WO2013161110A1 - 通信システム、通信装置および時刻情報補正方法 - Google Patents

通信システム、通信装置および時刻情報補正方法 Download PDF

Info

Publication number
WO2013161110A1
WO2013161110A1 PCT/JP2012/079383 JP2012079383W WO2013161110A1 WO 2013161110 A1 WO2013161110 A1 WO 2013161110A1 JP 2012079383 W JP2012079383 W JP 2012079383W WO 2013161110 A1 WO2013161110 A1 WO 2013161110A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
communication device
side communication
clock
reference time
Prior art date
Application number
PCT/JP2012/079383
Other languages
English (en)
French (fr)
Inventor
平野 幸男
雄 末廣
健一 名倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013161110A1 publication Critical patent/WO2013161110A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2898Subscriber equipments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • H04J3/0655Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP] using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present invention relates to a communication system that operates by performing time synchronization among a plurality of communication apparatuses connected by an optical transmission line, a communication apparatus applicable to the communication system, and a time information correction method.
  • a station side communication device and a subscriber side communication device are connected by a communication line
  • a communication line not only a basic service in which a subscriber connects to a network and performs time synchronization to communicate data, but also a communication line is used.
  • PON Passive Optical Network
  • OLT station side communication device
  • ONU subscriber side communication devices
  • optical fiber optical fiber
  • optical coupler optical coupler
  • OLT and ONU are Ethernet (registered trademark) Passive Optical Network (hereinafter, EPON) devices conforming to IEEE std 802.3.
  • the ONU extracts the operation clock from the optical signal transmitted from the OLT and acquires relative time information from the value of the 32-bit Timestamp area inside the GATE frame by the control signal (GATE frame) transmitted by the OLT for each ONU.
  • the OLT transmits the operation clock superimposed on the optical transmission signal, receives the REPORT frame transmitted by each ONU, and determines the propagation delay corresponding to the distance of each ONU from the value of the internal Timestamp area. It is obtained and corrected for each ONU, and the relative time is set in the Timestamp area of the GATE frame and transmitted. Thereby, OLT and ONU can make a clock frequency and relative time correspond.
  • the GATE frame and REPORT frame used for matching the relative time are transmitted and received in a relatively short time of less than 1 second. Can be corrected every moment.
  • a sleep function for temporarily powering down an ONU optical transceiver has been studied in order to meet the demand for power saving.
  • the ONU when the sleep function is used, the ONU periodically stops the optical transmitter / receiver, so that the transmission optical signal from the OLT cannot be received. Since the ONU extracts the clock from the transmission optical signal from the OLT, the clock cannot be regenerated while the optical transceiver is stopped. Therefore, during this period, the own apparatus operates using a clock (self-running clock) managed by the ONU itself that is not synchronized with the OLT operation clock.
  • an ONU that is operated with a self-running clock must have an accurate time for a terminal connected to the own device. Cannot output.
  • the self-running clock of the ONU is deviated from the actual time by 50 ppm
  • the optical transceiver is stopped for 0.8 seconds, it is shifted by 40 microseconds during the stop.
  • the time accuracy (less than a few microseconds) required in the TD-SCDMA (Time Division Synchronous Code Division Multiple Access) communication method will be exceeded.
  • the ONU when a failure occurs in the transmission path between the OLT and the ONU, the ONU cannot receive the transmission optical signal from the OLT, and therefore cannot regenerate the clock. Cannot output.
  • the present invention is for solving the above-described problems, and is a case where a subscriber-side communication device does not receive an optical signal from a station-side communication device in a communication system in which a plurality of communication devices are connected.
  • a subscriber-side communication device does not receive an optical signal from a station-side communication device in a communication system in which a plurality of communication devices are connected.
  • it is an object to obtain a communication system, a communication apparatus, and a time information correction method that can operate using more accurate time information.
  • a communication system is a communication system in which a station-side communication device and a plurality of subscriber-side communication devices are connected via an optical transmission line, and the station-side communication device includes a control including a reference time and a reference clock.
  • a control signal transmitting means for generating a signal and transmitting a control signal to the subscriber-side communication device; the subscriber-side communication device receives the control signal transmitted from the station-side communication device; Extraction means for extracting the time and reference clock, comparison between the reference clock acquired by the extraction means and the internal clock generated in its own device, and comparison by the clock comparison means for holding the comparison result, and comparison by the clock comparison means Time correction means for correcting the reference time based on the result and an internal clock generated in the own apparatus.
  • the communication system is a communication system in which a station-side communication device connected to a reference time generator and a plurality of subscriber-side communication devices are connected via an optical transmission line, the station-side communication device Is generated in the device itself with reference time input means for receiving the reference time including the time information and the periodic signal generated by the reference time generator, and the periodic signal extracted from the control signal received by the reference time input means.
  • a clock comparison unit that compares the operation clock and holds the comparison result
  • a time correction unit that corrects the reference time based on the comparison result by the clock comparison unit and the operation clock generated in the device.
  • the communication device is a communication device applicable to a communication system in which a plurality of communication devices are connected via an optical transmission line, and receives time information and a periodic signal from a control signal input from the outside.
  • Extraction means to extract, the periodic signal extracted by the extraction means, and the operation clock generated in its own device is compared, the clock comparison means for holding the comparison result, the comparison result by the clock comparison means, Time correction means for correcting the time information extracted by the extraction means based on the operation clock generated in the own apparatus.
  • the time information correction method is a time information correction method applicable to a communication system in which a station-side communication device and a subscriber-side communication device are connected via an optical transmission line. Generates a control signal including the reference time and the operation clock of its own device, and transmits the control signal to the subscriber side communication device, and the subscriber side communication device is transmitted in the control signal transmission step.
  • a control signal receiving step for receiving a control signal, an extraction step for extracting a reference time and an operation clock of the station side communication device from the control signal received in the control signal receiving step, and a subscriber side communication device are extracted in the extraction step.
  • a clock comparison step for comparing the operation clock of the station-side communication device and the operation clock generated in its own device and holding the comparison result; Comprising comparison results stored in compare step, based on the operation clock generated by the subscriber-side communication device, and the time information correction step of correcting the reference time extracted in the extraction step.
  • the time information correction method is a time information correction method applicable to a communication system in which a station side communication device connected to a reference time generation device and a subscriber side communication device are connected via an optical transmission line.
  • the station side communication device receives the reference time including the time information generated by the reference time generator and the periodic signal, the reference time receiving step, and the periodic signal received in the reference time receiving step
  • the operation is performed using more accurate time information. Can do.
  • FIG. 1 is a block diagram showing a configuration of the communication system shown in the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a reference time used in the communication system according to the first embodiment.
  • FIG. 3 is a sequence diagram showing an RTT calculation operation in the communication system shown in the first embodiment.
  • FIG. 4 is a block diagram showing normal operation in the communication system shown in the first embodiment.
  • FIG. 5 is a sequence diagram showing a time synchronization operation in the communication system shown in the first embodiment.
  • FIG. 6 is a graph showing an nth-order curve of correction values in the communication system shown in the first embodiment.
  • FIG. 7 is a diagram showing a frame configuration of a control signal in the communication system shown in the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of the communication system shown in the second embodiment.
  • FIG. 1 shows a configuration diagram of a communication system according to Embodiment 1 of the present invention.
  • the scope of application of the present invention is not limited to the PON system, and any communication system that performs operations such as communication by performing time synchronization may be used.
  • a station side communication device hereinafter referred to as OLT
  • OLT station side communication device
  • ONUs subscriber side communication devices
  • the OLT 1 is connected to the outside via the reference time input port 3 and the line port 4, and the ONU 2 is connected to the outside via the line port 4 and the synchronization time output port 5.
  • the OLT 1 is connected to a reference time generator (not shown in FIG. 1) via a reference time input port 3, and is also connected to an upper network.
  • the ONU 2 is connected to a terminal or the like not shown in FIG.
  • the optical distributor 6 is a passive element that branches an optical fiber connecting the OLT 1 and the ONU 2 into a predetermined number (for example, 32 branches).
  • the OLT 1 includes a reference time input unit 11, a line time generation unit 12, a delay adjustment unit 13, a time distribution unit 14, and a line IF unit 15.
