WO2013161396A1 - Casting hollow mold and manufacturing method therefor - Google Patents

Casting hollow mold and manufacturing method therefor Download PDF

Info

Publication number
WO2013161396A1
WO2013161396A1 PCT/JP2013/056183 JP2013056183W WO2013161396A1 WO 2013161396 A1 WO2013161396 A1 WO 2013161396A1 JP 2013056183 W JP2013056183 W JP 2013056183W WO 2013161396 A1 WO2013161396 A1 WO 2013161396A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
hollow
cast iron
cast
Prior art date
Application number
PCT/JP2013/056183
Other languages
French (fr)
Japanese (ja)
Inventor
康史 浅田
Original Assignee
株式会社浅田可鍛鋳鉄所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社浅田可鍛鋳鉄所 filed Critical 株式会社浅田可鍛鋳鉄所
Priority to JP2013534121A priority Critical patent/JP5501532B1/en
Publication of WO2013161396A1 publication Critical patent/WO2013161396A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/08Malleabilising with oxidation of carbon
    • C21D5/10Malleabilising with oxidation of carbon in gaseous agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the present invention relates to a mold for producing a metal cast product such as cast iron and aluminum or a plastic product, and more particularly to a metal mold (casting mold).
  • the invention also relates to a method of manufacturing the same.
  • the cooling rate at the time of casting is higher than that of sand molds, so the cast product after casting tends to be hard, and heat treatment is required to lower the hardness. There's a problem.
  • the mold since the mold is in contact with a high temperature molten metal, it is necessary to use a metal that can withstand high temperature.
  • copper alloys and tool steels are used as mold materials. However, these materials are expensive themselves, and because mold processing such as cutting is difficult, the problem is that the processing cost is also high. There is.
  • the casting can be performed multiple times with one mold, the life (number of times) is limited, so the mold cost per cast item is expensive even considering the mold life. It is.
  • the problem to be solved by the present invention is to provide a casting mold in which the heat treatment of the product after casting is unnecessary and the mold cost is low.
  • the present invention made to solve the above problems is a cast iron casting mold characterized in that the inside is hollow (hollow).
  • the hollow mold for casting according to the present invention can be used for casting of various metals such as aluminum (alloy) and magnesium (alloy) in addition to cast iron, and also used for manufacturing (forming) of plastic products. be able to.
  • the hollow mold can be manufactured by a method to which the processing method described in Patent Document 1 is applied. Specifically, it is manufactured by the following method (FIG. 1). a) A target mold (target mold) is manufactured with cast iron (step S1). b) Only the surface layer portion is decarburized by heating the master mold to a predetermined temperature (decarburization temperature) (step S2). c) By heating the mold to another predetermined temperature (internal melting temperature), only the internal low melting point portion excluding the surface layer portion is melted and flowed out of the mold (step S3). By performing the above process, the hollow mold is completed (step S4).
  • the carbon equivalent CE of cast iron which is the material of the hollow mold of the present invention, desirably has a composition satisfying the following formula (1) (in the formula,% is mass%).
  • 2.0 ⁇ CE C% + (Si% + P%) / 3 ⁇ 5.5 (1)
  • Those with a CE value of around 4.3 are eutectic, those below CE (2.0 ⁇ CE ⁇ 4.3) are hypoeutectic, and those above (4.3 ⁇ CE ⁇ 5.5) are hypereutectic (FIG. 2).
  • the solidus line (melting point) is constant at about 1147 ° C. regardless of the carbon equivalent (the liquidus line is about 1400 ° C. or less). Therefore, it is desirable that the heating temperature in the above-mentioned c) internal melting and outflow steps be approximately 50 ° C. higher than its melting point (1147 ° C.), that is, in the range of 1147 to 1200 ° C. When the carbon concentration in the decarburized layer is 1% or less, the melting point of the portion (decarburized layer) is about 1350 ° C.
  • the CE value is set to 3.5 to 4.6.
  • the liquidus complete melting temperature
  • melting of the inside becomes easy.
  • casting also becomes easy.
  • the mold of the present invention is not completely hollow but is a honeycomb hollow mold. As apparent from the phase diagram of FIG. 2, this is because the hypoeutectic cast iron inside is not completely melted in the internal melting step c), and a part of the dendritic ⁇ phase having a high melting point is in a lattice It is considered to be to remain in
  • the honeycomb shaped hollow cast iron is disclosed in detail in the international application PCT / JP2011 / 0790367 according to the applicant's application. As a result, the strength of the mold is increased, which makes it suitable for use in a large mold that is susceptible to distortion. Conversely, the mold of the present invention becomes a perfect hollow mold by making the material of the original mold eutectic or hypereutectic (CE ⁇ 4.3).
  • the thickness of the shell of the hollow mold according to the present invention can be determined by adjusting the thickness of the decarburized layer in the above b) decarburization step. This can be arbitrarily adjusted by the heating temperature and time in the b) decarburization step, but too much high temperature and long time heating adversely affect the cast iron which is the material of the mold (decarburization temperature is It is desirable to set the value to a range of about 100 to 30 ° C. lower than the melting point), and it is desirable to set the value to at most about 5 mm. On the other hand, although the thinner one can be set arbitrarily, generally, it is desirable to set the thickness to 2 mm or more because strength as a mold is required.
  • the mold according to the present invention is hollow, the heat capacity is small particularly at the portion in contact with the cast product, and the cooling rate of the cast product after casting is lower than that of the conventional mold due to the heat insulating effect of the air layer in the hollow section. slow. Therefore, the heat treatment after casting can be omitted depending on the product. Moreover, since the material is cast iron, it is much cheaper than conventional alloy mold steels, and the unit price per cast product can be kept sufficiently low even if the life is a little short.
  • the cooling rate after casting can be appropriately adjusted by circulating a fluid such as air or water in the hollow portion of the mold.
  • the external appearance photograph (a) and X-ray CT (cross section) photograph (b) of the cup-shaped hollow mold which is Example 1 are shown.
  • Example 2 external appearance view of the lower mold of the hollow mold for a planetary gear carrier (a) and external view of the upper mold (b), X-ray CT (cross section) photograph (c) of the lower mold and the upper mold X-ray CT (cross section) photograph (d).
  • the original mold of this mold was produced by casting FCD450 cast iron into a sand mold.
  • the chemical composition of the cast iron is shown in FIG.
  • the CE value of the material of the hollow mold of this embodiment (hereinafter, this is called hollow mold 1 and its original mold is called original mold 1) is 4.4. , Slightly hypereutectic.
  • decarburization processing After decarburization, the atmosphere was changed to N 2 gas, furnace cooled to 500 ° C., and then allowed to cool in the air.
  • the cross section of the hollow mold 1 taken by X-ray CT is shown in FIG. It can be seen that the shelled interior consisting of a decarburized layer about 2.5 mm thick is a clean cavity (hollow). The mass of the mold 1 was 1,020 gr (grams), but the hollow mold 1 after the hollow processing was 680 gr.
  • a second example is a mold for manufacturing a planetary gear carrier used in an automatic transmission of a motor vehicle.
  • the mold of the present embodiment (referred to as hollow mold 2) is composed of a lower mold and an upper mold, and their external appearance photographs are shown in FIGS. 6 (a) and 6 (b).
  • the size of the hollow mold 2 is 190 mm in length, 165 mm in width, 50 mm in height (lower mold), and 70 mm in (upper mold).
  • Each of the lower mold and the upper mold (these are referred to as lower mold 2 and upper mold 2 and mold 2) was manufactured by casting using a sand mold.
  • the material of the mold 2 (hollow mold 2) was also FCD450.
  • the main chemical composition is as shown in FIG. 7, and the CE value is 4.3 (almost eutectic).
  • the lower mold 2 has a diameter of 10 mm and a depth of 12 mm at the same direction (in FIG. 6 (a) and (b) both lower portions) of the lower mold 2 and the upper mold 2 In the upper mold 2, an outflow hole of 18 mm in diameter and 15 mm in depth was drilled.
  • the lower and upper molds 2 were heated with the outlet holes down.
  • the two molds 2 reached 1180 ° C. in about 90 minutes after the start of heating, at which point the molten metal started to flow out from the outflow holes. After that, the flow was completed in about 20 min (almost no melt flowed out), so heating was ended (the temperature of both molds 2 at this time was 1190 ° C.), and was allowed to cool down to room temperature. .
  • FIGS. 6 (c) and (d) The X-ray CT (cross-sectional) photographs of the lower mold model 2 and the upper mold model 2 manufactured in this manner are shown in FIGS. 6 (c) and (d).
  • the area where the outlet holes are provided (right side of Fig. 6 (c) and (d)) is thickened because of the solidified residual molten metal, but the other part is surrounded by shells of approximately 2.5 mm in uniform thickness. It can be seen that the hollow mold 2 is completed.
  • the method of manufacturing a planetary gear carrier using these hollow molds 2 is as follows. After the lower die 2 is placed as shown in FIG. 8 (a) and the core is placed in the cavity, the upper die 2 is placed as shown in FIG. 8 (b). As shown on the left side of FIG. 8B, the lower mold 2 and the upper mold 2 are fitted with pipes for introducing air into the internal cavity thereof. Further, the upper mold 2 is provided with a gate. Then, as shown in FIG. 8C, the upper mold 2 and the lower mold 2 are clamped with a clamp, and the molten metal is poured from the gate.
  • the results are shown in FIG.
  • the surface hardness was measured at a location (upper die side) in contact with the upper die and a location (lower die side) in contact with the lower die in the casting 2.
  • the samples No. 1 to No. 4 are not subjected to decarburization-melting / flow-out treatment, and are solid solid lower mold (lower mold model 2) and upper mold (upper mold model 2).
  • the samples No. 5 to No. 8 were cast using the hollow mold according to the present invention.
  • the samples No. 1 and No. 2 and No. 5 and No. 6 were cast without being cast in the mold, and No. 3 and No. 4 and No. 7 and No. 8 were cast.
  • the sample was casted by molding on the inner surface of the mold.
  • the mold used here was diatomaceous earth, and its thickness was about 0.2 mm.
  • the samples No. 1, No. 3, No. 5 and No. 7 were not inoculated to cast iron, and the samples No. 2, No. 4, No. 6 and No. 8 were just before casting.
  • the cast iron melt was charged (inoculated) with ferrosilicon.
  • the average hardness of the lower mold side and upper mold side (total 8 points) of the samples No. 1 to No. 4 is Hv 526, and the average value of the samples No. 5 to No. 8 is Hv 341. It is. That is, by using the hollow mold according to the present invention, it is understood that the hardness of the cast product is reduced by about 200 in Vickers hardness, as compared with the case of using the conventional solid mold.
  • Each of the samples in FIG. 10 is produced by circulating air in the hollow of the hollow mold 2. Without air flow to the internal cavity, the casting will have a lower (or slower) cooling rate and a lower hardness. However, when air is not circulated to the internal cavity, the mold in contact with the molten metal becomes hotter, and when it is used repeatedly, its life is repeatedly reduced due to thermal fatigue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

