEOTROPE-LIKE COMPOSITIONS OF 1,3,3-TRICHLORO-3-FLUORO-1-ENE (HCFO-1231zd) AND HYDROGEN FLUORIDE (HF)
US20180057430A1 (en) * 2016-08-31 2018-03-01 Honeywell International Inc. AZEOTROPIC OR AZEOTROPE-LIKE COMPOSITIONS OF 1,3-DICHLORO-3,3-DIFLUOROPROP-1-ENE (HCFO-1232zd) AND HYDROGEN FLUORIDE (HF)
US10029964B2 (en) 2016-08-30 2018-07-24 Honeywell International Inc. Azeotropic or azeotrope-like compositions of 3,3,3-trifluoropropyne and water
JP2019214535A (en) * 2018-06-13 2019-12-19 ダイキン工業株式会社 Manufacturing method of difluoroethylene
CN115945180A (en) * 2023-02-28 2023-04-11 天津绿菱气体有限公司 Adsorbent for refining hexafluoro-1, 3-butadiene and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522592B (en) * 2017-09-07 2020-06-02 浙江衢化氟化学有限公司 Method for coproducing various halogenated olefins and fluorinated alkanes
CN113527038B (en) * 2020-04-22 2023-10-27 浙江省化工研究院有限公司 Process for preparing cis-1, 3-tetrafluoropropene
CN113501743B (en) * 2021-08-19 2024-03-29 山东华安新材料有限公司 Preparation method of 1, 3-pentafluoropropane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228461A (en) * 1997-12-01 1999-08-24 Elf Atochem North America Inc Preparation of 245fa
WO2010035748A1 (en) * 2008-09-25 2010-04-01 セントラル硝子株式会社 Process for producing 1,3,3,3-tetrafluoropropene
WO2012030781A2 (en) * 2010-09-03 2012-03-08 Honeywell International Inc. Integrated process to coproduce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
WO2012063566A1 (en) * 2010-11-10 2012-05-18 セントラル硝子株式会社 Process for producing trans-1,3,3,3-tetrafluoropropene
WO2012148695A2 (en) * 2011-04-25 2012-11-01 Honeywell International Inc. INTEGRATED PROCESS TO CO-PRODUCE 1,1,1,3,3-PENTAFLUOROPROPANE, TRANS-1-CHLORO-3,3,3-TRIFLUOROPROPENE and TRANS-1,3,3,3-TETRAFLUOROPROPENE
WO2012154227A2 (en) * 2011-01-19 2012-11-15 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228461A (en) * 1997-12-01 1999-08-24 Elf Atochem North America Inc Preparation of 245fa
WO2010035748A1 (en) * 2008-09-25 2010-04-01 セントラル硝子株式会社 Process for producing 1,3,3,3-tetrafluoropropene
WO2012030781A2 (en) * 2010-09-03 2012-03-08 Honeywell International Inc. Integrated process to coproduce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
WO2012063566A1 (en) * 2010-11-10 2012-05-18 セントラル硝子株式会社 Process for producing trans-1,3,3,3-tetrafluoropropene
WO2012154227A2 (en) * 2011-01-19 2012-11-15 Honeywell International Inc. Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoropropane
WO2012148695A2 (en) * 2011-04-25 2012-11-01 Honeywell International Inc. INTEGRATED PROCESS TO CO-PRODUCE 1,1,1,3,3-PENTAFLUOROPROPANE, TRANS-1-CHLORO-3,3,3-TRIFLUOROPROPENE and TRANS-1,3,3,3-TETRAFLUOROPROPENE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197713A (en) * 2015-04-06 2016-11-24 セントラル硝子株式会社 Dry etching gas and dry etching method
US10029964B2 (en) 2016-08-30 2018-07-24 Honeywell International Inc. Azeotropic or azeotrope-like compositions of 3,3,3-trifluoropropyne and water
US20180057433A1 (en) * 2016-08-31 2018-03-01 Honeywell International Inc. AZEOTROPIC OR AZEOTROPE-LIKE COMPOSITIONS OF 1,3,3-TRICHLORO-3-FLUORO-1-ENE (HCFO-1231zd) AND HYDROGEN FLUORIDE (HF)
US20180057430A1 (en) * 2016-08-31 2018-03-01 Honeywell International Inc. AZEOTROPIC OR AZEOTROPE-LIKE COMPOSITIONS OF 1,3-DICHLORO-3,3-DIFLUOROPROP-1-ENE (HCFO-1232zd) AND HYDROGEN FLUORIDE (HF)
US9950973B2 (en) * 2016-08-31 2018-04-24 Honeywell International Inc. Azeotropic or azeotrope-like compositions of 1,3-dichloro-3,3-difluoroprop-1-ene (HCFO-1232zd) and hydrogen fluoride (HF)
US9950974B2 (en) * 2016-08-31 2018-04-24 Honeywell International Inc. Azeotropic or azeotrope-like compositions of 1,3,3-trichloro-3-fluoro-1-ene (HCFO-1231zd) and hydrogen fluoride (HF)
JP2019214535A (en) * 2018-06-13 2019-12-19 ダイキン工業株式会社 Manufacturing method of difluoroethylene
WO2019240233A1 (en) * 2018-06-13 2019-12-19 ダイキン工業株式会社 Method for producing difluoroethylene
US11247951B2 (en) 2018-06-13 2022-02-15 Daikin Industries, Ltd. Method for producing difluoroethylene
CN115945180A (en) * 2023-02-28 2023-04-11 天津绿菱气体有限公司 Adsorbent for refining hexafluoro-1, 3-butadiene and preparation method and application thereof

Also Published As

Publication number Publication date
JP2013241395A (en) 2013-12-05
JP6119388B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5817373B2 (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JP6119388B2 (en) Parallel production method of trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane
US9051231B2 (en) Process for producing 1,3,3,3-tetrafluoropropene
JP6234411B2 (en) Integrated process to produce 2,3,3,3-tetrafluoropropene
KR101802750B1 (en) Integrated process and methods of producing (e)-1-chloro-3,3,3-trifluoropropene
EP2556042B1 (en) Integrated process to co-produce trans-1-chloro-3,3,3-trifluoropropene and trans-1,3,3,3-tetrafluoropropene
JP5453757B2 (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JP5747684B2 (en) Method for dehydrating hydrofluorocarbon or hydrochlorofluorocarbon, and method for producing 1,3,3,3-tetrafluoropropene using the dehydration method
US8487144B2 (en) Process for producing fluorinated propene
JP2018070656A (en) High purity e-1-chloro-3,3,3-trifluoropropene and manufacturing method therefor
JP5515555B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP2015515464A (en) Integration to co-produce trans-1-chloro-3,3,3-trifluoropropene, trans-1,3,3,3-tetrafluoropropene and 1,1,1,3,3-pentafluoropropane process
JP5187212B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP5136111B2 (en) Method for separating fluoroolefin and hydrogen fluoride
JP5338240B2 (en) Method for separating hydrogen fluoride
JP5990990B2 (en) Method for producing cis-1,3,3,3-tetrafluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782311

Country of ref document: EP

Kind code of ref document: A1