  • the reference time input unit 11 receives a reference time signal from an external reference time generator.
  • the line time generation unit 12 has a 32-bit free-running counter and generates time information to be transmitted to the ONU 2.
  • the delay adjusting unit 13 calculates a delay time for each ONU 2 based on the control signal from the ONU 2.
  • the time distribution unit 14 corrects the time information transmitted to the ONU 2 based on the time information generated by the line time generation unit 12 and the delay time calculated by the delay adjustment unit 13.
  • the OLT line IF unit 15 includes an optical transceiver for transmitting and receiving optical signals to and from the ONU 2.
  • the ONU 2 includes a line IF unit 21, a line time synchronization unit 22, a free-running time generation unit 23, a temperature measurement unit 24, a time correction unit 25, a reference time extraction unit 26, a time selection unit 27, and a time output unit 28.
  • the line IF unit 21 is connected to the OLT 1 via the line port 4 and includes an optical transceiver that transmits and receives an optical signal to and from the OLT 1.
  • the line time synchronization unit 22 includes a free-running counter and synchronizes with the operation clock of the OLT 1 based on the optical signal from the OLT 1.
  • the free-running time generation unit 23 includes a free-running counter and operates in synchronization with an oscillator clock (internal clock) in the ONU 2.
  • the temperature measurement unit 24 measures the temperature in the ONU 2 (particularly, the temperature near the oscillator).
  • the time correction unit 25 compares a counter that operates in synchronization with the internal clock in the ONU 2 with a counter that operates in synchronization with the periodic signal generated in the OLT 1 (operation clock of the OLT 1). A hit difference is calculated, and a correction value to be described later is created based on the comparison result.
  • the reference time extraction unit 26 extracts the reference time included in the synchronization signal (Timesync frame) transmitted from the OLT 1.
  • the time selection unit 27 selects one of the time information input from the line time synchronization unit 22 and the time correction unit 25 and outputs it to the time output unit 28.
  • the time output unit 28 outputs time information to a terminal connected to the ONU 2.
  • all ONUs 2 in the communication system will be described as having the same configuration, but the present invention is not limited to this, and at least a part of the ONUs only needs to have the time correction function according to the present invention
  • the reference time is assumed to be composed of two signals of a one-second pulse and time (minute) information.
  • ZDA message example of NMEA message used in National Marine Electronics Association (NMEA) -0183 which is used in GPS (Global Positioning System) receiver as standard. Is an ASCII code, and consists of header, UTC (Universal Coordinated Time), UTC hour, minute, second, date, correction time to local time, checksum and their delimiters.
  • UTC Universal Coordinated Time
  • UTC hour Universal Coordinated Time
  • minute minute
  • second Date
  • correction time to local time checksum
  • checksum checksum
  • the rise of the 1-second pulse indicates the time expressed by the ZDA message.
  • the reference time shown in FIG. 2 is used.
  • the present invention is not limited to this. For example, only one of time information and a periodic signal such as a 1-second pulse may be used.
  • RTT a transmission delay time
  • MPCP Multipoint MAC Control Protocol
  • the line time generation unit 12 of the OLT 1 has a free-running 32-bit counter that counts every 16 ns obtained based on the operation clock of the OLT 1, and when the OLT 1 registers the ONU 2 by MPCP processing, the control signal (Discovery The value (T0) of the free-running counter is inserted as Timestamp into the GATE frame) and transmitted to each ONU 2 via the line IF unit 15 (step S101). At this time, the line IF unit 15 transmits a signal synchronized with the operation clock of the OLT 1.
  • the ONU 2 that has received the Discovery GATE frame extracts the operation clock of the OLT 1 by the line IF unit 21 and passes the extracted operation clock to the line time synchronization unit 22. Further, when the line IF unit 21 receives the Discovery GATE frame, the line IF unit 21 transfers the Discovery GATE frame to the line time synchronization unit 22.
  • the ONU 2 inserts the value (T1a) of the self-running counter in its own device into the Timestamp in the REGISTER frame sent to request the OLT 1 to register its own device, and sends it via the line IF unit 22 (Step S103).
  • FIG. 3 shows the RTT calculation method when there are two ONUs.
  • the counter value (T2 or T3) when the OLT receives a REGISTER frame transmitted from the ONU 2 RTT can be calculated by subtracting the time stamp value (T1a or T1b) of the frame.
  • the line time generation unit 12 transmits a GATE frame (control signal used for band allocation) to the ONU 2 via the line IF unit 15.
  • the line time synchronization unit 22 of the ONU 2 that has received the GATE frame extracts the value of Timestamp included in the GATE frame, and synchronizes the self-running counter of the own device based on the clock of the OLT 1.
  • a REPORT frame including the time information of the ONU 2 as Timestamp is transmitted to the OLT 1 via the line IF unit 21 as a response signal to the GATE frame.
  • Both the GATE frame and the REPORT frame have a Timestamp, and the delay adjustment unit 13 can periodically measure the RTT of the ONU 2. Thereby, it is possible to follow the RTT fluctuation caused by the wander. With these processes, the relative time can be synchronized between the OLT 1 and the ONU 2 in the EPON system.
  • the reference time generator 9 generates a reference time and transmits it to the OLT 1.
  • the reference time is described as being generated outside the OLT 1.
  • the present invention is not limited to this, and a configuration in which a reference time generating unit is provided inside the OLT 1 may be used.
  • the reference time generated by the reference time generator 9 is input to the reference time input unit 11 via the reference time input port 3.
  • the reference time input unit 11 transmits the received reference time to the time distribution unit 14.
  • the time distribution unit 14 When the time distribution unit 14 transmits the reference time in conformity with IEEE std 802.1AS, the time distribution unit 14 first converts the UTC into a PTP (Precision Time Protocol) format.
  • the PTP format is a format that expresses time in seconds (48 bits) and nanoseconds (32 bits), taking into account leap years and leap seconds, based on January 1, 1970, 0:00:00.
  • the conversion from the UTC format to the PTP format can be expressed by the following conversion formula.
  • the time distribution unit 14 that has received the reference time from the reference time input unit 11 adds a reference time (hereinafter referred to as a corrected reference time) to which about 1/2 (downward propagation delay) of RTT input from the delay adjustment unit 13 is added.
  • a corrected reference time a reference time
  • the line time generation unit 12 transmits the value of the free-running counter to the time distribution unit 14.
  • the time distribution unit 14 that has received the value of the free-running counter of the OLT 1 from the line time generation unit 12 inserts the corrected reference time and the value of the free-running counter into the control signal (Timesync frame) and transmits the control signal to the line IF unit 15. .
  • the line IF unit 15 transmits a Timesync frame to the ONU 2 via the line port 4.
  • the line IF unit 21 of the ONU 2 that has received the Timesync frame outputs the Timesync frame to the reference time extraction unit 26.
  • the reference time extraction unit 26 extracts the corrected reference time inserted in the Timesync frame and the free-running counter value of the OLT 1 and transmits it to the time output unit 28.
  • the line time synchronization unit 22 continuously transmits the value of the 32-bit counter relatively synchronized with the line time generation unit 12 of the OLT 1 to the time selection unit 27 using the GATE frame periodically transmitted from the OLT 1. To do. In normal times, the time selection unit 27 transmits this counter value to the time output unit 28.
  • the time output unit 28 synchronizes with the reference time extracted from the Timesync frame. That is, since the free-running counter of the line time synchronization unit 22 is relatively synchronized with the free-running counter of the OLT 1, the counter value of the OLT 1 in which the free-running counter of the line time synchronization unit 22 is associated with the correction reference time. Can be made to be the correction reference time. Thereafter, the 1-second pulse and time information shown in FIG. 2 are generated at the timing when nanoseconds become zero, and are output from the synchronization time output port 5 to the terminal 8.
  • the ONU2 free-running counter value matches the counter value in the Timesync frame, and if it synchronizes with the reference time, the ONU2 free-running counter value makes a round, and the reference There may be a time lag.
  • it is possible to synchronize with the reference time by looking at the coincidence with the counter value to which the offset is added in advance and synchronizing with the corrected reference time shifted by this offset. That is, a fixed value is added to the free-running counter value inserted and transmitted from the OLT 1 into the Timesync frame, and the time corresponding to this offset value is added to the corrected reference time and output to a terminal connected to the ONU 2 or the like.