The purpose of the present invention is to provide a casting mold which does not require heat treatment of a product after casting and is inexpensive. In the present invention, by fabricating a master mold for a target mold from cast iron and heating the master mold to a predetermined temperature, only a surface layer portion is decarbonized. Thereafter, by heating the master mold to another predetermined temperature, only a low-melting-point portion therein is melted and discharged out of the master mold. Consequently, a casting hollow mold produced from cast iron is manufactured. Since the heat capacity of the hollow mold is smaller than that of a solid mold, the cooling speed of a cast product after casting becomes slower, and the hardness of the cast product becomes lower.

Description

鋳造用中空金型及びその製造方法Hollow mold for casting and method of manufacturing the same
 本発明は、鋳鉄やアルミニウム等の金属鋳造品、或いはプラスチック製品を製造するための鋳型に関し、特に、金属製の鋳型(鋳造金型)に関する。また、その製造方法に関する。 The present invention relates to a mold for producing a metal cast product such as cast iron and aluminum or a plastic product, and more particularly to a metal mold (casting mold). The invention also relates to a method of manufacturing the same.
 自動車を始め、中・大型機械装置の本体や部品には多くの鋳鉄製品が使用されている。これらの鋳鉄製品は、一般的には鋳型に砂を用いる生砂鋳造により製造されている。生砂鋳造は大量生産向きであるという利点はあるものの、(1)鋳型を作るための装置(鋳型造型装置)や、砂を再利用するための砂再生処理装置等の大型設備が必要である、(2)砂型に鋳込んだ溶湯を室温まで下げるための広い冷却スペースが必要である、という問題点がある。このように、初期投資額が大きく、かつ、広大なスペースが必要であることから、少量多種生産や変量生産には適していない。 Many cast iron products are used for bodies and parts of medium and large sized mechanical devices including automobiles. These cast iron products are generally manufactured by green sand casting using sand as mold. Although raw sand casting has the advantage of being suitable for mass production, it requires (1) equipment for producing molds (mold molding equipment) and large equipment such as sand reclamation processing equipment for reusing sand. (2) There is a problem that a large cooling space is required to lower the molten metal cast in the sand mold to room temperature. As such, since the initial investment amount is large and a large space is required, it is not suitable for small-lot, multi-species production or variable production.
 それに対し、金属製の型を用いる金型鋳造法が存在する。金型鋳造は生砂鋳造に比べて、砂に起因する不具合の発生が無い、寸法精度が良い、鋳造品の表面がきれいである等の特徴があり、その結果、歩留が良い、仕上工数が少なくて済むというメリットがある。また、生砂鋳造に比べて初期投資額が少なく、冷却等のスペースも小さくて済むというメリットもある。 On the other hand, there is a mold casting method using a metal mold. Die casting is characterized in that there are no problems caused by sand, good dimensional accuracy, and a clean surface of the cast compared to green sand casting, and as a result, the yield is good, the number of finishing processes Has the advantage of being In addition, there is also a merit that the initial investment amount is small compared with green sand casting, and the space for cooling and the like can be small.
特許第4099535号公報Patent No. 4099535
 金型鋳造は上記のような様々な利点があるものの、砂型と比較すると鋳造時の冷却速度が大きいため、鋳造後の鋳造製品が硬くなりやすく、硬さを下げるための熱処理が必要となるという問題がある。また、金型は高温の溶湯に接することから、高温に耐える金属を用いる必要がある。現在、金型材料としては銅合金や工具鋼等が用いられているが、これらは材料自体が高価である上、切削等の型加工が困難であるため、加工費も高いものとなるという問題がある。なお、1個の金型で複数回の鋳造を行うことができるものの、その寿命(回数)は限られていることから、型寿命を考慮しても鋳造品1個当たりの金型代は高価である。 Although die casting has various advantages as described above, the cooling rate at the time of casting is higher than that of sand molds, so the cast product after casting tends to be hard, and heat treatment is required to lower the hardness. There's a problem. In addition, since the mold is in contact with a high temperature molten metal, it is necessary to use a metal that can withstand high temperature. At present, copper alloys and tool steels are used as mold materials. However, these materials are expensive themselves, and because mold processing such as cutting is difficult, the problem is that the processing cost is also high. There is. In addition, although the casting can be performed multiple times with one mold, the life (number of times) is limited, so the mold cost per cast item is expensive even considering the mold life. It is.
 そこで、本発明が解決しようとする課題は、鋳造後の製品の熱処理が不要であり、かつ、金型代が安価である鋳造用金型を提供することである。 Therefore, the problem to be solved by the present invention is to provide a casting mold in which the heat treatment of the product after casting is unnecessary and the mold cost is low.
 上記課題を解決するために成された本発明は、内部を空洞(中空)としたことを特徴とする鋳鉄製の鋳造用金型である。 The present invention made to solve the above problems is a cast iron casting mold characterized in that the inside is hollow (hollow).
 本発明に係る鋳造用中空金型は、鋳鉄の他、アルミニウム(合金)やマグネシウム(合金)等の様々な金属の鋳造に用いることができ、更には、プラスチック製品の製造(成形)にも用いることができる。 The hollow mold for casting according to the present invention can be used for casting of various metals such as aluminum (alloy) and magnesium (alloy) in addition to cast iron, and also used for manufacturing (forming) of plastic products. be able to.
 上記中空金型は、特許文献1に記載の加工方法を応用した方法により製造することができる。具体的には、次のような方法で作製する(図1)。
 a) 目的とする金型(目的金型)の元型を鋳鉄で作製する(ステップS1)。
 b) 該元型を所定の温度(脱炭温度)に加熱することにより、表層部のみ脱炭させる(ステップS2)。
 c) 該元型を別の所定温度(内部溶融温度)に加熱することにより前記表層部を除く内部の低融点部分のみを溶融させ、該元型の外部に流出させる(ステップS3)。
 以上の処理を行うことにより、中空金型が完成する(ステップS4)。
The hollow mold can be manufactured by a method to which the processing method described in Patent Document 1 is applied. Specifically, it is manufactured by the following method (FIG. 1).
a) A target mold (target mold) is manufactured with cast iron (step S1).
b) Only the surface layer portion is decarburized by heating the master mold to a predetermined temperature (decarburization temperature) (step S2).