  • the ONU 2 receives a GATE frame from the OLT 1 periodically or irregularly.
  • This GATE frame includes the free-running counter value of OLT1, and substitutes the free-running counter value of OLT for the free-running counter of ONU2.
  • ONU2 can operate a self-running counter in the state relatively synchronized with the free-running counter of OLT1.
  • the free-running counter value at the time of transmission of the Timesync frame transmitted from the OLT 1 matches the free-running counter value at which the OLT 1 in the ONU 2 is synchronized
  • the free-running counter value at the time of transmission of the Timesync frame to the ONU 2 Synchronize with the reference time corresponding to.
  • the internal clock in the ONU 2 and the operation clock in the OLT 1 are compared, the difference (difference per unit time) is calculated, and the correction value is calculated based on this.
  • An error (difference) per unit time between the free-running counter synchronized with the clock of the oscillator provided in the ONU 2 and the free-running counter synchronized with the clock extracted from the optical signal received from the OLT 1 is calculated.
  • the ONU 2 calculates the correction value of the clock of the oscillator and corrects the reference time using this correction value, so that it can be operated using more accurate time information, and more accurate time information can be obtained. Can be output to the terminal.
  • the self-running time generation unit 23 of the ONU 2 loads the Timestamp value of the GATE frame into the 32-bit counter and makes it self-run.
  • the operation clock of the 32-bit counter is operated not by the clock (clock extracted from the optical signal transmitted from the OLT 1) passed from the line IF unit 21, but by the oscillator clock provided in the ONU 2 itself.
  • the counter value obtained by operating with the clock of this oscillator is continuously transmitted to the time correction unit 25.
  • the advance of 16 ns when the 32-bit counter is operated with the clock of the oscillator included in the ONU 2 itself may be slightly different from the advance of the free-running counter of the line time synchronization unit 22 synchronized with the OLT 1 clock.
  • the temperature measurement unit 24 measures the temperature in the ONU 2, for example, the ambient temperature of the oscillator provided in the free-running time generation unit 23, and notifies the time correction unit 25 of the measured temperature.
  • the time correction unit 25 obtains a difference per unit time between the counter value of the input line time synchronization unit 22 and the counter value of the free-running time generation unit 23, and holds the difference value and the temperature at that time.
  • the value is not loaded every time the GATE frame is received, but for example every 1 second (62.5 million times of 16 ns) by the oscillator.
  • the counter value of the line time synchronization unit 22 may be loaded.
  • the time correction unit 25 Based on the difference between the temperature thus obtained and the counter value, the time correction unit 25 corrects the counter value transmitted by the self-running time generation unit 23 based on the current temperature and transmits the corrected value to the time selection unit 27. For example, as shown in FIG.
  • the difference between the ONU temperature and the counter value per unit time is plotted, an n-th order approximate curve is obtained, and the correction value can be estimated from the temperature when the correction is performed.
  • the temperature and difference values acquired a long time ago are discarded, and an approximate curve is obtained using only the most recent value (within a fixed time). The difference may be estimated from the current temperature.
  • this correction value may be created for each time zone.
  • the left side is an example of calculating the n-th order curve during the day (average from 6 o'clock to 18 o'clock), and the right side is calculated using the correction value creation procedure during night (average from 18 o'clock to 6 o'clock). This is an example of calculating an nth order curve.
  • the influence of the wander of the transmission line during the day is greater than that at night.
  • the ONU 2 can calculate the reference time using the self-running counter synchronized with the clock of the oscillator in the own device and the calculated correction value, and even if the reference time is not input from the OLT Good time information can be transmitted to a connected terminal or the like.
  • the time selection unit 27 selects the counter value from the time correction unit 25 and outputs it to the time output unit 28. Since this counter value is corrected for the temperature inside the ONU 2 and corrected for the wander of the transmission line, it simulates the counter value of the line time synchronization unit 22 before a stop or failure occurs.
  • the line IF unit 21 generates a reference time based on the counter value received from the time selection unit 27 and transmits the reference time to a terminal or the like connected to the ONU 2.
  • control signals between the OLT 1 and the ONU 2 will be described with reference to FIG.
  • a GATE frame and a REPORT frame conforming to IEEE 802.3 are used, and a Timestamp area into which the value of the free-running counter of the transmission source is inserted is provided.
  • the Timesync frame transmitted from the OLT 1 is provided with a TODx, i region for inserting time information, and a Timestamp region including a free-running counter value of the OLT 1 corresponding to this time information.
  • the time output unit 28 can generate the aforementioned 1-second pulse and time information based on the corrected counter value. Even when an outage or a transmission path failure occurs, it is possible to operate time information with high accuracy and to output more accurate time information to the terminal.
  • the time correction when the reference time is output to the terminal connected to the ONU 2 is shown, but it can be applied if the ONU 2 operates based on the clock of the oscillator in its own device. Needless to say, the content is not limited.
  • FIG. 8 shows a configuration diagram of a communication system according to the second embodiment.
  • the same or similar components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the free-running time generation unit 16 includes a free-running counter synchronized with the clock of the oscillator in the OLT 1, and the temperature measurement unit 17 measures the temperature in the OLT 1 (particularly, near the oscillator).
  • the time correction unit 18 compares a periodic signal (1 second pulse) input from the outside with an operation clock in the OLT, and corrects the reference time based on the comparison result.
  • the time selection unit 19 selects one of the reference time input from the reference time input unit 11 or the reference time input from the time correction unit 18 and outputs the selected time to the time distribution unit 14.
  • the OLT 1 receives a reference time from an external reference time generator via the reference time input port 3.
  • the input reference time is the same as the reference time described in the first embodiment.
  • the reference time input unit 11 receives the reference time of FIG. Since the time selection unit 19 normally notifies the time distribution unit 14 of the time from the reference time input unit 11 as usual, the following operation is the same as that of the first embodiment, and the reference time is output from the synchronization time output port 5 of the ONU 2. Time information synchronized with the time can be output.
  • the free-running time generation unit 16 of the OLT 1 receives the time from the reference time input unit 11, it loads a value into the free-running counter.
  • the count of the free-running counter is synchronized with the operation clock of OLT1. Since the frequency at which the operation clock of the OLT 1 and the time of the reference time input port 3 are not necessarily coincident with each other, there is a deviation from the time counter of the free-running time generation unit 16 every time the time is input. That is, there may be a difference between the 1-second cycle calculated based on the operation clock of the OLT 1 and the 1-second cycle of the 1-second pulse included by the reference time.
  • the temperature measurement unit 17 of the OLT 1 measures the ambient temperature of the oscillator in the OLT 1 and passes it to the time correction unit 18.
  • the time correction unit 18 compares the one-second pulse of the reference time input unit 11 with the operation clock calculated by the free-running time generation unit 16, obtains a difference per second, and compares this difference with the difference. Keep temperature.
  • the time correction unit 18 corrects the time transmitted by the self-running time generation unit 16 based on the current temperature and transmits the corrected time to the time selection unit 19 based on the difference between the temperature and the time thus obtained.
  • the time selection unit 19 selects the time from the time correction unit 18 and outputs it. Since this time is corrected for the temperature inside the OLT 1, it simulates the time received from the reference time input port 3 before the time input failure occurs.
  • the time selection unit 19 can generate a time corresponding to the reference time based on the corrected time, it is possible to output more accurate time information from the ONU 2 even when a time input failure occurs.
  • 1 station side communication device OLT
  • 2 subscriber side communication device ONU
  • 3 standard time input port 4 line port
  • 5 synchronous time output port 6 optical distributor
  • 7 upper network device 8 terminal
  • 9 standard Time generator 11 reference time input unit, 12 line time generation unit, 13 delay adjustment unit, 14 time distribution unit, 15 line IF unit, 21 line IF unit, 22 line time synchronization unit, 23 free-running time generation unit, 24 Temperature measurement unit, 25 time correction unit, 26 reference time extraction unit, 27 time selection unit, 28 time output unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Abstract

 複数の通信装置が接続された通信システムにおいて、外部から基準となる周期信号を受信しない場合であっても、より正確な時刻情報を用いて動作することが可能な通信システム、通信装置および時刻情報補正方法を得ることを目的とする。この発明に係る通信システムは、局側通信装置1と複数の加入者側通信装置2が光伝送路を介して接続された通信システムであって、局側通信装置1は、基準時刻と基準クロックを含む制御信号を生成し、加入者側通信装置2へ制御信号を送信する制御信号送信手段15を備え、加入者側通信装置2は、局側通信装置1の動作クロックと自装置内で生成された動作クロックとの比較を行い、比較結果を保持するするクロック比較手段25と、比較結果および自装置内で生成された内部クロックに基づいて、基準時刻を補正する時刻補正手段25と、を備える。

Description

通信システム、通信装置および時刻情報補正方法
 この発明は、光伝送路で接続された複数の通信装置間において時刻同期を行って動作させる通信システム、その通信システムに適用可能な通信装置および時刻情報補正方法に関する。
 局側通信装置と加入者側通信装置とを通信回線によって接続する通信システムでは、加入者がネットワークと接続し時刻同期を行ってデータ等の通信を行う基本的なサービスだけでなく、通信回線を利用してネットワーク側から加入者側へ、他の付加的なサービスを提供することも可能である。この付加的なサービスの例として、正確な時刻の配信サービスが挙げられる。
 このようなサービスを実現可能な通信システムとしてPON(Passive Optical Network)システムがある。PONシステムは、局側通信装置(Optical Line Terminal,以下、OLTとする)、1または複数の加入者側通信装置(Optical Network Unit,以下、ONUとする)、光ファイバ、および光カプラ等から構成されており、複数のONUを1台のOLTで収容可能なため、低価格で基本サービスと付加サービスを提供することが可能となる。ここで、OLTとONUはIEEE std 802.3に準拠のEthernet(登録商標) Passive Optical Network(以降、EPON)装置である。
 ONUはOLTからの送信光信号から動作クロックを抽出するとともに、OLTがONUごとに送信する制御信号(GATEフレーム)により、GATEフレーム内部の32bitのTimestamp領域の値から、相対的な時刻情報を取得する。また、OLTは、動作クロックを光送信信号に重畳させて送信するとともに、各ONUが送信するREPORTフレームを受信し、その内部のTimestamp領域の値から、各々のONUの距離に相当する伝搬遅延を求め、ONUごとに補正してGATEフレームのTimestamp領域に相対時刻を設定し送信する。これにより、OLTとONUは、クロック周波数と相対時刻を一致させることができる。また、相対時刻を一致させるために用いるGATEフレームとREPORTフレームは、IEEE std 802.3によれば1秒未満という比較的短時間に送受信しているため、温度変化などで発生する伝搬遅延のワンダを刻々と補正できる。
IEEE std 802.1AS-2011
 近年、PONシステム等の通信システムでは、省電力化の要求に応えるため、ONUの光送受信器を一時的にパワーダウンさせるスリープ機能が検討されている。従来の通信システムでは、スリープ機能を用いた場合、ONUが定期的に光送受信器を停止させるため、OLTからの送信光信号を受信できない。ONUでは、OLTからの送信光信号からクロックを抽出するため、光送受信器を停止させている間はクロックを再生できなくなる。したがって、この期間はOLTの動作クロックとは同期していないONU自身が管理するクロック(自走クロック)を用いて自装置の動作をおこなうこととなる。一般に、コスト等の観点からONUに精度のよい自走クロックを備えることは困難であり、自走クロックで動作させた状態のONUでは、自装置に接続される端末等に対して正確な時刻を出力できなくなる。例えば、ONUの自走クロックが50ppmだけ実際の時刻とずれている場合、0.8秒間光送受信器を停止させた場合、停止中に40マイクロ秒ずれることとなる。例えば、TD-SCDMA(Time Division Synchronous Code Division Multiple Access)通信方式で要求される時刻精度(数マイクロ秒未満)を超過してしまうこととなる。
 また、OLTとONU間の伝送路に障害が発生した場合にも、ONUはOLTから送信光信号を受信できないためクロックを再生できず、自装置に接続される端末等に対して正確な時刻を出力できなくなる。
 この発明は、上記のような課題を解決するためのものであり、複数の通信装置が接続された通信システムにおいて、加入者側通信装置が局側通信装置からの光信号を受信しない場合であっても、より正確な時刻情報を用いて動作することが可能な通信システム、通信装置および時刻情報補正方法を得ることを目的とする。
 この発明に係る通信システムは、局側通信装置と複数の加入者側通信装置が光伝送路を介して接続された通信システムであって、局側通信装置は、基準時刻および基準クロックを含む制御信号を生成し、加入者側通信装置へ制御信号を送信する制御信号送信手段を備え、加入者側通信装置は、局側通信装置から送信された制御信号を受信し、受信した制御信号から基準時刻および基準クロックを抽出する抽出手段と、抽出手段により取得された基準クロックと自装置内で生成された内部クロックとの比較を行い、比較結果を保持するクロック比較手段と、クロック比較手段による比較結果および自装置内で生成された内部クロックに基づいて、基準時刻を補正する時刻補正手段と、を備える。
 また、この発明に係る通信システムは、基準時刻発生装置に接続された局側通信装置と複数の加入者側通信装置が光伝送路を介して接続された通信システムであって、局側通信装置は、基準時刻発生装置により生成された時刻情報および周期信号を含む基準時刻を受信する基準時刻入力手段と、基準時刻入力手段により受信された制御信号から抽出した周期信号と自装置内で生成された動作クロックとの比較を行い、比較結果を保持するクロック比較手段と、クロック比較手段による比較結果および自装置内で生成された動作クロックに基づいて、基準時刻を補正する時刻補正手段と、を備える。
 また、この発明に係る通信装置は、複数の通信装置が光伝送路を介して接続された通信システムに適用可能な通信装置であって、外部より入力された制御信号から時刻情報と周期信号を抽出する抽出手段と、抽出手段により抽出された周期信号と、自装置内で生成された動作クロックとの比較を行い、その比較結果を保持するクロック比較手段と、クロック比較手段による比較結果と、自装置内で生成された動作クロックとに基づいて、抽出手段により抽出された時刻情報の補正を行う時刻補正手段と、を備える。
 また、この発明に係る時刻情報補正方法は、局側通信装置と加入者側通信装置が光伝送路を介して接続された通信システムに適用可能な時刻情報補正方法であって、局側通信装置が、基準時刻と自装置の動作クロックを含む制御信号を生成し、加入者側通信装置へ制御信号を送信する制御信号送信ステップと、加入者側通信装置が、制御信号送信ステップにおいて送信された制御信号を受信する制御信号受信ステップと、制御信号受信ステップにおいて受信した制御信号から基準時刻と局側通信装置の動作クロックを抽出する抽出ステップと、加入者側通信装置が、抽出ステップにおいて抽出された局側通信装置の動作クロックと自装置内で生成された動作クロックとの比較を行い、比較結果を保持するクロック比較ステップと、クロック比較ステップにおいて記憶された比較結果と、加入者側通信装置内で生成された動作クロックとに基づいて、抽出ステップにおいて抽出された基準時刻の補正を行う時刻情報補正ステップと、を備える。