c) By heating the mold to another predetermined temperature (internal melting temperature), only the internal low melting point portion excluding the surface layer portion is melted and flowed out of the mold (step S3).
By performing the above process, the hollow mold is completed (step S4).
 上記のような中空処理が可能であるのは、特許文献1にも記載されているとおり、鋳鉄の炭素(C)含有量と融点の関係(図2のFe-C系状態図)をうまく利用したことによるものである。すなわち、ステップS2で鋳鉄品である元型を加熱することにより、元型の表面から炭素が脱出し(脱炭)、表面部分のみ炭素濃度が低くなる。図2のFe-C系状態図を見ると分かるように、Fe-C合金である鋳鉄の融点は、C濃度が低くなるほど、高くなる。前記脱炭処理により、元型の表面は純鉄に近い状態となり、その融点は純鉄の融点である1534℃に近い値となる。従って、そのように表面脱炭処理を施した元型を、内部の炭素含有部分の融点以上であって、表面の脱炭部分の融点以下である温度に加熱することにより、表面部分(殻部分)のみ固体のまま、内部のみ溶融させることができる。元型の下部に予め流出用の孔を空けておくことにより、溶融した内部の鋳鉄がその孔から流出し、内部が空洞となる。 As described in Patent Document 1, the hollow processing as described above is possible by utilizing the relationship between the carbon (C) content of cast iron and the melting point (Fe-C phase diagram in FIG. 2) It is due to the fact that That is, by heating the mold which is a cast iron product in step S2, carbon escapes from the surface of the mold (decarburization), and the carbon concentration becomes low only at the surface portion. As can be seen from the Fe—C phase diagram of FIG. 2, the melting point of cast iron which is a Fe—C alloy becomes higher as the C concentration becomes lower. By the above-mentioned decarburization treatment, the surface of the original mold is in a state close to pure iron, and the melting point thereof becomes a value close to 1534 ° C. which is the melting point of pure iron. Therefore, the surface portion (shell portion) is obtained by heating the original mold thus subjected to the surface decarburizing treatment to a temperature which is equal to or higher than the melting point of the internal carbon-containing portion and equal to or lower than the melting point of the decarburized portion on the surface. Only solid), only the inside can be melted. By pre-drilling the outflow hole in the lower part of the mold, the molten cast iron flows out of the hole and the inside becomes hollow.
 本発明の中空金型の材料である鋳鉄の炭素等量CEは、次の式(1)を満たす組成を有することが望ましい(式中の%は質量%)。
  2.0≦CE = C% + (Si% + P%)/3≦5.5  …(1)
 CEの値が4.3付近のものは共晶、それ以下のもの(2.0≦CE<4.3)は亜共晶、それ以上のもの(4.3≦CE≦5.5)は過共晶である(図2)。
The carbon equivalent CE of cast iron, which is the material of the hollow mold of the present invention, desirably has a composition satisfying the following formula (1) (in the formula,% is mass%).
2.0 ≦ CE = C% + (Si% + P%) / 3 ≦ 5.5 (1)
Those with a CE value of around 4.3 are eutectic, those below CE (2.0 ≦ CE <4.3) are hypoeutectic, and those above (4.3 ≦ CE ≦ 5.5) are hypereutectic (FIG. 2).
 CEが(1)式の範囲内の値であれば、その固相線(融点)は炭素等量に拘わらずほぼ1147℃で一定である(液相線は約1400℃以下である)。従って、上記c)内部溶融・流出工程における加熱温度は、概ね、その融点(1147℃)からそれより50℃程度高い温度、すなわち、1147~1200℃の範囲内とすることが望ましい。なお、脱炭層における炭素濃度を1%以下にしておけば、その部分(脱炭層)の融点は1350℃程度となる。 If CE is a value within the range of equation (1), the solidus line (melting point) is constant at about 1147 ° C. regardless of the carbon equivalent (the liquidus line is about 1400 ° C. or less). Therefore, it is desirable that the heating temperature in the above-mentioned c) internal melting and outflow steps be approximately 50 ° C. higher than its melting point (1147 ° C.), that is, in the range of 1147 to 1200 ° C. When the carbon concentration in the decarburized layer is 1% or less, the melting point of the portion (decarburized layer) is about 1350 ° C.
 望ましくは、CE値は3.5~4.6としておく。これにより、液相線(完全溶融温度)が1250℃以下となり、内部の溶融が容易となる。もちろん、鋳造も容易となる。 Preferably, the CE value is set to 3.5 to 4.6. As a result, the liquidus (complete melting temperature) becomes 1250 ° C. or less, and melting of the inside becomes easy. Of course, casting also becomes easy.
 元型の材料を亜共晶(CE<4.3、望ましくはCE≦4.2)とすることにより、本発明の金型は完全な中空ではなく、ハニカム状の中空金型となる。これは、図2の状態図から明らかなように、上記c)の内部溶融工程において内部の亜共晶鋳鉄が完全には溶融せず、融点の高いデンドライト状のγ相の一部が格子状に残存するためであると考えられる。ハニカム状中空鋳鉄については、本件出願人の出願に係る国際出願PCT/JP2011/079367に詳しく開示されている。これにより、金型の強度が上昇するため、歪を生じやすい大型金型への使用に適したものとなる。逆に、元型の材料を共晶又は過共晶(CE≧4.3)とすることにより、本発明の金型は完全な中空金型となる。 By making the material of the original mold hypoeutectic (CE <4.3, preferably CE ≦ 4.2), the mold of the present invention is not completely hollow but is a honeycomb hollow mold. As apparent from the phase diagram of FIG. 2, this is because the hypoeutectic cast iron inside is not completely melted in the internal melting step c), and a part of the dendritic γ phase having a high melting point is in a lattice It is considered to be to remain in The honeycomb shaped hollow cast iron is disclosed in detail in the international application PCT / JP2011 / 0790367 according to the applicant's application. As a result, the strength of the mold is increased, which makes it suitable for use in a large mold that is susceptible to distortion. Conversely, the mold of the present invention becomes a perfect hollow mold by making the material of the original mold eutectic or hypereutectic (CE ≧ 4.3).
 本発明に係る中空金型の殻の厚さは、上記b)脱炭工程における脱炭層の厚さを調節することにより決定することができる。これは、b)脱炭工程における加熱温度と時間により任意に調整することができるが、あまりの高温・長時間の加熱は金型の素材である鋳鉄に悪影響を与えるため(脱炭温度は、融点よりも100~30℃程度低い範囲の値とすることが望ましい。)、最大でも5 mm程度としておくことが望ましい。一方、薄い方は任意に設定することができるが、金型としての強度が必要であるため、一般的には2 mm以上としておくことが望まれる。 The thickness of the shell of the hollow mold according to the present invention can be determined by adjusting the thickness of the decarburized layer in the above b) decarburization step. This can be arbitrarily adjusted by the heating temperature and time in the b) decarburization step, but too much high temperature and long time heating adversely affect the cast iron which is the material of the mold (decarburization temperature is It is desirable to set the value to a range of about 100 to 30 ° C. lower than the melting point), and it is desirable to set the value to at most about 5 mm. On the other hand, although the thinner one can be set arbitrarily, generally, it is desirable to set the thickness to 2 mm or more because strength as a mold is required.