 また、この発明に係る時刻情報補正方法は、基準時刻発生装置に接続された局側通信装置と加入者側通信装置が光伝送路を介して接続された通信システムに適用可能な時刻情報補正方法であって、局側通信装置が、基準時刻発生装置により生成された時刻情報および周期信号を含む基準時刻を受信する基準時刻受信ステップと、基準時刻受信ステップにおいて受信された周期信号と自装置内で生成された動作クロックとの比較を行い、比較結果を保持するクロック比較ステップと、クロック比較ステップにおける比較結果と、自装置内で生成された動作クロックとに基づいて、基準時刻を補正する時刻補正ステップと、時刻補正ステップにおいて補正された基準時刻を加入者側通信装置に送信する基準時刻送信ステップと、を備える。
 本発明によれば、複数の通信装置が接続された通信システムにおいて、他の装置から時刻情報等を含む光信号を受信しない場合であっても、より正確な時刻情報を用いて動作ささせることができる。
図1は、実施の形態1に示す通信システムの構成を示すブロック図である。 図2は、実施の形態1に示す通信システムで使用する基準時刻の一例を示す図である。 図3は、実施の形態1に示す通信システムにおけるRTTの算出動作を示すシーケンス図である。 図4は、実施の形態1に示す通信システムにおける通常時の動作を示すブロック図である。 図5は、実施の形態1に示す通信システムにおける時刻同期動作を示すシーケンス図である。 図6は、実施の形態1に示す通信システムにおける補正値のn次曲線を示すグラフである。 図7は、実施の形態1に示す通信システムにおける制御信号のフレーム構成を示す図である。 図8は、実施の形態2に示す通信システムの構成を示すブロック図である。
 以下に、本発明にかかる通信システム、通信装置および時刻情報補正方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 本発明の実施の形態1に係る通信システムについて、PON(Passive Optical Network)システムを例にとり説明する。図1に、本発明の実施の形態1に係る通信システムの構成図を示す。なお、本発明の適用範囲はPONシステムに限定されるものではなく、時刻同期を行って通信等の動作を行う通信システムであればよい。図1において、局側通信装置(以下、OLTとする)1は、複数の加入者側通信装置(以下、ONUとする)2と光ファイバおよび光分配器6を介して接続されている。
 OLT1は、基準時刻入力ポート3および回線ポート4を介して外部と接続されており、ONU2は、回線ポート4および同期時刻出力ポート5を介して外部と接続されている。OLT1は、図1においては図示しない基準時刻発生装置と基準時刻入力ポート3を介して接続されており、また、上位ネットワークと接続されている。ONU2は、同期時刻出力ポート5を介して図1においては図示しない端末等と接続されている。光分配器6は、OLT1とONU2を接続する光ファイバを所定の数に分岐(例えば、32分岐)させる受動素子である。
 OLT1は、基準時刻入力部11、回線時刻生成部12、遅延調整部13、時刻分配部14、回線IF部15を備えている。基準時刻入力部11は、外部の基準時刻発生装置より基準時刻信号を受信する。回線時刻生成部12は、32bit自走カウンタを有しており、ONU2に対して送信する時刻情報を生成する。遅延調整部13は、ONU2からの制御信号に基づいてONU2ごとに遅延時間を算出する。時刻分配部14は、回線時刻生成部12により生成された時刻情報や遅延調整部13により算出された遅延時間等に基づいてONU2に送信する時刻情報等の修正を行う。OLTの回線IF部15は、ONU2との光信号の送受信を行うための光送受信器を備えている。
 ONU2は、回線IF部21、回線時刻同期部22、自走時刻生成部23、温度測定部24、時刻補正部25、基準時刻抽出部26、時刻選択部27、時刻出力部28を備えている。回線IF部21は、回線ポート4を介してOLT1と接続されており、OLT1との光信号の送受信を行う光送受信器を備えている。回線時刻同期部22は、自走カウンタを備えており、OLT1からの光信号に基づいてOLT1の動作クロックに同期させる。自走時刻生成部23は、自走カウンタを備えており、ONU2内の発振器のクロック(内部クロック)に同期して動作する。温度測定部24は、ONU2内の温度(特に、発振器付近の温度)の測定を行う。時刻補正部25は、ONU2内の内部クロックに同期して動作するカウンタと、OLT1内で生成された周期信号(OLT1の動作クロック)に同期して動作するカウンタとの比較を行って、単位時間当たりの差分を算出し、その比較結果に基づいて後述する補正値の作成を行う。基準時刻抽出部26は、OLT1から送信される同期信号(Timesyncフレーム)に含まれる基準時刻の抽出を行う。時刻選択部27は、回線時刻同期部22および時刻補正部25より入力される時刻情報から一方を選択し、時刻出力部28へ出力する。時刻出力部28は、ONU2に接続された端末に対して時刻情報を出力する。なお、ここでは通信システム内のすべてのONU2が同様の構成として説明するが、これに限ったものではなく、少なくとも一部のONU2が本発明に係る時刻補正機能を有していればよい。
 OLT1に入力される基準時刻の一例を図2に示す。ここで、基準時刻は1秒パルスと時刻(分)情報の2つの信号で構成されるものとする。例えば、GPS(Global Positioning System)受信器で標準的に使用されているNational Marine Electronics Association(米国海洋電子協会、NMEA)-0183において使用されるNMEAメッセージのうちZDAメッセージの例をあげると、時刻情報はASCIIコードで、ヘッダ、UTC(Universal Coordinated Time)、UTCの時分秒ミリ秒、年月日、現地時間への補正時分、チェックサムとそれらの区切り文字から構成される。1秒パルスの立ち上がりがZDAメッセージで表現した時間を示している。ここでは、図2に示す基準時刻を用いるものとするが、これに限ったものではなく、例えば、時刻情報または1秒パルス等の周期信号のいずれか一方のみであってもよい。
 次に、OLT1とONU2との伝送遅延時間(Round Trip Time、以下、RTTとする)の算出方法について、図3を参照して説明する。ここでは、OLT1および各ONU2が、IEEE std 802.3に準拠するものとし、OLT1が接続されたONU2の登録を行うMPCP(Multipoint MAC Control Protocol)処理の際にRTT計測を行うものとする。OLT1の回線時刻生成部12は、OLT1の動作クロックに基づいて求めた16nsごとにカウントする自走32bitカウンタを有しており、OLT1がMPCP処理によりONU2の登録を行う際に、制御信号(Discovery GATEフレーム)に自走カウンタの値(T0)をTimestampとして挿入し、回線IF部15を経由して各ONU2に送信する(ステップS101)。この際、回線IF部15はOLT1の動作クロックに同期した信号を送信する。
 Discovery GATEフレームを受信したONU2は、回線IF部21でOLT1の動作クロックを抽出し、回線時刻同期部22に抽出した動作クロックを渡す。また、回線IF部21がDiscovery GATEフレームを受信すると、回線時刻同期部22にDiscovery GATEフレームを転送する。回線時刻同期部22は、抽出した動作クロックに基づいて求めた16nsごとにカウントする32bitカウンタを有しており、この32bitカウンタにDiscovery GATEフレームに含まれるTimestampの値(T0=T0a)をロードする(ステップS102)。その後、ONU2はOLT1に対して自装置の登録を依頼するために送信するREGISTERフレームに自装置内の自走カウンタの値(T1a)をTimestampに挿入し、回線IF部22を経由して送信する(ステップS103)。
 OLT1では回線IF部15が、ONU2から送信されたREGISTERフレームを受信すると遅延調整部13に転送する。遅延調整部13では、REGISTERフレームからTimestampを抜き出し、RTTを計算し、回線時刻生成部12へ計算したRTTを通知する。図3では、ONUが2台ある場合のRTTの計算方法を示しているが、どちらのONUに対しても、OLTがONU2から送信されるREGISTERフレームを受信したときのカウンタ値(T2またはT3)からフレームのTimestampの値(T1aまたはT1b)を減じることでRTTを算出することができる。
 また、同じMPCP処理により、回線時刻生成部12はONU2へGATEフレーム(帯域割当に用いる制御信号)を、回線IF部15を経由して送信する。GATEフレームを受信したONU2の回線時刻同期部22は、GATEフレームに含まれるTimestampの値を抽出し、自装置の自走カウンタをOLT1のクロックに基づいて同期させる。また、GATEフレームに対する応答信号として回線IF部21を介して、ONU2の時刻情報をTimestampとして含めたREPORTフレームをOLT1に対して送信する。これらGATEフレーム、REPORTフレームともにTimestampを有しており、遅延調整部13ではONU2のRTTを定期的に測定することができる。これにより、ワンダによるRTT変動に追従することができる。これらの処理により、EPONシステム内のOLT1とONU2で相対時刻を同期させることができる。
 次に、通常時のONUに接続される端末に対する基準時刻の出力動作について図1および図4を参照して説明する。
 まず、基準時刻発生装置9において基準時刻を生成し、OLT1に送信する。ここでは、基準時刻をOLT1の外部で生成するものとして説明するが、これに限ったものではなく、OLT1の内部に基準時刻発生部を設ける構成としてもよい。基準時刻発生装置9により生成された基準時刻は、基準時刻入力ポート3を介して基準時刻入力部11に入力される。基準時刻入力部11は、基準時刻を受信すると、受信した基準時刻を時刻分配部14へ送信する。時刻分配部14は、基準時刻をIEEE std 802.1ASに準拠して送信するものとすると、まずUTCをPTP(Precision Time Protocol)形式に変換する。ここで、PTP形式とは、1970年1月1日0時0分0秒を基準とし、うるう年、うるう秒を考慮して経過した秒(48bit)とナノ秒(32bit)で時刻を表現する形式をいい、UTC形式からPTP形式への変換は、以下の変換式で表すことができる。
 PTP.秒=経過日数(UTC.年月日-“1970.1.1”)*60*60*24+うるう秒
      +(UTC.hour*60+UTC.minute)*60+UTC.second
 PTP.ナノ秒=UTC.millisecond*1,000,000
 基準時刻入力部11から基準時刻を受信した時刻分配部14は、遅延調整部13から入力されるRTTの約1/2(下り方向の伝搬遅延)を加えた基準時刻(以下、修正基準時刻と呼ぶ)を回線IF部15へ送信する。また、回線時刻生成部12は、自走カウンタの値を時刻分配部14へ送信する。回線時刻生成部12よりOLT1の自走カウンタの値を受信した時刻分配部14は、修正基準時刻と自走カウンタの値を制御信号(Timesyncフレーム)に挿入して、回線IF部15に送信する。回線IF部15は、回線ポート4を介してONU2に対してTimesyncフレームを送信する。
 Timesyncフレームを受信したONU2の回線IF部21は、Timesyncフレームを基準時刻抽出部26へ出力する。基準時刻抽出部26は、Timesyncフレームに挿入された修正基準時刻とOLT1の自走カウンタ値を抽出して、時刻出力部28へ送信する。また、回線時刻同期部22は、OLT1から定期的に送信されるGATEフレームを用いてOLT1の回線時刻生成部12と相対的に同期した32bitカウンタの値を、継続的に時刻選択部27へ送信する。通常時にはこのカウンタ値を時刻選択部27が時刻出力部28へ送信する。時刻出力部28では、このカウンタの値がTimesyncフレーム内のカウンタ値と一致すると、Timesyncフレームから抽出した基準時刻に同期する。すなわち、回線時刻同期部22の自走カウンタは、OLT1の自走カウンタと相対的に同期しているため、回線時刻同期部22の自走カウンタが修正基準時刻と対応付けられたOLT1のカウンタ値と一致した場合、この修正基準時刻にさせることができる。その後、ちょうどナノ秒が零になるタイミングで図2に示した1秒パルスと時刻情報を生成し、同期時刻出力ポート5から端末8に対して出力する。
 なお、上述のように、ONU2の自走カウンタ値とTimesyncフレーム内のカウンタ値とが一致した場合に、基準時刻に同期するとした場合、ONU2の自走カウンタ値が一周してしまい、大幅に基準時刻とのずれが生じる場合がある。これを防ぐため、予めオフセットを付けたカウンタ値との一致を見て、このオフセット分だけずらした修正基準時刻に同期することで、基準時刻に同期するようにしても良い。すなわち、OLT1からTimesyncフレームに挿入して送信される自走カウンタ値を一定値加算しておき、このオフセット値に対応する時刻を修正基準時刻に加えてONU2に接続された端末等に出力する。
 上述したONU2のOLT1から送信される基準時刻への同期手順を、図5を用いて説明する。ONU2は、OLT1より定期的または不定期的にGATEフレームを受信する。このGATEフレームにはOLT1の自走カウンタ値が含まれており、ONU2の自走カウンタにOLTの自走カウンタ値を代入する。これにより、ONU2はOLT1の自走カウンタに相対的に同期した状態で自走カウンタを動作させることができる。また、OLT1から送信されたTimesyncフレームの送信時の自走カウンタ値と、ONU2内部のOLT1を同期させた自走カウンタ値とが一致した場合に、ONU2をTimesyncフレームの送信時の自走カウンタ値に対応した基準時刻に同期させる。
 次に、ONU2が省電力を目的として回線IF部21を停止させた場合や、OLT1とONU2間の伝送路に障害が生じた場合に行う補正のための補正値の作成方法について説明する。実施の形態1では、ONU2内の内部クロックとOLT1における動作クロックとの比較を行い、そのずれ(単位時間当たりの差分)を算出し、これに基づいて補正値を算出する。ONU2に備えられた発振器のクロックに同期させた自走カウンタと、OLT1から受信した光信号から抽出したクロックに同期させた自走カウンタとの単位時間当たりの誤差(差分)を算出し、この誤差に基づいてONU2が発振器のクロックの補正値を算出し、この補正値を用いて基準時刻を補正することにより、より精度の高い時刻情報を用いて動作させることができ、より正確な時刻情報を端末に対し出力することができる。
 ONU2の自走時刻生成部23では、GATEフレームのTimestamp値を32bitカウンタにロードして自走させる。一方、32bitカウンタの動作クロックは回線IF部21から渡されるクロック(OLT1から送信された光信号から抽出したクロック)ではなく、ONU2自身が備える発振器のクロックで動作させる。この発振器のクロックで動作させて得られたカウンタ値を時刻補正部25へ継続的に送信する。ここで、ONU2自身が備える発振器のクロックで32bitカウンタを動作させた場合の16nsの進みは、OLT1のクロックに同期する回線時刻同期部22の自走カウンタの進みとは若干異なる場合がある。また、温度測定部24はONU2内の温度、例えば、自走時刻生成部23に備えられた発振器の周囲温度を測定し、時刻補正部25へ通知する。
 時刻補正部25では、入力された回線時刻同期部22のカウンタ値と自走時刻生成部23のカウンタ値の単位時間当たりの差分を求め、その差分値とその時の温度を保持しておく。ここで、GATEフレームの受信間隔が短く差分が明瞭に出ない場合は、GATEフレームを受信するたびには値をロードせずに、発振器で例えば1秒(16nsの6,250万倍)ごとに回線時刻同期部22のカウンタ値をロードするようにしても良い。このように求めた温度とカウンタ値の差分により、時刻補正部25は現在の温度を元に自走時刻生成部23が送信したカウンタ値を補正して時刻選択部27へ送信する。例えば、図6に示すようにONUの温度とカウンタ値の単位時間当たりの差分をプロットし、n次の近似曲線を求めておき、補正を実施する際の温度から補正値を推測することができる。また、光ファイバの温度変化などワンダ要因を除去するため、かなり前に取得した温度と差分の値を破棄し、最近(現在時刻より一定時間内)の値だけを使って近似曲線を求めて、現在温度から差分を推測しても良い。
 また、時間帯ごとにこの補正値を作成するようにしてもよい。図6では、左側は日中(6時~18時の平均)の補正値作成手順によりn次曲線を算出した例、右側は夜間(18時~6時の平均)の補正値作成手順により求めたn次曲線を算出した例である。この例では、日中は伝送路のワンダの影響が夜間より大きいことを示している。時間帯ごとに異なる補正値を用いることにより、より精度のよい補正を行うことができる。
 次に、例えば、OLT1とONU2との間の伝送路に障害が発生した場合、または、ONU2が一時的に受信器を停止させるスリープ状態(省電力状態)にある場合等、ONU2にOLTから基準時刻が入力されない場合の動作について説明する。この場合、ONU2では、自装置内の発振器のクロックに同期させた自走カウンタおよび算出した補正値を用いて基準時刻を算出することができ、OLTから基準時刻が入力されない場合であっても精度のよい時刻情報を接続される端末等に送信することができる。
 ONU2の回線IF部21が、省電力を目的として停止した時や、光分配器6や光ファイバといった伝送路障害を検出すると、検出した情報を時刻選択部27へ通知する。時刻選択部27では、この通知を受信した場合、時刻補正部25からのカウンタ値を選択し、時刻出力部28へ出力する。このカウンタ値は、ONU2内部の温度に対する補正や、伝送路のワンダに対する補正が掛っているため、停止や障害が発生する前の回線時刻同期部22のカウンタ値を模擬していることになる。回線IF部21では、時刻選択部27から受信したカウンタ値に基づいて基準時刻を生成し、ONU2に接続された端末等に対し基準時刻を送信する。
 ここで、OLT1およびONU2間の制御信号について図7を参照して説明する。ここで、IEEE802.3に準拠したGATEフレームおよびREPORTフレームを用いており、それぞれ送信元の自走カウンタの値が挿入されるTimestamp領域が設けられている。また、OLT1から送信されるTimesyncフレームには、時刻情報を挿入するTODx,i領域およびこの時刻情報に対応したOLT1の自走カウンタ値が含まれるTimestamp領域が設けられている。
 実施の形態1に係る通信システムは、以上のような構成をしているため、補正したカウンタ値を元に時刻出力部28が前述の1秒パルスと時刻情報を生成できるので、回線IF部21の停止や伝送路障害が発生した際でも、精度良い時刻情報を動作することができ、より正確な時刻情報を端末に出力することが可能となる。
 なお、ここでは、ONU2に接続される端末等に基準時刻を出力する場合の時刻補正について示したが、ONU2が自装置内の発振器のクロックに基づいて動作する場合であれば適用でき、上述の内容に限定されないことはいうまでもない。
実施の形態2.