 本願発明に係る金型は中空であるため、特に鋳造品に接する部分において熱容量が小さく、また、中空部の空気層による断熱効果により、鋳造後の鋳造品の冷却速度が従来の金型よりも遅い。そのため、製品によっては鋳造後の熱処理を省略することができる。また、その素材は鋳鉄であるため従来の合金金型鋼よりも遙かに安価であり、寿命が多少短くても、鋳造製品1個当たりの単価は十分低く抑えることができる。 Since the mold according to the present invention is hollow, the heat capacity is small particularly at the portion in contact with the cast product, and the cooling rate of the cast product after casting is lower than that of the conventional mold due to the heat insulating effect of the air layer in the hollow section. slow. Therefore, the heat treatment after casting can be omitted depending on the product. Moreover, since the material is cast iron, it is much cheaper than conventional alloy mold steels, and the unit price per cast product can be kept sufficiently low even if the life is a little short.
 なお、この鋳造後の冷却速度は、この金型の中空部分に空気や水等の流体を流通させることにより適宜調整することができる。 The cooling rate after casting can be appropriately adjusted by circulating a fluid such as air or water in the hollow portion of the mold.
本発明に係る中空金型を製造する工程の概略フローチャート。The outline flow chart of the process of manufacturing the hollow metal mold concerning the present invention. 鉄-炭素系状態図(Si = 0%の場合)。Iron-carbon phase diagram (for Si = 0%). 実施例1であるコップ状中空金型の外観写真(a)及びX線CT(断面)写真(b)。The external appearance photograph (a) and X-ray CT (cross section) photograph (b) of the cup-shaped hollow mold which is Example 1 are shown. 実施例1の中空金型の素材の主要化学組成(質量%)。Main chemical composition (mass%) of the material of the hollow mold of Example 1. 実施例1の中空金型で製造した鋳造品の外観写真(a)、表面ミクロ組織写真(b)及び表面硬さ分布のグラフ(c)。An appearance photograph (a) of a cast manufactured with a hollow metallic mold of Example 1, a surface microstructure photograph (b), and a graph (c) of surface hardness distribution. 実施例2である遊星歯車キャリア用中空金型の下型の外観図(a)及び上型の外観図(b)、並びに、下型のX線CT(断面)写真(c)及び上型のX線CT(断面)写真(d)。Example 2 external appearance view of the lower mold of the hollow mold for a planetary gear carrier (a) and external view of the upper mold (b), X-ray CT (cross section) photograph (c) of the lower mold and the upper mold X-ray CT (cross section) photograph (d). 実施例2の中空金型の素材の主要化学組成。Main chemical composition of the material of the hollow mold of Example 2. 実施例2の中空金型の下型に中子をセットした状態の平面写真(a)、下型と上型を合わせた状態の外観写真(b)、上型と下型をクランプで型締めした状態の外観写真(c)。The top view of a state in which the core is set in the lower mold of the hollow mold of Example 2 (a), the appearance photo of the state in which the lower mold and the upper mold are combined (b), the upper mold and the lower mold are clamped Appearance photograph (c) of the state where it was. 実施例2の中空金型で製造した遊星歯車キャリアの鋳造状態の外観写真(a)及び表面を機械加工した後の外観写真(b)。An appearance photograph (a) of a casting state of a planet gear carrier manufactured with a hollow mold of Example 2 and an appearance photograph (b) after machining the surface. 種々の条件の下で製造した遊星歯車キャリアの表面の硬さの測定結果を示す表及び図。The table and figure which show the measurement result of the hardness of the surface of the planetary gear carrier manufactured under various conditions.
 本発明に係る中空金型の製造例を2種説明する。 Two production examples of the hollow mold according to the present invention will be described.
 第1の例は、図3(a)に示すようなコップ状の中空金型である。これは具体的な製品を想定したものではなく、中空金型の製造可能性及び使用可能性を確認するための試験品として作製した。大きさは、開口外径72 mm、開口内径52 mm、底外径62 mm、底内径42 mm、全高80 mmである。 The first example is a cup-shaped hollow mold as shown in FIG. 3 (a). This is not intended to be a specific product, but was produced as a test product to confirm the manufacturability and usability of the hollow mold. The dimensions are an opening outside diameter 72 mm, an opening inside diameter 52 mm, a bottom outside diameter 62 mm, a base inside diameter 42 mm, and a total height 80 mm.
 この金型の元型は、FCD450鋳鉄を砂型に鋳込むことにより作製した。その鋳鉄の化学成分を図4に示す。図4の最後の欄に示すように、本実施例の中空金型(以下、これを中空金型1と呼び、その元型を元型1と呼ぶ。)の素材のCE値は4.4であり、僅かに過共晶である。 The original mold of this mold was produced by casting FCD450 cast iron into a sand mold. The chemical composition of the cast iron is shown in FIG. As shown in the last column of FIG. 4, the CE value of the material of the hollow mold of this embodiment (hereinafter, this is called hollow mold 1 and its original mold is called original mold 1) is 4.4. , Slightly hypereutectic.
 この元型1を電気式加熱炉により、都市ガスを変成してCO/(CO+CO2)*100=85%となるように調整した変成ガス雰囲気中で1070℃まで加熱し、24 h保持するという脱炭処理を行った。脱炭処理後は雰囲気をN2ガスに変え、500℃まで炉冷し、その後大気中で放冷した。 This model 1 is heated to 1070 ° C. in a modified gas atmosphere adjusted to CO / (CO + CO 2) * 100 = 85% with an electric heating furnace, and maintained for 24 h. We performed decarburization processing. After decarburization, the atmosphere was changed to N 2 gas, furnace cooled to 500 ° C., and then allowed to cool in the air.
 常温にした元型1の開口側の縁の一箇所(図3(a)の手前側)にφ6 mmのドリルで深さ6 mmの孔(流出孔)を穿孔した。 A 6 mm deep hole (outflow hole) was drilled with a φ 6 mm drill at one point on the opening side of the original mold 1 kept at room temperature (the front side of FIG. 3A).
 その後、同じ電気式加熱炉内に、上記流出孔が下になるように元型1を置き、炉内をN2ガス雰囲気となるようにして、50 minかけて1185℃まで加熱し、その温度で8 min保持した。元型1がその温度に達した時点で前記流出孔より溶湯が流出し始めたが、数分の後、溶湯の流出量が減少し、8 minの保持時間後には殆ど流出が止んでいた。同じN2雰囲気中で500℃となるまで炉冷し、その後大気中で放冷した。これにより、中空金型1が得られた。 Thereafter, in the same electric heating furnace, place the mold 1 so that the above-mentioned outflow hole is at the bottom, heat the inside of the furnace to 1185 ° C. for 50 min so that the atmosphere is N 2 gas, Hold for 8 min. When the mold 1 reached its temperature, the molten metal started to flow out of the outflow hole, but after several minutes, the amount of molten metal flowed decreased and almost stopped flowing after the holding time of 8 min. The furnace was cooled to 500 ° C. in the same N 2 atmosphere and then allowed to cool in the air. Thus, a hollow mold 1 was obtained.
 中空金型1の、X線CTで撮影した断面を図3(b)に示す。厚さ約2.5 mmの脱炭層から成る殻で囲まれた内部がきれいな空洞(中空)となっていることが分かる。元型1の質量は1,020 gr(グラム)であったが、中空処理後の中空金型1は680 grとなっていた。 The cross section of the hollow mold 1 taken by X-ray CT is shown in FIG. It can be seen that the shelled interior consisting of a decarburized layer about 2.5 mm thick is a clean cavity (hollow). The mass of the mold 1 was 1,020 gr (grams), but the hollow mold 1 after the hollow processing was 680 gr.
 この中空金型1を用いて鋳鉄の鋳造を行った。これにより得られた鋳造品(これを鋳造品1と呼ぶ。)の外観を図5(a)に示す。鋳造品1の素材も金型と同様FCD450鋳鉄とし、中空金型1の空洞内には空気を吹き込まず、鋳鉄を鋳込んだ後、室温で放冷した。得られた鋳造品1の質量は490 grである。 Cast iron was cast using this hollow mold 1. The appearance of a cast product (referred to as cast product 1) obtained thereby is shown in FIG. 5 (a). The material of the cast product 1 was FCD450 cast iron as well as the mold, air was not blown into the hollow mold 1 cavity, cast iron was cast, and allowed to cool at room temperature. The mass of the obtained casting 1 is 490 gr.
 鋳造品1の表面近傍のミクロ組織を図5(b)に、深さ方向の硬さ分布を図5(c)に示す。硬さは表面の最も高い部分でもHv 200程度であり、組織もきれいな球状化組織を呈している。このような状態ではもちろん、鋳造後の熱処理を行う必要はない。 The microstructure near the surface of the casting 1 is shown in FIG. 5 (b), and the hardness distribution in the depth direction is shown in FIG. 5 (c). The hardness is about Hv 200 at the highest part of the surface, and the tissue also exhibits a clean spheroidized tissue. In such a state, of course, it is not necessary to carry out heat treatment after casting.
 第2の例は、自動車のオートマチック・トランスミッションで用いられる遊星歯車キャリアを製造するための金型である。本実施例の金型(中空金型2と呼ぶ。)は下型と上型から成り、それぞれの外観写真を図6(a)及び(b)に示す。中空金型2の大きさは、縦190 mm、横165 mm、高さ(下型)50 mm、(上型)70 mmである。これら下型及び上型の元型(これらを下型元型2、上型元型2及び元型2と呼ぶ。)はいずれも砂型を用いた鋳造により作製した。元型2(中空金型2)の素材もFCD450とした。その主要化学組成は図7に示すとおりであり、CE値は4.3(ほぼ共晶)である。 A second example is a mold for manufacturing a planetary gear carrier used in an automatic transmission of a motor vehicle. The mold of the present embodiment (referred to as hollow mold 2) is composed of a lower mold and an upper mold, and their external appearance photographs are shown in FIGS. 6 (a) and 6 (b). The size of the hollow mold 2 is 190 mm in length, 165 mm in width, 50 mm in height (lower mold), and 70 mm in (upper mold). Each of the lower mold and the upper mold (these are referred to as lower mold 2 and upper mold 2 and mold 2) was manufactured by casting using a sand mold. The material of the mold 2 (hollow mold 2) was also FCD450. The main chemical composition is as shown in FIG. 7, and the CE value is 4.3 (almost eutectic).
 これら元型下型2及び元型上型2を、CO/(CO+CO2)=85%の雰囲気中で1,070 ℃×24 h加熱することにより、脱炭処理を施した。いったん冷却した後、元型下型2及び元型上型2の同じ方向の箇所(図6(a)、(b)では共に下側)に、下型2では径10 mm、深さ12 mmの、上型2では径18 mm、深さ15 mmの流出孔をドリルで穿孔した。次に、これら下型・上型元型2を、流出孔を下にした状態で加熱した。両元型2は、加熱開始後約90 minで1180℃に達し、その時点で流出孔より溶湯が流出し始めた。その後、ほぼ20 minで流出が完了した(溶湯がほとんど流出しなくなった)ので、加熱を終了し(このときの両元型2の温度は1190℃であった)、放冷により室温まで冷却した。 The decarburizing treatment was performed by heating the master mold lower mold 2 and the master mold upper mold 2 in an atmosphere of CO / (CO + CO 2) = 85% at 1,070 ° C. × 24 h. After cooling once, the lower mold 2 has a diameter of 10 mm and a depth of 12 mm at the same direction (in FIG. 6 (a) and (b) both lower portions) of the lower mold 2 and the upper mold 2 In the upper mold 2, an outflow hole of 18 mm in diameter and 15 mm in depth was drilled. Next, the lower and upper molds 2 were heated with the outlet holes down. The two molds 2 reached 1180 ° C. in about 90 minutes after the start of heating, at which point the molten metal started to flow out from the outflow holes. After that, the flow was completed in about 20 min (almost no melt flowed out), so heating was ended (the temperature of both molds 2 at this time was 1190 ° C.), and was allowed to cool down to room temperature. .
 このようにして製造した下型元型2及び上型元型2のX線CT(断面)写真を図6(c)及び(d)に示す。流出孔を設けた箇所(図6(c)、(d)の右側)では固化した残留溶湯のために厚くなっているが、その他の部分ではほぼ2.5 mmの均等な厚さの殻に囲まれた中空金型2が完成していることがわかる。 The X-ray CT (cross-sectional) photographs of the lower mold model 2 and the upper mold model 2 manufactured in this manner are shown in FIGS. 6 (c) and (d). The area where the outlet holes are provided (right side of Fig. 6 (c) and (d)) is thickened because of the solidified residual molten metal, but the other part is surrounded by shells of approximately 2.5 mm in uniform thickness. It can be seen that the hollow mold 2 is completed.
 これら中空金型2(下型2及び上型2)を用いて遊星歯車キャリアを製造する方法は次の通りである。図8(a)に示すように下型2を置き、キャビティに中子を置いた後、図8(b)に示すように上型2を置く。図8(b)の左側に現れているように、下型2及び上型2には、その内部空洞に空気を流入させるためのパイプを取り付ける。また、上型2には湯口を設ける。そして、図8(c)に示すように上型2と下型2をクランプで締め付け、湯口から溶湯を流し込む。 The method of manufacturing a planetary gear carrier using these hollow molds 2 (lower mold 2 and upper mold 2) is as follows. After the lower die 2 is placed as shown in FIG. 8 (a) and the core is placed in the cavity, the upper die 2 is placed as shown in FIG. 8 (b). As shown on the left side of FIG. 8B, the lower mold 2 and the upper mold 2 are fitted with pipes for introducing air into the internal cavity thereof. Further, the upper mold 2 is provided with a gate. Then, as shown in FIG. 8C, the upper mold 2 and the lower mold 2 are clamped with a clamp, and the molten metal is poured from the gate.
 下型2及び上型2を用いて様々な条件で遊星歯車キャリアの鋳造品を製造し(これを鋳造品2と呼ぶ。)、その表面の硬さを測定した。なお、本実施例で用いた溶湯素材は球状黒鉛鋳鉄FCD500である。 A cast of a planetary gear carrier was manufactured under various conditions using the lower mold 2 and the upper mold 2 (this is referred to as the cast 2), and the hardness of the surface was measured. The molten metal material used in this example is a spherical graphite cast iron FCD500.
 その結果を図10に示す。表面硬さは、鋳造品2のうち、上型と接する箇所(上型側)と下型と接触する箇所(下型側)で測定した。 The results are shown in FIG. The surface hardness was measured at a location (upper die side) in contact with the upper die and a location (lower die side) in contact with the lower die in the casting 2.
 図10においてNo. 1~No. 4の試料は、脱炭-溶融・流出処理を行わず、中実としたままの下型(下型元型2)及び上型(上型元型2)を用いて鋳造したものであり、No. 5~No. 8の試料は本発明に係る中空金型を用いて鋳造したものである。また、No. 1とNo. 2及びNo. 5とNo. 6の試料は金型内に塗型を行わないで鋳造を行い、No. 3とNo. 4及びNo. 7とNo. 8の試料は金型の内面に塗型を行って鋳造を行った。ここで用いた塗型は珪藻土であり、その厚さは約0.2 mmとした。更に、No. 1、No. 3、No. 5、No. 7の試料は鋳鉄への接種を行なわず、No. 2、No. 4、No. 6、No. 8の試料は鋳込む直前の鋳鉄溶湯にフェロシリコンの投入(接種)を行った。 In FIG. 10, the samples No. 1 to No. 4 are not subjected to decarburization-melting / flow-out treatment, and are solid solid lower mold (lower mold model 2) and upper mold (upper mold model 2). The samples No. 5 to No. 8 were cast using the hollow mold according to the present invention. The samples No. 1 and No. 2 and No. 5 and No. 6 were cast without being cast in the mold, and No. 3 and No. 4 and No. 7 and No. 8 were cast. The sample was casted by molding on the inner surface of the mold. The mold used here was diatomaceous earth, and its thickness was about 0.2 mm. Further, the samples No. 1, No. 3, No. 5 and No. 7 were not inoculated to cast iron, and the samples No. 2, No. 4, No. 6 and No. 8 were just before casting. The cast iron melt was charged (inoculated) with ferrosilicon.
 No. 1~No. 4の試料の下型側及び上型側の硬さ(計8点)の平均値はHv 526であり、No. 5~No. 8の試料の同平均値はHv 341である。すなわち、本発明に係る中空金型を用いることにより、従来の中実金型を用いた場合と比較すると、ビッカース硬さで約200近く鋳造品の硬さが低下していることがわかる。 The average hardness of the lower mold side and upper mold side (total 8 points) of the samples No. 1 to No. 4 is Hv 526, and the average value of the samples No. 5 to No. 8 is Hv 341. It is. That is, by using the hollow mold according to the present invention, it is understood that the hardness of the cast product is reduced by about 200 in Vickers hardness, as compared with the case of using the conventional solid mold.
 中実の金型を用いた試料では、最も低いものでも表面硬さはHv 417という高い値となっているが、このような硬さの鋳造品では、熱処理(焼なまし処理)が必須となる。
 一方、中空金型を用いたNo. 5~8の試料では、塗型を使用し、接種を行った場合にはHv 264~269まで硬さが低下しており、このような硬さでは鋳造後の熱処理は不要となる。
In the case of a sample using a solid mold, the surface hardness is as high as Hv 417 even at the lowest, but heat treatment (annealing treatment) is essential for cast products of such hardness. Become.
On the other hand, for samples No. 5 to 8 using hollow molds, molds are used, and when inoculated, the hardness is lowered to Hv 264 to 269. With such hardness, casting is performed The subsequent heat treatment is unnecessary.
 遊星歯車キャリアの鋳造のままの状態の外観写真を図9(a)に、その鋳造品を仕上げ機械加工した状態の外観写真を図9(b)に示す。鋳造品、加工品とも、外観上の問題は全く無い。なお、鋳造品(図9(a))の外径は95 mm、高さは75 mm、質量は980 grであり、製品(図9(b))の質量は650 grである。 An appearance photograph of the as-cast status of the planetary gear carrier is shown in FIG. 9 (a), and an appearance photograph of the finish-machined casting is shown in FIG. 9 (b). There are no appearance problems at all for casted products and processed products. The outer diameter of the cast product (FIG. 9 (a)) is 95 mm, the height is 75 mm, the mass is 980 gr, and the mass of the product (FIG. 9 (b)) is 650 gr.
 図10の試料はいずれも、中空金型2の空洞内に空気を流通させて作製したものである。内部空洞への空気の流通を行わない場合、鋳造品の冷却速度はより小さく(遅く)なり、その硬さも低下する。しかし、内部空洞への空気の流通を行わない場合、溶湯に接する金型がより高温となり、繰り返し使用した場合に熱疲労により繰り返し寿命が低下する。 Each of the samples in FIG. 10 is produced by circulating air in the hollow of the hollow mold 2. Without air flow to the internal cavity, the casting will have a lower (or slower) cooling rate and a lower hardness. However, when air is not circulated to the internal cavity, the mold in contact with the molten metal becomes hotter, and when it is used repeatedly, its life is repeatedly reduced due to thermal fatigue.
 従来の銅合金や工具鋼を用いた中実金型では、10,000回(ショット)の繰り返し使用が可能とされている。本発明に係る中空金型では、素材として非常に安価な鋳鉄を使用することができ、また、元型を鋳造で製造することができることから、そのような従来の金型と比較するとその金型自体のコストは1/20程度とすることができる。従って、1ショット当たりのコストを従来の銅合金や工具鋼製中実金型よりも低くし、実用的に使用できるようにするためには、1,000ショット以上の寿命を有することが望まれる。このような観点より、鋳造品のサイズや鋳造品の素材に応じて、鋳造後の熱処理を必要としない程度の低い硬さを確保しつつ中空金型の寿命を延ばすために、予め実験を行っておき、内部空洞への空気の流通を行う、或いは、行わない、という処理を選択することが望ましい。 In a solid mold using a conventional copper alloy or tool steel, repeated use of 10,000 times (shots) is possible. In the hollow mold according to the present invention, very inexpensive cast iron can be used as the material, and since the original mold can be manufactured by casting, the mold compared with such conventional molds The cost of itself can be about 1/20. Therefore, in order to lower the cost per shot to that of a conventional copper alloy or tool steel solid mold and to make it practically usable, it is desirable to have a life of 1,000 shots or more. From this point of view, depending on the size of the cast product and the material of the cast product, experiments are conducted in advance to extend the life of the hollow mold while securing a low hardness that does not require heat treatment after casting. In addition, it is desirable to select a process that allows or does not allow the flow of air into the internal cavity.

Claims (10)

  1.  内部を空洞としたことを特徴とする鋳鉄製の鋳造用中空金型。 Cast iron hollow mold for casting characterized in that the inside is hollow.
  2.  素材の鋳鉄の[C% + (Si% + P%)/3]で定義されるCE値が2.0≦CE≦5.5であることを特徴とする請求項1に記載の鋳造用中空金型。 The casting hollow mold according to claim 1, wherein a CE value defined by [C% + (Si% + P%) / 3] of cast iron as a material is 2.0 ≦ CE ≦ 5.5.
  3.  4.3≦CE≦4.6であることを特徴とする請求項1又は2に記載の鋳造用中空金型。
    造 
    The hollow casting mold according to claim 1 or 2, wherein 4.3 CE CE ≦ 4.6.
    Construction
  4.  3.5≦CE<4.3であることを特徴とする請求項1又は2に記載の鋳造用ハニカム状中空金型。 3. The hollow honeycomb mold for casting according to claim 1, wherein 3.5 ≦ CE <4.3.
  5.  内部空洞に流体を流通させるための流入・流出口を有することを特徴とする請求項1~4のいずれかに記載の鋳造用中空金型。 The casting hollow mold according to any one of claims 1 to 4, further comprising an inflow / outflow port for circulating fluid in the internal cavity.
  6.  殻の厚さが2~5 mmであることを特徴とする請求項1~5のいずれかに記載の鋳造用中空金型。 The hollow casting mold according to any one of claims 1 to 5, wherein the thickness of the shell is 2 to 5 mm.
  7.  a) 目的金型の元型を鋳鉄で作製する工程と、
     b) 該元型を所定の温度に加熱することにより、表層部のみ脱炭させる工程と、
     c) 該元型を別の所定温度に加熱することにより前記表層部を除く内部の低融点部分のみを溶融させ、該元型の外部に流出させる工程と
     を有することを特徴とする鋳造用中空金型の製造方法。
    a) Purpose The process of producing the original mold of cast iron with cast iron,
    b) decarburizing only the surface layer portion by heating the mold to a predetermined temperature;
    c) heating the master mold to another predetermined temperature to melt only the low melting point portion inside except the surface layer part, and flowing out to the outside of the master mold; Mold manufacturing method.
  8.  前記元型を鋳造で作製することを特徴とする請求項7に記載の鋳造用中空金型の製造方法。 The method for producing a casting hollow mold according to claim 7, wherein the mold is produced by casting.
  9.  前記元型を、[C% + (Si% + P%)/3]で定義されるCE値が4.3≦CE≦4.6である鋳鉄で作製することを特徴とする請求項7又は8に記載の鋳造用中空金型の製造方法。 The said original mold is produced with the cast iron whose CE value defined by [C% + (Si% + P%) / 3] is 4.3 <= CE <= 4.6. Manufacturing method of hollow mold for casting.
  10.  前記元型を、[C% + (Si% + P%)/3]で定義されるCE値が3.5≦CE<4.3である鋳鉄で作製することを特徴とする請求項7又は8に記載の鋳造用ハニカム状中空金型の製造方法。 The said master mold is produced with the cast iron whose CE value defined by [C% + (Si% + P%) / 3] is 3.5 <= CE <4.3, It is characterized by the above-mentioned. A method of manufacturing a honeycomb-like hollow mold for casting.
PCT/JP2013/056183 2012-04-27 2013-03-06 Casting hollow mold and manufacturing method therefor WO2013161396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013534121A JP5501532B1 (en) 2012-04-27 2013-03-06 Hollow mold for casting and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012104058 2012-04-27
JP2012-104058 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161396A1 true WO2013161396A1 (en) 2013-10-31

Family

ID=49482736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056183 WO2013161396A1 (en) 2012-04-27 2013-03-06 Casting hollow mold and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP5501532B1 (en)
MY (1) MY157491A (en)
WO (1) WO2013161396A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277796A (en) * 1993-03-26 1994-10-04 Mitsui Eng & Shipbuild Co Ltd Material for casting mold
JP2001332267A (en) * 2000-05-19 2001-11-30 Japan Storage Battery Co Ltd Welding device for current collector of cell
JP2006015390A (en) * 2004-07-05 2006-01-19 Komatsu Castex Ltd Die for molding die made of ferrous material
JP4099535B2 (en) * 2004-02-05 2008-06-11 有限会社アクティ Processed cast iron part and method of processing cast iron part

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124655U (en) * 1983-02-11 1984-08-22 トヨタ自動車株式会社 Mold air cooling and hot air blowing device
JP3018342U (en) * 1995-05-19 1995-11-21 虹技株式会社 Water cooled mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277796A (en) * 1993-03-26 1994-10-04 Mitsui Eng & Shipbuild Co Ltd Material for casting mold
JP2001332267A (en) * 2000-05-19 2001-11-30 Japan Storage Battery Co Ltd Welding device for current collector of cell
JP4099535B2 (en) * 2004-02-05 2008-06-11 有限会社アクティ Processed cast iron part and method of processing cast iron part
JP2006015390A (en) * 2004-07-05 2006-01-19 Komatsu Castex Ltd Die for molding die made of ferrous material

Also Published As

Publication number Publication date
JP5501532B1 (en) 2014-05-21
JPWO2013161396A1 (en) 2015-12-24
MY157491A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
KR101827498B1 (en) Method of Forming a Component of Complex Shape from Sheet Material
JP6645725B2 (en) Mold steel and mold
CN108034844B (en) A kind of semi-solid-state shaping method of the constituent elements high-entropy alloys such as high-melting-point
CN102373352A (en) Preparation method of forging aluminum alloy for wheel hub swaging
JP2008073763A (en) Method of manufacturing vehicle wheel
JP2021165436A (en) Mold casting of fine spheroidal graphite cast iron
JP4396576B2 (en) Piston manufacturing method
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
CN101367124A (en) Method of manufacturing magnesium alloy semi-solid state blank
JP5501532B1 (en) Hollow mold for casting and manufacturing method thereof
JP2009255104A (en) Method for manufacturing aluminum-alloy casting and mold therefor
JP2007270195A (en) Method for producing spheroidal graphite cast-iron article, and spheroidal graphite cast-iron article
KR101821240B1 (en) Aluminium alloy casting method having heat treatment process immediately after sand removing processusing
JP5265053B2 (en) Lightweight cast iron products
JP5856764B2 (en) Hypereutectic aluminum-silicon alloy rolled sheet molded product and method for producing the same
US20060225688A1 (en) Engine bore liner cassette and method
JP2005271006A (en) Metallic mold for casting and producing method therefor
CN110373609B (en) Casting method of tool part blank for producing shearing thin-wall steel plate
RU2352671C1 (en) Method of receiving products made of iron with carbon alloy
RU2507026C2 (en) Method of production of cast bimetallic moulds of ferrite steel-aluminium cast iron alloy
JP6823311B2 (en) Chill-free spheroidal graphite cast iron semi-solidified mold casting
JP2021045795A (en) Semi-solidified casting method of spheroidal graphite cast iron and product of semi-solidified casting
RU2448806C1 (en) Method of producing punching tools and injection moulds from moulded blanks of maraging steels
JP2003275859A (en) Method for producing heating plate
RU2610646C1 (en) Method for producing axially symmetrical parts of copper-based heat-resistant alloys

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013534121

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782585

Country of ref document: EP

Kind code of ref document: A1