 実施の形態1では、ONU側に時刻補正機能をもたせる構成について示したが、実施の形態2においてはOLT側に時刻補正機能を持たせる構成について示す。実施の形態2に係る通信システムの構成図を図8に示す。図8において、実施の形態1と同一または同様の構成要素について同一の番号を付しており、説明を省略する。図8において、自走時刻生成部16は、OLT1内の発振器のクロックに同期する自走カウンタを備えており、温度測定部17は、OLT1内の温度(特に、発振器付近)を計測する。時刻補正部18は、外部より入力される周期信号(1秒パルス)とOLT内の動作クロックとの比較を行い、その比較結果に基づいて基準時刻の補正を行う。時刻選択部19は、基準時刻入力部11より入力される基準時刻または時刻補正部18から入力される基準時刻のうち一方を選択し時刻分配部14へ出力する。
 以下、図8を用いて動作について説明する。
 図8において、OLT1は基準時刻を外部の基準時刻発生装置より基準時刻入力ポート3を介して入力される。入力される基準時刻は実施の形態1に示す基準時刻と同じとする。基準時刻入力部11は、図2の基準時刻を受けると時刻選択部19へ送信する。時刻選択部19は通常時は基準時刻入力部11からの時刻をそのまま時刻分配部14へ通知するので、以下の動作は実施の形態1と同様になり、ONU2の同期時刻出力ポート5からは基準時刻に同期した時刻情報を出力することができる。
 ここで、OLT1の自走時刻生成部16では、基準時刻入力部11からの時刻を受けると、自走カウンタに値をロードする。自走カウンタのカウントはOLT1の動作クロックに同期するものとする。OLT1の動作クロックと基準時刻入力ポート3の時刻を刻む周波数は必ずしも一致していないので、時刻を入力される1秒ごとに、自走時刻生成部16の時刻カウンタとずれが生じる。すなわち、OLT1の動作クロックに基づいて算出される1秒周期と、基準時刻により含まれる1秒パルスの1秒周期とにずれが生じている場合がある。OLT1の温度測定部17はOLT1内の発振器の周囲温度を測定し、時刻補正部18へ渡す。時刻補正部18では、基準時刻入力部11の1秒パルスと自走時刻生成部16で算出した動作クロックとの比較を行い、1秒当たりの差分を求め、この差分と比較を行った際の温度を保持しておく。このように求めた温度と時刻の差分により、時刻補正部18は現在の温度を元に自走時刻生成部16が送信した時刻を補正して時刻選択部19へ送信する。
 基準時刻入力部11が、入力される時刻情報が途絶えたことを検出すると、その情報を渡して時刻選択部19が時刻補正部18からの時刻を選択し、出力する。この時刻は、OLT1内部の温度に対する補正が行われているため、時刻入力障害が発生する前の基準時刻入力ポート3から受信する時刻を模擬していることになる。
 この実施の形態2によれば、補正した時刻を元に時刻選択部19が基準時刻相当の時刻を生成できるので、時刻入力障害が発生した際でも、ONU2からより精度良い時刻情報を出力できる。
 以上の各実施の形態では、発明の本質を逸脱しない限り、各実施の形態を相互に組み合わせてもよいことはいうまでもない。
 1 局側通信装置(OLT)、2 加入者側通信装置(ONU)、3 基準時刻入力ポート、4 回線ポート、5 同期時刻出力ポート、6 光分配器、7 上位ネットワーク装置、8 端末、9 基準時刻発生装置、11 基準時刻入力部、12 回線時刻生成部、13 遅延調整部、14 時刻分配部、15 回線IF部、21 回線IF部、22 回線時刻同期部、23 自走時刻生成部、24 温度測定部、25 時刻補正部、26 基準時刻抽出部、27 時刻選択部、28 時刻出力部。

Claims (15)

  1.  局側通信装置と複数の加入者側通信装置が光伝送路を介して接続された通信システムであって、
     前記局側通信装置は、
     基準時刻および基準クロックを含む制御信号を生成し、前記加入者側通信装置へ前記制御信号を送信する制御信号送信手段を備え、
     前記加入者側通信装置は、
     前記局側通信装置から送信された制御信号を受信し、受信した制御信号から基準時刻および基準クロックを抽出する抽出手段と、
     前記抽出手段により取得された基準クロックと自装置内で生成された内部クロックとの比較を行い、比較結果を保持するクロック比較手段と、
     前記クロック比較手段による比較結果および自装置内で生成された内部クロックに基づいて、前記基準時刻を補正する時刻補正手段と、
     を備えたことを特徴とする通信システム。
  2.  前記局側通信装置は、前記複数の加入者側通信装置ごとの遅延時間を算出し、前記遅延時間に基づいて対応する加入者側通信装置についての基準時刻を調整する遅延調整部を備え、
     前記制御信号送信手段は、前記遅延調整部により調整された基準時刻を含む制御信号を生成し、前記加入者側通信装置に前記制御信号を送信すること、
     を特徴とする請求項1記載の通信システム。
  3.  前記基準クロックは前記局側通信装置の動作クロックであることを特徴とする請求項1記載の通信システム。
  4.  前記加入者側通信装置は、前記クロック比較手段により比較を行った際の周囲条件を記憶する条件記憶手段を備え、
     前記時刻補正手段は、前記条件記憶手段により記憶された周囲条件と補正を行う際の周囲条件とに基づいて、前記基準時刻の補正を行うこと、
     を特徴とする請求項1記載の通信システム。
  5.  前記周囲条件は、前記加入者側通信装置の動作クロックを生成する発振器またはその周囲の温度であること、
     を特徴とする請求項4記載の通信システム。
  6.  前記条件記憶手段が記憶する周囲条件は、前記クロック比較手段により誤差を算出する時刻であり、
     前記時刻補正手段は、前記条件記憶手段により記憶された時刻と補正を行う際の時刻とに基づいて、前記基準時刻の補正を行うこと、
     を特徴とする請求項4記載の通信システム。
  7.  前記加入者側通信装置は、前記局側通信装置の動作クロックに同期する第1の自走カウンタと、自装置内で生成する動作クロックに同期して動作する第2の自走カウンタと、を備え、
     前記クロック比較手段は、前記第1の自走カウンタと前記第2の自走カウンタの単位時間当たりの差分値を求めること、
     を特徴とする請求項1~6のいずれか1項に記載の通信システム。
  8.  前記加入者側通信装置には、通信端末が接続されており、
     前記加入者側通信装置は、時刻補正手段により補正した基準時刻を前記通信端末に出力する時刻情報出力手段、を備えること、
     を特徴とする請求項1~6のいずれか1項に記載の通信システム。
  9.  基準時刻発生装置に接続された局側通信装置と複数の加入者側通信装置が光伝送路を介して接続された通信システムであって、
     前記局側通信装置は、基準時刻発生装置により生成された時刻情報および周期信号を含む基準時刻を受信する基準時刻入力手段と、
     前記基準時刻入力手段により受信された制御信号から抽出した周期信号と自装置内で生成された動作クロックとの比較を行い、比較結果を保持するクロック比較手段と、
     前記クロック比較手段による比較結果および自装置内で生成された動作クロックに基づいて、前記基準時刻を補正する時刻補正手段と、
     を備えたことを特徴とする通信システム。
  10.  複数の通信装置が光伝送路を介して接続された通信システムに適用可能な通信装置であって、
     外部より入力された制御信号から時刻情報と周期信号を抽出する抽出手段と、
     前記抽出手段により抽出された周期信号と、自装置内で生成された動作クロックとの比較を行い、その比較結果を保持するクロック比較手段と、
     前記クロック比較手段による比較結果と、自装置内で生成された動作クロックとに基づいて、前記抽出手段により抽出された時刻情報の補正を行う時刻補正手段と、
     を備えたことを特徴とする通信装置。
  11.  前記抽出手段は、前記通信システム内の他の通信装置が送信した制御信号から時刻情報と周期信号を抽出し、
     前記周期信号は、前記他の通信装置の動作クロックであること、
     を特徴とする請求項10記載の通信装置。
  12.  前記抽出手段は、基準時刻発生装置から受信した制御信号から時刻情報および周期信号を含む基準時刻を抽出し、
     前記周期信号は、前記基準時刻発生装置が生成する周期パルスであること、
     を特徴とする請求項10記載の通信装置。
  13.  前記クロック比較手段により比較が行われた際の周囲条件を記憶する条件記憶手段を備え、
     前記時刻補正手段は、前記条件記憶手段により記憶された周囲条件と補正を行う際の周囲条件とに基づいて、前記時刻情報の補正を行うこと、
     を特徴とする請求項10~12のいずれか1項に記載の通信装置。
  14.  局側通信装置と加入者側通信装置が光伝送路を介して接続された通信システムに適用可能な時刻情報補正方法であって、
     前記局側通信装置が、基準時刻と自装置の動作クロックを含む制御信号を生成し、前記加入者側通信装置へ前記制御信号を送信する制御信号送信ステップと、
     前記加入者側通信装置が、前記制御信号送信ステップにおいて送信された制御信号を受信する制御信号受信ステップと、
     前記制御信号受信ステップにおいて受信した制御信号から基準時刻と前記局側通信装置の動作クロックを抽出する抽出ステップと、
     前記加入者側通信装置が、前記抽出ステップにおいて抽出された局側通信装置の動作クロックと自装置内で生成された動作クロックとの比較を行い、比較結果を保持するクロック比較ステップと、
     前記クロック比較ステップにおいて記憶された比較結果と、前記加入者側通信装置内で生成された動作クロックとに基づいて、前記抽出ステップにおいて抽出された基準時刻の補正を行う時刻情報補正ステップと、
     を備えたことを特徴とする時刻情報補正方法。
  15.  基準時刻発生装置に接続された局側通信装置と加入者側通信装置が光伝送路を介して接続された通信システムに適用可能な時刻情報補正方法であって、
     前記局側通信装置が、基準時刻発生装置により生成された時刻情報および周期信号を含む基準時刻を受信する基準時刻受信ステップと、
     前記基準時刻受信ステップにおいて受信された周期信号と自装置内で生成された動作クロックとの比較を行い、比較結果を保持するクロック比較ステップと、
     前記クロック比較ステップにおける比較結果と、自装置内で生成された動作クロックとに基づいて、前記基準時刻を補正する時刻補正ステップと、
     前記時刻補正ステップにおいて補正された基準時刻を前記加入者側通信装置に送信する基準時刻送信ステップと、
     を備えたことを特徴とする時刻情報補正方法。
PCT/JP2012/079383 2012-04-27 2012-11-13 通信システム、通信装置および時刻情報補正方法 WO2013161110A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012102393 2012-04-27
JP2012-102393 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161110A1 true WO2013161110A1 (ja) 2013-10-31

Family

ID=49482471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079383 WO2013161110A1 (ja) 2012-04-27 2012-11-13 通信システム、通信装置および時刻情報補正方法

Country Status (1)

Country Link
WO (1) WO2013161110A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009365A (ja) * 2014-06-25 2016-01-18 株式会社日立製作所 情報サービス表示システムおよび時刻同期方法
JP2017079445A (ja) * 2015-10-22 2017-04-27 ソフトバンク株式会社 信号出力装置
JP2018098711A (ja) * 2016-12-15 2018-06-21 日本電信電話株式会社 時刻同期システム、クライアント端末装置、時刻同期方法及び時刻同期プログラム
CN111885438A (zh) * 2020-07-23 2020-11-03 杭州万高科技股份有限公司 Pon网络的时钟校准方法、onu终端的时钟校准方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312454A (ja) * 2003-04-08 2004-11-04 Mitsubishi Electric Corp 端末装置
JP2011124759A (ja) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp 通信システム、局側通信装置及びスレーブクロック補正装置
JP2011150492A (ja) * 2010-01-20 2011-08-04 Panasonic Electric Works Co Ltd 無線通信システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312454A (ja) * 2003-04-08 2004-11-04 Mitsubishi Electric Corp 端末装置
JP2011124759A (ja) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp 通信システム、局側通信装置及びスレーブクロック補正装置
JP2011150492A (ja) * 2010-01-20 2011-08-04 Panasonic Electric Works Co Ltd 無線通信システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009365A (ja) * 2014-06-25 2016-01-18 株式会社日立製作所 情報サービス表示システムおよび時刻同期方法
JP2017079445A (ja) * 2015-10-22 2017-04-27 ソフトバンク株式会社 信号出力装置
JP2018098711A (ja) * 2016-12-15 2018-06-21 日本電信電話株式会社 時刻同期システム、クライアント端末装置、時刻同期方法及び時刻同期プログラム
CN111885438A (zh) * 2020-07-23 2020-11-03 杭州万高科技股份有限公司 Pon网络的时钟校准方法、onu终端的时钟校准方法
CN111885438B (zh) * 2020-07-23 2023-03-17 杭州万高科技股份有限公司 Pon网络的时钟校准方法、onu终端的时钟校准方法

Similar Documents

Publication Publication Date Title
US10341083B2 (en) System and methods for network synchronization
US20090297164A1 (en) Optical transmission system and synchronization method using time reference pulse
EP2410672B1 (en) Method and system for transmitting time in passive optical network
EP2675102B1 (en) Communication system time synchronization method, slave station apparatus, master station apparatus, control apparatus, and program
CN101827098A (zh) 时间同步的处理方法及装置
US8819161B1 (en) Auto-syntonization and time-of-day synchronization for master-slave physical layer devices
US8768169B2 (en) Time synchronization method and system for a passive optical network system
US8953940B2 (en) Method, apparatus, and system for time synchronization on passive optical network
JP5576747B2 (ja) 通信システム及び時刻同期方法
US9014282B2 (en) Precision timing in a data over cable service interface specification (DOCSIS) system
KR101290643B1 (ko) 광 전송 네트워크에서 시간 동기화 프로토콜을 베어링하는 방법 및 시스템
US20150358700A1 (en) Apparatus and method for enabling a passive optical network on supporting time synchronization
US20120300795A1 (en) Network distributed packet-based synchronization
KR20090032306A (ko) 네트워크상의 타임 동기화 시스템 및 방법
CN104836630A (zh) Ieee1588时钟同步***及其实现方法
WO2010000190A1 (zh) 无源光网络同步时间的计算方法、***及光网络设备
WO2013161110A1 (ja) 通信システム、通信装置および時刻情報補正方法
JP2009005070A (ja) 通信方式、通信方法および通信プログラム
KR101697059B1 (ko) 통신 네트워크의 시각 동기화 방법
KR101679628B1 (ko) Pon 구조 기반 정밀 시간 동기화 시스템 및 방법
CN103199950B (zh) 一种采用e1专线进行高精度时间传递的方法
US20140226992A1 (en) Subscriber-side device and optical transmission system
WO2016082369A1 (zh) 时钟源属性的同步方法、装置及***
JP2011040870A (ja) 光伝送システム及び時刻基準パルスを用いた同期方法
KR101987077B1 (ko) 시각 동기화 기능을 구비한 onu sfp 모듈 및 이를 적용한 네트워크 시스템의 시간 동기 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP